SPC过程能力控制图计量型(自动生成)
SPC计量与计数型控制图表格模板(全公式未加密-自动生成结果)
+5δ
+6δ
300.000
对照输入数据
返回数据登入
子组容量 n 总组数 Count 总样本数 N
平均值 X 最大值 Max X 最小值 Min X 平均中位数 Mid X 规范上限 USL
中心限 CL 规范下限 LSL 上限值 UCL (X) 中心限 CL (X) 下限值 LCL (X) 上限值 UCL (R) 中心限 CL (R) 下限值 LCL (R) 偏度 Skewness 峰度 Kurtosis 预估不良率(PPM) 标准差 Std.Dev.= 标准差 Sigma=
Sigma分布 规范值 频率分布 正态分布
350.000
通往初始面板
X-S图及过程能力分析
X控制图
生成报告
对比其他控制图
查看并填写报告
查看X-R图
查看中位数图
250.000
200.000
150.000
100.000
50.000
0.000
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Pp= Ppk= Ca= Cp= CPU= CPL= Cpk= Grade=
9 30 270 142.9852 300.0000 40.0000 143.5000 200.0000 150.0000 100.0000 178.177 143.500 108.823 152.847 84.167 15.487 0.8966 3.7034 85484.310 34.603 28.339 0.482 0.419 13.00% 0.588 0.665 0.512 0.512 E
SPC计量型控制图(样本为5)
过程能力分析均值极差(X-R)控制图日期供应商过程信息栏统计特性描述数据值零件号数据重要趋势X 图R 图样本容量125图纸编号33工程规范下限48.0000模具编号88规格中线0.0000描述单位HRC53工程规范上限192.0000尺寸规格上公差192.000下公差48.000UCLx 116.581AVERx 111.848LCLx 107.11589总和13,981.0000下公差限48.000规格中线上公差限192.000UCLr 17.218AVERr8.160LCLr0.000超出控制线点数读数均值111.8480最大值124.0000最小值103.0000低于下控制线点数(X)0高于上控制线点数(X)0极差均值R 8.1600D 2 值(n=5) 2.3260能力指数上限(CPU)7.6157能力指数下限(CPL) 6.0666稳定过程能力指数 6.8412稳定过程能力指数 6.0666能力比率0.7908标准偏差(n-1) 4.1930标准偏差 4.1762变异 (n-17.5815变异 (n)17.4409性能指数 5.7238性能比率0.1747性能指数 5.0757控制图表现:数据无明显异控制限EQ1020TF-3773020-01JKQ-EQ1020TFWD-00MT-098洛氏硬度机工程更改水平过程能力特足!!双边控制限型零件信息部门零件名称/描述2004/9/15供方信息尺寸信息模具信息过程能力分析:模腔数质管部EQ1020TF 尾灯N/A N/A 递增趋势递减趋势点数最大长度递增链数点数最大长度递减链数102.0000104.0000106.0000108.0000110.0000112.0000114.0000116.0000118.000012345678910111213141516171819202122232425均值均值(X-图)Data Values UCLx LCLx Average X0.00002.00004.00006.00008.000010.000012.000014.000016.000018.000020.000012345678910111213141516171819202122232425极差极差(R-图)R ValueUCLrLCLrAverage R010133524231271510152025303540频数数据区间正态分布正态分布曲线。
