一元一次不等式组1--浙教版
初中数学浙教版八年级上册第3章 一元一次不等式3.4 一元一次不等式组-章节测试习题(2)
章节测试题1.【答题】把不等式组的解集表示在数轴上,正确的是()A. B.C. D.【答案】B【分析】把各不等式的解集在数轴上表示出来即可.【解答】解:不等式组的解集在数轴上表示为:选B.【点评】本题考查的是在数轴上表示不等式组的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.2.【答题】不等式组的最小整数解为()A. -1B. 0C. 1D. 2【答案】B【分析】先求出不等式组的解集,再求其最小整数解即可.【解答】不等式组解集为-1<x≤2,其中整数解为0,1,2.故最小整数解是0.选B.【点评】本题考查了一元一次不等式组的整数解,属于基础题,正确解出不等式的解集是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.3.【答题】不等式组的解集是()A. -2≤x≤1B. -2<x<1C. x≤-1D. x≥2【答案】A【分析】分别解出每个不等式的解集,再求其公共部分.【解答】解:,由①得,x≥-2;由②得,x≤1;故不等式组的解集为-2≤x≤1.选A.【点评】本题考查了解一元一次不等式,会找其公共部分是解题的关键.4.【答题】不等式组的解集是()A. x≥2B. x>-2C. x≤2D. -2<x≤2【答案】A【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,解不等式①得,x>-2,解不等式②得,x≥2,所以,不等式组的解集是x≥2.选A.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).5.【答题】不等式组的解集是()A. B.C. D.【答案】B【分析】分别解出不等式的解集,再求出其公共部分,然后在数轴上表示出来.【解答】解:,由①得,x≤2,由②得,x>-2,故不等式得解集为-2<x≤2,在数轴上表示为:,选B.【点评】本题考查了不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.【答题】把不等式组的解集在数轴上表示正确的是()A. B. C. D.【答案】C【分析】求出不等式组的解集,表示在数轴上即可.【解答】解:,由②得:x≤3,则不等式组的解集为1<x≤3,表示在数轴上,如图所示:.故选C.【点评】此题考查了在数轴上表示不等式的解集,以及解一元一次不等式组,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.7.【答题】不等式组的解集在数轴上表示为()A. B.C. D.【答案】C【分析】分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.【解答】解:,解不等式①得,x≥2,解不等式②得,x<3,故不等式的解集为:2≤x<3,在数轴上表示为:.选C.【点评】本题考查的是解一元一次不等式组及在数轴上表示不等式组的解集,关键是能根据不等式的解集找出不等式组的解集.8.【答题】使不等式x-1≥2与3x-7<8同时成立的x的整数值是()A. 3,4B. 4,5C. 3,4,5D. 不存在【答案】A【分析】先分别解出两个一元一次不等式,再确定x的取值范围,最后根据x的取值范围找出x 的整数解即可.【解答】解:根据题意得:,解得:3≤x<5,则x的整数值是3,4;选A.【点评】此题考查了一元一次不等式组的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.9.【答题】不等式组的整数解是()A. -1,0,1B. 0,1C. -2,0,1D. -1,1【答案】A【分析】首先解不等式组,再从不等式组的解集中找出适合条件的整数即可.【解答】解:,由不等式①,得x>-2,由不等式②,得x≤1.5,所以不等组的解集为-2<x≤1.5,因而不等式组的整数解是-1,0,1.选A.【点评】此题考查的是一元一次不等式组的整数解,正确解出不等式组的解集是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.10.【答题】若关于x的不等式组的解表示在数轴上如图所示,则这个不等式组的解是()A. x≤2B. x>1C. 1≤x<2D. 1<x≤2【答案】D【分析】根据数轴表示出解集即可.【解答】根据题意得:不等式组的解集为1<x≤2.故选D.【点评】此题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.11.【答题】一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为()A. B.C. D.