小升初6 有理数的乘除法

合集下载

有理数乘除法运算

有理数乘除法运算

有理数乘除法运算有理数是指可以表示为两个整数的比值的数,包括整数、分数和小数。

有理数乘除法运算是基于有理数的乘法和除法进行的运算。

乘法是指将两个有理数相乘,而除法是指将一个有理数除以另一个有理数。

本文将详细介绍有理数乘除法运算的定义、性质和应用。

一、有理数乘法运算有理数乘法运算的定义是:对于任意两个有理数a和b,它们的乘积记作a×b,满足以下性质:1. 乘法交换律:a×b=b×a,对于任意的有理数a和b,它们的乘积与次序无关。

2. 乘法结合律:(a×b)×c=a×(b×c),对于任意的有理数a、b和c,它们的乘积满足结合律。

3. 乘法分配律:a×(b+c)=a×b+a×c,对于任意的有理数a、b和c,乘法对加法满足分配律。

有理数乘法运算的应用非常广泛。

例如,在分数的乘法中,我们可以将分子与分子相乘,分母与分母相乘,然后将得到的积化简为最简分数。

又如,在计算小数的乘法时,我们可以直接对小数进行乘法运算,注意小数点的位置即可。

二、有理数除法运算有理数除法运算的定义是:对于任意两个有理数a和b(b≠0),它们的商记作a÷b,满足以下性质:1. 除法的定义:a÷b=c,当且仅当a=b×c,即a除以b得到商c。

2. 除法分配律:(a+b)÷c=(a÷c)+(b÷c),对于任意的有理数a、b 和c(c≠0),除法对加法满足分配律。

在有理数除法运算中,需要注意除数不能为0,否则将出现除数为0的错误。

若除数为0,则除法运算没有意义。

有理数乘除法运算的应用非常广泛,尤其在实际生活和工作中。

例如,在购物时,我们常常需要计算商品的价格与数量的乘积,从而得到总价;在工程计算中,我们需要计算材料的价格与用量的乘积,从而得到总成本。

除法运算也同样重要,例如,在分配任务时,我们需要将总工作量按人数进行平均分配,这就涉及到除法运算。

有理数的乘除

有理数的乘除

有理数的乘除有理数是数学中的一类数,包括整数、分数和整数倍的乘法和除法运算。

在数学中,有理数的乘除运算是非常重要的基础知识。

本文将介绍有理数的乘法和除法,并且探讨一些与有理数乘除相关的性质。

一、有理数的乘法有理数的乘法是指两个有理数相乘的运算。

两个有理数相乘的结果仍然是一个有理数。

1.1 有理数的乘法规则有理数的乘法遵循以下规则:- 两个正数相乘,结果为正数;- 两个负数相乘,结果为正数;- 一个正数和一个负数相乘,结果为负数。

例如,2乘以3等于6,负3乘以负2等于6,负4乘以5等于负20。

1.2 有理数的乘法性质有理数的乘法具有以下性质:- 乘法交换律:a乘以b等于b乘以a,即ab=ba。

- 乘法结合律:a乘以(b乘以c)等于(a乘以b)乘以c,即a(bc)=(ab)c。

- 乘法分配律:a乘以(b加上c)等于ab加上ac,即a(b+c)=ab+ac。

这些性质使得有理数的乘法运算更加简单和灵活。

二、有理数的除法有理数的除法是指一个有理数除以另一个有理数的运算。

两个有理数的除法结果也是一个有理数,除非除数为0,此时除法运算无意义。

2.1 有理数的除法规则有理数的除法遵循以下规则:- 两个正数相除,结果为正数;- 两个负数相除,结果为正数;- 一个正数除以一个负数,结果为负数。

例如,8除以4等于2,负12除以负3等于4,6除以负2等于负3。

2.2 有理数的除法性质有理数的除法具有以下性质:- 除法结合律:a除以(b除以c)等于(a乘以c)除以b,即a/(b/c)=(a*c)/b。

- 除法分配律:a除以(b加上c)等于a除以b加上a除以c,即a/(b+c)=a/b+a/c。

这些性质使得有理数的除法运算更加简便和灵活。

三、有理数乘除的习题为了更好地理解有理数的乘除运算,接下来我们解决一些习题。

3.1 习题一计算下列乘法:- 2乘以(-3)等于多少?- 4乘以(-2/3)等于多少?- (-5/6)乘以(-2/3)等于多少?3.2 习题二计算下列除法:- 8除以(-4)等于多少?- (-15)除以(-3)等于多少?- (-9/10)除以(3/5)等于多少?解答这些习题有助于加深理解有理数的乘除运算规则和性质。

有理数的乘除运算

有理数的乘除运算

有理数的乘除运算有理数是数学中的一种数,它可以表示为两个整数的比值,其中分母不为零。

有理数的乘除运算是数学中的基本运算之一,它在实际生活和科学研究中有着广泛的应用。

在本文中,将详细介绍有理数的乘除运算方法以及相关的例题。

一、有理数的乘法运算1. 有理数的乘法规律有理数的乘法遵循以下规律:- 两个正数相乘,乘积也是正数;- 两个负数相乘,乘积是正数;- 正数与负数相乘,乘积是负数。

例如,2 × 3 = 6,(-2) × (-3) = 6,2 × (-3) = -6。

2. 有理数的乘法计算有理数的乘法计算方法是将两个有理数的分子相乘得到新的分子,分母相乘得到新的分母,最后将结果约简。

例如,对于分数 -3/4 和 1/2,我们可以进行以下计算:(-3/4) × (1/2) = (-3) × 1 / (4 × 2) = -3/8。

二、有理数的除法运算1. 有理数的除法规律有理数的除法遵循以下规律:- 两个正数相除,商是正数;- 两个负数相除,商是正数;- 正数除以负数,商是负数。

例如,6 ÷ 2 = 3,(-6) ÷ (-2) = 3,6 ÷ (-2) = -3。

2. 有理数的除法计算有理数的除法计算方法是将除数取倒数,再将除法转化为乘法进行计算。

具体步骤如下:- 将除数取倒数,即将分子与分母交换位置;- 将除法转化为乘法,即用除数的倒数乘以被除数。

例如,对于分数 5/6 ÷ 2/3,我们可以进行以下计算:(5/6) ÷ (2/3) = (5/6) × (3/2) = (5 × 3) / (6 × 2) = 15/12 = 5/4。

