细胞生物学第七章跨膜运输
医学细胞生物学(7~12章复习大纲)
《医学细胞生物学》(7~12章复习大纲)第七章细胞膜与物质转运(全部都是重点!!!!!!)⏹分类:一)小分子和离子的穿膜运输,分简单扩散、离子通道扩散、易化扩散、离子泵、伴随运输。
二)大分子和颗粒物质的膜泡运输。
第一节穿膜运输⏹一、简单扩散(simple diffusion)⏹二、离子通道扩散⏹电位依赖性电压闸门通道配体门控离子通道(Ligand-gated channels ):机械闸门通道三、易化扩散⏹特点:1)与所结合的溶质有专一的结合部位,运输各种有机小分子。
2)细胞膜上特定载体蛋白的数量相对恒定,处于饱和状态时,运输速率最大。
⏹单运输将溶质从膜的一侧转运到膜的另一侧⏹被动运输:物质从浓度高的一侧到浓度低的一侧,不消耗能量⏹简单扩散、离子通道扩散、易化扩散⏹四、离子泵⏹(一)Na –K 泵主动运输⏹(二)Ca 2+泵主动运输(Ca2+ Pump)⏹五、伴随运输⏹共运输(symport):协同运输中,两种物质运输方向相同。
(小肠上皮细胞从肠腔吸收葡萄糖、氨基酸)⏹对运输(antiport):协同运输中,两种物质转运方向相反。
(Na -H 交换体在细胞分裂的时候通过转移H ,提高pH值)⏹特点:1)动物细胞协同运输的能量驱动通常来自Na +的电化学梯度。
2)Na+-K +泵间接驱动着协同运输。
第二节膜泡运输⏹一、胞吞作用⏹(一)吞噬作用(phagocytosis):吞噬细胞通过特异的表面受体识别摄入大的颗粒,形成吞噬泡(phagocytic vesicle)或吞噬体(phagosome)的过程。
⏹二)胞饮作用(pinocytosis) :指细胞摄取液体和溶质的过程。
由细胞膜包裹的液体内陷而形成的小泡,称为胞饮小泡或胞饮体(三)受体介导的胞吞作用特定大分子与聚集于细胞表面受体互补结合,形成受体大分子复合物,通过细胞膜凹陷,该区域形成有被小窝(coated pit),有被小窝从质膜上脱落成为有被小泡(coated vesicle),进入细胞内。
细胞生物学 翟中和版 总结笔记第七章
Cell biology细胞生物学第七章真核细胞内膜系统、蛋白质分选与膜泡运输细胞内被膜区分类:细胞质基质、细胞内膜系统、有膜包被的细胞器第一节细胞质基质的含义和功能一、细胞质基质的含义(1)含义:在真核细胞的细胞质中,除去可分辨的细胞器以外的胶状物质主要含有:(1)与代谢有关的许多酶(2)与维持细胞形态和物质运输有关的细胞质骨架结构细胞质基质是一个高度有序的体系,细胞质骨架纤维贯穿在粘稠的蛋白质胶体中,多数的蛋白质直接或间接地与骨架结合,或与生物膜结合,从而完成特定的功能。
细胞质基质主要是由微管、微丝和中间丝等相互联系形成的结构体系,蛋白质和其他分子以凝聚或暂时的凝聚状态存在,与周围溶液的分子处于动态平衡。
差速离心获得的胞质溶胶的组分和细胞质基质溶液成分很大不同。
胞质溶胶中的多数蛋白质可能通过弱键结合在基质的骨架纤维上。
二、细胞质基质的功能(1)蛋白质分选和转运N端有信号序列的蛋白质合成之后转移到内质网上,通过膜泡运输的方式再转运到高尔基体。
其他蛋白质的合成都在细胞质基质完成,并根据自身信号转运到线粒体、叶绿体、细胞核中,也有些蛋白驻留在细胞质基质中。
(2)锚定细胞质骨架(3)蛋白的修饰、选择性降解1 蛋白质的修饰辅基、辅酶与蛋白的结合磷酸化和去磷酸化糖基化N端甲基化(防止水解)酰基化2 控制蛋白质寿命N端第一个氨基酸残基决定寿命细胞质基质能够识别N端不稳定的氨基酸信号将其降解,依赖于泛素降解途径3 降解变性和错误折叠的蛋白质4 修复变性和错误折叠的蛋白热休克蛋白的作用第二节细胞内膜系统及其功能细胞内膜系统是指在结构、功能乃至发生上相互关联、由膜包被的细胞器或细胞结构。
研究方法:电镜技术免疫标记和放射自显影离心技术和遗传突变体分析一、内质网的形态结构和功能内质网是由封闭的管状或扁平囊状膜系统及其包被的腔形成的互相沟通的三维网络结构。
(一)内质网的两种基本类型糙面内质网和光面内质网。
