高一数学必修1作业题-高一数学《7.一元二次不等式2》作业

合集下载

高中数学必修一第二章一元二次函数方程和不等式典型例题(带答案)

高中数学必修一第二章一元二次函数方程和不等式典型例题(带答案)

高中数学必修一第二章一元二次函数方程和不等式典型例题单选题1、已知x >0,则下列说法正确的是( ) A .x +1x −2有最大值0B .x +1x −2有最小值为0 C .x +1x−2有最大值为-4D .x +1x−2有最小值为-4答案:B分析:由均值不等式可得x +1x ≥2√x ×1x =2,分析即得解 由题意,x >0,由均值不等式x +1x≥2√x ×1x=2,当且仅当x =1x,即x =1时等号成立故x +1x −2≥0,有最小值0 故选:B2、不等式x (2x +7)≥−3的解集为( ) A .(−∞,−3]∪[−12,+∞)B .[−3,−12] C .(−∞,−2]∪[−13,+∞)D .[−2,−13] 答案:A分析:解一元二次不等式即可.x (2x +7)≥−3可变形为2x 2+7x +3≥0, 令2x 2+7x +3=0,得x 1=−3,x 2=−12,所以x ≤−3或x ≥−12,即不等式的解集为(−∞,−3]∪[−12,+∞).故选:A.3、已知命题“∀x ∈R ,4x 2+(a −2)x +14>0”是假命题,则实数a 的取值范围为( ) A .(−∞,0]∪[4,+∞)B .[0,4] C .[4,+∞)D .(0,4)答案:A分析:先求出命题为真时实数a的取值范围,即可求出命题为假时实数a的取值范围.若“∀x∈R,4x2+(a−2)x+14>0”是真命题,即判别式Δ=(a−2)2−4×4×14<0,解得:0<a<4,所以命题“∀x∈R,4x2+(a−2)x+14>0”是假命题,则实数a的取值范围为:(−∞,0]∪[4,+∞).故选:A.4、设a>b>c>0,则2a2+1ab +1a(a−b)−10ac+25c2取得最小值时,a的值为()A.√2B.2C.4D.2√5答案:A解析:转化条件为原式=1ab +ab+1a(a−b)+a(a−b)+(a−5c)2,结合基本不等式即可得解.2a2+1ab+1a(a−b)−10ac+25c2=1ab+ab+1a(a−b)+a(a−b)−ab−a(a−b)+2a2−10ac+25c2 =1ab+ab+1a(a−b)+a(a−b)+a2−10ac+25c2=1ab+ab+1a(a−b)+a(a−b)+(a−5c)2≥2√1ab ⋅ab+2√1a(a−b)⋅a(a−b)+0=4,当且仅当{ab=1a(a−b)=1a=5c,即a=√2,b=√22,c=√25时,等号成立.故选:A.小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.5、若“﹣2<x <3”是“x 2+mx ﹣2m 2<0(m >0)”的充分不必要条件,则实数m 的取值范围是( ) A .m ≥1B .m ≥2C .m ≥3D .m ≥4 答案:C分析:x 2+mx ﹣2m 2<0(m >0),解得﹣2m <x <m .根据“﹣2<x <3”是“x 2+mx ﹣2m 2<0(m >0)”的充分不必要条件,可得﹣2m ≤﹣2,3≤m ,m >0.解出即可得出. 解:x 2+mx ﹣2m 2<0(m >0),解得﹣2m <x <m .∵“﹣2<x <3”是“x 2+mx ﹣2m 2<0(m >0)”的充分不必要条件,∴﹣2m ≤﹣2,3≤m ,(两个等号不同时取)m >0. 解得m ≥3.则实数m 的取值范围是[3,+∞). 故选:C.6、关于x 的不等式ax 2−(a 2+1)x +a <0的解集为{x|x 1<x <x 2},且x 2−x 1=1,则a 2+a −2=( ) A .3B .32C .2D .23答案:A分析:根据一元二次不等式与解集之间的关系可得x 1+x 2=a +1a 、x 1x 2=1,结合 (x 2−x 1)2=(x 1+x 2)2−4x 1x 2计算即可.由不等式ax 2−(a 2+1)x +a <0的解集为{x |x 1<x <x 2}, 得a >0,不等式对应的一元二次方程为ax 2−(a 2+1)x +a =0, 方程的解为x 1、x 2,由韦达定理,得x 1+x 2=a 2+1a=a +1a ,x 1x 2=1,因为x 2−x 1=1,所以(x 2−x 1)2=(x 1+x 2)2−4x 1x 2=1, 即(a +1a )2−4=1,整理,得a 2+a −2=3. 故选:A7、已知关于x 的不等式ax 2+bx +c <0的解集为{x|x <−1或x >4},则下列说法正确的是( )A.a>0B.不等式ax2+cx+b>0的解集为{x|2−√7<x<2+√7}C.a+b+c<0D.不等式ax+b>0的解集为{x|x>3}答案:B分析:根据解集形式确定选项A错误;化不等式为x2−4x−3<0,即可判断选项B正确;设f(x)=ax2+ bx+c,则f(1)>0,判断选项C错误;解不等式可判断选项D错误.解:因为关于x的不等式ax2+bx+c<0的解集为{x|x<−1或x>4},所以a<0,所以选项A错误;由题得{a<0−1+4=−ba−1×4=ca,∴b=−3a,c=−4a,所以ax2+cx+b>0为x2−4x−3<0,∴2−√7<x<2+√7.所以选项B正确;设f(x)=ax2+bx+c,则f(1)=a+b+c>0,所以选项C错误;不等式ax+b>0为ax−3a>0,∴x<3,所以选项D错误.故选:B8、不等式1+x1−x≥0的解集为()A.{x|x≥1或x≤−1}B.{x∣−1≤x≤1} C.{x|x≥1或x<−1}D.{x|−1≤x<1}答案:D分析:不等式等价于x+1x−1≤0,即(x+1)(x−1)≤0,且x−1≠0,由此求得不等式的解集.不等式等价于x+1x−1≤0,即(x+1)(x−1)≤0,且x−1≠0,解得−1≤x<1,故不等式的解集为{x|−1≤x<1},故选:D.多选题9、已知关于x的不等式ax2+bx+c>0解集为{x|−2<x<3},则()A.a>0B.不等式ax+c>0的解集为{x|x<6}C.a+b+c>0D.不等式cx2−bx+a<0的解集为{x|−13<x<12}答案:BCD解析:根据已知条件得−2和3是方程ax2+bx+c=0的两个实根,且a<0,根据韦达定理可得b=−a,c=−6a,根据b=−a,c=−6a且a<0,对四个选项逐个求解或判断可得解.因为关于x的不等式ax2+bx+c>0解集为{x|−2<x<3},所以−2和3是方程ax2+bx+c=0的两个实根,且a<0,故A错误;所以−2+3=−ba ,−2×3=ca,所以b=−a,c=−6a,所以不等式ax+c>0可化为ax−6a>0,因为a<0,所以x<6,故B正确;因为a+b+c=a−a−6a=−6a,又a<0,所以a+b+c>0,故C正确;不等式cx2−bx+a<0可化为−6ax2+ax+a<0,又a<0,所以−6x2+x+1>0,即6x2−x−1<0,即(3x+1)(2x−1)<0,解得−13<x<12,故D正确.故选:BCD.小提示:利用一元二次不等式的解集求出参数a,b,c的关系是解题关键.本题根据韦达定理可得所要求的关系,属于中档题.10、设0<b<a<1,则下列不等式不成立的是()A.ab<b2<1B.√a<√b<1C.1<1a <1bD.a2<ab<1答案:ABD分析:对于ABD举例判断即可,对于C,利用不等式的性质判断对于A,取a=12,b=13,则ab=16>b2=19,所以A错误,对于B,取a=14,b=19,则√a=12>√b=13,所以B错误,对于C,因为0<b<a<1,所以1ab >0,所以b⋅1ab<a⋅1ab,即1a<1b,因为0<a<1,所以0<a⋅1a <1×1a,即1<1a,综上1<1a<1b,所以C正确,对于D,取a=12,b=13,则ab=16<a2=14,所以D错误,故选:ABD11、下面所给关于x的不等式,其中一定为一元二次不等式的是()A.3x+4<0B.x2+mx-1>0C.ax2+4x-7>0D.x2<0答案:BD分析:利用一元二次不等式的定义和特征对选项逐一判断即可.选项A是一元一次不等式,故错误;选项B,D,不等式的最高次是二次,二次项系数不为0,故正确;当a=0时,选项C是一元一次不等式,故不一定是一元二次不等式,即错误.故选:BD.填空题12、若x>0,y>0,xy=10,则2x +5y的最小值为_____.答案:2分析:化简2x +5y=2x+102y=2x+xy2y=2x+x2,结合基本不等式,即可求解.由x>0,y>0,xy=10,则2x +5y=2x+102y=2x+xy2y=2x+x2≥2√2x×x2=2,当且仅当x=2时取“=”,即2x +5y的最小值为2.所以答案是:2.13、已知x,y为正数,且12+x +4y=1,则x+y的最小值为________.答案:7解析:由题设等式有x+y+2=5+y2+x +4(x+2)y,利用基本不等式可求x+y+2的最小值,从而可得x+y的最小值.x+y+2=[(x+2)+y]×(1x+2+4y)=5+y2+x+4(x+2)y,由基本不等式有y2+x +4(x+2)y≥4,当且仅当x=1,y=6时等号成立,故x+y+2的最小值为9即x+y的最小值为7.所以答案是:7.小提示:应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.14、已知函数f(x)=√mx2+mx+1的定义域是R,则m的取值范围为______.答案:[0,4]分析:根据函数的定义域为R可得mx2+mx+1≥0对x∈R恒成立,对参数m的取值范围分类讨论,分别求出对应m 的范围,进而得出结果.因为函数f(x)=√mx2+mx+1的定义域为R,所以mx2+mx+1≥0对x∈R恒成立,当m=0时,mx2+mx+1=1>0,符合题意;当m>0时,由Δ=m2-4m≤0,解得0<m≤4;当m<0时,显然mx2+mx+1不恒大于或等于0.综上所述,m的取值范围是[0,4].所以答案是:[0,4].解答题15、设a,b,c∈R,a+b+c=0,abc=1.(1)证明:ab+bc+ca<0;(2)用max{a,b,c}表示a,b,c中的最大值,证明:max{a,b,c}≥√43.答案:(1)证明见解析(2)证明见解析.分析:(1)方法一:由(a+b+c)2=a2+b2+c2+2ab+2ac+2bc=0结合不等式的性质,即可得出证明;(2)方法一:不妨设max{a,b,c}=a,因为a+b+c=0,abc=1,所以a>0,b<0,c<0,a=(−b)+(−c)≥2√bc=2√1a ,则a3≥4,a≥√43.故原不等式成立.(1)[方法一]【最优解】:通性通法∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc=0,∴ab+bc+ca=−12(a2+b2+c2).∵abc=1,∴a,b,c均不为0,则a2+b2+c2>0,∴ab+bc+ca=−12(a2+b2+c2)<0.[方法二]:消元法由a+b+c=0得b=−(a+c),则ab+bc+ca=b(a+c)+ca=−(a+c)2+ac=−(a2+ac+c2)=−(a +c 2)2−34c 2≤0,当且仅当a =b =c =0时取等号,又abc =1,所以ab +bc +ca <0. [方法三]:放缩法方式1:由题意知a ≠0, a +b +c =0, a =−(c +b ), a 2=(c +b )2=c 2+b 2+2cb ≥4bc ,又ab +bc +ca =a (b +c )+bc =−a 2+bc ≤−a 2+a 24=−3a 24<0,故结论得证.方式2:因为a +b +c =0,所以0=(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ca=12[(a 2+b 2)+(b 2+c 2)+(c 2+a 2)]+2ab +2bc +2ca ≥12(2ab +2bc +2ca )+2ab +2bc +2ca =3(ab +bc +ca ).即ab +bc +ca ≤0,当且仅当a =b =c =0时取等号, 又abc =1,所以ab +bc +ca <0. [方法四]:因为a +b +c =0,abc =1,所以a ,b ,c 必有两个负数和一个正数,不妨设a ≤b <0<c,则a =−(b +c ), ∴ab +bc +ca =bc +a (c +b )=bc −a 2<0. [方法五]:利用函数的性质方式1:6b =−(a +c ),令f (c )=ab +bc +ca =−c 2−ac −a 2, 二次函数对应的图像开口向下,又abc =1,所以a ≠0, 判别式Δ=a 2−4a 2=−3a 2<0,无根, 所以f (c )<0,即ab +bc +ca <0.方式2:设f (x )=(x −a )(x −b )(x −c )=x 3+(ab +bc +ca )x −1, 则f (x )有a ,b ,c 三个零点,若ab +bc +ca ≥0, 则f (x )为R 上的增函数,不可能有三个零点, 所以ab +bc +ca <0.(2)[方法一]【最优解】:通性通法不妨设max {a,b,c }=a ,因为a +b +c =0,abc =1,所以a >0, b <0, c <0, a =(−b )+(−c )≥2√bc =2√1a,则a 3≥4,a ≥√43.故原不等式成立. [方法二]:不妨设max {a,b,c }=a ,因为a +b +c =0,abc =1,所以a >0,且{b +c =−a,bc =1a , 则关于x 的方程x 2+ax +1a =0有两根,其判别式Δ=a 2−4a ≥0,即a ≥√43. 故原不等式成立. [方法三]:不妨设max {a,b,c }=a ,则a >0, b =−(a +c ), abc =1, −(a +c )ac =1, ac 2+a 2c +1=0,关于c 的方程有解,判别式Δ=(a 2)2−4a ≥0,则a 3≥4,a ≥√43.故原不等式成立. [方法四]:反证法假设max {a,b,c }<√43,不妨令a ≤b <0<√43,则ab =1c >√43,−a −b =c <√43,又√43>−a −b ≥2√ab >√√43=21−13=√43,矛盾,故假设不成立.即max {a,b,c }≥√43,命题得证.【整体点评】(1)方法一:利用三项平方和的展开公式结合非零平方为正数即可证出,证法常规,为本题的通性通法,也是最优解法;方法二:利用消元法结合一元二次函数的性质即可证出;方法三:利用放缩法证出;方法四:利用符号法则结合不等式性质即可证出;方法五:利用函数的性质证出. (2)方法一:利用基本不等式直接证出,是本题的通性通法,也是最优解;方法二:利用一元二次方程根与系数的关系以及方程有解的条件即可证出;方法三:利用消元法以及一元二次方程有解的条件即可证出;方法四:利用反证法以及基本不等式即可证出.。

(word完整版)高中数学一元二次不等式练习题

(word完整版)高中数学一元二次不等式练习题

一元二次不等式及其解法1.形如)0)(0(02≠<>++a c bx ax 其中或的不等式称为关于x 的一元二次不等式.2.一元二次不等式20(0)ax bx c a ++>>与相应的函数2(0)y ax bx c a =++>、相应的方程20(0)ax bx c a ++=>判别式ac b 42-=∆ 0>∆ 0=∆0<∆ 二次函数c bx ax y ++=2(0>a )的图象()002>=++a c bx ax的解集)0(02>>++a c bx ax的解集)0(02><++a c bx ax 1、把二次项的系数变为正的。

(如果是负,那么在不等式两边都乘以-1,把系数变为正)2、解对应的一元二次方程。

(先看能否因式分解,若不能,再看△,然后求根)3、求解一元二次不等式。

(根据一元二次方程的根及不等式的方向)不等式的解法---穿根法一.方法:先因式分解,再使用穿根法.注意:因式分解后,整理成每个因式中未知数的系数为正.使用方法:①在数轴上标出化简后各因式的根,使等号成立的根,标为实点,等号不成立的根要标虚点. ②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿透(叫奇穿偶不穿).③数轴上方曲线对应区域使“>”成立, 下方曲线对应区域使“<”成立.例1:解不等式(1) (x+4)(x+5)2(2-x)3<0 x 2-4x+1 3x 2-7x+2 ≤1 解:(1) 原不等式等价于(x+4)(x+5)2(x-2)3>0根据穿根法如图不等式解集为{x ∣x>2或x<-4且x ≠5}.(2) 变形为 (2x-1)(x-1) (3x-1)(x-2) ≥0 根据穿根法如图不等式解集为{x |x< 1 3 或 1 2 ≤x ≤1或x>2}. 2-4 -5 2 21 1 3 1一、解下列一元二次不等式:1、0652>++x x2、0652≤--x x3、01272<++x x4、0672≥+-x x5、0122<--x x6、0122>-+x x7、01282≥+-x x 8、01242<--x x 9、012532>-+x x10、0121632>-+x x 11、0123732>+-x x 12、071522≤++x x13、0121122≥++x x 14、10732>-x x 15、05622<-+-x x16、02033102≤+-x x 17、0542<+-x x 18、0442>-+-x x19、2230x x --+≥ 20、0262≤+--x x 21、0532>+-x x22、02732<+-x x 23、0162≤-+x x 24、03442>-+x x25、061122<++x x 26、041132>+--x x 27、042≤-x28、031452≤-+x x 29、0127122>-+x x 30、0211122≥--x x31、03282>--x x 32、031082≥-+x x 33、041542<--x x34、02122>--x x 35、021842>-+x x 36、05842<--x x37、0121752≤-+x x 38、0611102>--x x 39、038162>--x x40、038162<-+x x 41、0127102≥--x x 42、02102>-+x x43、0242942≤--x x 44、0182142>--x x 45、08692>-+x x46、0316122>-+x x 47、0942<-x 48、0320122>+-x x49、0142562≤++x x 50、0941202≤+-x x 51、(2)(3)6x x +-<二.填空题1、不等式(1)(12)0x x -->的解集是 ;2.不等式2654x x +<的解集为____________. 3、不等式2310x x -++>的解集是 ; 4、不等式2210x x -+≤的解集是 ; 5、不等式245x x -<的解集是 ;9、已知集合2{|4}M x x =<,2{|230}N x x x =--<,则集合M N I = ;10、不等式220mx mx +-<的解集为R ,则实数m 的取值范围为 ; 11、不等式9)12(2≤-x 的解集为__________. 12、不等式0<x 2+x -2≤4的解集是___________ .13、若不等式2(2)2(2)40a x a x -+--<对一切x R ∈恒成立,则a 的取值范围是______________. 三、典型例题:1、已知对于任意实数x ,22kx x k -+恒为正数,求实数k 的取值范围.(1)03222<--a ax x (2)0)1(2<--+a x a x。