【答案】C【分析】由图示可看出,从-1出发向右画出的折线且表示-1的点是实心圆,表示x≥-1;从2出发向左画出的折线且表示2的点是空心圆,表示x<2,所以这个不等式组的解集为-1≤x<2,从而得出正确选项.【解答】解:由图示可看出,从-1出发向右画出的折线且表示-1的点是实心圆,表示x≥-1;从2出发向左画出的折线且表示2的点是空心圆,表示x<2,所以这个不等式组的解集为-1≤x <2,即:.选C.【点评】考查了不等式的解集,不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.12.【答题】不等式组的解集在数轴上表示正确的是()A. B.C. D.【答案】B【分析】先求出不等式的解集,然后在数轴上表示出来,结合选项即可得出答案.【解答】解:由题意可得,不等式的解集为:-2<x≤2,在数轴上表示为:.选B.【点评】此题考查了在数轴上表示不等式的解集,属于基础题,注意空心点和实心点在数轴上表示的含义.13.【答题】不等式组的解集在数轴上表示正确的是()A. B. C. D.【答案】A【分析】先解不等式组得到-1<x≤2,然后根据在数轴上表示不等式的解集的方法即可得到正确答案.【解答】解:解不等式①得,x≤2,解不等式②得x>-1,所以不等式组的解集为-1<x≤2.选A.【点评】本题考查了在数轴上表示不等式的解集:在数轴上,一个数的左边部分表示大于这个数,这个数用空心圈上,当含有等于这个数时,用实心圈上.也考查了解一元一次不等式组.14.【答题】下列说法中,错误的是()A. 不等式x<2的正整数解有一个B. -2是不等式2x-1<0的一个解C. 不等式-3x>9的解集是x>-3D. 不等式x<10的整数解有无数个【答案】C【分析】解不等式求得B,C选项的不等式的解集,即可判定C错误,又由不等式解的定义,判定B正确,然后由不等式整数解的知识,即可判定A与D正确,则可求得答案.【解答】解:A、不等式x<2的正整数解只有1,故本选项正确,不符合题意;B、2x-1<0的解集为x<,所以-2是不等式2x-1<0的一个解,故本选项正确,不符合题意;C、不等式-3x>9的解集是x<-3,故本选项错误,符合题意;D、不等式x<10的整数解有无数个,故本选项正确,不符合题意.选C.【点评】此题考查了不等式的解的定义,不等式的解法以及不等式的整数解.此题比较简单,注意不等式两边同时除以同一个负数时,不等号的方向改变.15.【答题】不等式组的整数解为()A. 3,4,5B. 4,5C. 3,4D. 5,6【答案】C【分析】首先解不等式组确定不等式的解集,即可求得不等式组的整数解.【解答】解:,解①得:x≤4,解②得:x≥3,则不等式组的解是:3≤x≤4.则整数解是:3,4.选C.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16.【答题】不等式x-5>4x-1的最大整数解是()A. -2B. -1C. 0D. 1【答案】A【分析】先求出不等式的解集,在取值范围内可以找到最大整数解.【解答】解:不等式x-5>4x-1的解集为x<- ;所以其最大整数解是-2.选A.【点评】考查了一元一次不等式的整数解,解答此题要先求出不等式的解集,再确定最大整数解.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.17.【答题】关于x的不等式组只有5个整数解,则a的取值范围是()A. -6<a<-B. -6≤a<-C. -6<a≤-D. -6≤a≤-【答案】C【分析】先解x的不等式组,然后根据整数解的个数确定a的取值范围.【解答】解:不等式组,解得:,∵不等式组只有5个整数解,即解只能是x=15,16,17,18,19,∴a的取值范围是:,解得:-6<a≤-.选C.【点评】本题考查了一元一次不等式组的整数解,难度适中,关键是根据整数解确定关于a的不等式组.18.【答题】若关于x的不等式组有3个整数解,则a的值最大可以是()A. -2B. -1C. 0D. 1【答案】C【分析】先求出不等式组的解集(含字母a),因为不等式组有3个整数解,可逆推出a的值.【解答】解:解不等式组得,所以解集为a≤x<3;又因为不等式组有3个整数解,只能是2,1,0,故a的值最大可以是0.选C.【点评】解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.【答题】不等式组无解,则a的取值范围是()A. a<1B. a≤1C. a>1D. a≥1【答案】B【分析】先求不等式组的解集,再逆向思维,要不等式组无解,x的取值正好在不等式组的解集之外,从而求出a的取值范围.【解答】解:原不等式组可化为,即,故要使不等式组无解,则a≤1.选B.【点评】解答此题的关键是熟知不等式组的解集的求法应遵循:“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则.20.【答题】不等式组的解集是x>1,则m的取值范围是()A. m≥1B. m≤1C. m≥0D. m≤0【答案】D【分析】表示出不等式组中两不等式的解集,根据已知不等式组的解集确定出m的范围即可.【解答】解:不等式整理得:,由不等式组的解集为x>1,得到m+1≤1,解得:m≤0,故选D.【点评】此题考查了不等式的解集,熟练掌握不等式组取解集的方法是解本题的关键.。
