电子科技大学-微波实验报告2013
微波光学实验报告
微波光学实验报告实验名称:微波光学实验实验目的:1. 了解微波的基本原理和特性;2. 学习和熟悉微波信号的调制和解调技术;3. 掌握微波信号的传输和放大技术;4. 学习和理解微波天线的工作原理和性能。
实验器材:1. 微波信号发生器;2. 微波放大器;3. 微波混频器;4. 微波频率计;5. 微波传输线;6. 微波天线。
实验原理:微波是指频率范围在300MHz至300GHz之间的电磁波。
与可见光相比,微波有较长的波长,能够穿透和传输更远的距离。
微波的调制和解调技术类似于射频信号的调制和解调技术,可以用于无线通信、雷达、卫星通信等领域。
微波信号的传输和放大技术则是为了保持信号的稳定性和增大信号的功率,以便用于远距离传输。
微波天线是用于接收和发射微波信号的装置,通过调节天线的形状和方向来实现对微波信号的接收和发射。
实验步骤:1. 连接微波发生器和微波放大器,调节微波发生器的频率和功率,观察微波放大器的输出;2. 连接微波发生器、微波放大器和微波混频器,调节微波发生器和微波混频器的频率和功率,观察微波混频器的输出;3. 使用微波频率计测量微波发生器、微波放大器和微波混频器的输出频率;4. 连接微波发生器、微波放大器和微波天线,调节微波发生器和微波天线的频率和功率,观察微波天线的工作状态。
实验结果:1. 测量微波发生器、微波放大器和微波混频器的输出频率,并记录测量值;2. 观察微波放大器和微波混频器的输出,记录输出功率;3. 观察微波天线的工作状态,记录接收和发射的微波信号的强度和方向。
实验结论:1. 微波信号的调制和解调技术能够实现对微波信号的传输和接收;2. 微波放大器可以增大微波信号的功率;3. 微波混频器可以将两个不同频率的微波信号混合,形成新的频率;4. 微波天线可以接收和发射微波信号,并调节信号的方向和强度。
微波测量实验报告
微波测量实验报告一、实验背景微波测量是指利用微波技术对被测物体进行测量的一种方法。
微波是一种电磁波,其频率范围在300MHZ至300GHz之间。
微波测量广泛应用于通信、测距、雷达、卫星等领域。
本实验旨在通过对微波信号的发射、传播和接收进行实验,了解微波测量的基本原理和方法。
二、实验原理微波测量实验主要依赖于微波发射器和接收器的配合。
首先,发射器通过产生一个特定频率和幅度的微波信号,将信号输入到一个导波器(如开放式传输线)中。
信号在导波器中通过传播,并且可以根据特定的设计进行传播路径的调整。
接收器用来接收由被测物体反射或传播过来的微波信号,通过对信号进行处理,可以得到关于被测物体的信息。
在微波测量中,由于微波的特殊性质,测距、测速和测向等参数可以通过对微波信号的相位、频率和幅度进行分析来实现。
例如,利用多普勒频移原理,可以通过测量微波信号的频率变化来计算目标物体的速度;利用相位差原理,可以通过测量微波信号的相位差来计算目标物体的位置。
三、实验设备和材料1.微波发射器:用来产生微波信号的设备;2.导波器:用来传输微波信号的导向装置;3.微波接收器:用来接收被测物体反射或传播过来的微波信号并进行参数分析的设备;4.被测物体:用来反射或传播微波信号的物体。
四、实验步骤1.连接微波发射器和接收器,并对其进行相位校准;2.将被测物体放置在适当位置,调整微波接收器的位置和角度,以便接收到反射或传播过的微波信号;3.运行微波发射器和接收器,记录并分析接收到的微波信号的相位、频率和幅度等参数;4.根据参数分析的结果,计算并得出被测物体的测量结果。
五、实验结果与分析在实验中,我们成功地利用微波发射器和接收器对一块金属板进行了微波测量。
通过对接收到的微波信号的相位、频率和幅度进行实验结果的分析,我们得出了金属板的尺寸和位置等测量结果。
六、实验总结通过本实验,我们了解了微波测量的基本原理和方法。
微波测量广泛应用于通信、测距、雷达、卫星等领域,具有重要的实际应用价值。
微波实验实验报告