高一数学一元二次不等式解法练习题及答案.doc

高一数学一元二次不等式解法练习题及答案.doc

高一数学一元二次不等式解法练习题及答案例若<<,则不等式--<的解是1 0a 1(x a)(x )01a[ ]A a xB x a.<<.<<11aaC x aD x x a.>或<.<或>x aa11分析比较与的大小后写出答案. a 1a解∵<<,∴<,解应当在“两根之间”,得<<.选.0a 1a a x A 11a a例有意义,则的取值范围是.2 x x 2--x 6分析 求算术根,被开方数必须是非负数.解 据题意有,x 2-x -6≥0,即(x -3)(x +2)≥0,解在“两根之外”,所以x ≥3或x ≤-2.例3 若ax 2+bx -1<0的解集为{x|-1<x <2},则a =________,b =________.分析 根据一元二次不等式的解公式可知,-1和2是方程ax 2+bx -1=0的两个根,考虑韦达定理.解 根据题意,-1,2应为方程ax 2+bx -1=0的两根,则由韦达定理知-=-+=-=-=-⎧⎨⎪⎪⎩⎪⎪baa()()1211122×得a b ==-1212,.例4 解下列不等式 (1)(x -1)(3-x)<5-2x (2)x(x +11)≥3(x +1)2 (3)(2x +1)(x -3)>3(x 2+2)(4)3x 2-+--+-31325113122x x x x x x >>()()分析 将不等式适当化简变为ax 2+bx +c >0(<0)形式,然后根据“解公式”给出答案(过程请同学们自己完成).答 (1){x|x <2或x >4}(2){x|1x }≤≤32(3)∅(4)R (5)R说明:不能使用解公式的时候要先变形成标准形式.例不等式+>的解集为5 1x 11-x[ ]A .{x|x >0}B .{x|x ≥1}C .{x|x >1}D .{x|x >1或x =0}分析 直接去分母需要考虑分母的符号,所以通常是采用移项后通分.解不等式化为+->,通分得>,即>,1x 000111122----xx x x x∵x 2>0,∴x -1>0,即x >1.选C .说明:本题也可以通过对分母的符号进行讨论求解.例与不等式≥同解的不等式是6 0x x--32[ ]A .(x -3)(2-x)≥0B .0<x -2≤1C .≥230--xx D .(x -3)(2-x)≤0解法一原不等式的同解不等式组为≥,≠. ()()x x x ---⎧⎨⎩32020 故排除A 、C 、D ,选B .解法二≥化为=或-->即<≤x 320x 3(x 3)(2x)02x 3--x两边同减去2得0<x -2≤1.选B . 说明:注意“零”.例不等式<的解为<或>,则的值为7 1{x|x 1x 2}a axx -1[ ]A aB aC aD a .<.>.=.=-12121212分析可以先将不等式整理为<,转化为 0()a x x -+-111[(a -1)x +1](x -1)<0,根据其解集为{x|x <1或x >2}可知-<,即<,且-=,∴=.a 10a 12a 1112a -答 选C .说明:注意本题中化“商”为“积”的技巧.例解不等式≥.8 237232x x x -+-解 先将原不等式转化为3723202xx x-+--≥即≥,所以≤.由于++=++>,---+-+++-2123212314782222x xx xx xx x002x x12(x)022∴不等式进一步转化为同解不等式x2+2x-3<0,即(x+3)(x-1)<0,解之得-3<x<1.解集为{x|-3<x<1}.说明:解不等式就是逐步转化,将陌生问题化归为熟悉问题.例9 已知集合A={x|x2-5x+4≤0}与B={x|x2-2ax+a+2 ≤,若,求的范围.0}B A a⊆分析先确定A集合,然后根据一元二次不等式和二次函数图像关系,结合,利用数形结合,建立关于的不等式.B A a⊆解易得A={x|1≤x≤4}设y=x2-2ax+a+2(*)(1)B B A0若=,则显然,由Δ<得∅⊆4a2-4(a+2)<0,解得-1<a<2.(2)B(*)116若≠,则抛物线的图像必须具有图-特征:∅应有≤≤≤≤从而{x|x x x}{x|1x4}12⊆12a 12042a 4a 201412a 22-·++≥-·++≥≤≤解得≤≤a a--⎧⎨⎪⎪⎩⎪⎪22187综上所述得的范围为-<≤.a 1a 187说明:二次函数问题可以借助它的图像求解. 例10 解关于x 的不等式(x -2)(ax -2)>0.分析 不等式的解及其结构与a 相关,所以必须分类讨论. 解 1° 当a =0时,原不等式化为 x -2<0其解集为{x|x <2};2 a 02(x 2)(x )0°当<时,由于>,原不等式化为--<,其解集为22a a{x|2ax 2}<<; 3 0a 12(x 2)(x )0°当<<时,因<,原不等式化为-->,其解集为22a a{x|x 2x }<或>;2a4° 当a =1时,原不等式化为(x -2)2>0,其解集是{x|x ≠2};5 a 12(x 2)(x )0°当>时,由于>,原不等式化为-->,其解集是22a a{x|x x 2}<或>.2a从而可以写出不等式的解集为: a =0时,{x|x <2};a 0{x|2ax 2<时,<<};0a 1{x|x 2x }<<时,<或>;2aa =1时,{x|x ≠2};a 1{x|x x 2}>时,<或>.2a说明:讨论时分类要合理,不添不漏.例11 若不等式ax 2+bx +c >0的解集为{x|α<x <β}(0<α<β),求cx 2+bx +a <0的解集.分析 由一元二次函数、方程、不等式之间关系,一元二次不等式的解集实质上是用根来构造的,这就使“解集”通过“根”实现了与“系数”之间的联系.考虑使用韦达定理:解法一 由解集的特点可知a <0,根据韦达定理知:-=α+β,=α·β.bac a⎧⎨⎪⎪⎩⎪⎪ 即=-α+β<,=α·β>.ba c a()00⎧⎨⎪⎪⎩⎪⎪∵a <0,∴b >0,c <0.又×,b a a c b c= ∴=-α+β①由=α·β,∴=α·β②b c c a a c (1)111对++<化为++>,cx bx a 0x x 022b c ac由①②得α,β是++=两个根且α>β>,1111x x 002b c a c∴++>即++<的解集为>α或<β.x x 0cx bx a 0{x|x x }22b c a c 11 解法二 ∵cx 2+bx +a =0是ax 2+bx +a =0的倒数方程. 且ax 2+bx +c >0解为α<x <β,∴++<的解集为>α或<β.cx bx a 0{x|x x } 211说明:要在一题多解中锻炼自己的发散思维.例解关于的不等式:<-∈.12 x 1a(a R)xx -1分析 将一边化为零后,对参数进行讨论.解原不等式变为--<,即<, (1a)00x x ax a x -+--111进一步化为(ax +1-a)(x -1)<0.(1)当a >0时,不等式化为(x )(x 1)01{x|a 1a x1}--<,易见<,所以不等式解集为<<;a a a a ---11(2)a =0时,不等式化为x -1<0,即x <1,所以不等式解集为{x|x <1};(3)a 0(x )(x 1)01{x|x 1x }<时,不等式化为-·->,易见>,所以不等式解集为<或>.a a a aa a---111综上所述,原不等式解集为:当>时,<<;当=时,<;当<时,>或<.a 0{x|a 1ax 1}a 0{x|x 1}a 0{x|x x 1}--a a1例13 (2001年全国高考题)不等式|x 2-3x|>4的解集是________. 分析 可转化为(1)x 2-3x >4或(2)x 2-3x <-4两个一元二次不等式.由可解得<-或>,.(1)x 1x 4(2)∅答 填{x|x <-1或x >4}.例14 (1998年上海高考题)设全集U=R,A={x|x2-5x-6>0},B={x||x-5|<a}(a是常数),且11∈B,则[ ] A.(U A)∩B=RB.A∪(U B)=RC.(U A)∪(U B)=RD.A∪B=R分析由x2-5x-6>0得x<-1或x>6,即A={x|x<-1或x>6}由|x-5|<a得5-a<x<5+a,即B={x|5-a<x<5+a}∵11∈B,∴|11-5|<a得a>6∴5-a<-1,5+a>11 ∴A∪B=R.答选D.说明:本题是一个综合题,涉及内容很广泛,集合、绝对值不等式、一元二次不等式等内容都得到了考查。

一元二次函数、方程和不等式(单元测试卷)(含解析)—2024-2025学年高一上学期数学必修第一册

 一元二次函数、方程和不等式(单元测试卷)(含解析)—2024-2025学年高一上学期数学必修第一册

第二章一元二次函数、方程和不等式(单元测试卷)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若a>b,则下列结论正确的是( )A.ac2>bc2B.a2>b2C.|a|>|b|D.a+c>b+c2.若A=a2+3ab,B=4ab-b2,则A,B的大小关系是( )A.A≤BB.A≥BC.A<B或A>BD.A>B3.已知a∈R,则“a>6”是“a2>36”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.某校对高一美术生划定录取分数线,专业成绩x不低于95分,文化课总分y高于380分,体育成绩z超过45分,用不等式(组)表示是( )A.Error!B.Error!Error! D.Error!5.下列说法正确的是( )A.若a>b,c>d,则ac>bdB.若1a>1b,则a<bC.若b>c,则|a|b≥|a|cD.若a>b,c>d,则a-c>b-d6.下列不等式中,正确的是( )A.a+4a≥4 B.a2+b2≥4abC.ab≥a+b2D.x2+3x2≥237.不等式x+61-x≥0的解集为( )A.{x|-6≤x≤1}B.{x|x≥1或x≤-6}C.{x|-6≤x<1}D.{x|x>1或x≤-6}8.某文具店购进一批新型台灯,若按每盏台灯15元的价格销售,每天能卖出30盏;若售价每提高1元,日销售量将减少2盏,现决定提价销售,为了使这批台灯每天获得400元以上(不含400元)的销售收入.则这批台灯的销售单价x(单位:元)的取值范围是( )A.{x|10≤x<16}B.{x|12≤x<18}C.{x|15<x<20}D.{x|10≤x<20}二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.9.若x>y>0,则下列不等式成立的是( )A.x2>y2B.-x>-yC.1x<1yD.xy<x+1y+110.已知实数a,b,下列不等式一定正确的有( )A.a+b2≥ab B.a+1a≥2C.≥2D.2(a2+b2)≥(a+b)211.若正实数a,b满足a+b=1,则下列选项中正确的是( )A.ab有最大值14B.a+b有最小值2C.1a+1b有最小值4 D.a2+b2有最小值22三、填空题:本题共3小题,每小题5分,共15分.把答案填在题中横线上.12.如果a>b,ab<0,那么1a与1b的大小关系是________13.已知a>0,b>0,则1a+ab2+b的最小值为________14.若不等式x2+ax+b<0的解集为{x|-1<x<2},则a+b= ;不等式bx2+ax+1<0的解集为 W.四、解答题:本题共5小题,共77分.解答时应写出文字说明、证明过程或演算步骤.15.(13分)设a>0,b>0,比较a2b +b2a与a +b的大小.a b || b a16.(16分)已知关于x的不等式ax2-x-b>0(a,b∈R)的解集为{x|x>2或x<-1}.(1)求a,b的值;(2)若c∈R,解关于x的不等式ax2-(ac+b-1)x+(b-1)c<0.17.(16分)已知关于x的不等式(x-a)(x-a2)<0.(1)当a=2时,求不等式的解集;(2)当a∈R,a≠0且a≠1时,求不等式的解集.18.(16分)如图所示,要设计一张矩形广告,该广告牌含有大小相等的左右两个矩形栏目(即图中阴影部分),这两栏的面积之和为18 000 cm2,四周空白的宽度为10 cm,两栏之间的中缝空间的宽度为5 cm,怎样确定广告牌的高与宽的尺寸(单位:cm),能使矩形广告牌最省料?19.(16分)已知关于x 的不等式2kx 2+kx -38<0,k ≠0.(1)若不等式的解集为,求k 的值;(2)若不等式的解集为R ,求k的取值范围.{}3x |x 12-<<参考答案及解析:一、选择题1.D 解析:对于A,当c=0时,ac2=bc2,A错误;对于B,当a=1,b=-1时,a2=b2,B 错误;对于C,当a=1,b=-1时,|a|=|b|,C错误;对于D,由于a>b,所以a+c>b+c,D 正确.故选D.2.B 解析:因为A-B=a2+3ab-(4ab-b2)=+34b2≥0,所以A≥B.3.A 解析:由a>6,得a2>36,所以“a>6”是“a2>36”的充分条件;由a2>36,得a>6或a<-6,所以“a>6”不是“a2>36”的必要条件,故“a>6”是“a2>36”的充分不必要条件.故选A.4.D 解析:由题中x不低于95,即x≥95;y高于380,即y>380;z超过45,即z>45.5.C 解析:A项,a,b,c,d的符号不确定,故无法判断;B项,不知道ab的符号,无法确定a,b的大小;C项,|a|≥0,所以|a|b≥|a|c成立;D项,同向不等式不能相减.6.D 解析:若a<0,则a+4a≥4不成立,故A错;a=1,b=1,a2+b2<4ab,故B错;a=4,b=16,则ab<a+b2,故C错;由基本不等式可知D项正确.7.C 解析:不等式x+61-x≥0等价于Error!解得-6≤x<1.故解集为{x|-6≤x<1}8.C 解析:设这批台灯的销售单价为x元,则[30-(x-15)×2]x>400,即x2-30x+200<0,∴10<x<20,又∵x>15,∴15<x<20.故选C.二、选择题9.AC 解析:对于A,当x>y>0时,x2>y2,A成立;对于B,当x>y>0时,-x<-y,B不成立;对于C,当x>y>0时,xxy>yxy,即1x<1y,C成立;对于D,xy-x+1y+1=x(y+1)-y(x+1)y(y+1)=x-yy(y+1),∵x>y>0,∴x-y>0,∴xy-x+1y+1>0,即xy>x+1y+1,D不成立.故选AC.2b(a)210.CD 解析:当a <0,b <0时,a +b 2≥ab 不成立;当a <0,时,a +1a≥2不成立;因为≥2,故C 正确;因为2(a 2+b 2)-(a +b)2=a 2+b 2-2ab =(a -b)2≥0,所以2(a 2+b 2)≥(a +b)2,故D 正确.故选CD .11.AC 解析:∵a>0,b>0,且a +b =1,∴1=a +b ≥2ab ,∴ab ≤14,∴ab 有最大值14,∴A 正确;(a +b)2=a +b +2ab =1+2ab ≤1+(a +b)=2,∴0<a +b ≤2,∴B 错误;1a +1b =a +b ab =1ab ≥4,∴1a +1b 有最小值4,∴C 正确;∵a 2+b 2=(a +b)2-2ab =1-2ab ,且ab ≤14,∴a 2+b 2≥1-2×14=12,∴a 2+b 2的最小值是12,∴D 错误.故选AC .三、填空题12.答案:1a >1b 解析:1a -1b =b -a ab >0,所以1a >1b.13.答案:22 解析:∵a >0,b >0,∴1a +a b 2+b ≥21a ·a b 2+b =2b +b ≥22,当且仅当1a =a b 2且b =2b ,即a =b =2时取等号,∴1a +a b 2+b 的最小值为22.14.答案:-3, 解析:根据题意,不等式x 2+ax +b <0的解集为{x|-1<x <2},则-1和2是方程x 2+ax +b =0的两个根,则有(-1)+2=-a ,(-1)×2=b ,解得a =-1,b =-2.故a +b =-3.bx 2+ax +1<0⇒-2x 2-x +1<0⇒2x 2+x -1>0,解得x <-1或x >12,即不等式bx 2+ax +1<0的解集为.四、解答题a b a b ||||||b a b a+=+{1x |x 1x 2⎫<->⎬⎭或{1x |x 1x 2⎫<->⎬⎭或15.解:因为a>0,b>0,所以a2b +b2a=ab+ba.根据均值不等式可得ab+b≥2a,①ba+a≥2b,②当且仅当a=b时,取等号.由①+②,得ab+ba+ a +b≥2( a +b),即a2b+b2a≥ a +b.16.解:(1)关于x的不等式ax2-x-b>0(a,b∈R)的解集为{x|x>2或x<-1},即方程ax2-x-b=0的根为2,-1,∴Error!解得a=1,b=2.(2)由(1)得关于x的不等式x2-(c+1)x+c<0,即(x-1)(x-c)<0,当c>1时,不等式的解集为{x|1<x<c};当c=1时,不等式的解集为;当c<1时,不等式的解集为{x|c<x<1}.17.解:(1)当a=2时,不等式为(x-2)(x-4)<0,解得2<x<4,所以该不等式的解集为{x|2<x<4}.(2)因为a∈R,a≠0且a≠1,当0<a<1时,a2<a,解不等式(x-a)(x-a2)<0,得a2<x<a;当a<0或a>1时,a<a2,解不等式(x-a)(x-a2)<0,得a<x<a2.综上所述,当0<a<1时,不等式的解集为{x|a2<x<a};当a<0或a>1时,不等式的解集为{x|a<x<a2}.18.解:设矩形栏目的高为a cm,宽为b cm,则ab=9 000.①广告牌的高为(a+20)cm,宽为(2b+25)cm,其中a>0,b>0.广告牌的面积S=(a+20)(2b+25)=2ab+40b+25a+500=18 500+25a+40b≥18 500+2 25a·40b=18 500+21 000ab=24 500.当且仅当25a=40b时,等号成立,此时b=58a,代入①式得a=120,从而b=75.即当a=120,b=75时,S取得最小值24 500 cm2.故广告牌的高为140 cm,宽为175 cm时,可使矩形广告牌最省料.19.解:(1)因为关于x的不等式2kx2+kx-38<0的解集为,所以-32和1是方程2kx2+kx-38=0的两个实数根,由根与系数的关系可得-32×1=,得k=18.(2)因为关于x的不等式2kx2+kx-38<0的解集为R,k≠0,所以Error!解得-3<k<0,故k的取值范围为{k|-3<k<0}.{}3x|x12-<<382k-。

人教A版高一数学必修第一册《一元二次函数、方程和不等式》单元练习题卷含答案解析(29)

人教A版高一数学必修第一册《一元二次函数、方程和不等式》单元练习题卷含答案解析(29)

