高中数学经典解题技巧和方法:(函数、基本初等函数的图象与性质)

合集下载

高中函数怎么学 有哪些简单方法

高中函数怎么学 有哪些简单方法

高中函数怎么学有哪些简单方法
很多学生想知道高中函数要怎幺学,有哪些简单的学习方法,下面小编为大家介绍一下!
 如何才能学好高中函数一、学数学就像玩游戏,想玩好游戏,当然先要熟悉游戏规则。

 想学好函数,第一要牢固掌握基本定义及对应的图像特征,如定义域,值域,奇偶性,单调性,周期性,对称轴等。

很多同学都进入一个学习函数的误区,认为只要掌握好的做题方法就能学好数学,其实应该首先应当掌握最基本的定义,在此基础上才能学好做题的方法,所有的做题方法要成立归根结底都必须从基本定义出发,最好掌握这些定义和性质的代数表达以及图像特征。

 二、牢记几种基本初等函数及其相关性质、图象、变换。

 中学就那幺几种基本初等函数:一次函数(直线方程)、二次函数、反比例函数、指数函数、对数函数、正弦余弦函数、正切余切函数,所有的函数题都是围绕这些函数来出的,只是形式不同而已,最终都能靠基本知识解决。

还有三种函数,尽管课本上没有,但是在高考以及自主招生考试中都经常出现的对勾函数:y=ax+b/x,含有绝对值的函数,三次函数。

这些函数的定义域、值域、单调性、奇偶性等性质和图像等各方面的特征都要好好研究。

 三、图像是函数之魂!要想学好做好函数题,必须充分关注函数图象问题。

 翻阅历年高考函数题,有一个算一个,几乎百分之八十的函数问题都与图像有关。

这就要求童鞋们在学习函数时多多关注函数的图像,要会作图、会。

基本初等函数的图像与性质

基本初等函数的图像与性质

在数学的发展过程中,形成了最简单最常用的六类函数,即 常数函数 、 幂函数、 指数函数 、 对数函数 、 三角函数 与 反三角函数 ,这六类函数称为 基本初等函数。

一、常数函数y = c 或 f ( x ) = c , x ∈ R ,其中 c 是常数。

它的图像是通过点 (0,c),且平行 x轴的直线,如下图所示:常数函数的图像常数函数的性质:1、常数函数是有界函数,周期函数(没有最小的正周期)、偶函数;2、常数函数既是单调增加函数又是单调减少函数,特别的当 c = 0 时,它还是奇函数。

二、幂函数1、形如 y = x^a 的函数是幂函数,其中 a 是实数 。

幂函数图(1)2、常见幂函数的图像:幂函数图(2)注:画幂函数图像时,先画第一象限的部分,在根据函数奇偶性完成整个图像。

3、幂函数的性质:① 幂函数的图像最多只能同时出现在两个象限,且不经过第四象限;如图与坐标轴相交,则交点一定是坐标原点 。

② 所有幂函数在 (0,+∞)上都有定义,并且图像都经过点 (1,1)。

③ 若 a > 0 , 幂函数图像都经过点 (0,0)和(1,1),在第一象限内递增;若 a三、指数函数1、一般地,函数 y = a^x (a > 0 且 a ≠ 1)叫做 指数函数 ,自变量 x 叫做 指数 ,a 叫做 底数 ,函数的定义域是 R 。

2、指数函数的图像:指数函数图象3、指数函数的性质:① 指数函数 y = a^x (a > 0 且 a ≠ 1)的函数值恒大于零 ,定义域为 R ,值域为(0,+∞);② 指数函数 y = a^x (a > 0 且 a ≠ 1)的图像经过点 (0,1);③ 指数函数 y = a^x (a > 1)在 R 上递增 ,指数函数 y = a^x (0四、对数函数1、对数及其运算:一般地,如果 a (a > 0 , a ≠ 1)的 b 次幂等于 N ,即 a^b = N,那么 b 叫做以 a 为底N 的 对数 ;记作: log aN = b , 其中 a 叫做对数的 底数 , N 叫做 真数 。

高考数学中基本初等函数的图像及性质总结

高考数学中基本初等函数的图像及性质总结

高考数学中基本初等函数的图像及性质总结数学作为一门基础学科,在高中阶段的学习中占据非常重要的地位,而在高考数学中,基本初等函数更是赫赫有名。

基本初等函数包括常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数等,除了常数函数外,每个函数都有其特点的图像及性质,下面将对其进行总结。

幂函数幂函数是指函数y=x^a,其中a为常数,当a>0时,函数的图像经过(1,1),在第一象限上单调递增;当a<0时,在第一象限上单调递减。

当a=1时,函数为y=x,图像为一条直线。

此外,当a为偶数时,函数在第一象限上为关于y轴对称的,当a为奇数时,函数在第一象限上为关于坐标原点对称的。

指数函数指数函数是指函数y=a^x,其中a为正实数且不等于1。

当a>1时,函数的图像在x轴右侧单调递增,当0<a<1时,在x轴右侧单调递减。

其图像在y轴上通过(0,1),在x轴上不存在渐近线。

对数函数对数函数是指函数y=loga x,其中a为正实数且不等于1,且x>0。

当a>1时,函数在x轴右侧单调递增,当0<a<1时,在x轴右侧单调递减。

其图像在y轴上通过(0,0),在x轴上不存在渐近线。

三角函数三角函数包括正弦函数、余弦函数和正切函数。

正弦函数和余弦函数的图像均为周期函数,其周期为2π,其函数值均在[-1,1]之间。

正弦函数的图像在点(π/2,1)和(3π/2,-1)处取得极值;余弦函数的图像在点(0,1)和(π,-1)处取得极值。

正切函数是一个奇函数,其在点π/2、3π/2、5π/2等处有无穷大趋势。

反三角函数反三角函数包括反正弦函数、反余弦函数和反正切函数。

反正弦函数的定义域为[-1,1],值域为[-π/2,π/2];反余弦函数的定义域为[-1,1],值域为[0,π];反正切函数的定义域为实数集,值域为[-π/2,π/2]。