三、有理数乘除运算的混合运算有理数的乘除运算可以与加减运算一起进行,按照先乘除后加减的原则进行运算。

在运算过程中,可以根据需要使用括号来改变运算的顺序。

有理数的乘除法课件

有理数的乘除法课件

除法的商和余数
在除法运算中,被除数被除数 除以后得到的商和余数都有其 特定的意义和用途。
除法的验算
通过反向计算可以验证除法运 算的正确性,即利用乘法验算 除法。
整数乘除法的实际应用
乘法在日常生活中的应用
整数乘法在日常生活中有着广泛的应用,如购物、计算面积等。
除法在日常生活中的应用
整数除法在日常生活中也有着广泛的应用,如分配物品、计算时间 等。
物理学中的计算
在物理学中,有理数乘除法被广泛应用于各种计算中。例如,在计算速度、加速度、动量等物理量时 ,我们需要用到有理数的乘除法。
化学中的计量
在化学中,我们需要使用有理数来计量化学反应中各物质的数量关系。例如,在配平化学方程式时, 我们可以通过有理数的乘除法来确保反应前后各元素的数量相等。
06
有理数的乘除法课件
汇报人:
日期:

CONTENCT

• 有理数乘除法概述 • 整数乘除法运算 • 有理数乘法运算 • 有理数除法运算 • 有理数乘除法的实际应用 • 有理数乘除法的扩展知识
01
有理数乘除法概述
有理数乘除法的定义
有理数乘法
对于任意两个有理数a和b(a≠0),它们的乘积记作a×b,称为 乘法。
例子
如4.8 ÷ 2.5 = 4.8 × (1/2.5) = 1.92。
整数与分数相除
定义
整数与分数相除是一种特殊的数学运算,其 结果是整数除以分数的商。
计算方法
将整数和分数的分子相除,分母作为商的分 子。
符号表示
整数与分数相除用“÷”表示,读作“除以 ”。
例子
如7 ÷ (2/3) = 7 × (3/2) = 10.5。

有理数的乘除法法则

有理数的乘除法法则

有理数的乘除法法则有理数是指可以表示为两个整数的比值的数,包括整数、分数和小数。

有理数的乘除法法则是数学中的基本概念之一,它描述了有理数相乘和相除的规则和性质。

在本文中,我们将详细介绍有理数的乘除法法则,包括有理数的乘法和除法的定义、性质和运算规则。

有理数的乘法有理数的乘法是指两个有理数相乘的运算。

如果两个有理数的乘积为正数,则它们的符号相同;如果两个有理数的乘积为负数,则它们的符号相反。

具体来说,有理数的乘法满足以下性质:1. 任何有理数乘以0的结果都是0,即0乘以任何有理数都等于0。

2. 两个正数相乘的结果是正数。

3. 两个负数相乘的结果是正数。

4. 一个正数和一个负数相乘的结果是负数。

例如,2乘以3等于6,-2乘以3等于-6,-2乘以-3等于6,2乘以-3等于-6。

有理数的除法有理数的除法是指一个有理数除以另一个有理数的运算。

有理数的除法满足以下性质:1. 任何非零有理数除以1的结果都是它本身。

2. 任何有理数除以0的结果是未定义的,因为在数学中,任何数除以0都是没有意义的。

3. 两个正数相除的结果是正数。

4. 两个负数相除的结果是正数。

5. 一个正数和一个负数相除的结果是负数。

例如,6除以3等于2,-6除以3等于-2,-6除以-3等于2,6除以-3等于-2。

有理数的乘除混合运算有理数的乘除混合运算是指包括乘法和除法的复合运算。

在进行有理数的乘除混合运算时,应该遵循以下规则:1. 先进行乘法,再进行除法。

2. 先计算括号内的乘除法,再计算括号外的乘除法。

例如,计算表达式2乘以3再除以4,应该先计算2乘以3得到6,再将6除以4得到1.5。

有理数的乘除法法则在数学中有着广泛的应用,特别是在代数中。

通过掌握有理数的乘除法法则,可以更好地理解和解决代数中的问题。

总结有理数的乘法和除法是数学中的基本概念,它们有着明确的定义、性质和运算规则。

通过学习和掌握有理数的乘除法法则,可以更好地理解和运用有理数,为进一步学习代数和数学建立坚实的基础。

有理数的乘除运算

有理数的乘除运算

有理数的乘除运算有理数是整数和分数的统称,包括正整数、负整数、正分数和负分数。

有理数的乘除运算是数学中常见且重要的运算规则,本文将详细介绍有理数的乘除运算法则和应用。

一、有理数的乘法运算有理数的乘法运算是指将两个有理数相乘的操作。

有理数的乘法运算遵循以下法则:1. 正数乘以正数等于正数,负数乘以负数等于正数;2. 正数乘以负数等于负数,负数乘以正数等于负数;3. 任何数乘以0都等于0;例如,计算2乘以3的结果。

根据乘法运算法则,两个正数相乘,结果为正数,所以2乘以3等于6。

二、有理数的除法运算有理数的除法运算是指将被除数除以除数得到商的操作。

有理数的除法运算遵循以下法则:1. 正数除以正数等于正数,负数除以负数等于正数;2. 正数除以负数等于负数,负数除以正数等于负数;3. 任何数除以0都是没有定义的。

例如,计算8除以2的结果。

根据除法运算法则,两个正数相除,结果为正数,所以8除以2等于4。

三、乘除运算的性质有理数的乘除运算具有以下性质:1. 乘法交换律:a乘以b等于b乘以a;2. 乘法结合律:(a乘以b)乘以c等于a乘以(b乘以c);3. 乘法分配律:a乘以(b加上c)等于a乘以b加上a乘以c;例如,计算3乘以(4加上5)。

根据乘法分配律,先计算括号内的加法,得到9,然后将3乘以9,结果为27。

四、实际应用有理数的乘除运算在实际生活中有广泛的应用。

以下是一些例子:1. 购物计算:当购买商品时,需要计算价格和数量的乘法运算,以确定需要支付的金额;2. 分配资源:在工作或学习中,将资源按照不同比例分配给不同的人或部门,需要进行乘法运算来确定每个人或部门的份额;3. 距离和速度:计算速度等于路程除以时间,需要进行除法运算;4. 金融投资:计算股票或基金的收益率等于收益金额除以投资金额,需要进行除法运算。