人教A 版高一数学必修第一册《一元二次函数、方程和不等式》单元练习题卷(共22题)一、选择题(共10题)1. 设 a >1>b >−1,则下列不等式中恒成立的是 ( ) A .1a<1bB .1a>1bC . a 2>2bD . a >b 22. “x ≥1”是“x +1x ≥2”的 ( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件3. 不等式组 {−2(x −3)>10,x 2+7x +12≤0的解集为 ( )A . {x∣ −4≤x ≤−3}B . {x∣ −4≤x ≤−2}C . {x∣ −3≤x ≤−2}D . ∅4. 若正数 x ,y 满足 x +3y =5xy ,则 3x +4y 的最小值是 ( ) A .245B .285C . 5D . 65. 设 a ,b 为正数,且 2a +b =1,则 ab 的最大值为 ( ) A . 4 B . 8C . 14D . 186. 如果 a ,b ,c 满足 c <b <a ,且 ac <0,那么下列选项中不一定成立的是 ( ) A . ab >ac B . bc >acC . cb 2<ab 2D . ac (a −c )<07. 实数 m 不超过 √2,是指 ( ) A . m >√2 B . m ≥√2 C . m <√2 D . m ≤√28. 将代数式 x 2+4x −5 因式分解的结果为 ( )A . (x +5)(x −1)B . (x −5)(x +1)C . (x +5)(x +1)D . (x −5)(x −1)9. 已知 2x +y =2,且 x ,y 都为正实数,则 xy +1xy 的最小值为 ( )A . 2B .3√22C . 98D . 5210.设0<a<b,且a+b=1,在下列四个数中最大的是( )A.12B.b C.2ab D.a2+b2二、填空题(共6题)11.下列命题中:①若a2+b2=2,则a+b的最大值为2;②当a>0,b>0时,1a +1b+2√ab≥4;③函数y=2√x2+4的最小值为2;④当且仅当a,b均为正数时,ab +ba≥2恒成立.其中是真命题的是.(填上所有真命题的序号)12.设0<x<32,则函数y=4x(3−2x)的最大值为.13.若把总长为20m的篱笆围成一个矩形场地,则矩形场地的最大面积是m2.14.等式的两边同时乘一个的实数,等式仍然成立.15.一元二次不等式恒成立问题.(1)x∈R,ax2+bx+c>0(a≠0)恒成立的充要条件是:且.(2)x∈R,ax2+bx+c≥0(a≠0)恒成立的充要条件是:且.(3)x∈R,ax2+bx+c<0(a≠0)恒成立的充要条件是:且.(4)x∈R,ax2+bx+c≤0(a≠0)恒成立的充要条件是:且.(5)x∈R,ax2+bx+c>0恒成立的充要条件是:a=b=0且c>0或且.(6)x∈R,ax2+bx+c<0恒成立的充要条件是:a=b=0且c<0或且.16.若实数x,y满足x2+y2=1,则xy的取值范围是.三、解答题(共6题)17.相等关系和不等关系之间具有对应关系;即只要将一个相等关系的命题中的等号改为不等号就可得到一个相应的不等关系的命题.请你用类比的方法探索相等关系和不等关系的对应性质,仿照如表列出尽可能多的有关对应关系的命题;指出所列的对应不等关系的命题是否正确,并说明理由.18.已知正数a,b,c,且a+b+c=1.求证:(1a −1)(1b−1)(1c−1)≥8.19.求函数y=2x(1−2x)(0<x<12)的最大值.20.已知−1≤x≤1,求1−x2的最大值.21.求下列不等式的解集:(1) 14−4x2≥x;(2) x2−14x+45≤0;(3) x2+6x+10>0;(4) x(x+2)>x(3−x)+1.22.已知函数f(x)=∣x−m∣+∣∣x+1m∣∣(m>1).(1) 当m=2时,求不等式f(x)>3的解集;(2) 证明:f(x)+1m(m−1)≥3.答案一、选择题(共10题)1. 【答案】D【知识点】不等式的性质2. 【答案】A【解析】x+1x≥2⇔x>0,所以“x≥1”是“x+1x≥2”的充分非必要条件,故选A.【知识点】充分条件与必要条件、均值不等式的应用3. 【答案】A【知识点】二次不等式的解法4. 【答案】C【解析】因为x+3y=5xy,所以1y +3x=5,所以3x+4y=15(1y+3x)(3x+4y)=15(3xy+12yx)+135≥15×2×√36+135=5,当且仅当3xy =12yx,即x=1,y=12时,等号成立.故3x+4y的最小值是5.【知识点】均值不等式的应用5. 【答案】D【知识点】均值不等式的含义6. 【答案】C【知识点】不等式的性质7. 【答案】D【解析】“不超过”就是“小于或等于”.【知识点】不等式的性质8. 【答案】A【解析】由十字相乘法可得x2+4x−5=(x+5)(x−1),故选A.【知识点】二次不等式的解法9. 【答案】D【知识点】均值不等式的应用10. 【答案】B【解析】方法一:因为ab<(a+b2)2,所以ab<14,2ab<12,因为√a2+b22>a+b2>0,所以√a2+b22>12,所以a2+b2>12,因为b−(a2+b2)=(b−b2)−a2=b(1−b)−a2=ab−a2=a(b−a)>0,所以b>a2+b2,综上所述,b>a2+b2>12>2ab.故b最大.方法二:不妨取a=13,b=23,则2ab=2×13×23=49,a2+b2=19+49=59,故b=23最大.【知识点】均值不等式的应用二、填空题(共6题)11. 【答案】①②【解析】① a2+b2=2,设a=√2cosα,b=√2sinα,则a+b=√2(sinα+cosα)= 2sin(α+π4)≤2,所以①正确;②当a>0,b>0时,1a +1b+2√ab≥√ab+2√ab≥2√√ab⋅2√ab=4,当且仅当a=b=1时等号成立,所以②正确;③函数y=2√x2+4=2√x2+4=√x2+4+√x2+4≥2√√x2+4⋅√x2+4= 2.当且仅当x2+4=1,即x2=−3<0时等号成立,故③不正确;④当且仅当 a ,b 同号时,a b >0,b a >0,a b +b a ≥2√a b ⋅ba =2 恒成立,所以 a ,b 可以同时为负,故④不正确.【知识点】均值不等式的应用12. 【答案】 92【解析】 y =4x (3−2x )=2[2x (3−2x )]≤2[2x+(3−2x )2]2=92,当且仅当“2x =3−2x ,即 x =34”时,等号成立. 因为 34∈(0,32),所以函数 y =4x (3−2x )(0<x <32)的最大值为 92. 【知识点】均值不等式的应用13. 【答案】25【解析】设一边长为 x m ,则另一边长可表示为 (10−x )m , 由题知 0<x <10,则面积 S =x (10−x )≤(x+10−x 2)2=25,当且仅当 x =10−x ,即 x =5 时等号成立,故当矩形的长与宽相等,都为 5 m 时面积取到最大值 25 m 2. 【知识点】均值不等式的实际应用问题14. 【答案】不为零【知识点】不等式的性质15. 【答案】 a >0 ; b 2−4ac <0 ; a >0 ; b 2−4ac ≤0 ; a <0 ; b 2−4ac <0 ; a <0 ; b 2−4ac ≤0 ; a >0 ; b 2−4ac <0 ; a <0 ; b 2−4ac <0【知识点】二次不等式的解法16. 【答案】[−12,1 2 ]【知识点】均值不等式的应用三、解答题(共6题)17. 【答案】【知识点】命题的概念与真假判断18. 【答案】略.【知识点】均值不等式的应用19. 【答案】当0<x<12时,y=2x(1−2x)≤[2x+(1−2x)2]2=14,当且仅当2x=1−2x,即x=14时上式取等号,所以函数的最大值为14.【知识点】均值不等式的应用20. 【答案】1.【知识点】均值不等式的应用21. 【答案】(1) −2≤x≤74(2) 5≤x≤9.(3) R.(4) x<−12或x>1.【知识点】二次不等式的解法22. 【答案】(1) 当m=2时,f(x)=∣x−2∣+∣∣x+12∣∣;①当x≤−12时,原不等式等价于(2−x)−(x+12)>3,解得x<−34;②当 −12<x <2 时,原不等式等价于 52>3,不等式无解;③当 x ≥2 时,原不等式等价于 (x −2)+(x +12)>3,解得 x >94, 综上,不等式 f (x )>3 的解集为 (−∞,−34)∪(94,+∞).(2) 由题 f (x )=∣x −m ∣+∣∣x +1m ∣∣,因为 m >0,所以 ∣∣m +1m ∣∣=m +1m ,所以 f (x )≥m +1m ,当且仅当 x ∈[−1m ,m] 时等号成立,所以 f (x )+1m (m−1)≥m +1m +1m (m−1)=m +1m−1=(m −1)+1m−1+1, 因为 m >1,m −1>0, 所以 (m −1)+1m−1+1≥2√(m −1)⋅1m−1+1=3,所以 f (x )+1m (m−1)≥3,当 m =2,且 x ∈[−12,2] 时等号成立. 【知识点】均值不等式的应用、绝对值不等式的求解。

高中数学必修第一册第二章《一元二次函数、方程和不等式》测试卷

高中数学必修第一册第二章《一元二次函数、方程和不等式》测试卷

2020-2021学年高中数学必修第一册第二章《一元二次函数、方程和不等式》测试卷解析版一.选择题(共8小题)1.已知正实数a ,b 满足a +b =2,则√a +1+√b +1的最大值为( )A .2√2B .4C .4√2D .16解:因为(√a +1+√b +1)2=(a +1)(b +1)+2√a +1•√b +1≤(a +1)+(b +1)+(a +1)+(b +1)=2(a +b +2)=8,当且仅当a =b =1时取等号,由:(√a +1+√b +1)2最大值为8,所以√a +1+√b +1的最大值为2√2.故选:A .2.已知m =a +1a−2(a >2),n =4﹣b 2(b ≠0),则m ,n 之间的大小关系是( )A .m >nB .m <nC .m =nD .不确定 解:∵a >2,∴a ﹣2>0,∴m =a +1a−2=(a −2)+1a−2+2≥2√(a −2)⋅1a−2+2=4,由b ≠0得,b 2>0,∴n =4﹣b 2<4,∴m >n .故选:A .3.若a >0,b >0,a +2b =1,则2a +3a+1b 的最小值为( )A .8B .6C .12D .9 解:2a +3a+1b =2a+4b a +3a+a+2b b =4+4b a +4a b ≥4+2√4b a ×4a b =12.(当且仅当a =b时取“=”).故选:C .4.不等式ax 2+bx +c >0的解集为(﹣4,1),则不等式b (x 2+1)﹣a (x +3)+c >0的解集为( )A .(−43,1)B .(−1,43)C .(−∞,−43)∪(1,+∞)D .(−∞,−1)∪(43,+∞)解:不等式ax 2+bx +c >0的解集为(﹣4,1),则不等式对应方程的实数根为﹣4和1,且a <0;由根与系数的关系知,{−4+1=−b a −4×1=c a , ∴{b =3a c =−4a, ∴不等式b (x 2+1)﹣a (x +3)+c >0化为3a (x 2+1)﹣a (x +3)﹣4a >0,即3(x 2+1)﹣(x +3)﹣4<0,解得﹣1<x <43,∴该不等式的解集为(﹣1,43). 故选:B .5.已知函数f (x )=x 2+ax +b (a ,b ∈R )的最小值为0,若关于x 的不等式f (x )<c 的解集为(m ,m +4),则实数c 的值为( )A .9B .8C .6D .4解:f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),∴4b−a 24=0,∴b =a 24,∵f (x )<c 的解集为(m ,m +4),∴f (x )﹣c =0的根为m ,m +4,即x 2+ax +a 24−c =0的根为m ,m +4, ∵(m +4﹣m )2=(﹣a )2﹣4(a 24−c ),∴4c =16,c =4.故选:D . 6.已知正实数p ,q ,r 满足:(1+p )(1+q )=(1+r )2,a =√pq ,b =p+q 2,c =√p 2+q 22,则以下不等式正确的是( )A .r ≤aB .a ≤r ≤bC .b ≤r ≤cD .r ≥c。

第二章《一元二次函数、方程和不等式》单元测试A卷——高一上学期数学人教A版(2019)必修第一册含答

第二章《一元二次函数、方程和不等式》单元测试A卷——高一上学期数学人教A版(2019)必修第一册含答

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!第二章《一元二次函数、方程和不等式》单元测试A 卷(答卷时间:40分钟,满分:100分)一、单选题(本题共 7 小题,每小题 5 分,共 35 分.在每小题给出的四个选项中,只有一项符合题目要求)1.已知a b >,c R Î则下列结论正确的是( )A .22a b > B .22ac bc > C .a c b c +>+ D .ac bc<2.若0x >,则1x x +的最小值为( )A .2B .3C .D .43.不等式2230x x --<的解集为( )A .{}|31x x -<< B .{}|13x x -<<C .{}|13x x x <->或D .{}|31x x x <->或4.已知01x <<,则(1)x x -的最大值为( )A .13 B .12 C .14 D .235.已知25,1,4A x B x =+=+则A 和B 的大小关系是( )A .A B > B .A B < C .A B ³ D .无法确定6.已知不等式230ax bx +->的解集为{}|13x x <<,则a b -=( )A .3- B .1- C .3 D .5-7.若1x >,则函数411y x x =-+-取得最小值时x 的值为 ()A .2B .32C .3D .4二、多选题(本题共 3小题,每小题 5 分,共 15 分.在每小题给出的四个选项中,有多个选项符合题目要求,完全正确得5分,选对部分得3分,出现错误选项得0分)8. 设,a b 为任意两个非零实数,那么“不等式11a b<成立”的一个充分不必要条件是 ( )A .0a b <<B .0a b -<C .0a b >>D .a b>9.已知0,0,a b >>下列说法一定成立的是 ( )A .222a b ab +³2a b+£C .a b +> D.22433a a +++()的最小值为410.对于任意实数x ,不等式230x ax -+>恒成立,则实数a 可以是 ( )A .2B .3C .D .4三、填空题(本题共 4小题,每小题 5 分,共 20分,其中14题第一个空2分,第二个空3分)11.不等式201x x ->+的解集是________.12.已知0,a >1,a b +=则a b a a ++的最小值是________.13.设,,a b c R Î则“a b >”是“22ac bc >”的_______________条件.14.已知0,0,m n >>且m 和n 的算术平均数不小于它们的几何平均数,则此不等关系的表达式为______________,8m n +=时,mn 的最大值为____________.四、解答题(本题共 3道大题,每道大题 10分,共 30分.解答应写出必要的文字说明、证明过程或演算步骤.)15.解下列一元二次不等式(1)23100x x -->; (2)22950x x --+>.16.已知,x R Î21,4M x =+N x =,比较M 和N 的大小关系,写出详细过程.17. 若0,a b >>0c d <<求证:(1)11a b<; (2)a c b d->-第二章《一元二次函数、方程和不等式》单元测试A 卷参考答案一、单选题(本题共 7 小题,每小题 5 分,共 35 分.在每小题给出的四个选项中,只有一项符合题目要求)1.C.解析:A 选项中当22()()a b a b a b -=+-无法判断a b +的正负所以无法确定2a 与2b 的大小关系,另外也可以根据不等式的性质中只有满足条件0a b >³,才能得到22a b >因此A 错误;B 选项中当0c =时22ac bc =,0c ¹时22ac bc >,因此B 错误;C 选项中由于a b >,不等式两边同时加上同一实数c ,不等号的方向不变(同向可加性)因此C 正确;D 选项中由于不清楚实数c 的正负,无法通过a b >得到ac 和bc 的大小关系, 故选C.2.A.解析:基本不等式:0,0a b >>2a b +£,当且仅当a b =时等号成立.其中式子2a b +£可变形为a b +³.由于0x >则10x >,因此1x x +³即12x x +³, 当且仅当1x x =即1x =时12x x +=,等号成立,所以1x x +的最小值为2, 故选A.(注意利用基本不等式求最大值或最小值需要满足的条件)3.A.解析:解一元二次方程2230x x --=得1213x x =-=,, 且二次函数223y x x =--的图象开口向上,由此该二次函数的图象如图.通过对该函数图象的观察,得到不等式2230x x --<的解集为{}|13x x -<<, 故选A. (注意借助二次函数与一元二次方程、不等式之间的联系,是求解一元二次不等式的一般性方法).x02a b +£,当且仅当a b =时等号成立.变形得2()2a b ab +£.由01x <<可知0x >,10x ->,则211(1)(24x x x x +--£=,当且仅当1x x =-即12x =时等号成立,所以当12x =时1x x =-有最大值14,故选C.5.C. 分析:比较两项的大小关系,在性质特征不是很明显的情况下通常采用作差法,如果不能直接看出差值与0的大小关系,可将作差的结果进行适当变形,从而得出结论. 解析:22251110442A B x x x x x -=+-+-+=-³()=(),所以0A B -³,因此A B ³,故选C.6.D. 解析:因为不等式230ax bx +->的解集为{}|13x x <<,所以1和3是方程230ax bx +-=的两个解.解法一:将1x =和3x =分别代入230ax bx +-=得{2211303330a b a b +-=+-=g g g g 即{309330a b a b +-=+-=解得{14a b =-=所以5a b -=-,故选D.解法二:方程230ax bx +-=的两个解1和3,说明方程230ax bx +-=是一元二次方程, 0a ¹,则可利用根与系数的关系得到方程组13313ba a +=--´=-ìíî解得{14a b =-=所以5a b -=-,故选D.7.C. 解析:1x >则410,01x x ->>-,所以4141y x x =-+³=-,当且仅当且仅当411x x -=-,即3x =时411y x x =-+-取得最小值4, 所以411y x x =-+-取得最小值时3x =,故选C.二、多选题(本题共 3小题,每小题 5 分,共 15 分.在每小题给出的四个选项中,有多个选项符合题目要求,完全正确得5分,选对部分得3分,出现错误选项得0分)8.AC.思路:题中考查选项中哪几个是“不等式11a b <成立”的充分不必要条件,则该条件成立时可以推出11a b <,而当11a b<成立时无法推出该条件成立.本题考查不等式相关知识,因此注重利用不等式性质及作差法的运用技巧.解析:A 选项,充分性:当0a b <<成立时11a b <也成立,因此充分性成立;必要性:当11a b<成立时无法判断0a b <<成立,因此必要性不成立.所以 “0a b <<”是“不等式11a b<成立”的充分不必要条件. B 选项,充分性:当0a b -<成立时11b a a b ab --=,由于无法确定ab 的符号,因此无法确定11a b<是否成立,因此充分性不成立;必要性:当11a b <成立时110b a a b ab--=<,由于无法确定ab 的符号,无法判断0a b -<成立,因此必要性不成立.所以 “0a b -<”是“不等式11a b<成立”的既不充分也不必要条件.C 选项,充分性:当0a b >>成立时10,ab>利用不等式的性质可知11,a b ab ab >g g 因此11b a >,即11a b <成立,因此充分性成立;必要性:当11a b<成立时无法判断0a b >>成立,因此必要性不成立.所以 “0a b >>”是“不等式11a b<成立”的充分不必要条件. D 选项,充分性:1111,,a b ab b ab a==g g 当a b >成立时由于无法确定1ab 的正负,所以无法确定1a ab g 和1b ab g 的大小关系,即无法确定11a b<成立,因此充分性不成立;必要性:同理当11a b<成立时无法确定a b >成立,因此必要性不成立.所以 “a b >”是“不等式11a b<成立”的既不充分也不必要条件.综上所述可知正确选项为AC.9.AB.解析:因为0,0,a b >>重要不等式222a b ab +³2a b +£均成立,故A,B 正确,当且仅当a b =2a b +=即a b +=,所以a b +>成立,C 错误, 由于2330a +³>,2403a >+则224343a a ++³=+() 当且仅当22433a a =++()成立时等号成立,由于22433a a =++()时21a =-无解,所以22433a a +++()无法取得最小值4,因此D 错误. 综上所述可知正确选项为AB.本题考查对基本不等式的理解及对是否符合利用基本不等式求最值条件的判定能力.10.ABC. 解析:任意实数x ,不等式230x ax -+>恒成立,则函数23y x ax =-+的最小值2min 413041a y ´´-=>´,解得a -<<则选项中满足该条件的实数a 可以是故选ABC.点评:将一元二次不等式恒成立问题转化为函数的最值问题是常见的解题策略,即若0(0)y y ><恒成立则只需min max 0(0)y y ><,这一结论是解决这类问题的关键,也是解决恒成立问题的总的思考方向.三、填空题(本题共 4小题,每小题 5 分,共 20分,其中14题第一个空2分,第二个空3分)11. {}|12x x x <->或解析:本道题考查分式不等式的等价转换.不等式201x x ->+等价于2)(1)0x x -+>(,解得12x x <->或,所以201x x ->+的解集为{}|12x x x <->或,注意解集要写成集合或区间的形式,区间形式将会在下一章学习到.12.2解析:本道题考查基本不等式的构造思维能力和对运用基本不等式求最值方法的掌握.1,a b +=则1=a b a a a a +++,因为10,0a a >>则1=a b a a a a +++³,当且仅当1=a a ,即=1a 时等号成立,因此a b a a++的最小值为2.13.必要不充分条件解析:充分性:,,a b c R Î,当a b >,0c =时2=0c ,22==0ac bc ,因此a b >Þ/22ac bc >,充分性不成立; 必要性:22ac bc >时说明20c ¹,那么一定有20c >,210c >,由不等式的性质可知此时222211ac bc c c>g g ,即a b >,因此22ac bc a b >Þ>必要性成立.综上所述“a b >”是“22ac bc >”的必要不充分条件.14. 第一空:+2m n ³第二空:16解析:0,0,m n >>且m 和n 的算术平均数是+2m n ,m 和n ,因此“m 和n 的算术平均数不小于它们的几何平均数”的符号表达式为+2m n ³+2m n ³变形可知2+(2m n mn £,当且仅当=m n 时等号成立, 8m n +=,mn £28(2=16,所以当且仅当4m n ==时mn 的最大值16.四、解答题(本题共 3道大题,每道大题 10分,共 30分.解答应写出必要的文字说明、证明过程或演算步骤.)15. 解:(1)解一元二次方程2310=0x x --得1=2x -,2=5x 则一元二次函数2=310y x x --的图象如图}5>.(2)不等式22950x x --+>的等价不等式为22+950x x -<解一元二次方程22+95=0x x -得15x =-,21=2x 则22+950x x -<的解集为1|52x x ìü-<<íýîþ即一元二次不等式22950x x --+>的解集为1|52x x ìü-<<íýîþ.方法指导:解一元二次不等式可以从解一元二次方程的根入手,了解一元二次方程与相应二次函数图象的联系,画出二次函数的图象,能根据具体函数图象得到相应一元二次不等式的解集.另外在学习本节课内容之后可以用课堂上推广的一般结论,解决相关问题.注意要明确课本上一般结论的推广过程,理解知识本质,体会数形结合和函数思想的应用,以及具体到抽象,特殊到一般的研究问题的基本方法.16. 分析:比较两项的大小关系,在性质特征不是很明显的情况下通常采用作差法,如果不能直接看出差值与0的大小关系,可将作差的结果进行适当变形,从而得出结论.解:221144M N x x x x -=+-=-+2211222x x =-+g (21=()2x - 因为,x R Î所以21(02x -³所以0M N -³,即M 和N 的大小关系是M N ³.17. 分析:通过观察不难发现两个小问均可采用作差法或利用不等式的性质直接证明.解:(1)0a b >>则10ab>由不等式的性质可知11a b ab ab >g g ,即11b a >,所以11a b<(2)0c d <<则0c d ->->又0a b >>Q ()()a cb d \+->+-ac bd \->-。

高一数学 必修一 第二章《一元二次函数、方程和不等式》训练题 (13)-200708(解析版)

高一数学 必修一 第二章《一元二次函数、方程和不等式》训练题 (13)-200708(解析版)