微波实验实验报告姓名:杜文涛班级:05116班学号:050489班内序号:08指导老师:徐林娟实验四微带功分器一、实验目的:1)掌握微波网络的S参数;2)熟悉微带功分器的工作原理及其特点;3)掌握微带功分器的设计与仿真。
二、实验原理:功分器是一种功率分配元件,它是将输入功率分成相等或不相等的几路功率,当然也可以将几路功率合成,而成为功率合成元件。
在电路中常用到微带功分器。
下图是二路功分器的原理图。
图中输入线的阻抗为Z0,两路分支线的特性阻抗分别为Z02 和Z03,线长为λg/4,λg/4 为中心频率时的带内波长。
图中R2 和R3 为负载阻抗,R为隔离电阻。
对功分器的要求是:两输入口2 和3 的功率按一定比例分配,并且两口之间互相隔离,当2,3 口接匹配负载时,1 口无反射。
下面根据上述要求,确定Z02, Z03,R2,R3 及R 的计算式。
设2 口,3 口的输出功率分别为P2,P3,对应的电压为V2,V3。
根据对功分器的要求,则有P3=k2P2|V3|2/R3=k2|V2|2/R2式中k 为比例系数。
为了使在正常工作时,隔离电阻R 上不流过电流,则应V3=V2于是得R2=k2R3若取R2=kZ0则R3=Z0/k因为分支线为λg/4,故在1 入口处的输入阻抗为:Z in2=Z022/R2Z in3=Z032/R3为使1 口无反射,则两分支线在1 处的总输入阻抗应等于引出线的Z0,即Y0=1/Z0= R2 /Z022 +R3 /Z032若电路无损耗,则|V1|2/ Z in3 =k2|V1|2 /Z in2式中V1 为1 口处的电压所以Z02 = k2 Z03Z03 =Z0[(1+ k2)/k3]0.5Z02=Z0[(1+ k2)k]0.5下面确定隔离电阻R 的计算式。
跨接在端口2,3 间的电阻R,是为了得到2,3 口之间互相隔离的作用。
当信号1 口输入,2,3 口接负载电阻R2 ,R3 时,2,3 两口等电位,故电阻R 没有电流流过,相当于R 不起作用;而当2 口或3口的外接负载不等于R2 或R3 时,负载有反射,这时为使2,3 端口彼此隔离,R 必有确定的值,经计算R= Z0(1+ k2)/k 图中两路带线之间的距离不宜过大,一般取2~3 带条宽度,这样可使跨接在两带线之间电阻的寄生效应尽量小.为了匹配需要在引出线Z0与2,3端口之间各加一段λg/4阻抗变换段。
微波测量技术实验报告
一、实验目的1. 理解微波测量技术的基本原理和实验方法;2. 掌握微波测量仪器的操作技能;3. 学会使用微波测量技术对微波元件的参数进行测试;4. 分析实验数据,得出实验结论。
二、实验原理微波测量技术是研究微波频率范围内的电磁场特性及其与微波元件相互作用的技术。
实验中,我们主要使用矢量网络分析仪(VNA)进行微波参数的测量。
矢量网络分析仪是一种高性能的微波测量仪器,能够测量微波元件的散射参数(S参数)、阻抗、导纳等参数。
其基本原理是:通过测量微波信号在两个端口之间的相互作用,得到微波元件的散射参数,进而分析出微波元件的特性。
三、实验仪器与设备1. 矢量网络分析仪(VNA)2. 微波元件(如微带传输线、微波谐振器等)3. 测试平台(如测试夹具、测试架等)4. 连接电缆四、实验步骤1. 连接测试平台,将微波元件放置在测试平台上;2. 连接VNA与测试平台,进行系统校准;3. 设置VNA的测量参数,如频率范围、扫描步进等;4. 启动VNA,进行微波参数测量;5. 记录实验数据;6. 分析实验数据,得出实验结论。
五、实验数据与分析1. 实验数据(1)微波谐振器的Q值测量:通过扫频功率传输法,测量微波谐振器的Q值,得到谐振频率、品质因数等参数;(2)微波定向耦合器的特性参数测量:通过测量输入至主线的功率与副线中正方向传输的功率之比,得到耦合度;通过测量副线中正方向传输的功率与反方向传输的功率之比,得到方向性;(3)微波功率分配器的传输特性测量:通过测量输入至主线的功率与输出至副线的功率之比,得到传输损耗。
2. 实验数据分析(1)根据微波谐振器的Q值测量结果,分析谐振器的频率选择性和能量损耗程度;(2)根据微波定向耦合器的特性参数测量结果,分析耦合器的性能指标,如耦合度、方向性等;(3)根据微波功率分配器的传输特性测量结果,分析功率分配器的传输损耗。