总结:有理数的乘法运算和除法运算具有明确的规则和法则。

了解和掌握有理数的乘除运算法则对于解决实际问题和进行数学运算非常重要。

有理数的乘除(基础)知识讲解

有理数的乘除(基础)知识讲解

有理数的乘除(基础)【学习目标】1.会根据有理数的乘法法则进行乘法运算,并运用相关运算律进行简算;2.理解乘法与除法的逆运算关系,会进行有理数除法运算;3. 巩固倒数的概念,能进行简单有理数的加、减、乘、除混合运算;4. 培养观察、分析、归纳及运算能力.【要点梳理】要点一、有理数的乘法1.有理数的乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同0相乘,都得0.要点诠释: (1) 不为0的两数相乘,先确定符号,再把绝对值相乘.(2)当因数中有负号时,必须用括号括起来,如-2与-3的乘积,应列为(-2)×(-3),不应该写成-2×-3.2. 有理数的乘法法则的推广:(1)几个不等于0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数的个数有偶数个时,积为正;(2)几个数相乘,如果有一个因数为0,那么积就等于0.要点诠释:(1)在有理数的乘法中,每一个乘数都叫做一个因数.(2)几个不等于0的有理数相乘,先根据负因数的个数确定积的符号,然后把各因数的绝对值相乘.(3)几个数相乘,如果有一个因数为0,那么积就等于0.反之,如果积为0,那么至少有一个因数为0.3. 有理数的乘法运算律:(1)乘法交换律:两个数相乘,交换因数的位置,积相等,即:ab=ba.(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.即:abc=(ab)c=a(bc).(3)乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.即:a(b+c)=ab+ac.要点诠释:(1)在交换因数的位置时,要连同符号一起交换.(2)乘法运算律可推广为:三个以上的有理数相乘,可以任意交换因数的位置,或者把其中的几个因数相乘.如abcd=d(ac)b.一个数同几个数的和相乘,等于把这个数分别同这几个数相乘,再把积相加.如a(b+c+d)=ab+ac+ad.(3)运用运算律的目的是“简化运算”,有时,根据需要可以把运算律“顺用”,也可以把运算律“逆用”.要点二、有理数的除法1.倒数的意义:乘积是1的两个数互为倒数.要点诠释:(1)“互为倒数”的两个数是互相依存的.如-2的倒数是12-,-2和12-是互相依存的;(2)0和任何数相乘都不等于1,因此0没有倒数;(3)倒数的结果必须化成最简形式,使分母中不含小数和分数;(4)互为倒数的两个数必定同号(同为正数或同为负数).2. 有理数除法法则:法则一:除以一个不等于0的数,等于乘这个数的倒数,即1(0)a b ab b÷=≠. 法则二:两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0. 要点诠释:(1)一般在不能整除的情况下应用法则一,在能整除时应用法则二方便些. (2)因为0没有倒数,所以0不能当除数.(3)法则二与有理数乘法法则相似,两数相除时先确定商的符号,再确定商的绝对值. 要点三、有理数的乘除混合运算由于乘除是同一级运算,应按从左往右的顺序计算,一般先将除法化成乘法,然后确定积的符号,最后算出结果.要点四、有理数的加减乘除混合运算有理数的加减乘除混合运算,如无括号,则按照“先乘除,后加减”的顺序进行,如有括号,则先算括号里面的. 【典型例题】类型一、有理数的乘法运算1.(2015•台湾)算式(﹣1)×(﹣3)×之值为何?( )A .B .C .D .【思路点拨】根据有理数的乘法法则,先确定符号,然后把绝对值相乘即可 【答案】D . 【解析】 解:原式=××=.【总结升华】本题考查的是有理数的乘法,掌握乘法法则是解题的关键,计算时,先确定符号,然后把绝对值相乘.2. (1)54(3)1(0.25)65⎛⎫-⨯⨯-⨯- ⎪⎝⎭;(2)(1-2)(2-3)(3-4)…(19-20); (3)(-5)×(-8.1)×3.14×0.【答案与解析】几个不等于零的数相乘,首先确定积的符号,然后把绝对值相乘.因数是小数的要化为分数,是带分数的通常化为假分数,以便能约分.几个数相乘,有一个因数为零,积就为零.(1)54(3)1(0.25)65⎛⎫-⨯⨯-⨯- ⎪⎝⎭591936548=-⨯⨯⨯=-;(2)(1-2)(2-3)(3-4)…(19-20)19-(1)(1)(1)(1)1=-⨯-⨯-⨯⋅⋅⋅⨯-=-个(1)相乘;(3)(-5)×(-8.1)×3.14×0=0.【总结升华】几个不等于零的数相乘,积的符号由负因数的个数确定,与正因数的个数无关.当因数中有一个数为0时,积为0.3.运用简便方法计算:(1)5105(12)6⎛⎫-⨯+⎪⎝⎭(2)(-0.25)×0.5×(-100)×4(3)111 (5)323(6)3333 -⨯+⨯+-⨯【思路点拨】 (1)根据题目特点,可以把51056-折成51056--,再运用乘法分配律进行计算.(2)运用乘法结合律,把第1、4个因式结合在一起.(3)逆用乘法分配律:ab+ac=a(b+c).【答案与解析】解:(1)5105(12)6⎛⎫-⨯+⎪⎝⎭5105(12)6⎛⎫=--⨯+⎪⎝⎭510512126=-⨯-⨯(分配律)1260101270=--=-(2)(-0.25)×0.5×(-100)×4=(-4×0.25)×[0.5×(-100)] (交换律)=-1×(-50)=50(结合律)(3)111(5)323(6)3333-⨯+⨯+-⨯11[(5)2(6)]39333⎛⎫=-++-⨯=-⨯+⎪⎝⎭(逆用乘法的分配律)27330=--=-【总结升华】首先要观察几个因数之间的关系和特点.适当运用“凑整法”进行交换和结合.举一反三:【变式1】(2014•玄武区一模)计算16.8×+7.6×的结果是.【答案】7.解:原式=8.4×=(8.4+7.6)×=16×=7.【高清课堂:有理数乘除 381226 多个有理数相乘例2】【变式2】542(1)()( 2.5)(4)12253-⨯⨯-⨯-;4(2)(0.125)()16(7)7-⨯-⨯⨯-【答案】(545147(1)=1225239-⨯⨯⨯=-原式 4(2)(0.1258)2(7)87=-⨯⨯⨯⨯=-原式类型二、有理数的除法运算4.计算:(1)(-32)÷(-8) (2)112(1)36÷-【答案与解析】 (1)(-32)÷(-8)=+(32÷8)= 4 ……用法则二进行计算.(2)117776212363637⎛⎫⎛⎫⎛⎫÷-=÷-=⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭……用法则一进行计算. 【总结升华】(1)乘法、除法的符号法则是一致的,两数相乘除,同号得正,异号得负;(2)除法的两个法则是一致的,应学会灵活选择. 举一反三:【高清课堂:有理数乘除 381226 有理数除法(法则)】 【变式】计算:(1) 1.25(0.375)-÷-【答案】原式535810()()48433=+÷=+⨯=类型三:有理数的乘除混合运算5.(2015秋•德惠市校级期中)计算:(﹣2)×.【思路点拨】原式利用除法法则变形,约分即可得到结果. 【答案与解析】解:原式=2××3×3=9.【总结升华】此题考查了有理数的乘除法,熟练掌握运算法则是解本题的关键. 举一反三:【变式1】计算:(-9)÷(-4)÷(-2)【答案】 (-9)÷(-4)÷(-2)=-9÷4÷2=1199428-⨯⨯=- 【变式2】计算:(1)14410(2)893-÷⨯÷- (2)341731755⎛⎫⎛⎫⎛⎫-÷-÷⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】 (1)14410(2)893-÷⨯÷-194181941243108432843216⎛⎫=-⨯⨯⨯-=⨯⨯⨯= ⎪⎝⎭ (2)341731755⎛⎫⎛⎫⎛⎫-÷-÷⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3511717435⎛⎫⎛⎫⎛⎫=-⨯-⨯⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 351171174354⎛⎫=-⨯⨯⨯=-⎪⎝⎭类型四、有理数的加减乘除混合运算6. 计算(1)113512641212⎛⎫⎛⎫-+-+÷- ⎪ ⎪⎝⎭⎝⎭; (2)111351226412⎛⎫⎛⎫-÷-+-+ ⎪ ⎪⎝⎭⎝⎭【答案与解析】(1)113512641212⎛⎫⎛⎫-+-+÷- ⎪ ⎪⎝⎭⎝⎭1135(12)26412⎛⎫=-+-+⨯- ⎪⎝⎭ 1135(12)(12)(12)(12)26412⎛⎫=-⨯-+⨯--⨯-+⨯- ⎪⎝⎭=6-2+9-5=8(2)法1:原式=16295181121()()121212121288-+-+⎛⎫⎛⎫-÷=-÷-=⨯= ⎪ ⎪⎝⎭⎝⎭法2:由(1)知:1135182641212⎛⎫⎛⎫-+-+÷-= ⎪ ⎪⎝⎭⎝⎭,所以16295112128-+-+⎛⎫⎛⎫-÷= ⎪ ⎪⎝⎭⎝⎭ 【总结升华】除法没有分配律,在进行有理数的除法运算时,若除数是和的形式,一般先算括号内的,然后再进行除法运算,也可以仿照方法2利用倒数关系巧妙解决. 举一反三: 【变式】75318 1.456 3.9569618⎛⎫-+⨯-⨯+⨯⎪⎝⎭ 【答案】 原式()753181818 1.456 3.9569618⎛⎫=⨯-⨯+⨯+-⨯+⨯ ⎪⎝⎭(14153)( 1.45 3.95)6=-++-+⨯2 2.5617=+⨯= 类型五:利用有理数的加减乘除,解决实际问题7.气象统计资料表明,高度每增加1000米,气温就降低6℃.如果现在地面的气温是27℃,那么8000米的高空的气温大约是多少?【思路点拨】解决此题的关键是明确高度变化与气温变化的关系.由于“高度每增加1000米,气温就降低6℃”,8000米的高空比地面高度增加8000米,因此气温降低6×8=48℃,由此便可求出高空的气温. 【答案与解析】解:80002762748211000-⨯=-=-(℃)因此8000米的高空的气温大约是-21℃.【总结升华】本题是生活实际中的问题,关键是读懂题意,弄清各数量之间的关系,再列出正确的算式.。