高一数学 必修一 第二章《一元二次函数、方程和不等式》训练题 (13)一、选择题(本大题共8小题,共40.0分) 1. 定义运算:∣∣∣ab cd ∣∣∣=ad −bc.若不等式∣∣∣2k kx +3−1x 2∣∣∣<0的解集是空集,则实数k 的取值范围是( )A. {0}∪[24,+∞)B. [0,24]C. (0,24]D. (−∞,0]∪[24,+∞)2. 已知三个互不相等的负数a ,b ,c 满足2b =a +c ,设M =1a +1c ,N =2b ,则( )A. M >NB. M ≥NC. M <ND. M ≤N3. 已知函数f(x)={x +1(x <0)−x −1(x ≥0),则不等式(x +1)⋅f(x −1)≤3−x 的解集是( )A. [−3,+∞)B. [1,+∞)C. [−3,1]D. (−∞,−3]∪[1,+∞)4. 若函数f(x)=x 2+x +ax 在(12,+∞)上是增函数,则a 的取值范围( )A. (−∞,12)B. (12,+∞)C. [12,+∞)D. (−∞,12]5. 若函数f(x)=(k −3)x 2+2kx +1在(−∞,0]上为增函数,则k 的取值范围是( )A. [0,3)B. [0,3]C. (0,3]D. [3,+∞) 6. 已知a =log 52,b =log 0.50.2,c =ln(ln2),则a ,b ,c 的大小关系是( )A. a <b <cB. a <c <bC. b <a <cD. c <a <b7. 已知p :函数f(x)=x 2+mx +1有两个零点,q :∀x ∈R ,4x 2+4(m −2)x +1>0.若p ∨q 为真,p ∧q 为假,则实数m 的取值范围为( ) A. (−∞,−2)∪[3,+∞) B. (−∞,−2)∪(1,2]∪[3,+∞) C. (1,2]∪[3,+∞) D. (−∞,−2)∪(1,2] 8. 若a <0,则关于x 的不等式x 2−4ax −5a 2>0的解是( )A. x >5a 或x <−aB. x >−a 或x <5aC. 5a <x <−aD. −a <x <5a 二、填空题(本大题共8小题,共40.0分) 9. 不等式−x 2−x +6≥0的解集为______. 10. 函数y =−x 2的单调递增区间为______.11. 若函数f(x)={1x ,x >03x ,x ≤0,则不等式f(x)≥13的解集为______.12. 若函数f(x)=log a x(a >0,a ≠1)在区间[14,2]上的最大值为1,最小值为m ,且函数g(x)=(m +1)x 2在区间[0,+∞)上是增函数,则a =______.13. 若不等式ax 2+2ax −1<0解集为R ,则a 的范围是______.14. 对于0≤m ≤4的m ,不等式x 2+mx >4x +m −3恒成立,则x 的取值范围是______. 15. 不等式3x 2−7x ≤10的解集为______. 16. 函数y =√6−x −x 2的定义域是______. 三、解答题(本大题共4小题,共48.0分)17.解关于x的不等式:x2+2x−3−x2+x+6<0.18.已知f(x)=x2+6x+9x+1(x>−1).(1)解不等式f(x)≥9;(2)求f(x)的最小值.19.已知二次函数f(x)=ax2+bx+c(a,b,c∈R)对任意实数x,都有f(x)≥x,且当x∈[1,3)时,有f(x)≤18(x+2)2成立.(1)证明:f(2)=2;(2)若f(−2)=0,求f(x)的表达式;(3)在题(2)的条件下设g(x)=f(x)−mx2,x∈[0,+∞),若g(x)图象上的点都位于直线y=14的上方,求实数m的取值范围.20.已知不等式ax2−3x+6>4的解集为{x|x<1或x>b}.(1)求a,b的值;(2)已知m∈R,解关于x的不等式(x−m)(ax−b)<0.-------- 答案与解析 --------1.答案:B解析:解:根据题意得,不等式2kx 2+kx +3<0的解集为空集, ①k =0时,3<0,满足题意;②k ≠0时,{k >0△=k 2−24k ≤0,解得0<k ≤24, ∴综上得,实数k 的取值范围是[0,24]. 故选:B .根据题意即可得出不等式2kx 2+kx +3<0的解集是空集,从而讨论k :k =0时,显然满足题意;k ≠0时,{k >0△=k 2−24k ≤0,从而可得出k 的取值范围.本题考查了分类讨论的思想,一元二次不等式解的情况,考查了计算能力,属于基础题. 2.答案:A解析:解:由三个互不相等的负数a ,b ,c 满足2b =a +c , 且M =1a +1c =c+a ac=2bac =2ac b,N =2b , 所以ac b −b =ac−b 2b=ac−(a+c 2)2b=−(a−c)24b<0,即ac b <b <0, 所以2ac b>2b ,即M >N . 故选:A . 化简M =2ac b,利用作差法比较acb <b ,从而得出M 与N 的大小.本题考查了不等式大小比较问题,也考查了转化思想,是基础题. 3.答案:A解析:解:∵函数f(x)={x +1(x <0)−x −1(x ≥0),则对于不等式(x +1)⋅f(x −1)≤3−x ,当x −1<0即x <1时,f(x −1)=x −1+1=x ,则(x +1)⋅x ≤3−x ,解得−3≤x ≤1,∴−3≤x <1.当x −1≥0时,即x ≥1,f(x −1)=1−x −1=−x ,则(x +1)(−x)≤3−x ,即x 2≥−3,∴x ≥1. ∴原不等式的解集为{x|−3≤x <1,或x ≥1}={x|x ≥−3}, 故选:A .分别考虑x −1<0即x <1时;x −1≥0时,即x ≥1时,原不等式的解集,最后求并集. 本题考查分段函数的应用,考查分段函数值应考虑自变量对应的情况,属于中档题. 4.答案:D解析:解:根据题意,函数f(x)=x 2+x +ax ,其导数f′(x)=2x +1−a x 2=2x 3+x 2−ax 2,若函数f(x)=x 2+x +ax 在(12,+∞)上是增函数,则f′(x)=2x3+x 2−ax 2≥0在(12,+∞)上恒成立,设g(x)=2x 3+x 2−a ,则有g(x)=2x 3+x 2−a ≥0在(12,+∞)上恒成立,而g′(x)=6x 2+2x ,在(12,+∞)上,有g′(x)>0恒成立,即函数g(x)在(12,+∞)上为增函数, 若g(x)=2x 3+x 2−a ≥0在(12,+∞)上恒成立,必有g(12)≥0,即2×(12)3+(12)2−a =12−a ≥0恒成立,则a ≤12,即a 的取值范围为(−∞,12]; 故选:D .根据题意,求出函数f(x)的导数,由函数的导数与函数单调性的关系分析可得:若函数f(x)在(12,+∞)上是增函数,必有f′(x)=2x 3+x 2−ax 2≥0在(12,+∞)上恒成立,进而设g(x)=2x 3+x 2−a ,求出g(x)的导数,分析可得g(x)在(12,+∞)上为增函数,据此可得g(12)≥0,即2×(12)3+(12)2−a =12−a ≥0恒成立,解可得a 的取值范围,即可得答案.本题考查利用导数分析函数单调性的判断,注意函数的导数与函数单调性的关系,属于基础题. 5.答案:B解析:解:若函数f(x)=(k −3)x 2+2kx +1在(−∞,0]上为增函数, ①当k =3时,f(x)=6x +1,显然f(x)在(−∞,0]上为增函数,②当k ≠3时,由f(x)在(−∞,0]上为增函数,有{k −3<0−2k 2(k−3)≥0,∴{k <30≤k <3,∴0≤k <3,∴k 的取值范围为[0,3]. 故选:B .利用函数图象与单调性的关系,结合二次函数的图象分析开口方向即可. 本题考查函数的图象与性质的应用,一元二次函数单调性问题一定要结合图象,考虑图象开口方向,体现数形结合和分类讨论的思想. 6.答案:D解析:解:∵0=log 51<log 52<log 55=1,log 0.50.2>log 0.50.5=1,0<ln2<1,ln(ln2)<0, ∴c <a <b . 故选:D .可以得出0<log 52<1,log 0.50.2>1,ln(ln2)<0,从而可得出a ,b ,c 的大小关系.本题考查了对数的运算,对数函数的单调性,增函数和减函数的定义,考查了计算能力,属于基础题.7.答案:B解析:解:∵p ∨q 为真,p ∧q 为假 ∴p ,q 中一个真命题一个假命题,由p :函数f(x)=x 2+mx +1有两个零点, 得△=m 2−4>0,解得m >2或m <−2. 由q :∀x ∈R ,4x 2+4(m −2)x +1>0 得△=16(m −2)2−16<0, 解得1<m <3, 当p 真q 假时,有{m >2或m <−2m ≥3或m ≤1即m ≥3或m <−2 当p 假q 真,有{−2≤m ≤21<m <3即1<m ≤2∴实数m 的取值范围为(−∞,−2)∪(1,2]∪[3,+∞). 故选:B .由p ∨q 为真,p ∧q 为假,知p ,q 有一个真命题一个假命题,由p 得△=m 2−4>0,解得m >2或m <−2.由q ,得△=16(m −2)2−16<0,解得1<m <3,分两种情况求出实数m 的取值范围. 本题考查命题的真假判断和应用,解题时要认真审题,注意根的判别式的合理运用. 8.答案:B解析:解:∵x 2−4ax −5a 2>0 ∴(x +a)(x −5a)>0,等价于{x +a >0x −5a >0或{x +a <0x −5a <0又∵a <0∴x <5a 或x >−a 故选:B .写出等价不等式组,根据a <0,解不等式组即可本题考查一元二次不等式的解法,注意等价关系.属简单题 9.答案:[−3,2]解析:解:不等式−x 2−x +6≥0可化为x 2+x −6≤0, 即(x +3)(x −2)≤0,解得−3≤x ≤2, 所以不等式的解集为[−3,2]. 故答案为:[−3,2].把不等式化为一般形式,再求解即可.本题考查了一元二次不等式的解法,是基础题. 10.答案:(−∞,0]解析:解:画出函数函数y =−x 2的草图;如图所示; 易知,函数y =−x 2的单调递增区间为(−∞,0], 故答案为(−∞,0]画出函数y =−x 2的图象,由图象容易得到解答. 本题考查了一元二次函数的图象和性质. 11.答案:{x|−1≤x ≤3}解析:解:函数f(x)={1x,x >03x,x ≤0,则不等式f(x)≥13,即{x >01x ≥13①,或 {x ≤03x ≥13②,解①求得0<x ≤3;解②求得−1≤x ≤0,故原不等式的解集为{x|−1≤x ≤3}, 故答案为:{x|−1≤x ≤3}.由题意原不等式即{x >01x ≥13①,或 {x ≤03x ≥13②,分别求出①②的解集,再取并集,即得所求.本题主要考查分段函数的应用,指数不等式、分式不等式的应用,属于基础题.12.答案:14解析:解:∵函数g(x)=(m +1)x 2在区间[0,+∞)上是增函数,∴m +1>0,解得m >−1.①当a >1时,函数f(x)=log a x(a >0,a ≠1)在区间[14,2]上单调递增,由已知可得{log a 2=1log a 14=m,解得{a =2m =−2,与m >−1矛盾,故应舍去;②当0<a <1时,函数f(x)=log a x(a >0,a ≠1)在区间[14,2]上单调递减,由已知可得{log a 14=1log a 2=m,解得{a =14m =−12,满足m >−1,故a =14.故答案为14.利用二次函数的单调性、对数函数的单调性、分类讨论即可得出.熟练掌握二次函数的单调性、对数函数的单调性、分类讨论的方法是解题的关键. 13.答案:−1<a ≤0解析:解:a =0时,不等式ax 2+2ax −1<0化为−1<0,解集为R ; a ≠0时,不等式ax 2+2ax −1<0解集为R 时, 应满足{a <0△=4a 2−4a ×(−1)<0,解得−1<a <0;所以实数a 的取值范围是−1<a ≤0. 故答案为:−1<a ≤0.讨论a =0和a ≠0时,求出不等式ax 2+2ax −1<0解集为R 时a 的取值范围. 本题考查了不等式恒成立问题,也考查了分类讨论思想,是基础题. 14.答案:x >3或x <−1解析:解:若不等式x 2+mx >4x +m −3恒成立 则m(x −1)+x 2−4x +3>0在0≤m ≤4时恒成立.令f(m)=m(x −1)+x 2−4x +3.则{f(0)>0f(4)>0⇒{x 2−4x +3>0x 2−1>0⇒{x <1或x >3x <−1或x >1.∴x <−1或x >3.故答案为:x >3或x <−1由对于0≤m ≤4的m ,不等式x 2+mx >4x +m −3恒成立,可变形为m(x −1)+x 2−4x +3>0在0≤m ≤4时恒成立.由于该函数为关于m 的一次函数估可转化为{f(0)>0f(4)>0,即{x 2−4x +3>0x 2−1>0,解不等式组,即可得到结论.解不等式恒成立问题,通常借助于函数思想或方程思想转化为求函数的最值或利用函数的图象或判别式的方法求解.15.答案:[−1,103]解析:解:不等式3x 2−7x ≤10可化为3x 2−7x −10≤0, 即(x +1)(3x −10)≤0,解得−1≤x ≤103;所以不等式的解集为[−1,103]. 故答案为:[−1,103].不等式化为3x 2−7x −10≤0,求出不等式的解集即可. 本题考查了一元二次不等式的解法,是基础题. 16.答案:(−3,2)解析:解:∵函数y =√6−x −x 2, ∴6−x −x 2≥0, 即x 2+x −6≤0; ∴(x +3)(x −2)≤0, 解得−3≤x ≤2,∴函数y 的定义域是(−3,2). 故答案为:(−3,2).根据函数的解析式,二次根式的被开方数大于或等于0,列出不等式,求出解集即可.本题考查了求函数定义域的问题,解题时应化为求一元二次不等式的解集的问题,是基础题.17.答案:解;不等式x 2+2x−3−x 2+x+6<0可化为x 2+2x−3x 2−x−6>0,即(x+3)(x−1)(x+2)(x−3)>0,各因式对应的一次方程的实数根为−3,−2,1和3,如图,由图可知,该不等式的解集为(−∞,−3)∪(−2,1)∪(3,+∞).解析:把不等式化为几个一次因式的积(或商)的形式,求出各因式对应方程的实数根,然后利用数轴标根法求出不等式的解集.本题考查了不等式的解法与应用问题,是基础题.18.答案:解:(1)由x>−1可得x+1>0,故x2+6x+9x+1≥9可得,x2+6x+9≥9x+9,解可得,−1<x≤0或x≥3,故原不等式的解集(−1,0]∪[3,+∞),(2)由x>−1可得x+1>0,由基本不等式可得,f(x)=x2+6x+9x+1=(x+3)2x+1=[(x+1)+2]2x+1=x+1+4x+1+4,≥2√(x+1)⋅4x+1+4=8,当且仅当x+1=4x+1集集x=1时取等号,因此函数f(x)取得最小值8.解析:(1)由已知把分式不等式可转化为二次不等式,即可进行求解;(2)由f(x)=x2+6x+9x+1=(x+3)2x+1=[(x+1)+2]2x+1=x+1+4x+1+4然后结合基本不等式即可求解.本题主要考查了不等式的求解及利用基本不等式求解最值,属于基础试题.19.答案:解:(1)证明:由题意可得f(2)≥2,且f(2)≤18(2+2)2=2,即有f(2)=2;(2)由f(−2)=0,可得4a−2b+c=0,f(2)=2,即为4a+2b+c=2,两式相减可得,b=12,4a+c=1即c=1−4a,f(x)=ax2+12x+1−4a,对任意实数x,都有f(x)≥x,即为ax2−12x+1−4a≥0恒成立,即有a>0,△=14−4a(1−4a)≤0,即有(8a−1)2≤0,即有a=18,c=12,则f(x)=18x2+12x+12;(3)g(x)=f(x)−mx2=18(x+2)2−mx2,当x=0时,g(0)=12>14成立;当x>0时,18(x+2)2−mx2>14,即有4m<x2+4x+2x =x+2x+4,由x +2x ≥2√x ⋅2x =2√2,当且仅当x =√2时,取得最小值.即有4m <2√2+4, 解得m <1+√22.综上可得,m 的范围是(−∞,1+√22).解析:(1)令x =2,求得f(2)≥2,且f(2)≤2,即可得证;(2)由f(−2)=0,f(2)=2,求得b =12,4a +c =1即c =1−4a ,再由二次不等式恒成立的条件为a >0,判别式非正,即可得到a ,c ,进而得到解析式; (3)g(x)=f(x)−mx 2=18(x +2)2−mx 2,讨论x =0,x >0,不等式恒成立,注意运用参数分离和基本不等式求得最小值,即可得到m 的范围.本题考查二次函数的解析式的求法,注意运用二次不等式恒成立的条件,同时考查不等式恒成立的解法,注意运用参数分离和基本不等式,属于中档题.20.答案:解:(1)由不等式ax 2−3x +6>4的解集为{x|x <1或x >b}知, 1和b 是方程ax 2−3x +6=4的两个实数根,且a >0,b >1, 又方程可化为ax 2−3x +2=0,所以由根与系的关系得{1+b =3a1×b =2a ,解得a =1,b =2;(2)由(1),知a =1且b =2,则不等式(x −m)(ax −b)<0可化为(x −m)(x −2)<0; ①当m >2时,不等式(x −m)(x −2)<0的解集为{x|2<x <m}; ②当m <2时,不等式(x −m)(x −2)<0的解集为{x|m <x <2}; ③当m =2时,不等式(x −m)(x −2)<0的解集为⌀.解析:(1)由不等式ax 2−3x +6>4的解集得出对应方程的根,再由根与系数的关系求出a 、b 的值; (2)将a =1且b =2代入不等式(x −m)(ax −b)<0中,可得(x −m)(x −2)<0,然后讨论m 的取值,求出对应不等式的解集.本题考查了一元二次不等式的解法,也考查了运算与转化能力,是基础题.。

高中数学必修一第二章一元二次函数方程和不等式专项训练(带答案)

高中数学必修一第二章一元二次函数方程和不等式专项训练(带答案)