糙面内质网:扁囊状整齐附着有大量核糖体功能:合成分泌性蛋白和膜蛋白光面内质网:分支管状,小功能:脂质合成,出芽位点部分细胞合成固醇类激素糙面内质网有20多种和光面内质网不同的蛋白,说明有特殊装置隔开两种内质网的组分。
细胞生物学物质的跨膜运输试题
细胞生物学物质的跨膜运输试题以下是一些关于细胞生物学中跨膜运输的试题:1.请解释什么是细胞膜的跨膜运输?跨膜运输是指物质通过细胞膜从一个细胞内区域或环境进入另一个区域或环境的过程。
这个过程涉及到物质穿越细胞膜的疏水性内层,并与细胞膜上的载体蛋白或通道蛋白相互作用。
2.请列举细胞膜跨膜运输的两种主要机制,并简要描述它们。
-主动转运:主动转运是指物质在细胞膜跨膜运输时需要消耗能量(通常为三磷酸腺苷,ATP)。
这种机制可以使物质在浓度梯度之外被积累,如钠-钾泵。
-被动扩散:被动扩散是指物质在细胞膜跨膜运输时不需要消耗能量,遵循浓度梯度自发地从高浓度区域向低浓度区域移动。
这种机制包括简单扩散和载体介导的扩散。
3.请解释离子通道蛋白的功能以及如何实现离子选择性。
离子通道蛋白是一类跨膜蛋白,它们具有特定的结构域,形成一个通道,使特定类型的离子能够穿过细胞膜。
离子通道蛋白通过开启或关闭来调节离子的通行。
离子选择性是由离子通道蛋白中的氨基酸残基决定的。
通道蛋白的内部有特定位置的氨基酸残基,可以与特定大小、电荷和水合状态的离子相互作用。
这种相互作用使得只有特定类型的离子能够通过通道,其他离子则被阻挡在外。
4.请解释细胞膜上的载体蛋白如何实现物质的跨膜运输?细胞膜上的载体蛋白通过与物质结合并发生构象变化来实现物质的跨膜运输。
这些载体蛋白在细胞膜上形成一个通道或者运输器,物质结合到载体蛋白上后,载体蛋白会发生构象变化,使物质从一个细胞内区域转移到另一个区域。
载体蛋白的跨膜运输可以是被动的,遵循浓度梯度自发地将物质从高浓度区域向低浓度区域转移,也可以是主动的,需要消耗能量才能将物质从低浓度区域向高浓度区域转移。
细胞生物学 第七章 细胞内膜系统及蛋白质分选与泡膜运输
周围大小不等的囊泡——物质运输
高尔基体与细胞骨架关系密切; 高尔基的膜囊上存在微管的马达蛋白(
kinesin)和微丝的马达蛋白(myosin)。最近 还发现特异的血影蛋白(spectrin)网架 。它 们在维持高尔基体动态的空间结构以及复杂的 膜泡运输中起重要的作用。
❖ 残余小体(residual body),次级溶酶体未被消化 的残渣,又称后溶酶体。
用电镜细胞化学技术显示其中含有的酸性磷酸酶, M:线粒体,L:溶酶体(朴英杰)
动物细胞溶酶体系统示意图
溶酶体膜的特征: 嵌有质子泵,形成和维持溶酶体中酸性的内环境; 具有多种载体蛋白用于水解的产物向外转运; 膜蛋白高度糖基化,可能有利于防止自身膜蛋白的
❖ 二、内膜系统的结构与功能 ❖ (二)高尔基体( Golgi complex ) ❖ 2、功能
❖ (3)蛋白酶的水解和其他加工过程
蛋白质在高尔基体中酶解加工的几种类型
无生物活性的蛋白原(proprotein)高尔基体切除 N-端或两端的序列成熟的多肽。如胰岛素、胰高血糖 素及血清白蛋白等
蛋白质前体高尔基体水解同种有活性的多肽,如 神经肽等
一种分选途径。
❖ 二、内膜系统的结构与功能
❖ (二)高尔基体( Golgi complex ) ❖ 2、功能
(1)高尔基体与细胞的分泌活动 ❖ 蛋白质的分选及其转运 ❖ 溶酶体酶的分选 (2)蛋白质糖基化及其修饰
(3)蛋白酶的水解和其他加工过程
蛋白质糖基化类型
特征
N-连接
O-连接
1. 合成部位
2. 合成方式
细胞生物学第七章线粒体与叶绿体知识点整理