统计过程控制SPC
0.256
1.744
3.258
0.283
1.717
3.336
0.307
1.693
3.407
0.328
1.672
3.472
0.347
1.653
3.532
0.363
1.637
3.588
0.378
1.622
3.640
0.391
1.608
3.689
0.403
1.597
3.735
SPC控制图简介
8.3:连续6点递增或递减
Six points in a row steadily increasing or
decreasing
过程均值偏移
9. 异常点原因分析的步骤
• 对于控制图所出现的异常点, 我们建议按下列順序 进行检查:
a. 取 Data 是否随机; b. 数字的读取是否准确、测试仪器是否符合
两种变异
过程预防 对过程采取行动 避免浪费、不生产
无用产品的 预防策略
偶因 始终存在 不易识别
异因 可查明特殊原因
归结为5M1E
1.3 统计过程控制的目的
• SPC的目的:建立并保持过程处于可接受的并且稳定的水平, 以确保产品和服务符合规定的要求
• 控制图。是实现上述目的所应用的主要统计工具
表征过程 当前样本 序列信息
LCL
UCL
Specification Limits (USL,LSL)
由顾客或管理层确定,表述过程的理想状态
Control Limits
(UCL,LCL)
由抽样数据计算确定,表述过程的实际状态
1.2 传统方法与过程预防策略
传统的质量检验策略
科学的过程预防策略
事后检验 浪费和不经济
未识別
识別
不控制 生产过程 控制
• 分析用控制图的目的是对收集到的一定数据进 行分析,寻找稳态。
• 控制用控制图是对实时数据进行分析,保持稳 态。
• 稳态,也称统计控制状态(state in statistical control),即过程中只有偶因没有异因的状态。
• 稳态是生产追求的目标。
4.1 稳态的统计解释(又称统计稳态)
8. 判异准则
SPC控制图应用步骤简明教程
(二)可数型数据流程能力
数据不只是通过/不通过,还知道一件产品上与多少个缺点 DPU-Defects Per Unit 每件的平均缺点数 dpu=缺点总数量/总件数 FTY=e-dpu p(d)=1-FTY
drσ ≥50%
评价 接近稳定 不太稳定
不稳定 很不稳定
6西格玛相关
(一)连续型数据的流程能力
流程的西格玛水平:Z值 Z值可以描述流程的不合格率P(d)
ZUSL =
USL-X
ZLSL =
X-LSL
Z值与不合格率P(d)对应表
(二)可区分型数据流程能力
可区分型数据:通过/不通过 一次通过率First Time Yield FTY=合格数量/总数量
当过程受控时并经过过程能力评价满足要求时, 应可以延长控制限,以满足未来过程控制的需 要。如果过程中心线偏离目标值,可能需要针 对目标值进行调整。
返回
1.抽样计划的原则:合理的子组,即:组内出现特殊原因的机会最小,组间 出现特殊原因的机会最大。(子组内的变差代表的是零件间的变差, 而子组间的变差代表的是过程的变化)。 即:观测值的个数或样本量决定了控制图反映波动的能力。
式中
R
通常用 d 2
和
S C2
来估计。
2.过程性能:过程总变差的
6
范围,式中
通过用标准差S来估计。
3.如果过程处于统计受控状态,过程能力非常接近于过程性能。当过
程的能力和性能
6
之间存在较大差别时表示有特殊原因存在。
1. CP能力指数(过程位于中心): 2. CPK能力指数(过程不位于中心):
统计过程控制(SPC)之过程控制过程能力过程性能和过程指数
统计过程控制(SPC)之过程控制过程能⼒过程性能和过程指数
统计过程控制(SPC)之过程控制/过程能⼒/过程性能和过程指数定义/说明/要求/⽬的:
能⼒是指:⼀个稳定过程中固有变差的总范围。
过程控制是指:分析某⼀过程或其输出,以便采取适当的措施来达到⼀种统计受控的状态,这种控制是对过程进⾏的控制,⽽不是事后的⾏为。
过程能⼒是指:⼀个稳定过程固有的变差的总范围,⼀般为过程固有变差的6?σ范围;对于计量型σ,对于计数型数据,通常为不合格品或不合格的平均⽐例或⽐率。
数据,其被定义为6?