六、实验结论1. 通过实验,掌握了微波测量技术的基本原理和实验方法;2. 熟练掌握了矢量网络分析仪的操作技能;3. 通过实验数据,分析了微波元件的特性,为微波电路设计和优化提供了依据。
(整理)电子科技大学微波通信实验一
电子科技大学实验报告学生姓名:李亚洲学号:201322040409指导教师:杨宏春课程名称:微波通信专业学位综合实验1电子科技大学实验报告学生姓名:李亚洲学号:201322040409指导教师:杨宏春实验地点:科研楼707实验时间:第一周一、实验室名称:电子与通信工程专业硕士实验室二、实验项目名称:人工电磁材料在微波无源器件中的应用(频域)三、实验原理:1、人工电磁材料概述人工电磁材料通常是指自然界中不存在的,通过人工制造且具有天然材料所不具备的特殊电磁性质的复合结构或复合材料。
广义地,如果描述材料的一组主要参数中的一个或多个具有自然材料所不能达到的取值,且这些参数及其变化可以用来满足人们的某种特殊电磁功能需求,那么,这些材料都可以成为人工电磁材料。
例如,高介电常数(εr~102量级),适当电导率(σ~104-1010),电磁带隙结构(Electromagnetic Band Gap,EBG),光子晶体(Photonic Band Gap,PBG),负介电常数、正磁导率材料(Epsilon Negative Material,ENG),正介电常数、负磁导率(Magnetic Negative Media,MNG),左手材料(Double Negative Material,DNG)等等人工合成材料,都可以称为人工电磁材料。
人工电磁材料既可以是一种人工合成的确定材料(如高介电常数、适当电导率材料等类型),这些材料往往介电常数和电导率为正值,也称DPS(Double Positive Material)材料;也可以是在自然材料基础上,通过加工某种功能结构,使其电磁带隙、介电常数、磁导率等参数达到人们的某个预期取值,进而实现一些自然材料不能实现的功能。
尽管人工电磁材料可以表现出各种各样的功能特征,但从物理实质上看,总是因为材料中微观载流子运动环境(如势场、能带结构、散射与复合机制等)发生了变化,或使得电磁波传输函数发生改变,而这些变化可以宏观地归结为材料的一个或多个统计参数发生了改变。
微波实验报告
微波实验报告微波实验报告引言:微波是一种电磁波,波长在1mm到1m之间,频率范围为300MHz到300GHz。
微波在通信、雷达、医学、食品加热等领域有着广泛的应用。
本实验旨在通过实际操作和观察,了解微波的特性和应用。
实验一:微波传播特性实验目的:观察微波在不同介质中的传播特性。
实验器材:微波发生器、微波接收器、不同介质样品(如玻璃、木头、金属等)。
实验步骤:1. 将微波发生器和接收器连接好,并设置合适的频率和功率。
2. 将不同介质样品放置在微波传播路径上,观察微波的传播情况。
实验结果:观察到微波在不同介质中的传播情况不同。
在玻璃中,微波能够较好地传播,而在金属中,微波会被完全反射或吸收。
实验二:微波反射和折射实验目的:观察微波在不同介质间的反射和折射现象。
实验器材:微波发生器、微波接收器、反射板、折射板。
实验步骤:1. 将微波发生器和接收器连接好,并设置合适的频率和功率。
2. 将反射板放置在微波传播路径上,观察微波的反射情况。
3. 将折射板放置在微波传播路径上,观察微波的折射情况。
实验结果:观察到微波在反射板上会发生反射,反射角等于入射角。
在折射板上,微波会发生折射,根据折射定律,入射角和折射角之间存在一定的关系。
实验三:微波干涉实验目的:观察微波的干涉现象。
实验器材:微波发生器、微波接收器、干涉板。
实验步骤:1. 将微波发生器和接收器连接好,并设置合适的频率和功率。
2. 将干涉板放置在微波传播路径上,观察微波的干涉情况。
实验结果:观察到微波在干涉板上会出现明暗相间的干涉条纹。
根据干涉现象的特点,可以推测微波是一种具有波动性质的电磁波。
实验四:微波加热实验目的:观察微波对物体的加热效果。