高中数学必修一第二章一元二次函数方程和不等式专项训练单选题1、若a>0,b>0,则下面结论正确的有()A.2(a2+b2)≤(a+b)2B.若1a +4b=2,则a+b≥92C.若ab+b2=2,则a+b≥4D.若a+b=1,则ab有最大值12答案:B分析:对于选项ABD利用基本不等式化简整理求解即可判断,对于选项C取特值即可判断即可. 对于选项A:若a>0,b>0,由基本不等式得a2+b2≥2ab,即2(a2+b2)≥(a+b)2,当且仅当a=b时取等号;所以选项A不正确;对于选项B:若a>0,b>0,1 2×(1a+4b)=1,a+b=12×(1a+4b)(a+b)=12(5+ba+4ab)≥12(5+2√ba⋅4ab)=92,当且仅当1a +4b=2且ba=4ab,即a=32,b=3时取等号,所以选项B正确;对于选项C:由a>0,b>0,ab+b2=b(a+b)=2,即a+b=2b,如b=2时,a+b=22=1<4,所以选项C不正确;对于选项D:ab≤(a+b2)2=14,当且仅当a=b=12时取等则ab有最大值14,所以选项D不正确;故选:B2、若不等式2x2+2mx+m4x2+6x+3<1对一切实数x均成立,则实数m的取值范围是()A .(1,3)B .(−∞,1)C .(−∞,1)∪(3,+∞)D .(3,+∞) 答案:A分析:因为4x 2+6x +3=4(x +34)2+34>0恒成立,则2x 2+2mx+m 4x 2+6x+3<1恒成立可转化为2x 2+(6−2m )x +(3−m )>0恒成立,则Δ<0,即可解得m 的取值范围 因为4x 2+6x +3=4(x +34)2+34>0恒成立 所以2x 2+2mx+m 4x 2+6x+3<1恒成立⇔2x 2+2mx +m <4x 2+6x +3恒成立 ⇔2x 2+(6−2m )x +(3−m )>0恒成立 故Δ=(6−2m )2−4×2×(3−m )<0 解之得:1<m <3 故选:A3、若不等式ax 2+bx +2>0的解集是{x |−12<x <13},则ax +b >0的解集为( )A .(−∞,−16)B .(−∞,16)C .(−16,+∞)D .(16,+∞)答案:A分析:利用根于系数的关系先求出a,b ,再解不等式即可. 不等式ax 2+bx +2>0的解集是{x |−12<x <13} 则根据对应方程的韦达定理得到:{(−12)+13=−ba(−12)⋅13=2a , 解得{a =−12b =−2,则−12x −2>0的解集为(−∞,−16) 故选:A4、不等式|5x −x 2|<6的解集为( )A .{x|x <2,或x >3}B .{x|−1<x <2,或3<x <6}C .{x|−1<x <6}D .{x|2<x <3}答案:B分析:按照绝对值不等式和一元二次不等式求解即可. 解:∵|5x−x2|<6,∴−6<5x−x2<6∴{x 2−5x−6<0x2−5x+6>0⇒{−1<x<6x<2或x>3⇒−1<x<2或3<x<6则不等式的解集为:{x|−1<x<2或3<x<6}故选:B.5、已知x>0,y>0,且x+y=2,则下列结论中正确的是()A.2x +2y有最小值4B.xy有最小值1C.2x+2y有最大值4D.√x+√y有最小值4答案:A分析:利用基本不等式和不等式的性质逐个分析判断即可解:x>0,y>0,且x+y=2,对于A,2x +2y=12(x+y)(2x+2y)=2+xy+yx≥2+2√xy⋅yx=4,当且仅当x=y=1时取等号,所以A正确,对于B,因为2=x+y≥2√xy,所以xy≤1,当且仅当x=y=1时取等号,即xy有最大值1,所以B错误,对于C,因为2x+2y≥2√2x⋅2y=2√2x+y=4,当且仅当x=y=1时取等号,即2x+2y有最小值4,所以C错误,对于D,因为(√x+√y)2=x+y+2√xy≤2(x+y)=4,当且仅当x=y=1时取等号,即√x+√y有最大值4,所以D错误,故选:A6、已知集合M={x|−4<x<2},N={x|x2−x−6<0},则M∩N=A.{x|−4<x<3}B.{x|−4<x<−2}C.{x|−2<x<2}D.{x|2<x<3}答案:C分析:本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.由题意得,M={x|−4<x<2},N={x|−2<x<3},则M∩N={x|−2<x<2}.故选C.小提示:不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.7、关于x的方程x2+(m−2)x+2m−1=0恰有一根在区间(0,1)内,则实数m的取值范围是()A.[12,32]B.(12,23]C.[12,2)D.(12,23]∪{6−2√7}答案:D分析:把方程的根转化为二次函数的零点问题,恰有一个零点属于(0,1),分为三种情况,即可得解. 方程x2+(m-2)x+2m-1=0对应的二次函数设为:f(x)=x2+(m-2)x+2m-1因为方程x2+(m-2)x+2m-1=0恰有一根属于(0,1),则需要满足:①f(0)⋅f(1)<0,(2m-1)(3m-2)<0,解得:12<m<23;②函数f(x)刚好经过点(0,0)或者(1,0),另一个零点属于(0,1),把点(0,0)代入f(x)=x2+(m-2)x+2m-1,解得:m=12,此时方程为x2-32x=0,两根为0,32,而32⋅(0,1),不合题意,舍去把点(1,0)代入f(x)=x2+(m-2)x+2m-1,解得:m=23,此时方程为3x2-4x+1=0,两根为1,13,而13⋅(0,1),故符合题意;③函数与x轴只有一个交点,Δ=(m-2)2-8m+4=0,解得m=6±2√7,经检验,当m=6-2√7时满足方程恰有一根在区间 (0,1) 内;综上:实数m的取值范围为(12,23]⋅{6-2√7}故选:D8、已知1a <1b<0,则下列结论正确的是()A.a<b B.a+b<ab C.|a|>|b|D.ab>b2答案:B分析:结合不等式的性质、差比较法对选项进行分析,从而确定正确选项.因为1a <1b<0,所以b<a<0,故A错误;因为b<a<0,所以a+b<0,ab>0,所以a+b<ab,故B正确;因为b<a<0,所以|a|>|b|不成立,故C错误;ab−b2=b(a−b),因为b<a<0,所以a−b>0,即ab−b2=b(a−b)<0,所以ab<b2成立,故D错误.故选:B多选题9、若a,b,c∈R,则下列命题正确的是()A.若ab≠0且a<b,则1a >1bB.若0<a<1,则a2<aC.若a>b>0且c>0,则b+ca+c >baD.a2+b2+1≥2(a−2b−2)答案:BCD分析:由不等式的性质逐一判断即可.解:对于A,当a<0<b时,结论不成立,故A错误;对于B,a2<a等价于a(a−1)<0,又0<a<1,故成立,故B正确;对于C,因为a>b>0且c>0,所以b+ca+c >ba等价于ab+ac>ab+bc,即(a−b)c>0,成立,故C正确;对于D,a2+b2+1≥2(a−2b−2)等价于(a−1)2+(b+2)2≥0,成立,故D正确. 故选:BCD.10、已知正实数a,b满足a+b=ab,则()A.a+b≥4B.ab≥6C.a+2b≥3+2√2D.ab2+ba2≥1答案:ACD分析:根据特殊值判断B,利用ab⩽(a+b)24判断A,利用换“1”法判断C,变形后利用基本不等式判断D. 对于B,当a=b=2时,满足a+b=ab,此时ab<6,B错误;对于A,ab⩽(a+b)24,则(a+b)24⩾a+b,变形可得a+b⩾4,当且仅当a=b=2时等号成立,A正确;对于C ,a +b =ab ,变形可得1a +1b =1,则有a +2b =(a +2b)(1a +1b )=3+2b a+ab ⩾3+2√2,当且仅当a =2b 时等号成立,C 正确; 对于D ,ab 2+ba 2=a 3+b 3a 2b 2=(a+b)(a 2+b 2−ab)a 2b 2=b a +ab −1⩾2−1=1,当且仅当a =b =2时等号成立,D 正确;故选:ACD11、对任意两个实数a,b ,定义min{a ,b}={a,a ≤b,b,a >b,若f (x )=2−x 2,g (x )=x 2,下列关于函数F (x )=min {f (x ),g (x )}的说法正确的是( ) A .函数F (x )是偶函数 B .方程F (x )=0有三个解C .函数F (x )在区间[−1,1]上单调递增D .函数F (x )有4个单调区间 答案:ABD分析:结合题意作出函数F (x )=min {f (x ),g (x )}的图象,进而数形结合求解即可.解:根据函数f (x )=2−x 2与g (x )=x 2,,画出函数F (x )=min {f (x ),g (x )}的图象,如图. 由图象可知,函数F (x )=min {f (x ),g (x )}关于y 轴对称,所以A 项正确; 函数F (x )的图象与x 轴有三个交点,所以方程F (x )=0有三个解,所以B 项正确;函数F (x )在(−∞,−1]上单调递增,在[−1,0]上单调递减,在[0,1]上单调递增,在[1,+∞)上单调递减,所以C 项错误,D 项正确. 故选:ABD填空题12、若不等式kx2+2kx+2<0的解集为空集,则实数k的取值范围是_____.答案:{k|0≤k≤2}分析:分k=0和k>0两种情况讨论,当k>0时需满足Δ≤0,即可得到不等式,解得即可;解:当k=0时,2<0不等式无解,满足题意;当k>0时,Δ=4k2−8k≤0,解得0<k≤2;综上,实数k的取值范围是{k|0≤k≤2}.所以答案是:{k|0≤k≤2}13、已知a,b,a+m均为大于0的实数,给出下列五个论断:①a>b,②a<b,③m>0,④m<0,⑤b+ma+m >ba.以其中的两个论断为条件,余下的论断中选择一个为结论,请你写出一个正确的命题___________. 答案:①③推出⑤(答案不唯一还可以①⑤推出③等)解析:选择两个条件根据不等式性质推出第三个条件即可,答案不唯一.已知a,b,a+m均为大于0的实数,选择①③推出⑤.①a>b,③m>0,则b+ma+m −ba=ab+am−ab−bma(a+m)=am−bma(a+m)=(a−b)ma(a+m)>0,所以b+ma+m >ba.所以答案是:①③推出⑤小提示:此题考查根据不等式的性质比较大小,在已知条件中选择两个条件推出第三个条件,属于开放性试题,对思维能力要求比较高.14、已知不等式ax2+bx+c>0的解集为(2,4),则不等式cx2+bx+a<0的解集为___________.答案:{x|x>12或x<14}分析:先由不等式ax2+bx+c>0的解集为(2,4),判断出b=-6a,c=8a,把cx2+bx+a<0化为8x2−6x+ 1>0,即可解得.因为不等式ax2+bx+c>0的解集为(2,4),所以a<0且2和4是ax2+bx+c=0的两根.所以{2+4=−ba2×4=ca可得:{b=−6ac=8a,所以cx2+bx+a<0可化为:8ax2−6ax+a<0,因为a<0,所以8ax2−6ax+a<0可化为8x2−6x+1>0,即(2x−1)(4x−1)>0,解得:x>12或x<14,所以不等式cx2+bx+a<0的解集为{x|x>12或x<14}.所以答案是:{x|x>12或x<14}.解答题15、回答下列问题:(1)若a>b,且c>d,能否判断a−c与b−d的大小?举例说明.(2)若a>b,且c<d,能否判断a+c与b+d的大小?举例说明.(3)若a>b,且c>d,能否判断ac与bd的大小?举例说明.(4)若a>b,c<d,且c≠0,d≠0,能否判断ac 与bd的大小?举例说明.答案:(1)不能判断,举例见解析(2)不能判断,举例见解析(3)不能判断,举例见解析(4)不能判断,举例见解析分析:因为a,b,c,d的正负不确定,因此可举例说明每个小题中的两式的大小关系不定. (1)不能判断a−c与b−d的大小,举例:取a=5,b=3,c=1,d=0,满足条件a>b,且c>d,此时a−c>b−d;取a=5,b=4,c=3,d=0,满足条件a>b,且c>d,此时a−c<b−d;取a=5,b=4,c=3,d=2,满足条件a>b,且c>d,此时a−c=b−d;(2)不能判断a+c与b+d的大小,举例:取a=5,b=3,c=0,d=1,满足条件a>b,且c<d,此时a+c>b+d;取a=5,b=3,c=2,d=6,满足条件a>b,且c<d,此时a+c<b+d.取a=5,b=3,c=4,d=6,满足条件a>b,且c<d,此时a+c=b+d;(3)不能判断ac与bd的大小,举例:取a=5,b=3,c=1,d=0,满足条件a>b,且c>d,此时ac>bd;取a=5,b=3,c=−3,d=−5,满足条件a>b,且c>d,此时ac=bd;取a=5,b=−3,c=1,d=−2,满足条件a>b,且c>d,此时ac<bd;(4)不能判断ac 与bd的大小举例:取a=6,b=3,c=1,d=2,满足条件a>b,且c<d,此时ac >bd;取a=2,b=1,c=−1,d=2,满足条件a>b,且c<d,此时ac <bd;取a=6,b=3,c=−2,d=−1,满足条件a>b,且c<d,此时ac =bd;。

高一数学一元二次不等式练习

高一数学一元二次不等式练习

高一数学一元二次不等式练习班级_________姓名_________得分_________一、选择题1.若a <b <0,则下列不等式成立的是()。

(A )ba 11< (B )ab <1(C )1<ba (D )1>b a 2.不等式0322>-+x x 的解集是()。

(A ){x|-1<x <3}(B ){x|x >3或x <-1}(C ){x|-3<x <1}(D ){x|x>1或x <-3}3.二次不等式02<++c bx ax 的解集是全体实数的条件是()。

(A )⎩⎨⎧>∆>00a (B )⎩⎨⎧<∆>00a (C )⎩⎨⎧>∆<00a (D )⎩⎨⎧<∆<00a二、填空题1.不等式0322<++-x x 的解集是_________。

2.不等式0412>+-x x 的解集是_________。

3.不等式053<--x x 的解集是_________。

4.方程04)1(222=-+--m x m x 的两根异号,则m 的取值范围是_________。

5.设全集I=R ,集合}06|{2<--=x x x A ,}082|{2≥-+=x x x B ,则A ∩B=_________,=B A I _________。

三、解答题1.已知一元二次方程0222=++-m mx x 的两个实根平方和大于2,求m 的取值范围。

2.求方程01222=-+-m mx x 的两根,如果要使方程的两根介于-2与4之间,求实数m 的取值范围。

3.已知不等式)0(0622≠<+-k k x kx 。

(1)若不等式的解是x <-3或x >-2,求k 的值。

(2)若不等式的解是k x 1≠,求k 的值。

4.若不等式02<--b ax x 的解是2<x <3,求不等式012>--ax bx 的解集。

高中数学必修一 《2 3 二次函数与一元二次方程、不等式》课时练习02

高中数学必修一 《2 3 二次函数与一元二次方程、不等式》课时练习02

第二章 一元二次函数、方程和不等式2.3 二次函数与一元二次方程、不等式(共2课时)(第1课时)一、选择题1.(2019北京高一期中)不等式x(x +2)<3的解集是( ). A .{x|−1<x <3} B .{x|−3<x <1} C .{x|x <−1 ,或x >3} D .{x|x <−3 ,或x >1} 【答案】B【解析】由题意x(x +2)<3,∴x 2+2x −3<0即(x +3)(x −1)<0,解得:−3<x <1, ∴该不等式的解集是{x|−3<x <1},故选B .2.(2019全国课时练习)已知集合A ={y|y −2>0},集合B ={x|x 2−2x ≤0},则A ∪B = ( ) A .[0,+∞) B .(−∞,2] C .[0,2)∪(2,+∞) D .R 【答案】A【解析】∵集合A ={y|y −2>0},集合B ={x|x 2−2x ≤0}={x|0≤x ≤2}, ∴A ∪B ={x|x ≥0}= [0,+∞),故选A.3.(2019全国课时练习)不等式2620x x --+≤的解集是( )A.21|32x x ⎧⎫-≤≤⎨⎬⎩⎭B.21|32x x x ⎧⎫≤-≥⎨⎬⎩⎭或 C.1|2x x ⎧⎫≥⎨⎬⎩⎭D.3|2x x ⎧⎫≤-⎨⎬⎩⎭【答案】B【解析】22620620(21)(32)0x x x x x x --+≤⇒+-≥⇒-+≥2132或x x ⇒≤-≥.故选B .4.(2019·安徽高一期中)若关于x 的不等式230ax bx ++>的解集为1(1,)2-,其中,a b 为常数,则不等式230x bx a ++<的解集是( ) A .(1,2)- B .(2,1)-C .1(,1)2-D .1(1,)2-【答案】A【解析】由230ax bx ++>解集为11,2⎛⎫- ⎪⎝⎭可得:()11122311122ba a⎧-=-+=-⎪⎪⎨⎪=-⨯=-⎪⎩解得:63a b =-⎧⎨=-⎩ ∴所求不等式为:23360x x --<,解得:()1,2x ∈- 本题正确选项:A5.(2019天津高一课时练习)在R 上定义运算⊗:a ⊗b =ab +2a +b ,则满足x ⊗(x −2)<0的实数x 的取值范围为( ) A .(0,2)B .(−2,1)C .(−∞,−2)∪(1,+∞)D .(−1,2)【答案】B【解析】由定义运算⊙可知不等式x ⊙(x -2)<0为x(x −2)+2x +x −2<0,解不等式得解集为(-2,1)6.(2019全国高一课时练习)一元二次不等式2kx 2+kx ﹣<0对一切实数x 都成立,则k 的取值范围是( )A.(﹣3,0)B.(﹣3,0]C.[﹣3,0]D.(﹣∞,﹣3)∪[0,+∞) 【答案】A【解析】由一元二次不等式2kx 2+kx ﹣<0对一切实数x 都成立,则,解得﹣3<k <0.综上,满足一元二次不等式2kx 2+kx ﹣<0对一切实数x 都成立的k 的取值范围是(﹣3,0). 故选A . 二、填空题7.(2019全国高三课时练习)不等式220x x +-<的解集为___________. 【答案】()2,1-【解析】不等式220(2)(1)0x x x x +-<⇔+-<的解集为()2,1-.8.(2019广州市培正中学高二课时练习)若关于x 的不等式 −12x 2+2x >mx 的解集是{x|0<x <2},则实数m 的值是_____________. 【答案】1.【解析】∵不等式−12x 2+2x >mx 的解集为{x|0<x <2},∴0,2是方程−12x 2+(2−m )x =0的两个根,∴将2代入方程得m =1,∴m =1,故答案为1.9.(2019天津高一课时练习)如果关于x 的不等式5x 2-a≤0的正整数解是1,2,3,4,那么实数a 的取值范围是____. 【答案】[80,125)【解析】由题意知a >0,由5x 2-a ≤0,得−√a5≤x ≤√a5,不等式的正整数解是1,2,3,4,则4≤√a5<5,∴80≤a <125.即实数a 的取值范围是[80,125).10.(2019·全国高一课时练习)当()1,3x ∈时,不等式240x mx -+>恒成立,则实数m 的取值范围是_____________. 【答案】4m <【解析】240x mx -+>,且()1,3x ∈,所以原不等式等价于24x m x+<,不等式恒成立,则24min x m x ⎛⎫+< ⎪⎝⎭,由2444x x x x +=+≥=,当且仅当()21,3x =∈时,24 4minx x ⎛⎫+= ⎪⎝⎭,所以正确答案为4m <。

高一数学一元二次不等式试题答案及解析

高一数学一元二次不等式试题答案及解析

高一数学一元二次不等式试题答案及解析1.设函数(其中),区间.(Ⅰ)定义区间的长度为,求区间的长度;(Ⅱ)把区间的长度记作数列,令,(1)求数列的前项和;(2)是否存在正整数,(),使得,,成等比数列?若存在,求出所有的,的值;若不存在,请说明理由.【答案】(1);(2);.【解析】(1)掌握一元二次不等式的解法;(2)观测数列的特点形式,看使用什么方法求和.使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源和目的;(3)与数列有关的探索问题:第一步:假设符合条件的结论存在;第二步:从假设出发,利用题中关系求解;第三步,确定符合要求的结论存在或不存在;第四步:给出明确结果;第五步:反思回顾,查看关键点.试题解析:解:(Ⅰ)由,得,解得,即,所以区间的长度为; 3分(Ⅱ)由(Ⅰ)知.(1)∵∴6分(2)由(1)知,,,假设存在正整数、,使得、、成等比数列,则,即, 经化简得.∴∴(*)当时,(*)式可化为,所以.当时,.又∵,∴(*)式可化为,所以此时无正整数解.综上可知,存在满足条件的正整数、,此时,. 10分【考点】(1)一元二次不等式的解法;(2)裂项法求和;(3)证明存在性问题.2.不等式的解集为()A.B.C.D.【答案】A【解析】由,故选A.【考点】解一元二次不等式.3.已知集合若,则实数m的取值范围是()【答案】当时,m的取值范围是【解析】思路分析:因为,,所以,应注意讨论或的情况。