c
过程能⼒指数是指:过程能⼒满⾜产品质量标准要求(规格范围等)的程度。
分布是指:描述具有稳定系统变差的⼀种输出⽅式,其中单个值是不可预测的,但⼀组单值就可形成⼀种图形,并可⽤位置、分布宽度和形状这些术语来描述。
过程控制系统的⽬的是对过程当前和将来的状态作出预测,以便对影响过程的措施做出经济合理的决定。
采⽤的总体标准差的估计⽅法的不同导致过程能⼒和过程性能之间的不同。
理解过程控制/过程能⼒/过程性能和过程指数才能最终⽐较“过程的声⾳”和“顾客的声⾳”。
检查表:。
统计过程控制SPC图
统计过程控制(SPC)图4.11.1 什么是统计过程控制图SPC图或控制图是根据定期从一个过程中抽取样本的数据而按时间序列画制的图表。
而SPC图上的“控制限”表征了党过程处在稳定状态时过程的固有变差。
控制图的功能是通过检查控制图上所描的点同控制限的关系以评估过程的稳定性。
任何表征所关注的产品或过程特性的变量(计量型数据)或属性(计数型数据)都可以被描点。
对于计量型数据,控制图通常被用于监控基于过程中心的变化,另一个单独的控制图被用于监控过程的变差。
对于计数型数据,控制图一般被用于监控抽取自过程的样本的不合格品数或不合格品率。
传统的控制图被称为“修哈特控制图”。
同时还存在其他形式的控制图,它们适用于特定的使用环境。
例如“累积和图”,由于其对变差的敏感性而用于监控过程的微小变差,“移动平均图”(不加权的或加权的)被用于表征短期变量的趋势。
4.11.2 控制图的用途SPC图用于检测过程的变化。
所描的点,它可能是一个单独的读数或统计上的数值,如样本均值,被同控制限进行比较。
在最简单的情况下,一个描点落入控制限之外可能就意味着过程发生了变化,这可能是归于“可指明的”原因。
这意味着需要对产生“失控”读数的原因进行调查,并在需要的情况下对过程进行调整。
这将在长期上有助于保持过程的稳定和改进过程。
在控制图的使用中,通过增加额外的对描点和趋势的解释准则,可以产生对过程变化更迅速的反应和对微小变化的敏感程度。
4.11.3 收益除了以可视化的方式向使用者表征数据,控制图可以帮助使用者通过区分稳定过程固有的随机变差和那些可能来自“可指明原因”(例如可指明某个特定的原因)的变差来对过程变差进行适当的反应。
对“可指明原因”变差的及时发现和纠正可有助于过程的改进。
下面是控制图在与过程相关的活动中所发挥的作用和价值。
——过程控制:计量型数据的控制图可用于探测过程中心的变化或过程的变差以引发纠正措施,进而保持或重建过程的稳定性;——过程能力分析:如果过程处于稳定状态,控制图中的数据可以随后被用于计算过程能力;——测量系统分析:与反映测量系统内部固有变差的控制限相结合,控制图可以表明某测量系统是否有足够的能力来对某过程或产品的变差进行测量。
SPC_过程能力控制
思考题:本公司的过程特性
• 质量数据:直通率,FOR,LRR(批拒收率),DR(不良率),不良品数,单 项不良品数,不良数,电流/电压值,尺寸,称重
• 制程参数:锡膏厚度,炉温(Peak温度、熔点以上保持时间),车间温、湿度 ,电批扭力,气压值,烙铁温度
• 生产数据:单位产量, Cycle Time(标准工时),耗料率/抛料率(报废率) ,结单率
特殊变异 (Special Variation) • 过程还不够稳定 • 需全检以保证质量
局部措施(Local Action) • 可改进约15%的制程问题 • 多由现场工作人员制定实施 • 一般成本较低
此过程变异在统计控制状态下, 其产品特性的分布有固定的分 布, 即: 位置、分布、形狀。
受控 vs. 失控
二、测量变差相对较小(测量系统的能力 保证)。
f(x)
68.27%
x
-1 µ +1
Normal Distribution
正
f(x)
态
分
95.45%
布
x
-2 µ +2
f(x)
-3
99.73%
x
µ
+3
正态分布
68.27%
0.135%
95.45% 99.73%
0.135%
-3σ -2σ -1σ μ
+1σ +2σ +3σ
i1
n
样本方差
样本标准差
n
2
(xi x)
S 2 i1
n 1
n
(xi x)2
S i1 n 1
为什么用样本估计总体的方差时,分母的n必须改为(n-1) ?