以上是基本初等函数的图像及性质总结,希望能够对数学学习者有所帮助。

高中数学-基本初等函数图像及性质小结

高中数学-基本初等函数图像及性质小结
奇偶性:-「要知道这些函数那
些事奇函数,那些是偶函数
周期性:
0.指数函数八
定义域:.,■‘I
有界性:
单调性:
若a>1函数单调增加;若0<a<1函数单调减少
奇偶性:
周期性:
、、亠
注意:
图形过(0,1)点暨aA0=1
直线y=0为函数图形的水平渐近线今后」"用的多 这个函数的图形,性质要记清楚
O.对数函数"司唯口几3>0卫圧1)
1、定义域::• r值域:'」‘)
有界性:
单调性:a>1时,函数单调增加;0<a<1时,函数单调减少
奇偶性:
周期性:
主要性质:与指数函数互为反函数,图形过(1,0)点,
直线x=0为函数图形的铅直渐近线
“丄「—- -e=2.7182……,无理数 经常用到以e为底的对数
基本初等函数
1•函数的五个要素:自变量,因变量,定义域,值域,对应法则
2.函数的四种特性:有界限,单调性,奇偶性,周期性复习的时候一定要从这
四个方面去研究函数。
3.每个函数的图像很重要
定义域:随a的不同而不同,但无论a取什么值,xAa在「’内总有定义 值域:随a的不同而不同 有界性:
单调性:若a>0,函数在;…内单调增加; 若a<0,函数在人-内单调减少。

高中常见函数图像及基本性质

高中常见函数图像及基本性质

常见函数性质汇总及简单评议对称变换常数函数 f (x )=b (b ∈R) 1)、y=a 和 x=a 的图像和走势2)、图象及其性质:函数f (x )的图象是平行于x 轴或与x 轴重合(垂直于y 轴)的直线一次函数 f (x )=kx +b (k ≠0,b ∈R)1)、两种常用的一次函数形式:斜截式——点斜式——2)、对斜截式而言,k 、b 的正负在直角坐标系中对应的图像走势:3)、|k|越大,图象越陡;|k|越小,图象越平缓 4)、定 义 域:R 值域:R单调性:当k>0时 ;当k<0时奇 偶 性:当b =0时,函数f (x )为奇函数;当b ≠0时,函数f (x )没有奇偶性; 反 函 数:有反函数(特殊情况下:K=±1并且b=0的时候)。

补充:反函数定义:例题:定义在r 上的函数y=f (x ); y=g (x )都有反函数,且f (x-1)和g -1(x)函数的图像关于y=x 对称,若g (5)=2016,求)=周 期 性:无 5)、一次函数与其它函数之间的练习 1、常用解题方法: xy b Of (x )=bx y Of (x )=kx +b R 2)点关于直线(点)对称,求点的坐标反比例函数 f (x )=xk(k ≠0,k 值不相等永不相交;k 越大,离坐标轴越远) 图象及其性质:永不相交,渐趋平行;当k>0时,函数f (x )的图象分别在第一、第三象限;当k<0时,函数f (x )的图象分别在第二、第四象限; 双曲线型曲线,x 轴与y 轴分别是曲线的两条渐近线; 既是中心对成图形也是轴对称图形 定 义 域:),0()0,(+∞-∞ 值 域:),0()0,(+∞-∞单 调 性:当k> 0时;当k< 0时 周 期 性:无 奇 偶 性:奇函数 反 函 数:原函数本身补充:1、反比例函数的性质2、与曲线函数的联合运用(常考查有无交点、交点围城图行的面积)——入手点常有两个——⑴直接带入,利用二次函数判别式计算未知数的取值;⑵利用斜率,数形结合判断未知数取值(计算面积基本方法也基于此)3、反函数变形(如右图) 1)、y=1/(x-2)和y=1/x-2的图像移动比较 2)、y=1/(-x)和y=-(1/x )图像移动比较3)、f (x )=dcx bax ++ (c ≠0且 d ≠0)(补充一下分离常数)(对比标准反比例函数,总结各项内容)二次函数一般式:)0()(2≠++=a c bx ax x f 顶点式:)0()()(2≠+-=a h k x a x f 两根式:)0)()(()(21≠--=a x x x x a x f图象及其性质:①图形为抛物线,对称轴为 ,顶点坐标为②当0>a 时,开口向上,有最低点 当0<a 时。

高数总结:基本初等函数图像及其性质

高数总结:基本初等函数图像及其性质

⾼数总结:基本初等函数图像及其性质基本初等函数图像及其性质⼀、常值函数(也称常数函数)y =C(其中C 为常数);α1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。

且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。

函数的定义域为除去x=0的所有实数; 3)当α为正有理数n4)如果m>n 图形于x 轴相切,如果m5)当α为负有理数时,n 为偶数时,函数的定义域为⼤于零的⼀切实数;n 为奇数时,定义域为去除x=0以外的⼀切实数。

三、指数函数xa y =(x 是⾃变量,a 是常数且0>a ,1≠a ),定义域是R ;[⽆界函数]1.指数函数的图象:2.1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上⽅; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。

1(3.(选,补充)指数函数值的⼤⼩⽐较*N ∈a ;a.底数互为倒数的两个指数函数x a x f =)(,xa x f ?=1)(的函数图像关于y 轴对称。

b.1.当1>a 时,a 值越⼤,xa y =的图像越靠近y 轴;b.2.当10<的图像越远离y 轴。

4.指数的运算法则(公式);a.整数指数幂的运算性质),,0(Q n m a ∈≥;(1) n m n m a a a +=?m n m aa a -=÷(3)()()mn nm n m aa a ==(4) ()nnnba ab =b.根式的性质; (1)()a a nn= ; (2)当n 为奇数时,a a nn =当n 为偶数时,<-≥==)0(0)(a a a a a a nnc.分数指数幂;(1))1,,,0(*>∈>=n Z n m a a a n m n m(2))1,,,0(11*>∈>==-n Z n m a a amnm nm yxf x xxx g ?=1)(四、对数函数x y a log =(a 是常数且1,0≠>a a ),定义域),0(+∞∈x [⽆界]1.对数的概念:如果a(a >0,a ≠1)的b 次幂等于N ,就是 N a b=,那么数b 叫做以a 为底N 的对数,记作b N a =log ,其中a 叫做对数的底数,N 叫做真数,式⼦N a log 叫做对数式。

