映射,函数定义域,值域_解题办法归纳[1]
求函数的定义域与值域的常用方法
求函数的定义域与值域的常用方法在数学中,函数的定义域和值域是非常重要的概念。
定义域是指函数可以接受的输入值的集合,而值域则是函数能够取得的输出值的集合。
正确确定函数的定义域和值域是解决函数相关问题的关键,下面我们将详细介绍求函数定义域和值域的常用方法。
一、函数的定义域的常用方法:1. 显式定义法:对于一些常见的函数,我们可以直接根据其表达式来确定其定义域。
例如,对于一元多项式函数f(x)=ax^n+bx^m+...+c,其定义域可以是实数集或者区间。
2.隐式定义法:对于一些函数可能没有明确的表达式,或者函数的定义域和表达式没有直接的关系,我们可以根据函数的特性和性质来确定其定义域。
例如,对于分式函数f(x)=1/(x-1),我们可以得知分母不能为0,所以其定义域是实数集减去1的那部分实数。
3.已知条件法:有时候我们可以根据函数在一些点的取值情况来确定其定义域。
例如,对于一个连续函数f(x),如果我们知道在一些区间上f(x)恒大于0,那么可以确定该区间为函数的定义域。
4.集合运算法:当函数的定义域可以表示为多个区间或集合的并、交、差等运算时,我们可以利用这些运算来求解函数的定义域。
例如,对于函数f(x)=√(x+1)-√(x-1),我们可以先求出√(x+1)和√(x-1)的定义域,然后求出它们的交集。
二、函数的值域的常用方法:1.考察函数表达式法:对于一些常见的函数,我们可以观察其表达式,根据其中的字母、常数等特性来确定其值域的范围。
例如,对于平方函数f(x)=x^2,我们可以观察到平方函数的输出恒为非负数,所以其值域是[0,+∞)。
2.定义域与函数性质法:当我们已经确定了函数的定义域后,可以根据函数的性质来确定其值域。
例如,对于连续函数f(x)在一些区间上单调增加或者单调减少,我们可以确定函数在该区间上取值范围。
3.极限与极大极小值法:利用函数的极限性质、导数等衍生性质来确定函数的值域。
例如,对于函数f(x)=x^3-3x+2,我们可以求出其导数为f'(x)=3x^2-3,然后根据导数的符号确定函数的单调性和极值点,从而确定其值域。
求函数的定义域与值域的常用方法
求函数的定义域与值域的常用方法在数学中,函数是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
函数的定义域是指所有输入值的集合,也就是函数可以接受的所有输入。
值域是函数所有可能的输出值的集合,也就是函数可以得到的所有输出。
在求函数的定义域和值域时,一般需要注意以下一些常用的方法和技巧:1.分析函数的显式定义式:如果函数的显式定义式直接给出了函数的定义域和值域,那么问题就迎刃而解了。
例如,定义域是实数集合,值域是区间(0,∞)的函数,可以通过观察定义式得出。
2.求解方程或不等式:通过求解方程或不等式,可以确定函数的定义域。
例如,对于函数f(x)=√(x-2),需要解方程x-2≥0,得到x≥2,即定义域为[2,∞)。
对于函数g(x)=1/x,需要解方程x≠0,得到定义域为(-∞,0)∪(0,∞)。
对于值域,可以通过类似的方式求解不等式或方程得到。
3.观察函数的图像:通过观察函数的图像,可以大致判断函数的定义域和值域。
函数在图像上的取值范围和横坐标的取值范围可以提供一些线索。
例如,对于函数f(x)=x^2,通过观察图像可以看出它的定义域为实数集合,值域为[0,∞)。
4.分解复合函数:当函数是由两个或多个函数复合而成时,可以通过分解复合函数的方式求解定义域和值域。
例如,对于函数f(x)=√(3-x^2),可以将其分解为两个函数f(x)=√(3-y)和g(y)=y^2,然后分别求解其定义域和值域。
5. 推导函数的性质和特点:有时候可以根据函数的性质和特点来推导其定义域和值域。
例如,对于比例函数 f(x) = kx,由于比例函数在定义域上的取值范围是全体实数,所以比例函数的值域也是全体实数。
需要注意的是,函数的定义域和值域是相互依存的。
函数的定义域决定了可以输入什么值,而函数的值域决定了可以输出什么值。
因此,在求解函数的定义域和值域时,需要综合考虑函数定义式、方程和不等式的求解、函数图像的观察、复合函数的分解以及函数的性质和特点等多个方面的信息。
求函数定义域和值域方法对应法则归纳1
<一>求函数定义域、值域方法和典型题归纳一、基础知识整合1.函数的定义:设集合A 和B 是非空数集,按照某一确定的对应关系f ,使得集合A 中任意一个数x,在集合B 中都有唯一确定的数f(x)与之对应。
则称f:为A 到B 的一个函数。
2.由定义可知:确定一个函数的主要因素是①确定的对应关系(f ),②集合A 的取值范围。
由这两个条件就决定了f(x)的取值范围③{y|y=f(x),x ∈A}。
3.定义域:由于定义域是决定函数的重要因素,所以必须明白定义域指的是:(1)自变量放在一起构成的集合,成为定义域。
(2)数学表示:注意一定是用集合表示的范围才能是定义域,特殊的一个个的数时用“列举法”;一般表示范围时用集合的“描述法”或“区间”来表示。
4.值域:是由定义域和对应关系(f )共同作用的结果,是个被动变量,所以求值域时一定注意求的是定义域范围内的函数值的范围。
(1)明白值域是在定义域A 内求出函数值构成的集合:{y|y=f(x),x ∈A}。
(2)明白定义中集合B 是包括值域,但是值域不一定为集合B 。
5.函数的三种表示方法——解析法、图象法、列表法6.分段函数是一个函数而非几个函数.分段函数的定义域是各段上“定义域”的并集,其值域是各段上“值域”的并集.分段函数的图象应分段来作,特别注意各段的自变量取区间端点处时函数的取值情况,以决定这些点的实虚情况.二、求函数定义域(一)求函数定义域的情形和方法总结1已知函数解析式时:只需要使得函数表达式中的所有式子有意义。
(1)常见要是满足有意义的情况简总:①表达式中出现分式时:分母一定满足不为0;②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数)。
③表达式中出现指数时:当指数为0时,底数一定不能为0.④根号与分式结合,根号开偶次方在分母上时:根号下大于0.⑤表达式中出现指数函数形式时:底数和指数都含有x ,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1)⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于1.(2()log (1)x f x x =-)注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。
求函数的定义域与值域的常用方法
求函数的定义域与值域的常用方法函数的定义域和值域是数学中的重要概念,它们描述了函数的输入和输出的范围。
在不同的数学领域和实际应用中,求解函数的定义域和值域有不同的方法和技巧。
函数的定义域是指函数中自变量的取值范围。
换句话说,定义域是使函数有意义的输入值的集合。
下面介绍一些常用方法来求解函数的定义域:1.分式函数:分式函数的定义域通常要求分母不等于零,因此我们需要找到分母为零的点,并将其排除。
求解分母为零的方程,得到函数的定义域。
2.平方根函数:平方根函数的定义域要求根号内的值大于等于零。
因此,需要将根号内的表达式>=0,并求解方程,得到函数的定义域。