《第七章 线粒体与叶绿体》知识点整理一、线粒体与氧化磷酸化 1. 形态结构 外膜:标志酶:单胺氧化酶 是线粒体最外面一层平滑的单位膜结构; 通透性高;50%蛋白,50%脂类; 内膜:标志酶:细胞色素氧化酶 是位于外膜内侧的一层单位膜结构;缺乏胆固醇,富含心磷脂-—决定了内膜的不透性(限制所有分子和离子的自由通过);蛋白质/ 脂类:3:1; 氧化磷酸化的关键场所 膜间隙:标志酶:腺苷酸激酶 其功能是催化ATP 大分子末端磷酸基团转移到AMP ,生成ADP 嵴:内膜内折形成,增加面积;需能大的细胞线粒体嵴数多 片状(板状):高等动物细胞中,垂直于线粒体长轴 管状:原生动物和植物中 基粒(ATP 合成酶):位于线粒体内膜的嵴上的规则排列的颗粒 基质:标志酶:苹果酸脱氢酶 为内膜和嵴包围的空间,富含可溶性蛋白质的胶状物质,具有特定的pH 和渗透压; 三羧酸循环、脂肪酸和丙酮酸氧化进行场所 含有大量蛋白质和酶,DNA,RNA ,核糖体,Ca2+ 2. 功能 (1) 通过基质中的三羧酸循环,进行糖类、脂肪和氨基酸的最终氧化 (2) 通过内膜上的电子传递链,形成跨内膜的质子梯度 (3) 通过内膜上的ATP 合成酶,合成ATP ATP 合成酶的结合变化和旋转催化机制(书P90)头部F 1(α3β3γδε) 亲水性 α、β亚基具有ATP 结合位点,β亚基具有催化ATP 合成的活性 γε结合为转子,旋转以调节β亚基的3种构象状态δ与a 、b 亚基结合为定子基部F 0(a 1b 2c 10-12) 疏水性 C 亚基12 聚体形成一个环状结构定子在一侧将α3β3与F 0连接起来>〉氧化磷酸化的具体过程① 细胞内的储能大分子糖类、脂肪经酵解或分解形成丙酮酸和脂肪酸,氨基 酸可被分解为丙酮酸,脂肪酸或氨基酸进入线粒体后进一步分解为乙酰CoA;② 乙酰CoA 通过基质中的TCA 循环,产生含有高能电子的NADH 和FADH2; ③ 这两种分子中的高能电子通过电子传递链,在过程中形成跨内膜的质子梯度; 氧化磷酸化*Delta *epsilon《第七章 线粒体与叶绿体》知识点整理④ 质子梯度驱动ATP 合成酶将ADP 磷酸化成ATP,势能转变为化学能。
翟中和细胞生物学第七章总结2(名词解释)
第七章真核细胞内膜系统、蛋白质分选与膜泡运输1.细胞质基质:在真核细胞的细胞质中,除去可分辨的细胞器以外的胶状物质,也称胞质溶胶,内含水、无机离子、酶以及可溶性大分子和代谢产物。
21、许多中间代谢过程在细胞质基质中进行。
包括糖酵解过程、磷酸戊糖途径、糖醛酸途径、糖原合成与分解以及蛋白质与脂肪酸的合成等。
2、细胞质骨架是细胞质基质的主要结构成分,与维持细胞形态、细胞运动、物质运输及能量传递有关,而且也是细胞质基质结构体系的组织者,为细胞质基质中其他成分和细胞器提供锚定位点。
3、与蛋白质的修饰及选择性降解有关。
①蛋白质的修饰,在细胞质中发生的蛋白质修饰的类型主要有:辅酶或辅基与酶的共价结合;磷酸化与去磷酸化,用以调节很多蛋白质的生物活性;糖基化作用;对某些蛋白质的N端进行甲基化修饰;酰基化。
②控制蛋白质的寿命。
③降解变性和错误折叠的蛋白质。
④帮助变性或错误折叠的蛋白质重新折叠,形成正确的分子构象。
这一功能主要靠热休克蛋白来完成。
3①辅酶或辅基与酶的共价结合。
②磷酸化与去磷酸化,用以调节很多蛋白质的生物活性。
③糖基化作用:糖基化主要发生在内质网和高尔基体中,在细胞质基质中发现的糖基化是指在哺乳动物的细胞中把N-乙酰葡糖胺分子加到蛋白质的丝氨酸残基的羟基上。
④对某些蛋白质的N端进行甲基化修饰:这种修饰的蛋白质,如很多细胞支架蛋白和组蛋白等,不易被细胞内的蛋白质水解酶水解,从而使蛋白质在细胞中维持较长的寿命。
⑤酰基化:最常见的一类酰基化修饰是内质网上合成的跨膜蛋白在通过内质网和高尔基体的转运过程中发生的,它由不同的酶来催化,把软脂酸链共价地连接在某些跨膜蛋白的暴露在细胞质基质中的结构域;另一类酰基化修饰发生在诸如src基因和ras基因这类癌基因的产物上,催化这一反应的酶可识别蛋白中的信号序列,将脂肪酸链共价地结合到蛋白质特定的位点上。
如src基因编码的酪氨酸蛋白激酶与豆蔻酸的共价结合。
酰基化与否并不影响酪氨酸蛋白激酶的活性,但只有酰基化的激酶才能转移并靠豆蔻酸链结合到细胞质膜上。
细胞生物学 第7章 真核细胞内膜系统、蛋白质分选与膜
控制蛋白质的寿命
降解变性和错误折叠的蛋白质 帮助变性或错误折叠的蛋白质重新折叠,形成正确的分子构象 提供离子环境、提供底物、物质运输通路、细胞分化等
在基质中合成的蛋白质命运不同:
a、具N端信号肽的(分泌蛋白)合成后→内质网;
b、N端具导肽的分别被转送到各种细胞器(线粒体、叶绿 体、微体、细胞核等)中;