①当时,方程无实根,只需判别式小于0.②当,时,方程的根为非负实根,利用一元二次方程根的分布加以讨论。

解:①当时,方程无实根,所以所以②当,时,方程的根为非负实根,设方程的两根为则即解得综上,当时,m的取值范围是【考点】集合的运算,不等式(组)的解法。

点评:中档题,本题易忽视的情况而出错。

当,时,注意结合二次函数的图象和性质,讨论根的分布情况。

高一数学必修第一册《一元二次函数、方程和不等式》检测卷与答案

高一数学必修第一册《一元二次函数、方程和不等式》检测卷与答案

高一数学必修第一册《一元二次函数、方程和不等式》检测卷考试时间:120分钟;满分:150分一.选择题(共8小题,满分40分,每小题5分)1.(5分)若实数a,b满足>,则下列不等式成立的是()A.>B.+>+C.2>2D.B2>B22.已知条件G>1,条件G−2−2+3≤0,则是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.已知1≤+≤4,−1≤−≤2,则4−2的取值范围是()A.−4<<10B.−3<<6C.−2<<14D.−2≤≤104.若正实数、满足+=2,则1B的最小值为()A.0B.1C.2D.35.(5分)若关于的不等式2+B+>0的解集为(−∞,−1)∪(2,+∞),则不等式2+B−8r>0的解集为()A.(−4,1)∪(2,+∞)B.(−2,1)∪(4,+∞)C.(−∞,−2)∪(1,4)D.(−∞,−4)∪(1,2)6.(5分)甲、乙两名司机的加油习惯有所不同,甲每次加油都说“师傅,给我加300元的油”,而乙则说“师傅帮我把油箱加满”,如果甲、乙各加同一种汽油两次,两人第一次与第二次加油的油价分别相同,但第一次与第二次加油的油价不同,乙每次加满油箱,需加入的油量都相同,就加油两次来说,甲、乙谁更合算()A.甲更合算B.乙更合算C.甲乙同样合算D.无法判断谁更合算7.(5分)若关于的不等式2−+2+2<0的解集中恰有3个整数,则实数的取值范围为()A.−2,−1∪5,6B.−2,−1∪3,6C.−3,−1∪3,6D.−1∪4,68.(5分)已知正数、满足−1−2=2,不等式3+2>恒成立.则实数的取值范围是()A.−∞,4+62B.6+42,+∞C.−∞,7+43D.8+43,+∞二.多选题(共4小题,满分20分,每小题5分)9.(5分)已知−1<<6,3<<8,则下列结果正确的有()A.−13<<2B.2<+<14C.−4<−<−2D.−3<B<4810.(5分)∀∈,关于的不等式2−B+>0恒成立,则实数的值可以是()A.0B.1C.2D.311.(5分)下列结论中,正确的结论有()A.函数=+1的最小值是2B.如果>0,>0,+3+B=9,那么B的最大值为3 C.函数op=的最小值为52D.如果>0,>0,且1r1+11+=1,那么+的最小值为2 12.(5分)已知关于x的不等式B2+B+≤0的解集是U≤−2或≥6()A.<0B.不等式B2−B+<0的解集是U−16<<C.++>0D.不等式B+>0的解集是U<−3三.填空题(共4小题,满分20分,每小题5分)13.(5分)比较大小:2+(请从“<”“>”“=”中选择合适的符号填空)14.(5分)若>0,>0,且+=6,则4+1的最小值为.15.(5分)已知二次方程B2+B+=0(>0)的两根分别为2和4,则不等式B2+B+<0的解集为.16.(5分)设>0,>1,若+=2,且不等式4+1K1>2+8恒成立,则的取值范围是.四.解答题(共6小题,满分70分)17.(10分)解关于的不等式.(1)2+−6<0;(2)−22−≤−6(3)(−p(−2)>0.18.(12分)比较下列各题中两个代数式值的大小. (1)2+12与4+2+1;(2)2−22+2与>>0.19.(12分)证明下列不等式:(1)已知>>>,求证:1K<1K;(2)已知>>0,<<0,<0,求证:K>K.20.(12分)已知>0,>0,+=1,求下列代数式的最小值(1)1r2+1r2;(2)1(+1).21.(12分)甲、乙两地相距1000km,货车从甲地匀速行驶到乙地,速度不得超过100(km/h),若货车每小时的运输成本(以元为单位)由可变成本和固定成本组成,可变成本是速度km h的平方的34倍,固定成本为元.(1)将全程运输成本(元)表示为速度km h的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,货车应以多大的速度行驶?22.(12分)已知函数op=2−B+.(1)若不等式op>0的解集为(−∞,1)∪(3,+∞),求实数s的值;(2)当−1=0时,(i)解关于x的不等式>0;(i)若存在∈[1,2],使得≤0,求实数a的取值范围.高一数学必修第一册《一元二次函数、方程和不等式》检测卷答案一.选择题(共8小题,满分40分,每小题5分)1.(5分)若实数a,b满足>,则下列不等式成立的是()A.>B.+>+C.2>2D.B2>B2【解题思路】利用不等式的性质即可判断.【解答过程】由=1,=−2,=0<,故A错;2<2,故C错;B2=B2,故D错;由不等式的性质易知B正确.故选:B.2.已知条件G>1,条件G−2−2+3≤0,则是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解题思路】解一元二次不等式结合充分不必要条件的定义即可得解.【解答过程】由题意条件G>1,条件G−2−2+3≤0⇔≤−3或≥1,所以是的充分不必要条件.故选:A.3.已知1≤+≤4,−1≤−≤2,则4−2的取值范围是()A.−4<<10B.−3<<6C.−2<<14D.−2≤≤10【解题思路】利用+和−范围求出0≤2≤6,然后利用不等式的性质求解即可【解答过程】由−1≤−≤2,1≤+≤4,得0≤−++≤6,即0≤2≤6,−2≤2−≤4,所以−2≤2−+2≤10,即−2≤4−2≤10,故选:D.4.若正实数、满足+=2,则1B的最小值为()A.0B.1C.2D.3【解题思路】利用基本不等式可求得1B的最小值.【解答过程】因为正实数、满足+=2,则1B≥12=1,当且仅当=+=2时,即当==1时,等号成立,故1B的最小值为1.故选:B.5.(5分)若关于的不等式2+B+>0的解集为(−∞,−1)∪(2,+∞),则不等式2+B−8r>0的解集为()A.(−4,1)∪(2,+∞)B.(−2,1)∪(4,+∞)C.(−∞,−2)∪(1,4)D.(−∞,−4)∪(1,2)【解题思路】根据关于x的不等式B+<0的解集是U−1<<2,利用韦达定理可得=−1,=−2>0,进而求解.【解答过程】因为关于的不等式2+B+>0的解集为(−∞,−1)∪(2,+∞),所以2+B+=02,由韦达定理可得:=−1,=−2,所以2+B−8r>0>0,解得−2<<1或>4.所以原不等式的解集为(−2,1)∪(4,+∞),故选:B.6.(5分)甲、乙两名司机的加油习惯有所不同,甲每次加油都说“师傅,给我加300元的油”,而乙则说“师傅帮我把油箱加满”,如果甲、乙各加同一种汽油两次,两人第一次与第二次加油的油价分别相同,但第一次与第二次加油的油价不同,乙每次加满油箱,需加入的油量都相同,就加油两次来说,甲、乙谁更合算()A.甲更合算B.乙更合算C.甲乙同样合算D.无法判断谁更合算【解题思路】根据题意列出甲乙两次加油的平均单价,进而根据不等式即可求解.【解答过程】设两次的单价分别是s≠元/升,甲加两次油的平均单价为600300+300=21+1,单位:元/升,乙每次加油升,加两次油的平均单价为B+B2=r2,单位:元/升,因为>0,>0,≠,+=2++>2+=4,即21+1<r 2,即甲的平均单价低,甲更合算.故选:A.7.(5分)若关于的不等式2−+2+2<0的解集中恰有3个整数,则实数的取值范围为()A .−2,−1∪5,6B .−2,−1∪3,6C .−3,−1∪3,6D .−1∪4,6【解题思路】含参解一元二次不等式,分类讨论的范围确定整数解即可.【解答过程】由2−+2+2<0,得−−2<0,当=2时,不等式的解集为∅,不符合题意,舍去;当<2时,不等式的解集为<<2,此时若有3个整数解,此时,解集中的三个整数分别为1、0、−1,则需−2≤<−1;当>2时,不等式的解集为2<<,此时若有3个整数解,此时,解集中的三个整数分别为3、4、5,则需5<≤6综上:所以−2≤<−1或5<≤6,故选:A .8.(5分)已知正数、满足−1−2=2,不等式3+2>恒成立.则实数的取值范围是()A .−∞,4+62B .6+42,+∞C .−∞,7+43D .8+43,+∞【解题思路】由不等式3+2>恒成立,故只需3+2min>,由基本不等式的乘“1”法,结合已知求出3+2的最小值即可.【解答过程】因为−1−2=2,>0,>0,所以B =2+,即1+2=1,所以由基本不等式可得3+2=3+27+2+6≥7+=7+43,等号成立当且仅当2=6>0,>0−1−2=2即=1+233=2+3综上所述,3+2的最小值为7+43;因为不等式3+2>恒成立,所以实数的取值范围是−∞,7+43.故选:C.二.多选题(共4小题,满分20分,每小题5分)9.(5分)已知−1<<6,3<<8,则下列结果正确的有()A.−13<<2B.2<+<14C.−4<−<−2D.−3<B<48【解题思路】根据题意,利用不等式的基本性质,逐项判定,即可求解.【解答过程】对于A中,由3<<8,可得18<1<13,由不等式的性质,可得−13<<2,所以A正确;对于B中,由−1<<6,3<<8,根据不等式的性质,可得2<+<14,所以B正确;对于C中,由3<<8,可得−8<−<−3,所以−9<−<3,所以C错误;对于D中,由−1<<6,3<<8,可得−8<B<48,所以D错误.故选:AB.10.(5分)∀∈,关于的不等式2−B+>0恒成立,则实数的值可以是()A.0B.1C.2D.3【解题思路】结合一元二次不等式恒成立有Δ<0,即可求范围.【解答过程】∀∈,关于的不等式2−B+>0恒成立,所以Δ=2−4<0,解得0<<4,对照选项知实数的值可以是1,2,3.故选:BCD.11.(5分)下列结论中,正确的结论有()A.函数=+1的最小值是2B.如果>0,>0,+3+B=9,那么B的最大值为3C.函数op=的最小值为52D.如果>0,>0,且1r1+11+=1,那么+的最小值为2【解题思路】利用基本不等式对选项逐个判断即可得.【解答过程】对A:当J−1时,=−1−1=−2,所以最小值不是2,故A错误;对B:由已知可得9−B=+3≥23B,解得0<B≤3,所以0<B≤3,当且仅当=3时成立,此时B的最大值为3,故B正确;=2+4+,设2+4=,≥2,对C:函数op==+1在2,+∞上单调递增,所以=2时,取最大值52,故C正确;对D :+=+1++1−2=[(+1)+(+1)](1r1+1r1)−2=1+1−2+r1r1+r1r1≥=2,当且仅当=时取得最小值为2,故D 正确.故选:BCD .12.(5分)已知关于x 的不等式B 2+B +≤0的解集是U ≤−2或≥6()A .<0B .不等式B 2−B +<0的解集是U −16<<C .++>0D .不等式B +>0的解集是U <−3【解题思路】根据一元二次不等式的解集性质进行逐一判断即可.【解答过程】因为关于x 的不等式B 2+B +≤0的解集是U ≤−2或≥6,所以有<0−2+6=−−2×6=⇒<0=−4=−12,因此选项A 正确;B 2−B +<0⇒−12B 2+4B +<0⇒122−4−1<0⇒−16<<12,因此选项B 正确;++=−4−12=−15>0,因此选项C 正确;B +>0⇒−4B−12>0⇒+3>0⇒>−3,因此选项D 不正确,故选:ABC.三.填空题(共4小题,满分20分,每小题5分)13.(5分)比较大小:2+(请从“<”“>”“=”中选择合适的符号填空)【解题思路】将两数都平方,然后作差法比较大小即可.【解答过程】由(2+6)2=8+43,则(2+6)2−42=4(3−2)<0,所以(2+6)2<42⇒2+6<4.故答案为:<.14.(5分)若>0,>0,且+=6,则4+1的最小值为32.【解题思路】根据基本不等式的乘“1”法即可求解.【解答过程】由于>0,>0,所以4+1=+=+4+≥+=32,当且仅当4=,即=4,=2时等号成立,故答案为:.15.(5分)已知二次方程B2+B+=0(>0)的两根分别为2和4,则不等式B2+B+<0的解【解题思路】根据二次方程的两根可得、与的关系,可化简B2+B+<0为2−6+8<0,再解不等式可得答案.【解答过程】二次方程B2+B+=0(>0)的两根分别为2和4,可得2+4=−2×4=,即=−6=8,由B2+B+<0>0可得2−6+8<0,解得2<<4,所以不等式2−6+8<0的解集为U2<<4.故答案为:U2<<4.16.(5分)设>0,>1,若+=2,且不等式4+1K1>2+8的取值范围是−9,1【解题思路】首先根据已知条件得到+−1=1⋅+−1即可求得最小值,再解关于的一元二次不等式即可求得的取值范围.【解答过程】因为>0,>1,+=2,所以+−1=1,则4+1⋅+−1=5++K1≥5+=9,=K1时,即=23,=43时取等号,所以9>2+8,解得−9<<1.故答案为:−9,1.四.解答题(共6小题,满分70分)17.(10分)解关于的不等式.(1)2+−6<0;(2)−22−≤−6(3)(−p(−2)>0.【解题思路】由公式解不含参数的一元二次不等式,分类讨论解含参数的一元二次不等式.【解答过程】(1)不等式2+−6<0,即+3−2<0,解得−3<<2,所以不等式的解集为U−3<<2;(2)不等式−2,所以不等式的解集为{U≤−2或≥32};(3)不等式−−2>0,当>2时,解集为<2或>,当<2时,解集为<或>2,当=2时,解集为{U≠2}.18.(12分)比较下列各题中两个代数式值的大小.(1)2+12与4+2+1;(2)2−22+2与>>0.【解题思路】(1)(2)利用作差法,化简后和0比较,即可判断大小关系.【解答过程】(1)2+12−4+2+1=4+22+1−4+2+1=2≥0,∴2+12≥4+(2)2−22+2−K r==∵>>0,∴>0,+>0,2+2>0,>0,∴2−22+2>K r.19.(12分)证明下列不等式:(1)已知>>>,求证:1K<1K;(2)已知>>0,<<0,<0,求证:K>K.【解题思路】(1)依题意可得−>−>0,再根据不等式的性质证明;(2)利用作差法证明即可.【解答过程】(1)∵>>>,即>s−>−,∴−>−>0,则1K<1K.(2)∵>>0,<<0,<0,∴−>−>0,∴−>则−===>0,∴−>−.20.(12分)已知>0,>0,+=1,求下列代数式的最小值(1)1r2+1r2;(2)1(+1).【解题思路】(1)运用配凑和常值代换法将其转化,利用基本不等式即可求得;(2)展开变形成2+1B,再将1换成+2展开,即可利用基本不等式求解..【解答过程】(1)因>0,>0,+=1,则(+2)+(+2)=5,于是得1r2+1r2=15[(+2)+(+2)](1r2+1r2)=15(2+r2r2+r2r2)≥15(2+=45,当且仅当r2r2=r2r2,即==12时取“=”,所以,当==12时,1r2+1r2的最小值是45;(2)因>0,>0,+=1,则1(+1)=2+1B=2+(rp2B=2+2B+22B=+2+2≥2=22+2,当且仅当=2,即=2−2,=2−1时取“=”,所以当=2−2,=2−1时,1(+1)的最小值是22+2.21.(12分)甲、乙两地相距1000km,货车从甲地匀速行驶到乙地,速度不得超过100(km/h),若货车每小时的运输成本(以元为单位)由可变成本和固定成本组成,可变成本是速度km h的平方的34倍,固定成本为元.(1)将全程运输成本(元)表示为速度km h的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,货车应以多大的速度行驶?【解题思路】(12元,固定成本为a元,求和后乘以时间即可;(2)由(1)的结论,利用基本不等式求最小值作答.【解答过程】(12元,固定成本为a元,所用时间为1000,则=10002+=1000(0, 100].(2)由(1)得=1000≥1000×=10003,当且仅当34=,即=易知函数=34+在+∞上单调递增.又0<≤100,所以当0<≤7500时,货车以=的速度行驶,全程运输成本最小;当>7500时,货车以100km/h的速度行驶,全程运输成本最小.22.(12分)已知函数op=2−B+.(1)若不等式op>0的解集为(−∞,1)∪(3,+∞),求实数s的值;(2)当−1=0时,(i)解关于x的不等式>0;(i)若存在∈[1,2],使得≤0,求实数a的取值范围.【解题思路】(1)根据题意,转化为得到1和3是方程2−B+=0的两个实数根据,列出方程组,即可求解;(2)(i)由−1=0,求得=−(+1),把不等式>0,转化为(+1)[−(+1)]>0,分类讨论,即可求得不等式的解集;(i i)由(i)中不等式的解集,结合存在∈[1,2],使得≤0,分类讨论,即可求解.【解答过程】(1)解:由函数op=2−B+,因为不等式op>0的解集为(−∞,1)∪(3,+∞),可得1和3是方程2−B+=0的两个实数根据,则1+3=1×3=,解得=4,=3.(2)解:(i)由函数op=2−B+,因为−1=0,可得o−1)=1++=0,即=−(+1),所以op=2−B−(+1),由不等式>0,即2−B−(+1)=(+1)[−(+1)]>0,当+1>−1时,即>−2时,解得<−1或>+1;当+1=−1时,即=−2时,即为(+1)2>0解得≠−1;当+1<−1时,即<−2时,解得<+1或>1,综上可得,当>−2时,不等式解集为(−∞,−1)∪(+1,+∞);当=−2时,不等式的解集为(−∞,−1)∪(−1,+∞);当<−2时,不等式的解集为(−∞,+1)∪(−1,+∞).(i i)由(i)知,当>−2时,不等式>0解集为(−∞,−1)∪(+1,+∞),若存在∈[1,2],使得≤0,则满足+1≥1,解得≥0;当=−2时,不等式>0的解集为(−∞,−1)∪(−1,+∞),此时不存在∈[1,2],使得≤0;当<−2时,不等式>0的解集为(−∞,+1)∪(−1,+∞),此时不存在∈[1,2],使得≤0,综上可得,实数的取值范围为[0,+∞).。

人教版高一数学必修一第二单元《一元二次函数、方程和不等式》单元练习题(含答案)

人教版高一数学必修一第二单元《一元二次函数、方程和不等式》单元练习题(含答案)

人教版高一数学必修一第二单元《一元二次函数、方程和不等式》单元练习题(含答案)1.已知不等式210ax bx --≥的解集是1123x x ⎧⎫-≤≤-⎨⎬⎩⎭,则不等式20x bx a --<的解集是( ) A .{}23x x << B .{2x x <或}3x > C .1132xx ⎧⎫<<⎨⎬⎩⎭D .13x x ⎧<⎨⎩或12x ⎫>⎬⎭2.已知0a >,0b >,且3为3a 与3b 的等比中项,则49aba b+的最大值为( )A .124B .125C .126 D .1273.函数2()(0)f x x x x=+>的最小值是( ). A .2B .2C .22D .34.若正数x ,y 满足x 2+3xy ﹣1=0,则x+y 的最小值是( ) A .23B .223C .33D .2335.如果不等式2()0f x ax x c =-->的解集为{|21}x x -<<,那么函数()y f x =的大致图像是( )A .B .C .D .6.若0a b <<,则下列不等式恒成立的是 A .11a b> B .a b -> C .22a b > D .33a b <7.不等式()()0x b x c a x++≤-的解集为[)[)1,23,-+∞,则b c +=( )A .5-B .2-C .1D .38.如图在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客.我们教材中利用该图作为一个说法的一个几何解释,这个说法正确的是( )A .如果0a b >>,a b >B .如果0a b >>,那么22a b >C .对任意正实数a 和b ,有222a b ab +≥, 当且仅当a b =时等号成立D .对任意正实数a 和b ,有2a b ab +≥,当且仅当a b =时等号成立9.设()121p a a -=++,21q a a =-+,则( ).A .p q >B .p q <C .p q ≥D .p q ≤10.已知实数0a >,0b >,2a b +=,则12aa b+的最小值为( ) A .32B .322C .2D .5211.设0a >,0b >55a 与5b 的等比中项,则11a b+的最小值为( ) A .8 B .4 C .1D .1412.已知命题p :R x ∃∈,使2254x x ++≤;命题q :当0,2x π⎛⎫∈ ⎪⎝⎭时,()4sin sin f x x x=+的最小值为4.下列命题是真命题的是( ) A .p q ∧ B .()()p q ⌝∧⌝C .()p q ⌝∧D .()p q ∧⌝第II 卷(非选择题)二、填空题13.若0x >时,函数21ax y x+=的最小值为5,则正实数a =____________.14.如图,等腰梯形ABCD 中,//AB CD 且2AB =,1AD =,2DC x =((0,1)x ∈).以,A B 为焦点,且过点D 的双曲线的离心率为1e ;以,C D 为焦点,且过点A 的椭圆的离心率为2e ,则12e e +的取值范围为_________15.若1x >,则函数()21f x x x =+-的最小值为___________. 16.设a 、b 是实数,且3a b +=,则22a b +的最小值是__________.三、解答题17.已知:(1)(2)0,:p x x q +-≥关于x 的不等式2260x mx m +-+>恒成立 (1)当x ∈R 时q 成立,求实数m 的取值范围;(2)若p 是q 的充分不必要条件,求实数m 的取值范围.18.已知,,2παβπ⎛⎫∈⎪⎝⎭,求,,ααβαββ+-的取值范围.19.设数列{a n }满足a 1=t ,a 2=t 2,且t ≠0,前n 项和为S n ,且S n +2﹣(t +1)S n +1+tS n =0(n ∈N *). (1)证明数列{a n }为等比数列,并求{a n }的通项公式; (2)当t <2时,比较2n +2﹣n 与t n +t ﹣n 的大小;(3)若t <2,b n ,求证:2n.20.已知0,0a b >>,2224a b c ++=.(1)当1c =时,求证:()()339a b a b ++≥;(2)求2224411a b c +++的最小值.21.当[]13x ∈,时,一元二次不等式2280x x a -+-≤恒成立,求实数a 的取值范围.22.已知关于x 的不等式2520,ax x a R -+<∈. (1)当2a =时,解此不等式;(2)若此不等式的解集为{|2x x <-或1}3x >,求实数a 的值.23.你能从“盐水加盐变得更咸了”这一生活常识中提炼出一个不等式吗?若能,请写出这个不等式并证明;若不能,此题你将没有分.24.已知集合{}211600A x x x =--≤,{}133B x m x m =-≤≤+,若()AB A ⊆,求实数m 的取值范围.25.命题p :x ∀∈R ,2230x m +->成立;命题q :x ∃∈R ,2220x mx m -++<成立. (1)若命题p 为真命题,求实数m 的取值范围; (2)若命题q 为真命题,求实数m 的取值范围;(3)若命题p 、q 至少有一个为真命题,求实数m 的取值范围.参考答案1.A2.B3.C4.B5.D6.D7.B8.C9.D10.D11.B12.D 13.25414.)+∞15.1+16.17.(1) ()3,2m ∈- (2)10733m <<- 18.12,,2222aπππαβπαββ<+<-<-<<< 19.(1)证明见解析,a n =t n (2)t n +t ﹣n <2n +2﹣n (3)见解析 20.(1)详见解析;(2)9. 21.5a ≤ 22.(1)1|22x x ⎧⎫<<⎨⎬⎩⎭;(2)3-. 23.x x a y y a+<+,0x y <<,0a >,证明见解析. 24.4m ≤25.(1)32m m ⎧⎫>⎨⎬⎩⎭;(2){1m m <-或}2m >;(3){1m m <-或32m ⎫>⎬⎭。

