BWYV-associated RNA An independently replcating RNA that stimulates virus accumulation

合集下载

Study_on_the_pharmacological_activities_and_chemic

Study_on_the_pharmacological_activities_and_chemic

ReviewStudy on the pharmacological activities and chemicalstructures of Viburnum dilatatumZhiheng Gao, Yufei Xi, Man Wang, Xiaoxiao Huang*, Shaojiang Song*Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research &Development, Liaoning Province, School of Traditional Chinese Materia Medica, ShenyangPharmaceutical University, Shenyang 110016, ChinaAbstractViburnum dilatatum (jiami in Chinese), belonging to the Caprifollaceae family, is widely distributed in Japan and China. Phytochemical investigations of Viburnum dilatatum (V. dilatatum) have resulted in the isolation of triterpenoids, phenolic glycosides essential oil, norisoprenoids, etc. Research results have shown that the chemical constituents of V. dilatatum possess various pharmacological activities, including antihyperglycemic, antioxidant activity and antiulcer effects. This study reviewed the chemical constituents and pharmacological activities of V. dilatatum to provide practical and useful information for further research and development of this plant.Keywords: Viburnum dilatatum; pharmacological activity; chemical structures1 IntroductionViburnum dilatatum (called jiami in Chinese, gamazumi in Japanese and snowball tree in English), beloinging to family Caprifoliaceae, is a deciduous low tree distributed widely in the hills of northern China and Japan [1]. There are many types of chemical constituents in Viburnum dilatatum (V. dilatatum), including triterpenoids, * Author to whom correspondence should be addressed. Address:School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Rd., Shenyang 110016, China; Tel.: +86-24-43520793 (Xiaoxiao Huang); +86-24-43520707 (ShaojiangSong);E-mail:*******************(XiaoxiaoHuang); ****************(ShaojiangSong).Received: 2021-04-16 Accepted: 2022-08-28phenolic glycosides and norisoprenoids [2-4]. The leaves have been utilized as a traditional Chinese medicine, and phenolic compounds have been reported as the main active chemical component of the leaves. Many researchers have analyzed the functions of these medicinal components and found that these components have good antioxidant antihyperglycemic and antiulcer effects. For example, the gamazumi crude extract obtained from the squeezed juice of the fruit prevented oxidative injury in rats [5]. This review described the chemical structures and pharmacological activities of V. dilatatum, so as to help readers understand comprehensively the research progress of V. dilatatum and provide help for the development of V. dilatatum.2 Chemical constituents and structuresPrevious reports have indicated that the main chemical constituents of V. dilatatum are phenolic glycosides and triterpenoids.2.1 Phenolic glycosidesThirteen phenolic glycosides were isolated and identified from V. dilatatum by extensive spectroscopic methods, namely p -hydroxyphenyl-6-O -trans-caffeoyl-β-D -glucoside (1) [6], p -hydroxyphenyl-6-O -trans-caffeoyl-β-D -alloside (2) [6], 4-allyl-2-methoxyphenyl-6-O -β-D -apiosyl(1→6)-β-D -glucoside (3) [6], 1-(4’-hydroxy-3’-methoxypheny1)-2-[2’’-hydroxy-4’’-(3’’’-hydroxypropyl)]-1,3-propanediol-l-O -β-D -glucopyranoside (erythro isomer) (4-7) [7], neochlorogenic acid methyl ester (8-9) [7], cryptochlorogenic acid methyl ester (10-11) [7], cyanidin-3-sambubioside (Cy-3-sam) (12) [8], cyanidin-3-glucoside (Cy-3-glc) (13) [8], 5-O -caffeoyl-4-methoxyl quinic acid (4-MeO-5-CQA) (14) [8], chlorogenic acid (5-CQA) (15) [8], quercetin (16) [8], 2-(glucopyranosyloxy)-benzyl-3-(glucopyranosyloxy)-benzoate (17) [9] and jiamizioside E (18) [10]. These structures are shown in Fig. 1.Fig. 1 Phenolic glycosides isolated from V . dilatatumContinued fig. 12.2 TriterpenoidsThere were about seventeen triterpenoids isolated and characterized from V. dilatatum , such as viburnols A (19) [11], viburnols B (20) [11], viburnols C (21) [11], viburnols D (22) [11], viburnols E (23) [11], viburnols F (24) [12], viburnols G (25) [12], viburnols H (26) [12], viburnols I (27) [12], viburnols J (28) [12],viburnols K (29) [12], viburnudienone B 2methyl ester (30) [13], viburnenone H 2 (31) [13],v i b u r n e n o n e B 2 m e t h y l e s t e r (32) [13], viburnudienone B 1 methyl ester (33) [13], viburnenone H 1 (34) [13], and viburnenone B 2 methyl ester (35) [13]. The structures are shown in Fig. 2.Continued fig. 23 Pharmacological activities3.1 Antioxidant activityOxidative stress caused by free radicals and their derivatives leads to disturbances in redox homeostasis. Reactive oxygen species (ROS) are not only endogenously produced during intracellular metabolic processes but also generated by exogenous stimuli such as UV radiation, pollutants, smoke and drugs. The cell triggers its defense systems or undergoes apoptosis when intracellular oxidative status increases. It influences numerous cellular processes including core signaling pathways, which are associated with development of systematic and chronic disorders, such as aging and cancer. Therefore, it is critical to remove cellular oxidants and restore redox balance.solution of V. dilatatum (GSS) had strong antioxidant activity in vivo and prevent stress-induced oxidative damage by the XYZ-dish method and the澳electron spin resonance (ESR) method [14]. The experimental result showed that the concentrations of lipid peroxide in plasma, liver and stomach in the GSS group were reduced. Furthermore, the activities of plasma lactic dehydrogenase, amylase and creatine phosphokinase are ordinarily increased by stress. However, these activities in the GSS group decreased to that in the control group. It was concluded that gastric ulcer formation, increase of lipid peroxidation in plasma and tissues and elevation of plasma enzymatic activities were confirmed in rats with water immersion restraint stress. It was also