磷酸多萜醇
(3) 新生肽的折叠与组装
非还原性的内腔,易于二硫键形成;������
正确折叠涉及驻留蛋白:二硫键异构酶
(proteindisulfide isomerase,PDI)切断二硫 键,帮助新合成的蛋白重新形成二硫键并处于 正确折叠的状态������
结合蛋白(Bindingprotein,Bip,chaperone)识
别错误折叠的蛋白或未装配好的蛋白亚单位, 并促进重新折叠与装配。
2. sER的功能
(1) 脂类的合成
(2) 肝的解毒作用:如肝细胞的细胞色素P450酶系; (3) 肝细胞葡萄糖的释放:使葡糖6-磷酸水解,释放 糖至血液中。 (4) 作为分泌蛋白的运输通路 (5) 储存钙离子:肌质网膜上的Ca2+-ATP酶将细胞 质基质中Ca2+ 泵入肌质网腔中 (6) 参与甾体类激素的合成。
光镜下可见结构以外的部分 质
—→ 胞质溶胶
离心沉淀物以外部分
—→细胞质基质
可分辩结构以外的胶状物
Cytoplasmicmatrix:指除去能分辩的细胞器和颗粒以外的细胞质 部分,是一复杂的高度有组织的胶体系统。
主要成分:中间代谢有关的数千种酶类、细胞质
骨架结构。
主要特点: 细胞质基质是一个高度有序的体系; 通过弱键而相互作用处于动态平衡的结构体系。
物质跨膜运输的方式
物质跨膜运输的方式生物膜的流动性主要的是跟功能准备,也就是控制物质进出,那么物质进出的方式呢?高也好低也好,是指运输的离子或小分子本身的浓度,而不是他们所处的溶液的浓度。
这两种运输方式的动力都来自于细胞内外物质的浓度差(渗透压)自由扩散:物质通过简单的扩散作用进入到细胞里,不需要能量,不需要载体。
影响因素:运输速率取决于浓度差。
浓度差越大运输速率越快协助扩散:进出细胞的物质借助载体蛋白的扩散,不需要消耗能量,需要载体。
影响因素:运输速率取决于浓度差,当速率增加到一定程度时,不再增加,因为受到载体蛋白的种类和树立狼的限制载体蛋白具有特异性和饱和性顺浓度梯度:“由高到低”逆浓度梯度:“由低到高”运输速率动力来自于浓度差,因为逆浓度梯度运输没有那个动力,就只能自己用能量。
能量:凡是能影响到能量的因素都能影响主动运输,影响酶也不行。
一、跨膜运输的方式1、小分子(1)主动运输需要才主动要!是主动出击。
得花钱得主动唠嗑,得花钱,所以需要能量。
同时主动运输很麻烦,追错人了很麻烦,所以我需要识别,所以必须要载体蛋白,因为载体蛋白是有特异性的,可以识别。
请安检必须花钱,这样就可以逆浓度梯度运输。
OK?大概就是这样一个感觉,细胞内浓度为纵轴,横轴是细胞外浓度前面那一段就是被动运输,上面的就是主动运输,由于载体有限,所以也有一个饱和点。
这个能量就是ATP任何会影响到ATP产生的事儿和供给ATP的事儿全能影响到主动运输。
比如说氧气浓度,只能影响到主动运输。
主动运输的意义:主动运输保证了细胞生命活动的需要、摄取、积累物质的同时不断排出代谢废物,从而保证了细胞内各种成分的相对稳定,保证了生命活动的正常运行。
主动运输也好,自由扩散也好,都可进可出,不仅消耗,还要排出,被动运输先往出排,请神容易送神难,只有花钱消灾,给你两百块钱,妹钱了,滚吧。
葡萄糖进入除了红细胞以外的其他细胞膜,氨基酸通过细胞膜,钠离子进入细胞内介其实是协助扩散啊,不能草率的给离子总结。
南开大学细胞生物学7第七章 线粒体和叶绿体 复习题
第七章线粒体和叶绿体学习要求:掌握线粒体的分离与鉴定、结构与功能的知识。
掌握氧化磷酸化的过程原理和区别,掌握线粒体和叶绿体蛋白质合成及其转运知识点。
理解线粒体与叶绿体的半自主性及其增殖与起源的相关知识。
了解叶绿体的结构和功能。
本章的难点与重点:氧化磷酸化的机制;线粒体和叶绿体蛋白的运送与装配。
基本概念:呼吸链:也称电子传递链,是位于线粒体内膜上的有一系列电子传递提案一定顺序排列起来形成的呼吸电子传递轨道。
电子传递体是一些氧化还原迅速而可逆的分子,其在电子传递链中是按氧化还原电位由低到高的顺序依次排列的。
呼吸底物氧化分解过程脱出的电子经呼吸电子传递链最终传递给分子氧,将氧还原成水。