函数解题方法和技巧

函数解题方法和技巧

函数解题方法和技巧函数是数学中的重要概念,也是解题中常用的工具之一。

在学习和应用函数时,需要掌握一些方法和技巧,以提高解题效率和准确性。

一、函数的基本概念函数是一种特殊的关系,它将一个数集中的每个元素都对应到另一个数集中的唯一元素上。

通常用 f(x) 表示函数,其中 x 是自变量,f(x) 是函数值或因变量。

函数的定义域是自变量的取值范围,值域是函数值的取值范围。

函数可以用图像表示,图像是自变量和因变量构成的平面上的点的集合,通常用坐标系表示。

二、函数的分类函数可以按照不同的特点进行分类,下面介绍几种常见的分类方式。

1.按照定义域和值域的性质分类①定义域和值域都是实数集的函数,称为实函数。

②定义域和值域都是正实数集的函数,称为正函数。

③定义域和值域都是负实数集的函数,称为负函数。

④定义域和值域都是自然数集的函数,称为自然数函数。

⑤定义域和值域都是整数集的函数,称为整数函数。

2.按照函数值的正负性分类①函数值恒为正数或零的函数,称为非负函数。

②函数值恒为负数或零的函数,称为非正函数。

3.按照函数的单调性分类①函数单调递增,即函数值随自变量的增大而增大。

②函数单调递减,即函数值随自变量的增大而减小。

③函数单调不变,即函数值不随自变量的变化而变化。

4.按照函数的奇偶性分类①函数关于原点对称,即 f(-x)=-f(x),称为奇函数。

②函数关于纵坐标轴对称,即 f(-x)=f(x),称为偶函数。

三、函数的运算函数之间可以进行加、减、乘、除、复合等运算,下面介绍几种常见的运算。

1.函数的加减运算设 f(x) 和 g(x) 是两个函数,它们的定义域相同,则它们的和差函数分别为:f(x)+g(x) 和 f(x)-g(x)2.函数的乘法运算设 f(x) 和 g(x) 是两个函数,它们的定义域相同,则它们的积函数为:f(x)g(x)3.函数的除法运算设 f(x) 和 g(x) 是两个函数,且 g(x) 不为零,则它们的商函数为:f(x)/g(x)4.函数的复合运算设 f(x) 和 g(x) 是两个函数,它们的定义域和值域满足 g(x) 的值域是 f(x) 的定义域,则它们的复合函数为:f(g(x)) 或 g(f(x))四、函数的图像函数的图像是自变量和因变量构成的平面上的点的集合,它可以用坐标系表示。

高中数学函数图像题解题技巧

高中数学函数图像题解题技巧

高中数学函数图像题解题技巧在高中数学中,函数图像题是一个非常重要的考点。

理解和掌握函数图像的特点和性质,能够帮助学生更好地解决相关的问题。

本文将介绍一些解题技巧,并通过具体的题目来说明。

一、函数图像的基本性质在解决函数图像题之前,我们首先需要了解函数图像的基本性质。

对于一般的函数y=f(x),我们可以通过以下几个方面来分析和描述它的图像:1. 定义域和值域:确定函数的定义域和值域,可以帮助我们限定函数图像的范围。

2. 对称性:判断函数是否具有对称性,比如奇偶性、周期性等。

对称性可以帮助我们简化图像的绘制和分析。

3. 单调性:判断函数的单调性,可以通过导数的正负性来确定。

单调性可以帮助我们确定函数图像的增减趋势。

4. 零点和极值点:求解函数的零点和极值点,可以帮助我们确定图像的交点和极值点的位置。

5. 渐近线:确定函数的水平渐近线和垂直渐近线,可以帮助我们更好地理解函数图像的趋势和特点。

二、解题技巧1. 利用函数的性质在解决函数图像题时,我们可以利用函数的性质来简化问题。

例如,对于奇偶函数,我们只需要绘制函数图像的一个对称部分,然后利用对称性来得到整个函数图像。

对于周期函数,我们只需要绘制一个周期内的函数图像,然后根据周期性来得到整个函数图像。

2. 利用变量的取值范围在解决函数图像题时,我们可以利用变量的取值范围来确定函数图像的特点。

例如,对于二次函数y=ax^2+bx+c,当a>0时,函数图像开口向上,当a<0时,函数图像开口向下。

当a=0时,函数图像是一条直线。

通过对变量的取值范围进行分析,可以帮助我们更好地理解函数图像的特点。

三、具体题目分析下面通过几个具体的题目来说明函数图像题的解题技巧。

例题1:已知函数y=x^2的图像上有一点A(-2,4),求点A关于y轴的对称点B 的坐标。

解析:根据函数y=x^2的对称性,点B的横坐标为2,纵坐标与点A相同,即B(2,4)。

通过对函数图像的对称性的分析,我们可以简化问题的解答过程。

高中数学专题 微专题2 基本初等函数、函数的应用

高中数学专题 微专题2 基本初等函数、函数的应用

A.y=1.002x
1
C.y= x 3-5
√B.y=log7x+1
D.y=5+sin x
由题意,函数在(10,1 000)上单调递增,故D不符合题意,排除D;
1
因为当x∈(10,125)时,y=x 3-5<0,故C不符合题意,排除C;
当x=1 000时,1.0021 000≈7.37>5,故y=1.002x不符合题意,排除A;
1 2 3 4 5 6 7 8 9 10 11 12
对于D选项,当T=360,P=729时,lg P= lg 729∈(lg 102,lg 103),即lg P∈(2,3),根 据图象可知,二氧化碳处于超临界状态.
1 2 3 4 5 6 7 8 9 10 11 12
(1,+∞)上单调递减,所以由复合函数的单调性可知,f(x)在(-∞,
1)上单调递增,在(1,+∞)上单调递减.易知f(x)的图象关于直线x=1
对称,所以
c=f
6
2