found that intake of GSS could protect the stomach and other tissues from oxidative damage.Kim et al. identified and isolated two major anthocyanins by NMR and LC-ESI-MS/MS, namely, cyanidin 3-sambubioside (I) and kuromanin (II) [15]. By the electron spin resonance method, the superoxide anion radical scavenging activities of I and II were evaluated with the IC 50 values of 17.3 and 69.6 µM, and their activities on hydroxyl radicals were evaluated with the IC 50 values of 4.3 and 53.2 mM. As the positive control, the IC 50 values of ascorbic acid were 74.2 µM on superoxide anion radicals and 3.0 mM on hydroxyl radicals, respectively. The above results suggested that these anthocyanins with radical scavenging properties might be the key compounds contributing to the antioxidant activity and physiological effects of V . dilatatum fruits.Woo et al. determined the free radical scavenging capacity of VD (the leaves of V. dilatatum ) [16]. Anti-oxidant activity of the extracts was assessed by the ability to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH) or 3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radicals. Butylated hydroxytoluene (BHT), a synthetic antioxidant, or α-tocopherol, was used as the positive control in these assays. The experimental result showed that VD inducedincrease in radical scavenging activity. In addition, lipid peroxidation inhibitory activity was determined via measurement of MDA (Malondialdehyde) levels using mouse liver tissue homogenate treated with various concentrations of the extracts. The concentration-dependent decrease in MDA levels observed was consistent with radical scavenging activities of the extracts. To examine whether VD extracts could protect mam-malian cells from oxidative stress, cultures of a human mammary gland-derived epithelial cell line MCF-7 were treated with each extract prior to challenging them with tBHP. The intracellular ROS (Reactive oxygen species) production was determined with the relative intensity of dichlorofluorescein fluorescence. While intracellular ROS formation was significantly promoted by tBHP treatment, the augmented ROS level was significantly reduced after the treatment with VD extracts.3.2 Antihyperglycemic effectIwai et al. used an oral glucose tolerance test on the diabetic rats [17]. They found that the elevation of plasma glucose level after oral administration of 2 g/kg glucose was suppressed by the repeated administration of the freeze-dried powder of V. dilatatum fruit juice (CEV). The α-glucosidase inhibitory activities of isolated compounds from CEV were also measured. Cyanidin 3-sambubioside and 5-caffeoyl quinic acid A showed inhibitory activity. These results suggested that V. dilatatum fruit had the antihyperglycemic effects.4 ConclusionV. dilatatum is distributed widely in the hills of northern China and Japan. Currently, the studies on V. dilatatum have been conducted at home and abroad, but few studies focus on its chemical components and pharmacological activities. Previousphytochemical investigations showed that the constituents of V. dilatatum included triterpenoids, phenolic glycosides, norisoprenoids and other compounds. This study describes thirteen phenolic glycosides and seventeen triterpenoids and their different degrees of antihyperglycemic, antioxidant activity and antiulcer effects, aiming to provide a reference for further studies on V. dilatatum and pharmaceutical development.References[1] Jeffrey B, Harborne A. Colour atlas of medicinal plantsof Japan. Phytochemistry, 1981, 20: 1467.[2] Miyazawa M, Hashidume S, Takahashi T, et al. Aromaevaluation of gamazumi (Viburnum dilatatum) by aroma extract dilution analysis and odour activity value.Phytochem Anal, 2012, 23: 208-213.[3] Kurihara T, Kikuchi M. Studies on the constituentsof flowers. IV. On the components of the flower of Viburnum dilatatum Thunb. J Health Sci, 1975, 95: 1098-1102.[4] Machida K, Kikuchi M. Norisoprenoids from Viburnumdilatatum. Phytochemistry, 1996, 41: 1333-1336. [5] Iwai K, Onodera A, Matsue H. Mechanism of preventiveaction of Viburnum dilatatum Thunb (gamazumi) crude extract on oxidative damage in rats subjected to stress. J Sci Food Agric, 2010, 83: 1593-1599.[6] Machida K, Nakano Y, Kikuchi M. Phenolic glycosidesfrom Viburnum dilatatum. Phytochemistry, 1991, 30: 2013-2014.[7] Machida K, Kikuchi M. Phenolic compounds fromViburnum dilatatum. Phytochemistry, 1992, 31: 3654-3656.[8] Kim MY, Iwai K, Matsue H. Phenolic compositions ofViburnum dilatatum Thunb. fruits and their antiradical properties. J Food Compos Anal, 2005, 18: 789-802. [9] Lu D, Yao S. Phenolic glycoside from the roots ofViburnum dilatatum. Nat Prod Commun, 2009, 4: 945-946.[10] Wu B, Zeng X, Zhang Y. New metabolite fromViburnum dilatatum. Nat Prod Commun, 2010, 5: 1097-1098.[11] Machida K, Kikuchi M. Viburnols: Novel triterpenoidswith a rearranged dammarane skeleton from Viburnum dilatatum. Tetrahedron Lett, 1996, 37: 4157-4160. [12] Machida K, Kikuchi M. Viburnols: Six noveltriterpenoids from Viburnum dilatatum. Tetrahedron Lett, 1997, 38: 571-574.[13] Machida K, Kikuchi M. Studies on the Constituents ofViburnum Species. XIX. Six New Triterpenoids from Viburnum dilatatum Thunb. Chem Pharm Bull, 1999, 47: 692-694.[14] Iwai K, Onodera A, Matsue H, et al. Antioxidant activityand inhibitory effect of Gamazumi (Viburnum dilatatum THUNB.) on oxidative damage induced by water immersion restraint stress in rats. Int J. Food Sci Nutr, 2001, 52: 443-451.[15] Kim MY, Iwai K, Onodera A, et al. Identification andAntiradical Properties of Anthocyanins in Fruits of Viburnum dilatatum Thunb. J Agric Food Chem, 2003, 51: 6173-6177.[16] Woo YJ, Lee HJ, Jeong YS, et al. Antioxidant Potentialof Selected Korean Edible Plant Extracts. Bio Med Res Int, 2017, 2017: 1-9.[17] Iwai K, Kim MY, Akio O, et al. Alpha-glucosidaseinhibitory and antihyperglycemic effects of polyphenols in the fruit of Viburnum dilatatum Thunb. J Agric Food Chem, 2006, 54: 4588-4592.。

