浙教版九年级下《第一章解直角三角形》期末专题试卷含答案解析

合集下载

(精练)浙教版九年级下册数学第一章 解直角三角形含答案

(精练)浙教版九年级下册数学第一章 解直角三角形含答案

浙教版九年级下册数学第一章解直角三角形含答案一、单选题(共15题,共计45分)1、已知一个坡的坡比为i,坡角为α,则下列等式成立的是()A.i=sinαB.i=cosαC.i=tanαD.i=cotα2、如图,在笔直的海岸线l上有A,B两个观测站,AB=2 km,从A处测得船C在北偏东45°的方向,从B处测得船C在北偏东22.5°的方向,则船C离海岸线l的距离(即CD的长)为()A.4 kmB. kmC.2 kmD. km3、如图,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸边点A处,测得河的北岸边点B在其北偏东45°方向,然后向西走60米到达C点,测得点B在点C的北偏东60°方向,则这段河的宽度为()A.60(+1)米B.30(+1)米C.(90-30 )米D.30(-1)米4、在△ABC中,(tanA﹣)2+|﹣cosB|=0,则∠C的度数为()A.30°B.45°C.60°D.75°5、如图,已知正方形ABCD的边长为4,点E、F分别在边AB、BC上,且AE=BF=1,CE、DF交于点O.下列结论:①∠DOC=90°,②OC=OE,③tan∠OCD=,④S△ODC =S四边形BEOF中,正确的有()A.1个B.2个C.3个D.4个6、在正方形网格中,∠α的位置如图所示,则tanα的值是()A. B. C. D.27、已知:△ABC中,∠C=90°,cosB=, AB=15,则BC的长是()A.3B.3C.6D.8、如图,一座厂房屋顶人字架的跨度AC=12m,上弦AB=BC,∠BAC=25°.若用科学计算器求上弦AB的长,则下列按键顺序正确的是()A. B. C.D.9、我国的“蛟龙号”创造了世界同类潜水器最大下潜深度纪录7062米.如图,在某次任务中,“蛟龙号”在点A处测得正前方海底沉船C的俯角为45°,然后在同一深度向正前方直线航行600米到点B,此时测得海底沉船C 的俯角为60°,那么“蛟龙号”在点B下潜到沉船C处,下潜的垂直深度是()米.A.600﹣600B.600+600C.900﹣300D.900+30010、如图,在四边形ABCD中,E、F分別是AB、AD的中点,若EF=2,BC=5,CD=3,则tanC等于()A. B. C. D.11、的值等于()A. B. C.1 D.12、如图,正方形ABCD中,对角线AC,BD交于点O,点M,N分别为OB,OC 的中点,则cos∠OMN的值为( )A. B. C. D.113、如图,在边长为1的小正方形组成的网格中,点A、B、O为格点,则tan∠AOB=()A. B. C. D.14、如图,是河堤横断面的迎水坡,堤高,水平距离,则斜坡的坡度为()A. B. C. D.15、△ABC 在网格中的位置如图所示(每个小正方形的边长均为 1), AD ^ BC 于 D .下列选项中,错误的是()A.sina=cosaB.tanC=2C.tana =1D.sin =cos二、填空题(共10题,共计30分)16、若cosα= ,α为锐角,则sinα=________.17、若a为锐角,且sin a= ,则cos a=________.18、如图,在矩形ABCD中,把∠A沿DF折叠,点A恰好落在矩形的对称中心E 处,则tan∠ADF=________19、已知△ABC中,AB=10,AC=2 ,∠B=30°,则△ABC的面积等于________.20、计算(﹣)﹣1+(2 ﹣1)0﹣|tan45°﹣2 |=________.21、如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=10,CD=6,则tanC=________22、计算:________.23、如图,小颖利用有一个锐角是的三角板测量一棵树的高度,已知她与树之间的水平距离BE为5m,AB为即小颖的眼睛距地面的距离,那么这棵树高是________24、若sinα= ,α是锐角,则α=________度.25、点A是反比例函数y=(x>0)图象上的一点,点B在x轴上,点C是坐标平面上的一点,O为坐标原点,若以点A,B,C,O为顶点的四边形是有一个角为60°的菱形,则点C的坐标是________.三、解答题(共5题,共计25分)26、计算:.27、如图,地面上小山的两侧有A、B两地,为了测量A、B两地的距离,让一热气球从小山两侧A地出发沿与AB成30°角的方向,以每分钟50m的速度直线飞行,8分钟后到达C处,此时热气球上的人测得CB与AB成70°角,请你用测得的数据求A,B两地的距离AB长.(取1.7,sin20°取0.3,cos20°取0.9,tan20°取0.4,sin70°取0.9,cos70°取0.3,tan70°取2.7.)28、为积极宣传国家相关政策,某村在一山坡的顶端的平地上竖立一块宣传牌.小明为测得宣传牌的高度,他站在山脚C处测得宣传牌的顶端的仰角为,已知山坡的坡度,山坡的长度为米,山坡顶端与宣传牌底端的水平距离为2米,求宣传牌的高度(精确到1米)(参考数据:,,,)29、观察与思考:阅读下列材料,并解决后面的问题.在锐角△ABC中,∠A、∠B、∠C的对边分别是a、b、c,过A作AD⊥BC于D(如图),则sinB=, sinC=,即AD=csinB,AD=bsinC,于是csinB=bsinC,即=.同理有:=,=,所以==即:在一个三角形中,各边和它所对角的正弦的比相等.在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料,完成下列各题.(1)如图,△ABC中,∠B=450,∠C=750, BC=60,则∠A=;AC= ;(2)如图,一货轮在C处测得灯塔A在货轮的北偏西30°的方向上,随后货轮以60海里/时的速度按北偏东30°的方向航行,半小时后到达B处,此时又测得灯塔A在货轮的北偏西75°的方向上(如图),求此时货轮距灯塔A的距离AB.30、如图示一架水平飞行的无人机AB的尾端点A测得正前方的桥的左端点P的俯角为α其中tanα=2 ,无人机的飞行高度AH为500 米,桥的长度为1255米.①求点H到桥左端点P的距离;②若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度AB.参考答案一、单选题(共15题,共计45分)1、C2、B3、B4、B5、C6、D7、C8、B9、D10、B11、A12、B13、A14、A15、D二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、30、。

2021-2022学年浙教版九年级数学下册《第1章解直角三角形》期末综合复习训练(附答案)

2021-2022学年浙教版九年级数学下册《第1章解直角三角形》期末综合复习训练(附答案)

