第四版《高分子化学》思考题课后问题详解_潘祖仁

合集下载

潘祖仁《高分子化学》笔记和课后习题(含考研真题)详解(聚合方法)【圣才出品】

潘祖仁《高分子化学》笔记和课后习题(含考研真题)详解(聚合方法)【圣才出品】

如温度降到三相平衡点以下,将有凝胶枂出,乳化能力减弱。
(5)浊点
非离子型乳化剂水溶液随温度升高而分相的温度,称为浊点。在浊点以上,非离子型表
面活性剂将沉枂出来。
3.乳液聚合机理
(1)成核机理
①胶束成核
5 / 26
圣才电子书 十万种考研考证电子书、题库视频学习平台

在经典乳液聚合体系中,由于胶束的表面积大,更有利于捕捉水相中的初级自由基和短 链自由基,自由基迚入胶束,引収其中单体聚合,形成活性种,这就是胶束成核。
4 / 26
圣才电子书

(1)临界胶束浓度
十万种考研考证电子书、题库视频学习平台
在一定温度下,乳化剂开始形成胶束的浓度,称为临界胶束浓度(CMC)。CMC 值越
小的乳化剂,乳化能力越强。
(2)增溶
①定义
乳化剂的存在,将使单体的溶解度增加,这称为增溶作用。
②增溶的原因
a.单体伴随乳化剂分子的疏水部分增溶在水中;
3 / 26
圣才电子书 十万种考研考证电子书、题库视频学习平台

五、乳液聚合 1.乳液聚合概述 (1)定义 乳液聚合是指单体在水中分散成乳液状态的聚合。传统乳液聚合的基本配斱由单体、水、 水溶性引収剂和水溶性乳化剂四组分极成。 (2)特点 ①优点 a.以水作介质,环保安全,胶乳粘度低,便于混合传热、管道输送和连续生产; b.聚合速率快,产物分子量高,可在低温下聚合; c.胶乳可直接使用。 ②缺点 a.需要固体产品时,胶乳需经凝聚、洗涤、脱水、干燥等工序,成本高; b.产品中留有乳化剂,有损电性能等。 (3)乳化剂和乳化作用 ①传统乳液聚合中主要选用阴离子乳化剂,非离子型表面活性剂则配合使用。另外还有 阳离子乳化剂和两性乳化剂。 ②乳化剂的作用 a.降低表面张力,使单体分散成细小液滴; b.在液滴或胶粒表面形成保护层,防止凝聚,使乳液稳定; c.形成胶束,使单体增溶。 2.基本概念

高分子化学潘祖仁版课后习题答案

高分子化学潘祖仁版课后习题答案

第一章 绪论 计算题1. 求下列混合物的数均分子量、质均分子量和分子量分布指数。

a 、组分A :质量 = 10g ,分子量 = 30 000;b 、组分B :质量 = 5g ,分子量 = 70 000;c 、组分C :质量 = 1g ,分子量 = 100 000 解:数均分子量38576100000/170000/530000/101510)/(=++++===≡∑∑∑∑∑i i i i i i i n M m m n M n n m M质均分子量10300005700001100000468761051iiw iiim M M w M m==⨯+⨯+⨯==++∑∑∑分子量分布指数 wM /n M =46876/38576=第2章 缩聚与逐步聚合计算题2. 羟基酸HO-(CH 2)4-COOH 进行线形缩聚,测得产物的质均分子量为18,400 g/mol -1,试计算:a. 羧基已经醌化的百分比 b. 数均聚合度 c. 结构单元数n X 解:已知100,184000==M M w根据ppX M M X w w w -+==110和得:p=,故已酯化羧基百分数为%。

9251,1=+=n nw M P M M 51.9210092510===M M X n n8. 等摩尔的乙二醇和对苯二甲酸在280℃下封管内进行缩聚,平衡常数K=4,求最终n X 。

另在排除副产物水的条件下缩聚,欲得100=n X ,问体系中残留水分有多少?解:3111=+=-=K pX nLmol n n Kpn KpX w w wn /10*4100114-==≈=-=9. 等摩尔二元醇和二元酸缩聚,另加醋酸%,p=或时聚酯的聚合度多少?解:假设二元醇与二元酸的摩尔数各为1mol ,则醋酸的摩尔数为。

N a =2mol ,N b =2mol ,015.0'=bN mol985.0015.0*2222,=+=+=bb a N N N r当p=时,88.79995.0*985.0*2985.01985.01211=-++=-++=rp r r X n当p=时,98.116999.0*985.0*2985.01985.01211=-++=-++=rp r r X n14题18. 制备醇酸树脂的配方为 季戊四醇、邻苯二甲酸酐、丙三羧酸[C 3H 5(COOH )3],问能否不产生凝胶而反应完全?解:根据配方可知醇过量。

潘祖仁《高分子化学》笔记和课后习题(含考研真题)详解(1-3章)【圣才出品】

潘祖仁《高分子化学》笔记和课后习题(含考研真题)详解(1-3章)【圣才出品】

②测定方法
光散射法、凝胶渗透色谱法。
5 / 145

(3)粘均分子量
①定义式
M =(
miM i )1 =( mi
niMi+1 )1 ni Mi
式中α是高分子稀溶液特性粘数-分子量关系式 = KM 中的指数,一般为 0.5~0.9。
②测定方法
其测定方法为粘度法。
①以大分子链中的结构单元数目表示,记作 X n ; ②以大分子链中的重复单元数目表示,记作 DP 。
(2)关系式 ①由一种结构单元组成的高分子
M = Xn M0 = DP M0
式中 M 是高分子的分子量;M0 是结构单元的分子量。
1 / 145

②由两种结构单元组成的高分子
c.除微量引发剂外,体系始终由单体和高分子聚合物组成,没有分子量递增的中间产 物;
d.分子量随时间无变化或变化甚微,但转化率随时间而增大,单体则相应减少。活性 阴离子聚合中分子量随转化率的增大而线性增加。
四、分子量及其分布
1.平均分子量
(1)数均分子量 Mn
Hale Waihona Puke m= niniMi = ni
mi (mi Mi
1.2 课后习题详解
(一)思考题 1.举例说明单体、单体单元、结构单元、重复单元、链节等名词的含义,以及它们之 间的相互关系和区别。
6 / 145

答:(1)单体、单体单元、结构单元、重复单元、链节的含义 ①单体是指合成聚合物的低分子化合物,如加成聚合中的乙烯、丙烯、氯乙烯、苯乙烯, 缩合聚合中的己二酸和己二胺、乙二醇和对苯二甲酸等。 ②单体单元是指与单体中原子种类及个数相同,仅电子结构有所改变的单元。 ③结构单元是指构成高分子链并决定高分子性质的最小结构单位。 ④重复单元是指聚合物链上化学组成和结构相同的最小单元。 ⑤链节是指重复单元或结构单元的俗称,许多重复单元或结构单元连接成线性大分子, 类似一条链子,因此重复单元或结构单元又称链节。 (2)它们之间的相互关系和区别 烯类加聚物中,单体单元、结构单元、重复单元、链节相同,如聚氯乙烯。

潘祖仁《高分子化学》笔记和课后习题(含考研真题)详解(绪论)【圣才出品】

潘祖仁《高分子化学》笔记和课后习题(含考研真题)详解(绪论)【圣才出品】

圣才电子书

差别很大;
十万种考研考证电子书、题库视频学习平台
b.链引収是活性种的形成,活性种不单体加成,使链迅速增长,活性种的破坏就是链
终止;
c.除微量引収剂外,体系始终由单体和高分子聚合物组成,没有分,但转化率随时间而增大,单体则相应减少。活性
圣才电子书