自由度(DF, Degree of Freedom): 指当以样本的统计量来估计总体的参数时,样本中独立或能自由变化的 数据的个数称为该统计量的自由度。
SPC八大控制图自动生成表
过程能力分析
40
115.243
35 112.500 117.500
30
25
-6δ -5δ -4δ -3δ -2δ -δ +δ +2δ +3δ +4δ +5δ +6δ
Sigma分布 规范值 频率分布 正态分布
频率 20
15
10
5 0 0.000
20.000
40.000
60.000
80.000
100.000
120.000
140.000
X
Xቤተ መጻሕፍቲ ባይዱ
117.000 116.000 115.000 114.000
规范下限 LSL 规范上限 USL
X控制图
中心限 CL
113.000 112.000 111.000 110.000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
通往初始面板
X-R图及过程能力分析
对比其他控制图 对照输入数据
生成报告
查看并填写报告
118.000
查看X-S图
查看中位数图
返回数据登入
子组容量 n 总组数 Count 总样本数 N 平均值 X 最大值 Max X 最小值 Min X 平均中位数 Mid X 规范上限 USL 中心限 CL 规范下限 LSL 上限值 UCL (X) 中心限 CL (X) 下限值 LCL (X) 上限值 UCL (R) 中心限 CL (R) 下限值 LCL (R) 偏度 Skewness 峰度 Kurtosis 预估不良率(PPM) 标准差 Std.Dev.= 标准差 Sigma= Pp= Ppk= Ca= Cp= CPU= CPL= Cpk= Grade= 5 25 125 115.2433 116.9600 112.9600 115.2572 117.5000 115.0000 112.5000 116.116 115.243 114.370 3.198 1.513 0.000 -0.1448 -0.1734 272.740 0.875 0.650 0.953 0.860 9.73% 1.281 1.157 1.406 1.157 C
SPC推广教材计量型控制图PPT课件
式中: X1 , X2 • • • •为子组内的每个测量值。n 表示子组 的样本容量
1-4、选择控制图的刻度 4-1 两个控制图的纵坐标分别用于 X 和 R 的测量值。 4-2 刻度选择 :
23.09.2020
18
接上页
对于X 图,坐标上的刻度值的最大值与最小值的差应至少为子组均值 (X)的最大值与最小值的差的2倍,对于R图坐标上的刻度值的最大值 与最小值的差应为初始阶段所遇到的最大极差(R)的2倍。 注:一个有用的建议是将 R 图的刻度值设置为 X 图刻度值的2倍。
SPC推广教材之四_计量型控制图
SPC(Statistical Process Control)
统计过程控制
23.09.2020
产品技术科
1
主要内容
课程要求
• 计量型数值和计数型数值概念 • 控制图的选择 • 四种计量型控制和适用范围 • X-R图的画法 • X-R图的分析 • X-S均值和标准差图、X -R 中位值极差
23.09.2020
6
接上页
4、确定测量系统
a 规定检测的人员、环境、方法、数量、频率、 设备或量具。
b 确保检测设备或量具本身的准确性和精密性。 5、使不必要的变差最小
确保过程按预定的方式运行
确保输入的材料符合要求
恒定的控制设定值
注:应在过程记录表上记录所有的相关事件,如: 刀具更新,新的材料批次等,有利于下一步的过 程分析。
图 、 X-MR 单值移动极差图 简介
23.09.2020
2
计数型数值和计量型数值
23.09.2020
3
控制图类型
X-R 均值和极差图
计
计
SPC-过程能力分析
统计过程控制(SPC )一、 基本概念1. 变差1.1 定义:过程的单个输出之间不可避免的差别。
1.2 分类:1.2.1 固有变差(普通变差):仅由普通原因造成的过程变差,由σR/d 2来估计。
1.2.2 特殊变差:由特殊原因造成的过程变差。
1.2.3 总变差:由于普通和特殊两个原因造成的变差,σS 估计。
2.过程2.1 定义:能产生输出—- 一种给定的产品或服务的人、设备、材料、方法和环境的组合。
过程可涉及到我们业务的各个方面,管理过程的一个有力工具,即为统计过程控制。
2.2 分类:2.2.1 受控制的过程:只存在普通原因的过程。
2.2.2 不受控制的过程:同时存在普通原因及特殊原因的过程。
又称不稳定过程。
3.过程均值: 一个特定过程的特性的测量值,分布的位置即为过程平均值,通常用X 来表示。
4.过程能力:一个稳定过程的固有变差( 6σR/d 2)的总范围.5.过程性能:一个过程总变差的总范围( 6σS ).6.正态分布:一种用于计量型数据的、连续的、对称的钟型频率分布,它是计量型数据用控制图的基础,当一组测量数据服从正态分布时,有大约68.26%的测量值落在平均值处正负一个标准差的区间内,大约95.44%的测量值将落在平均值处正负二个标准的区间内。