氧化磷酸化:呼吸链上氧化作用释放出的能量与ADP的磷酸化作用偶联起来形成ATP的过程称为氧化磷酸化。
因此氧化磷酸化特指呼吸链上磷酸化作用,有别于底物水平的磷酸化和光合磷酸化。
ATP合成酶:又称为F1F0-ATP酶,广泛存在于线粒体、叶绿体、异养菌和光合细菌中,是生物体能量转换的核心酶。
该酶分别位于线粒体内膜、类囊体膜或质膜上,是跨膜的通道蛋白,参与氧化磷酸化和光合磷酸化,在跨膜质子动力势的推动下,或者说在他的引导下,质子通过膜来驱动从ADP和无机磷合成ATP。
化学渗透假说:是1961年由Mitchell等提出的,用来解释氧化磷酸化耦连机理学说。
该假说的主要内容是:呼吸链的各组分在线粒体内膜中的分布式不对称的,当高能电子在膜中沿呼吸链传递时,所释放的能量能将H+从膜基质侧泵至膜间隙,由于膜对质子是不通透的,从而使膜间隙的H+浓度高于基质,因而在内膜的两侧形成电化学质子梯度。
在这个梯度驱动下,H+穿过内膜上的ATP合成酶流回到基质中,其能量促使ADP和Pi合成ATP,从而使体内能源物质氧化释放的化学能通过转变成渗透后,再转移到ATP中的过程。
半自主性细胞器:指线粒体和叶绿体两种细胞器具有自我增殖所需要的基本组分,具有独立进行转录和翻译的功能;但两种细胞器基因组信息量是有限的,绝大多数蛋白质是由核基因组编码,在细胞质核糖体上合成后转运至之,即两种细胞器的自主性是有限的,基因在转录和翻译过程中在很大程度上要依赖于核质遗传系统,故称为半自主性细胞器。
细胞生物学总结(复习重点)——7.内膜系统、蛋白质分选、膜泡运输
1、细胞质基质:真核细胞的细胞质中除去细胞器和内含物以外的、较为均质半透明的液态胶状物称为细胞质基质或胞质溶胶。
4、内膜系统:细胞内在结构、功能乃至发生上相关的、由膜围绕的细胞器或细胞结构的统称,主要包括内质网、高尔基体、溶酶体、胞内体、分泌泡等。
2、微粒体:为了研究ER的功能,常需要分离ER膜,用离心分离的方法将组织或细胞匀浆,经低速离心去除核及线粒体后,再经超速离心,破碎ER的片段又封合为许多小囊泡(直径约为100nm),这就是微粒体。
3、糙面内质网:细胞质内有一些形状大小略不相同的小管、小囊连接成网状,集中在胞质中,故称为内质网。
内质网膜的外表面附有核糖体颗粒,则为糙面内质网,为蛋白质合成的部位。
核糖体附着的膜系多为扁囊单位成分,普遍存在于分泌蛋白质的细胞中,其数量随细胞而异,越是分泌旺盛的细胞中越多。
5、分子伴侣:细胞中,这类蛋白能识别正在合成的多肽或部分折叠的多肽,并与多肽的一定部位相结合,帮助这些多肽的转移、折叠或组装,但其本身并不参与最终产物的形成。
6、溶酶体:溶酶体几乎存在于所有的动物细胞中,是由单层膜围绕、内含多种酸性水解酶类、形态不一、执行不同生理功能的囊泡状细胞器,主要功能是进行细胞内的消化作用,在维持细胞正常代谢活动及防御方面起重要作用。
7、残余小体:在正常情况下,被吞噬的物质在次级溶酶体内进行消化作用,消化完成,形成的小分子物质可通过膜上的载体蛋白转运至细胞质中,供细胞代谢用,不能消化的残渣仍留在溶酶体内,此时的溶酶体称为残余小体或三级溶酶体或后溶酶体。
残余小体有些可通过外排作用排出细胞,有些则积累在细胞内不被排出,如表皮细胞的老年斑、肝细胞的脂褐质。
8、蛋白质分选:细胞中绝大多数蛋白质均在细胞质基质中的核糖体上开始合成,随后或在细胞质基质中或转至糙面内质网上继续合成,然后,通过不同途径转运到细胞的特定部位并装配成结构与功能的复合体,参与细胞的生命活动的过程。
又称定向转运。
细胞生物学课件英文版-物质跨膜运输
The Na+/K+-ATPase pump
The Movement of Substances Across Cell Membranes (14)
• Other Ion Transport Systems
– The Na+/K+ ATPase (sodium-potassium pump)requires K+ outside, Na+ inside, and is inhibited by ouabain.
– The ratio of Na+:K+ pumped is 3:2.