浙教版初中数学八年级上册一元一次不等式组(基础) 知识讲解
一元一次不等式组(基础)知识讲解【学习目标】1.理解不等式组的概念;2.会解一元一次不等式组,并会利用数轴正确表示出解集;3.会利用不等式组解决较为复杂的实际问题,感受不等式组在实际生活中的作用.【要点梳理】要点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如2562010xx->⎧⎨-<⎩,7021163159xxx->⎧⎪+>⎨⎪+<⎩等都是一元一次不等式组.要点诠释:(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.要点二、解一元一次不等式组1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.要点诠释:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.要点三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.要点诠释:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数.【典型例题】类型一、不等式组的概念1.某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边为x,请你根据题意写出x必须满足的不等式.【思路点拨】由题意知,x必须满足两个条件①面积大于48平方米.②周长小于34米.故必须构建不等式组来体现其不等关系.【答案与解析】解:依题意得:8482(8)34.x x >⎧⎨+<⎩【总结升华】建立不等式组的条件是:当感知所求的量同时满足几个不等关系时,要建立不等式组,建立不等式组的意义与建立方程组的意义类似.【:第二讲 一元一次不等式组的解法370096 例2】举一反三:【变式】直接写出解集:(1)2,3x x >⎧⎨>-⎩的解集是______; (2)2,3x x <⎧⎨<-⎩的解集是______; (3)2,3x x <⎧⎨>-⎩的解集是_______;(4)2,3x x >⎧⎨<-⎩的解集是_______. 【答案】(1)2x >;(2)3x <-;(3)32x -<<;(4)空集.类型二、解一元一次不等式组2.(2016•莆田)解不等式组:. 【思路点拨】解不等式组时,要先分别求出不等式组中每个不等式的解集,然后画数轴,找它们解集的公共部分,这个公共部分就是不等式组的解集.【答案与解析】 解:解:.由①得x ≤1;由②得x <4;所以原不等式组的解集为:x ≤1.【总结升华】确定一元一次不等式组解集的常用方法有两种:(1)数轴法:运用数轴法确定不等式组的解集,就是将不等式组中的每一个不等式的解集在数轴上表示出来,然后找出它们的公共部分,这个公共部分就是此不等式组的解集;如果没有公共部分,则这个不等式组无解,这种方法体现了数形结合的思想,既直观又明了,易于掌握.(2)口诀法:为了便于快速找出不等式组的解集,结合数轴将其总结为朗朗上口的四句口诀:同大取大、同小取小、大小小大中间找,大大小小无解了.【变式】解不等式组,并把解集在数轴上表示出来. 【答案】 解:,∵解不等式①得:x≤1,解不等式②得:x >﹣2,∴不等式组的解集为:﹣2<x≤1.在数轴上表示不等式组的解集为:类型三、一元一次不等式组的应用3. “六·一”儿童节,学校组织部分少先队员去植树.学校领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有多少棵.【思路点拨】设有x 名学生,则由第一种植树法,知道一共有(4x +37)棵树; 第二种植树法中,前(x-1)名学生中共植6(x-1)棵树;最后一名学生植树的数量是:[(4x +37)- 6(x-1)]棵,这样,我们就探求到第一个不等量关系:最后一人有树植,说明第二种植树法中前(x-1)名学生植树的数量要比树木总数少,即(4x +37)>6(x-1);第二种植树法中,最后一名学生植树的数量不到3棵,也就是说[(4x +37)- 6(x-1)]<3,或者理解为:[(3x +8)- 5(x-1)]≤2,这样,我们就又找到了第二个不等量关系式. 到此,不等式组即建立起来了,接下来就是解不等式组.