这些百分数是控制界限或控制图分析的基础,而且是许多过程能力确定的基础。
7.统计过程控制:使用诸如控制图等统计技术来分析过程或其输出以便采取适当的措施来达到并保持统计控制状态,从而提高过程能力。
ˆˆˆˆ8.措施8.1 定义:减小或消除变差的方法。
8.2 分类:8.2.1 局部措施:用来消除变差的特殊原因,由与过程直接相关人员实施,大约可纠正15%的过程问题。
8.2.2 对于系统采取措施:用来消除变差的普通原因,要求管理措施,以便纠正,大约可纠正85%的过程问题。
9.标准差: 过程输出的分布宽度或从过程中统计抽样值(如:子组均值)的分布宽度的量度,用希腊字母σ或字母S(用于样本标准差)表示。
SPC八大控制图自动生成表(解密)
50 171.7200 412.0000 12.0000 138.0000 200.0000 150.0000 100.0000 423.931 171.720 -80.491 309.765 94.816 0.000 0.8219 0.0099 565036.010 105.879 84.057 0.157 0.089 43.44% 0.198 0.112 0.284 0.112 E
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
程能力分析
3δ
+4δ
+5δ
+6δ
Sigma分布 规范值 频率分布 正态分布
500.000
600.000
700.000
800.000
过程能力分析
25 171.720 20 100.000 200.000
15 -2δ
-δ
+δ
+2δ
+3δ
频率
10
5
0 0.000 100.000 200.000 300.000 400.000
X
过程能力分析
对照输入数据
返回数据登入
X
规范上限 USL
中心限 CL
规范下限 LSL
上限值 UCL (X)
通往初始面板
X-MR图及过程能力分析
生成报告
查看并填写报告
450.000 400.000 350.000 30200.000 150.000
100.000
50.000 0.000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
Statistical Process Control SPC统计过程控制(第二版)
特殊原因(通常也称可查明的原因)指的是这样的因 素,它们引起的变差仅影响某些过程输出。这些因素通常 是间歇发生的、不可预测的。特殊原因的信号是:一个或 多个点超出控制界限,或在控制界限内的点出现非随机的 模式。除非变差的所有特殊原因都被识别出来并且采取了 措施,否则它们将继续以不可预测的方式来影响过程的输 出。如果存在变差的特殊原因,随着时间的推移,过程的 输出将不稳定。
17
控制图系数表
n系数 d2 1/d2 d3 m3 A2 A3 m3A2 D3 D4 A10 C2 C4 1/C4 C5 E2 B3 B4 B7 B8 A9
2 1. 128 0. 8862 0. 8931 . 0001 . 8802 . 659 1. 880
3. 267 2. 00 0. 564 0. 70791. 2533 0. 426 2. 660
许多工业过程的输出服从正态分布 (有时即使输出的数据不服从正态分布, 但其子组平均值趋向于正态分布) 。而且 正态分部是许多过程能力确定的基础。
2
数据的分布服从正态分布(μ,σ),平均值为μ,标准差为σ。
我们希望是正态分布
正态分布
3
4
控制图—过程控制的工具
1924年,美国贝尔试验室的休哈特 (W.A.shewhart)博士首创控制图, 其依据的是正态分布的重要结论。从 那时起,在美国和其他国家,尤其是 日本,成功地把控制图应用于各种过 程控制场合。经验表明:当过程出现 变差的特殊原因时,控制图能有效地 引起人们注意;控制图还能帮助人们 分析并减少由普通原因引起的变差。
下运行,可继续使用控制图作为监控工具,也可计算过程 能力。如果由于普通原因造成的变差过大,则过程不能生 产出始终如一的符合顾客要求的产品,则必须调查过程本 身,而且一般来说必须采取管理措施来改进系统。必须不 断地对过程的长期性能进行分析,通过对现行的控制图进 行周期的、系统的评审,可以完成这一工作。
统计过程控制及过程能力
过程控制和过程能力
3类(符合要求,不受控)
有相对较小的普通原因及特殊原因变差。 如果存在特殊原因已经明确但消除具影响可能不太
经济,客户可能接受这种过程状况。
4类(不符合要求,不受控)
存在过大的普通原因及特殊原因的变差。 需要进行100%检测以保障客户利益。 必须采取紧急措施使过程稳定,并减小变差。
一种在第一步就可以避免生产无用的输出,从 而避免浪费的更有效的方法是--预防
SPC强调全过程的预防!