拟南芥NBS1_互作蛋白的筛选和鉴定

拟南芥NBS1_互作蛋白的筛选和鉴定

引文格式:吴钒漳, 孙旭东, 徐慧妮. 拟南芥NBS1互作蛋白的筛选和鉴定[J]. 云南农业大学学报(自然科学), 2023, 38(4):558−565. DOI: 10.12101/j.issn.1004-390X(n).202202008拟南芥NBS1互作蛋白的筛选和鉴定*吴钒漳1, 孙旭东2, 徐慧妮1 **(1.昆明理工大学 生命科学与技术学院,云南 昆明 650500;2. 中国科学院 昆明植物研究所,云南 昆明 650201)摘要: 【目的】筛选拟南芥中NBS1的互作蛋白,探究NBS1蛋白的新功能,为后续研究奠定基础。

【方法】利用酵母双杂交技术筛选拟南芥cDNA 文库,对得到的序列进行BLAST 比对、亚细胞定位分析和基因本体注释。

【结果】共有221个阳性克隆,测序后通过BLAST 比对得到97个与NBS1互作的蛋白,包括膜蛋白、转运蛋白和折叠蛋白等,它们主要定位于细胞质、细胞核和叶绿体等,主要富集于4个分子功能、5个细胞组分和13个生物过程。