间的相互关系和区别。
十万种考研考证电子书、题库视频学习平台
答:(1)单体、单体单元、结构单元、重复单元、链节的含义
①单体是指合成聚合物的低分子化合物,如加成聚合中的乙烯、丙烯、氯乙烯、苯乙烯,
缩合聚合中的己二酸和己二胺、乙二醇和对苯二甲酸等。
②单体单元是指不单体中原子种类及个数相同,仅电子结构有所改变的单元。
(2)连锁聚合
①定义
连锁聚合是指由活性中心引収单体迅速连锁增长的聚合反应。
②类型
连锁聚合从活性种开始,活性种可以是自由基、阴离子或阳离子,根据活性种的丌同,
连锁聚合可以分为自由基聚合、阴离子聚合和阳离子聚合。
②特征
a.聚合过程由链引収、链增长、链终止等基元反应组成,各基元反应的速率和活化能
4 / 19
M Xn M0 2DP M0
式中 M0 是两种结构单元的平均分子量。 5.三大合成材料 (1)合成树脂和塑料; (2)合成纤维; (3)合成橡胶。
二、聚合物的分类和命名 1.分类 (1)按单体来源 天然高分子、合成高分子、改性高分子。 (2)按材料性能和用递 合成树脂和塑料、合成橡胶、合成纤维、涂料、胶粘剂、功能高分子。 (3)按高分子主链结构 ①碳链聚合物 大分子主链完全由碳原子组成。 ②杂链聚合物 大分子主链中除碳原子外,还有氧、氮、硫等杂原子。 ③元素有机聚合物 大分子主链中没有碳原子,主要有硅、硼、铝和氧、氮、硫、磷等原子,但侧基多半是

潘祖仁《高分子化学》课后习题及详解(自由基聚合)【圣才出品】

潘祖仁《高分子化学》课后习题及详解(自由基聚合)【圣才出品】

第3章自由基聚合(一)思考题1.烯类单体加聚有下列规律:①单取代和1,1-双取代烯类容易聚合,而1,2-双取代烯类难聚;②大部分烯类单体能自由基聚合,而能离子聚合的烯类单体却较少。

试说明原因。

答:①单取代烯类容易聚合是因为单取代基降低了双键对称性,改变其极性,从而提高单体参加聚合反应的能力。

1,1-双取代烯类在同一个碳原子上有两个取代基,促使极化,易于聚合,但若取代基体积较大,则只形成二聚体。

1,2-双取代烯由于位阻效应,加上结构对称,极化程度低,一般都难均聚,或只形成二聚体。

②乙烯基单体中,C=Cπ键兼有均裂和异裂倾向,因此有可能进行自由基或离子聚合。

自由基呈中性,对π键的进攻和对自由基增长中的稳定作用并无严格的要求,几乎各种取代基对自由基都有一定的共振稳定作用。

所以大部分烯类单体能以自由基聚合。

而只有个别带强烈供电基团和吸电基团的烯类单体及共轭烯类单体可进行离子聚合。

2.下列烯类单体适用于何种机理聚合?自由基聚合、阳离子聚合还是阴离子聚合?并说明原因。

答:CH2=CHCl:适合自由基聚合,-Cl是吸电子基团,也有共轭效应,但均较弱。

CH2=CCl2:自由基及阴离子聚合,两个-Cl使诱导效应增强。

CH2=CHCN:自由基及阴离子聚合,-CN为吸电子基团,并有共轭效应,使自由基、阴离子活性种稳定。

CH2=C(CN)2:阴离子聚合,两个吸电子基团-CN,使吸电子倾向过强,不能进行自由基聚合。

CH2=CHCH3:配位聚合,甲基(CH3)供电性弱。

CH2=C(CH3)2:阳离子聚合,两个甲基有利于双键电子云密度的增加和阳离子的进攻。

CH2=CHC6H5:三种机理均可,共轭体系中电子流动性较大,易诱导极化。

CF2=CF2:自由基聚合,对称结构,但氟原子半径小。

CH2=C(CN)COOR:阴离子聚合,取代基为两个吸电子基(CN及COOR),基团的吸电性过强,只能进行阴离子聚合。

CH2=C(CH3)-CH=CH2:三种机理均可,共轭体系电子流动性大,易诱导极化。

潘祖仁《高分子化学》课后习题及详解(缩聚和逐步聚合)【圣才出品】

潘祖仁《高分子化学》课后习题及详解(缩聚和逐步聚合)【圣才出品】

的线形缩聚物。
c.聚酯结构与反应物配比有关系。设二元酸与三元醇的摩尔比为 x,当 1<x<2 时生
成交联高分子;当 x<1 或 x>2 时生成支化高分子。
d.聚酯结构与反应物配比有关系。设二元酸、二元醇、三元醇的摩尔比为 x、y、1,
当1<x-y<2时生成交联高分子;当 x-y≤1时产物为端羟基支化高分子;当 x-y≥2时产
3.己二酸与下列化合物反应,哪些能形成聚合物? a.乙醇 b.乙二醇 e.甘油 d.苯胺 e.己二胺 答:己二酸与乙二醇、甘油、己二胺反应能形成聚合物。己二酸(ƒ=2)是官能度为2
3 / 37
圣才电子书 十万种考研考证电子书、题库视频学习平台

的单体,因此能与乙二醇(ƒ=2)、甘油(ƒ=3)、己二胺(ƒ=2)反应形成聚合物。其中 与乙二醇(ƒ=2)、己二胺(ƒ=2)形成线形缩聚物,与甘油(ƒ=3)形成体形研考证电子书、题库视频学习平台

①根据生成聚合物的结构,缩聚反应可以分为线形缩聚和体形缩聚; ②线形缩聚是含有两个或两个以上官能团的单体相互作用,生成的大分子向两个方向增 长,形成线形缩聚物的反应,如尼龙-66。线型缩聚的首要条件是需要 2-2 或 2-官能度体系 作原料; ③体形缩聚是参加反应的单体至少有一种含有两个以上的官能团,体系的平均官能度大 于 2,且在一定条件下能够生成三维交联结构聚合物的反应。2-3、2-4 或 3-3 官能度体系 可以形成体形缩聚物。 (4)自缩聚和共缩聚的关系和区别 ①由一种单体进行的缩聚反应称为均缩聚或自缩聚,如羟基酸或氨基酸的缩聚; ②由两种或两种以上单体进行的、并能形成两种或两种以上重复单元的缩聚反应称为共 缩聚,如一种二元酸和两种二元醇、两种二元酸和两种二元醇等进行的缩聚,共缩聚可以用 于聚合物的改性。

潘祖仁《高分子化学》课后习题及详解(自由基共聚合)【圣才出品】

潘祖仁《高分子化学》课后习题及详解(自由基共聚合)【圣才出品】
; 当 r1 较小时,组成曲线近似水平线,与对角线有一交点,rl 较大时,组成曲线处于对角 线的上方。如图 4-1 所示(曲线上数字为 r1/r2 值)。
图 4-1 ;
图像特征:当 rl>l 时,组成曲线处于恒比对角线的上方,并与另一对角线呈对称状态。 当 rl<1 时,组成曲线处于恒比对角线的下方,并与另一对角线呈对称状态。
3.说明竞聚率 r1、r2 的定义,指明理想共聚、交替共聚、恒比共聚时竞聚率数值的特 征。
答:(1)竞聚率是指自增长速率常数与交叉增长速率常数的比值。r1=k11/k12,即链自 由基 M1•与单体 M1 的反应能力和它与单体 M2 的反应能力之比,或两单体 M1、M2 与链自 由基 M1•反应时的相对活性。r2=k22/k21,即链自由基 M2•与单体 M2 的反应能力和它与单 体 M1 的反应能力之比,或两单体 M1、M2 与链自由基 M2•反应时的相对活性。
以 M1、M2 代表 2 种单体,以~M1•、~M2•代表 2 种链自由基。二元共聚时有下列反 应。
链引发
链增长
链终止
由稳态假定:R12=R21,故 k12[M1•][M2]=k21[M2•][M1] 根据假定④
⑤和⑥两式相比,得
2 / 18
圣才电子书 十万种考研考证电子书、题库视频学习平台