实验器材:微波发生器、微波接收器、食物样品。
实验步骤:1. 将微波发生器和接收器连接好,并设置合适的频率和功率。
2. 将食物样品放置在微波传播路径上,观察微波对食物的加热效果。
实验结果:观察到微波对食物样品有较好的加热效果,食物在微波的作用下能够迅速加热。
微波技术基础实验报告
微波技术基础实验报告一、实验目的1.掌握微波信号的基本特性和参数的测量方法;2.了解微波器件的性能指标和测试方法;3.加深对微波传输线和网络理论的理解和实践。
二、实验设备和原理实验设备:微波信号源、功率计、波导固有模发生器、波间仪、反射器等。
实验原理:微波技术是指在高频范围内进行电磁波的传输、控制和处理的一套技术体系,其频率范围通常为0.3GHz至300GHz。
微波技术具有频率高、信息容量大和传输距离远等优点,广泛应用于通信、雷达、航空航天等领域。
三、实验步骤和内容1.根据实验要求,搭建实验电路;2.测量微波信号源输出功率,通过功率计测量微波信号源输出功率;3.测量波导波导的传输特性,通过波间仪测量微波信号通过波导时的传输特性;4.测量波导器件的特性,通过波间仪测量波导器件的特性;5.测量波导管中的固有模,通过固有模发生器和反射器测量波导管中的固有模。
四、实验结果和数据分析1.根据实验条件,测量到微波信号源输出功率为10dBm;2.根据测量结果,绘制出波导波导的传输特性曲线,分析其传输性能;3.根据实验条件,测量到波导器件的插入损耗为3dB;4.根据实验条件和测量数据,计算出波导管中的固有模的频率范围和衰减值,并进行数据分析。
五、实验结论1.微波信号源输出功率为10dBm;2.波导波导的传输特性曲线显示了其良好的传输性能;3.波导器件的插入损耗为3dB,插入损耗越小,器件性能越好;4.波导管中的固有模的频率范围为0.3GHz至3GHz,衰减值为-10dB。
六、实验总结通过本次实验,我深入理解了微波技术的基本特性和参数的测量方法,掌握了微波器件的性能指标和测试方法,并加深了对微波传输线和网络理论的理解和实践。
通过实验数据的测量和分析,我对微波技术的应用和性能有了更深入的认识,实验收获颇丰。
微波实验报告
微波实验报告微波实验姓名:班级:学号:指导⽼师:张慧云实验⽇期:2012.5.9【摘要】:本实验通过研究波导测量系统,根据微波测量的⼀系列原理以及耿⽒⼆极管原理,设计了⼏个实验对波导波长、参数α、驻波⽐进⾏了测量,对耿⽒⼆极管⼯作特性进⾏了测量。
实验过程中,通过控制变量发、数据采集并作图、现象观察等⼿段,使我们对微波测量系统有了更深⼊的了解。
通过匹配调节和微波辐射观察,我们也对微波有了更形象的认识。
【关键词】:波导波长、驻波⽐、微波、耿⽒⼆极管⼀、前⾔1、实验背景微波技术是近代发展起来的⼀门尖端科学技术,它不仅在通讯、原⼦能技术、空间技术、量⼦电⼦学以及农业⽣产等⽅⾯有着⼴泛的应⽤,在科学研究中也是⼀种重要的观测⼿段,微波的研究⽅法和测试设备都与⽆线电波的不同。
由于微波的波长很短,传输线上的电压、电流既是时间的函数,⼜是位置的函数,使得电磁场的能量分布于整个微波电路⽽形成“分布参数”,导致微波的传输与普通⽆线电波完全不同。
此外微波系统的测量参量是功率、波长和驻波参量,这也是和低频电路不同的。
2、实验原理1)微波基本测量系统使⽤及驻波⽐测量测量驻波⽐是微波测量的重要⼯作之⼀,测量多⽤的基本仪器为驻波测量线,如图.1图.1驻波测量线图.2探针等效电路图①驻波测量线的调谐当探针插⼊波导时,在波导中将引起不均匀性,故在测量前须对驻波测量线调谐。
探针等效电路如图.2。
当终端接任意阻抗时,由于Gu 的分流作⽤,驻波腹点的电场强度要⽐真实值⼩,⽽Bu 的存在将使驻波腹点和节点的位置发⽣偏移。
当测量线终端短路时,如果探针放在驻波的波节点B 上,由于此点处的输⼊导纳Y in→∞,故Yu 的影响很⼩,驻波节点的位置不会发⽣偏移。
如果探针放在驻波的波腹点,由于此点上的输⼊导纳Yin→0 ,故Yu 对驻波腹点的影响就特别明显,探针呈容性电纳时将使驻波腹点向负载⽅向偏移。
欲使探针导纳影响变⼩,尽量减⼩探针深度。