【结论】拟南芥中与NBS1互作的蛋白在刺激响应、信号转导和细胞代谢等方面发挥着重要作用,也证明NBS1是一种多功能蛋白,但其功能及分子机制还需进一步研究。

关键词: 拟南芥;NBS1;蛋白互作;酵母双杂交;基因本体注释中图分类号: Q949.748.306 文献标志码: A 文章编号: 1004–390X (2023) 04−0558−08Screening and Identifying Interaction Proteins ofNBS1 in Arabidopsis thalianaWU Fanzhang 1,SUN Xudong 2,XU Huini 1(1. Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500,China; 2. Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China)Abstract: [Purpose ]To screen the interaction protein and explore the new function of NBS1 pro-tein in Arabidopsis thaliana , laying the foundation for further research. [Methods ]The yeast two-hybrid technology was used to screen the interaction proteins of NBS1 from A. thaliana cDNA lib-rary. BLAST alignment, subcellular localization analysis and gene ontology annotations were per-formed on the obtained sequences. [Results ]There were 97 proteins interacted with NBS1 in 221positive clones by BLAST after sequencing, including membrane proteins, transporters and folding proteins. These proteins were mainly localized in cytoplasm, nucleus and chloroplast, which were mainly enriched in four molecular functions, five cellular components and 13 biological processes.[Conclusion ]The proteins interacting with NBS1 play an important role in stimulus response, sig-nal transduction and cell metabolism. It is also confirmed that NBS1 is a multifunctional protein, but its function and molecular mechanism need further studies.Keywords: Arabidopsis thaliana ; NBS1; protein interaction; yeast two-hybrid; gene ontology云南农业大学学报(自然科学),2023,38(4):558−565Journal of Yunnan Agricultural University (Natural Science)E-mail: ********************收稿日期:2022-02-16 修回日期:2022-03-02 网络首发日期:2023-09-06*基金项目:国家自然科学基金项目(31760582)。

双功能mrna名词解释

双功能mrna名词解释

双功能mrna名词解释双功能mRNA的英文名称是"bifunctional mRNA",意思是具有双重功能的信使RNA。

1. This bifunctional mRNA encodes a protein that acts as both an enzyme and a regulatory factor. (这种双功能mRNA编码了一种既是酶又是调节因子的蛋白质。

)2. The discovery of bifunctional mRNA has shed light on the complex mechanisms of gene regulation. (对双功能mRNA的发现揭示了基因调控的复杂机制。

)3. Bifunctional mRNA plays a critical role in coordinating cellular processes by simultaneously carrying genetic information and executing enzymatic functions. (双功能mRNA通过同时携带遗传信息和执行酶功能,在协调细胞过程中起着关键作用。

)4. The identification of specific motifs within bifunctional mRNA has allowed scientists to study its dualroles in gene expression and enzymatic activity. (对双功能mRNA内特定结构的识别使科学家能够研究其在基因表达和酶活性中的双重作用。

)5. Researchers are investigating the therapeuticpotential of bifunctional mRNA in various diseases, aiming to utilize its dual functions for targeted treatment strategies. (研究人员正在探索双功能mRNA在各种疾病中的治疗潜力,旨在利用其双重功能进行靶向治疗策略。

(武汉大学)分子生物学考研名词汇总

(武汉大学)分子生物学考研名词汇总

(武汉大学)分子生物学考研名词汇总●base flipping 碱基翻出●denaturation 变性DNA双链的氢键断裂,最后完全变成单链的过程●renaturation 复性热变性的DNA经缓慢冷却,从单链恢复成双链的过程●hybridization 杂交●hyperchromicity 增色效应●ribozyme 核酶一类具有催化活性的RNA分子,通过催化靶位点RNA链中磷酸二酯键的断裂,特异性地剪切底物RNA分子,从而阻断基因的表达●homolog 同源染色体●transposable element 转座因子●transposition 转座遗传信息从一个基因座转移至另一个基因座的现象成为基因转座,是由转座因子介导的遗传物质重排●kinetochore 动粒●telomerase 端粒酶●histone chaperone 组蛋白伴侣●proofreading 校正阅读●polymerase switching 聚合酶转换●replication folk 复制叉刚分开的模板链与双链DNA的连接区●leading strand 前导链在DNA复制过程中,与复制叉运动方向相同,以5’-3’方向连续合成的链被称为前导链●lagging strand 后随链在DNA复制过程中,与复制叉运动方向相反的,不连续延伸的DNA链被称为后随链●Okazaki fragment 冈崎片段●primase 引物酶依赖于DNA的RNA聚合酶,其功能是在DNA复制过程中合成RNA引物●primer 引物是指一段较短的单链RNA或DNA,它能与DNA的一条链配对提供游离的3’-OH末端以作为DNA聚合酶合成脱氧核苷酸链的起始点●DNA helicase DNA解旋酶●single-strand DNA binding protein, SSB 单链DNA结合蛋白●cooperative binding 协同结合●sliding DNA clamp DNA滑动夹●sliding clamp loader 滑动夹装载器●replisome 复制体●replicon 复制子单独复制的一个DNA单元称为一个复制子,一个复制子在一个细胞周期内仅复制一次●replicator 复制器●initiator protein 起始子蛋白●end replication problem 末端复制问题●homologous recombination 同源重组●strand invasion 链侵入●Holliday junction Holliday联结体●branch migration 分支移位●joint molecule 连接分子●synthesis-dependent strand annealing, SDSA 合成依赖性链退火●gene conversion 基因转变●conservative site-specific recombination, CSSR 保守性位点特异性重组●recombination site 重组位点●recombinase recognition sequence 重组酶识别序列●crossover region 交换区●serine recombinase 丝氨酸重组酶●tyrosine recombinase 酪氨酸重组酶●lysogenic state 溶原状态●lytic growth 裂解生长●transposon 转座子能够在没有序列相关性的情况下独立插入基因组新位点上的一段DNA序列,是存在与染色体DNA上可自主复制和位移的基本单位。