f
2-
6
2


2 2
<2 -
6 2<
3 2
<1 ,
所以
f
2
2
<f
2-
26<f
23,所以
b>c>a.
跟则实踪数训a练的1取值(1)范(2围02是3·广东联考)已知函数f(x)=2-x,12xx≥,0x<,0,若f(a)<f(6-a),
PART TWO
热点突破
1.(2023·通州模拟)下列函数中,是奇函数且在定义域内单调递增的是
A.y=1x C.y=ex+e-x
√B.y=x3

高中数学根据函数图像解题技巧分享

高中数学根据函数图像解题技巧分享

高中数学根据函数图像解题技巧分享在高中数学中,函数图像是一个重要的研究对象,它不仅可以帮助我们理解函数的性质,还可以通过观察图像来解决各种问题。

本文将分享一些根据函数图像解题的技巧,帮助同学们更好地应对数学考试。

一、函数图像的基本性质首先,我们需要了解函数图像的基本性质。

对于一元函数,我们可以通过观察图像来判断其单调性、奇偶性、周期性等。

例如,对于函数f(x),如果图像在某个区间上是上升的,那么我们可以判断该函数在该区间上是单调递增的;如果图像关于y轴对称,那么我们可以判断该函数是偶函数。

这些性质可以帮助我们更好地理解函数的特点,从而解决与函数相关的问题。

二、利用函数图像解决方程和不等式函数图像可以帮助我们解决各种方程和不等式。

例如,考虑以下方程:f(x) =g(x),其中f(x)和g(x)分别是两个函数的表达式。

如果我们能够画出f(x)和g(x)的图像,那么我们可以通过观察图像来确定方程的解。

具体来说,我们可以找到图像上两个函数相交的点,这些点就是方程的解。

同样地,对于不等式f(x) > g(x),我们可以通过观察图像来确定不等式的解集。

通过这种方法,我们可以更直观地理解方程和不等式的解集,从而提高解题效率。

三、利用函数图像解决最值问题函数图像还可以帮助我们解决最值问题。

例如,考虑以下问题:求函数f(x) =ax^2 + bx + c的最小值。

我们可以通过观察函数的图像来解决这个问题。

具体来说,我们可以找到图像上的顶点,这个顶点就是函数的最小值点。

同样地,对于求函数的最大值,我们也可以通过观察图像来解决。

通过这种方法,我们可以更直观地找到函数的最值点,从而解决最值问题。

四、利用函数图像解决应用题函数图像还可以帮助我们解决各种应用题。

例如,考虑以下问题:某商品的价格为f(x) = a/x,其中x表示销量。

如果我们能够画出函数f(x)的图像,那么我们可以通过观察图像来回答一些与销量和价格相关的问题。

高中数学经典解题技巧和方法函数基本初等函数的图象与性质

高中数学经典解题技巧和方法函数基本初等函数的图象与性质

高中数学经典的题技巧(函数、基本初等函数的图象与性质)【编者按】集合跟常用逻辑用语是高中数学考试的必考内容,而且是这几年考试的热点跟增长点,无论是期中、期末还是会考、高考,都是高中数学的必考内容之一。

因此,马博士教育网数学频道编辑部特意针对这两个部分的内容和题型总结归纳了具体的解题技巧和方法,希望能够帮助到高中的同学们,让同学们有更多、更好、更快的方法解决数学问题。

好了,下面就请同学们跟我们一起来探讨下集合跟常用逻辑用语的经典解题技巧。

首先,解答函数、基本初等函数这两个方面的问题时,先要搞清楚以下几个方面的基本概念性问题,同学们应该先把基本概念和定理完全的吃透了、弄懂了才能更好的解决问题:1.函数(1)了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。

(2)在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数。

(3)了解简单的分段函数,并能简单应用。

(4)理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义。

(5)会运用函数图象理解和研究函数的性质。

2.指数函数(1)了解指数函数模型的实际背景。

(2)理解有理指数幂的含义,了解褛指数幂的意义,掌握幂的运算。

(3)理解指数函数的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点。

(4)知道指数函数是一类重要的函数模型。

3.对数函数(1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用。

(2)理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点。

(3)知道对数函数是一类重要的函数模型。

(4)了解指数函数x y a =与对数函数log a y x =互为反函数(0,1a a >≠且)。

4.幂函数(1)了解幂函数的概念(2)结合函数12321,,,,y x y x y x y y x x =====的图象了解它们的变化情况。

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质六大基本初等函数包括常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数。

1. 常数函数:y = c,其中c是一个常数。

常数函数的图像是一条平行于x轴的直线,与y轴相距c个单位。

它没有自变量的限制,函数值始终为常数。

2. 幂函数:y = x^n,其中n是任意实数。

幂函数的图像依赖于指数n的符号及大小。

当n为正数时,随着x的增大,函数值也增大;当n为负数时,随着x的增大,函数值减小。

若n为奇数,图像穿过原点;若n为偶数,图像在原点有一个极小值或极大值。

3. 指数函数:y = a^x,其中a是一个正数且不等于1。

指数函数的图像是递增或递减的曲线。

如果a大于1,函数图像是递增的,如果a在0和1之间,函数图像是递减的。

指数函数没有定义域的限制,但其值范围从0到正无穷大。

4. 对数函数:y = log_a(x),其中a是一个正数且不等于1。

对数函数的图像与指数函数的图像是关于直线y = x对称的。

当x在0到正无穷大之间变化时,函数值从负无穷大逐渐增大到正无穷大。

对数函数的定义域为正实数,值域为负无穷大到正无穷大。

5. 三角函数:包括正弦函数y = sin(x),余弦函数y = cos(x),正切函数y = tan(x),割函数y = sec(x),余割函数y = csc(x),和余切函数y = cot(x)。