⽽Bu 影响的消除是靠调节探针座的调谐电路来得到。
微波技术与天线实验报告-电子科技大学
电子科技大学电子工程学院标准实验报告(实验)课程名称微波技术与天线
学生姓名:
学号:
实验地点:科B553室
实验时间:2014-11-24
电子科技大学教务处制表
电子科技大学
一、实验名称
微波带通滤波器网络参数测量
二、实验内容
通过测量带通滤波器,计算下列参数:
1)滤波器的中心频率
2)滤波器的品质因数Q值
3)滤波器的形状因数
4)通带平坦度
三、实验步骤
1)打开网络分析仪,并复位;
2) 调节所测网络的频带范围(130MHz~400MHz)和增益(+10dB)
3) 校准实验仪器;
5)在检测器与测试端之间接入带通滤波器,观察测试波形,测量数据并记录。
四、实验数据
0 f
数据记录:
频率(MHZ ): 165 175 195
215 235 255 275 增益(dB ):-54.91 -47.16 -26.07 -4.2 -2.13 -3.95 -14.2
频率(MHZ ):295 315 335 355 增益(dB ):-24.31 -36.7 -47.75
-56.22
五、 实验结果
1)中心频率
2)品质因数
3)形状因数
4)通带平坦度 = -2.44dB-(-4.52dB )=2.08dB (通带范围内最大/最小增益差)
0215MHz+255MHz
=
=235MHz 2
f 355-165=4.75255215
MHz MHz =-03235
Q==5.875255215
dB f f ∆=-。
完整微波基本参数测量实验报告
(完整)微波基本参数测量实验报告微波基本参数测量实验报告【引言】微波是指频率为300MHz-300GHz的电磁波,是无线电波中一个有限频带的简称,即波长在1米(不含1米)到1毫米之间的电磁波,微波的基本性质通常呈现为穿透、反射、吸收三个特性。
微波成为一门技术科学,开始于20世纪30年代。
微波技术的形成以波导管的实际应用为其标志,若干形式的微波电子管(速调管、磁控管、行波管等)的发明,是另一标志。
在第二次世界大战中,微波技术得到飞跃发展。
因战争需要,微波研究的焦点集中在雷达方面,由此而带动了微波元件和器件、高功率微波管、微波电路和微波测量等技术的研究和发展。
至今,微波技术已成为一门无论在理论和技术上都相当成熟的学科,又是不断向纵深发展的学科。
【实验设计】一、实验原理1、微波微波是指频率为300MHz-300GHz的电磁波,是无线电波中一个有限频带的简称,即波长在1米(不含1米)到1毫米之间的电磁波,是分米波、厘米波、毫米波的统称。
微波频率比一般的无线电波频率高,通常也称为“超高频电磁波”。
微波作为一种电磁波也具有波粒二象性。
微波的基本性质通常呈现为穿透、反射、吸收三个特性。
对于玻璃、塑料和瓷器,微波几乎是穿越而不被吸收。
对于水和食物等就会吸收微波而使自身发热,微波炉就是利用这一特点制成的,而对金属类东西,则会反射微波。
2、微波的似声似光性微波波长很短,比地球上的一般物体(如飞机,舰船,汽车建筑物等)尺寸相对要小得多。
使得微波的特点与几何光学相似,即所谓的似光性。
因此使用微波工作,能使电路元件尺寸减小,使系统更加紧凑;可以制成体积小,波束窄方向性很强,增益很高的天线系统,接受来自地面或空间各种物体反射回来的微弱信号,从而确定物体方位和距离,分析目标特征。
由于微波波长与物体(实验室中无线设备)的尺寸有相同的量级,使得微波的特点又与声波相似,即所谓的似声性。
3、波导管波导管是一种空心的、内壁十分光洁的金属导管或内敷金属的管子。
电子科技大学 计算机 学院 实验报告模板
for(j=1;j<=i;j++)
{
if(number(i,j)==1)
{
b[a]=(float)j/(float)i;
a++;
}
}
}
for(i=1;i<a;i++)
for(k=0;k<a-i;k++)
{
if(b[k]>b[k+1])
{
c=b[k];
b[k]=b[k+1];
b[k+1]=c;
}
}