2021-2022学年浙教版九年级数学下册《第1章解直角三角形》期末综合复习训练(附答案)1.某商场准备改善原有楼梯的安全性能,把坡角由37°减至30°,已知原楼梯长为5米,调整后的楼梯会加长()(参考数据:sin37°≈,cos37°≈,tan37°≈).A.6米B.3米C.2米D.1米2.如图,在一次数学实践活动中,小明同学要测量一座与地面垂直的古塔AB的高度,他从古塔底部点B处前行30m到达斜坡CE的底部点C处,然后沿斜坡CE前行20m到达最佳测量点D处,在点D处测得塔顶A的仰角为30°,已知斜坡的斜面坡度i=1:,且点A,B,C,D,E在同一平面内,小明同学测得古塔AB的高度是()A.(10+20)m B.(10+10)m C.20m D.40m3.如图,在△ABC中,∠ACB=90°,点D在AB的延长线上,连接CD,若AB=2BD,tan∠BCD=,则的值为()A.1B.2C.D.4.如图,△ABC底边BC上的高为h1,△PQR底边QR上的高为h2,则有()A.h1=h2 B.h1<h2 C.h1>h2 D.以上都有可能5.如图,在△ABC中,点O是角平分线AD、BE的交点,若AB=AC=10,BC=12,则tan ∠OBD的值是()A.B.2C.D.6.如图,为了测量某建筑物BC的高度,小颖采用了如下的方法:先从与建筑物底端B在同一水平线上的A点出发,沿斜坡AD行走130米至坡顶D处,再从D处沿水平方向继续前行若干米后至点E处,在E点测得该建筑物顶端C的仰角为60°,建筑物底端B 的俯角为45°,点A、B、C、D、E在同一平面内,斜坡AD的坡度i=1:2.4.根据小颖的测量数据,计算出建筑物BC的高度约为(参考数据:≈1.732)()A.136.6米B.86.7米C.186.7米D.86.6米7.构建几何图形解决代数问题是“数形结合”思想的重要应用,在计算tan15°时,如图.在Rt△ACB中,∠C=90°,∠ABC=30°,延长CB使BD=AB,连接AD,得∠D=15°,所以tan15°====2﹣.类比这种方法,计算tan22.5°的值为()A.+1B.﹣1C.D.8.已知,在△ABC中,∠A=45°,AB=4,BC=5,则△ABC的面积为.9.数学活动小组为测量山顶电视塔的高度,在塔的椭圆平台遥控无人机.当无人机飞到点P处时,与平台中心O点的水平距离为15米,测得塔顶A点的仰角为30°,塔底B点的俯角为60°,则电视塔的高度为米.10.如图,一艘轮船位于灯塔P的南偏东60°方向,距离灯塔50海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东45°方向上的B处,此时B处与灯塔P 的距离为海里(结果保留根号).11.如图,某活动小组利用无人机航拍校园,已知无人机的飞行速度为3m/s,从A处沿水平方向飞行至B处需10s.同时在地面C处分别测得A处的仰角为75°,B处的仰角为30°,则这架无人机的飞行高度大约是m(≈1.732,结果保留整数).12.如图1是一台手机支架,图2是其侧面示意图,AB,BC可分别绕点A,B转动,测量知BC=8cm,AB=16cm.当AB,BC转动到∠BAE=60°,∠ABC=50°时,点C到AE的距离为cm.(结果保留小数点后一位,参考数据:sin70°≈0.94,≈1.73)13.如图,我国某海域有A,B两个港口,相距80海里,港口B在港口A的东北方向,点C处有一艘货船,该货船在港口A的北偏西30°方向,在港口B的北偏西75°方向,求货船与港口A之间的距离.(结果保留根号)14.2020年7月23日,我国首次火星探测“天问一号”探测器,由长征五号遥四运载火箭在中国文昌航天发射场发射成功,正式开启了中国的火星探测之旅.运载火箭从地面O 处发射,当火箭到达点A时,地面D处的雷达站测得AD=4000米,仰角为30°.3秒后,火箭直线上升到达点B处,此时地面C处的雷达站测得B处的仰角为45°.O,C,D 在同一直线上,已知C,D两处相距460米,求火箭从A到B处的平均速度.(结果保留整数,参考数据:≈1.732,≈1.414)15.小宸想利用测量知识测算湖中小山的高度.他站在湖边看台上,清晰地看到小山倒映在平静的湖水中,如图所示,他在点O处测得小山顶端的仰角为45°,小山顶端A在水中倒影A′的俯角为60°.已知:点O到湖面的距离OD=3m,OD⊥DB,AB⊥DB,A、B、A′三点共线,A'B=AB,求小山的高度AB.(光线的折射忽略不计;结果保留根号)16.某海域有一小岛P,在以P为圆心,半径r为10(3+)海里的圆形海域内有暗礁.一海监船自西向东航行,它在A处测得小岛P位于北偏东60°的方向上,当海监船行驶20海里后到达B处,此时观测小岛P位于B处北偏东45°方向上.(1)求A,P之间的距离AP;(2)若海监船由B处继续向东航行是否有触礁危险?请说明理由.如果有触礁危险,那么海监船由B处开始沿南偏东至多多少度的方向航行能安全通过这一海域?17.如图,莽山五指峰景区新建了一座垂直观光电梯.某测绘兴趣小组为测算电梯AC的高度,测得斜坡AB=105米,坡度i=1:2,在B处测得电梯顶端C的仰角α=45°,求观光电梯AC的高度.(参考数据:≈1.41,≈1.73,≈2.24.结果精确到0.1米)18.如图,在某小区内拐角处的一段道路上,有一儿童在C处玩耍,一辆汽车从被楼房遮挡的拐角另一侧的A处驶来,已知CM=3m,CO=5m,DO=3m,∠AOD=70°,汽车从A处前行多少米才能发现C处的儿童(结果保留整数)?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75;sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)19.王刚同学在学习了解直角三角形及其应用的知识后,尝试利用所学知识测量河对岸大树AB的高度,他在点C处测得大树顶端A的仰角为45°,再从C点出发沿斜坡走2米到达斜坡上D点,在点D处测得树顶端A的仰角为30°,若斜坡CF的坡比为i=1:3(点E、C、B在同一水平线上).(1)求王刚同学从点C到点D的过程中上升的高度;(2)求大树AB的高度(结果保留根号).20.一架无人机沿水平直线飞行进行测绘工作,在点P处测得正前方水平地面上某建筑物AB的顶端A的俯角为30°,面向AB方向继续飞行5米,测得该建筑物底端B的俯角为45°,已知建筑物AB的高为3米,求无人机飞行的高度(结果精确到1米,参考数据:≈1.414,≈1.732).21.小明和小华约定一同去公园游玩,公园有南北两个门,北门A在南门B的正北方向,小明自公园北门A处出发,沿南偏东30°方向前往游乐场D处;小华自南门B处出发,沿正东方向行走150m到达C处,再沿北偏东22.6°方向前往游乐场D处与小明汇合(如图所示),两人所走的路程相同.求公园北门A与南门B之间的距离.(结果取整数.参考数据:sin22.6°≈,cos22.6°≈,tan22.6°≈,≈1.732)22.小张早起在一条东西走向的笔直马路上晨跑,他在A处时,D处学校和E处图书馆都在他的东北方向,当小张沿正东方向跑了600m到达B处时,E处图书馆在他的北偏东15°方向,然后他由B处继续向正东方向跑600m到达C处,此时D处学校在他的北偏西63.4°方向,求D处学校和E处图书馆之间的距离.(结果保留整数)(参考数据:sin63.4°≈0.9,cos63.4°≈0.4,tan63.4°≈2.0,≈1.4,≈1.7,≈2.4)23.如图,已知△ABD中,AC⊥BD,BC=8,CD=4,cos∠ABC=,BF为AD边上的中线.(1)求AC的长;(2)求tan∠FBD的值.24.在全民健身运动中,骑行运动颇受市民青睐.一市民骑自行车由A地出发,途经B地去往C地,如图.当他由A地出发时,发现他的北偏东45°方向有一信号发射塔P.他由A地沿正东方向骑行4km到达B地,此时发现信号塔P在他的北偏东15°方向,然后他由B地沿北偏东75°方向骑行12km到达C地.(1)求A地与信号发射塔P之间的距离;(2)求C地与信号发射塔P之间的距离.(计算结果保留根号)25.某天,北海舰队在中国南海例行训练,位于A处的济南舰突然发现北偏西30°方向上的C处有一可疑舰艇,济南舰马上通知位于正东方向200海里B处的西安舰,西安舰测得C处位于其北偏西60°方向上,请问此时两舰距C处的距离分别是多少?26.如图,A,B是海面上位于东西方向的两个观测点,有一艘海轮在C点处遇险发出求救信号,此时测得C点位于观测点A的北偏东45°方向上,同时位于观测点B的北偏西60°方向上,且测得C点与观测点A的距离为25海里.(1)求观测点B与C点之间的距离;(2)有一艘救援船位于观测点B的正南方向且与观测点B相距30海里的D点处,在接到海轮的求救信号后立即前往营救,其航行速度为42海里/小时,求救援船到达C点需要的最少时间.参考答案1.解:在Rt△BAD中,AB=5米,∠BAD=37°,则BD=AB•sin∠BAD≈5×=3(米),在Rt△BCD中,∠C=30°,∴BC=2BD=6(米),则调整后的楼梯会加长:6﹣5=1(米),故选:D.2.解:过D作DF⊥BC于F,DH⊥AB于H,∴DH=BF,BH=DF,∵斜坡的斜面坡度i=1:,∴=1:,设DF=xm,CF=xm,∴CD==2x=20m,∴x=10,∴BH=DF=10m,CF=10m,∴DH=BF=(10+30)m,∵∠ADH=30°,∴AH=DH=×(10+30)=(10+10)m,∴AB=AH+BH=(20+10)m,故选:A.3.解:过点D作DM⊥BC,交CB的延长线于点M,∵∠ACB=∠DMB=90°,∠ABC=∠DBM,∴△ABC∽△DBM,∴==,∵AB=2BD,∴===,在Rt△CDM中,由于tan∠MCD==,设DM=2k,则CM=3k,又∵==,∴BC=2k,AC=4k,∴==2,故选:B.4.解:如图,分别作出△ABC底边BC上的高为AD即h1,△PQR底边QR上的高为PE 即h2,在Rt△ADC中,h1=AD=5×sin55°,在Rt△PER中,h2=PE=5×sin55°,∴h1=h2,故选:A.5.解:如图:作OF⊥AB于F,∵AB=AC,AD平分∠BAC.∴∠ODB=90°.BD=CD=6.∴根据勾股定理得:AD==8.∵BE平分∠ABC.∴OF=OD,BF=BD=6,AF=10﹣6=4.设OD=OF=x,则AO=8﹣x,在Rt△AOF中,根据勾股定理得:(8﹣x)2=x2+42.∴x=3.∴OD=3.在Rt△OBD中,tan∠OBD===.故选:A.6.解:如图作DH⊥AB于H,延长DE交BC于F.在Rt△ADH中,AD=130米,DH:AH=1:2.4,∴DH=50(米),∵四边形DHBF是矩形,∴BF=DH=50(米),在Rt△EFB中,∠BEF=45°,∴EF=BF=50(米),在Rt△EFC中,FC=EF•tan60°,∴CF=50×≈86.6(米),∴BC=BF+CF=136.6(米).故选:A.7.解:在Rt△ACB中,∠C=90°,∠ABC=45°,延长CB使BD=AB,连接AD,得∠D=22.5°,设AC=BC=1,则AB=BD=,∴tan22.5°===﹣1,故选:B.8.解:过点B作AC边的高BD,Rt△ABD中,∠A=45°,AB=4,∴BD=AD=4,在Rt△BDC中,BC=4,∴CD==5,①△ABC是钝角三角形时,AC=AD﹣CD=1,∴S△ABC=AC•BD==2;②△ABC是锐角三角形时,AC=AD+CD=7,∴S△ABC=AC•BD=×7×4=14,故答案为:2或14.9.解:在Rt△APO中,OP=15米,∠APO=30°,∴OA=OP•tan30°=(米),在Rt△POB中,OP=15米,∠OPB=60°,∴OB=(米),∴AB=OA+OB=20(米),故答案为:20.10.解:过P作PC⊥AB于C,如图所示:由题意得:∠APC=30°,∠BPC=45°,P A=50海里,在Rt△APC中,cos∠APC=,∴PC=P A•cos∠APC=50×=25(海里),在Rt△PCB中,cos∠BPC=,∴PB===25(海里),故答案为:25.11.解:过A点作AH⊥BC于H,过B点作BD垂直于过C点的水平线,垂足为D,如图,根据题意得∠ACD=75°,∠BCD=30°,AB=3×10=30m,∵AB∥CD,∴∠ABH=∠BCD=30°,在Rt△ABH中,AH=AB=15m,∵tan∠ABH=,∴BH===15,∵∠ACH=∠ACD﹣∠BCD=75°﹣30°=45°,∴CH=AH=15m,∴BC=BH+CH=(15+15)m,在Rt△BCD中,∵∠BCD=30°,∴BD=BC=≈20(m).答:这架无人机的飞行高度大约是20m.故答案为20.12.解:如图,过点B、C分别作AE的垂线,垂足分别为M、N,过点C作CD⊥BM,垂足为D,在Rt△ABM中,∵∠BAE=60°,AB=16,∴BM=sin60°•AB=×16=8(cm),∠ABM=90°﹣60°=30°,在Rt△BCD中,∵∠DBC=∠ABC﹣∠ABM=50°﹣30°=20°,∴∠BCD=90°﹣20°=70°,又∵BC=8,∴BD=sin70°×8≈0.94×8=7.52(cm),∴CN=DM=BM﹣BD=8﹣7.52≈6.3(cm),即点C到AE的距离约为6.3cm,故答案为:6.3.13.解:过点A作AD⊥BC于D,如图所示:由题意得:∠ABC=180°﹣75°﹣45°=60°,∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD中,∠DAB=90°﹣60°=30°,AD=AB•sin∠ABD=80×sin60°=80×=40(海里),∵∠CAB=30°+45°=75°,∴∠DAC=∠CAB﹣∠DAB=75°﹣30°=45°,∴△ADC是等腰直角三角形,∴AC=AD=×40=40(海里).答:货船与港口A之间的距离是40海里.14.解:由题意得,AD=4000米,∠ADO=30°,CD=460米,∠BCO=45°,在Rt△AOD中,∵AD=4000米,∠ADO=30°,∴OA=AD=2000(米),OD=AD=2000(米),在Rt△BOC中,∠BCO=45°,∴OB=OC=OD﹣CD=(2000﹣460)米,∴AB=OB﹣OA=2000﹣460﹣2000≈1004(米),∴火箭的速度为1004÷3≈335(米/秒),答:火箭的速度约为335米/秒.15.解:过点O作OE⊥AB于点E,则BE=OD=3m,设AE=xm,则AB=(x+3)m,A′E=(x+6)m,∵∠AOE=45°,∴OE=AE=xm,∵∠A′OE=60°,∴tan60°==,即=,解得x=3+3,∴AB=3+3+3=(6+3)m.16.解:(1)过点P作PC⊥AB,交AB的延长线于点C,由题意得,∠P AC=30°,∠PBC=45°,AB=20,设PC=x,则BC=x,在Rt△P AC中,∵tan30°===,∴x=10+10,∴P A=2x=20+20,答:A,P之间的距离AP为(20+20)海里;(2)因为PC﹣10(3+)=10+10﹣30﹣10=10(+1)(﹣)<0,所以有触礁的危险;设海监船无触礁危险的新航线为射线BD,作PE⊥BD,垂足为E,当P到BD的距离PE=10(3+)海里时,有sin∠PBE===,∴∠PBD=60°,∴∠CBD=60°﹣45°=15°,90°﹣15°=75°即海监船由B处开始沿南偏东至多75°的方向航行能安全通过这一海域.17.解:过B作BM⊥水平地面于M,BN⊥AC于N,如图所示:则四边形AMBN是矩形,∴AN=BM,BN=MA,∵斜坡AB=105米,坡度i=1:2=,∴设BM=x米,则AM=2x米,∴AB===x=105,∴x=21,∴AN=BM=21(米),BN=AM=42(米),在Rt△BCN中,∠CBN=α=45°,∴△BCN是等腰直角三角形,∴CN=BN=42(米),∴AC=AN+CN=21+42=63≈141.1(米),答:观光电梯AC的高度约为141.1米.18.解:∵CM=3m,OC=5m,∴OM==4(m),∵∠CMO=∠BDO=90°,∠COM=∠BOD,∴△COM∽△BOD,∴,即,∴BD==2.25(m),∴tan∠AOD=tan70°=,即≈2.75,解得:AB=6m,∴汽车从A处前行约6米才能发现C处的儿童.19.解:(1)过点D作DH⊥CE于点H,由题意知CD=2米,∵斜坡CF的坡比为i=1:3,∴,设DH=x米,CH=3x米,∵DH2+CH2=DC2,∴,∴x=2,∴DH=2(米),CH=6(米),答:王刚同学从点C到点D的过程中上升的高度为2米;(2)过点D作DG⊥AB于点G,设BC=a米,∵∠DHB=∠DGB=∠ABC=90°,∴四边形DHBG为矩形,∴DH=BG=2米,DG=BH=(a+6)米,∵∠ACB=45°,∴BC=AB=a(米),∴AG=(a﹣2)米,∵∠ADG=30°,∴,∴,∴a=6+4,∴AB=(6+4)(米).答:大树AB的高度是(6+4)米.20.解:过A作AC⊥PQ,交PQ的延长线于C,如图所示:设AC=x米,由题意得:PQ=5米,∠APC=30°,∠BQC=45°,在Rt△APC中,tan∠APC==tan30°=,∴PC=AC=x(米),在Rt△BCQ中,tan∠BQC==tan45°=1,∴QC=BC=AC+AB=(x+3)米,∵PC﹣QC=PQ=5米,∴x﹣(x+3)=5,解得:x=4(+1),∴BC=4(+1)+3=4+7≈14(米),答:无人机飞行的高度约为14米.21.解:作DE⊥AB于E,CF⊥DE于F,∵BC⊥AB,∴四边形BCFE是矩形,∴BE=CF,EF=BC=150 m,设DF=xm,则DE=(x+150)m,在Rt△ADE中,∠BAD=30°,∴AD=2DE=2(x+150)m,在Rt△DCF中,∠FCD=22.6°,∴CD=≈=xm,∵AD=CD+BC,∴2(x+150)=+150,解得x=250(m),∴DF=250 m,∴DE=250+150=400 m,∴AD=2DE=800 m,∴CD=800﹣150=650 m,由勾股定理得AE===400m,BE=CF===600 m,∴AB=AE+BE=400+600≈1293(m),答:公园北门A与南门B之间的距离约为1293 m.22.解:过D作DM⊥AC于M,设MD=x,在Rt△MAD中,∠MAD=45°,∴△ADM是等腰直角三角形,∴AM=MD=x,∴AD=x,在Rt△MCD中,∠MDC=63.4°,∴MC≈2MD=2x,∵AC=600+600=1200,∴x+2x=1200,解得:x=400,∴MD=400m,∴AD=MD=400,过B作BN⊥AE于N,∵∠EAB=45°,∠EBC=75°,∴∠E=30°,在Rt△ABN中,∠NAB=45°,AB=600,∴BN=AN=AB=300,∴DN=AD﹣AN=400﹣300=100,在Rt△NBE中,∠E=30°,∴NE=BN=×300=300,∴DE=NE﹣DN=300﹣100≈580(m),即D处学校和E处图书馆之间的距离约是580m.23.解:(1)∵AC⊥BD,cos∠ABC==,BC=8,∴AB=10,在Rt△ACB中,由勾股定理得,AC===6,即AC的长为6;(2)如图,连接CF,过F点作BD的垂线,垂足E,∵BF为AD边上的中线,即F为AD的中点,∴CF=AD=FD,在Rt△ACD中,由勾股定理得,AD===2,∵三角形CFD为等腰三角形,FE⊥CD,∴CE=CD=2,在Rt△EFC中,EF===3,∴tan∠FBD===.解法二:∵BF为AD边上的中线,∴F是AD中点,∵FE⊥BD,AC⊥BD,∴FE∥AC,∴FE是△ACD的中位线,∴FE=AC=3,CE=CD=2,∴在Rt△BFE中,tan∠FBD===.24.解:(1)依题意知:∠P AB=45°,∠PBG=15°,∠GBC=75°,过点B作BD⊥AP于D点,∵∠DAB=45°,,∴AD=BD=4,∵∠ABD=∠GBD=45°,∠GBP=15°,∴∠PBD=60°,∵BD=4,∴,∴P A=(4+4)(km);(2)∵∠PBD=60°,BD=4,∴PB=8,过点P作PE⊥BC于E,∵∠PBG=15°,∠GBC=75°,∴∠PBE=60°,∵PB=8,∴BE=4,,∵BC=12,∴CE=8,∴PC==4(km).25.解:过点C作CD⊥BA的延长线于点D,如图.由题意可得:∠CAD=60°,∠CBD=30°=∠DCA,∴∠BCA=∠CAD﹣∠CBD=60°﹣30°=30°.即∠BCA=∠CBD,∴AC=AB=200(海里).在Rt△CDA中,CD=sin∠CAD×AC==100(海里).在Rt△CDB中,CB=2CD=200(海里).故位于A处的济南舰距C处的距离200海里,位于B处的西安舰距C处的距离200海里.26.解:(1)如图,过点C作CE⊥AB于点E,根据题意可知:∠ACE=∠CAE=45°,AC=25海里,∴AE=CE=25(海里),∵∠CBE=30°,∴BE=25(海里),∴BC=2CE=50(海里).答:观测点B与C点之间的距离为50海里;(2)如图,作CF⊥DB于点F,∵CF⊥DB,FB⊥EB,CE⊥AB,∴四边形CEBF是矩形,∴FB=CE=25(海里),CF=BE=25(海里),∴DF=BD+BF=30+25=55(海里),在Rt△DCF中,根据勾股定理,得CD===70(海里),∴70÷42=(小时).答:救援船到达C点需要的最少时间是小时.。