8
基本统计概念
统计学(Statistics)
收集、整理、展示、分析解释统计资料 由样本(sample)推论母体群体(population) 能在不确定情况下作决策 是一门科学方法、决策工具
(中位数图)
计数型数据的控制图
P图(不合格品率图)
np图(不合格品数图)
c图(不合格数图)
u图(单位产品不合格数图)
47
控制图的使用策划
作控制图需要按以下步骤:
计划 资源 评估和改进
48
控制图的使用策划
要点
建立适于采取措施的环境 确定过程 确定待管理的特性
9.94 9.81 9.85 10.11 10.24 10.17 9.83 10.33 10.39 9.64
10.42 10.13 9.61 10.03 10.60 10.00 9.55 10.15 10.16 9.88
10.30 10.21 10.03 10.15 9.58 10.09 9.87 9.91 9.73 10.02
40
过程控制和过程能力
判断一个过程是否满足规格要求: 能力指数-Cpk 性能指数-Ppk
SPC过程能力分析
SPC过程能力分析简介统计过程控制(Statistical Process Control,SPC)是一种对生产过程中的变化进行监控和改进的方法,通过收集和分析过程数据,可以评估过程的稳定性和能力,帮助企业实现质量的持续改进。
本文将介绍SPC过程能力分析的概念、目的和常用的分析方法。
其中包括控制图的应用和过程能力指数的计算。
SPC过程能力分析的目的SPC过程能力分析主要用于评估和改善生产过程的能力,以确保产品质量的稳定性和一致性。
通过分析过程数据,可以判断生产过程是否处于统计控制下,并确定其能力是否能够满足产品的质量要求。
具体目的包括:1.评估过程的稳定性:通过控制图的应用,可以判断过程是否处于统计控制下,即过程数据是否在可接受的变异范围内。
2.评估过程的能力:通过计算过程能力指数,可以评估过程的能力是否满足产品质量要求,以及可能存在的改进空间。
3.改进过程的稳定性和能力:基于对过程的分析,可以制定相应的改进措施,以提高过程的稳定性和能力。
SPC过程能力分析的方法控制图的应用控制图是SPC过程能力分析中最常用的工具之一,用于监控和分析过程数据的变化。
常见的控制图包括:1.均值-范围控制图(X-bar R chart):用于监控连续型数据的均值和范围,判断过程是否处于统计控制下。
2.均值-标准差控制图(X-bar S chart):与X-bar R chart类似,用于监控连续型数据的均值和标准差。
3.离散型数据控制图(p chart、np chart、c chart、u chart):用于监控离散型数据的比例、数量或计数。
4.过程能力控制图(Cp、Cpk chart):用于评估过程的能力是否满足产品质量要求。
控制图通过将过程数据与控制限进行比较,可以判断过程是否出现特殊因素或异常情况,并及时采取措施进行改进。
过程能力指数的计算过程能力指数可以提供有关过程能力的定量指标,用于评估过程的稳定性和能力。
SPC过程能力控制
SPC过程能力控制SPC(Statistical Process Control)过程能力控制是一种用来评估和控制生产过程稳定性和一致性的统计方法。
它是质量管理领域一个重要的工具,可帮助企业监测生产过程并及时发现异常情况,以便采取相应的控制措施,确保产品符合规格要求并提供稳定可靠的质量。
SPC的核心思想是以统计学为基础,通过数据收集、分析和解释来判断生产过程是否稳定,并根据这些数据采取适当的控制措施。
它主要包括以下几个步骤:1.数据收集和整理:SPC需要收集产品质量数据,包括尺寸、重量、颜色等等。
这些数据需要按照一定的时间间隔进行收集,并以图表或表格的形式整理出来。
2.数据分析:收集到的数据需要经过统计分析,常用的方法包括平均值、标准差、直方图、散点图等。
通过分析数据,我们可以了解产品质量的分布情况,是否存在异常情况等。
3.控制限制计算:SPC通过计算控制限制来判断生产过程的稳定性。
控制限制是利用统计学理论计算出来的,有助于判断数据是否超出了正常变异范围。
4. 控制图绘制:控制图是SPC最常用的工具之一,它能直观地展示数据的变化趋势。
常用的控制图有X-bar图、R图、S图等。