– The ATPase is a P-type pump, in which phosphorylation causes changes in conformation and ion affinity that allow transport against gradients.
– Insulin stimulates glucose uptake by causing the insertion into the cell membrane of vesicles containing preformed glucose transporters.
The Glucose Transporter
The Movement of Substances Across Cell Membranes (6)
细胞生物学物质的跨膜运输
细胞生物学物质的跨膜运输物质跨膜转运主要有3种途径:被动运输、主动运输、胞吞与胞吐作用(膜泡运输)。
第一节膜转运蛋白与小分子物质的跨膜运输一、脂双层的不透性和膜转运蛋白细胞膜上存在2类主要的转运蛋白,即:载体蛋白(carrier protein)和通道蛋白(channel protein)。
载体蛋白和通道蛋白识别转运物质的方式不同:载体蛋白只允许与其结合部位相适合的溶质分子通过,而且每次转运都发生自身构象的改变;通道蛋白主要根据溶质大小和电荷进行辨别,通道开放时,足够小和带适当电荷的溶质就能通过。
(一)载体蛋白及其功能载体蛋白为多次跨膜蛋白,又称做载体(carrier)、通透酶和转运器(transporter),能够与特定溶质结合,通过自身构象的变化,将与它结合的溶质转移到膜的另一侧。
载体蛋白既可以执行被动运输、也可执行主动运输的功能。
(二)通道蛋白及其功能通道蛋白有3种类型:离子通道、孔蛋白、水孔蛋白(AQP)。
只介导被动运输。
1. 选择性离子通道,具有如下显着特征:离子选择性(相对的)转运离子速率高没有饱和值大多数具门控性分为:电压门通道、配体门通道、应力激活通道电位门通道举例:电位门通道(voltage gated channel)是对细胞内或细胞外特异离子浓度发生变化时,或对其他刺激引起膜电位变化时,致使其构象变化,“门”打开。
如:神经肌肉接点由Ach门控通道开放而出现终板电位时,这个电位改变可使相邻的肌细胞膜中存在的电位门Na+通道和K+通道相继激活(即通道开放),引起肌细胞动作电位;动作电位传至肌质网,Ca2+通道打开引起Ca2+外流,引发肌肉收缩。
配体门通道举例——乙酰胆碱门通道N型乙酰胆碱受体是目前了解较多的一类配体门通道。
它是由4种不同的亚单位组成的5聚体,总分子量约为290kd。
亚单位通过氢键等非共价键,形成一个结构为α2βγδ的梅花状通道样结构,其中的两个α亚单位是同两分子Ach相结合的部位。
细胞生物学笔记-细胞膜及跨膜运输
特性流动性存在状态液晶态——既具有固态的有序性,又有液态的流动性形式★ 胆固醇的含量:虽可稳定相变温度,但多↓ ★ 脂肪酸链的长短和饱和程度:长↓,短↑★ 卵磷脂、鞘磷脂的比值:卵、鞘占膜脂的50% △卵磷脂:含不饱和脂肪酸程度高 ↑ △鞘磷脂:含 饱和 脂肪酸程度高 ↓ ★ 膜蛋白的含量(内在蛋白):类似胆固醇 影响意义★使膜具有缓冲作用,不易破裂 ★有利于内在蛋白作用发挥★有利于膜的正常分裂及吞噬、吞饮作用发挥不对称性◆ 外层:胆固醇、磷脂酰胆碱(PC)、鞘磷脂(SM)含量多。
①由于碳氢链长互相凝集,伸至全膜; ②三种成分亲合力强,影响流动。
◆ 内层:磷脂酰乙醇胺(PE)、磷脂酰丝氨酸(PS)、磷脂酰肌醇(PI)含量多。
上述三种成份头部基团带较强的负电荷,所以细胞内侧负电荷大于细胞外侧。
膜脂的不对称性膜蛋白不对称性◆糖蛋白、糖脂都分布在细胞膜外表面。
◆细胞内膜系统上的糖蛋白都位于膜腔内侧面。