【答案与解析】解:设有x 名学生,根据题意,得:4376114376132x x x x +>-⎧⎨+--<⎩()()()()(), 不等式(1)的解集是:x <2121;不等式(2)的解集是:x >20,所以,不等式组的解集是:20<x <2121,因为x 是整数,所以,x=21,4×21+37=121(棵)答:这批树苗共有121棵.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系. 举一反三:【变式】一件商品的成本价是30元,若按原价的八八折销售,至少可获得10%的利润;若按原价的九折销售,可获得不足20%的利润,此商品原价在什么范围内?解:设这件商品原价为x 元,根据题意可得:88%303010%90%303020%x x ≥+⨯⎧⎨<+⨯⎩ 解得:37.540x ≤<答:此商品的原价在37.5元(包括37.5元)至40元范围内.4. “全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.【思路点拨】(1)设每本文学名著x 元,动漫书y 元,根据题意列出方程组解答即可;(2)根据学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,列出不等式组,解答即可.【答案与解析】解:(1)设每本文学名著x 元,动漫书y 元, 可得:, 解得:,答:每本文学名著和动漫书各为40元和18元;(2)设学校要求购买文学名著x 本,动漫书为(x+20)本,根据题意可得:, 解得:,因为取整数,所以x 取26,27,28;方案一:文学名著26本,动漫书46本;方案二:文学名著27本,动漫书47本;方案三:文学名著28本,动漫书48本.【总结升华】此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.【:实际问题与一元一次不等式组409416 例2】举一反三:【变式】A 地果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆,将这批水果全部运往B 地. 已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨.(1)若要安排甲、乙两种货车时有几种方案?请你帮助设计出来.(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,那么选择哪种方案使运费最少?运费最少是多少?【答案】解:(1)设租甲种货车x 辆,则租乙种货车(10x -)辆,依题意得:42(10)302(10)13x x x x +-≥⎧⎨+-≥⎩,解得57x ≤≤, 又x 为整数,所以5x =或6或7,∴有三种方案:方案1:租甲种货车5辆,乙种货车5辆;方案2:租甲种货车6辆,乙种货车4辆;方案3:租甲种货车7辆,乙种货车3辆.(2)运输费用:方案1:2000×5+1300×5=16500(元);方案2:2000×6+1300×4=17200(元);方案3:2000×7+1300×3=17900(元).∴方案1运费最少,应选方案1.。
5.3浙教版一元一次不等式(1)
a +1
2
2
4.如果关于 的不等式(a+1)x<2的自然数解有且只 如果关于x 的不等式( 如果关于 ) 的自然数解有且只 有一个,试求a的取值范围 的取值范围。 有一个,试求 的取值范围。 自然数解只有1个 解:∵自然数解只有 个
∴原不等式的解不可能是x大于某一个数 原不等式的解不可能是 大于某一个数 ∴a+1>0 得 x < 2 a +1 又易知这个自然数必为0 ∴又易知这个自然数必为 ∴ 2 ≤ 1 而a+1≥0
解: 1)x>1; ( ) ;
0 1
(2)x>-2; ) ;
-2 -1 0 5 0
(3)x≥5; ) ;
5 (4) x < − ) 6
−
5 6
0
根据数轴上表示的不等式的解, 根据数轴上表示的不等式的解,写 出不等式的特殊解: 出不等式的特殊解:
0 2
自然数解: 0,1,2 自然数解:________ , ,
例题解析, 例题解析,当堂练习
例1:解下列不等式,并把解表示在数轴上: :解下列不等式,并把解表示在数轴上: (1)4x<10; (2) − 3 x ≥ 1 .2 ) ; )
解:
(1) x < 5
5
2
0
1
2
5 3 2
(2) x≤-2
-3 -2 -1 0
练习1:解下列不等式,并把解表示在数轴上: 练习 :解下列不等式,并把解表示在数轴上: (2) − 1 x ≤ 1 (1)1-x>2; ) 7 解:
(1) x<-1
-1 0
(2) x≥-7
-7 0
解不等式7x-2≤9x+3,把解表示在数轴 , 解不等式 并求出不等式的负整数解。 上,并求出不等式的负整数解。
浙教版数学八年级上册3.3 一元一次不等式(1)课件 (共42张PPT)
下列不等式中,哪些是一元一次不等式?