三角函数的图像是周期性的波形,沿x 轴变化。

例如,正弦函数和余弦函数的图像是在[-π, π]范围上的曲线。

正弦函数的值域在[-1, 1]之间,余弦函数的值域也在[-1, 1]之间。

6. 反三角函数:包括反正弦函数y = arcsin(x),反余弦函数y = arccos(x),反正切函数y = arctan(x),反割函数y = arcsec(x),反余割函数y = arccsc(x),和反余切函数y = arccot(x)。

反三角函数的图像是由对应的三角函数的图像上截取而来的。

高中数学基本初等函数图像及性质

高中数学基本初等函数图像及性质

高中数学基本初等函数图像和性质一次函数(0)y kx b b =+≠的图象和性质二次函数()()20f x ax bx c a =++≠的图像和性质指数函数x y a =(0,1)a a >≠图象和性质对数函数log a y x =(0,1,0)a a x >≠>图像和性质性值域 (),-∞+∞ 恒过定点 ()1,0即log 10a =单调性 在定义域上为减函数 在定义域上为增函数补充性质 “同”正“异”负正弦函数 x y sin =1.定义域:R ;2.值域:[-1,1].3.单调性:在区间[2,2]()22k k k Z ππππ-++∈内,函数单调递增;在区间3[2,2]()22k k k Z ππππ++∈()k Z ∈内,函数单调递减;4.对称性:对称轴2x k ππ=+,对称中心(,0),k k Z π∈.5.周期性:2T π=;6.奇偶性:由sin()sin x x -=-知,正弦函数是奇函数;余弦函数 x y cos =1.定义域:R.2.值域:[-1,1].3.单调性:在区间[]2,2()k k k Z πππ-∈内,函数单调递增;在区间[]2,2()k k k Z πππ+∈内,函数单调递减;4.对称性:对称轴x k π=,对称中心(,0),2k k Z ππ+∈.5.周期性:π=T ;6.奇偶性:由cos()cos x x -=知,余弦函数是偶函数;正切函数 x y tan =1.定义域:⎭⎬⎫⎩⎨⎧∈+≠z k k x x ,2|ππ; 2.值域:R3.单调性:在开区间z k k k ∈⎪⎭⎫ ⎝⎛++-ππππ2,2内,函数单调递增。

4.对称性:对称中心:(,0),2k k Z π∈,没有对称轴. 5.周期性:π=T ;6.奇偶性:由()x x tan tan -=-知,正切函数是奇函数;。

基本初等函数的图像与性质

基本初等函数的图像与性质

基本初等函数的图像与性质
基本初等函数指的是一些由定义域上的可导函数构成的集合,主要包括常用的三角函数、指数函数和对数函数。

1. 三角函数的图像:三角函数的图像具有周期性,如正弦函数的图像具有从0点开始的360°的环形结构,余弦函数的图像具有从90°点开始的360°的环形结构,正切函数的图像有两条线段相交。