RNA修饰影响蛋白翻译论文素材

RNA修饰影响蛋白翻译论文素材

RNA修饰影响蛋白翻译论文素材RNA修饰影响蛋白翻译近年来,科学家们对RNA修饰(RNA modification)的研究日益深入,逐渐揭示了它对蛋白翻译过程的重要影响。

RNA修饰是指在转录和翻译过程中,通过化学修饰改变RNA分子的结构和功能。

这些修饰方式包括甲基化(methylation)、糖基化(glycosylation)、脱甲基化(demethylation)等多种形式。

本文将介绍几种常见的RNA修饰方式以及它们对蛋白翻译的影响。

1. N6-甲基腺嘌呤(N6-methyladenosine,m6A)N6-甲基腺嘌呤是目前最为研究的RNA修饰方式之一。

它是在RNA转录过程中由特定酶类催化生成的。

m6A修饰在多种生物过程中都起到了调控基因表达的作用。

在蛋白翻译中,m6A修饰通过影响RNA的稳定性、翻译速率以及转运和定位等方面,间接影响蛋白的合成和功能。

2. 5-甲基胞苷(5-methylcytidine,m5C)5-甲基胞苷是一种常见的RNA甲基化修饰方式。

它主要出现在转录前体mRNA和非编码RNA中。

m5C修饰在蛋白翻译过程中发挥了重要的功能。

研究表明,m5C修饰通过改变RNA的结构和稳定性,调控了mRNA的翻译速率和准确性,从而影响蛋白的合成和功能。

3. 2'-O-甲基核苷(2'-O-methylated nucleosides)2'-O-甲基核苷是一种常见的核苷酸修饰方式,在真核生物中广泛存在。

它通过甲基转移酶类催化生成,主要出现在tRNA和rRNA中。

2'-O-甲基修饰对蛋白翻译具有重要影响。

研究发现,2'-O-甲基修饰可以提高tRNA和rRNA的稳定性,并且影响肽链的合成速率和翻译准确性。

4. N1-甲基肾苷(N1-methylated purines)N1-甲基肾苷是一种常见的RNA甲基化修饰方式,广泛存在于rRNA和mRNA中。

N1-甲基修饰在蛋白翻译中扮演着重要的角色。

R bozyme的名词解释

R bozyme的名词解释

R bozyme的名词解释R bozyme是一种重要的RNA分子,具有自切割和催化作用。

本文将对R bozyme的起源、特点、作用机制和应用进行详细解释,突显其在生物学研究和医学领域的重要性。

R bozyme最早是在研究自我剪切RNA(self-cleaving RNA)的过程中被发现的。

自我剪切RNA是一类在一定条件下,能自行切割成两部分并将其连接回来的RNA 分子。

然而,R bozyme是自我剪切RNA中的一种特殊类型,具有更广泛的功能和机理。

R bozyme的特点之一是其RNA序列具有高度的保守性,这意味着不同生物种类中R bozyme的序列相似度较高。

此外,R bozyme的结构也相对稳定,这使得它在各种环境条件下仍能保持催化活性。

R bozyme的作用机制主要依赖于其自身的特殊结构。

它通常由两个部分组成,即催化核酸和底物核酸。

催化核酸具有剪切活性,能够切割底物核酸的特定部位。

而底物核酸则是被切割的目标,它包含了R bozyme需要识别和切割的特定序列。

当底物核酸与催化核酸结合后,R bozyme可以通过构象变化使催化核酸活性位点与底物核酸配对,从而实现切割和连接过程。

R bozyme的催化活性使得它在生物学研究领域具有重要意义。

科学家们可以利用R bozyme的特性来研究RNA的结构和功能。

通过对R bozyme的结构和催化机制的深入研究,我们可以更好地理解RNA分子在细胞内的功能和相互作用。

此外,R bozyme还有潜在的应用价值。

由于其自切割和催化能力,R bozyme可以被利用来设计新型的RNA技术。

例如,科学家可以利用R bozyme来实现靶向RNA分解,从而在基因调控和基因治疗等领域发挥重要作用。

另外,R bozyme还可以被应用于构建人工合成的RNA分子,用于制药和生物工程等领域。

尽管R bozyme的研究还处于初级阶段,但它的发现和特性已经引起了科学界的广泛兴趣。

科学家们正致力于深入研究并探索R bozyme的更多应用。

非编码RNA来源的小肽:“微不足道”却“功能强大”