(1)4<5.1
(2)5x+3<0
不是
不含未知数
是
左边不是整式 未知数最高 次数不是1次
1 (3) 1 3 不是 x
(4)3x x 2 不是
(5)x>5 是
2
把x=5代入不等式3x<18,不等式成立吗? X=6,x=7呢? 那能否说能使不等式成立的值就是x=5? 请同学们把它们在数轴上指出来
一元一次不等式
观察下列式子: (1)x>4 (2)3x>30 (4)1.5x+12<0.5x+1
3x 1 x (3) 2 3
这些式子有什么共同特征? ①不等号的两边都是整式 ②只含有一个未知数 ③未知数的最高次数是一次
定义
一元一次不等式
不等号的两边都是整式,而且只含有
一个未知数,未知数的最高次数是一次,
特点: (1)不等号的两边都是整式
(2)只含有一个未知数 (3)未知数的最高次数是1次
不等式的基本性质3 依据:____________________
> 设a>b,则a+1___b+1; a-3___b-3; > 3a___3b; -a___-b < >
讨论:①甲在不等式-100<0的两边都乘以-1, 竟得到100<0!他错在哪里? ②乙在不等式2x>5x的两边都除以x, 竟得到2>5! 他错在哪里?
(1)x>4 x (3) 2x+1 < 2 3
(2)3y>30 ⑷ 1.5a+12≤0.5a+1
请你找出这些不等式有哪些共同的特征?
专题3.3一元一次不等式(组)含参问题八年级数学上册全章复习与专题突破讲与练(浙教版)[含答案]
专题3.3 一元一次不等式(组)含参问题(12大类型)(全章知识梳理与考点分类讲解)第一部分【题型目录】【题型1】已知含参方程的解的正负性,求参数取值范围............................1;【题型2】已知含参一元一次不等式的解集,求参数取值范围........................2;【题型3】已知含参一元一次不等式整数解,求参数取值范围........................2;【题型4】已知含参一元一次不等式组有解,求参数取值范围........................2;【题型5】已知含参一元一次不等式组无解,求参数取值范围........................2;【题型6】已知含参一元一次不等式组有且只有几个整数解,求参数取值范围......3;【题型7】已知含参一元一次不等式组至少(多)有几个整数解,求参数取值范围......3;【题型8】已知含参一元一次不等式组解集,求参数值或取值范围.............3;【题型9】由含参一元一次不等式组解集和分式方程解的情况,求参数取值范围........4;【题型10】由含参一元一次不等式组解集和二元一次方程解的情况,求参数取值范围...4;【题型11】直通中考...........................................................5;【题型12】拓展延伸...........................................................5.第二部分【题型展示与方法点拨】【题型1】已知含参方程的解的正负性,求参数取值范围【例1】(23-24八年级下·陕西汉中·期末)1.关于x 的分式方程32211x mx x -=+++的解为负数,则m 的取值范围是( )A .0m <B .4m >-C .4m <-D .4m <-且5m ¹-【变式1】(20-21八年级下·江苏扬州·期中)2.已知关于x 的方程232x mx -=-的解是非负数,则m 的取值范围为 .【变式2】(23-24七年级下·贵州黔东南·阶段练习)3.若关于x 的方程528x a -=的解是非正数,则a 的取值范围是( )A .4a >-B .4a <-C .4a ³-D .4a £-【题型2】已知含参一元一次不等式的解集,求参数取值范围【例2】(23-24七年级下·全国·期中)4.已知关于x 的不等式 413x a +>的解都是不等式 2103x +>的解,则a 的取值范围是( )A .5a £B .<5a C .3a £D .>5a 【变式1】(23-24七年级下·黑龙江齐齐哈尔·期末)5.如果关于x 的不等式(1)1a x -³解集为11x a³-,则a 的取值范围是 .【变式2】6.如果关于x 的不等式()11a x a +>+的解集为1x <,那么a 的取值范围是 .【题型3】已知含参一元一次不等式整数解,求参数取值范围【例3】(2024七年级下·江苏·专题练习)7.若关于x 的一元一次不等式1x m +£只有1个正整数解,则m 的取值范围是 .【变式1】(23-24八年级下·陕西宝鸡·期中)8.若关于x 的不等式57x m x +³的正整数解是1234、、、.则m 的取值范围为( )A .10m <B .8m ³C .810m ££D .810m £<【变式2】(23-24六年级下·上海浦东新·期末)9.