2. 指数函数的图像:指数函数的图像是一条向上开口的抛物线,在图像中x轴左侧为负无穷,右侧为正无穷。

3. 对数函数的图像:对数函数的图像是一条向上开口的折线,在图像中x轴左侧为负无穷,右侧为正无穷。

基本初等函数的性质:
1. 三角函数的性质:三角函数的性质主要指的是它们的周期性、增函数性、角函数性和射线函数性。

此外它们还有一些组合性质和变换性质。

2. 指数函数的性质:指数函数的性质主要指的是它们的单调性、幂函数性和无界性。

3. 对数函数的性质:对数函数的性质主要指的是它们的对数函数性、单调性和无界性。

高中数学函数图像的分析与解题方法

高中数学函数图像的分析与解题方法

高中数学函数图像的分析与解题方法一、引言函数图像是高中数学中的重要内容,它直观地展示了函数的性质和规律。

通过对函数图像的分析,我们可以深入理解函数的特点,解决各种与函数相关的问题。

本文将介绍一些常见的函数图像分析与解题方法,帮助高中学生和他们的父母更好地理解和应用函数。

二、函数图像的基本特点1. 函数的定义域和值域:在分析函数图像之前,我们首先需要了解函数的定义域和值域。

定义域是指函数的自变量的取值范围,值域是指函数的因变量的取值范围。

通过确定函数的定义域和值域,我们可以确定函数图像的横纵坐标轴的范围。

2. 函数的奇偶性:奇函数是指满足f(-x)=-f(x)的函数,它的图像关于原点对称;偶函数是指满足f(-x)=f(x)的函数,它的图像关于y轴对称。

通过判断函数的奇偶性,我们可以简化函数图像的分析过程。

三、常见函数图像的分析与解题方法1. 一次函数一次函数的一般形式为y=ax+b,其中a和b为常数,a不为零。

一次函数的图像是一条直线,其斜率a决定了直线的倾斜程度,常数b决定了直线与y轴的交点。

例题1:已知函数y=2x+3,求函数图像的斜率和与y轴的交点。

解析:根据函数的一般形式,斜率为2,与y轴的交点为(0,3)。

因此,函数图像的斜率为2,与y轴的交点为(0,3)。

2. 二次函数二次函数的一般形式为y=ax^2+bx+c,其中a、b和c为常数,a不为零。

二次函数的图像是一个抛物线,其开口方向和开口程度由系数a的正负和绝对值大小决定。

例题2:已知函数y=x^2+2x+1,求函数图像的开口方向和顶点坐标。

解析:根据函数的一般形式,系数a为1,正数a表示抛物线开口向上,负数a表示抛物线开口向下。

顶点坐标可以通过求解二次函数的最值来得到。

对于y=x^2+2x+1,可以将其化简为y=(x+1)^2,因此顶点坐标为(-1,0)。

因此,函数图像的开口方向为向上,顶点坐标为(-1,0)。

3. 指数函数指数函数的一般形式为y=a^x,其中a为常数,且a大于0且不等于1。

函数、基本初等函数的图象与性质

函数、基本初等函数的图象与性质

()
A.-1
B.1
C.-2
D.2
解析:∵f(x+5)=f(x)且 f(-x)=-f(x),
∴f(3)=f(3-5)=f(-2)=-f(2)=-2,
f(4)=f(-1)=-f(1)=-1,
故 f(3)-f(4)=(-2)-(-1)=-1.
答案:A
题型三 函数的图象及应用
【例 3】 设函数 f(x)=2x2+xb>x+0,c x≤0, 若 f(-4)= f(0),f(-2)=-2,求关于 x 的方程 f(x)=x 的解的个数. 解:方法一:由 f(-4)=f(0),f(-2)=-2,
∵f(a)=f(b)=f(c),
由图象可知 0<a<1,1<b<10,10<c<12.
∵f(a)=f(b),∴|lg a|=|lg b|,
∴lg a=-lg b,即 lg a=lg1b⇒a=1b,
∴ab=1,10<abc=c<12,故选 C.
答案:C
题型二 函数的性质及应用
【例 2】 (2010·南京市高三调研阅试)设 f(x)是定义在 R 上的奇函数, 且满足 f(x+2)=-f(x),又当 0≤x≤1 时,f(x)=12x,则{x|f(x)= -12}=________. 解析:由已知条件,f(x+4)=-f(x+2)=f(x),则 f(x)是以 4 为周期 的周期函数. 当-1≤x≤0 时,0≤-x≤1,f(x)=-f(-x)=12x, 当 1≤x <3 时,-1≤x-2<1,f(x)=-f(x-2)=-12(x-2).

并且有 f (a) f (b) 0,那么,函数 y f (x)在区间a,b内有零点,
即存在c a,b ,使得 f (c) 0,这个c 也就是方程 f (x) 0的根。

函数、基本初等函数的图象与性质

函数、基本初等函数的图象与性质

x∈0,12
时,
f(x)=-x2,则 f(3)+f-32的值等于________.
第2讲 │ 要点热点探究
(1)A (2)-14 【解析】 (1)法一:∵f(x)是定义在 R 上的奇函数,且 x≤0 时,f(x) = 2x2-x,
∴f(1)=-f(-1)=-2×(-1)2+(-1)=-3,故选 A. 法二:设 x>0,则-x<0,∵f(x)是定义在 R 上的奇函数,且 x≤0 时,f(x) = 2x2-x,∴f(-x)=2(-x)2-(-x)=2x2+x,又 f(-x)=-f(x), ∴f(x)=-2x2-x,∴f(1)=-2×12-1=-3,故选 A. (2)根据对任意 t∈R都有 f(t)=f(1-t)可得 f(-t)=f(1+t),即 f(t+1)=-f(t), 进而得到 f(t+2)=-f(t+1)=-[-f(t)]=f(t),得函数 y=f(x)的一个周期为 2, 故 f(3)=f(1)=f(0+1)=-f(0)=0,f-32=f12=-14.所以 f(3)+f-32的值是 0 +-14=-14.
第2讲│ 要点热点探究
例 4 定义在 R 上的偶函数 f(x)满足 f(x+1)=-f(x)且 f(x) 在[-1,0]上是增函数,给出下列四个命题:①f(x)是周期函数; ②f(x)的图象关于直线 x=1 对称;③f(x)在[1,2]上是减函数; ④f(2)=f(0).其中正确命题的序号是________.(请把正确命 题的序号全部写出来)
第2讲 │ 要点热点探究
[2011·山东卷] 函数 y=x2-2sinx 的图象大致是(
)
变式题
图 2-2
C 【解析】 由 f(-x)=-f(x)知函数 f(x)为奇函数,所以排除 A;又 f′(x)