3.指数函数和对数函数:指数函数的定义域通常为全体实数,而对数函数的定义域要求基数和真数都大于零。
因此,对于指数函数,不存在特定的求解方法;而对于对数函数,需要使基数和真数大于零,并求解相应的方程。
4.复合函数:复合函数的定义域由内层函数和外层函数的定义域共同确定。
首先求解内层函数的定义域,将其结果作为外层函数的自变量的定义域。
注意需要将两个函数的定义域进行交集运算,得到复合函数的定义域。
5.根式函数:根式函数的定义域需要满足根号内的表达式大于等于零。
求解根号内的方程,得到函数的定义域。
函数的值域是函数在定义域内所有可能的输出值的集合。
下面介绍一些常用方法来求解函数的值域:1.分析法:通过分析函数的特点、性质和图像,推断出函数的值域。
例如,通过观察函数的单调性、奇偶性、对称性、极值等特点,可以确定函数的值域的范围。
2.等式法:通过解方程求函数的值域。
将函数的表达式等于一个未知数,解方程得到未知数的取值范围,即为函数的值域。
3.代数运算法:通过对函数进行代数运算,得到函数的值域。
例如,对于一次函数,通过对其进行线性变换和平移,可以推导出函数的值域的范围。
4.图像法:通过绘制函数的图像,观察函数的上下界,以及是否存在水平渐近线和垂直渐近线,可以推断出函数的值域。
函数求值域15种方法
函数求值域15种方法在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。
研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。
确定函数的值域是研究函数不可缺少的重要一环。
对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。
本文就函数值域求法归纳如下,供参考。
基本知识1.定义:因变量y的取值范围叫做函数的值域(或函数值的集合)。
2.函数值域常见的求解思路:⑴划归为几类常见函数,利用这些函数的图象和性质求解。
⑵反解函数,将自变量x用函数y的代数式形式表示出来,利用定义域建立函数y的不等式,解不等式即可获解。
⑶可以从方程的角度理解函数的值域,从方程的角度讲,函数的值域即为使关于x的方程y=f(x)在定义域内有解的y得取值范围。
特别地,若函数可看成关于x的一元二次方程,则可通过一元二次方程在函数定义域内有解的条件,利用判别式求出函数的值域。
⑷可以用函数的单调性求值域。
⑸其他。
1. 直接观察法对于一些比较简单的函数,通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域例1. 求函数的值域。
解:∵∴显然函数的值域是:2. 配方法配方法是求二次函数值域最基本的方法之一。
例2. 求函数的值域。
解:将函数配方得:∵由二次函数的性质可知:当x=1时,,当x=-1时,故函数的值域是:[4,8]3. 判别式法例3. 求函数的值域。
解:两边平方整理得:(1)∵∴解得:但此时的函数的定义域由,得由,仅保证关于x的方程:在实数集R有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由求出的范围可能比y的实际范围大,故不能确定此函数的值域为。
可以采取如下方法进一步确定原函数的值域。
∵∴∴代入方程(1)解得:即当时,原函数的值域为:注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
函数定义域值域求法总结精彩
函数定义域值域求法总结精彩GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-函数定义域、值域求法总结一、定义域是函数y=f(x)中的自变量x 的范围。
求函数的定义域需要从这几个方面入手: (1)分母不为零(2)偶次根式的被开方数非负。
(3)对数中的真数部分大于0。
(4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。
( 6 )0x 中x 0≠二、值域是函数y=f(x)中y 的取值范围。
这些解题思想与方法贯穿了高中数学的始终。
常用的求值域的方法:(1)直接法 (2)图象法(数形结合) (3)函数单调性法(4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等三、典例解析 1、定义域问题例1 求下列函数的定义域:① 21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)( 解:①∵x-2=0,即x=2时,分式21-x 无意义,而2≠x 时,分式21-x 有意义,∴这个函数的定义域是{}2|≠x x .②∵3x+2<0,即x<-32时,根式23+x 无意义,而023≥+x ,即32-≥x 时,根式23+x 才有意义,∴这个函数的定义域是{x |32-≥x }.③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x-21同时有意义,∴这个函数的定义域是{x |1-≥x 且2≠x }另解:要使函数有意义,必须: ⎩⎨⎧≠-≥+0201x x ⇒ ⎩⎨⎧≠-≥21x x例2 求下列函数的定义域:①14)(2--=x x f ②2143)(2-+--=x x x x f ③=)(x f x11111++④xx x x f -+=0)1()( ⑤373132+++-=x x y解:①要使函数有意义,必须:142≥-x 即: 33≤≤-x ∴函数14)(2--=x x f 的定义域为: [3,3-]②要使函数有意义,必须:⎩⎨⎧≠-≠-≤≥⇒⎩⎨⎧≠-+≥--13140210432x x x x x x x 且或 4133≥-≤<--<⇒x x x 或或∴定义域为:{ x|4133≥-≤<--<x x x 或或}③要使函数有意义,必须: 011110110≠++≠+≠⎪⎪⎪⎩⎪⎪⎪⎨⎧x x x ⇒ 2110-≠-≠≠⎪⎩⎪⎨⎧x x x∴函数的定义域为:}21,1,0|{--≠∈x R x x 且④要使函数有意义,必须: ⎩⎨⎧≠-≠+001x x x ⎩⎨⎧<-≠⇒01x x∴定义域为:{}011|<<--<x x x 或⑤要使函数有意义,必须: ⎩⎨⎧≠+≥+-073032x x ⎪⎩⎪⎨⎧-≠∈⇒37x R x 即 x<37- 或 x>37- ∴定义域为:}37|{-≠x x例3 若函数aax ax y 12+-=的定义域是R ,求实数a 的取值范围 解:∵定义域是R,∴恒成立,012≥+-aax ax 第一页∴⎪⎩⎪⎨⎧≤<⇒≤⋅-=∆>2001402a a a a a 等价于 例4 若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域解:要使函数有意义,必须:43434543434514111411≤≤-⇒⎪⎩⎪⎨⎧≤≤-≤≤-⇒⎪⎩⎪⎨⎧≤-≤-≤+≤-x x x x x ∴函数)41(+=x f y )41(-⋅x f 的定义域为:⎭⎬⎫⎩⎨⎧≤≤-4343|x x 例5 已知f(x)的定义域为[-1,1],求f(2x -1)的定义域。
函数值域定义域解析式方法总结
函数定义域、值域求法总结一、定义域是函数y=f(x)中的自变量x 的范围。
求函数的定义域需要从这几个方面入手:(1)分母不为零 (2)偶次根式的被开方数非负。