高中数学必修第一册 《一元二次函数、方程和不等式》期末复习专项训练(学生版+解析版)

高中数学必修第一册 《一元二次函数、方程和不等式》期末复习专项训练(学生版+解析版)

高中数学必修第一册《一元二次函数、方程和不等式》期末复习专项训练一、单选题l. (2022·四川绵阳·高一期末〉下列结论正确的是(〉A.若的b,则。

c>bc c.若。

>b,则。

+c>b+cl I B.若α>b,则-〉-a D D.着。

>b,则。

2> b22.(2022·辽宁·新民市第一高级中学高一期末〉已知α<b<O,则(〉A.a2 <abB.ab<b2C.a1 <b1D.a2 >b i3.(2022·陕西汉中·高一期末〉若关于工的不等式,咐2+2x+m>O的解集是R,则m的取值范围是(〉A.(I, +oo)B.(0, I〕C.( -J, I)D.(J, +oo)4.(2022·广东珠海高一期末〉不等式。

+l)(x+3)<0的解集是(〉A.RB.②c.{对-3<x<-I} D.{xi x<-3,或x>-l}5. (2022·四川甘孜·高一期末〉若不等式似2+bx-2<0的解集为{xl-2<x<I},则。

÷b=( )A.-2B.OC.ID.26. (2022·湖北黄石·商一期末〉若关于X的不等式x2-ax’+7>。

在(2,7)上有实数解,则α的取值范围是(〉A.(唱,8)B.(叫8] c.(叫2./7) D.(斗)7.(2022·新疆乌市一中高一期末〉已知y=(x-m)(x-n)+2022(n> m),且α,β(α〈别是方程y=O的两实数根,则α,β,111,n的大小关系是(〉A.α<m<n<βC.m<α〈β<nB.m<α<n<βD.α<m<β<n8.(2022·浙江·杭州四中高一期末〉已失11函数y=κ-4+...2....(x>-1),当x=a时,y取得最小值b,则。

(完整版)一元二次不等式练习题(完)

(完整版)一元二次不等式练习题(完)

一、一元二次不等式及其解法1.形如)0)(0(02≠<>++a c bx ax 其中或的不等式称为关于x 的一元二次不等式.2.一元二次不等式20(0)ax bx c a ++>>与相应的函数2(0)y ax bx c a =++>、相应的方程20(0)ax bx c a ++=>判别式ac b 42-=∆ 0>∆ 0=∆0<∆ 二次函数c bx ax y ++=2 (0>a )的图象()002>=++a c bx ax的解集)0(02>>++a c bx ax的解集)0(02><++a c bx ax1、把二次项的系数变为正的。

(如果是负,那么在不等式两边都乘以—1,把系数变为正)2、解对应的一元二次方程.(先看能否因式分解,若不能,再看△,然后求根)3、求解一元二次不等式.(根据一元二次方程的根及不等式的方向)不等式的解法---穿根法一.方法:先因式分解,再使用穿根法.注意:因式分解后,整理成每个因式中未知数的系数为正. 使用方法:①在数轴上标出化简后各因式的根,使等号成立的根,标为实点,等号不成立的根要标虚点. ②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿透(叫奇穿偶不穿). ③数轴上方曲线对应区域使“〉”成立, 下方曲线对应区域使“〈”成立. 例1:解不等式(1)(x+4)(x+5)2(2-x)3〈0(2) x 2—4x+13x 2-7x+2≤1解:(1)原不等式等价于(x+4)(x+5)2(x —2)3>0根据穿根法如图不等式解集为{x ∣x 〉2或x 〈—4且x ≠5}。

(2)变形为错误!≥0根据穿根法如图不等式解集为{x|x 〈错误!或错误!≤x ≤1或x>2}。

巩固练习一、解下列一元二次不等式:1、0652>++x x2、0652≤--x x3、01272<++x x4、0672≥+-x x5、0122<--x x6、0122>-+x x7、01282≥+-x x 8、01242<--x x 9、012532>-+x x13、0121122≥++x x 14、10732>-x x 15、05622<-+-x x16、02033102≤+-x x 17、0542<+-x x 18、0442>-+-x x19、2230x x --+≥ 20、0262≤+--x x 21、0532>+-x x22、02732<+-x x 23、0162≤-+x x 24、03442>-+x x25、061122<++x x 26、041132>+--x x 27、042≤-x28、031452≤-+x x 29、0127122>-+x x 30、0211122≥--x x31、03282>--x x 32、031082≥-+x x 33、041542<--x x34、02122>--x x 35、021842>-+x x 36、05842<--x x37、0121752≤-+x x 38、0611102>--x x 39、038162>--x x43、0242942≤--x x 44、0182142>--x x 45、08692>-+x x46、0316122>-+x x 47、0942<-x 48、0320122>+-x x49、0142562≤++x x 50、0941202≤+-x x 51、(2)(3)6x x +-<二填空题1、不等式(1)(12)0x x -->的解集是 ;2.不等式2654x x +<的解集为____________。

高一数学 必修一 第二章《一元二次函数、方程和不等式》训练题 (1)-200708(解析版)

高一数学 必修一 第二章《一元二次函数、方程和不等式》训练题 (1)-200708(解析版)

高一数学 必修一 第二章《一元二次函数、方程和不等式》训练题 (1)一、选择题(本大题共6小题,共30.0分)1. 已知正实数a,b ,且a +b =1,则2a +4b 的最小值为( )A. 6+4√2B. 4−2√2C. 6+2√3D. 52. 已知a >b,c >d ,那么一定正确的是( )A. ad >bcB. ac >bdC. a −c >b −dD. a −d >b −c3. 已知向量a ⃗ ,b ⃗ 的夹角为π4,|a ⃗ |=√2,|b ⃗ |=2,c ⃗ 与a ⃗ −b ⃗ 共线,则|b ⃗ −c ⃗ |的最小值为( ) A. 2 B. 1 C. √3D. √24. 已知函数f(x)={|x 2+2x|,x ≤01x,x >0,若方程f(x)=a(x +3)有四个不同的实数根,则实数a 的取值范围是A. (−∞,4−2√3)B. (4+2√3,+∞)C. [0,4−2√3]D. (0,4−2√3)5. 已知下列四个条件: ①b >0>a; ②0>a >b; ③a >0>b; ④a >b >0,能推出1a <1b 成立的有( ) A. 1个 B. 2个 C. 3个 D. 4个6. 已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =2√3,sin C =2sin B ,则△ABC 面积的最大值为 A. 2 B. 3 C. 2√2 D. 4 二、填空题(本大题共3小题,共15.0分)7. 函数y =2sin 2x +2cosx −3的最大值是_______________8. 设点M(x 0,2−x 0),设在圆O :x 2+y 2=1上存在点N ,使得∠OMN =30∘,则实数x 0的取值范围为______. 9. 关于x 的不等式的解集是(1,+∞),则关于x 的不等式的解集是_______. 三、解答题(本大题共11小题,共132.0分) 10. 已知椭圆Ω:x 2a 2+y 2b2=1(a >b >0)的离心率为√22且过点(√2,√3). (1)求Ω的方程;(2)设Ω的右焦点为F ,斜率不为零的直线l 过点F 且与椭圆Ω交于点A ,B ,延长AO(O 为坐标原点)与Ω交于点C ,求△ABC 面积的最大值.11. 已知函数f(x)=x 2+2|x −a |(a >0),记f(x)在区间[−1,2]的最小值为M(a).(Ⅰ)求M(a)的表达式;(Ⅱ)当a∈[12,1]时,存在x∈[14,2],使得不等式(1−b)x+M(a)x≥2成立,求实数b的取值范围(结果用a表示).12.对于函数f(x),若在定义域内存在实数x,满足,则称为“局部奇函数”(1)已知二次函数,试判断f(x)是否为“局部奇函数”,并说明理由;(2)若f(x)=2x+m是定义在区间上的“局部奇函数”,求实数m的取值范围;(3)若为定义域为R上的“局部奇函数”,求实数m的取值范围.13.已知函数f(x)=|2x−3|+|2x+m|.(1)当m=1时,求不等式f(x)≤2x+2的解集;(2)若不等式f(x)≥1m+3对∀x∈R恒成立,求m的取值范围.14.已知函数f(x)=ax2−(a2+1)x+a.(1)当a>0时,解关于x的不等式f(x)<0;(2)若当a>0时,f(x)<0在x∈[1,2]上恒成立,求实数a的取值范围.ax2−1,且f’(1)=−1.15.已知函数f(x)=xlnx+12(1)求f(x)的解析式;(2)若对任意的x∈(0,+∞),都有f(x)−2mx+1≤0,求m的取值范围;(3)证明函数y=f(x)+2x的图象在g(x)=xe x−x2−1图象的下方.16.首届世界低碳经济大会近日召开,本届大会的主题为“节能减排,绿色生态”.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为200吨,最多为500吨,月处理成本y(元)与月处理量x(吨)之间x2−200x+80000,且每处理一吨二氧化碳得到可利用的化的函数关系可近似地表示为y=12工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使该单位不亏损?17.已知集合A={x|x2−6x<−5},B={x|1<2x−2⩽16},集合C为函数f(x)=lg(2a−x)(x−a−1)的定义域,全集为实数集R.(1)求A∪B,∁R A;(2)若A ∩C =C ,求实数a 的取值范围.18. 根据国际海洋安全规定:两国军舰正常状况下(联合军演除外),在公海上的安全距离为20 mile(即距离不得小于20 mile),否则违反了国际海洋安全规定.如图,在某公海区域有两条相交成60∘的直航线XX /,YY /,交点是O ,现有两国的军舰甲,乙分别在OX,OY 上的A,B 处,起初OA =30mile,OB =10mile ,后来军舰甲沿XX /的方向,乙军舰沿Y /Y 的方向,同时以40mile/ℎ的速度航行.(1)起初两军舰的距离为多少?(2)试判断这两艘军舰是否会违反国际海洋安全规定?并说明理由.19. 已知椭圆E 中心在原点O ,焦点在x 轴上,其离心率e =√23,过点C (−1,0)的直线l 与椭圆E 相交于A ,B 两点,且满足AC ⃗⃗⃗⃗⃗ =2CB⃗⃗⃗⃗⃗ (1)用直线l 的斜率k (k ≠0)表示ΔABO 的面积; (2)当ΔABO 的面积最大时,求椭圆E 的方程.20.在△ABC中,内角A,B,C所对的边分别为a,b,c,且满足(2a−c)cosB=bcosC.(1)求内角B的大小;(2)设m⃗⃗⃗ =(sinA,cos2A),n⃗=(4k,1)(k>1),m⃗⃗⃗ ⋅n⃗的最大值为5,求k的值.-------- 答案与解析 --------1.答案:A解析:【分析】本题考查均值不等式的应用,属于基础题.应用均值不等式,要注意“一正,二定,三相等”,缺一不可.【解答】解:因为正实数a,b,且a+b=1,所以2a +4b=(a+b)(2a+4b)=2+4+2ba+4ab⩾6+4√2,当且仅当a=√2−1,b=√2a=2−√2,故选A.2.答案:D解析:【分析】本题考查不等式的性质,属于简单题.利用不等式的性质求解即可.【解答】解:因为a>b,c>d,故−d>−c,所以a−d>b−c.故选D.3.答案:D解析:【分析】本题考查向量的模的公式与一元二次函数求最值,考查了推理与计算能力,属于基础题.由题意知,|a⃗|=√2,|b⃗ |=2,设c⃗=k(a⃗−b⃗ ),k∈R,利用向量模的公式,可推出|b⃗ −c⃗|2=2k2+ 4k+4,进而利用二次函数的性质求解即可.【解答】解:由题意知,|a⃗|=√2,|b⃗ |=2,设c⃗=k(a⃗−b⃗ ),k∈R,则|b⃗ −c⃗|2=|(k+1)b⃗ −k a⃗|2=(k+1)2|b⃗ |2+k2|a⃗|2−2k(k+1)a⃗⋅b⃗=2k2+4k+4=2(k+1)2+2≥2,所以|b⃗ −c⃗|≥√2,即|b⃗ −c⃗ |的最小值为√2,故选D.4.答案:D解析:【分析】本题主要考查函数的零点与方程根的关系,属于中档题.根据题意转化为方程f(x)=a(x+3)有四个不同的实数根,从而转化为直线y=a(x+3)与曲线y=−x2−2x,x∈[−2,0],有两个不同的公共点,从而解答即可.【解答】解:设y =a(x +3),该直线恒过点(−3,0),可知若方程f(x)=a(x +3)有四个不同的实数根,则a >0且直线y =a(x +3)与曲线y =−x 2−2x ,x ∈[−2,0],有两个不同的公共点, 所以x 2+(2+a)x +3a =0在[−2,0]内有两个不等实根,令g(x)=x 2+(2+a)x +3a ,实数a 满足{△=(2+a)2−12a >0,−2⩽−2+a 2⩽0,g(0)=3a ⩾0,g(−2)=a ⩾0.解得0≤a <4−2√3,又a >0,所以实数a 的取值范围是(0,4−2√3), 故选D . 5.答案:C解析:【分析】本题考查不等式的性质,属于基础题,运用不等式的性质逐项判断即可. 【解答】解:①中,因为b >0>a ,所以1b >0>1a ,因此①能推出1a <1b 成立; ②中,因为0>a >b ,所以ab >0,所以aab >bab ,所以1b >1a ,因此②正确; ③中,因为a >0>b ,所以1a >0>1b ,所以③不正确; ④中,因为a >b >0,所以aab >bab ,所以1b >1a ,所以④正确. 故选C .6.答案:D解析:【分析】本题考查了正余弦定理、三角形面积公式和函数的最值,属于中档题.由正弦定理得c =2b ,由余弦定理和三角形面积公式可得S ΔABC =14√−9b 4+120b 2−144,再结合b 的范围,由函数的性质可得面积最大值. 【解答】解:由sinC =2sinB ,得c =2b , 则S ΔABC =12bcsinA =12b ⋅2b √1−(b2+4b 2−122b⋅2b)2=14√−9b 4+120b 2−144, 根据三角形边的关系得2√33<b <2√3,上式根号内,当b 2=203时取得最大值,即最大值为−400+800−144=256,所以△ABC 面积的最大值是14×√256=4, 故选D .7.答案:−12解析:【分析】本题考查了同角三角函数的基本关系,属于基础题.根据同角三角函数的基本关系化简,再根据二次函数的性质进行求解即可. 【解答】解:y =2sin 2x +2cosx −3=−2cos 2x +2cos x −1 =−2(cosx −12)2−12.当cosx =12时,y max =−12.所以函数y =2sin 2x +2cosx −3的最大值是−12, 故答案为:−12.8.答案:[0,2]解析:【分析】本题主要考查了直线与圆相切时切线的性质,以及一元二次不等式的解法,综合考查了学生的转化能力,体现了数形结合的数学思想,属于中档题.过M 作⊙O 切线交⊙C 于R ,则∠OMR ≥∠OMN ,由题意可得∠OMR ≥30°,|OM|≤2,再根据M(x 0,2−x 0),求得x 0的取值范围. 【解答】解:过M 作⊙O 切线交⊙C 于R ,根据圆的切线性质,有∠OMR ≥∠OMN , 反过来,如果∠OMR ≥30°,则⊙O 上存在一点N 使得∠OMN =30°, ∴若圆O 上存在点N ,使∠OMN =30°,则∠OMR ≥30°, ∵|OR|=1,OR ⊥MR , ∴|OM|≤2,又∵M(x 0,2−x 0),∴|OM|2=x 02+y 02=x 02+(2−x 0)2=2x 02−4x 0+4,∴2x 02−4x 0+4≤4,解得,0≤x 0≤2, ∴x 0的取值范围是[0,2], 故答案为[0,2]. 9.答案:(−1,3)解析:【分析】本题考查一元二次不等式与一元一次不等式的解法,属于基础题.根据题意先判断出a 的正负以及a ,b 间的关系,再进行一元二次不等式的求解即可. 【解答】解:由于不等式ax −b <0的解集是(1,+∞), 所以a <0且ba =1,故a =b <0.所以所求不等式可化为(−x −1)(x −3)>0, 即(x +1)(x −3)<0, 解得−1<x <3. 故答案为(−1,3).10.答案:解:(1)由ca =√22,得a 2−b 2a 2=12,所以2b 2=a 2, 所以x 22b 2+y 2b 2=1,代入(√2,√3),得1b 2+3b 2=1, 解得b 2=4,所以a 2=8, 所以椭圆Ω的方程为x 28+y 24=1.(2) 由(1)知,F(2,0),因为直线l 的斜率不为零,设直线方程为x =ty +2, 代入椭圆方程,得(t 2+2)y 2+4ty −4=0.设A(x 1,y 1),B(x 2,y 2),则y 1+y 2=−4tt 2+2,y 1y 2=−4t 2+2.根据椭圆的对称性,O 为AC 的中点,所以S ΔABC =2S ΔOAB =|OF|⋅|y 1−y 2|=2|y 1−y 2| =2√(y 1+y 2)2−4y 1y 2=2√(−4t t 2+2)+16t 2+2=8√2√t 2+1t 2+2⩽8√2×1+t 2+12t 2+2=4√2等号当且仅当1=t 2+1,即t =0时取得.所以△ABC 面积的最大值4√2.解析:本题考查椭圆方程,椭圆与直线的位置关系,圆锥曲线中的面积问题,属于较难题. (1)由离心率可知2b 2=a 2,∴椭圆方程为x 22b 2+y 2b 2=1,代入点(√2,√3)即可求b 2,从而可求椭圆C的方程;(2)由(1)可知,F(2,0),故直线方程为x =ty +2,,联立椭圆方程,利用韦达定理及求出▵ABC 面积,然后利用基本不等式求最值.11.答案:(Ⅰ)①若0<a <2,f(x)={x 2−2x +2a,x ∈[−1,a],x 2+2x −2a,x ∈(a,2]. 当0<a ≤1时,f(x)在[−1,a]上单调递减,在(a,2]上单调递增, 故函数f(x)最小值为M(a)=f(a)=a 2.当1<a <2时,f(x)=x 2−2x +2a =(x −1)2+2a −1, f(x)在[−1,1]上单调递减,在(1,2]上单调递增, 故函数f(x)最小值为M(a)=f(1)=2a −1.②若a ≥2,f(x)=x 2−2x +2a =(x −1)2+2a −1, f(x)在[−1,1]上单调递减,在(1,2]上单调递增, 故函数f(x)最小值为M(a)=f(1)=2a −1. 综上M(a)={a 2,0<a ≤1,2a −1,a >1.(Ⅱ)当12≤a ≤1时,由(Ⅰ)知M(a)=a 2,代入化简, 原问题等价于b ≤a 2x 2−2x +1在x ∈[14,2]有解. 令t =1x ,则由t ∈[12,4],故b ≤a 2t 2−2t +1, 记ℎ(t)=a 2t 2−2t +1,t ∈[12,4],于是, 原问题等价于b ≤ℎ(t)max ,t ∈[12,4].而ℎ(t)=a 2t 2−2t +1=a 2(t −1a 2)2+1−1a 2的图象开口向上,对称轴t =1a 2∈[1,4],又因为t ∈[12,4],故当1≤1a 2≤94,即23≤a ≤1时,ℎ(t)max =ℎ(4)=16a 2−7; 当94<1a 2≤4,即12≤a <23时,ℎ(t)max =ℎ(12)=a 24.综上,当23≤a ≤1时,b ≤16a 2−7,当 12≤a <23时,b ≤a 24.解析:本题利用函数的单调性解决与最值、不等式的相关问题,考查分析、计算能力以及分类讨论的思想,属于难题.(Ⅰ)若0<a <2,运用分段的形式写出f(x),讨论当0<a ≤1、1<a <2以及a ≥2时的情况,根据f(x)的单调性,可得最小值M(a);(Ⅱ)当12≤a ≤1时,将M(a)=a 2代入化简,令t =1x ,得b ≤a 2t 2−2t +1,记ℎ(t)=a 2t 2−2t +1,t ∈[12,4],原问题等价于b ≤ℎ(t)max ,结合二次函数的图像,求得右边函数的最大值,结合函数的定义域,即可得到b 的取值范围.12.答案:解:(1)由题意得:f(−x)+f(x)=2ax 2−8a =2a(x −2)(x +2) 当x =2或x =−2时,f(−x)+f(x)=0成立,∴f(x)是“局部奇函数,(2)由题意得:f(−x)+f(x)=2x +2−x +2m =0, ∵x ∈[−1,1],∴2x +2−x +2m =0在[−1,1]有解. ∴m =−12(2x +2−x ),x ∈[−1,1]),令t =2x ∈[12 ,2], 则m =−12(t +1t )设g(t)=t +1t ,g(t)在[12 , 1)单调递减,在[1,2]单调递增, ∴g(t)∈[2 ,52],∴m ∈[−54 , −1].(3)由定义得:∵f(−x)+f(x)=0,∴4x +4−x −2m(2x +2−x )+2m 2−6=0,即(2x +2−x )2−2m(2x +2−x )+2m 2−8=0有解. 设p =2x +2−x ∈[2,+∞),所以方程等价于p 2−2mp +2m 2−8=0在p ≥2时有解. 设g(p)=p 2−2mp +2m 2−8,对称轴p =m ,①若m ≥2,则Δ=4m 2−4(2m 2−8)≥0,即m 2≤8, ∴−2√2≤m ≤2√2, 此时2≤m ≤2√2; ②若m <2时,则{m <2g(2)≤0Δ≥0,即{m <21−√3≤m ≤1+√3−2√2≤m ≤2√2,此时1−√3≤m <2,综上得:1−√3≤m ≤2√2.解析:(1)由已知中“局部奇函数”的定义,结合函数f(x)=ax 2+2x −4a ,可得结论;(2)若f(x)=2x +m 是定义在[−1,1]上的“局部奇函数”,则2x +2−x +2m =0在[−1,1]有解,进而可得实数m 的取值范围;(3)若f(x)是定义域R 上的“局部奇函数”,则f(−x)+f(x)=0有解,求出满足条件的m 的取值范围后,再求其并集可得答案.本题考查的知识点是抽象函数及其应用,正确理解新定义“局部奇函数”的定义,是解答的关键. 13.答案:解:(1)当m =1时,f(x)=|2x −3|+|2x +1|={4x −2,x ⩾324,−12<x <32.2−4x,x ⩽−12当x ≥32时,4x −2≤2x +2,得32≤x ≤2; 当−12<x <32时,4≤2x +2,得1≤x <32; 当x ≤−12时,2−4x ≤2x +2,得不等式无解.所以不等式的解集为[1,2].(2)f(x)=|2x −3|+|2x +m|≥|2x −3−(2x +m)|=|m +3|, 依题意,|m +3|≥1m+3,显然m <−3时,不等式成立;当m >−3时,有(m +3)2≥1,解得m ≥−2或m ≤−4, 综上,m 的取值范围是(−∞,−3)∪[−2,+∞).解析:本题考查分段函数,考查不等式恒成立问题,考查分类讨论思想,属于中档题. (1)分三种情况去掉绝对值解不等式即可;(2)利用绝对值不等式性质得到f(x)≥|m +3|,即可得到|m +3|≥1m+3,求解即可.14.答案:解:(1)f(x)<0,即ax 2−(a 2+1)x +a <0, 即(ax −1)(x −a)<0(a >0), 即有(x −a)(x −1a )<0(a >0), ①当0<a <1时,a <1a , 不等式的解集为{x|a <x <1a };②当a =1时,a =1a ,不等式的解集为⌀; ③当a >1时,a >1a ,不等式的解集为{x|1a <x <a}.(2)解法一:①当0<a <1时,[1,2]⊆(a ,1a ),即{0<a <11a>2可得0<a <12;②当a =1时,f(x)≥0在[1,2]上恒成立,舍去;③当a >1时,[1,2]⊆(1a ,a),即{a >21a<1,解得a >2.综上可得a 的范围是(0,12)∪(2,+∞).解法二:当a >0时,f(x)<0在x ∈[1,2]上恒成立, 可得{a >0f(1)=2a −a 2−1<0f(2)=5a −2a 2−2<0,解得0<a<12或a>2,可得a的范围是(0,12)∪(2,+∞).解析:(1)由题意可得(x−a)(x−1a)<0(a>0),讨论a=1,a>1,0<a<1,由二次不等式的解法可得所求解集;(2)方法一、讨论a=1,a>1,0<a<1,结合(1)的结论,即可得到所求范围;方法二、运用二次函数的图象和性质,可得a>0,f(1)<0,且f(2)<0,解不等式即可得到所求范围.本题考查不等式的解法,注意运用分类讨论思想方法,考查不等式恒成立问题的解法,注意运用二次函数的图象和性质,考查运算能力,属于中档题.15.答案:解:(1)∵f(x)=xlnx+12ax2−1,∴f′(x)=lnx+1+ax,∴f′(1)=1+a,又f′(1)=−1,∴a=−2,∴f(x)=xlnx−x2−1.(2)若对任意的x∈(0,+∞),都有f(x)−2mx+1≤0,即xlnx−x2−2mx≤0恒成立,即m≥12lnx−12x恒成立.令ℎ(x)=12lnx−12x,则ℎ′(x)=12x−12=1−x2x,当0<x<1时,ℎ′(x)>0,ℎ(x)单调递增;当x>1时,ℎ′(x)<0,ℎ(x)单调递减.∴当x=1时,ℎ(x)取得最大值ℎ(1)=−12,∴m≥−12,即m的取值范围为[−12,+∞).(3)要证明函数y=f(x)+2x的图象在g(x)=xe x−x2−1图象的下方,即证f(x)+2x<xe x−x2−1在(0,+∞)上恒成立,即lnx<e x−2.由(2)可得ℎ(x)=12lnx−12x≤−12,∴lnx≤x−1,要证明lnx<e x−2,可以证明x−1<e x−2,即证e x−x−1>0.令φ(x)=e x−x−1,则φ′(x)=e x−1,当x>0时,φ′(x)>0,∴φ(x)单调递增,∴φ(x)>φ(0)=0,即e x−x−1>0,∴x−1<e x−2,从而得到lnx≤x−1<e x−2,∴函数y=f(x)+2x的图象在g(x)=xe x−x2−1图象的下方.解析:本题考查利用导数研究函数的单调性,不等式恒成立问题,属中档题.(1)求导,根据f′(1)=−1求出a,即可求出f(x)的解析式.(2)对于任意的x∈(0,+∞),都有f(x)−2mx+1≤0,则有m≥12lnx−12x恒成立,即m≥(12lnx−1 2x)max再对ℎ(x)=12lnx−12x求导,利用导数研究其单调性,求出最大值,即可得答案.(3)要证明函数y=f(x)+2x的图象在g(x)=xe x−x2−1图象的下方,即证f(x)+2x<xe x−x2−1在(0,+∞)上恒成立,即lnx<e x−2,结合第二问的结果证明即可.16.答案:解:(1)当每月处理量为x吨时,x∈[200,500],每吨的平均处理成本为yx =x2−200+80000 x ⩾2√40000−200=200,当且仅当x2=80000x,即x=400时等号成立,所以每月处理量为400吨时,每吨的平均处理成本最低.(2)设该单位每月获利为S元,则S=100x−y=−12x2+300x−80000=−12(x−300)2−35000,x∈[200,500],当x=300时,S max=−35000,所以该单位每月不能获利,需要国家至少补贴35000元才能不亏损.解析:本题考查函数模型的应用,基本不等式的应用.(1)根据已知求出每吨平均处理成本的表达式,再根据基本不等式求最值;(2)根据已知求出每月获利的函数表达式,再求函数的最值,即可得解.17.答案:解:(1)∵A={x|x2−6x+5<0}={1<x<5},B={x|1<2x−2⩽16}={x|2<x⩽6},∴A∪B={x|1<x≤6},∁R A={x|x≤1或x≥5};(2)因为f(x)=lg(2a−x)(x−a−1),所以(2a−x)(x−a−1)>0即(x−2a)(x−a−1)<0,故C≠⌀,A∩C=C,所以C⊆A,当2a<a+1,即a<1时,1⩽2a<a+1⩽5,所以12⩽a<1当2a>a+1,即a>1时,1⩽a+1<2a⩽5,所以1<a⩽52综上,实数a的取值范围为[12,1)∪(1,52].解析:本题考查函数的定义域及二次不等式的求解和指数函数的性质,同时考查集合的运算及集合的关系.(1)求出A,B,然后利用并集和补集的定义求解即可;(2)因为C 为函数的定义域,所以C ≠⌀,由A ∩C =C 得C ⊆A ,然后分类讨论求解即可. 18.答案:解:(1)在△ABO 中, 由余弦定理得,所以:起初两军舰的距离为10√7mile.(2)设t 小时后,甲、乙两军舰分别航行到C,D ,连结CD .当0<t ≤34时,CD =√(30−40t)2+(10+40t)2−2(30−40t)(10+40t)cos60° =10√48t 2−24t +7,当t >34时,同理可求得CD =10√48t 2−24t +7,所以经过t 小时后,甲、乙两军舰距离CD =10√48t 2−24t +7(t >0), 因为CD =10√48t 2−24t +7=10√48(t −14)2+4,因为t >0,所以当t =14时,甲、乙两军舰距离最小为20mile. 又20≥20,所以甲、乙这两艘军舰不会违法国际海洋安全规定.解析:本题考查利用数学知识解决三角形的实际应用,考查余弦定理的运用,考查学生分析解决问题的能力,属于中档题.(1)在△ABO 中,利用余弦定理求出AB 的值,即为答案;(2)设t 小时后,甲、乙两军舰分别航行到C,D ,连结CD ,分情况当0<t ≤34时,以及当t >34时,求出甲、乙两军舰距离CD =10√48t 2−24t +7(t >0),利用二次函数求出CD 的最小值,得到甲、乙这两艘军舰不会违法国际海洋安全规定.19.答案:解:(1)由已知可得椭圆的方程x 23b 2+y 2b 2=1,经判断,斜率不为0,设直线方程为x =my −1,A (x 1,y 1),B (x 2,y 2),{x 2+3y 2−3b 2=0x =my −1联立可得(m 2+3)y 2−2my +1−3b 2=0,{Δ≥0y 1+y 2=2mm 2+3y 1y 2=1−3b 2m 2+3,由AC ⃗⃗⃗⃗⃗ =2CB ⃗⃗⃗⃗⃗ ,y 1=−2y 2代入y 1+y 2可得y 1=4m m 2+3,y 2=−2m m 2+3,·S ΔOAB =12⋅1⋅|y 1−y 2|=|3m |m 2+3,即S ΔOAB =|3k |3k 2+1(k 不为零)·;(2)S ΔOAB =|3k |3k 2+1=3⋅13|k |+1|k|≤√32当且仅当k=±√33时等号成立。