for(i=0;i<a;i++)
除此之外,在进行临界测试时,由于0/1是单独输出的,所以当n=0是程序运行正常,但当n比较大时,由于数组b定义的长度为100,所以产生越界问题,而且当n较小时,数组b不能被完全利用,部分内存被浪费,所以可以改进为动态数组,来避免浪费内存和越界问题。
六.总结及心得体会:相对简单,但是写完程序才发现很多不完善的地方,有待改进。此外,C,C++基础不好,所以写程序比较困难,希望老师能循序渐进地改善我们的编程能力。
n阶法雷序列元素存储到数组b中,然后再利用冒泡排序将所有元素按升阶排列,得到n阶法雷序列
3.算法时间复杂度分析
存储操作的算法时间复杂度为 ,排序操作的算法时间复杂度为 ,所以总的算法时间复杂度为 (效率出奇得低)
4.核心程序
for(i=1;i<=m;i++)
{
for(j=1;j<=i;j++)
{
if(number(i,j)==1)
电子科技大学计算机学院
标准实验报告
微波实验报告
实验一卫星数字电视接收一、实验目的1、了解接收卫星电视的具体方法。
2、学会使用天线接收机,并掌握接收天线的调整。
3、接收“中星6B卫星电视”,出稳定的节目。
二、实验器材天线、高频头、卫星接收机、电视、馈线三、实验过程与原理1、接收天线的组成与工作原理天线是收集和处理远处的卫星发出的高频电磁波信号的装置。
它的通信器件主要包括反射器、馈源、高频头和馈线。
天线是无线电波的输入端口。
机械部件主要包括馈机械部件主要包括馈机械部件主要包括馈机械部件主要包括馈源支撑杆、俯仰角调整机构、方位转动机构和底座等。
2、方位角的计算从接收点到卫星的视线在接收点的水平面上有一条正投影线,从接收点的正北方向开始,顺时针方向至这条正投影线的角度就是方位角,顺时针方向至这条正投影线的角度就是方位角,实际使用时应考虑当地磁偏角数值。
计算结果方位角负值为南偏角。
计算结果方位角负值为南偏西,正值为南偏东,方位角以正南为西,正值为南偏东,方位角以正南为西,正值为南偏东,方位角以正南为西,正值为南偏东,方位角以正南为0º角边。
即实际方位角为:3、仰角的计算从接收点仰望卫星的视线于水平线构成的夹角就是仰角。
即仰角为:在计算方位角、仰角之前先从地图上查出本地站址的经度和纬度4、影响天线效率的主要因素•天空噪声:这是由星体中的能量变换和某些大气层活动造成的宽带辐射大宽带辐射。
这种噪声主要通过主瓣输入,与仰角的大小无关。
•大地噪声:温暖的地面中分子的激发造成的大带宽噪声称为大大地噪声。
在高纬度的低仰角中,它对天线噪声的作用最大。
•人为噪声:机器和设备发出的噪声也会增大天线噪声。
例如汽例如汽例如汽例如汽车的打火系统、剪草机以及萤光灯的开和关。
天空噪声和人为噪声比起噪声的主要成份大地噪声的作用更小。
一般来说,在噪声比起噪声的主要成份大地噪声的作用更小。
一般来说,在仰角低于30°左右时,天线噪声温度会迅速增加。
5、卫星数据接收机及其主要性能•卫星数据接收机,俗称机顶盒,目前没有标准的定义,传统的说法是“置于电视机顶上的盒子置”。
微波实验报告
微波实验报告班级:2009211111班姓名:刘佳慧学号:09210326日期:2012/5月目录实验二微带分支线匹配器 (3)一、实验目的 (3)二、实验原理 (3)三、实验内容 (3)四、实验步骤 (3)五、实验结果 (4)(一) 单支节 (4)(二) 双支节 (8)实验三微带多节阻抗变阻器 (12)一、实验目的 (12)二、实验原理 (12)三、实验内容 (13)四、实验步骤 (13)五、实验结果 (13)实验四微带功分器 (15)一、实验目的 (15)二、实验原理 (15)三、实验内容 (17)四、实验步骤 (17)心得体会 (19)实验二微带分支线匹配器一、实验目的1.熟悉支节匹配器的匹配原理2.了解微带线的工作原理和实际应用3.掌握Smith图解法设计微带线匹配网络二、实验原理支节匹配器是在主传输线上并联适当的电纳(或者串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。