浙教版九年级下《第一章解直角三角形》期末专题试卷含答案解析

浙教版九年级下《第一章解直角三角形》期末专题试卷含答案解析
浙教版九年级数学下册期末专题: 第一章 解直角三角形
一、单选题(共 10 题;共 30 分)
1.cos30°的值是( ) A. B. C. D.
2.已知在 Rt△ABC 中,∠C=90°,AB=7,BC=5,那么下列式子中正确的是( ) A. sin B. cos C. tan D. cot D. cos

∵BE=20 米,∴AE=50 米,DF=40 米, ∵EF=BC,BC=5 米, ∴EF=5 米, ∴AD=AE+EF+DF=50+5+40=95 米 ∴S 梯形 ABCD= (AD+BC)×BE= ×100×20=1000(平方米)
22.【答案】如图,过点 C 作 CE⊥DH 交于点 E,过点 A 作 AF⊥CE 交于点 F,
tanB
,必定成立的是________.
15.如图,若点 A 的坐标为

,则 sin∠1=________.
16.如图,甲、乙两渔船同时从港口 O 出发外出捕鱼,乙沿南偏东 30°方向以每小时 10 海里的速度航行,甲沿 南偏西 75°方向以每小时 10 海里的速度航行,当航行 1 小时后,甲在 A 处发现自己的渔具掉在乙船上,于 是迅速改变航向和速度,仍以匀速沿南偏东 60°方向追赶乙船,正好在 B 处追上.则甲船追赶乙船的速度为
∴∠DFA=∠DFE=90°, ∵∠ABC=∠BCD=90°, ∴四边形 BCDF 是矩形, ∴BC=DF, ∵在 Rt△ADF 中,∠ADF=45°, ∴AF=DF, ∵在 Rt△DFE 中,∠EDF=37°, ∴EF=DF·tan37°, 又∵AF+EF=AE=35, ∴DF+DF·tan37°=35, 解得 DF=BC=20(m) 答:两建筑物间的距离 BC 为 20m.