小升初 有理数的乘除易错点

小升初 有理数的乘除易错点

有理数的乘除预习检验(师轮流抽一生回答老师的问题,另一生判断是否正确)知识点1.有理数的乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘得0.乘积是1的两数互为倒数.两数相乘,交换因数的位置,积不变;乘法交换律:ab=ba;三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变.乘法结合律:abc=(ab)c=a(bc).一个数同两个数的和相乘,等于这个数分别与这两个数相乘,再把积相加.乘法分配律:a(b+c)=ab+ac;几个不等于0的数相乘,负因数的个数为偶数个时,积为正数; 负因数的个数为奇数个时,积为负数.知识点2.有理数的除法除以一个不为0的数,等于乘这个数的倒数.式子表达为:a ÷b=a ×b 1(b 为不等于0的数).两数相除,同号得正,异号得负,并把绝对值相乘.一个数同不为0的数相除,仍得0. 针对性练习:1.填空:(1)-67×76___________; (2)(-1.25)×(-8)=_____________; (3)(-126.8)×0=___________; (4)(-25.9)×(-1)=______________. (5)(-5)×__________=-35; (6)(-73)×____________=73. 【解析】两个有理数相乘,我们根据法则先来确定乘积的符号,再把绝对值相乘.在进行有理数乘法运算时,除了要熟练掌握乘法法则之外,还应当注意以下两点:1.一个数乘以1等于它本身,一个数乘以-1等于它的相反数.2.两个相反数的和与积是完全不同的两个结果,不要混淆.【答案】(1)-1 (2)1 (3)0 (4)25.9 (5)-35(6)73易错典例剖析排雷(师让学生先观察,说思路再答题)类型之一:巧用运算律简化计算型例1.(1)(-6)×[32+(-21)]=(-6)×32+(-6)×(-21) (2)[29×(-65)]×(-12)=29×[(-65)×(-12)] 【解析】本题运用乘法对加法的分配律来计算,过程会比较简单。

有理数的乘除运算

有理数的乘除运算

有理数的乘除运算有理数是指整数和分数的统称,包括正整数、负整数、零以及能够表示为分子与分母都是整数的分数。

在数学中,有理数的乘除运算是非常重要的基础知识之一。

本文将从基本概念出发,详细介绍有理数的乘法和除法运算。

一、有理数的乘法运算在有理数的乘法运算中,我们首先需要了解有理数的正负规则。

正数乘以正数得正数,负数乘以负数也得正数。

而正数乘以负数或者负数乘以正数,则得负数。

在进行有理数的乘法运算时,一般采用以下步骤:1. 直接将分子与分母相乘,所得的结果即为新的有理数的分子和分母。

例如:计算 (-2/3) × (4/5)解:(-2/3) × (4/5) = (-2 × 4) / (3 × 5) = -8/152. 将所得分子和分母进行约分,即将分子和分母的最大公约数同时除去。

例如:计算 (10/12) × (18/20)解:(10/12) × (18/20) = (10 × 18) / (12 × 20) = 180/240= (6 × 30) / (8 × 30) = 6/8 = 3/4二、有理数的除法运算在有理数的除法运算中,我们需要注意零的特殊规则。