膜糖类不对称性45%膜糖类2-5% 识别 稳定 保护成分膜 55%胆固醇:占膜脂1/3磷脂:占膜脂2/3糖脂:占2%左右磷脂酰胆碱 (卵磷脂PC ) 磷脂酰乙醇胺 (脑磷脂PE ) 磷脂酰丝氨酸 (PS ) 磷脂酰肌醇 (PI ) 鞘磷脂 (SM )糖蛋白:占膜糖类90%。
糖 脂:量少。
膜内在蛋白(整合、镶嵌、跨膜)脂锚定蛋白(脂连接蛋白) 占膜蛋白的70-80% 镶嵌于脂质双层中间 主要是跨膜蛋白占膜蛋白的20-30% 主要位于胞质面 细胞外表面很少 位于膜的两侧,与子分子结合 在细胞膜外表面共同构成―细胞外被‖ 或称―糖萼‖◆ 侧向扩散 ◆ 翻转运动◆ 旋转运动 ◆ 弯曲运动 ◆ 伸缩振荡细胞膜概念:包围在细胞质表面的一层薄膜。
又称质膜。
将细胞中生命物质与外界环境分隔开,维持细胞特有内环境。
功能膜 脂膜蛋白细胞膜的功能● “界膜”,对细胞起保护作用,为细胞提供生命活动的内环境 ● 内外物质交换和能量传递 ● 细胞识别与信息传递 ● 催化和调节生命代谢活动 ● 形成细胞表面特化结构 ◆ 极性亲水头部:磷酸、磷脂酰碱基(胆碱)非极性疏水尾部:两条非极性的、疏水的脂肪酸烃链◆ 双层排列:称―脂质双层‖(lipid bilayer )◆ 磷脂分子亲水头部都向膜的内外表面,疏水尾部向膜的中央 通常脂质双分子层又称为―双亲分子‖● 结 构 (以磷脂分子为例)◆ 构成生物膜的骨架◆ 膜的流动为膜的运动、分裂、物质交换提供了保证和便利 ◆ 膜脂的双亲性对进出细胞的物质起选择和屏障作用 ● 功 能◆ 特 点● 埋在脂质双层内的氨基酸都是疏水的。
《细胞生物学》教学课件07内膜系统
细胞内的代谢产物如蛋白质、核酸等可被溶酶体降解为小分子物质,再通过细胞膜上的转运 蛋白转运至细胞外。
通过细胞膜上的转运蛋白直接转运
某些代谢产物如葡萄糖、氨基酸等可通过细胞膜上的特定转运蛋白直接转运至细胞外。
05
内膜系统异常与疾病关系
遗传因素导致内膜系统异常
基因突变
某些基因突变可能导致内膜系统蛋白 结构和功能异常,进而引发疾病。
《细胞生物学》教学课件 07内膜系统
பைடு நூலகம்录
• 内膜系统概述 • 细胞内膜结构类型 • 内膜系统运输功能 • 内膜系统与细胞代谢关系 • 内膜系统异常与疾病关系 • 实验技术与方法在内膜系统研究中应用
01
内膜系统概述
定义与功能
定义
内膜系统是指细胞内部由一系列膜 结构组成的复杂网络,包括内质网、 高尔基体、溶酶体、过氧化物酶体 等。
02
03
溶酶体
含有多种水解酶的单层膜囊泡, 参与细胞内消化和自噬过程。
04
研究历史与现状
研究历史
内膜系统的研究始于20世纪初,随着细胞生物学和分子生物学的发展,对内膜系统的结构和功能有了更深入的认识。
研究现状
目前,内膜系统的研究已经成为细胞生物学领域的热点之一,涉及内膜系统的结构、功能、调控以及与疾病的关系 等方面。同时,随着新技术的发展和应用,如超分辨显微镜技术、基因编辑技术等,为内膜系统的研究提供了更多 的手段和方法。
能量转换与物质合成场所
线粒体内膜
01
氧化磷酸化产生ATP的主要场所,电子传递链和ATP合成酶复合
物位于此。
叶绿体内膜
02
光合作用中光能转换为化学能的场所,光合色素和光合酶复合
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(一)离子载体(ionophore)
• 是疏水性的小分子,可溶于双脂层,多为微生物合成,
是微生物防御或与其它物种竞争的武器。
• 分为两类:
- 可 动 离 子 载 体 ( mobile ion carrier )
:如缬
氨 霉 素(valinomycin)是一种由三个重复部分构成的环
Gramicidin A an antibiotic that acts as an ion pore.