7.甲基丙烯酸甲酯、丙烯酸甲酯、苯乙烯、马来酸酐、醋酸乙烯酯、丙烯腈等单体与 丁二烯共聚,交替倾向的次序如何?说明原因。(提示:如无竞聚率数据,可用 Q、e 值)
答:【方法一】查表得题中单体的 Q、e 值如表 4-3 所示。 表 4-3
8 / 18
圣才电子书 十万种考研考证电子书、题库视频学习平台
同理
其中

形成 xM1 链段的概率为:

潘祖仁《高分子化学》笔记和课后习题(含考研真题)详解(聚合物的化学反应)【圣才出品】

潘祖仁《高分子化学》笔记和课后习题(含考研真题)详解(聚合物的化学反应)【圣才出品】

第9章聚合物的化学反应9.1 复习笔记一、聚合物化学反应的特征及影响因素1.聚合物化学反应的分类(按聚合度和结构变化)(1)聚合度不变的反应(也称为聚合物的相似转变),如基团反应;(2)聚合度增加的反应,如接枝、嵌段、扩链、交联等;(3)聚合度减小的反应,如降解、解聚等。

2.大分子基团活性的影响因素(1)物理因素如聚合物的凝聚态和溶解性能。

(2)化学因素①几率效应当聚合物相邻侧基作无规成对反应时,中间往往留有未反应的孤立单个基团,最高转化程度因而受到限制。

②邻近基团效应高分子中原有基团或反应后形成的新基团的位阻效应和电子效应,以及试剂的静电作用,均可能影响到邻近基团的活性和基团的转化程度。

体积较大基团的位阻效应一般将使聚合物化学反应活性降低,基团转化程度受限。

不带电荷的基团转变成带电荷基团的高分子反应速率往往随转化程度的提高而降低。

二、聚合物的基团反应1.加成反应丁二烯类聚合物中含有不饱和双键,可以进行加氢、加氯化氢、加氯等反应。

2.取代反应(1)聚醋酸乙烯酯的醇解乙烯醇不稳定,无法游离存在,迅速异构化为乙醛,因此聚乙烯醇只能由聚醋酸乙烯酯经醇解(水解)来制备。

维尼纶纤维的生产过程由聚醋酸乙烯酯的醇解、聚乙烯醇的纺丝拉伸、缩醛等工序组成。

(2)苯环侧基的取代反应苯乙烯和二乙烯基苯的共聚物是离子交换树脂的母体,与发烟硫酸反应,可以在苯环上引入磺酸根基团,即成阳离子交换树脂;与氯代二甲基醚反应,则可引入氯甲基,进一步引入季铵基团,即成阴离子交换树脂。

3.环化反应聚丙烯腈、粘胶纤维高温裂解制碳纤维是环化反应的代表。

4.纤维素的化学改性纤维素分子间有强的氢键,结晶度高,高温下只分解而不熔融,反应之前,需用适当浓度的碱液、硫酸、铜氨液溶胀。

纤维素葡萄糖单元中的3个羟基可以进行多种取代反应,可以有再生纤维素、酯类、醚类等多种衍生物。

(1)再生纤维素有粘胶纤维和铜氨纤维两种①粘胶纤维主要用CS2处理;②铜氨纤维则用铜氨配合物处理。

高分子化学(第四版)潘祖仁版课后习题答桉

高分子化学(第四版)潘祖仁版课后习题答桉

第2章 缩聚与逐步聚合1. 通过碱滴定法和红外光谱法,同时测得21.3 g 聚己二酰己二胺试样中含有2.50⨯10-3mol 羧基。

根据这一数据,计算得数均分子量为8520。

计算时需作什么假定?如何通过实验来确定的可靠性?如该假定不可靠,怎样由实验来测定正确的值? 解:∑∑=ii nNm M ,g m i 3.21=∑,852010*5.23.213==-n M ,310*5.2=∑i N 上述计算时需假设:聚己二酰己二胺由二元胺和二元酸反应制得,每个大分子链平均只含一个羧基,且羧基数和胺基数相等。

可以通过测定大分子链端基的COOH 和NH 2摩尔数以及大分子的摩尔数来验证假设的可靠性,如果大分子的摩尔数等于COOH 和NH 2的一半时,就可假定此假设的可靠性。

用气相渗透压法可较准确地测定数均分子量,得到大分子的摩尔数。

碱滴定法测得羧基基团数、红外光谱法测得羟基基团数2. 羟基酸HO-(CH 2)4-COOH 进行线形缩聚,测得产物的质均分子量为18,400 g/mol -1,试计算:a. 羧基已经醌化的百分比 b . 数均聚合度 c. 结构单元数n X 解:已知100,184000==M M w根据ppX M M X w w w -+==110和得:p=0.989,故已酯化羧基百分数为98.9%。

9251,1=+=n nw M P M M 51.9210092510===M M X n n 3. 等摩尔己二胺和己二酸进行缩聚,反应程度p 为0.500、0.800、0.900、0.950、0.980、0.990、0.995,试求数均聚合度nX 、DP 和数均分子量nM ,并作nX -p 关系图。

解:p 0.500 0.800 0.900 0.950 0.970 0.980 0.990 0.995 pX n -=112 5 102033.350100200DP=X n /2 1 2.5 5 10 16.65 25 50 100 M n =113;X n =18244583114822783781566811318226188. 等摩尔的乙二醇和对苯二甲酸在280℃下封管内进行缩聚,平衡常数K=4,求最终n X 。

高分子化学潘祖仁习题答案自由基聚合

高分子化学潘祖仁习题答案自由基聚合

第三章自由基聚合习题1、举例说明自由基聚合时取代基的位阻效应、共轭效应、电负性、氢键与溶剂化对单体聚合热的影响。

2、什么就是聚合上限温度、平衡单体浓度?根据表3-3数据计算丁二烯、苯乙烯40、80O C自由基聚合时的平衡单体浓度。

3、什么就是自由基聚合、阳离子聚合与阴离子聚合?4、下列单体适合于何种机理聚合:自由基聚合,阳离子聚合或阴离子聚合?并说明理由。

CH2=CHCl, CH2=CCl2,CH2=CHCN,CH2=C(CN)2, CH2=CHCH3, CH2=C(CH3)2, CH2=CHC6H5, CF2=CF2, CH2=C(CN)COOR,CH2=C(CH3)-CH=CH2。

5、判断下列烯类单体能否进行自由基聚合,并说明理由。

CH2=C(C6H5)2, ClCH=CHCl, CH2=C(CH3)C2H5, CH3CH=CHCH3,CH2=C(CH3)COOCH3,CH2=CHOCOCH3,CH3CH=CHCOOCH3。

6、对下列实验现象进行讨论:(1)乙烯、乙烯的一元取代物、乙烯的1,1-二元取代物一般都能聚合,但乙烯的1,2-取代物除个别外一般不能聚合。

(2)大部分烯类单体能按自由基机理聚合,只有少部分单体能按离子型机理聚合。

(3)带有π-π共轭体系的单体可以按自由基、阳离子与阴离子机理进行聚合。

7、以偶氮二异丁腈为引发剂,写出苯乙烯、醋酸乙烯酯与甲基丙烯酸甲酯自由基聚合历程中各基元反应。

8、对于双基终止的自由基聚合反应,每一大分子含有1、30个引发剂残基。

假定无链转移反应,试计算歧化终止与偶合终止的相对量。

9、在自由基聚合中,为什么聚合物链中单体单元大部分按头尾方式连接?10、自由基聚合时,单体转化率与聚合物相对分子质量随时间的变化有何特征?与聚合机理有何关系?11、自由基聚合常用的引发方式有几种?举例说明其特点。

12、写出下列常用引发剂的分子式与分解反应式。

其中哪些就是水溶性引发剂,哪些就是油溶性引发剂,使用场所有何不同?(1)偶氮二异丁腈,偶氮二异庚腈。

潘祖仁第四版答案2008-12.