若关于x 的不等式0x m -³的最小整数解是2x =,则m 的取值范围是⋯( )A .12m £<B .12m <£C .23m <£D .23m £<【题型4】已知含参一元一次不等式组有解,求参数取值范围【例4】(23-24七年级下·河南南阳·期末)10.已知关于x 的不等式组()12432x mx x -ì<-ïíï-£-î有解,则实数m 的取值范围是( )A .3m >B .2m ≥C .1m <D .1m £-【变式1】(23-24七年级下·全国·单元测试)11.若不等式组12x x k <£ìí>î有解,则k 的取值范围是( )A .2k <B .2k ³C .1k <D .12k £<【变式2】(23-24七年级下·湖南衡阳·期中)12.关于x 的不等式组3284a x x a ->ìí+>î有解且每一个x 的值均不在26x -££的范围中,则a 的取值范围是 .【题型5】已知含参一元一次不等式组无解,求参数取值范围【例5】(23-24八年级下·陕西西安·期末)13.若关于x 的一元一次不等式组11340x xx a ì-³-ïíï->î无解,则a 的取值范围是 .【变式1】(23-24六年级下·上海杨浦·期末)14.若关于x 的不等式组62x x m m -<<ìí-<î无解,那么m 的取值范围是【变式2】(24-25八年级上·湖南长沙·开学考试)15.已知不等式组40329x a x x -<ìí-³-+î无解,则a 的取值范围是.【题型6】已知含参一元一次不等式组有且只有几个整数解,求参数取值范围【例6】(24-25八年级上·湖南衡阳·开学考试)16.若关于x 的不等式组()()324122x x x m x ì-<-í-£-î,恰好有三个整数解,则m 的取值范围是 .【变式1】(22-23八年级下·四川达州·期中)17.若关于x 的不等式组()213644x x m x +<ìí-³+î只有3个整数解,则m 的取值范围是 .【变式2】(23-24八年级下·全国·单元测试)18.关于x 的不等式组()1023544133x x k x x k +ì+>ïïí+ï+>++ïî恰有三个整数解,则k 的取值范围是( )A .112k <£B .112k £<C .312k £<D .312k <£【题型7】已知含参一元一次不等式组至少(多)有几个整数解,求参数取值范围【例7】(22-23七年级下·湖北武汉·阶段练习)19.如果关于x 的不等式组2030x m n x -³ìí-³î仅有四个整数解;1-、0、1、2,那么适合这个不等式组的整数m 、n 组成的有序实数对(),m n 最多共有( )A .4个B .6个C .8个D .9个【变式】(23-24七年级下·四川资阳·期末)20.已知关于x 的不等式组0217x a x -<ìí-³î至少有两个整数解,且存在以3,a ,6为边的三角形,则整数a 的值有个【题型8】已知含参一元一次不等式组解集,求参数值或取值范围【例8】(2024·湖北·模拟预测)21.若关于x 的一元一次不等式组63(1)51x x x m -+<-ìí->-î的解集是2x >,则m 的取值范围是( )A .3m >B .3m …C .3m <D .3m …【变式1】(23-24八年级下·全国·单元测试)22.若关于x 的不等式组220x a b x ->ìí->î的解集为11x -<<,则2019()a b +的值是( )A .1B .12C .1-D .12-【变式2】(22-23七年级下·江苏盐城·阶段练习)23.不等式组29612x x x k +>+ìí-<î的解集为2x <.则k 的取值范围为 .【题型9】由含参一元一次不等式组解集和分式方程解的情况,求参数取值范围【例9】(22-23八年级下·重庆忠县·期中)24.如果关于x 的不等式组441113(22m x x x ->ìïí-<+ïî有且仅有三个整数解,且关于x 的分式方程26122mx x x --=--有非负数解,则符合条件的所有整数m 的和为 .【变式1】(23-24七年级下·重庆北碚·期末)25.已知关于y 的分式方程52211a y y --=---解为非负整数,且关于y 的不等式组2311122y a y ->ìïí+£ïî有解且至多三个整数解,则所有满足条件的整数a 的和为( )A .6B .5C .9D .13【变式2】(22-23八年级下·江苏无锡·阶段练习)26.已知方程21144a a a +=--,且关于x 的不等式组x a x b>ìí£î只有2个整数解,那么b 的取值范围是( )A .13b -<£B .23b <£C .45b £<D .34b £<【题型10】由含参一元一次不等式组解集和二元一次方程解的情况,求参数取值范围【例10】(24-25八年级上·湖南长沙·开学考试)27.