浙教版九年级下册数学第一章 解直角三角形含答案【有解析】

浙教版九年级下册数学第一章 解直角三角形含答案【有解析】

浙教版九年级下册数学第一章解直角三角形含答案一、单选题(共15题,共计45分)1、下列运算正确的是()A.sin60°=B.a 6÷a 2=a 3C.(﹣2)0=2D.(2a 2b)3=8a 6b 32、在Rt△ABC中,∠C=90°,若cosA=,则sinB的值是()A. B. C. D.3、如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等,若等腰直角△ABC的三个顶点分别在这三条平行直线上,则sinα的值是()A. B. C. D.4、如图,直径为10的⊙A经过点C(0,5)和点O(0,0),B是y轴右侧⊙A 优弧上一点,则∠OBC的余弦值为()A. B. C. D.5、如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内),已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于()A.asinx+bsinxB.acosx+bsinxC.asinx+bcosxD.acosx+bcos x6、如图,在ABCD中,∠DAB=60°,AB=8,AD=6.⊙O分别切边AB,AD于点E,F,且圆心O好落在DE上.现将⊙O沿AB方向滚动到与BC边相切(点O在ABCD的内部),则圆心O移动的路径长为()A.2B.4C.5﹣D.8﹣27、sin30°的相反数()A. B.﹣ C. D.8、一个矩形按如图1的方式分割成三个直角三角形,把较大两个直角三角形纸片按图2中①、②两种方式放置,设①中的阴影部分面积为,②中的阴影部分面积为,当时,则矩形的两边之比为()A. B. C. D.9、当锐角时,的值是()A.大于B.小于C.大于D.小于10、在Rt△ABC,∠C=90°,AC=12,BC=5,则sinA的值为( )A. B. C. D.11、数学课外兴趣小组的同学们要测量被池塘相隔的两棵树A、B的距离,他们设计了如图所示的测量方案:从树A沿着垂直于AB的方向走到E,再从E沿着垂直于AE的方向走到F,C为AE上一点,其中3位同学分别测得三组数据:①AC,∠ACB;②EF、DE、AD;③CD,∠ACB,∠ADB.其中能根据所测数据求得A、B两树距离的有()A.0组B.一组C.二组D.三组12、如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,则∠CDE的正切值为()A. B.2 C.3 D.413、如图,在△ABC中,∠B=90°,tan∠C= ,AB=6cm.动点P从点A开始沿边AB向点B以1cm/s的速度移动,动点Q从点B开始沿边BC向点C以2cm/s的速度移动.若P,Q两点分别从A,B两点同时出发,在运动过程中,△PBQ的最大面积是()A.18cm 2B.12cm 2C.9cm 2D.3cm 214、的值等于()A.1B.C.D.15、如图,在正方形中,对角线相交于点O,点E在BC边上,且,连接AE交BD于点G,过点B作于点F,连接OF 并延长,交BC于点M,过点O作交DC于占N,,现给出下列结论:① ;② ;③ ;④ ;其中正确的结论有()A.①②③B.②③④C.①②④D.①③④二、填空题(共10题,共计30分)16、如图,已知菱形的面积为,,对角线、交于点,若点为对角线上一点,则的最小值是________.17、已知,在△ABC中,∠A=45°,AC=, AB=+1,则边BC的长为________ .18、若是锐角,且,则________.19、如图,已知在平行四边形ABCD中,AB=8 ,BC=20,∠A=60°,P是边AD上一动点,连结PB,将线段PB绕着点P逆时针旋转90°得到线段PQ,若点Q恰好落在平行四边形ABCD的边上,那么AP的值是________.20、在中,,,,则________.21、如图,在扇形OAB中,∠AOB=90°,半径OB=2.∠BOC=60°,连接AB,AB、OC交于点D,则图中阴影部分的面积为________.22、在由边长为1的小正方形所组成的网格中,如图放置,则________.23、运用科学计算器计算:2 cos72°=________.(结果精确到0.1)24、已知asinθ+cosθ=1,且bsinθ﹣cosθ=1,(其中θ是锐角),则ab=________.25、如图,点BEC在一直线上,△ BEA,△CED在直线BC同侧,BE=BA=4,CE=CD=6,∠B=∠C=a,当tan 时,△ADE外接圆的半径为________。

浙教版九年级下册数学第一章 解直角三角形 含答案

浙教版九年级下册数学第一章 解直角三角形 含答案

浙教版九年级下册数学第一章解直角三角形含答案一、单选题(共15题,共计45分)1、如图,击打台球时小球反弹前后的运动路线遵循对称原理,即小球反弹前后的运动路线与台球案边缘的夹角相等(α=β),在一次击打台球时,把位于点P处的小球沿所示方向击出,小球经过5次反弹后正好回到点P,若台球案的边AD的长度为4,则小球从P点被击出到回到点P,运动的总路程为()A.16B.16C.20D.202、如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O 点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以20米/秒的速度行驶时,A处受噪音影响的时间为()A.16秒B. 20秒 D.22秒3、如图,一艘轮船在B处观测灯塔A位于南偏东50°方向上,相距40海里,轮船从B处沿南偏东20°方向匀速航行至C处,在C处观测灯塔A位于北偏东10°方向上,则C处与灯塔A的距离是()A.20海里B.40海里C.20 海里D.40 海里4、某人沿坡度i=1:的坡面向上走50米,则此人离地面的高度为()A.25米B.50米C.25 米D.50 米5、如图,在△ABC中,AC=6,∠BAC=60°,AM为△ABC的角平分线,若,则AM长为()A.6B.C.D.6、如图,在5×4的正方形网格中,每个小正方形的边长均是1,△ABC的顶点均在小正方形的顶点上,则tanA的值为()A. B. C. D.7、如图,△ABC内接于⊙O,若sin∠BAC= ,BC=2 ,则⊙O的半径为()A.3B.6C.4D.28、斜坡的倾斜角为α,一辆汽车沿这个斜坡前进了500米,则它上升的高度是()A.500•sinα米B. 米C.500•cosα米D. 米9、如图,平行四边形 ABCD 中,AD∥BC,AB=BC=CD=AD=4,∠A=∠C=60°,连接 BD,将△BCD 绕点 B 旋转,当 BD(即 BD′)与 AD 交于一点 E,BC(即BC′)同时与 CD 交于一点 F 时,下列结论正确的是()①AE=DF;②∠BEF=60°;③∠DEB=∠DFB;④△DEF 的周长的最小值是4+2A.①②B.②③C.①②④D.①②③④10、如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠BED的正切值等于()A. B. C.2 D.11、在Rt△ABC中,∠C=90°,sinA=,则cosB的值等于()A. B. C. D.12、如图,C.D分别是一个湖的南、北两端A和B正东方向的两个村庄,CD=6km,且D位于C的北偏东30°方向上,则AB的长为()A.2 kmB.3 kmC. kmD.3km13、如图,在ABCD中,∠ABC=45°,BC=4,点F是CD上一个动点,以FA、FB为邻边作另一个AEBF,当F点由D点向C点运动时,下列说法正确的选项是()①AEBF的面积先由小变大,再由大变小;②AEBF的面积始终不变;③线段EF最小值为A.①B.②C.①③D.②③14、图1是一张圆形纸片,直径AB=4,现将点A折叠至圆心O形成折痕CD,再把点C,D都折叠至圆心O处,最后将图形打开铺平(如图2所示),则弧EF的长为( )A. πB. πC. πD. π15、如图,在中,,D从A出发沿方向以向终点C匀速运动,过点D作交于点E,过点E 作交于点F,当四边形为菱形时,点D运动的时间为()A. B. C. D.二、填空题(共10题,共计30分)16、如图,A是半径为1的⊙O的外一点,OA=2,AB是⊙O的切线,B是切点,弦BC∥AO,连结AC,则图中的阴影部分的面积等于________.17、若α是锐角,且sinα=1﹣3m,则m的取值范围是________ ;将cos21°,cos37°,sin41°,cos46°的值,按由小到大的顺序排列是________ .18、如图,点D(0,3),O(0,0),C(4,0),B在⊙A上,BD是⊙A的一条弦.则sin∠OBD=________.19、一个小球由地面沿着坡度1:2的坡面向上前进了10米,此时小球距离地面的高度为________米.20、计算:cos30°﹣sin60°=________.21、如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行100米到达C处,再测得山顶A的仰角为45°,那么山高AD为________ 米(结果保留整数,测角仪忽略不计,≈1.414,≈1.732).22、如图,从与旗杆AB相距27m的点C处,用测角仪CD测得旗杆顶端A的仰角为30°,已知测角仪CD的高为1.5米,则旗杆AB的高约为________m(精确到0.1m,参考数据≈1.73)23、计算:sin45°+6tan30°﹣2cos30°=________.24、如图,在矩形ABCD中,CD是⊙O直径,E是BC的中点,P是直线AE上任意一点,AB=4,BC=6,PM、PN相切于点M、N,当∠MPN最大时,PM的长为________.25、计算:________.三、解答题(共5题,共计25分)26、计算:.27、随着人们经济收入的不断提高,汽车已越来越多地进入到各个家庭.某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.如图,地面所在的直线ME与楼顶所在的直线AC是平行的,CD的厚度为0.5m,求出汽车通过坡道口的限高DF的长(结果精确到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).28、乌鞘岭隧道群是连霍国道主干线上隧道最密集、路线最长、海拔最高、地质条件最复杂、施工难度最大的咽喉工程.乌鞘岭特长公路隧道群的全部贯通,将使连霍国道主干线在甘肃境内1608公里路段全部实现高速化,同时也使甘肃河西五市与省会兰州及东南沿海省、市实现全线高速连接.如图,在建设中为确定某隧道AB的长度,测量人员在离地面2700米高度C处的飞机上,测得正前方A、B两点处的俯角分别是60°和30°,求隧道AB的长(结果保留根号)29、钓鱼岛自古就是中国的领土,中国有关部门已对钓鱼岛及其附属岛屿开展常态化监视监测.一日,中国一艘海监船从A点沿正北方向巡航,其航线距钓鱼岛(设M,N为该岛的东西两端点)最近距离为14.4km(即MC=14.4km).在A点测得岛屿的西端点M在点A的北偏东42°方向;航行4km后到达B点,测得岛屿的东端点N在点B的北偏东56°方向,(其中N,M,C在同一条直线上),求钓鱼岛东西两端点MN之间的距离(结果精确到0.1km).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,sin56°≈0.83,cos56°≈0.56,tan56°≈1.48)30、已知:如图,为了躲避台风,一轮船一直由西向东航行,上午点,在处测得小岛的方向是北偏东,以每小时海里的速度继续向东航行,中午点到达处,并测得小岛的方向是北偏东,若小岛周围海里内有暗礁,问该轮船是否能一直向东航行?参考答案一、单选题(共15题,共计45分)1、B2、A3、B4、A5、C6、D7、A8、A9、C10、D11、B12、B13、D14、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。