(3)对数中的真数部分大于0。
(4)指数、对数的底数大于0,且不等于1(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。
( 6 )0x 中x 0≠二、值域是函数y=f(x)中y 的取值范围。
常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法(4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法)(7)分离常数法 (8)判别式法 (9)复合函数法(10)不等式法 (11)平方法等等这些解题思想与方法贯穿了高中数学的始终。
三、典例解析1、定义域问题例1 求下列函数的定义域:① 21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)(例3 若函数aax ax y 12+-=的定义域是R ,求实数a 的取值范围例4 若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域例5 已知f(x)的定义域为[-1,1],求f(2x -1)的定义域。
例6已知已知f(x)的定义域为[-1,1],求f(x 2)的定义域。
2、求值域问题例4 求函数x x y -+=12 的值域例7 求13+--=x x y 的值域例8 求函数[])1,0(239∈+-=x y x x 的值域例9 例9求函数x x y 2231+-⎪⎭⎫ ⎝⎛= 的值域例10 求函数 )0(2≤=x y x 的值域例11 求函数21+-=x x y 的值域 例12 求函数133+=x xy 的值域 练习:y =1212+-x x ;(y ∈(-1,1)) 例13 函数1122+-=x x y 的值域 例14 求函数34252+-=x x y 的值域 例15 函数11++=x x y 的值域 三、求函数的解析式1、已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
函数的定义域与值域知识点及题型总结
函数的定义域与值域知识点及题型总结函数的定义域与值域知识点及题型总结知识点精讲一、函数的定义域求解函数的定义域应注意:1) 分式的分母不为零;2) 偶次方根的被开方数大于或等于零;3) 对数的真数大于零,底数大于零且不等于1;4) 零次幂或负指数次幂的底数不为零;5) 三角函数中的正切$y=\tan x$的定义域是$x\neqk\pi+\frac{\pi}{2}$,其中$k\in Z$;6) 已知$f(x)$的定义域求解$f(g(x))$的定义域,或已知$f(g(x))$的定义域求解$f(x)$的定义域,遵循两点:①定义域是指自变量的取值范围;②在同一对应法则下,括号内式子的范围相同;7) 对于实际问题中函数的定义域,还需根据实际意义再限制,从而得到实际问题函数的定义域。
二、函数的值域求解函数值域主要有以下十种方法:1) 观察法;2) 配方法;3) 图像法;4) 基本不等式法;5) 换元法;6) 分离常数法;7) 判别式法;8) 单调性法;9) 有界性法;10) 导数法。
需要指出的是,定义域或值域的结果必须写成区间或集合的形式。
题型归纳及思路提示题型1 函数定义域的求解思路提示:对求函数定义域问题的思路是:1) 先列出使式子$f(x)$有意义的不等式或不等式组;2) 解不等式组;3) 将解集写成集合或区间的形式。
二、给出函数解析式求解定义域例 2.10 函数$y=\frac{\ln(x+1)-x}{-3x+4}$的定义域为()。
A。
$(-4,-1)$ B。
$(-4,1)$ C。
$(-1,1)$ D。
$(-1,1]$分析本题考查对数、分式根式有关的函数定义域的求解。
解:$x+1>0$,$-3x+4\neq 0$,即$x\neq\frac{4}{3}$。
解不等式$\ln(x+1)>x-4$,得$-1<x<1$。
故选C。
变式1 函数$y=x\ln(1-x)$的定义域为()。
A。
函数的定义域和值域知识点和题型归纳
●高考明方向了解构成函数的要素,会求一些简单函数的定义域和值域.★备考知考情定义域是函数的灵魂,高考中考查的定义域多以选择、填空形式出现,难度不大;有时也在解答题的某一小问当中进行考查;值域是定义域与对应法则的必然产物,值域的考查往往与最值联系在一起,三种题型都有,难度中等.一、知识梳理《名师一号》P13知识点一常见基本初等函数的定义域注意:1、研究函数问题必须遵循“定义域优先”的原则!!!2、定义域必须写成集合或区间的形式!!!(1)分式函数中分母不等于零(2)偶次根式函数被开方式大于或等于0(3)一次函数、二次函数的定义域均为R(4)y =a x (a >0且a ≠1),y =sin x ,y =cos x 的定义域均为R(5)y =log a x (a >0且a ≠1)的定义域为(0,+∞)(6)函数f (x )=x 0的定义域为{x |x ≠0}(7)实际问题中的函数定义域,除了使函数的解析式有意 义外,还要考虑实际问题对函数自变量的制约. (补充)三角函数中的正切函数y =tan x 定义域为{|,,}2∈≠+∈x x R x k k Z ππ如果函数是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数集合.知识点二 基本初等函数的值域注意:(1)y =kx +b (k ≠0)的值域是R .(2)y =ax 2+bx +c (a ≠0)的值域是:当a >0时,值域为{y |y ≥4ac -b 24a}; 当a <0时,值域为{y |y ≤4ac -b 24a} (3)y =kx(k ≠0)的值域是{y |y ≠0} (4)y =a x (a >0且a ≠1)的值域是{y |y >0}(5)y =log a x (a >0且a ≠1)的值域是R .(补充)三角函数中正弦函数y =sin x ,余弦函数y =cos x 的值域均为[]1,1- 正切函数y =tan x 值域为R《名师一号》P15知识点二 函数的最值注意:《名师一号》P16 问题探究 问题3函数最值与函数值域有何关系?函数的最小值与最大值分别是函数值域中的最小元素与最大元素;任何一个函数,其值域必定存在,但其最值不一定存在.1、温故知新P11 知识辨析1(2) 函数21=+x y x 的值域为11,,22⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭( )答案:正确2、温故知新P11 第4题函数(]()1122,,222,,2--⎧-∈-∞⎪=⎨-∈-∞⎪⎩x x x y x 的值域为( ) 3.,2⎛⎫-+∞ ⎪⎝⎭A ().,0-∞B 3.,2⎛⎫-∞- ⎪⎝⎭C (].2,0-D答案:D注意:牢记基本函数的值域3、温故知新P11 第6题函数()=y f x 的值域是[]1,3,则函数()()123=-+F x f x 的值域是( )[].5,1--A [].2,0-B [].6,2--C [].1,3D答案:A注意:图像左右平移没有改变函数的值域二、例题分析:(一)函数的定义域1.据解析式求定义域例1. (1)《名师一号》P13 对点自测1(2014·山东) 函数()=f x 为( )A.⎝⎛⎭⎪⎪⎫0,12 B .(2,+∞) C.⎝ ⎛⎭⎪⎪⎫0,12∪(2,+∞) D.