单支节匹配器,调谐时主要有两个可调参量:距离d和由并联开路或短路短截线提供的电纳。
匹配的基本思想是选择d,使其在距离负载d处向主线看去的导纳Y是Y0+jB形式。
然后,此短截线的电纳选择为-jB,根据该电纳值确定分支短截线的长度,这样就达到匹配条件。
双支节匹配器,通过增加一个支节,改进了单支节匹配器需要调节支节位置的不足,只需调节两个分支线长度,就能够达到匹配(但是双支节匹配不是对任意负载阻抗都能匹配的,即存在一个不能得到匹配的禁区)。
三、实验内容已知:输入阻抗Zin=75Ω负载阻抗Zl=(64+j35)Ω特性阻抗Z0=75Ω介质基片εr=2.55,H=1mm假定负载在2GHz时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离d1=1/4λ,两分支线之间的距离为d2=1/8λ。
画出几种可能的电路图并且比较输入端反射系数幅度从1.8GHz至2.2GHz的变化。
微波技术实验报告
微波技术实验报告微波技术实验报告引言:微波技术是一种在现代科技中广泛应用的技术,它涉及无线通信、雷达、微波炉等众多领域。
本实验旨在探究微波技术的原理和应用,通过实际操作来加深对微波技术的理解和掌握。
一、实验目的本实验的主要目的是研究微波技术的传输特性和应用,通过实验来验证微波的反射、折射和透射现象,并观察微波在波导中的传输情况。
同时,我们还将探索微波技术在通信和雷达领域的应用。
二、实验原理微波是一种电磁波,波长介于射频波和红外线之间。
它的频率高、波长短,具有穿透力强、传输速度快等特点,因此在通信和雷达等领域得到广泛应用。
微波的传输特性与其频率、波长、传输介质等因素有关。
三、实验设备和材料本实验所需的设备和材料包括微波发生器、微波接收器、微波波导、反射板、透射板、折射板等。
四、实验步骤1. 首先,我们将微波发生器和微波接收器连接起来,形成一个微波传输系统。
2. 然后,我们将微波波导与微波传输系统连接,观察微波在波导中的传输情况。
3. 接下来,我们将反射板放置在微波传输系统的路径上,观察微波的反射现象。
4. 紧接着,我们将透射板放置在微波传输系统的路径上,观察微波的透射现象。
5. 最后,我们将折射板放置在微波传输系统的路径上,观察微波的折射现象。
五、实验结果和分析通过实验观察和数据记录,我们得出以下结论:1. 微波在波导中的传输情况较好,传输损耗较小,适用于远距离通信和雷达应用。
2. 微波在反射板上发生反射现象,反射角度等于入射角度,符合反射定律。
3. 微波在透射板上发生透射现象,透射角度与入射角度有关,符合折射定律。
4. 微波在折射板上发生折射现象,折射角度与入射角度、两种介质的折射率有关,符合折射定律。
六、实验应用微波技术在通信和雷达领域有着广泛的应用。
其中,微波通信是一种基于微波技术的无线通信方式,它具有传输速度快、抗干扰能力强等优点,被广泛应用于移动通信、卫星通信等领域。
而雷达则是一种利用微波技术进行探测和测量的装置,它在军事、气象、航空等领域发挥着重要作用。
实验5 微波光学综合实验报告
实验5 微波光学综合实验数据处理1、反射实验数据处理:
实验结论:把误差考虑在内,可以认为:反射角等于入射角。
3.微波干涉数据处理:
a=35mm; b=58mm
由公式求得的理论值:第一级加强点ϕ=21.0°第一级减弱点不在所测得范围内。
由实验数据求得的值:第一级加强点ϕ值在20°~22°之间,与理论值近似相等
4、微波的偏振数据处理:
实验结论:把误差考虑在内,可以认为得到的实验数据基本和理论值相等。
5、微波的迈克尔逊干涉
实验数据:读数为极小值时的刻度(mm ):4.170;19.762;35.170;53.736;69.337
读数为极大值时的刻度(mm ):11.596;27.929;42.821;
61.353
数据处理:由读数极小值测得的波长:λ=(69.337-4.170)
⨯2/4=32.58nm
由读数极大值测得的波长:λ=(61.353-11.596)
⨯2/3=33.17nm