浙教版九年级下册数学第一章 解直角三角形 含答案

浙教版九年级下册数学第一章 解直角三角形 含答案

浙教版九年级下册数学第一章解直角三角形含答案一、单选题(共15题,共计45分)1、已知在Rt△ABC中,∠C=90°,AC=6,BC=8,那么cosA的值为()A. B. C. D.2、已知∠A是锐角,且sinA=,那么∠A等于()A.30°B.45°C.60°D.75°3、如图,已知正方形ABCD的边长为4,点E、F分别在边AB、BC上,且AE=BF=1,CE、DF交于点O.下列结论:①∠DOC=90°, ②OC=OE,③tan∠OCD = ,④中,正确的有()A.1个B.2个C.3个D.4个4、如图,小明同学测量一个光盘的直径,他只有一把直尺和一块三角板,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3.5cm,则此光盘的直径是()cm.A.7B.7C.18D.125、若二次函数y=ax2+bx+c的图象与x轴有两个交点A和B,顶点为C,且b2﹣4ac=4,则∠ACB的度数为( )A.30°B.45°C.60°D.90°6、如果三角形满足一个角是另一个角的4倍,那么我们称这个三角形为“实验三角形”,下列各组数据中,能作为一个“实验三角形”三边长的一组是()A.1,1,B.1,1,C.1,2,D.1,2,37、如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是( )A. B.2 C.3 D.8、某滑雪场举办冰雪嘉年华活动,采用直升机航拍技术拍摄活动盛况.如图,通过直升机的镜头C观测到水平雪道一端A处的俯角为30°,另一端B处的俯角为45°.若直升机镜头C处的高度CD为300米,点A、D、B在同一直线上,则雪道AB的长度为()A.300米B.150 米C.900米D.(300 +300)米9、在中,,则的值为()A. B. C. D.10、如图,在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树的坡面上的距离AB为()米。

浙教版九年级下《第一章解直角三角形》期末专题试卷(有答案)-优质

浙教版九年级下《第一章解直角三角形》期末专题试卷(有答案)-优质

浙教版九年级数学下册期末专题:第一章解直角三角形一、单选题(共10题;共30分)1.cos30°的值是()A. √22B. √33C. 12D. √322.已知在Rt△ABC中,∠C=90°,AB=7,BC=5,那么下列式子中正确的是()A. sin A=57B. cos A=57C. tan A=5 7D. cot A=573.在Rt△ABC中,∠C=90°,∠B=35°,AB=7,则BC的长为()A. 7sin35°B. 7cos35°C. 7tan35°D.7 cos35°4.(2017•阿坝州)如图,在Rt△ABC中,斜边AB的长为m,∠A=35°,则直角边BC的长是()A. msin35°B. mcos35°C.m sin35°D.m cos35°5.如图,在菱形ABCD中,DE⊥AB,cosA= 35,AE=6,则tan∠BDE的值是( )A. 43B. 34C. 12D. 2:16.在Rt△ABC中,∠C=90°,a=1,b= √3,则∠A=()A. 30°B. 45°C. 60°D. 90°7.如图,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m .如果在坡度为0.75的山坡上种树,也要求株距为4m ,那么相邻两树间的坡面距离为( )A. 5mB. 6mC. 7mD. 8m8.如图,在△ABC 中,∠C=90°,AB=5,BC=3,则cosA 的值是( )A. 34B. 43 C. 35 D. 459.如图,AB 是⊙O 的直径,且经过弦CD 的中点H ,已知sin ∠CDB= 35,BD=5,则AH 的长为( )A.253B.163C.256D.16610.如图,△ABC 的顶点都是正方形网格中的格点,则sin ∠ABC 的值为( )A. 3√510B.2√55C. 2D.√55二、填空题(共10题;共30分)11.计算:2sin245o−tan45o= ________.12.已知α为一锐角,化简:√(sinα−1)2+sinα=________ .13.计算:√12﹣2tan60°+(√2017﹣1)0﹣(1)﹣1=________.314.在Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,下列式子:①a=c•sinB,②a=c•cosB,③a=c•tanB,④a= c,必定成立的是________.tanB15.如图,若点A的坐标为(1,√3),则sin∠1=________.16.如图,甲、乙两渔船同时从港口O出发外出捕鱼,乙沿南偏东30°方向以每小时10海里的速度航行,甲沿南偏西75°方向以每小时10 √2海里的速度航行,当航行1小时后,甲在A处发现自己的渔具掉在乙船上,于是迅速改变航向和速度,仍以匀速沿南偏东60°方向追赶乙船,正好在B处追上.则甲船追赶乙船的速度为________海里/小时?17.轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在观测灯塔A北偏东60°方向上,则C处与灯塔A的距离是________ 海里.18.如图,从一运输船的点A处观测海岸上高为41m的灯塔BC(观测点A与灯塔底部C在一个水平面上),测得灯塔顶部B的仰角为35°,则点A到灯塔BC的距离约为________(精确到1cm).19.如图所示,在斜坡的顶部有一铁塔AB,B是CD的中点,CD是水平的,在阳光的照射下,塔影DE 留在坡面上.已知铁塔底座宽CD=12米,塔影长DE=18米,小明和小华的身高都是1.6米,同一时刻,小明站在点E处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2米和1米,那么塔高AB为________米。

浙教版九年级下《第一章解直角三角形》期末专题试卷(有答案)

浙教版九年级下《第一章解直角三角形》期末专题试卷(有答案)

浙教版九年级数学下册期末专题:第一章解直角三角形一、单选题(共10题;共30分)1.cos30°的值是()A. √22B. √33C. 12D. √322.已知在Rt△ABC中,∠C=90°,AB=7,BC=5,那么下列式子中正确的是()A. sin A=57B. cos A=57C. tan A=5 7D. cot A=573.在Rt△ABC中,∠C=90°,∠B=35°,AB=7,则BC的长为()A. 7sin35°B. 7cos35°C. 7tan35°D.7 cos35°4.(2017•阿坝州)如图,在Rt△ABC中,斜边AB的长为m,∠A=35°,则直角边BC的长是()A. msin35°B. mcos35°C.m sin35°D.m cos35°5.如图,在菱形ABCD中,DE⊥AB,cosA= 35,AE=6,则tan∠BDE的值是( )A. 43B. 34C.12D.2:16.在Rt△ABC中,∠C=90°,a=1,b= √3,则∠A=()A. 30°B . 45° C.60° D. 90°7.如图,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m .如果在坡度为0.75的山坡上种树,也要求株距为4m ,那么相邻两树间的坡面距离为( )A. 5mB. 6mC. 7mD. 8m8.如图,在△ABC 中,∠C=90°,AB=5,BC=3,则cosA 的值是( )A. 34B. 43 C. 35 D. 45 9.如图,AB 是⊙O 的直径,且经过弦CD 的中点H ,已知sin ∠CDB= 35,BD=5,则AH 的长为( )A.253B.163C.256D.16610.如图,△ABC 的顶点都是正方形网格中的格点,则sin ∠ABC 的值为( )A. 3√510B.2√55C. 2D.√55二、填空题(共10题;共30分)11.计算:2sin245o−tan45o= ________.12.已知α为一锐角,化简:√(sinα−1)2+sinα=________ .)﹣1=________.13.计算:√12﹣2tan60°+(√2017﹣1)0﹣(1314.在Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,下列式子:①a=c•sinB,②a=c•cosB,③a=c•tanB,④a= c,必定成立的是________.tanB15.如图,若点A的坐标为(1,√3),则sin∠1=________.16.如图,甲、乙两渔船同时从港口O出发外出捕鱼,乙沿南偏东30°方向以每小时10海里的速度航行,甲沿南偏西75°方向以每小时10 √2海里的速度航行,当航行1小时后,甲在A处发现自己的渔具掉在乙船上,于是迅速改变航向和速度,仍以匀速沿南偏东60°方向追赶乙船,正好在B处追上.则甲船追赶乙船的速度为________海里/小时?17.轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在观测灯塔A北偏东60°方向上,则C处与灯塔A的距离是________ 海里.18.如图,从一运输船的点A处观测海岸上高为41m的灯塔BC(观测点A与灯塔底部C在一个水平面上),测得灯塔顶部B的仰角为35°,则点A到灯塔BC的距离约为________(精确到1cm).19.如图所示,在斜坡的顶部有一铁塔AB,B是CD的中点,CD是水平的,在阳光的照射下,塔影DE 留在坡面上.已知铁塔底座宽CD=12米,塔影长DE=18米,小明和小华的身高都是1.6米,同一时刻,小明站在点E处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2米和1米,那么塔高AB为________米。

浙教版九年级下《第一章解直角三角形》期末复习试卷(含解析)

浙教版九年级下《第一章解直角三角形》期末复习试卷(含解析)