⎝⎛⎦⎥⎥⎤0,12∪[2,+∞)解析 要使函数有意义,应有(log 2x )2>1,且x >0, 即log 2x >1或log 2x <-1,解得x >2或0<x <12. 所以函数f (x )的定义域为⎝⎛⎭⎪⎪⎫0,12∪(2,+∞). 例1. (2)《名师一号》P14 高频考点 例1(1) 函数f (x )=1-2x +1x +3的定义域为( ) A .(-3,0] B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1]解析:由题意得⎩⎪⎨⎪⎧ 1-2x ≥0,x +3>0,解得-3<x ≤0.注意:《名师一号》P14 高频考点 例1 规律方法(1) 求函数的定义域,其实质就是以函数解析式所含运算有意义为准则,列出不等式或不等式组,然后求出它们的解集.函数的定义域一定要用集合或区间表示例2. (补充)若函数2()lg(21)f x ax x =++的定义域为R则实数a 的取值范围是 ;答案:()1,+∞变式:2()lg(21)=++f x ax ax ?练习:(补充)若函数27()43kx f x kx kx +=++的定义域为R 则实数k 的取值范围是 ;答案:30,4⎡⎫⎪⎢⎣⎭2.求复合函数的定义域例3.(1)《名师一号》P14 高频考点 例1(2)(2015·北京模拟)已知函数y =f (x )的定义域为[0,4],则函数y =f (2x )-ln(x -1)的定义域为( )A .[1,2]B .(1,2]C .[1,8]D .(1,8]解析:由已知函数y =f (x )的定义域为[0,4]. 则使函数y =f (2x )-ln(x -1)有意义,需⎩⎪⎨⎪⎧ 0≤2x ≤4,x -1>0,解得1<x ≤2,所以定义域为(1,2].例3. (2)《名师一号》P13 对点自测2已知函数f (x )=1x +1,则函数f (f (x ))的定义域是( )A .{x |x ≠-1}B .{x |x ≠-2}C .{x |x ≠-1且x ≠-2}D .{x |x ≠-1或x ≠-2}解析 ⎩⎪⎨⎪⎧ x ≠-1,1x +1+1≠0,解得x ≠-1且x ≠-2.注意:《名师一号》P14 高频考点 例1 规律方法(2) (P13 问题探究 问题1 类型二)已知f (x )的定义域是[a ,b ],求f [g (x )]的定义域, 是指满足a ≤g (x )≤b 的x 的取值范围,而已知f [g (x )]的定义域是[a ,b ],指的是x ∈[a ,b ].例4.(补充)已知2(1)f x +的定义域是[]0,1,求()f x 的定义域。
(完整版)求函数定义域及值域方法及典型题归纳
<一>求函数定义域、值域方法和典型题归纳一、基础知识整合1.函数的定义:设集合A 和B 是非空数集,按照某一确定的对应关系f ,使得集合A 中任意一个数x,在集合B 中都有唯一确定的数f(x)与之对应。
则称f:为A 到B 的一个函数。
2.由定义可知:确定一个函数的主要因素是①确定的对应关系(f ),②集合A 的取值范围。
由这两个条件就决定了f(x)的取值范围③{y|y=f(x),x ∈A}。
3.定义域:由于定义域是决定函数的重要因素,所以必须明白定义域指的是:(1)自变量放在一起构成的集合,成为定义域。
(2)数学表示:注意一定是用集合表示的范围才能是定义域,特殊的一个个的数时用“列举法”;一般表示范围时用集合的“描述法”或“区间”来表示。
4.值域:是由定义域和对应关系(f )共同作用的结果,是个被动变量,所以求值域时一定注意求的是定义域范围内的函数值的范围。
(1)明白值域是在定义域A 内求出函数值构成的集合:{y|y=f(x),x ∈A}。
(2)明白定义中集合B 是包括值域,但是值域不一定为集合B 。
二、求函数定义域(一)求函数定义域的情形和方法总结1已知函数解析式时:只需要使得函数表达式中的所有式子有意义。
(1)常见要是满足有意义的情况简总:①表达式中出现分式时:分母一定满足不为0;②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数)。
③表达式中出现指数时:当指数为0时,底数一定不能为0.④根号与分式结合,根号开偶次方在分母上时:根号下大于0.⑤表达式中出现指数函数形式时:底数和指数都含有x ,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1)⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于 1.(2()log (1)x f x x =-)注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。
高中数学求函数值域的解题方法总结(16种)
求函数值域的解题方法总结(16种)在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。
一、观察法:通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
例:求函数()x 323y -+=的值域。
点拨:根据算术平方根的性质,先求出()x 3-2的值域。
解:由算术平方根的性质知()0x 3-2≥,故()3x 3-23≥+。
点评:算术平方根具有双重非负性,即:(1)、被开方数的非负性,(2)、值的非负性。
本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧发。
练习:求函数()5x 0x y ≤≤=的值域。
(答案:{}5,4,3,2,1,0)二、反函数法:当函数的反函数存在时,则其反函数的定义域就是原函数的值域。
例:求函数2x 1x y ++=的值域。
点拨:先求出原函数的反函数,再求出其定义域。
解:显然函数2x 1x y ++=的反函数为:y y --=112x ,其定义域为1y ≠的实数,故函数y 的值域为{}R y 1,y |y ∈≠。
点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。
这种方法体现逆向思维的思想,是数学解题的重要方法之一。
练习:求函数x-x -xx 10101010y ++=的值域。
(答案:{}1y 1-y |y 或)。
三、配方法:当所给函数是二次函数或可化为二次函数的复合函数时,可利用配方法求函数的值域。
例:求函数()2x x-y 2++=的值域。
点拨:将被开方数配方成平方数,利用二次函数的值求。
解:由02x x -2≥++可知函数的定义域为{}2x 1-|x ≤≤。
此时2x x -2++=4921-x -2+⎪⎭⎫ ⎝⎛ ()232x x-02≤++≤∴,即原函数的值域为⎭⎬⎫⎩⎨⎧≤23y 0|y点评:求函数的值域的不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。
函数的15种求值方法
在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。
研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。
确定函数的值域是研究函数不可缺少的重要一环。
对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。
本文就函数值域求法归纳如下,供参考。