任何数除以零是没有意义的,因此除法运算要避免出现被零除的情况。

进行有理数的除法运算时,可以采用以下步骤:1. 先将除法转化为乘法,即将除数倒数后进行乘法运算。

例如:计算 (-3/4) ÷ (2/5)解:(-3/4) ÷ (2/5) = (-3/4) × (5/2) = (-3 × 5) / (4 × 2) = -15/82. 如果需要,对所得的结果进行约分。

例如:计算 (18/28) ÷ (3/7)解:(18/28) ÷ (3/7) = (18/28) × (7/3) = (18 × 7) / (28 × 3) = 3/23. 如果被除数和除数都是整数,可进行整数的除法计算。

有理数的乘除法知识点(含例题)

有理数的乘除法知识点(含例题)

1.有理数的乘法(1)有理数的乘法法则:两个数相乘,同号得__________,异号得__________,并把__________相乘;任何数与0相乘,都得__________;(2)倒数的定义:乘积为__________的两个数互为倒数.注意:①__________没有倒数;②求假分数或真分数的倒数,只要把这个分数的分子、分母__________即可;求带分数的倒数时,先把带分数化为__________,再把分子、分母颠倒位置;③正数的倒数是__________,负数的倒数是__________;(即求一个数的倒数,不改变这个数的__________)④倒数等于它本身的数有__________个,分别是__________,注意不包括0.(3)有理数乘法的运算律:乘法交换律:两个数相乘,交换__________,积相等,即__________.乘法结合律:三个数__________,先把前两个数__________,或者先把后两个数__________,积相等,即(ab)c=__________.分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数__________,再把积__________,即a(b+c)=__________.(4)几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.(5)几个数相乘,有一个因数为0,积就为0.(6)任何数同1相乘仍得原数,任何数同–1相乘得原数的相反数.2.有理数的除法(1)有理数除法法则:除以一个__________的数,等于乘这个数的__________.即a b÷= __________.(2)从有理数除法法则,容易得出:两个数相除,同号得__________,异号得__________,并把__________相除.0除以任何一个__________的数,都得__________.3.有理数的乘除混合运算(1)因为乘法与除法是同一级运算,应按__________的顺序运算.(2)结果的符号由算式中__________的个数决定,负因数的个数是__________时结果为正,负因数个数是__________时结果为负.(3)化成乘法后,应先约分再相乘.(4)有理数的乘除混合运算往往先将除法化为乘法,然后确定积的符号,最后求出结果. K 知识参考答案:1.(1)正,负,绝对值,0(2)1,0,颠倒位置,假分数,正数,负数,符号,两,1和–1(3)因数的位置,ab =ba ,相乘,相乘,相乘,a (bc ),相乘,相加,ab +bc2.(1)不等于0,倒数,1a b(b ≠0)(2)正,负,绝对值,不等于0,0 3.(1)从左到右(2)负因数,偶数,奇数一、有理数的乘法【例1】计算3×(–1)×(–31)=__________. 【答案】1【解析】3×(–1)×(–31)=3×1×31=1.【名师点睛】先根据有理数乘法的符号法则判断符号,再把绝对值相乘即可得到结果. 二、有理数的乘法运算律乘法交换律:有理数乘法中,两个数相乘,交换因数的位置,积相等.表达式:ab=ba .乘法结合律:三个数相乘,先把其中的两个数相乘,积相等.表达式:(ab )c=a(bc ).乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.表达式:a(b+c)=ab+ac.【例2】(–0.25)×(–79)×4×(–18).【答案】–14【解析】原式=–(14×79×4×18)=–(14×4×79×18)=–14.【名师点睛】①几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数;几个数相乘,如果其中有因数为0,那么积等于0.②通过灵活运用乘法的运算律,可以使计算过程简单化.三、有理数的除法1.除以一个数等于乘以这个数的倒数.2.两数相除,同号得正,异号得负,并把绝对值相除.3.0除以任何一个不等于0的数,都得0.【例3】两个有理数的商是正数,那么这两个数一定A.都是负数B.都是正数C.至少一个是正数D.两数同号【答案】D【解析】根据有理数的除法法则,可得,两个有理数的商是正数,那么这两个数一定同号,故选D.【名师点睛】在进行除法运算时,若能整除,则根据“两数相除,同号得正,异号得负,并把绝对值相除”进行计算;若不能整除,则根据“除以一个不等于0的数,等于乘以这个数的倒数”进行计算;除法算式中的小数常化成分数,带分数常化成假分数,以利于转化为乘法时约分;0不能作除数(即分母).四、有理数的加减乘除四则运算有理数的加减乘除四则运算:在运算时要注意按照“先乘除,后加减”的顺序进行,如有括号,应先算括号里面的.在同级别运算中,要按从左到右的顺序来计算,并能合理运用运算律,简化运算.【例4】下面是某同学计算(−)÷(−+−)的过程:解:(−)÷(−+−)=(−)÷+(−)÷(−)+(−)÷+(−)÷(−)=(−)×+×10−×6+×=(−)+−+=.细心的你能否看出上述解法错在哪里吗?请给出正确解法.【答案】见解析.【名师点睛】此题是有理数的混合运算,运算过程中要正确理解和使用运算律.。

有理数的乘除运算

有理数的乘除运算

有理数的乘除运算有理数是一类包括正整数、正分数、负整数、负分数和零的数,它们可以进行乘法和除法运算。

有理数的乘除运算在数学中有着重要的应用和意义。

本文将介绍有理数的乘除运算的相关概念和方法,以及乘除法的性质和规则。

1. 有理数的乘法运算有理数的乘法运算是指将两个有理数相乘得到一个新的有理数的过程。

有理数的乘法有以下性质和规则:(1)正数乘以正数仍为正数,即正数乘正数为正;(2)负数乘以负数仍为正数,即负数乘负数为正;(3)正数乘以负数为负数,即正数乘负数为负;(4)零乘以任何数都等于零。

例如,计算-2/3乘以4/5的结果:(-2/3)*(4/5) = -8/152. 有理数的除法运算有理数的除法运算是指将一个有理数除以另一个有理数得到一个新的有理数的过程。

有理数的除法有以下性质和规则:(1)正数除以正数仍为正数,即正数除以正数为正;(2)负数除以负数仍为正数,即负数除以负数为正;(3)正数除以负数为负数,即正数除以负数为负;(4)零除以任何非零数都等于零。