短杆菌肽由15个疏 水氨基酸构成的短 肽,2 分子形成一个 跨膜通道
湖北医药学院生物教研室曾凡龙2011 细胞生物学第七章跨膜运输
短杆菌肽A离子载体作用机制
短杆菌肽 A(gramicidin A)是一种形成通道的离子载体,它具有疏水的侧链, 两个分子在一起形成跨膜的通道。 它能 够有选择地将单价阳离子顺电化学梯度通过膜,可被短杆菌肽 A离子通道运输的阳离子有∶H+ 〉NH4+〉K+
形分子,能顺浓 度梯度转运K+。 DNP和FCCP可转运H+。
- 通 道 离 子 载 体 ( channel former ) : 如 短 杆 菌
肽 A(granmicidin),是由15个疏水氨基酸构成的短肽,
2分子形成一 个跨膜通道,有选择的使单价阳离子如H+、
Na+、K+按化学梯度通过膜。
湖北医药学院生物教研室曾凡龙2011 细胞生物学第七章跨膜运输
ቤተ መጻሕፍቲ ባይዱ湖北医药学院生物教研室曾凡龙2011 细胞生物学第七章跨膜运输
• 细胞膜上存在两类主要的转运蛋白,即:载体蛋 白( carrier protein ) 和 通 道 蛋 白 ( channel protein)。 - 载体蛋白又称做载体(carrier)、通透酶( permease)和转运器 (transporter),有的需要能 量驱动,如:各 类ATP驱动的离子泵;有的则不需要 能量,如:缬氨酶素。 - 通道蛋白能形成亲水的通道,允许特定的溶质通过 ,所有通道蛋白均以自由扩散的方式运输溶质
湖北医药学院生物教研室曾凡龙2011 细胞生物学第七章跨膜运输
Membrane Transport Proteins
湖北医药学院生物教研室曾凡龙2011 细胞生物学第七章跨膜运输
第一节 被动运输
非电解质通过扩散跨过细胞质膜必须具备两个条 件:第一,该物质在细胞外的浓 度很高;第二,细 胞质膜必须对这种物质具有通透性。 膜对某种溶质具有透性,必须满足两个条件之一 :(1)这种物质能够直接穿过 脂双层,或是(2)膜 中有可允许该溶质通过的跨膜孔道。
离子运载的离子 载体的作用机制
缬氨霉素(valinomycin)是一种由12个氨基酸组成的环形小肽。将缬氨霉素插入脂 质 体后,通过环的疏水面与脂双层相连, 极性的内部能精确地固定K+。它在一 侧结合 湖北K+医,药然学后院向生内物侧教研移室动曾通凡过龙脂20双11层,细胞在生另物学一第侧七章将跨K膜+运释输放到细胞
湖北医药学院生物教研室曾凡龙2011 细胞生物学第七章跨膜运输
据估计细胞膜上与物质转运有关的蛋白占核基因编 码蛋白的15~30%,细胞用在物质转运方面的能量达 细胞总消耗能量的2/3。
湖北医药学院生物教研室曾凡龙2011 细胞生物学第七章跨膜运输
物质运输的范畴
细胞进行的物质运输有三种不同的范畴: • 细胞运输(cellular transport) - 这种运输主要是细胞与环境间的物质交换; • 胞内运输(intracellular transport) - 是真核生物细胞内膜结合细胞器与细胞内环境 进行的物质交换; • 转细胞运输(transcellular transport) - 这种运输是物质穿越细胞的运输。
第七章 细胞膜的物质运输
MEMBRANE TRANSPORT
湖北医药学院生物教研室曾凡龙2011 细胞生物学第七章跨膜运输
第一节、被动运输 一、简单扩散 二、协助扩散
第二节 主动运输 一、钠钾泵 二、钙离子泵 三、质子泵 四、ABC 转运器 五、协同运输
第三节、膜泡运输的 基本概念
一、吞噬作用 二、胞饮作用 三、外排作用 四、穿胞运输 五、胞内膜泡运输
湖 〉 北Na医+ 〉药L学i+。院生物教研室曾凡龙2011 细胞生物学第七章跨膜运输
(二)通道蛋白(channel protein) • 是跨膜的亲水性通道,允许适当大小的离子顺 浓度梯度通 过,故又称离子通道。 • 有些通道蛋白长期开放,如钾泄漏通道; • 有些通道蛋白平时处于关闭状态,仅在特定刺 激下才打开,又称为门通道(gated channel)。 主要有4类:电位门通道、配体门通道、环核苷 酸门通道、机械门通道。
湖北医药学院生物教研室曾凡龙2011 细胞生物学第七章跨膜运输
• 细胞质膜具有两个基本的 特性∶允许小分子物质通过 扩散穿过细胞质膜,也可以 让水通过渗透进出细胞质膜 。但是扩散和渗透是两个不 同的概念 • 扩散(diffusion)是指物质沿 着浓度梯度从半透性膜浓度 高的一侧向低浓度一侧移动 的过程,通常把这种过程称 为简单扩散。 • 渗透(osmosis)的含义则是 指水分子以及溶剂通过半透 性膜的扩散。
湖北医药学院生物教研室曾凡龙2011 细胞生物学第七章跨膜运输
湖北医药学院生物教研室曾凡龙2011 细胞生物学第七章跨膜运输
二、协助扩散 •也称促进扩散(facilitated diffusion)。 •特点 ①比自由扩散转运速率高; ②运输速率同 物质浓度成非线性关系;③特异性;饱和性。 •载体:离子载体和通道蛋白两种类型。
湖北医药学院生物教研室曾凡龙2011 细胞生物学第七章跨膜运输
一、简单扩散
• 也叫自由扩散(free diffusion)特点: - ①沿浓度梯度(或电化学梯度)扩散; - ②不 需要提供能量; - ③没有膜蛋白的协助。 • 某种物质对膜的通透性(P)可以根据它在油和 水中的分 配系数(K)及其扩散系数(D)来计 算: • P=KD/t • t为膜的厚度。
Valinomycin 缬氨霉素是一种 由三个重复部分构成的环形 分子,能顺浓度梯度转运K+ 。 DNP 和FCCP可转运H+。(
2,4-二硝基酚,Carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone羰基氰化物p-三氟甲氧基苯腙)
湖北医药学院生物教研室曾凡龙2011 细胞生物学第七章跨膜运输