基本知识1. 定义:因变量y 的取值范围叫做函数的值域(或函数值的集合) 。
2. 函数值域常见的求解思路:⑴ 划归为几类常见函数,利用这些函数的图象和性质求解。
⑵ 反解函数,将自变量x 用函数y 的代数式形式表示出来,利用定义域建立函数y 的不等式,解不等式即可获解。
⑶ 可以从方程的角度理解函数的值域,从方程的角度讲,函数的值域即为使关于x 的方程y=f(x) 在定义域内有解的y 得取值范围。
特别地,若函数可看成关于x 的一元二次方程,则可通过一元二次方程在函数定义域内有解的条件,利用判别式求出函数的值域。
⑷ 可以用函数的单调性求值域。
⑸ 其他。
1. 直接观察法对于一些比较简单的函数,通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域例1. 求函数的值域。
解:∵ ∴显然函数的值域是:2. 配方法配方法是求二次函数值域最基本的方法之一。
例2. 求函数的值域。
解:将函数配方得:∵由二次函数的性质可知:当x=1 时,,当x=-1 时,故函数的值域是: [4 , 8]3. 判别式法解:两边平方整理得:(1 ) ∵∴ 解得: 但此时的函数的定义域由 ,得由 ,仅保证关于 x 的方程: 在实数集 R 有实根,而不能确保其实根在区间 [0 ,2] 上,即不能确保方程( 1 )有实根,由可以采取如下方法进一步确定原函数的值域。
即当 时,原函数的值域为: 注:由判别式法来判断函数的值域时, 域,将扩大的部分剔除。
高一数学求函数的定义域与值域的常用方法(含答案)
高一数学求函数的解析式、定义域、值域的常用方法一、求函数的解析式的一般方法有:(1)直接法:根据题给条件,合理设置变量,寻找或构造变量之间的等量关系,列出等式,解出y(2)待定系数法:若明确了函数的类型,可以设出其一般形式,然后代值求出参数的值(3)换元法:若给出了复合函数f [g (x )]的表达式,求f (x )的表达式时可以令t =g (x ),以换元法解之(4)构造方程组法:若给出f (x )和f (-x ),或f (x )和f (1/x )的一个方程,则可以x 代换-x (或1/x ),构造出另一个方程,解此方程组,消去f (-x )(或f (1/x ))即可求出f (x )的表达式二、求函数定义域的方法1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等4、对复合函数y =f [g (x )]的定义域的求解,应先由y =f (u )求出u 的范围,即g (x )的范围,再从中解出x 的范围I 1;再由g (x )求出y =g (x )的定义域I 2,I 1和I 2的交集即为复合函数的定义域5、分段函数的定义域是各个区间的并集6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域三、求函数值域的方法1、分离变量法2、配方法3、判别式法4、单调性法5、换元法一、求函数解析式1、换元法例1 已知22+1++1=x x x f x x ⎛⎫ ⎪⎝⎭,试求()f x2、构造方程组法例2 (1)已知21()+2()=3+4+5f x f x x x,试求()f x (2)已知2()+2(-)=3+4+5f x f x x x ,试求()f x例3 求下列函数的解析式:(1)已知)(x f 是二次函数,且1)()1(,2)0(-=-+=x x f x f f ,求)(x f(2)已知x x x f 2)1(+=+,求)(x f ,)1(+x f ,)(2x f(3)已知x xx x x f 11)1(22++=+,求)(x f (4)已知3)(2)(3+=-+x x f x f ,求)(x f二、求函数定义域例1 求+3-4x y x 的定义域例2 求下列函数的定义域(1)35)(--=x x x f ; (2)x x x f -+-=11)( 例例4已知(f x ,(g x ,求=(g())y f x 值域 三、求函数的值域与最值1、分离变量法例1 求函数2+3=+1x y x 的值域2、配方法例2 求函数y =2x 2+4x 的值域说明:对于可以化为二次函数的函数的值域也可采用此方法求解,如y =af 2(x )+bf (x )+c3、判别式法例3 求函数2223456x x y x x ++=++的值域4、单调性法例4 求函数23y x-=+,x ∈[4,5]的值域5、换元法例5 求函数=2y x例6 求下列函数的值域: (1){}5,4,3,2,1,12∈+=x x y (2)1+=x y (3)2211xx y +-=(4))25(,322-≤≤-+--=x x x y练习1、函数y =f (x )的值域是[-2,2],则函数y =f (x +1)的值域是2、已知函数f (x )=x 2-2x ,则函数f (x )在区间[-2,2]上的最大值为3、一等腰三角形的周长为20,底边长y 是关于腰长x 的函数,那么其解析式和定义域是4、二次函数y =x 2-4x +4的定义域为[a ,b ](a<b ),值域也是[a ,b ],则区间[a ,b ]是5、函数y =f (x +2)的定义域是[3,4],则函数y =f (x +5)的定义域是6、函数22+2=3+4x y x x的值域是 7、若f (x )=(x +a )3对任意x ∈R 都有f (1+x )=-f (1-x ),则f (2)+f (-2)=8、若函数2()=-2f x x 的值域为1-,-3⎛⎤∞ ⎥⎝⎦,则其定义域为 9、求函数5-+3+4=+2x x y x 的定义域 11、已知2-2+1,2()=-,>2x x x f x x x ⎧≤⎪⎨⎪⎩,若f (a )=3,求a 的值12、已知函数f (x )满足2f (x )-f (-x )=-x 2+4x ,试求f (x )的表达式13、设函数⎩⎨⎧<+≥+-=0,60,64)(2x x x x x x f 求不等式)1()(f x f >的解集 14、函数xax y 213-+=的值域为(,1)(1,)-∞--+∞U ,求实数a 的值为 15、已知函数()y f x =的定义域为(0,1),则2()f x 的定义域是16、已知函数221()1x f x x +=-,则在①()()f x f x -=,②1()()f f x x =-,③()()f x f x -=-,④1()()f x f x-= 中成立的个数是17、如果一元二次函数23y x mx m =+++有两个不同的零点,则m 的取值范围是18、已知函数[](),f x x x x R =-∈,其中[]x 表示不超过x 的最大整数,如[]352,33,222⎡⎤⎡⎤-=--=-=⎢⎥⎢⎥⎣⎦⎣⎦,则()f x 的值域是19、已知函数31(3)()3(3)x x f x x a x -⎧≠-⎪=+⎨⎪=-⎩的定义域与值域相同,则常数a =20、若函数(21)f x -的定义域是[0,1),则函数(13)f x -的定义域是21、已知二次函数2()f x ax bx =+,若12(1)(1)f x f x -=+其中122x x -≠,则12()f x x +的值为22、已知函数2()(1)f x x a x a =+-+,在区间[1,)-+∞上是增函数,则a 的取值范围是23、已知全集U R =,集合{}312A x m x m =-<<,{}13B x x =-<<,若A U C B ,求实数m 