控制图上会标出中心线、上下控制限以及警戒线,当数据点超出控制限时,表示生产过程出现异常情况,需要进行调整和改进。
5. 过程能力评估:SPC还可以评估生产过程的能力,即判断产品是否在规格要求范围内。
常用的评估指标包括Cp、Cpk等,它们可以帮助企业了解生产过程是否稳定,并且能否满足客户需求。
SPC的优势在于能够及时发现生产过程中的异常情况,并帮助企业采取相应的控制措施。
它可以减少废品和报废品的产生,提高生产效率和产品质量稳定性。
同时,SPC还可以提高员工参与质量控制的意识,增强企业的竞争力。
然而,要实施SPC过程能力控制也存在一些挑战和难点。
首先,数据的收集和整理需要耗费时间和人力成本,因此企业需要建立一套良好的数据收集和分析机制,并培养相关员工的能力。
spc第二版215203
范围
范围
范围
范围
但它们形成一个模型,若稳定,可以描述为一个分布
范围
范围
分布可以通过以下因素来加以区分
位置
分布宽度
范围 形状
或这些因素的组合
如果仅存在变差的普通原因, 随着时间的推移,过程的输 出形成一个稳定的分布并可 预测。
范围
如果存在变差的特殊 原因,随着时间的推 移,过程的输出不 稳定。
范围
目标值线 预测
采取措施包括
改变操作(操作者培训、变换输入材料)
或改变过程本身更基本的因素(如:修复设备、 人的交流和关系如何
或整个过程的设计——改变车间的温度和 湿度等)
或更改产品规范等
采取措施后
——应监测措施效果。 ——对输出采取措施:即对输出的不符合规范的产品 进行检测、分类(合格、报废、返工)。如果不分析过程 中的根本原因,不对过程采取校正措施或验证,这是 时间和材料的极大浪费。
统计特证数
2、样本中位数:
把收集到的统计数据按大小顺序重新排列, 排在正中的那个数就是中位数;
当n为奇数时,正中间的数只有一个,当n为偶数时, 中位数为正中两个数的算术平均值。
中位数也是表示数据集中位置的一种特征数, 只是较样本平均值所表示的数据集中位置要粗 略一些,但是可减少计算的工作量 。
一个过程控制系统可以称为一个反馈系统。
统计过程控制(SPC)就是一类反馈系统。
在这个系统中,通过我们使用统计方法,收集有关过 程性能的信息,让我们了解到过程正在做什么,离目标值 是近还是远,要对过程采取什么样的措施。同时,通过与 内、外部顾客的沟通,识别顾客不断变化的需求和期望的 信息,进而对过程采取措施,以满足顾客的要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.000 5.600
5.973 0.359
LCLx LCLr
5.711 0.000
点数最大长度 递 增 链 数 点数最大长度 递减趋势 递 减 链 数 超出控制线点数 递增趋势
X图 3 8 3 9 0
R图 3 11 3 11 0
均值(X-图) 6.3000
6.2000 6.1000
6.0000 5.9000 均值 5.8000
公司徽标 双边控制限型 地 零 模 尺 址 件 具 寸 工厂 零件号 图纸编号 模具编号 描述 尺寸规格 下公差限 IC-098 IC-998-2r3 MT-098 压制IC集成电路模具专用 上公差 0.400 下公差 规格中线 6.000 上公差限
过程能力分析均值极差(X-R)控制图
日 部 门 零件描述 工程更改水平 模 腔 数 0.400 6.400 控制限 UCLx UCLr QA IC 集成电路 Rev.3 8 单位 mm 6.235 AVERx 0.820 AVERr 过 程 信 息 栏
18 18
极差
0.5000
0.4000
0.3000 0.2000 0.1000 0.0000 1
R Value
10
9 5
5 0
3 1 1 0
0
2
UCLr
3
4
LCLr
5
6
7
8
9
101112 NhomakorabeaAverage R
13 极差值
14
15
16
17
18
19
20
21
22
23
24
25
正态分布曲线
数据区间
控制图表现: 过程能力分析:
均值 极差 备注:
Erwin Ling/mail to:erwinling@
All rights reserved by Erwin Ling.