潘祖仁第四版答案2008-12.

第一章绪论思考题1. 举例说明单体、单体单元、结构单元、重复单元、链节等名词的含义,以及它们之间的相互关系和区别。

答:合成聚合物的原料称做单体,如加聚中的乙烯、氯乙烯、苯乙烯,缩聚中的己二胺和己二酸、乙二醇和对苯二甲酸等。

在聚合过程中,单体往往转变成结构单元的形式,进入大分子链,高分子由许多结构单元重复键接而成。

在烯类加聚物中,单体单元、结构单元、重复单元相同,与单体的元素组成也相同,但电子结构却有变化。

在缩聚物中,不采用单体单元术语,因为缩聚时部分原子缩合成低分子副产物析出,结构单元的元素组成不再与单体相同。

如果用2种单体缩聚成缩聚物,则由2种结构单元构成重复单元。

聚合物是指由许多简单的结构单元通过共价键重复键接而成的分子量高达104-106的同系物的混合物。

聚合度是衡量聚合物分子大小的指标。

以重复单元数为基准,即聚合物大分子链上所含重复单元数目的平X表示。

均值,以DP表示;以结构单元数为基准,即聚合物大分子链上所含结构单元数目的平均值,以n2. 举例说明低聚物、齐聚物、聚合物、高聚物、高分子、大分子诸名词的的含义,以及它们之间的关系和区别。

答:合成高分子多半是由许多结构单元重复键接而成的聚合物。

聚合物(polymer)可以看作是高分子(macromolecule)的同义词,也曾使用large or big molecule的术语。

从另一角度考虑,大分子可以看作1条大分子链,而聚合物则是许多大分子的聚集体。

根据分子量或聚合度大小的不同,聚合物中又有低聚物和高聚物之分,但两者并无严格的界限,一般低聚物的分子量在几千以下,而高聚物的分子量总要在万以上。

多数场合,聚合物就代表高聚物,不再标明“高”字。

齐聚物指聚合度只有几~几十的聚合物,属于低聚物的范畴。

低聚物的含义更广泛一些。

3. 写出聚氯乙烯、聚苯乙烯、涤纶、尼龙-66、聚丁二烯和天然橡胶的结构式(重复单元)。

选择其常用分子量,计算聚合度。

聚合物结构式(重复单元)聚氯乙烯-[-CH2CHCl-]- n聚苯乙烯-[-CH2CH(C6H5)-]n涤纶-[-OCH2CH2O•OCC6H4CO-]n尼龙66(聚酰胺-66)-[-NH(CH2)6NH•CO(CH2)4CO-]n聚丁二烯-[-CH2CH=CHCH2 -]n天然橡胶-[CH2CH=C(CH3)CH2-]n聚合物分子量/万结构单元分子量/万DP=n 特征塑料聚氯乙烯聚苯乙烯5~1510~3062.5104800~2400960~2900(962~2885)足够的聚合度,才能达到一定强度,弱极性要求较高聚合度。

潘祖仁《高分子化学》课后习题及详解(配位聚合)【圣才出品】

潘祖仁《高分子化学》课后习题及详解(配位聚合)【圣才出品】

第7章 配位聚合(一)思考题1.如何判断乙烯、丙烯在热力学上能够聚合?采用哪一类引发剂和工艺条件,才能聚合成功?答:(1)根据聚合自由能差0<S T H G ∆-∆=∆,作出判断。

大部分烯类单体的熵变近于定值,约为-100~120J •mol -1,在一般聚合温度下(50~100℃),1mol kJ 42~30-⋅=∆-S T ,因此当1mol kJ 30-⋅≥∆-H 时,聚合就有可能。

乙烯和丙烯的H ∆-分别为950kJ •mol -1、85.8kJ •mol -1,所以在热力学上很有聚合倾向。

(2)在100~350MP 的高压和160~270℃高温下,采用氧气或有机过氧化物作引发剂,乙烯按自由基机理进行聚合,得到低密度的聚乙烯(LDPE );若采用TiC14-Al (C 2H 5)3为催化剂,在汽油溶剂中进行配位聚合,则得高密度的聚乙烯(HDPE )。

采用α-TiCl-Al (C 2H 5)3为催化剂,于60~70℃下和常压或稍高于常压的条件下,丙烯进行配位聚合,可制得等规聚丙烯。

2.解释和区别下列诸名词:配位聚合、络合聚合、插入聚合、定向聚合、有规立构聚合。

答:(1)配位聚合:单体与引发剂经过配位方式进行的聚合反应。

具体的说,采用具有配位(或络合)能力的引发剂、链增长(有时包括引发)都是单体先在活性种的空位上配位(络合)并活化,然后插入烷基—金属键中。

配位聚合又有络合引发聚合或插入聚合之称。

(2)络合聚合:与配位聚合的含义相同,可以互用。

络合聚合着眼于引发剂有络合配位能力,一般认为配位聚合比络合聚合意义更明确。

(3)插入聚合:烯类单体与络合引发剂配位后,插入Mt-R链增长聚合,故称为插入聚合。

(4)定向聚合:也称有规立构聚合,指形成有规立构聚合物的聚合反应,配位络合引发剂是重要的条件。

(5)有规立构聚合:是指形成有规立构聚合物为主的聚合反应。

任何聚合过程或聚合方法,只要是形成有规立构聚合物为主,都是有规立构聚合。

潘祖仁高分子化学答案第四版习题答案第六章 离子聚合

潘祖仁高分子化学答案第四版习题答案第六章 离子聚合

第六章 离子聚合1.2.0 mol/L 苯乙烯的二氯乙烷溶液,于25℃时在4.0×10-4 mol/L 硫酸存在下聚合,计算开始时的聚合度。

假如单体溶液中含有浓度为8.0×10-5 mol/L 的异丙苯,那么聚苯乙烯的聚合度是多少?为便于计算,可利用下列数据。

参数: 数值 k p [L/(mol·S)] 7.6 k t 1(s -1)自发终止 4.9×10-2 k t 2(s -1)与反离子结合终止 6.7×10-3 k tr,M (L/mol·s) 1.2×10-1 Cs(25℃,在二氯乙烷中用异丙苯作转移剂) 4.5×10-2解:阳离子聚合速率方程为R p = k p [M][M +]=7.6×2.0×4.0×10-4=6.08×10-3 mol /( L·S)该体系终止反应为自发终止、与反离子结合终止、向单体转移终止之和 ∴ R t = k t1[M +]+k t2[M +]+ k tr,M [M +][M]][][)(210M k k k M k R R X trm t t p tp n ++==4.510.2102.1107.6109.40.26.7132=⨯⨯+⨯+⨯⨯=---存在链转移剂异丙苯时][][)(110M S C X X S n n +=0195.00.2100.8105.44.51152=⨯⨯⨯+=--∴ 4.51=n X2.将1.0×10-3mol萘钠溶于四氢呋喃中,然后迅速加入2.0mol的苯乙烯,溶液的总体积为1L。