高中数学基本初等函数解题技巧

高中数学基本初等函数解题技巧

高中数学基本初等函数解题技巧高中数学中,初等函数是一个重要的概念,它包括了常见的函数类型,如线性函数、二次函数、指数函数、对数函数等。

在解题过程中,熟练掌握初等函数的性质和解题技巧是非常重要的。

本文将以具体的题目为例,介绍一些高中数学基本初等函数解题技巧,帮助学生更好地应对考试。

一、线性函数线性函数是初中数学中就已经学过的内容,它的一般形式为y = kx + b,其中k 和b为常数。

在解题过程中,我们需要注意以下几点:1. 求解函数的解析式:对于已知函数的图像,我们可以根据图像上的两个点求解函数的解析式。

例如,已知线性函数的图像经过点A(2, 5)和点B(4, 9),求解函数的解析式。

我们可以利用点斜式公式求解,即(y - y1) = k(x - x1),代入已知点的坐标,得到两个方程组。

解方程组可以得到k和b的值,从而求得函数的解析式。

2. 求解函数的零点:对于线性函数y = kx + b,我们可以通过令y = 0,求解x的值,得到函数的零点。

例如,已知线性函数y = 2x - 3,求解函数的零点。

令y = 0,得到2x - 3 = 0,解方程可以得到x = 3/2,即函数的零点为(3/2, 0)。

二、二次函数二次函数是高中数学中的重点内容,它的一般形式为y = ax^2 + bx + c,其中a、b、c为常数。

在解题过程中,我们需要注意以下几点:1. 求解函数的顶点坐标:二次函数的顶点坐标可以通过求解x的值得到。

对于一般形式的二次函数,顶点的横坐标为x = -b/2a,纵坐标为y = f(-b/2a)。

例如,已知二次函数y = 2x^2 + 4x + 1,求解函数的顶点坐标。

根据公式,可以得到顶点的横坐标为x = -4/(2*2) = -1,纵坐标为y = f(-1) = 2*(-1)^2 + 4*(-1) + 1 = -1。

2. 求解函数的零点:对于二次函数y = ax^2 + bx + c,我们可以通过求解x的值得到函数的零点。

高中数学知识点津2函数反函数与基本初等函数的图像与性质

高中数学知识点津2函数反函数与基本初等函数的图像与性质

高中数学知识点津2函数反函数与基本初等函数的图像与性质第一篇:高中数学知识点津2函数反函数与基本初等函数的图像与性质高中数学知识点津2函数反函数与基本初等函数的图像与性质11.求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?如:f令t=(2x+1=ex+x,求f(x).)x+1,则t≥0∴x=t-∴f(t)=et2-1+t2-1∴f(x)=ex2-1+x2-1(x≥0)12.反函数存在的条件是什么?(一一对应函数)求反函数的步骤掌握了吗?(①反解x;②互换x、y;③注明定义域)⎧⎪1+x如:求函数f(x)=⎨2⎪⎩-x-1(x≥0)的反函数(x<0)⎧⎪x-1(x>1))(答:f(x)=⎨⎪⎩--x(x<0)13.反函数的性质有哪些?①互为反函数的图象关于直线y=x对称;②保存了原来函数的单调性、奇函数性;③设y=f(x)的定义域为A,值域为C,a∈A,b∈C,则f(a)=b⇔f-1(b)=a∴f-1[f(a)]=f-1(b)=a,f[f-1(b)]=f(a)=b14.如何用定义证明函数的单调性?(取值、作差、判正负)如何判断复合函数的单调性?(y=f(u),u=ϕ(x),则y=f[ϕ(x)](外层)(内层)当内、外层函数单调性相同时fϕ(x)为增函数,否则fϕ(x)为减函数。

)[][]y=log1-x+2x的单调区间如:求2(2)(设u=-x+2x,由u>0则0<x<2 且log1u↓,u=-(x-1)+1,如图:u O 1 2 x当x∈(0,1]时,u↑,又log1u↓,∴y↓当x∈[1,2)时,u↓,又log1u↓,∴y↑2∴……)15.如何利用导数判断函数的单调性?在区间a,b内,若总有f'(x)≥0则f(x)为增函数。

(在个别点上导数等于()零,不影响函数的单调性),反之也对,若f'(x)≤0呢?如:已知a>0,函数f(x)=x-ax在1,+∞上是单调增函数,则a的最大值是()A.03[)B.1 2 C.2 D.3(令f'(x)=3x-a=3 x+⎛⎝a⎫⎛a⎫⎪x-⎪≥0 3⎭⎝3⎭则x≤-aa 或x≥33a≤1,即a≤33由已知f(x)在[1,+∞)上为增函数,则∴a的最大值为3)16.函数f(x)具有奇偶性的必要(非充分)条件是什么?(f(x)定义域关于原点对称)若f(-x)=-f(x)总成立⇔f(x)为奇函数⇔函数图象关于原点对称若f(-x)=f(x)总成立⇔f(x)为偶函数⇔函数图象关于y轴对称注意如下结论:(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学经典的题技巧(函数、基本初等函数的图象与性质)【编者按】集合跟常用逻辑用语是高中数学考试的必考内容,而且是这几年考试的热点跟增长点,无论是期中、期末还是会考、高考,都是高中数学的必考内容之一。

因此,马博士教育网数学频道编辑部特意针对这两个部分的内容和题型总结归纳了具体的解题技巧和方法,希望能够帮助到高中的同学们,让同学们有更多、更好、更快的方法解决数学问题。

好了,下面就请同学们跟我们一起来探讨下集合跟常用逻辑用语的经典解题技巧。

首先,解答函数、基本初等函数这两个方面的问题时,先要搞清楚以下几个方面的基本概念性问题,同学们应该先把基本概念和定理完全的吃透了、弄懂了才能更好的解决问题:1.函数(1)了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。

(2)在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数。

(3)了解简单的分段函数,并能简单应用。

(4)理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义。

(5)会运用函数图象理解和研究函数的性质。

2.指数函数(1)了解指数函数模型的实际背景。

(2)理解有理指数幂的含义,了解褛指数幂的意义,掌握幂的运算。

(3)理解指数函数的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点。

(4)知道指数函数是一类重要的函数模型。

3.对数函数(1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用。

(2)理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点。

(3)知道对数函数是一类重要的函数模型。

(4)了解指数函数xy a =与对数函数log a y x =互为反函数(0,1a a >≠且)。

4.幂函数(1)了解幂函数的概念(2)结合函数12321,,,,y x y x y x y y x x =====的图象了解它们的变化情况。

好了,搞清楚了函数、基本初等函数的基本内容之后,下面我们就看下针对这两个内容的具体的解题技巧。

一、基本初等函数问题考情聚焦:1.一元二次函数、指数函数、对数函数和幂函数是最重要的基本初等函数,在每年高考中都有涉及到直接考查它们定义、定义域和值域、图象和性质的问题。

2.常与函数的性质、方程、不等式综合命题,多以选择、填空题的形式出现,属容易题。

解题技巧:1.一元二次、二次函数及指数\对数函数和幂函数的定义、定义域、值域、图象和性质是解决此类题目的关键,同时要注意数形结合、化归和分类讨论思想的应用。

2.熟记幂和对数的运算性质并能灵活运用。

例1:(2010·全国高考卷Ⅱ文科·T4)函数y=1+ln (x-1)(x>1)的反函数是(A ) y=1x e+-1(x>0) (B) )y=1x e -+1(x>0) (C) y=1x e +-1(x ∈R) (D )y=1x e -+1 (x ∈R)【命题立意】本题考查了反函数的概念及其求法。