例如,计算-3/4除以2/5的结果:(-3/4)/(2/5) = -15/83. 乘除运算的混合运算有理数的乘除运算也可以与加减运算混合进行。

在进行混合运算时,需要根据运算法则先进行乘除运算,然后再进行加减运算。

例如,计算2/3乘以4/5减去1/6的结果:(2/3)*(4/5) - 1/6 = 8/15 -1/6 = 16/30 - 5/30 = 11/304. 练习题为了加深对有理数的乘除运算的理解,我们来做一些练习题:(1)计算-2/3乘以5/6的结果;(2)计算7/8除以2/3的结果;(3)计算3/4乘以1/2减去2/5的结果。

答案:(1)(-2/3)*(5/6) = -10/18 = -5/9(2)(7/8)/(2/3) = (7/8)*(3/2) = 21/16(3)(3/4)*(1/2) - 2/5 = 6/20 - 8/20 = -2/20 = -1/10通过以上练习,我们可以进一步熟悉有理数的乘除运算和混合运算的方法和规则。

小升初数学导学案-有理数的乘除-人教新课标

小升初数学导学案-有理数的乘除-人教新课标

小升初数学导学案-有理数的乘除-人教新课标一、引言在小学阶段,学生们已经接触到了简单的乘除运算,但对于有理数的乘除,可能还缺乏深入的理解。

为了帮助学生们更好地掌握有理数的乘除,本导学案将结合人教新课标的要求,对有理数的乘除进行系统的讲解和指导。

二、有理数的乘法1. 有理数乘法的定义有理数乘法是指将两个有理数相乘,得到另一个有理数的运算。

有理数乘法满足交换律、结合律和分配律。

2. 有理数乘法的性质(1)交换律:两个有理数相乘,交换因数的位置,积不变。

(2)结合律:三个或三个以上的有理数相乘,先把任意两个数相乘,或先把任意三个数相乘,积不变。

(3)分配律:一个有理数乘以两个有理数的和,等于这个有理数分别乘以这两个加数,然后把乘得的积相加。

3. 有理数乘法的运算规则(1)同号得正,异号得负。

(2)绝对值相乘。

三、有理数的除法1. 有理数除法的定义有理数除法是指将一个有理数除以另一个有理数(不为0),得到另一个有理数的运算。

有理数除法可以看作是乘法的逆运算。

2. 有理数除法的性质(1)商的符号:同号得正,异号得负。

(2)绝对值的除法:绝对值相除。

3. 有理数除法的运算规则(1)除以一个有理数,等于乘以这个有理数的倒数。

(2)0除以任何非0的有理数,结果为0。

四、有理数乘除的应用1. 解决实际问题在解决实际问题时,我们可以利用有理数的乘除法则,将问题转化为数学表达式,然后进行计算。

2. 乘除混合运算在解决乘除混合运算时,我们需要按照运算顺序,先进行乘除运算,再进行加减运算。

五、总结通过本导学案的学习,学生们应该能够掌握有理数的乘除法则,理解乘除运算的性质,并能够灵活运用乘除法则解决实际问题。

同时,学生们还需要注意运算顺序,熟练进行乘除混合运算。

六、课后练习1. 计算下列各题:(1)(-3) × 4(2)5 ÷ (-2)(3)(-4) × (-6)(4)0 ÷ 152. 解答下列实际问题:(1)小明有5元钱,每支铅笔的价格是1.2元,问小明最多可以买几支铅笔?(2)一个长方形的长是8厘米,宽是3厘米,求这个长方形的面积。

有理数乘除法入门

有理数乘除法入门

有理数乘除法入门在我们的数学世界中,有理数的乘除法是非常重要的基础知识。

就好像我们学习走路时的第一步,虽然看似简单,但却是后续更复杂数学运算的基石。

接下来,让我们一起走进有理数乘除法的大门,一探究竟。

首先,我们得明白什么是有理数。

有理数呀,简单来说,就是能够表示为两个整数之比的数,包括整数、有限小数和无限循环小数。

比如 3、-5、025(也就是 1/4)、0333(也就是 1/3)等等,这些都是有理数。

那有理数的乘法是怎么回事呢?有理数的乘法法则其实并不复杂。

当两个有理数相乘时,同号得正,异号得负,并把绝对值相乘。

啥意思呢?比如说,2×3,因为 2 和 3 都是正数,同号,所以结果是正的,然后把它们的绝对值 2 和 3 相乘,得到 6。

再比如,-2×3,-2 是负数,3 是正数,异号,所以结果是负的,绝对值相乘 2×3 = 6,所以最终结果就是-6。

这里还有个特殊的情况,就是当有一个因数是 0 时,结果总是 0。

比如 0×5 = 0,5×0 = 0。

接下来,咱们再看看有理数的除法。

有理数的除法法则是:除以一个不等于 0 的数,等于乘这个数的倒数。

啥是倒数呢?就是把一个数的分子分母颠倒位置,原来的数和它的倒数相乘结果是 1。

比如 2 的倒数是 1/2,3/4 的倒数是 4/3。

举个例子,6÷3 就可以变成 6×1/3,结果是 2。

如果是-6÷3 呢,那就变成-6×1/3,结果就是-2。

在进行有理数乘除法运算的时候,可别一股脑地就开始算,得按照先确定符号,再计算绝对值的顺序来。

这样能避免出错,提高计算的准确性。

为了更好地掌握有理数的乘除法,咱们得多做练习。

从简单的整数相乘除,到小数、分数的运算,一步一步来,熟能生巧。

比如说,计算 4×(-1/2)。

第一步,确定符号,因为 4 是正数,-1/2 是负数,异号得负。

小升初第五讲:有理数的乘除法(带解析)

小升初第五讲:有理数的乘除法(带解析)

小升初第五讲:有理数的乘除法【初小课程对比】【小学知识回顾】一、乘法(1)求几个相同加数的和的简便运算叫乘法。

(2)相乘的两个数叫因数。

(3)因数相乘所得的数叫积。

(4)两个因数相乘,交换因数的位置,它们的积不变,这叫乘法交换律。

(5)三个数相乘,先把前两个数相乘,再同第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变,这叫乘法结合律。

(6)小数乘法的计算法则:计算小数乘法,先按照乘法的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点。

(7)一位数乘多位数乘法法则:1、从个位起,用一位数依次乘多位数中的每一位数;2、哪一位上乘得的积满几十就向前进几。

(8)一个因数是两位数的乘法法则:1、先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐;2、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;3、然后把两次乘得的数加起来。