期末复习:浙教版九年级数学学下册第一章解直角三角形一、单选题(共10题;共30分)1.在△ABC中,∠C=90°,如果AB=6,BC=3,那么cosB的值是()A.B.C.D.2.已知tanA=1,则锐角A的度数是A. 30°B . 45° C.60° D.75°3.在Rt△ABC中,∠C=90°,若BC=1,AC=2,则cosA的值为( )A.B.C.D. 24.如图,其中A,B,C三地在同一直线上,D地在A地北偏东30°方向、在C地北偏西45°方向.C 地在A地北偏东75°方向.且BD=BC=30cm.从A地到D地的距离是()A. 30 mB. 20m C. 30m D. 15 m5.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若AC=2,BC=1,则sin∠ACD=()A.B.C. D.6.如图,一渔船由西往东航行,在A点测得海岛C位于北偏东60°的方向,前进40海里到达B点,此时,测得海岛C位于北偏东30°的方向,则海里C到航线AB的距离CD是()A. 20海里B. 40海里 C. 20海里 D. 40海里7.如图,在Rt△ABC中,斜边AB的长为m,∠A=35°,则直角边BC的长是()A. msin35°B. mcos35°C.°D.°8.若直角三角形中的两个锐角之差为22°,则较小的一个锐角的度数是()A. 24°B . 34° C.44° D.46°9.如图,在△ABC中,∠B=90°,tan∠C= ,AB=6cm.动点P从点A开始沿边AB向点B以1cm/s的速度移动,动点Q从点B开始沿边BC向点C以2cm/s的速度移动.若P,Q两点分别从A,B两点同时出发,在运动过程中,△PBQ的最大面积是()A. 18cm2B. 12cm2C. 9cm2D. 3cm210.如图,已知是的角平分线,是的垂直平分线,∠°,,则的长为()A. 6B. 5C. 4D.二、填空题(共8题;共24分)11.计算:3tan30°+sin45°=________.12.计算:()﹣2﹣|1﹣ |﹣(π﹣2015)0﹣2sin60°+ =________.13.如果∠A是锐角,且sinA= ,那么∠A=________゜.14.B在A北偏东30°方向(距A)2千米处,C在B的正东方向(距B)2千米处,则C和A之间的距离为________ 千米.15.如图,在平面直角坐标系xOy内有一点Q(3,4),那么射线OQ与x轴正半轴的夹角α的余弦值是________16.如图,在△ABC中,∠C=90°,AB=8,sinA=,则BC的长是________17.如图,在△ABC中,∠C=90°,AB=5,BC=3,则cosA的值是________.18.如图,点A1(1,1)在直线y=x上,过点A1分别作y轴、x轴的平行线交直线y= x于点B1, B2,过点B2作y轴的平行线交直线y=x于点A2,过点A2作x轴的平行线交直线y= x于点B3,…,按照此规律进行下去,则点A n的横坐标为________.三、解答题(共9题;共66分)19.计算:°20.甲、乙两船同时从港口A出发,甲船以12海里/时的速度向北偏东35°航行,乙船向南偏东55°航行,2小时后,甲船到达C岛,乙船到达B岛,若C、B两船相距30海里,问乙船的速度是每小时多少海里?21.某游乐场一转角滑梯如图所示,滑梯立柱均垂直于地面,点在线段上.在点测得点的仰角为,点的俯角也为,测得间的距离为10米,立柱高30米.求立柱的高(结果保留根号).22.小敏同学测量一建筑物CD的高度,她站在B处仰望楼顶C,测得仰角为30°,再往建筑物方向走30m,到达点F处测得楼顶C的仰角为45°(B,F,D在同一条直线上)。

(期末专题)浙教版九年级下《第一章解直角三角形》单元试卷有答案

(期末专题)浙教版九年级下《第一章解直角三角形》单元试卷有答案

【期末专题复习】浙教版九年级数学下册第一章解直角三角形单元检测试卷一、单选题(共10题;共30分)1.三角形在方格纸中的位置如图所示,则的值是()A.B. -C.D.2.三角形在正方形网格纸中的位置如图所示,则sina+cosa的值是()A.B.C.D.3.在Rt△ABC中,∠C=90°,sinA=,则cosB的值等于()A.B.C.D.4.在正方形网格中,∠BAC如图放置,点A,B,C都在格点上,则sin∠BAC的值为 ( )A.B.C.D.5.如图,在直角△ABC中,∠C=90°,若AB=5,AC=4,则tan∠B=()A.B.C.D.6.如果∠A为锐角,cosA=,那么∠A 取值范围是()A. 0°< ∠A≤30°B. 30°< ∠A≤45° C. 45°<∠A<60°D. 60°< ∠A < 90°7.如图:在Rt△ABC中,∠C=90°,AC=8,BC=6,则sinB的值等于()A.B.C.D.8.Rt△ABC中,∠C=90°,如果sinA=,那么cosB的值为()A. B. C. D. 不能确定9.如图,在梯形ABCD中,∠ABC=90º,AE∥CD交BC于E,O是AC的中点,AB=,AD=2,BC=3,下列结论:①∠CAE=30º;②AC=2AB;③S△ADC=2S△ABE;④BO⊥CD,其中正确的是()A. ①②③B. ②③④ C. ①③④ D. ①②③④10.等腰三角形的底角为15,腰长a为,则此等腰三角形的底长为()A. B.C.D. a二、填空题(共10题;共30分)11.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的正弦值为________.12.如图Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则cosA=________.13.在Rt△ABC中,∠C=90°,sinA= ,BC=20,则△ABC的面积为________.14.如图,甲从A点出发向北偏东60°方向走到点C,乙从点A出发向南偏西25°方向走到点B,则∠BAC的度数是________.15.已知:如图,在△ABC中,∠BAC=90°,点D在AB上,点E在CA的延长线上,连接DC、DE,∠EDC=45°,BD=EC,DE=5 ,tan∠DCE= ,则CE=________.16.如图.一-艘渔船正以60海里/小时的速度向正东方向航行,在处测得岛礁在东北方向上,继续航行1.5小时后到达处此时测得岛礁在北偏东方向,同时测得岛礁正东方向上的避风港在北偏东方向为了在台风到来之前用最短时间到达处,渔船立刻加速以75海里/小时的速度继续航行________小时即可到达 (结果保留根号)17.如图,在小山的东侧A点处有一个热气球,由于受西风的影响,以每分钟30米的速度沿与地面成60°角的方向飞行,20分钟后到达C处,此时热气球上的人测得小山西侧B点的俯角为30°,则A、B两点间的距离为________米.18.如图,为了测量楼的高度,自楼的顶部A看地面上的一点B,俯角为30°,已知地面上的这点与楼的水平距离BC为30m,那么楼的高度AC为________m(结果保留根号).19.如图,为了测得电视塔的高度,在处用高为1米的测角仪 ,测得电视塔顶端的仰角为30°,再向电视塔方向前进100米到达处,又测得电视塔顶端的仰角为60°,则这个电视塔的高度为________米(结果保留根号).20.(2017·衢州)如图,在直角坐标系中,⊙A的圆心A的坐标为(-1,0),半径为1,点P为直线上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ的最小值是________三、解答题(共9题;共60分)21.计算:(﹣1)2015+sin30°﹣(π﹣3.14)0+()﹣1.22.如图,小明同学在东西方向的环海路A处,测得海中灯塔P在北偏东60°方向上,在A处正东500米的B处,测得海中灯塔P在北偏东30°方向上,求灯塔P到环海路的距离.23.如图,某兴趣小组用高为1.6米的仪器测量塔CD的高度.由距塔CD一定距离的A处用仪器观察建筑物顶部D的仰角为β,在A和C之间选一点B,由B处用仪器观察建筑物顶部D的仰角为α.测得A,B之间的距离为10米,tanα=1.6,tanβ=1.2,试求塔CD的大约高度.24.如图,一游客在某城市旅游期间,沿街步行前往著名的电视塔观光,他在A处望塔顶C的仰角为30°,继续前行250m后到达B处,此时望塔顶的仰角为45°.已知这位游客的眼睛到地面的距离约为170cm,假若游客所走路线直达电视塔底.请你计算这座电视塔大约有多高?(结果保留整数. ≈1.7,≈1.4;E,F分别是两次测量时游客眼睛所在的位置.)25.如图,小明要测量河内小岛B到河边公路AD的距离,在点A处测得∠BAD=37°,沿AD方向前进150米到达点C,测得∠BCD=45°.求小岛B到河边公路AD的距离.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)26.如图,为测量一座山峰CF的高度,将此山的某侧山坡划分为AB和BC两段,每一段山坡近似是“直”的.其中测得坡长AB=600米,BC=200米,坡角∠BAF=30°,∠CBE=45°.(结果保留根号)27.地震后,全国各地纷纷捐款捐物,一架满载救援物资的飞机到达灾区的上空时,为了能准确空投救援物资,在A处测得空投动点C的俯角α=60°,测得地面指挥台的俯角β=30°,如果B、C两地间的距离是2000米,则此时飞机距地面的高度是多少米?(结果保留根号)28.一次数学活动课上,老师带领学生去测一条南北流向的河宽,如图所示,某学生在河东岸点A处观测到河对岸水边有一点C,测得C在A北偏西31°的方向上,沿河岸向北前行40米到达B处,测得C在B北偏西45°的方向上,请你根据以上数据,求这条河的宽度.(参考数值:tan31°≈)29.如图,国家规定休渔期间,我国渔政船在A处发现南偏西50°方向距A处20海里的点B处有一艘可疑船只,可疑船只正沿北偏西25°方向航行,我国渔政船立即沿北偏西70°方向前去拦截,经过1.5小时刚好在C处拦截住可疑船只,求该可疑船只航行的平均速度.(结果精确到个位,参考数据:≈1.4,≈1.7)答案解析部分一、单选题1.【答案】A2.【答案】D3.【答案】B4.【答案】C5.【答案】D6.【答案】C7.【答案】B8.【答案】A9.【答案】D10.【答案】D二、填空题11.【答案】12.【答案】13.【答案】15014.【答案】145°15.【答案】16.【答案】17.【答案】60018.【答案】10 .19.【答案】20.【答案】2三、解答题21.【答案】解:原式=﹣1+﹣1+2=.22.【答案】解:如图,过P作PC⊥AB于C,则PC就是灯塔P到环海路的距离,依题意,有∠PAC=30°,∠PBC=60°,∴∠APB=60°-30°=30°,∴PB=AB=5,在Rt△PBC中,PC=PB·sin∠PBC=500×sin60°=,∴灯塔P到环海路的距离为m。

浙教版九年级下册第一章 解直角三角形 章末检测(附答案)

浙教版九年级下册第一章 解直角三角形 章末检测(附答案)