非编码RNA来源的小肽:“微不足道”却“功能强大”

第 62 卷第 3 期2023 年 5 月Vol.62 No.3May 2023中山大学学报(自然科学版)(中英文)ACTA SCIENTIARUM NATURALIUM UNIVERSITATIS SUNYATSENI非编码RNA来源的小肽:“微不足道”却“功能强大”*陈晓彤,赵文龙,孙林玉,王文涛,陈月琴中山大学生命科学学院,广东广州 510275摘要:非编码RNA(ncRNA, non-coding RNA)长久以来被认为不具有编码能力。

近年来随着研究技术和生物信息学工具的迅速发展,研究发现在基因组的非编码区域上存在大量小开放阅读框(sORFs,small/short open read‐ing frames),其翻译产物被称作小ORF编码肽(SEPs,sORF encoded peptides)或小肽(micropeptides)。

部分小肽被证实在细胞内稳定存在并独立于其来源RNA发挥重要作用。

本文系统总结了非编码RNA来源小肽的鉴定方法、可编码小肽的RNA类型以及其研究困难和瓶颈,并重点回顾了疾病和植物中发现的功能小肽,以期对小肽的筛选鉴定提供思考,对小肽作为药物研发或者农作物增产的关键靶点提供新的思路和方向。

关键词:非编码RNA;小肽;非经典翻译;鉴定方法;调控机制中图分类号:Q71 文献标志码:A 文章编号:2097 - 0137(2023)03 - 0001 - 13 Micropeptides derived from non-coding RNAs: Tiny but powerful CHEN Xiaotong, ZHAO Wenlong, SUN Linyu, WANG Wentao, CHEN Yueqin School of Life Sciences, Sun Yat-sen University, Guangzhou 510275,ChinaAbstract:It was long presumed that non-coding RNAs (ncRNAs) are lacking in protein-coding poten‐tial. However, recent advances in technology and tools have led to an important finding that a number of small open reading frames (sORFs) were found in different kind of ncRNAs, and their translated products have been termed sORF encoded peptides (SEPs) or micropeptides. Some micropeptides have been confirmed to exist stably in cells and play important roles independently of their source RNA. In this review,we summarize the identification methods of micropeptides derived from ncRNAs,the types of RNA that can encode micropeptides,and focus on the functional micropeptides found in diseases and plants. The purpose of the review is to provide a thought on the screening and identifica‐tion of micropeptides, and provide new ideas for micropeptides as potentials for drug development or crop yield improvement.Key words: non-coding RNA; micropeptide; non-canonical translation; identification methods; regula‐tion mechanism随着人类基因组计划的完成以及ENCODE计划的开展,科学家发现,约75%的基因组可以产生转录本(Derrien et al.,2012;Djebali et al.,2012)。

抗C5抗体组合及其用途[发明专利]

抗C5抗体组合及其用途[发明专利]

专利名称:抗C5抗体组合及其用途
专利类型:发明专利
发明人:基肖尔·德瓦拉拉贾-纳拉什姆哈申请号:CN201880080737.5
申请日:20181212
公开号:CN111630065A
公开日:
20200904
专利内容由知识产权出版社提供
摘要:本发明涉及抗C5抗体和抗原结合片段的组合,所述组合已确定相对于单一抗C5抗体或片段具有更高的活性。

所述组合包含彼此不会竞争与C5结合的抗C5抗体和抗原结合片段。

还提供了包含不竞争和/或结合C5上的相同表位的抗原结合结构域的双特异性抗体。

本文提供了与这样的抗C5组合和双特异性抗体有关的组合物和治疗方法。

申请人:瑞泽恩制药公司
地址:美国纽约州
国籍:US
代理机构:北京集佳知识产权代理有限公司
更多信息请下载全文后查看。

剑麻核酸的高效提取及应用翻译

剑麻核酸的高效提取及应用翻译

剑麻核酸的高效提取及应用王尉,周文钊’I安徽农业大学生命科学院安徽合肥2300362中国热带农业科学院南亚热带作物研究所广东湛江524091摘要:针对剑麻组织中多糖、多酚和次生物质含量高的特点,对其总RNA和基因组DNA提取进行研究。