的取值范围24、已知一元二次函数()f x 满足(2)(2)()f k f k k R -+=--∈,且该函数的图象与y 轴交于点(0,1),在x 轴上截得的线段长为2225、已知集合{}2|1,A x y x x Z ==-∈,},1|{2A x x y y B ∈+==,则B A I =____26、若方程()[]24330,0,1x x k x -+-=∈没有实数根,求k 的取值范围 27、已知集合{}{}22221,350A x x x B x x ax a =--=-=-+-=,若A B B =I ,求实数a 的取值范围28、函数2()f x x bx c =-++()x R ∈满足(1)(3)f x f x -=-,且方程()0f x =的两个根12,x x 满足1222x x -=,求()f x 解析式29、已知二次函数)(x f y =的图象过点(0,3)-,且方程0)(=x f 的两个根的平方和为10,又对任意的x 都有)1()1(x f x f -=+(1)求二次函数)(x f y =的表达式;(2)求该二次函数在[0,3]上的最大最小值30、求函数212y x x =-的值域 31、已知二次函数)(x f 的二次项系数为a ,且不等式x x f 2)(->的解集为(1,3)(1)若方程0)(=x f 的两根一个大于-3,另一个小于-3,求a 的取值范围(2)若方程06)(=+a x f 有两个相等的实根,求)(x f 的解析式31、已知集合}03)3(|{},03)32(|{222=-+-+==--+=m m x m x x B m x m x x A ,且满足条件:(1)B A ≠;(2).),0(B A m a B A a Y I 及求≠∈32、已知集合2{|0},{||1|1},2x A x B x x x -=<=->+I 则A B 等于 33、若函数2143mx y mx mx -=++的定义域为R ,则实数m 的取值范围是34、已知函数4()42xx f x =+, (1)若01a <<,求()(1)f a f a +-的值(2)求122008()()()200920092009f f f +++L 的值35、已知函数()f x 定义域为区间A ,若其值域也为区间A ,则称区间A 为()f x 的保值区间.一般来说,函数的保值区间有(,],[,],[,)m m n n -∞+∞三种形式(1)求函数2()1f x x x =-+的保值区间(2)函数1()1(0)g x x x =->是否存在形如[,]()a b a b <的保值区间,若存在,求出实数,a b 的值;若不存在,请说明理由。
(精华)函数定义域与值域经典题型归纳总结讲义学生版(无答案)
<一>求函数定义域、值域方法和典型题归纳一、求函数定义域(一)求函数定义域的情形和方法总结1已知函数解析式时:只需要使得函数表达式中的所有式子有意义。
(1)常见情况简总:①表达式中出现分式时:分母一定满足不为0;②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数)。
③表达式中出现指数时:当指数为0时,底数一定不能为0. ④根号与分式结合,根号开偶次方在分母上时:根号下大于0.⑤表达式中出现指数函数形式时:底数含有x ,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1)⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于 1.(2()log (1)x f x x =-)注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。
(2)求定义域时,尽量不要对函数解析式进行变形,以免发生变化。
(形如:2()x f x x=) 练习1、求下列函数的定义域:⑴y =⑵y =⑶01(21)111y x x =+-++-2.抽象函数(没有解析式的函数) 解题的方法精髓是“换元法”,根据换元的思想,我们进行将括号为整体的换元思路解题,所以关键在于求括号整体的取值范围。
总结为: (1)给出了定义域就是给出了所给式子中x 的取值范围; (2)在同一个题中x 不是同一个x ;(3)只要对应关系f 不变,括号的取值范围不变。
(4)求抽象函数的定义域个关键在于求f(x)的取值范围,及括号的取值范围。
例1:已知f(x+1)的定义域为[-1,1],求f (2x-1)的定义域。
练习2、设函数()f x 的定义域为[01],,则函数2()f x 的定义域为__________;函数2)f 的定义域为_________;3、若函数(1)f x +的定义域为[23]-,,则函数(21)f x -的定义域是 ;函数1(2)f x+的定义域为 。
映射,函数定义域,值域_解题办法归纳
2
旭日东升辅导中心专题
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力通根保1据过护生管高产线中工敷资艺设料高技试中术卷资0配不料置仅试技可卷术以要是解求指决,机吊对组顶电在层气进配设行置备继不进电规行保范空护高载高中与中资带资料负料试荷试卷下卷问高总题中体2资2配,料置而试时且卷,可调需保控要障试在各验最类;大管对限路设度习备内题进来到行确位调保。整机在使组管其高路在中敷正资设常料过工试程况卷中下安,与全要过,加度并强工且看作尽护下可关都能于可地管以缩路正小高常故中工障资作高料;中试对资卷于料连继试接电卷管保破口护坏处进范理行围高整,中核或资对者料定对试值某卷,些弯审异扁核常度与高固校中定对资盒图料位纸试置,卷.编保工写护况复层进杂防行设腐自备跨动与接处装地理置线,高弯尤中曲其资半要料径避试标免卷高错调等误试,高方要中案求资,技料编术试写5交、卷重底电保要。气护设管设装备线备置4高敷、调动中设电试作资技气高,料术课中并3试、中件资且卷管包中料拒试路含调试绝验敷线试卷动方设槽技作案技、术,以术管来及架避系等免统多不启项必动方要方式高案,中;为资对解料整决试套高卷启中突动语然过文停程电机中气。高课因中件此资中,料管电试壁力卷薄高电、中气接资设口料备不试进严卷行等保调问护试题装工,置作合调并理试且利技进用术行管,过线要关敷求运设电行技力高术保中。护资线装料缆置试敷做卷设到技原准术则确指:灵导在活。分。对线对于盒于调处差试,动过当保程不护中同装高电置中压高资回中料路资试交料卷叉试技时卷术,调问应试题采技,用术作金是为属指调隔发试板电人进机员行一,隔变需开压要处器在理组事;在前同发掌一生握线内图槽部纸内 故资,障料强时、电,设回需备路要制须进造同行厂时外家切部出断电具习源高题高中电中资源资料,料试线试卷缆卷试敷切验设除报完从告毕而与,采相要用关进高技行中术检资资查料料和试,检卷并测主且处要了理保解。护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
8第八讲 映射、函数的定义域及值域讲解
第八讲映射、函数的定义域及值域一、知识概要1、函数的概念:(1)映射:设非空数集A,B,若对集合A中任一元素a,在集合B中有唯一元素b与之对应,则称从A到B的对应为映射,记为f表示对应法则,b=f(a)。
若A中不同元素的象也不同,则称映射为单射,若B中每一个元素都有原象与之对应,则称映射为满射。
既是单射又是满射的映射称为一一映射。