浙教版九年级下册第一章解直角三角形章末检测(附答案)一、单选题(共10题;共30分)1.如图,在楼顶点A处观察旗杆CD测得旗杆顶部C的仰角为30°,旗杆底部D的俯角为45°.已知楼高AB=9m,则旗杆CD的高度为()2题图A. mB. mC. 9 mD. 12 m2.如图,△ABC内接于⊙O,若sin∠BAC= ,BC=2 ,则⊙O的半径为()A. 3B. 6C. 4D. 23.若α是锐角,tanα•tan50°=1,则α的值为()A. 20°B. 30°C. 40°D. 50°4.若0<α<30°,则sinα,cosα,tanα的大小关系是()A. sinα<cosα<tanαB. sinα<tanα<cosαC. tanα<sinα<cosαD. tanα<cosα<sinα5.如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,则下列比值中不等于cosA的是()A. B. C. D.6.sin30°对应数值的绝对值是()A. 2B.C.D.7.四位学生用计算器求sin62°20′的值正确的是()A. 0.8857B. 0.8856C. 0.8852D. 0.88518.如图,正方形ABCD中,内部有4个全等的正方形,小正方形的顶点E,F,G,H分别在边AB,BC,CD,AD上,则tan∠AEH=()A. B. C. D.9.如图,在A 处观察C 测得仰角∠CAD=31°,且A、B的水平距离AE=800米,斜坡AB 的坡度i =1: 2 ,索道BC 的坡度i = 2 : 3 ,CD⊥AD 于D,BF⊥CD于F,则索道BC 的长大约是( )(参考数据:tan31°≈0. cos31°≈0.9,≈3.6)A. 1400B. 1440C. 1500D. 154010.南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向10(1+ )海里的C处,为了防止某国海巡警干扰,请求我A处的渔监船前往C处护航.如图,已知C位于A处的东北方向上,A位于B的北偏西30°方向上,则A和C之间的距离为()A. 10 海里B. 20 海里C. 20 海里D. 10 海里二、填空题(共6题;共24分)11.如图,在Rt△ABC中,∠C=90°,BC=4,AC=3,则sinB=________.12.已知抛物线y=x2+(m+1)x﹣m﹣2(m>0)与x轴交于A、B两点,与y轴交于点C,不论m取何正数,经过A、B、C三点的⊙P恒过y轴上的一个定点,则该定点的坐标是________.13.点A,B,C都在半径为r的圆上,直线AD⊥直线BC,垂足为D,直线BE⊥直线AC,垂足为E,直线AD与BE相交于点H.若BH= AC,则∠ABC所对的弧长等于________(长度单位).14.在△ABC中,∠C=90°,如果tan B=2,AB=4,那么BC=________.15.如图是百度地图的一部分(比例尺1:4000000).按图可估测杭州在嘉兴的南偏西________ 度方向上,杭州到嘉兴的图上距离约2cm,则杭州到嘉兴的实际距离约为________ .16.如图,某地修建高速公路,要从B地向C地修一座隧道(B、C在同一水平面上),为了测量B、C两地之间的距离,某工程队乘坐热气球从C地出发垂直上升100m到达A处,在A处观察B地的俯角为30°,则BC两地间的距离为________ m.三、解答题(共8题;共66分)17.计算:|﹣|+(﹣1)2019+2﹣1﹣(2﹣)0+2cos45°.18.如图,D是△ABC的BC边上一点,连接AD,作△ABD的外接圆,将△ADC沿直线AD折叠,点C的对应点E落在⊙O上.(1)求证:AE=AB.(2)若∠CAB=90°,cos∠ADB= ,BE=2,求BC的长.19.定义:点Q到图形W上每一个点的距离的最小值称为点Q到图形W的距离.例如,如图1,正方形ABCD满足A(1,0),B(2,0),C(2,1),D(1,1),那么点O(0,0)到正方形ABCD的距离为1.(1)如果⊙P是以(3,4)为圆心,2为半径的圆,那么点O(0,0)到⊙P的距离为________;(2)①求点M(3,0)到直线了y=x+4的距离:②如果点N(0,a)到直线y=x+4的距离为2,求a的值;(3)如果点G(0,b)到抛物线y=x2的距离为3,请直接写出b的值.20.如图,世博园段的浦江两岸互相平行,C、D是浦西江边间隔200m的两个场馆.海宝在浦东江边的宝钢大舞台A处,测得∠DAB=30°,然后沿江边走了500m到达世博文化中心B处,测得∠CBF=60°,求世博园段黄浦江的宽度(结果可保留根号).21.如图,山区某教学楼后面紧邻着一个土坡,坡面BC平行于地面AD,斜坡AB的坡比为i=1:,且AB=26米.为了防止山体滑坡,保障安全,学校决定对该土坡进行改造.经地质人员勘测,当坡角不超过53°时,可确保山体不滑坡.(1)求改造前坡顶与地面的距离BE的长.(2)为了消除安全隐患,学校计划将斜坡AB改造成AF(如图所示),那么BF至少是多少米?(结果精确到1米)(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75).22.如图1,2分别是某款篮球架的实物图与示意图,已知AB⊥BC于点B,底座BC的长为1米,底座BC 与支架AC所成的角∠ACB=60°,点H在支架AF上,篮板底部支架EH∥BC,EF⊥EH于点E,已知AH长米,HF长米,HE长1米.(1)求篮板底部支架HE与支架AF所成的角∠FHE的度数.(2)求篮板底部点E到地面的距离.(结果保留根号)23.如图,台风中心位于点P,并沿东北方向PQ移动,已知台风移动的速度为40千米/时,受影响区域的半径为260千米,B市位于点P的北偏东75°方向上,距离P点480千米.(1)说明本次台风是否会影响B市;(2)若这次台风会影响B市,求B市受台风影响的时间.24.在徒骇河观景堤坝上有一段斜坡,为了方便游客通行,现准备铺上台阶,某施工队测得斜坡上铅锤的两棵树间水平距离AB=4米,斜坡距离BC=4.25米,斜坡总长DE=85米.(1)求坡角∠D的度数(结果精确到1°)(2)若这段斜坡用厚度为15cm的长方体台阶来铺,需要铺几级台阶?(最后一个高不足15cm时,按一个台阶计算)(参考数据:cos20°≈0.94,sin20°≈0.34,sin18°≈0.31,cos18°≈0.95)答案一、单选题1.B2. A3.C4. B5. A6. B7. A8. A9. B 10. A二、填空题11. 12. (0,1) 13. πr或πr 14. 15. 45;80km16.三、解答题17. 解:|﹣|+(﹣1)2019+2﹣1﹣(2﹣)0+2cos45°=﹣1+ ﹣1+2× =﹣118. (1)证明:由折叠的性质可知,△ADE≌△ADC,∴∠AED=∠ACD,AE=AC,∵∠ABD=∠AED,∴∠ABD=∠ACD,∴AB=AC,∴AE=AB;(2)解:如图,过A作AH⊥BE于点H,∵AB=AE,BE=2,∴BH=EH=1,∵∠ABE=∠AEB=∠ADB,cos∠ADB= ,∴cos∠ABE=cos∠ADB= ,∴= .∴AC=AB=3,∵∠BAC=90°,AC=AB,∴BC=3 .19. (1)3(2)解:①如下图所示,设:直线为l的方程为:y=x+4,直线与x轴、y轴交点的坐标分别为(﹣3,0)、(0,4),tan∠M′AM=,过点M作M′M⊥直线l,则M′M为M到直线l的距离,M′M=MA•sin∠M′AM=6× =,②由题意得:当N在直线l下方时,N′N=2,BN==,则a=4﹣=,当N在直线l上方时,a=则a=4+ =,即a=或(3)解:当G在原点下方时,b=﹣3,当G在原点上方时,,整理得:x4+(1﹣2b)x2+b2﹣9=0,△=(1﹣2b)2﹣4(b2﹣9)=0,解得:b=,故b=﹣3或20.解:过点C作CE∥DA交AB于点E.∵DC∥AE,∴四边形AECD是平行四边形,∴AE=DC=200m,EB=AB﹣AE=300m.∵∠CEB=∠DAB=30°,∠CBF=60°,∴∠ECB=30°,∴CB=EB=300m.在Rt△CBF中,CF=CB•sin∠CBF=300×sin60°= m.答:世博园段黄浦江的宽度为m .21.解:(1)∵斜坡AB的坡比为i=1:,∴BE:EA=12:5,设BE=12x,则EA=5x,由勾股定理得,BE2+EA2=AB2,即(12x)2+(5x)2=262,解得,x=2,则BE=12x=24,AE=5x=10,答:改造前坡顶与地面的距离BE的长为24米;(2)作FH⊥AD于H,则tan∠FAH=,∴AH=≈18,∴BF=18﹣10=8,答:BF至少是8米.22. (1)解:由题意可得:cos∠FHE= ,则∠FHE=45°(2)解:延长FE交CB的延长线于M,过A作AG⊥FM于G,过点H作HN⊥AG于点N,在Rt△ABC中,tan∠ACB= ,∴AB=BC•tan60°=1.3× ≈2.249,∴GM=AB≈2.249,在Rt△AHN中,∵∠HAG=∠FHE=45°,sin∠HAG= ,∴sin45°= ,∴HN=0.5∴EG=HN=0.5(米),∴EM=EG+GM=2.249+0.5=2.749(米)≈2.75米答:篮板顶端F到地面的距离是2.75米.故答案为:(1)45°;(2)2.75米.23. (1)解:作BH⊥PQ于点H.在Rt△BHP中,由条件知,PB=480,∠BPQ=75°﹣45°=30°,∴BH=480sin30°=240<260,∴本次台风会影响B市.(2)解:如图,若台风中心移动到P1时,台风开始影响B市,台风中心移动到P2时,台风影响结束.由(1)得BH=240,由条件得BP1=BP2=260,∴P1P2=2 =200,∴台风影响的时间t= =5(小时).故B市受台风影响的时间为5小时.24. (1)解:根据题意得:cos∠ABC= =4:4.25≈0.94,∴∠ABC≈20°,由题意得,∠D=∠ABC≈20°(2)解:EF=DE•sin∠D=85×0.34=28.9米,28.9×100÷15≈193,所以需要铺193级台阶。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙教版九年级数学下册期末专题:第一章解直角三角形一、单选题(共10题;共30分)1.cos30°的值是()A. √22B. √33C. 12D. √322.已知在Rt△ABC中,∠C=90°,AB=7,BC=5,那么下列式子中正确的是()A. sin A=57B. cos A= 57C. tan A=5 7D. cot A=573.在Rt△ABC中,∠C=90°,∠B=35°,AB=7,则BC的长为()A. 7sin35°B. 7cos35°C. 7tan35°D.7 cos35°4.(2017•阿坝州)如图,在Rt△ABC中,斜边AB的长为m,∠A=35°,则直角边BC的长是()A. msin35°B. mcos35°C.A AAA35°D.A AAA35°5.如图,在菱形ABCD中,DE⊥AB,cosA= 35,AE=6,则tan∠BDE的值是( )A. 43B.3 4C. 12 D. 216.在Rt△ABC中,∠C=90°,a=1,b= √3,则∠A=()A. 30°B.45° C. 6 0° D. 90°7.如图,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m .如果在坡度为0.75的山坡上种树,也要求株距为4m ,那么相邻两树间的坡面距离为( )A. 5mB. 6mC. 7mD. 8m8.如图,在△ABC 中,∠C=90°,AB=5,BC=3,则cosA 的值是( )A. 34B. 43C. 35D. 459.如图,AB 是⊙O 的直径,且经过弦CD 的中点H ,已知sin∠CDB= 35 ,BD=5,则AH 的长为( )A.253B.163C.256D.16610.如图,△ABC 的顶点都是正方形网格中的格点,则sin∠ABC 的值为( )A. 3√510B. 2√55C. 2D. √55二、填空题(共10题;共30分)11.计算: 2sin 245o −tan 45o = ________.12.已知A 为一锐角,化简:√(sin A −1)2+sin A =________ .13.计算:√12﹣2tan60°+(√2017﹣1)0﹣(13)﹣1=________.14.在Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,下列式子:①a=c•sinB,②a=c•cosB,③a=c•tanB,④a= AtanB,必定成立的是________.15.如图,若点A的坐标为(1,√3),则sin∠1=________.16.如图,甲、乙两渔船同时从港口O出发外出捕鱼,乙沿南偏东30°方向以每小时10海里的速度航行,甲沿南偏西75°方向以每小时10 √2海里的速度航行,当航行1小时后,甲在A处发现自己的渔具掉在乙船上,于是迅速改变航向和速度,仍以匀速沿南偏东60°方向追赶乙船,正好在B处追上.则甲船追赶乙船的速度为________海里/小时?17.轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在观测灯塔A北偏东60°方向上,则C处与灯塔A的距离是________ 海里.18.如图,从一运输船的点A处观测海岸上高为41m的灯塔BC(观测点A与灯塔底部C在一个水平面上),测得灯塔顶部B的仰角为35°,则点A到灯塔BC的距离约为________(精确到1cm).19.如图所示,在斜坡的顶部有一铁塔AB,B是CD的中点,CD是水平的,在阳光的照射下,塔影DE留在坡面上.已知铁塔底座宽CD=12米,塔影长DE=18米,小明和小华的身高都是1.6米,同一时刻,小明站在点E处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2米和1米,那么塔高AB为________米。