【思路点拨】运用求反函数的方法解。

【规范解答】 选D ,y=1+ln (x-1),ln (x-1)=y-1,x-1=e 1-y ,所以反函数为y=1x e -+1 (x ∈R)【方法技巧】求反函数的步骤:(1)反解x,即用y 表示x.(2)把x 、y 互换,(3)写出反函数的定义域,即原函数的值域。

本题注意指数式与对数式的互化。

例2:(2010·天津高考文科·T6)设554a log 4b log c log ===25,(3),,则( )(A)a<c<b (B) )b<c<a (C) )a<b<c (D) )b<a<c【命题立意】考查利用对数的性质及对数函数的单调性比较大小。

【思路点拨】根据对数的性质及对数函数5log y x =的图像,可得550log 3log 41<<<, 4log 51c =>。

【规范解答】选D ,由对数函数5log y x =的图像,可得550log 3log 41<<<,∴255(log 3)log 4b =<,又4log 51,c b a c =>∴<<。

【方法技巧】比较对数函数值的大小问题,要特别注意分清底数是否相同,如果底数相同,直接利用函数的单调性即可比较大小;如果底数不同,不仅要利用函数的单调性,还要借助中间量比较大小。

二、函数与映射概念的应用问题考情聚焦:1.该考向在高考中主要考查与函数、映射概念相关的定义域、映射个数、函数值、解析式的确定与应用。

2.常结合方程、不等式及函数的有关性质交汇命题,属低、中档题。

解题技巧:1.求函数定义域的类型和相应方法。

2.求f(g(x))类型的函数值时,应遵循先内后外的原则,面对于分段函数的求值问题,必须依据条件准确地找出利用哪一段求解,特别地对具有周期性的函数求值要用好其周期性。

3.求函数的解析式,常见命题规律是:先给出一定的条件确定函数的解析式,再研究函数的有关性质;解答的常用方法有待定系数法、定义法、换元法、解方程组法、消元法等。

4.映射个数的计算一般要分类计数。

例3:(2010·天津高考理科·T8)若函数f(x)=212log ,0,log (),0x x x x >⎧⎪⎨-<⎪⎩,若f(a)>f(-a),则实数a 的取值范围是 ( )(A )(-1,0)∪(0,1) (B )(-∞,-1)∪(1,+∞)(C )(-1,0)∪(1,+∞) (D )(-∞,-1)∪(0,1)【命题立意】考查对数函数的图像和性质。

【思路点拨】对a 进行讨论,通过图像分析f(a)>f(-a)对应的实数a 的范围。

【规范解答】选C ,当a>0,即-a<0时,由f(a)>f(-a)知212log log a a >,在同一个坐标系中画出2log y x=和12log y x =函数的图像,由图像可得a>1;当a<0,即-a>0时,同理可得-1<a<0,综上可得a 的取值范围是(-1,0)∪(1,+∞)。

三、函数图象问题考情聚焦:1.函数图象作为高中数学的一个“重头戏”,是研究函数性质、方程、不等式的重要武器,已成为各省市高考命题的一个热点。

2.常以几类初等函数的图象为基础,结合函数的性质综合考查,多以选择、填空题的形式出现。

解题技巧:1.基本初等函数的图象和性质,函数图象的画法以及图象的三种变换。

2.在研究函数性质特别是单调性、最值、零点时,要注意用好其与图象的关系、结合图象研究。

3.在研究一些陌生的方程和不等式时常用数形结合法求解。

例4:(2010·山东高考理科·T11)函数22x y x =-的图象大致是( )【命题立意】本题考查函数的图象,函数的基础知识以及数形结合的思维能力,考查了考生的分析问题解决问题的能力和运算求解能力。

【思路点拨】利用特殊值对图象进行估计分析.【规范解答】选A ,因为当x =2或4时,220x x -=,所以排除B 、C ;当x =-2时,2x -2x =14<04-,故排除D ,所以选A.四、函数性质问题考情聚焦:该考向是各省市高考命题大做文章的一个重点。

常与多个知识点交汇命题,且常考常新,既有小题,也有大题,主要从以下三个方面考查:1.单调性(区间)问题,热点有:(1)确定函数单调性(区间);(2)应用函数单调性求函数值域(最值)、比较大小、求参数的取值范围、解(或证明)不等式。

2.奇偶性、周期性、对称性的确定与应用。

3.最值(值域)问题,考题常与函数的其他性质、图象、导数、基本不等式等综合。

例5:(2010辽宁文数)(21)(本小题满分12分)已知函数2()(1)ln 1f x a x ax =+++.(Ⅰ)讨论函数()f x 的单调性;(Ⅱ)设2a ≤-,证明:对任意12,(0,)x x ∈+∞,1212|()()|4||f x f x x x -≥-. 解:(Ⅰ) f (x )的定义域为(0,+∞),2121()2a ax a f x ax x x+++'=+=. 当a ≥0时,()f x '>0,故f (x )在(0,+∞)单调增加;当a ≤-1时,()f x '<0, 故f (x )在(0,+∞)单调减少;当-1<a <0时,令()f x '=0,解得x 当x ∈时, ()f x '>0;x ∈+∞)时,()f x '<0, 故f (x )在(+∞)单调减少.(Ⅱ)不妨假设x 1≥x 2.由于a ≤-2,故f (x )在(0,+∞)单调减少. 所以1212()()4f x f x x x -≥-等价于12()()f x f x -≥4x 1-4x 2,即f (x 2)+ 4x 2≥f (x 1)+ 4x 1.令g (x )=f (x )+4x ,则1()2a g x ax x +'=++4=2241ax x a x +++.于是()g x '≤2441x x x -+-=2(21)x x--≤0. 从而g (x )在(0,+∞)单调减少,故g (x 1) ≤g (x 2),即 f (x 1)+ 4x 1≤f (x 2)+ 4x 2,故对任意x 1,x 2∈(0,+∞) ,1212()()4f x f x x x -≥-.。

相关文档
最新文档