(2)函数定义:函数就是定义在非空数集A,B上的映射,此时称数集A为定义域,象集C={f(x)|x∈A}为基本的因素。
逆过来,值域也会限制定义域。
求函数定义域,通过解关于自变量的不等式(组)来实现的。
要熟记基本初等函数的定义域,通过四则运算构成的初等函数,其定义域是每个初等函数定义域的交集。
复合函数定义域,不仅要考虑内函数的定义域,还要考虑到外函数对应法则的要求。
理解函数定义域,应紧密联系对应法则。
函数定义域是研究函数性质的基础和前提。
函数对应法则通常表现为表格,解析式和图象。
其中解析式是最常见的表现形式。
求已知类型函数解析式的..方法是待定系数法,抽象函数的解析式常用换元法及凑合法。
求函数值域是函数中常见问题,在初等数学范围内,直接法的途径有单调性,基本不等式及几何意义,间接法的途径为函数与方程的思想,表现为△法,反函数法等,在高等数学范围内,用导数法求某些函数最值(极值)更加方便。
在中学数学的各个部分都存在着求取值范围这一典型问题,它的一种典型处理方法就是建立函数解析式,借助于求函数值域的方法。
(3)求函数解析式的常用方法:注意新元的取值范围)f(x)为奇函数且g(x)为偶函数等)时也要注意变量的实际意义。
(4) 配方法、分离变量法、单调性法、图象法、换元法、不等式法(5)函数的综合性题目此类问题主要考查函数值域、单调性、奇偶性、反函数等一些基本知识相结合的题目此类问题要求考生具备较高的数学思维能力和综合分析能力以及较强的运算能力在今后的命题趋势中综(6)力和数学建模能力二、题型展示例1. 设A={1,2,3,4,5},B={6,7,8},从集合A到集合B的集合的映影中,满足f(1)≤f(2)≤f(3)≤f(4)≤f(5)的映射有()A 27个B 9个C 21个 D. 12个例2.已知集合M={a,b,c},N={-1,0,1}从M到N的映射满足f(a) — f(b) = f(c)那么映射f的个数为()A. 2B. 4C. 5D. 7 ⎧1x⎪()(x≥4)例3给出函数f(x)=⎨2则f(log23)等于()⎪⎩f(x+1)(x<4)A.-23111B.C.D. 1119248例4.设函数f(2x)的定义域是[-1,1],求f(log2x)的定义域34例5.已知函数f(x)的值域是[,],试求的值域 89例6设二次函数f(x)满足f(x-2)=f(-x-2),且函数图像在y轴上的截距为1,被X轴截得的线段长为f(x)的解析式.三、题型训练1.函数f(x))A.1D.2ax-1(a>0且a≠1)的值域是_________ 2.函数y=xa+13.(2000全国理,1)设集合A和B都是自然数集合N,映射f:A→B把集合A 中的元素n映射到集合B中的元素2n+n,则在映射f下,象20的原象是()A.2B.3C.4D.54.(1999全国,2)已知映射f:A→B,其中,集合A={-3,-2,-1,1,2,3,4},集合B中的元素都是A中元素在映射f下的象,且对任意的a∈A,在B中和它对应的元素是|a|,则集合B中元素的个数是()A.4B.5C.6D.7x2115.(2002全国理,16)已知函数f(x)=,那么f(1)+f(2)+f()+f(3)+f()+f(4)+f2231+x(1)=_____. 41,若f(1)=-5,则fx四、真题演练 1.(2006年安徽卷)函数f(x)对于任意实数x 满足条件f(x+2)=f(f(5))=__________。
函数的映射知识点总结
函数的映射知识点总结一、函数的定义和性质1. 函数的概念函数是一种特殊的关系,它把一个集合的元素对应到另一个集合的元素上。
2. 函数的定义设A和B是非空的两个集合,如果对于每一个a∈A,都存在唯一的b∈B与之对应,这个对应关系就叫做从集合A到集合B的函数,记作y=f(x),其中x∈A,y∈B。
x是自变量,y是因变量。
3. 函数的性质(1) 函数的值域函数f的值域是指函数值y的取值范围,也就是集合B中所有的可能的y的值。
(2) 函数的定义域函数f的定义域是指函数变量x的取值范围,也就是集合A中所有的可能的x的值。
(3) 一一对应函数若函数f中不同的x对应不同的y,且每一个y都能找到唯一的x与之对应,这样的函数称为一一对应函数。
(4) 反函数如果函数f是一个一一对应函数,那么就存在一个逆映射f⁻¹,它将y映射回x。
(5) 奇函数和偶函数奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。
(6) 单调函数若对于定义域内的任意两个数x1和x2,当x1<x2时有f(x1)<f(x2)或者f(x1)>f(x2),则称函数f在定义域内是单调的。
二、函数的表示和运算1. 函数的图像表示函数的图像是自变量和因变量构成的平面点集在直角坐标系中的几何图形。
2. 函数的解析表示函数的解析表示是指用一个式子或者公式来表示函数,例如y=x²。
3. 函数的运算(1) 函数的和、差、积、商给定函数f(x)和g(x),它们的和、差、积、商分别记作(f+g)(x)、(f-g)(x)、(f*g)(x)、(f/g)(x)。
(2) 复合函数如果y=f(u),u=g(x),那么复合函数h(x)=f(g(x))。
(3) 反函数运算如果函数f是一个一一对应函数,那么它的逆映射f⁻¹的运算是求f⁻¹(y)。
三、常见的函数类型1. 一次函数一次函数的一般形式为y=kx+b,其中k和b是常数,k≠0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一种特殊的对应:映射
(1) (2) (3) (4)
1.对于集合A 中的每一个元素,在集合B 中都有一个(或几个)元素与此相对应。
2.对应的形式:一对多(如①)、多对一(如③)、一对一(如②、④)
3.映射的概念(定义):强调:两个“一”即“任一”、“唯一”。
4.注意映射是有方向性的。
5.符号:f : A B 集合A 到集合B 的映射。
6.讲解:象与原象定义。
再举例:1︒A ={1,2,3,4} B ={3,4,5,6,7,8,9} 法则:乘2加1 是映射 2︒A =N + B ={0,1} 法则:B 中的元素x 除以2得的余数 是映射 3︒A =Z B =N * 法则:求绝对值 不是映射(A 中没有象)
4︒
A ={0,1,2,4} B
={0,1,4,9,64} 法则:f :
a
b =(a -1)2 是映射
一一映射
观察上面的例图(2)得出两个特点:
1︒对于集合A中的不同元素,在集合B中有不同的象(单射)
2︒集合B中的每一个元素都是集合A中的每一个元素的象(满射)即集合B中的每一个元素都有原象。
从映射的观点定义函数(近代定义):
1︒函数实际上就是集合A 到集合B 的一个映射 f :A B 这里 A , B 非空。
2︒A :定义域,原象的集合
B :值域,象的集合(
C )其中C ⊆ B f :对应法则 x ∈A y ∈B
3︒函数符号:y =f (x ) —— y 是 x 的函数,简记 f (x )
函数的三要素: 对应法则、定义域、值域
只有当这三要素完全相同时,两个函数才能称为同一函数。
例:判断下列各组中的两个函数是否是同一函数?为什么? 1.3
)
5)(3(1+-+=
x x x y
52-=x y 解:不是同一函数,定义域不同
2。
111-+=x x y )1)(1(2-+=x x y 解:不是同一函数,定义域不同 3。
x x f =)( 2
)(x x g = 解:不是同一函数,值域不同
4.