假如单体立即均匀混合,发现2000秒钟内已有一半单体聚合,计算在聚合了2000秒和4000秒时的聚合度。

解:无终止的阴离子聚合速率为R p=k p[M-][M]以萘钠为引发剂时,由于聚合开始前,引发剂就以定量地离解成活性中心∴[M-]=[C]=1.0×10-3mol/L将R p式改写为-d[M]/dt=k p[C][M]积分得ln([M]0/[M])=k p[C]t已知t1=2000秒时,[M]0/[M]1=2,代入上面积分式:ln2=k p×2000∴k p[C]=ln2/2000设当t2=4000秒时,剩余单体浓度为[M]2ln([M]0/[M]2)=k p[C]t2=ln2/2000×4000=1.386∴[M]2= [M]0/4则反应掉的单体浓度为[M]0-[M]0/4=3[M]0/4根据阴离子聚合的聚合度公式x n=n[M]/[C] (双阴离子n=2) [C]为引发剂浓度∵聚合到2000秒时,单体转化率为50%,则反应掉的单体浓度为50%[M]0 x n×50%[M]0/[C]=2×50%×2.0/(1.0×10-3)=2000∴=n已求得聚合到4000秒时,反应掉的单体浓度为3[M]0/4x n×(3[M]0/4)/[C]=2×(3/4)×2.0/(1.0×10-3)=3000∴=n3.用TiCl4作催化剂和水作共催化剂,使异丁烯在一定反应条件下于苯中进行阳离子聚合时,实验的聚合速率方程式为R p=k[TiCl4][M][H2O]0如果链终止是通过活性增长中心重排进行的,并产生不饱和端基聚合物和催化剂-共催化剂络合物。

潘祖仁《高分子化学》课后习题及详解(聚合方法)【圣才出品】

潘祖仁《高分子化学》课后习题及详解(聚合方法)【圣才出品】

第5章聚合方法(一)思考题1.聚合方法(过程)中有许多名称,如本体聚合、溶液聚合和悬浮聚合,均相聚合和非均相聚合,沉淀聚合和淤浆聚合,试说明它们相互间的区别和关系。

答:(1)根据聚合物反应物的相态考虑,有本体聚合、溶液聚合、悬浮聚合。

①本体聚合是指不加其他介质,仅有单体本身和少量引发剂(或不加)的聚合;②溶液聚合是指单体和引发剂溶于适当溶剂的聚合;③悬浮聚合一般是单体以液滴状悬浮在水中的聚合,体系主要由单体、水、油溶性引发剂、分散剂四部分组成。

(2)根据聚合体系的溶解性,聚合反应可以分为均相聚合和非均相聚合。

①单体、溶剂、聚合物之间具有很好的相容性时,聚合为均相聚合;②单体、溶剂、聚合物之间相容性不好而产生相分离的聚合,为非均相聚合。

(3)在聚合初期,本体聚合和溶液聚合多属于均相体系,悬浮聚合和乳液聚合属于非均相体系。

①单体对聚合物溶解不好,聚合物从单体中析出时,此时的本体聚合成为非均相的沉淀聚合;②溶液聚合中聚合物从溶剂中析出,就成为沉淀聚合,有时也称为淤浆聚合。

2.本体法制备有机玻璃板和通用级聚苯乙烯,比较过程特征,说明如何解决传热问题、保证产品品质。

答:(1)有机玻璃板制备主要采用间歇本体聚合法。

为解决聚合过程中的散热困难、避免体积收缩和气泡产生,保证产品品质,将聚合分成预聚合、聚合和高温后处理三个阶段来控制。

①预聚合。

在90~95℃下进行,预聚至10%~20%转化率,自动加速效应刚开始较弱,反应容易控制,但体积已经部分收缩,体系有一定的粘度,便于灌模。

②聚合。

将预聚物灌入无机玻璃平板模,在(40~50℃)下聚合至转化率90%。

低温(40~50℃)聚合的目的在于避免或减弱自动加速效应和气泡的产生(MMA的沸点为100℃),在无机玻璃平板模中聚合的目的在于增加散热面。

③高温后处理。

转化率达90%以后,在高于PMMA的玻璃化温度的条件(l00~120℃)下,使残留单体充分聚合。

(2)通用级聚苯乙烯可以采用本体聚合法生产。

高分子化学潘祖仁第四版全书课件

高分子化学潘祖仁第四版全书课件

低转化率,<5%,且各速率常数恒定 低活性引发剂,短期内引发剂的变化可忽略;
ln 1 1C
kp(
fkd kt
)1/2[I]1/2t
ln 1 10.50
145*(0.8*74.0.3*7150*7106
)1/2(4.0*103)1/2t
t
0.693 145*2.236*107
*0.0632
3.38*105s
k p [M ] R M p[• ] 8 .5 0 .2 * 2 1 .3 * 5 1 9 * 8 4 1 5 0 8 2 0 2 .1* 6 12 ( 3 m 0/l.s o ) l kt2 [M R t•]22 * 1 (.1 6 .38 * * 8 1 1 5 2 8 8 0 0 )5 2 4 .4* 17(0 l/m.s)ol
3
聚合机理的分类
高分子化学潘祖仁第四版 全书
• 按单体和聚合物组成结构变化分(Carothers) :
-- 加聚 (addition polymerization)
-- 缩聚 (polycondensation )
• 按聚合polymerization) :活性中心引
Rt = -d[M•]/dt = 2kt[M•]2, 其中kt = ktc +ktd
10
高分子化学潘祖仁第四版
• 偶合终止(Coupling):两链自由基独电子相互结合成全书共价键
• 大分子聚合度DP为两个链自由基重复单元数之和; • 引发剂引发且无链转移时,大分子两端均为引发剂残基。
• 歧化终止(Disproportionation):某链自由基夺取另一自由基氢原子或者
夺取原子
链自由基
溶剂 单体 引发剂 大分子

第四版《高分子化学》思考题课后答案_潘祖仁

第四版《高分子化学》思考题课后答案_潘祖仁

第四版习题答案(第一章)思考题1. 举例说明单体、单体单元、结构单元、重复单元、链节等名词的含义,以及它们之间的相互关系和区别。

答:合成聚合物的原料称做单体,如加聚中的乙烯、氯乙烯、苯乙烯,缩聚中的己二胺和己二酸、乙二醇和对苯二甲酸等。

在聚合过程中,单体往往转变成结构单元的形式,进入大分子链,高分子由许多结构单元重复键接而成。

在烯类加聚物中,单体单元、结构单元、重复单元相同,与单体的元素组成也相同,但电子结构却有变化。

在缩聚物中,不采用单体单元术语,因为缩聚时部分原子缩合成低分子副产物析出,结构单元的元素组成不再与单体相同。

如果用2种单体缩聚成缩聚物,则由2种结构单元构成重复单元。

聚合物是指由许多简单的结构单元通过共价键重复键接而成的分子量高达104-106的同系物的混合物。

聚合度是衡量聚合物分子大小的指标。

以重复单元数为基准,即聚合物大分子链上所含重复单元数目的平X表示。

均值,以DP表示;以结构单元数为基准,即聚合物大分子链上所含结构单元数目的平均值,以n2. 举例说明低聚物、齐聚物、聚合物、高聚物、高分子、大分子诸名词的的含义,以及它们之间的关系和区别。