求均值:λ=32.88nm 理论值; λ=33.3nm
相对误差:=σ%100⨯-理
实
理λλλ=1.26%
6、微波的布拉格衍射数据处理:
根据实验数据测得的衍射角曲线:如图
下图为理论测得的衍射角曲线:如图
实验结果:
经对比可知:实验所测得的衍射角曲线和理论测得的衍射角曲线可以近似看作相等(把误差考虑在内),实验测得100面第一级加强点的衍射角为θ=68.1°
第二级加强点的衍射角为θ=37.8°
测得110面第一级加强点的衍射角为θ=56.4°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5GHZ
0.20,78.69
50+j10
5GHZ
0.10,84.29
50+j5
5GHZ
0.05,87.14
实验内容
λ/4阻抗变换器的设计
负载阻抗
中心频率
L1
Z01
L2
Z02
带宽
SWR1.2
SWR1.5
SWR2.0
50+j50
5GHZ
5.3mm
50
15mm
81.53
0.67Ghz
1.45Ghz
5GHZ
0.44,3.39
10mm
10
5GHZ
0.42,-56.65
20mm
10
5GHZ
0.40,-176.73
25mm
10
5GHZ
0.39,123.23
30mm(二分之一波长)
10
5GHZ
0.38,63.19
实验内容
负载阻抗改变与反射系数在阻抗圆图上的
变化轨迹的关系(1)
负载阻抗
工作频率
反射系数
轨迹变化
实验内容
L匹配(1)
负载阻抗
中心频率
L
C
带宽
SWR1.2
SWR1.5
SWR2.0
50+j50
5GHZ
1.61nH
626.42fF
0.8
1.87
2.43
实验内容
L匹配(2)
负载阻抗
中心频率
L
C
带宽
SWR1.2
SWR1.5
SWR2.0
50+j50
5GHZ
不要
641.77fF
2.0
4.8
12
2.26Ghz
注:L1为传输线长度,Z01为传输线阻抗,L2为λ/4阻抗变换器长度,Z02为λ/4阻抗变换器阻抗。
实验内容
单枝节(短截线)匹配的设计
负载阻抗
中心频率
L1
Z01
L2
Z02
带宽
SWR1.2
SWR1.5
SWR2.0
50+j50
5GHZ
15.1mmΒιβλιοθήκη 507.4mm50
0.4
0.92
1.66
注:L1为传输线长度,Z01为传输线阻抗,L2为枝节(短截线)长度,Z02为枝节(短截线)阻抗。
10+j50
5GHZ
0.82,88.85
实部增大虚部减小向圆心靠拢
20+j50
5GHZ
0.68,85.43
30+j50
5GHZ
0.57,79.80
40+j50
5GHZ
0.50,72.26
50+j50
5GHZ
0.45,63.43
50+j40
5GHZ
0.37,68.20
50+j30
5GHZ
0.29,73.30
0.45,63.43
沿等反射系数圆逆时针旋转
5mm
0
5GHZ
0.45,3.39
10mm
0
5GHZ
0.45,-56.65
20mm
0
5GHZ
0.45,-176.73
25mm
0
5GHZ
0.45,123.23
30mm(二分之一波长)
0
5GHZ
0.45,63.19
0mm
10
5GHZ
0.45,63.43
5mm
10
感性区
50-j10
5GHZ
0.10,-84.29
容性区
j10
5GHZ
1.0,53.074
圆上
-j10
5GHZ
1.0,-157.38
圆上
j10000
5GHZ
1.00,0.06
(1,0)
结论
实验内容
反射系数沿传输线变化在阻抗圆图上的轨迹的
观察研究
传输线长度
传输线衰减
工作频率
反射系数
轨迹变化
0mm
0
5GHZ
实验报告
作业交付邮箱地址:wly1286@
姓名
班级
学号
实验内容
不同负载阻抗所对应的传输线工作状态及其Smith圆图对应的区域
负载阻抗
工作频率
反射系数
圆图区域
50Ω
5GHZ
0,0
圆心
40Ω
5GHZ
0.11,180
实轴
60Ω
5GHZ
0.09,0
实轴
50+j10
5GHZ
0.10,84.29