人教版高中数学必修第一册第2章 一元二次函数、方程和不等式综合检测拔尖卷(含详细解析)

人教版高中数学必修第一册第2章 一元二次函数、方程和不等式综合检测拔尖卷(含详细解析)

第2章一元二次函数、方程和不等式(原卷版)本卷满分150分,考试时间120分钟。

一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.设()()15P a a =--,()235Q a a =-++,则有A .P >QB .P ≥QC .P <QD .P ≤Q2.已知x >0,y >0,且xy =10,则85x y+的最小值为A .2B .3C .4D .63.若不等式210x kx ++<的解集为空集,则k 的取值范围是A .22k -≤≤B .2k ≤-,或2k ≥C .22k -<<D .2k <-,或2k >4.今有一台坏天平,两臂长不等,其余均精确.现将一物体放在左、右托盘各称一次,称量结果分别为a 和b ,设该物体的真实质量为G ,则A .2a b G +>B .2a b G +<C .G >D .G <5.已知12a b ≤-≤,24a b ≤+≤,则32a b -的取值范围是A .3,92⎡⎤⎢⎥⎣⎦B .5,82⎡⎤⎢⎥⎣⎦C .5,92⎡⎤⎢⎥⎣⎦D .7,72⎡⎤⎢⎥⎣⎦6.若,0a b >,且1131a b ab=++,则a b +的取值范围A .3a b +≥B .06a b <+≤C .03a b <+≤D .6a b +≥7.对于任意实数x ,符号[]x 表示不大于x 的最大整数,例如:[]5.85=,[]1010=,[]4π-=-,那么不等式[][]2436450x x -+<成立的x 的范围是A .31522x <<B .28x ≤≤C .28x ≤<D .27x ≤≤8.若关于x 的不等式()22120x a x a -++<恰有两个整数解,则a 的取值范围是A .322a a ⎧⎫<≤⎨⎬⎩⎭∣B .112aa ⎧⎫-<≤-⎨⎬⎩⎭∣C .112aa ⎧-<≤-⎨⎩∣或322a ⎫≤<⎬⎭D .112aa ⎧-≤<-⎨⎩∣或322a ⎫<≤⎬⎭二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列四个命题正确的有A .若a b >,c d >,则a c b d ->-B .若ac bc <,0c >则a b <C .若a b >,则11a b a>-D .若110a b<<,则2ab b <10.下列选项中正确的有A .不等式a b +≥B .()()()22,13M a a N a a =-=+-,则M N>C .()101y x x x =+>+的最小值为1D .存在a ,使得不等式12a a+≤11.若不等式20ax bx c ++>的解集是1,22⎛⎫- ⎪⎝⎭,则以下正确的有A .a <0B .1ca=-C .230a b c ++>D .20cx bx a ++>的解集为(﹣2,12)12.下列说法正确的有A .21x y x+=的最小值为2B .函数()f x =2C .若正数x 、y 满足23x y xy +=,则2x y +的最小值为3D .设x 、y 为实数,若2291x y xy ++=,则3x y +的最大值为7三、填空题:本题共4小题,每小题5分,共20分.13.已知32,34a b -<<-<<,则2a b的取值范围为___________.14.关于x 的不等式x 2+ax +a ≤1对一切x ∈(0,1)恒成立,则a 的取值范围为___________.15.已知a ,b ,c 均为正数,则222ab bca b c +++的最大值为___________.16.若关于x 的不等式组141x x x a ⎧+<-⎨<⎩无解,则实数a 的取值范围是___________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知关于x 的不等式ax 2+4ax -3<0.(1)若a =1,求不等式的解集∶(2)若不等式的解集是R ,求a 的取值范围.18.(12分)(1)若x ∈R ,试比较26x x +3与24216x x -+的大小;(2)已知54x -<<,23y <<.求2x y -的取值范围.19.(12分)已知a ,b ,c 均为正数,且1abc =,求证:(1)()()()8a b b c a c +++≥;(2111a b c≤++.20.(12分)已知函数()214f x x mx m =-+.(1)关于x 不等式2104x mx m -+<的解集为空集,求实数m 的取值范围;(2)设(1)中m 取值范围为集合A ,又集合{}1B x ax =>,若A B ⋂≠∅,求实数a 的取值范围.21.(12分)某电动摩托车企业计划在2021年投资生产一款高端电动摩托车.经市场调研测算,生产该款电动摩托车需投入设备改造费1000万元,生产该款电动摩托车x 万台需投入资金)万元,且222600(04)5001500125(4)mx x x y x x x x ⎧+<<⎪=⎨-+≥⎪⎩,生产1万台该款电动摩托车需投入资金3000万元;当该款电动摩托车售价为5000(单位∶元台)时,当年内生产的该款摩托车能全部销售完.(1)求m 的值,并写出2021年该款摩托车的年利润Z (单位∶万元)关于年产量x (单位∶万台)的函数解析式;(2)当2021年该款摩托车的年产盘x 为多少时,Z 年利润最大?最大年利润是多少?(年利润=销售所得-投入资金-设备改造费)22.(12分)已知函数2()2f x x bx c =+-过点(0,2),且满足)()(12f f -=.(1)求函数()f x 的解析式;(2)解关于x 的不等式:()()(21)f x a x a R ≤-∈.第2章一元二次函数、方程和不等式(解析版)本卷满分150分,考试时间120分钟。

2023-2024学年高一上数学《一元二次函数、方程和不等式》测试卷及答案解析

2023-2024学年高一上数学《一元二次函数、方程和不等式》测试卷及答案解析

2023-2024学年高一数学《一元二次函数、方程和不等式》一.选择题(共12小题)
1.(2022春•福州期中)已知实数a,b满足e a+b﹣2
+=0,则下列关系一定不成立的是()
A.a+b=2B.a﹣3b=﹣2C.a+b<2D.a﹣b<﹣2 2.(2021秋•鼓楼区校级期中)“a<0”是“函数f(x)=(x﹣a)2在(0,+∞)内单调递增”的()
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要
3.(2020秋•福州期末)关于x的一元二次不等式x2﹣5x﹣6<0的解集为()A.{x|x<﹣1或x>6}B.{x|﹣1<x<6}C.{x|x<﹣2或x>3}
D.{x|﹣2<x<3}
4.(2016秋•福州期中)已知p=a
+,q=﹣b2﹣2b+3(b∈R),则p,q的
大小关系为()
A.p≥q B.p≤q C.p>q D.p<q
5.(2017秋•长乐市校级月考)已知不等式x2+px+q<0的解集为{x|1<x<2}
,则不等式
>0的解集为()
A.(1,2)B.(﹣∞,﹣1)∪(1,2)∪(6,+∞)
C.(﹣1,1)∪(2,6)D.(﹣∞,﹣1)∪(6,+∞)6.(2021秋•仓山区校级期中)设x1,x2为方程x2﹣4ax+3a=0(a>0)的两个根,则x1+x2+的最小值是()
A .
B .
C .
D .
7.(2021
秋•福清市期中)已知函数过点(n,1)(m,n>0),则的
最小值为()
A.8B.9C.10D.12 8.(2021秋•连江县期中)已知命题p:x<3,q:2x2﹣3x﹣2<0,则p是q的()
第1页(共17页)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新课标第一网系列资料
一、选择题
1.已知集合M =}512|{},034|{2<+=<+-x x P x x x ,则}|{P x M x x ∈∈且等于( ) A }31|{<<x x B }21|{<<x x C }3|{<x x D }32|{<<x x
2. 若不等式022>++bx ax 的解集为}3
1
21|{<<-x x ,则b a +的值为( )
A 、10
B 、-10
C 、14
D 、-14
3. 不等式06
2
32
2≥-++-x x x x 的解为( ) A 31-≤≥x x 或 B 13≤≤-x C 31-<≥x x 或 D 2x 31≠-<≥且或x x 4. 设集合P =}01|{<<-m m , Q =044|{2<-+∈mx mx R m ,对任意的实数x 都成立},则下列关系式成立的是( )X|k | B| 1 . c |O |m
A 、Q P ⊆
B 、P Q ⊆
C 、Q P =
D 、Φ=⋂Q P
5.不等式04)2(2)2(2<--+-x a x a 对于R x ∈恒成立,那么a 的取值范围是( ) A 2-<a B 22≤<-a C 2-≤a D 22<<-a
6.若不等式组⎪⎩⎪⎨⎧≤+-+≤--0
)1(40
3222a x x x x 的解集不是空集,则实数a 的取值范围是( )
A }4|{-≤a a
B }4|{-≥a a
C }204|{≤≤-a a
D }2040|{≤≤-a a 二、填空题
7. 不等式
11
2
<-x ax 的解为}21|{><x x x 或,则a 的值为 . 8.若不等式02>++c bx ax 的解集是}52|{<<x x ,则不等式02<++a bx cx 的解集是 .
9.若关于x 的不等式02>--a ax x 的解集为全体实数,则实数a 的取值范围是 .
10.已知不等式组⎪⎩⎪⎨⎧<+-<+-0
860
3422x x x x 的解集是不等式0922<+-a x x 的解集的子集,则
实数a 的取值范围是 . 三、解答题
11. 解不等式(1)322732-+≥-x x x (2)03
2
22>-+-x x
12. 解关于x 的不等式(1)(x -2)(ax -2)>0;
13. 已知不等式03)1(4)54(22>+---+x m x m m 对一切实数x 恒成立,求参数m 的取值范围.
7. 8.
9. 10. 三、解答题
w W w .x K b 1.c o M
题号 1 2 3 4 5 6 答案。

相关文档
最新文档