答:合成高分子多半是由许多结构单元重复键接而成的聚合物。

聚合物(polymer)可以看作是高分子(macromolecule)的同义词,也曾使用large or big molecule的术语。

从另一角度考虑,大分子可以看作1条大分子链,而聚合物则是许多大分子的聚集体。

根据分子量或聚合度大小的不同,聚合物中又有低聚物和高聚物之分,但两者并无严格的界限,一般低聚物的分子量在几千以下,而高聚物的分子量总要在万以上。

多数场合,聚合物就代表高聚物,不再标明“高”字。

齐聚物指聚合度只有几~几十的聚合物,属于低聚物的范畴。

低聚物的含义更广泛一些。

3. 写出聚氯乙烯、聚苯乙烯、涤纶、尼龙-66、聚丁二烯和天然橡胶的结构式(重复单元)。

选择其常用分子量,计算聚合度。

潘祖仁高分子化学答案第四版习题答案第七章 配位聚合

潘祖仁高分子化学答案第四版习题答案第七章 配位聚合

第七章配位聚合1. 简要解释以下概念和名词:(1)配位聚合和插入聚合(2)有规立构聚合和立构选择聚合(3)定向聚合和Ziegler-Natta聚合(4)光学异构、几何异构和构象异构(5)全同聚合指数答:(1)配位聚合是指单体分子首先在活性种的空位处配位,形成某些形式(σ-π)的配位络合物。

随后单体分子插入过渡金属(M t)—碳(C)键中增长形成大分子的过程。

这种聚合本质上是单体对增长链M t—R键的插入反应,所以又常称插入聚合。

(2)有规立构聚合。

按照IUPAC(国际纯粹与应用化学联合会)的规定,有规立构聚合是指形成有规立构聚合物为主的聚合过程。

因此任何聚合过程(包括自由基、阴离子、阳离子或配位聚合等)或任何聚合方法(如本体、悬浮、乳液和溶液聚合等),只要它是以形成有规立构聚合物为主,都是有规立构聚合。

而引发剂能优先选择一种对映体进入聚合物链的聚合反应,则称为立构选择聚合。

(3)定向聚合和有规立构聚合是同义语,二者都是指形成有规立构聚合物为主的聚合过程。

Ziegler-Natta聚合通常是指采用Ziegler-Natta型引发剂的任何单体的聚合或共聚合,所得聚合物可以是有规立构聚合物,也可以是无规聚合物。

它经常是配位聚合,但不一定都是定向聚合。

(4)分子式相同,但是原子相互联结的方式和顺序不同,或原子在空间的排布方式不用的化合物叫做异构体。

异构体有两类:一是因结构不同而造成的异构现象叫结构异构(或称同分异构);二是由于原子或原子团的立体排布不同而导致的异构现象称为立体异构。

根据导致立体异构的因素不同,立体异构又分为:光学异构,即分子中含有手性原子(如手性C*),使物体与其镜像不能叠合,从而使之有不同的旋光性,这种空间排布不同的对映体称为光学异构体;几何异构(或称顺、反异构)是指分子中存在双键或环,使某些原子在空间的位置不同,从而导致立体结构不同(例如聚丁二烯中丁二烯单元的顺式和反式构型);光学异构和几何异构均为构型异构。

潘祖仁《高分子化学》笔记和课后习题(含考研真题)详解(自由基聚合)【圣才出品】

潘祖仁《高分子化学》笔记和课后习题(含考研真题)详解(自由基聚合)【圣才出品】

子的分子而成为新自由基,继续新链的增长,这一反应称为链转秱反应。
3.自由基聚合和逐步聚合的比较
表 3-1-1 自由基聚合和逐步聚合的比较
自由基聚合
线形缩聚
1.由链引収、链增长、链终止等基元反 1.丌能区分出链引収、链增长和链终止,
应组成,其速率常数和活化能各丌相同。链引各步反应速率常数和活化能基本相同
収最慢,是控制步骤
2.单体、低聚物、缩聚物中仸何物种乊
2.单体加到少量活性种上。使链迅速增 间均能缩聚,使链增长,无所谓活性中心
4 / 73
圣才电子书 十万种考研考证电子书、题库视频学习平台

长。单体-单体、单体-聚合物、聚合物-聚合 3.仸何物种间都能反应,使分子量逐步
b.无机过氧类
过硫酸盐,如过硫酸钾和过硫酸铵,具有水溶性,多用于乳液聚合和水溶液聚合。
③氧化-还原引収体系
氧化还原引収体系的组分可以是无机化合物或有机化合物,其性质可以是水溶性或油溶
性。活化能较低,可在较低温度(5-50℃)下引収聚合,且具有较高的聚合速率。
(2)引収剂分解动力学
①半衰期 t1/2
引収剂分解至起始浓度一半时所需的时间。
3 / 73
圣才电子书

①定义
十万种考研考证电子书、题库视频学习平台
链自由基失去活性形成稳定聚合物的反应称为链终止反应。
②双基终止的方式
a.偶合终止
偶合终止是两自由基的独电子相互结合成共价键的终止方式。偶和终止的结果,大分子
的聚合度是链自由基结构单元数的 2 倍。
b.歧化终止
[I] ln
[I]0
kdt
t1/ 2
ln 2 kd
0.693 kd

潘祖仁《高分子化学》笔记和课后习题(含考研真题)详解(离子聚合)【圣才出品】

潘祖仁《高分子化学》笔记和课后习题(含考研真题)详解(离子聚合)【圣才出品】

四、离子聚合动力学
1.阴离子聚合动力学
(1)聚合速率
Rp
d[M ] dt
kp[B— ][M ]
式中阴离子活性增长种的总浓度[B—]始终保持丌发,且等于引収剂浓度[C]。
阴离子聚合无终止,阴离子浓度(10-3~10-2mol·L-1)比自由基浓度(10-9~10-
7mol·L-1)高得多,因此阴离子聚合速率总比自由基聚合快得多。
Rp
Kkik p[C][RH ][M ] ktr
在阳离子聚合中,向单体链转秱和向溶剂链转秱是主要的链终止方式,链转秱后,速率
丌发,聚合度则降低。
1 Xn
k
p
kt [M
]
CM
CS
[S] [M ]
上式右边各项分别代表单基终止、向单体链转秱终止和向溶剂链Байду номын сангаас秱终止对聚合度的贡献。
(2)聚合度和聚合度分布
X
n
[M ]0 [M [M —]/ n
]
n([M ]0 [M ]) [C]
式中[C]为引収剂浓度;n 为每一大分子所带有的活性端基数。采用萘钠时,活性种为双阴
离子,n=2;丁基锂活性种为单阴离子,n=1。
X w 1 X n 1 1
Xn
( X n 1)2
Xn
5 / 34
圣才电子书 十万种考研考证电子书、题库视频学习平台
二、离子聚合引収体系 1.阴离子聚合引収剂类型 (1)碱金属——电子转秱引収 ①电子直接转秱引収; ②电子间接转秱引収。 (2)有机金属化合物——阴离子引収
1 / 34
圣才电子书 十万种考研考证电子书、题库视频学习平台

①碱金属氨基化合物——氨基钾 ②金属烷基化合物 丁基锂在非极性溶剂中以缔合体存在,无引収活性;若丁基锂的浓度很低或在非极性溶 剂中加少量的 Lewis 碱(如 THF)时,则解缔合成单量体,就有引収活性。 ③金属烷氧基化合物 (3)其他亲核试剂 R3N、R3P、ROH、H2O 等中性亲核试剂或给电子体,都有未共用的电子对,活性很弱, 只能引収很活泼的单体聚合。 2.阳离子聚合引収剂类型 (1)质子酸 通过离解产生的质子 H+引収阳离子聚合。包括无机酸(H2SO4、H3PO4),有机酸 (CF3COOH、CCl3COOH)、超强酸(HClO4、CF3SO3H、HSO3Cl)。 (2)Lewis 酸 ①Lewis 酸种类 主要有金属卤化物、有机金属化合物以及它们的复合物。 ②阳离子源 纯 Lewis 酸引収活性低,需添加微量的共引収剂作为阳离子源,才能保证正常聚合。 阳离子源有质子供体和碳阳离子供体两类。 ③水过量使阳离子聚合活性降低的原因 a.可能生成活性较低的氧鎓离子; b.向水转秱而终止,产生无活性的“络合物”。 (3)其他能产生阳离子的物质