比较了改良SDS法、改良CTAB法提取总RNA和SDS法、CTAB 法提取基因组DNA的效果,结果表明:改良CTAB法提取总RNA效果较佳,所得RNA OD 260/OD 280高于1.8,DD260/OD∞0大于2.0,而CTAB法提取基因组DNA纯度和完整性较好。

基于RNA和DNA水平,分别对剑麻的苯丙氨酸解氨酶基因(PAL)RT-PCR 和RAPD反应体系进行优化,均得到理想条带。

此方法提取剑麻的核酸可运用于后续分子生物学研究,为其它材料核酸的分离提供参考依据。

关键词剑麻核酸提取RT—PCR RAPD中图分类号$563.81. 介绍剑麻是一种多年生,肉质且适旱的纤维作物,是少数的热带地区创汇作物之一。

目前,在中国,剑麻种植面积约18000百米,年生产量为55000吨,分别占世界第二和第三位(周和罗,2007)。

但不幸的是,剑麻的生产由于长时间的疾病,虫害,霜冻及台风的影响而受阻(赵,等等,2007)。

剑麻传统的育种程序不是很成功。

随着现代分子技术的发展,有必要使用分子生物技术和办法比如微体繁殖,基因无性繁殖,分子标记,遗传转化等来改进传统育种程序,以便其演变成适合工业需要的新的物种形式。

剑麻的分子生物研究在国内外都少有报道,而集中在纤维的研究。

高质量的核算是基因克隆的基础,RT-PCR的前提以及整个知识库的构架。

剑麻组织不仅细有坚韧的细胞壁,而且具有多糖、多酚和次生物质含量高的特点。

这些因素以多种方式严重影响了核酸的提取(Logemann et o1.,1987)。

所以,我们按照其他植物核算提取的方法在剑麻嫩叶上采取不同的办法进行试验。

最终,成功地得到高品质的剑麻核酸并通过RT-PCR和RAPD对其检测。

不同物种的双链dba分子,嘌呤碱 -回复

不同物种的双链dba分子,嘌呤碱 -回复

不同物种的双链dba分子,嘌呤碱-回复DNA(脱氧核糖核酸)是生物体内负责遗传信息传递的核酸分子,具有双链结构。

DNA由四种不同的碱基组成,其中包括嘌呤(purine)碱,它们在DNA分子中起着非常重要的作用。

嘌呤碱包括腺嘌呤(adenine)和鸟嘌呤(guanine),它们是DNA双链的构建模块。

本文将一步一步探索不同物种的双链DNA分子以及其中嘌呤碱的重要性。

第一步,我们来了解一下DNA的结构。

DNA的基本结构由两个互补的DNA链组成,这两条链以螺旋形式缠绕在一起,形成了双螺旋结构。

每条DNA链都由碱基、磷酸和脱氧核糖组成。

碱基是构建DNA的重要组成部分,其中嘌呤碱是其中的一类。

第二步,我们进一步了解嘌呤碱的特性。

嘌呤碱是一类含有双环结构的有机分子,它们在DNA的双链结构中起着非常重要的作用。

腺嘌呤和鸟嘌呤是嘌呤碱的两个重要类型。

腺嘌呤由腺嘌呤碱基(adenine base)组成,鸟嘌呤由鸟嘌呤碱基(guanine base)组成。

这些嘌呤碱基在DNA中通过氢键相互配对,从而使得DNA能够稳定地保持双螺旋结构。

第三步,我们探索不同物种的DNA分子的组成。

不同物种的DNA分子在基本结构上是相似的,但其碱基序列却有所不同。

例如,人类DNA的碱基序列与猪、鸟类或昆虫的DNA序列存在差异。

这些差异是由基因组的不同而引起的,而基因组则决定了一个物种的遗传特征。

嘌呤碱在这些不同物种的DNA中起着确保基因组完整性和稳定性的重要角色。

第四步,我们深入探讨嘌呤碱在基因组中的作用。

嘌呤碱是DNA链中的一部分,它们通过氢键稳定地连接在一起,形成了DNA的双链结构。

这种双链结构对于遗传信息的传递非常重要,因为它确保了遗传信息的完整性和稳定性。

DNA的双链结构还使其能够进行DNA复制和基因转录,从而实现基因功能的表达。

嘌呤碱的存在保证了DNA分子的正常结构和功能,使生物体能够准确传递遗传信息。

第五步,我们可以总结一下不同物种的DNA分子中嘌呤碱的重要性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(associated RNA replication/genomic RNA/RNA encapsidation/, MARGARET SANGER, LIH-SHEN CHIN, BRYCE W. FALK*, AND GEORGE BRUENING
Department of Plant Pathology, College of Agricultural and Environmental Sciences, University of California, Davis, CA 95616
Contributed by George Bruening, August 2, 1993
The plant virus infection cycle requires that the virus genome, once introduced into the host cell, must replicate, move from the initially infected cell to other cells, and, ultimately, gain access to a new host plant. Virus genomes encode proteins required for replication, encapsidation, movement in the plant, and other functions. One group of subviral RNA agents, the viroids, are independently replicating and complete their infection cycle without generating a capsid or other proteins. A variety of other subviral RNA agents (Table 1) lack one or more critical functions necessary for completion of the infection cycle and apparently have evolved in association with a virus that supplies the necessary functions. Often the association results in a decrease of virus titer. We investigate here a system in which a subviral, virus-associated RNA increases the titer of the corresponding virus, at least in protoplasts and probably in infected plants as well. The name luteovirus is derived from the Latin root for yellow, reflecting the tendency of members of the group to induce yellowing symptoms. Luteoviruses such as barley yellow dwarf virus, beet western yellows virus (BWYV), carrot red leaf virus, legume yellows virus, and soybean dwarf virus infect and cause significant losses to all of the major groups of food crops. BWYV and other luteoviruses are characterized by obligate aphid transmission to host plants, by limitation of infection to the phloem tissue, and by low titer, presumably as a consequence of phloem limitation (5-7). Like other luteoviruses, BWYV has a single genomic RNA (Fig. la) of -6000 nt, with 6 open reading frames (ORFs). Virions have isometric capsids, probably composed of 180 coat protein molecules as is characteristic of a T = 3 structure. The bulk of the coat protein is translated from