(9)分数的乘法则:用分子的积做分子,用分母的积做分母。

(10)分数乘整数:分子与整数相乘的积做分子,分母不变,或者整数和分母约分的积。

(11)分数乘分数:分子相乘做分子,分母相乘做分母。

特别注意,当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

二、除法(1已知两个因数的积与其中的一个因数,求另一个因数的运算叫除法。

(2)在除法中,已知的积叫被除数。

(3)在除法中,已知的一个因数叫除数。

(4)在除法中,求出的未知因数叫商。

(5)除数是整数除法的法则:除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数小数点对齐,如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。

(6)除数是小数的除法运算法则:除数是小数的除法,先移动除数小数点,使它变成整数;除数的小数点向右移几位,被除数小数点也向右移几位(位数不够在被除数末尾用0补足)然后按照除数是整数的小数除法进行计算。

(7)除数是一位数的除法法则:1、从被除数高位除起,每次用除数先试除被除数的前一位数,如果它比除数小再试除前两位数;2、除数除到哪一位,就把商写在那一位上面;3、每求出一位商,余下的数必须比除数小。

小升初数学培优资料 第六讲 有理数的乘除法

小升初数学培优资料 第六讲 有理数的乘除法

第六讲 有理数的乘除法【学习目标】1、掌握有理数乘法和除法运算法则,会进行有理数乘、除法的运算;2、能运用乘、除法运算律简化运算。

【知识要点】1、有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘; (2)任何数同0相乘都得0;(3)多个有理数相乘:a :只要有一个因数为0,则积为0。

b :几个不为零的数相乘,积的符号由负因数的个数决定,当负因数的个数为奇数,则积为负,当负因数的个数为偶数,则积为正。

2、乘法运算律:(1)乘法交换律:两个数相乘交换因数的位置,积不变,即ba ab =;(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变,即 )()(bc a c ab =;(3)乘法分配律:一个数同两个数的和相乘,等于这个数分别同两个数相乘,再把积相加, 即bc ab c b a +=+)(或ac ab c b a -=-)(。

3、有理数除法法则:(1)法则:除以一个数等于乘以这个数的倒数。

(2)符号确定:两数相除,同号得正,异号得负,并把绝对值相除。

(3)0除以任何一个非零数,等于0;0不能作除数。

【典型例题】例1、计算下列各式:(-4)×5 (-5)×(-7) (-3)×(31-) 0× 28 (-8)×16 58)85(⨯-(-2)×(-3)×(-4)×61 )2()43()31()21(-⨯-⨯-⨯-例2、计算:25×73×(-4) ()()()4123425-⨯-⨯- ()2449525⨯-× 816)3(81⨯-⨯ )8(4315-⨯⨯ 50)8(2524⨯-⨯例3、计算下列各式。

(有简便方法哦!动脑想一想)22×18+22×12 35×13-13×5 5×321 +5×31(65-+83)×(-24) (614131-+)×24 30×(3121-)12)413221(-⨯-+- 34.07531)13(7234.03213⨯-⨯-+⨯-⨯-例4、计算下列各式。

有理数的乘除(6种题型)(原卷版)

有理数的乘除(6种题型)(原卷版)