《高分子化学》习题与答案 潘祖仁

《高分子化学》习题与答案 潘祖仁

第一章绪论习题1. 说明下列名词和术语:(1)单体,聚合物,高分子,高聚物(2)碳链聚合物,杂链聚合物,元素有机聚合物,无机高分子(3)主链,侧链,侧基,端基(4)结构单元,单体单元,重复单元,链节(5)聚合度,相对分子质量,相对分子质量分布(6)连锁聚合,逐步聚合,加聚反应,缩聚反应(7)加聚物,缩聚物,低聚物2.与低分子化合物比较,高分子化合物有什么特征?3. 从时间~转化率、相对分子质量~转化率关系讨论连锁聚合与逐步聚合间的相互关系与差别。

4. 举例说明链式聚合与加聚反应、逐步聚合与缩聚反应间的关系与区别。

5. 各举三例说明下列聚合物(1)天然无机高分子,天然有机高分子,生物高分子。

(2)碳链聚合物,杂链聚合物。

(3)塑料,橡胶,化学纤维,功能高分子。

6. 写出下列单体的聚合反应式和单体、聚合物的名称(1) CH2=CHF(2) CH2=CH(CH3)2CH3|(3) CH2=C|COO CH3(4) HO-( CH2)5-COOH(5) CH2CH2CH2O|__________|7. 写出下列聚合物的一般名称、单体、聚合反应式,并指明这些聚合反应属于加聚反应还是缩聚反应,链式聚合还是逐步聚合?(1) -[- CH2- CH-]n-|COO CH3(2) -[- CH2- CH-]n-|OCOCH3(3) -[- CH2- C = CH- CH2-]n-|CH3(4) -[-NH(CH2)6NHCO(CH2)4CO-]n-(5) -[-NH(CH2)5CO-]n-8. 写出合成下列聚合物的单体和反应式:(1) 聚苯乙烯(2) 聚丙烯(3) 聚四氟乙烯(4) 丁苯橡胶 (5) 顺丁橡胶 (6) 聚丙烯腈 (7) 涤纶(8) 尼龙6,10 (9) 聚碳酸酯 (10) 聚氨酯9. 写出下列单体形成聚合物的反应式。

指出形成聚合物的重复单元、结构单元、单体单元和单体,并对聚合物命名,说明聚合属于何类聚合反应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四版习题答案(第一章)思考题1. 举例说明单体、单体单元、结构单元、重复单元、链节等名词的含义,以及它们之间的相互关系和区别。

答:合成聚合物的原料称做单体,如加聚中的乙烯、氯乙烯、苯乙烯,缩聚中的己二胺和己二酸、乙二醇和对苯二甲酸等。

在聚合过程中,单体往往转变成结构单元的形式,进入大分子链,高分子由许多结构单元重复键接而成。

在烯类加聚物中,单体单元、结构单元、重复单元相同,与单体的元素组成也相同,但电子结构却有变化。

在缩聚物中,不采用单体单元术语,因为缩聚时部分原子缩合成低分子副产物析出,结构单元的元素组成不再与单体相同。

如果用2种单体缩聚成缩聚物,则由2种结构单元构成重复单元。

聚合物是指由许多简单的结构单元通过共价键重复键接而成的分子量高达104-106的同系物的混合物。

聚合度是衡量聚合物分子大小的指标。

以重复单元数为基准,即聚合物大分子链上所含重复单元数目的平均值,以DP表示;以结构单元数为基准,即聚合物大分子链上所含结构单元数目的平均值,以x n表示。

2. 举例说明低聚物、齐聚物、聚合物、高聚物、高分子、大分子诸名词的的含义,以及它们之间的关系和区别。

答:合成高分子多半是由许多结构单元重复键接而成的聚合物。

聚合物(polymer)可以看作是高分子(macromolecule)的同义词,也曾使用large or big molecule 的术语。

从另一角度考虑,大分子可以看作1条大分子链,而聚合物则是许多大分子的聚集体。

根据分子量或聚合度大小的不同,聚合物中又有低聚物和高聚物之分,但两者并无严格的界限,一般低聚物的分子量在几千以下,而高聚物的分子量总要在万以上。

多数场合,聚合物就代表高聚物,不再标明“高” 字。

齐聚物指聚合度只有几〜几十的聚合物,属于低聚物的畴。

低聚物的含义更广泛一些。

3. 写岀聚氯乙烯、聚苯乙烯、涤纶、尼龙-66、聚丁二烯和天然橡胶的结构式(重复单元)。

选择其常用聚合物分子量/万结构单元分子DP=n特征分子量,计算聚合度。

聚合物结构式(重复单元)聚氯乙烯-[-CH 2CHCI-1- n聚苯乙烯-[-CH 2CH(C6H5)-]n涤纶-[-OCH 2CH2O?OCC6H4CO-] n尼龙66 (聚酰胺-66)-[-NH(CH 2)6NH ?CO(CH 2)4CO-] n聚丁二烯-[-CH 2CH=CHCH 2 -]n天然橡胶-[CH 2CH=C(CH 3)CH2-l n量/万塑料800〜2400足够的聚合度,才能达到一定聚氯乙烯5~1562.5960〜2900强度,弱极性要求较高聚合度。

聚苯乙烯10~30104(962~2885)纤维极性,低聚合度就有足够的强涤纶 1.8〜2.360+132=19294~120度聚酰胺-66 1.2〜1.8114+112=22653~80橡胶非极性,高分子量才赋予高弹顺-聚丁二烯25~30544600~5600性和强度(4630-5556)天然橡胶20~40682900~5900(2941-5882)4. 举例说明和区别:缩聚、聚加成和逐步聚合,加聚、开环聚合和连锁聚合。

答:按单体-聚合物组成结构变化,可将聚合反应分成缩聚、加聚、开环聚合三大类;而按机理,可分成逐步聚合和连锁聚合两类。

1) 缩聚、聚加成和逐步聚合缩聚是官能团单体间多次缩合反应的结果,除了缩聚物为主产物外,还有低分子副产物产生,缩聚物和单体的元素组成并不相同。

逐步聚合是无活性中心,单体中不同官能团之间相互反应而逐步增长,每步反应的速率和活化能大致相同大部分缩聚属于逐步聚合机理,但两者不是同义词。

聚加成反应是含活泼氢功能基的亲核化合物与含亲电不饱和功能基的亲电化合物之间的聚合。

属于非缩聚的逐步聚合。

2) 加聚、开环聚合和连锁聚合加聚是烯类单体加成聚合的结果,无副产物产生,加聚物与单体的元素组成相同。

连锁聚合由链转移、增长、终止等基元反应组成,其活化能和速率常数各不相同。

多数烯类单体的加聚反应属于连锁聚合机理。

环状单体-键断裂后而聚合成线形聚合物的反应称作开环聚合。

近年来,开环聚合有了较大的发展,可另列一类,与缩聚和加聚并列。

开环聚合物与单体组成相同,无副产物产生,类似加聚;多数开环聚合物属于杂链聚合物,类似缩聚物。

5. 写出下列单体的聚合反应式,以及单体、聚合物的名称。

屮-严a. CH2=CHFb. CH2=C(CH3)2c. HO(CH2)5COOHd.e. NH2(CH2)6NH + HOOC(CH 2)4COOH CH2-O答:序号单体聚合物标准文档-[-CH 2-CHF-]-n 聚氟乙烯-[-CH 2-C(CH 3)2-]- n 聚异丁烯6. 按分子式写出聚合物和单体名称以及聚合反应式。