2016/12/16
数据重要趋势
期
2017/12/16 数 据 值 100 5.6000 6.0000 6.4000 597.2800 5.9728 6.4200 5.5600 0 0 0.3592 2.0590 0.8163 0.7123 0.7643 0.7123 5.5469 0.1646 0.1638 0.0271 0.0268 0.8099 1.2347 0.7548
n 1 2 3 4 1 5.7700 6.2700 5.9300 6.0800 6.0125 0.5000 2 6.0100 6.0400 5.8800 5.9200 5.9625 0.1600
数据无明显异常,请注意观察其他可能出现的非随即情况。
过程能力不足!
3 5.7100 5.7500 5.9600 6.1900 5.9025 0.4800 4 6.1900 6.1100 5.7400 5.9600 6.0000 0.4500 5 6.4200 6.1300 5.7100 5.9600 6.0550 0.7100 6 5.9200 5.9200 5.7500 6.0500 5.9100 0.3000 7 5.8700 5.6300 5.8000 6.1200 5.8550 0.4900 8 5.8900 5.9100 6.0000 6.2100 6.0025 0.3200 9 5.9600 6.0500 6.2500 5.8900 6.0375 0.3600 10 5.9500 5.9400 6.0700 6.0200 5.9950 0.1300 11 6.1200 6.1800 6.1000 5.9500 6.0875 0.2300 12 5.9500 5.9400 6.0700 6.0000 5.9900 0.1300 13 5.8600 5.8400 6.0800 6.2400 6.0050 0.4000 14 6.1300 5.8000 5.9000 5.9300 5.9400 0.3300 15 5.8000 6.1400 5.5600 6.1700 5.9175 0.6100 16 6.1300 5.8000 5.9000 5.9300 5.9400 0.3300 17 5.8600 5.8400 6.0800 6.2400 6.0050 0.4000 18 5.9500 5.9400 6.0700 6.0000 5.9900 0.1300 19 6.1200 6.1800 6.1000 5.9500 6.0875 0.2300 20 6.0300 5.8900 5.9700 6.0500 5.9850 0.1600 21 6.0300 5.9400 5.9500 5.7800 5.9250 0.2500 22 6.1500 6.3200 5.7500 5.9700 6.0475 0.5700 23 5.7000 6.0800 5.6100 5.8500 5.8100 0.4700 24 6.1700 5.8300 5.7800 5.9500 5.9325 0.3900 25 5.7800 5.7500 5.9700 6.2000 5.9250 0.4500
5.7000
5.6000 5.5000 5.4000 1
Data Values
2
UCLx
3
LCLx
4
5
Average X
6
7
8
9
10
11
12
13 数据点
14
15
16
17
18
19
20
21
22
23
24
25
正态分布
35 频数 30
极差(R-图)
30
0.9000
0.8000
25
0.7000
0.6000
20 15 15
统计特性描述 样本容量 工程规范下限 (LSL) 规格中线 工程规范上限 (USL) 总和 读数均值 (X) 最大值 最小值 低于下控制线点数(X) 高于上控制线点数(X) 极差均值R D2 值 (n=4) 能力指数上限(CPU) 能力指数下限 (CPL) 稳定过程能力指数 (Cp) 稳定过程能力指数 (Cpk) 能力比率 (CR) 标准偏差(n-1) 标准偏差 (n) 变异 (n-1) 变异 (n) 性能指数 (PP) 性能比率 (PR) 性能指数 (Ppk)