有理数的乘除(6种题型)【知识梳理】一、有理数的乘法1.有理数的乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同0相乘,都得0.要点诠释:(1) 不为0的两数相乘,先确定符号,再把绝对值相乘.(2)当因数中有负号时,必须用括号括起来,如-2与-3的乘积,应列为(-2)×(-3),不应该写成-2×-3.2. 有理数的乘法法则的推广:(1)几个不等于0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数的个数有偶数个时,积为正;(2)几个数相乘,如果有一个因数为0,那么积就等于0.要点诠释:(1)在有理数的乘法中,每一个乘数都叫做一个因数.(2)几个不等于0的有理数相乘,先根据负因数的个数确定积的符号,然后把各因数的绝对值相乘.3. 有理数的乘法运算律:(1)乘法交换律:两个数相乘,交换因数的位置,积相等,即:ab=ba.(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.即:abc=(ab)c=a(bc).(3)乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.即:a(b+c)=ab+ac.要点诠释:(1)在交换因数的位置时,要连同符号一起交换.(2)乘法运算律可推广为:三个以上的有理数相乘,可以任意交换因数的位置,或者把其中的几个因数相乘.如abcd=d(ac)b.一个数同几个数的和相乘,等于把这个数分别同这几个数相乘,再把积相加.如a(b+c+d)=ab+ac+ad.(3)运用运算律的目的是“简化运算”,有时,根据需要可以把运算律“顺用”,也可以把运算律“逆用”.二、有理数的除法1.倒数的意义: 乘积是1的两个数互为倒数.要点诠释:(2)0和任何数相乘都不等于1,因此0没有倒数;(3)倒数的结果必须化成最简形式,使分母中不含小数和分数;(4)互为倒数的两个数必定同号(同为正数或同为负数).2. 有理数除法法则:法则一:除以一个不等于0的数,等于乘这个数的倒数,即1(0)a b a b b÷=≠. 法则二:两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0. 要点诠释:(1)一般在不能整除的情况下应用法则一,在能整除时应用法则二方便些.(2)因为0没有倒数,所以0不能当除数.(3)法则二与有理数乘法法则相似,两数相除时先确定商的符号,再确定商的绝对值. 三、有理数的乘除混合运算由于乘除是同一级运算,应按从左往右的顺序计算,一般先将除法化成乘法,然后确定积的符号,最后算出结果. 四、有理数的加减乘除混合运算有理数的加减乘除混合运算,如无括号,则按照“先乘除,后加减”的顺序进行,如有括号,则先算括号里面的.【考点剖析】题型一、有理数的乘法运算例1.计算:(1)54(3)1(0.25)65⎛⎫−⨯⨯−⨯− ⎪⎝⎭; (2)(1-2)(2-3)(3-4)…(19-20); (3)(-5)×(-8.1)×3.14×0.【变式1】. 113223⎛⎫⎛⎫−⨯− ⎪ ⎪⎝⎭⎝⎭【变式2】计算:(-6)×(-7)×(-32)= .例2.运用简便方法计算: 25×﹣(﹣25)×+25×.【变式1】计算:(﹣24)×91819.【变式2】计算:()717369218⎛⎫−+⨯− ⎪⎝⎭【变式3】用简便方法计算:(1)2215130.34(13)0.343737−⨯−⨯+⨯−−⨯;(2) 3.1435.2 6.28(23.3) 1.5736.4−⨯+⨯−−⨯.题型二:倒数的概念例3.3−的倒数是( )A .13− B .13 C .3−D .3 【变式】﹣(﹣25)的相反数与﹣34的倒数的积为_________.题型三、有理数的除法运算例4.计算: 17(49)2(3)33⎛⎫−÷−÷÷− ⎪⎝⎭【变式1】计算:111(3)(2)(1)335−÷−÷−【变式2】)425()327261(−÷+−【变式3】)5(]24)436183(2411[−÷⨯−+−;.【变式4】)411(113)2131(215−÷⨯−⨯−例5. 计算:121123031065⎛⎫⎛⎫−÷−+− ⎪ ⎪⎝⎭⎝⎭【变式1】.]51)31(71[1051−−−÷.【变式2】(1); (2).题型四、有理数的乘除混合运算例6.计算:9481(16)49−÷⨯÷−【变式】计算:14410(2)893−÷⨯÷−题型五、有理数的加减乘除混合运算例7.601)315141(÷+−)315141(601+−÷38(4)24⎛⎫⨯−⨯−− ⎪⎝⎭【变式】计算(1)()×(﹣78)(2)(﹣7)×(﹣5)﹣90÷(﹣15)(3)(﹣+)×(﹣36)(4)(﹣)×.题型六、含绝对值的化简例8. 已知a、b、c为不等于零的有理数,你能求出||||||a b ca b c++的值吗?【变式1】已知a,b,c为非零的实数,则a ab ac bca ab ac bc+++的可能值的个数为()A.4 B.5 C.6 D.7【变式2】计算a ba b+的取值.【过关检测】一.选择题(共10小题)1.(2023•宝鸡二模)计算8×(﹣)的结果是()A.16B.﹣16C.﹣4D.42.(2023•晋中模拟)计算的结果正确的是()A.﹣4B.4C.﹣16D.163.(2023•山西模拟)计算:的结果是()A.﹣8B.8C.2D.﹣24.(2023•滨湖区一模)某同学在计算﹣16÷a时,误将“÷”看成“+”结果是﹣12,则﹣16÷a的正确结果是()A.6B.﹣6C.4D.﹣45.(2023•红桥区一模)计算(﹣2)×(﹣3)的结果等于()A.﹣5B.5C.﹣6D.66.(2022秋•和平区期末)下列说法正确的是()A.有理数的绝对值一定比0大B.有理数的相反数一定比0C.如果两个数的绝对值相等,那么这两个数相等D.乘积为1的两个数互为倒数7.(2023•天津二模)计算4÷(﹣2)等于()A.﹣2B.2C.﹣8D.88.(2022秋•天津期末)有理数a,b在数轴上对应的点的位置如图所示,对于下列四个结论:①b﹣a>0;②|a|<|b|;③a+b>0;④.其中正确的是()A.①②③④B.①②③C.①③④D.②③④9.(2023•锡山区校级三模)的倒数是()A.B.C.D.10.(2023春•雁峰区校级期末)已知|a|=1,b是﹣2的倒数,则a+b的值为()A.或B.C.D.或二.填空题(共8小题)11.(2023春•闵行区期末)的倒数是.12.(2023•攸县一模)计算﹣×=.13.(2023春•闵行区期末)计算:﹣16÷4×=.14.(2023•九江一模)若m、n互为相反数,p、q互为倒数,则−2023m+−2023n的值是.15.(2022秋•南陵县期末)在6,﹣5,﹣4,3四个数中任取两数相乘,积记为A,任取两数相除,商记为B,则A﹣B的最大值为.16.(2022秋•岳麓区校级期末)计算:﹣9÷3÷(﹣3)=.17.(2022秋•邗江区期末)若a、b是互为倒数,则2ab﹣5=.18.(2022秋•河东区期末)在﹣1,2,﹣3,0,5这五个数中,任取两个相除,其中商最小的是.三.解答题(共11小题)19.(2022秋•兴隆县期末)根据下列语句列式并计算:(1)﹣8加上5与﹣2的积;(2)3、﹣5、﹣9三个数的和比这三个数绝对值的和小多少?20.(2022秋•朝阳区校级期中)计算:.21.(2022秋•前郭县期中)阅读下面解题过程并解答问题:计算:解:原式=(第一步)=(﹣15)÷(﹣25)(第二步)=(第三步)(1)上面解题过程有两处错误:第一处是第步,错误原因是;第二处是第步,错误原因是;(2)请写出正确的结果.22.(2022秋•茅箭区校级月考)已知x、y、z都是不为0的有理数,且满足xyz>0,x+y+z<0;(1)判断:x、y、z中有个正数;(2)的值.23.(2022秋•石楼县期末)请你先认真阅读材料:计算解:原式的倒数是(﹣+)÷()=(﹣+)×(﹣30)=×(﹣30)﹣×(﹣30)+×(﹣30)﹣×(﹣30)=﹣20﹣(﹣3)+(﹣5)﹣(﹣12)=﹣20+3﹣5+12=﹣10故原式等于﹣再根据你对所提供材料的理解,选择合适的方法计算:.24.(2022秋•越城区期中)阅读下题解答:计算:.分析:利用倒数的意义,先求出原式的倒数,再得原式的值.解:×(﹣24)=﹣16+18﹣21=﹣19.所以原式=﹣.根据阅读材料提供的方法,完成下面的计算:.25.(2023•路南区二模)老师在黑板上写下了下面的等式,让同学自己出题,并作出答案.7+▢﹣5×〇=38请你解答下列两个同学所提出的问题.(12时,求▢所代表的有理数;(2)乙同学提出的问题:若▢和〇所代表的有理数互为相反数,求〇所代表的有理数.26.(2022秋•港南区期末)若定义一种新的运算“*”,规定有理数a*b=4ab,如2*3=4×2×3=24.(1)求3*(﹣4)的值;(2)求(﹣2)*(6*3)的值.27.(2023•遵化市校级模拟)(1)将9个不同的数分别填入图中的9个空格中,使得每行、每列及对角线上各数的和都等于0;(2)将9个不同的数分别填入图中的9个空格中,使得每行、每列及对角线上各数的积都等于1.28.(2022秋•山西期末)一辆货车从超市出发,向东走3千米到达小李家,继续向东走1.5千米到达小张家,然后又回头向西走9.5千米到达小陈家,最后回到超市.(1)以超市为原点,向东为正,以1个单位长表示1千米,在数轴上表示出上述位置.(2)小陈家距小李家多远?(3)若货车每千米耗油0.5升,这趟路货车共耗油多少升?29.(2022秋•宁远县期中)数学老师布置了一道思考题“计算:”,小明和小红两位同学经过仔细思考,用不同的方法解答了这个问题:小明的解法:原式====小红的解法:原式的倒数为=﹣20+3﹣5+12=﹣10故原式=(1)你觉得的解法更好.(2)请你用自己喜欢的方法解答下面的问题:计算:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档