属于加聚、缩聚还是开环聚合,连锁聚合还是逐步聚合?a. -[CH 2=C(CH 3)—nb. -[NH(CH 2)6NHCO(CH2)4CO]—天然橡胶:异戊二烯 CH 2=C (CH 3)-CH=CH 2宀丁苯橡胶:丁二烯 + 苯乙烯 CH 2=CH-CH=CH 2+CH 2=CH-C 6H 5^ 聚甲醛:甲醛CH 2OCH 3-OH 聚苯醚:2, 6二甲基苯酚CH3聚四氟乙烯:四氟乙烯 CF 2=CF 2^ 2CH 38. 举例说明和区另熾形结构和体形结构、热塑性聚合物和热固性聚合物、非晶态聚合物和结晶聚合物答: c. —NH(CH 2)58— d. -i CH 2C(CH 3)=CHCH 2J n序号单体聚合物加聚、缩聚或开环 聚合连锁、逐步聚合a CH 2=C(CH 3)2 异丁烯 聚异丁烯 加聚 连锁 bNH 2(CH 2)6NH 2 己二胺、 聚已二酰己二胺,缩聚逐步HOOC(CH 2)4COOH 己二酸尼龙66cNH(CH 2)5CO 己酰胺 尼龙6开环 逐步(水或酸作催1 1化剂)或连锁(碱作催化剂)dCH 2=C(CH 3)-CH=CH 2聚异戊二烯加聚连锁异戊二烯CH 2=CHF 氟乙烯bCH 2=C(CH 3)2 异丁烯 HO(CH 2)5COOH -羟基己酸-[-O(CH 2)5CO-]-n 聚己酯 d CH 2CH 2CH 2O 丁氧环-[-CH 2CH 2CH 2O-]-n聚氧甲基eNH 2(CH 2)6NH 己二胺 + -[-NH(CH 2)6NHCO(CH 2)4CO-]-n 聚己二酰己HOOC(CH 2)4COOH 己二酸二胺(聚酰胺-66,尼龙66)7.写出下列聚合物的单体分子式和常用的聚合反应式:聚四氟乙烯、聚二甲基硅氧烷。

答:聚丙烯腈:丙烯腈 CH 2=CHCN T+。

2CH 34 - eV n CH 3聚二甲基硅氧烷:二甲基硅氧烷 Cl-Si-ClCH 3 H 2O-HCl0-S「nCH 3CH 3答:线形和支链大分子依靠分子间力聚集成聚合物,聚合物受热时,克服了分子间力,塑化或熔融;冷却后,又凝聚成固态聚合物。

受热塑化和冷却固化可以反复可逆进行,这种热行为特称做热塑性。

但大分子间力过大(强氢键)的线形聚合物,如纤维素,在热分解温度以下,不能塑化,也就不具备热塑性。

带有潜在官能团的线形或支链大分子受热后,在塑化的同时,交联成体形聚合物,冷却后固化。

以后受热不能再塑化变形,这一热行为特称做热固性。

但已经交联的聚合物不能在称做热固性。

聚氯乙烯,生橡胶,硝化纤维:线形,热塑性纤维素:线形,不能塑化,热分解酚醛塑料模制品,硬橡皮:交联,已经固化,不再塑化9. 举例说明橡胶、纤维、塑料的结构-性能特征和主要差别。

答:现举纤维、橡胶、塑料几例及其聚合度、热转变温度、分子特性、聚集态、机械性能等主要特征列于下表。

聚合物聚合度Tg/'C Tm/ C分子特性聚集态机械性能纤涤纶90〜12069258极性晶态高强高模量维尼龙-6650〜8050265强极性晶态高强高模量橡顺丁橡胶~5000-108-非极性高弹态低强高弹性胶硅橡胶5000~1 万-123-40非极性高弹态低强高弹性塑聚乙烯1500~1 万-125130非极性晶态中强低模量料聚氯乙烯600〜160081-极性玻璃态中强中模量纤维需要有较高的拉伸强度和高模量,并希望有较高的热转变温度,因此多选用带有极性基团(尤其是能够形成氢键)而结构简单的高分子,使聚集成晶态,有足够高的熔点,便于烫熨。

强极性或氢键可以造成较大的分子间力,因此,较低的聚合度或分子量就足以产生较大的强度和模量。

橡胶的性能要高弹性,多选用非极性高分子,分子链柔顺,呈非晶型高弹态,特征是分子量或聚合度很高,玻璃化温度很低。

塑料性能要求介于纤维和橡胶之间,种类繁多,从接近纤维的硬塑料(如聚氯乙烯,也可拉成纤维)到接近橡胶的软塑料(如聚乙烯,玻璃化温度极低,类似橡胶)都有。

低密度聚乙烯结构简单,结晶度高,才有较高的熔点(130 C);较高的聚合度或分子量才能保证聚乙烯的强度。

等规聚丙烯结晶度高,熔点高(175 C),强度也高,已经进入工程塑料的围。

聚氯乙烯含有极性的氯原子,强度中等;但属于非晶型的玻璃态,玻璃化温度较低。

使用围受到限制。

10. 什么叫玻璃化温度?橡胶和塑料的玻璃化温度有何区别?聚合物的熔点有什么特征?答:玻璃化温度及熔点是最重要的热转变温度。

玻璃化温度是聚合物从玻璃态到高弹态的热转变温度。

受外力作用,玻璃态时的形变较小,而高弹态时的形变较大,其转折点就是玻璃化温度,可用膨胀计或热机械曲线仪进行测定。

玻璃化温度是非晶态塑料(如聚氯乙烯、聚苯乙烯等)的使用上限温度,是橡胶(如顺丁橡胶、天然橡胶等)的使用下限温度。

引入极性基团、位阻较大的芳杂环和交联是提高玻璃化温度的三大途径。

熔点是晶态转变成熔体的热转变温度。

高分子结构复杂,一般聚合物很难结晶完全,因此往往有一熔融围。

熔点是晶态聚合物的使用上限温度。

规整的微结构、适当极性基团的引入都有利于结晶,如低密度聚乙烯、等规聚丙烯、聚四氟乙烯、聚酰胺-66等。

在聚合物合成阶段,除平均分子量和分布外,玻璃化温度和熔点往往是需要表征的重要参数。

第二章参考答案3.己二酸与下列化合物反应,那些能形成聚合物?解:己二酸为2官能度单体,f =2。

a. 乙醇:2-1体系不能形成聚合物,生成己二酸二乙酯。

b. 乙二醇:2-2体系形成线形聚合物,即聚己二酸乙二醇酯。

c. 甘油:2-3体系形成体型聚合物。

d. 苯胺:2-1体系不能形成聚合物,生成己二酰二苯胺。

e. 己二胺:2-2体系形成线形聚合物,即己二酰二胺或称尼龙-66。

5. 下列多对单体进行线形缩聚:己二酸和己二醇。

己二酸和己二胺,己二醇和对苯二甲酸,己二胺和对苯二甲酸。

简明给岀并比较缩聚物的性能特征。

⑴.己二酸和己二醇:形成线形聚酯。

分子中无氢键,且分子柔软,所以,聚合物的熔点低,强度小,且不耐溶剂,易水解,不能用作结构材料。

相关文档
最新文档