x x f =)( 33
)(x x F = 解:是同一函数
5.21)52()(-=x x f 52)(2-=x x f 解:不是同一函数,定义域、值域都不同
关于复合函数
设 f (x )=2x -3 g (x )=x 2+2 则称 f [g (x )](或g [f (x )])为复合函数。
f [g (x )]=2(x 2+2)-3=2x 2+1 g [f (x )]=(2x -3)2+2=4x 2-12x +11
例:已知:f (x )=x 2
-x +3 求:f (
x
1
) f (x +1) 解:f (x 1)=(x 1)2-x
1
+3 f (x +1)=(x +1)2-(x +1)+3=x 2+x +3
1. 函数定义域的求法
● 分式中的分母不为零;
● 偶次方根下的数(或式)大于或等于零;
● 指数式的底数大于零且不等于一;
● 对数式的底数大于零且不等于一,真数大于零。
● 正切函数tan ...(,,)
2
y x x R x k k π
π=∈≠+
∈Z 且
● 余切函数cot y x =
(),,x R x k k π∈≠∈Z 且
● 反三角函数的定义域(有些地方不考反三角,可以不理)
函数y =arcsinx 的定义域是 [-1, 1] ,值域是
[,]22ππ
-
,
函数y =arccosx 的定义域是 [-1, 1] ,值域是 [0, π] ,
函数y =arctgx 的定义域是 R ,值域是
(,)22ππ
-
,
函数y =arcctgx 的定义域是 R ,值域是 (0, π) . 注意,
1. 复合函数的定义域。
如:已知函数()f x 的定义域为(1,3),则函数()(1)(2)F x f x f x =-+-的定义域。
1(1,3)2(1,3)x x -∈⎧⎨
-∈⎩
2.函数
()
f x的定义域为(,)
a b,函数()
g x的定义域为(,)
m n,
则函数
[()]
f g x的定义域为
()(,)
(,)
g x a b
x m n
∈
⎧
⎨
∈
⎩,解不等式,最后结果才是
3.这里最容易犯错的地方在这里:
已知函数
(1)
f x-的定义域为(1,3),求函数()
f x的定义域;或者说,已知函数(1)
f x-的定义域为(3,4),
则函数
(21)
f x-的定义域为______?
2. 函数值域的求法
函数值域的求法方法有好多,主要是题目不同,或者说稍微有一个数字出现问题,
对我们来说,解题的思路可能就会出现非常大的区别.这里我主要弄几个出来,大家一起看一下吧.
(1)、直接观察法 对于一些比较简单的函数,如正比例,反比例,一次函数,指数函数,对数函数,等等, 其值域可通过观察直接得到。
例 求函数
1
,[1,2]y x x =
∈的值域
(2)、配方法
配方法是求二次函数值域最基本的方法之一。
例、求函数
2
25,y x x x R =-+∈的值域。
(3)、根判别式法
对二次函数或者分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其他方法进行化简 如:
.1
12..2
22
22222
b
a y 型:直接用不等式性质k+x bx
b. y 型,先化简,再用均值不等式
x mx n
x 1 例:y 1+x x+x
x m x n c y 型 通常用判别式
x mx n x mx n
d. y 型
x n
法一:用判别式 法二:用换元法,把分母替换掉
x x 1(x+1)(x+1)+1 1
例:y (x+1)1211
x 1x 1x 1=
=++==≤
''
++=++++=+++-===+-≥-=+++
4、反函数法(原函数的值域是它的反函数的定义域)
直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。
例 求函数
34
56x y x +=
+值域。
346456345635x y y xy y x x x y +-=
⇒+=+⇒=+-,分母不等于0,即35y ≠
5、函数有界性法
直接求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的值域。
我们所说的单调性,最常用的就是三角函数的单调性。
例 求函数
11x x
e y e -=+,2sin 11sin y θθ-=+,2sin 1
1cos y θθ-=+的值域。
110
11
2sin 11|sin |||1,
1sin 22sin 12sin 1(1cos )
1cos 2sin cos 1)1,sin()sin()11
即又由解不等式,求出,就是要求的答案
x x x e y
y e y e y y y y y y y
x y x x y θθθθθθθ
θθθθθ-+=⇒=>-+-+=⇒=≤+--=⇒-=++-=++=++=
+≤≤
10.倒数法
有时,直接看不出函数的值域时,把它倒过来之后,你会发现另一番境况
例
求函数
y =
的值域
2011
202
2012
时,时,=00y x y y x y y =
+≠==≥⇒<≤
+=∴≤≤
多种方法综合运用
总之,在具体求某个函数的值域时,
首先要仔细、认真观察其题型特征,然后再选择恰当的方法,
一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。