The publication costs of this article were defrayed in part by page charge payment. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. §1734 solely to indicate this fact.
Proc. Natl. Acad. Sci. USA Vol. 90, pp. 10168-10172, November 1993 Agricultural Sciences
Beet western yellows virus-associated RNA: An independently replicating RNA that stimulates virus accumulation
ORF-3, but a few coat protein molecules result from readthrough of the ORF-3 termination codon (Fig. la) to give an ORF-3/5 fusion (6). The ST9 strain of BWYV is unique among BWYV strains because virion RNA preparations contain not only the genomic RNA (ST9gRNA) but also an associated RNA (ST9aRNA) (11). ST9aRNA (Fig. lb), at 2843 nt, is about half the size of the ST9gRNA (Fig. la) and has a distinct nucleotide sequence (9). Plants infected by ST9 BWYV exhibit a more severe symptom phenotype and contain =.10-fold more virions per g of tissue than do plants infected by common BWYV isolates (11). The ST9aRNA nucleotide sequence contains three large ORFs, which, at least in vitro, can be translated to yield products of =85 kDa, corresponding to ORFs-1, -2, plus -3, as well as products with sizes corresponding to ORF-1, ORFs-2, plus -3, and ORF-3 but not ORF-2 alone. The deduced amino acid sequence of two regions of the 85-kDa protein contain significant homology with RNA-dependent RNA polymerases of carmoviruses (9), including the GDD sequence common to most such enzymes. ST9aRNA has some of the characteristics of a satellite RNA (Table 1). Specifically, ST9aRNA is encapsidated in ST9 BWYV coat protein and lacks sequence similarity with ST9gRNA. However, a satellite RNA is capable of replicating only in cells that are infected by any one of a few, closely related "supporting" or "helper" viruses. Results presented here suggest that ST9aRNA, although it has an intimate biological relationship with its associated virus, is not a satellite RNA. The ST9aRNA appears to be a different type of plant infectious agent that depends on BWYV for encapsidation but not for replication.
Infections of plants by subviral RNA agents, ABSTRACT alone or in association with virus genomic RNA molecules, are well known. The ST9 strain of beet western yellows virus encapsidates not only the 5.6-kilobase genomic RNA that is typical of luteoviruses, but also a 2.8-kilobase-associated RNA that has a distinct nucleotide sequence. The ST9-associated RNA has been postulated to be a satellite RNA, which by dermition would be capable of replicating only in coinfections with beet western yellows virus or closely related viruses. To characterize the associated RNA, we inoculated protoplasts and leaves with in vitro transcripts of the virus genomic RNA and the ST9-associated RNA separately and in combination. Surprisingly, the ST9-associated RNA alone replicated efficiently in both protoplasts and leaves, and it stimulated accumulation of the virus genomic RNA in protoplasts. Thus, the ST9-associated RNA is a newly discovered type of plant infectious agent, which depends on its associated virus, beet western yellows virus, for encapsidation but not for replication.
相关文档
最新文档