20.某轮船由西向东航行,在A处测得小岛P的方位是北偏东75°,又继续航行7海里后,在B处测得小岛P的方位是北偏东60°,则此时轮船与小岛P的距离BP=________海里.三、解答题(共8题;共60分)21.如图,水库大坝的横截面是梯形,坝顶宽5米,坝高20米,斜坡AB的坡比为1:2.5,斜坡CD的坡比为1:2,求大坝的截面面积22.图1是一辆吊车的实物图,图2是其工作示意图,AA是可以伸缩的起重臂,其转动点A离地面AA的高度AA为3.4A .当起重臂AA长度为9A,张角∠AAA为118∘时,求操作平台A离地面的高度(结果保留小数点后一位;参考数据:sin28∘≈0.47,cos28∘≈0.88,tan28∘≈0.53).23.一轮船在P处测得灯塔A在正北方向,灯塔B在南偏东30°方向,轮船向正东航行了900m,到达Q 处,测得A位于北偏西60°方向,B位于南偏西30°方向.(1)线段BQ与PQ是否相等?请说明理由;(2)求A、B间的距离(结果保留根号).24.热气球的探测器显示,从热气球底部A处看一栋高楼顶部的俯角为30°,看这栋楼底部的俯角为60°,热气球A处于地面距离为420米,求这栋楼的高度.25.高铁给我们的出行带了极大的方便.如图,“和谐号”高铁列车座椅后面的小桌板收起时,小桌板的支架的底端N与桌面顶端M的距离MN=75cm,且可以看作与地面垂直.展开小桌板使桌面保持水平,AB⊥MN,∠MAB=∠MNB=37°,且支架长BN与桌面宽AB的长度之和等于MN的长度.求小桌板桌面的宽度AB(结果精确到1cm,参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)26.如图,在建筑物AB上,挂着35 m长的宣传条幅AE,从另一建筑物CD的顶部D处看条幅顶端A处,仰角为45°,看条幅底端E处,俯角为37°.求两建筑物间的距离BC.(参考数据sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)27.如图,小明一家自驾到古镇A游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶12 千米至A地,再沿北偏东45°方向行驶一段距离到达古镇A,小明发现古镇A恰好在A地的正北方向,求A,A两地的距离.(结果保留根号)28.如图,一艘轮船以18海里/时的速度由西向东方向航行,行至A处测得灯塔P在它的北偏东60°的方向上,继续向东行驶20分钟后,到达B处又测得灯塔P在它的北偏东45°方向上,求轮船与灯塔的最短距离.(精确到0.1,√3≈1.73)答案解析部分一、单选题1.【答案】D2.【答案】A3.【答案】B4.【答案】A5.【答案】C6.【答案】A7.【答案】A8.【答案】D9.【答案】B10.【答案】D二、填空题11.【答案】012.【答案】113.【答案】-214.【答案】②15.【答案】√3216.【答案】10+10 √317.【答案】2518.【答案】5919.【答案】2420.【答案】7三、解答题21.【答案】解:∵斜坡AB的坡度i=1:2.5,∴ AAAA =12.5,∵斜坡CD的坡度i=1:2,∴ AAAA =12,∵BE=20米,∴AE=50米,DF=40米,∵EF=BC,BC=5米,∴EF=5米,∴AD=AE+EF+DF=50+5+40=95米∴S梯形ABCD= 12(AD+BC)×BE= 12×100×20=1000(平方米)22.【答案】如图,过点C作CE⊥DH交于点E,过点A作AF⊥CE交于点F,又∵AH⊥BD,∴四边形AFEH 是矩形,∴∠HAF=90°,EF=AH=3.4m ,∴∠CAF=∠CAH -∠HAF=118°-90°=28°,在Rt△ACF 中,∵AC=9m,∠CAF=28°,∴CF=AC·sin∠CAF=9×sin28°≈9×0.47=4.23(m ),∴CE=CF+EF=4.23+3.4≈7.6(m ).答:操作平台 A 离地面的高度为7.6m .23.【答案】(1)相等,理由如下:由图易知,∠QPB =60°,∠PQB =60°∴△BPQ 是等边三角形,∴BQ =PQ .(2)由(1)得PQ =BQ =900m在Rt△APQ 中,AQ = AA cos ∠AAA =√32=600√3(m ),又∵∠AQB =180°-(60°+30°)=90°,∴在Rt△AQB 中,AB = √AA 2+AA 2 = √(600√3)2+9002 =300 √21 (m ).答:A 、B 间的距离是300 √21 m.24.【答案】解:过A 作AE⊥BC,交CB 的延长线于点E ,在Rt△ACD 中,∵∠CAD=30°,AD=420米, ∴CD=AD•tan30°=420× √33 =140 √3 (米), ∴AE=CD=140 √3 米.在Rt△ABE 中,∵∠BAE=30°,AE=140 √3 米,∴BE=AE•tan30°=140 √3 × √33=140(米), ∴BC=AD﹣BE=420﹣140=280(米),答:这栋楼的高度为280米.25.【答案】解:延长AB 交MN 于点D ,由题意知AD⊥MN,设AB=x ,则BN=(75﹣x ),在Rt△BDN 中,sin∠BND= AA AA ,cos∠BND= AA AA ,即:sin37°= AA 75−A ,cos∠37°= AA 75−A ,∴BD=45﹣0.6x ,DN=60﹣0.8x ,∴AD=AB+BD=0.4x+45,MD=MN ﹣DN=15+0.8x ,在Rt△AMD 中 tan∠MAD= AA AA ,即:tan37°= 15+0.8A0.4A +45 ,解得,x=37.5≈38,答:桌面宽AB 的长为38cm .26.【答案】解:过点D 作DF ⊥ AB 交AB 于点F ,∴∠DFA=∠DFE=90°,∵∠ABC=∠BCD=90°,∴四边形BCDF 是矩形,∴BC=DF,∵在Rt△ADF 中,∠ADF=45°,∴AF=DF,∵在Rt△DFE 中,∠EDF=37°,∴EF=DF·tan37°,又∵AF+EF=AE=35,∴DF+DF·tan37°=35,解得DF=BC=20(m )答两建筑物间的距离BC 为20m.27.【答案】解:过点B 作BH⊥AC 于点H∴∠BHC=∠AHB=90°根据题意得:∠CBH=45°,∠BAH=60°,AB=12∴BH=ABsin60°= 12×√32=6√3 ∴ AA =AAcos ∠AAA =√3√22=6√6故答案为: 6√628.【答案】解:过点P 作PC⊥AB 于C 点,即PC 的长为轮船与灯塔的最短距离,根据题意,得 AB=18× 2060 =6,∠PAB=90°﹣60°=30°,∠PBC=90°﹣45°=45°,∠PCB=90°, ∴PC=BC,在Rt△PAC 中,tan30°= AA AA +AA = AA 6+AA ,即 √33 = AA 6+AA , 解得PC=3 √3 +3≈8.2(海里),∴轮船与灯塔的最短距离约为8.2海里.。

相关文档
最新文档