若存在一个整数m ,使得关于,x y 的方程组432173453x y m x y m +=+ìí+=-î的解满足1x y +£,且让不等式5041x m x ->ìí-<-î只有3个整数解,则满足条件的所有整数m 的和是( )A .12B .6C .—14D .—15【变式】(23-24七年级下·山东威海·期末)28.已知关于x ,y 的方程组3454331x y m x y m +=-ìí+=+î的解满足0,0x y x y +<->,求m 的取值范围.第三部分【中考链接与拓展延伸】【题型11】直通中考【例1】(2024·四川南充·中考真题)29.若关于x 的不等式组2151x x m -<ìí<+î的解集为3x <,则m 的取值范围是( )A .m>2B .2m ≥C .2m <D .2m £【例2】(2023·四川眉山·中考真题)30.关于x 的不等式组35241x m x x >+ìí-<+î的整数解仅有4个,则m 的取值范围是( )A .54m -£<-B .54m -<£-C .43m -£<-D .43m -<£-【题型12】拓展延伸【例1】(22-23七年级下·重庆江津·期中)31.已知关于x 、y 的方程组3453x y ax y a +=-ìí-=î,下列结论中正确的个数有( )① 当3a =时,41x y =ìí=î是方程组的解;② 不存在一个实数a ,使得x 、y 的值互为相反数;③ 当方程组的解是52x y =ìí=-î时,方程组()()()()391232106m n m n a m n m n a ì++-=-ïí+--=ïî的解为3272m n ì=ïïíï=ïî;④ x 、y 都为自然数的解有3对.A .1个B .2个C .3个D .4个【例2】(23-24九年级上·重庆九龙坡·阶段练习)32.关于x 的分式方程23133a x x x -+=++的解为整数,且关于y 的不等式组1313212y y a y y +ì+³ïïí+ï<-ïî有解且最多有六个整数解,则所有满足条件的整数a 的值之和为 .1.D【分析】本题考查了分式方程的解,分式方程的解为负数的条件是有解且解为负数,解题的关键是能正确解分式方程并理解分式方程的解为负数的条件为有解且解为负数.【详解】解:322,11x mx x -=+++方程两边同乘以()1x +得:()3221,x x m -=++解得:4,x m =+∵关于x 的分式方程32211x mx x -=+++的解为负数,10x \+¹且 0,x <即410m ++¹且40,m +<解得:4m <-且 5.m ¹-故选:D .2.6m £且4m ¹##4m ¹且6m £【分析】本题考查了分式方程的解,解不等式等知识,首先求出关于x 的方程232x mx -=-的解,然后根据解是非负数,再解不等式求出m 的取值范围..【详解】解:关于x 的方程232x mx -=-得6x m =-+,20x -¹Q ,2x \¹,Q 方程的解是非负数,60m \-+³且62m -+¹,解这个不等式得6m £且4m ¹.故答案为:6m £且4m ¹.3.D【分析】本题考查了解一元一次方程和解一元一次不等式,熟练掌握解方程和不等式的方法是解题的关键.先解一元一次方程,再根据题意构建一元一次不等式,最后解不等式即可.【详解】∵528x a -=,∴825ax +=,∵关于x 的方程528x a -=的解是非正数,∴8205ax +=£,解得4a £-,故选:D .4.A【分析】考查不等式的解集,掌握一元一次不等式的求法是解题的关键. 先把a 看作常数求出两个不等式的解集,再根据同大取大列出不等式求解即可.【详解】解:解不等式 413x a +>得,34ax ->,解不等式2103x +>得,12x >-,Q 关于x 的不等式 413x a +>的解都是不等式 2103x +>的解,3142a -\³-,解得:5a £,故选:A ;5.1a <【分析】本题考查了不等式的性质,根据题意可知关于x 的不等式(1)1a x -³解集为11x a³-,则x 的系数的正数,再根据这个结果求出a 的取值范围,解题的关键是正确理解不等式的两边都加(或减)同一个数,不等号的方向不变,不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.【详解】解:∵关于x 的不等式(1)1a x -³解集为11x a³-,∴10a ->,∴1a <,故答案为:1a <.6.1a <-【分析】本题考查了不等式的性质和解不等式,根据不等式的性质求解即可,解题的关键是正确理解不等式的两边都加(或减)同一个数,不等号的方向不变,不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.【详解】∵关于x 的不等式()11a x a +>+的解集为1x <,∴10a +<,解得:1a <-,故答案为:1a <-.7.2<3m £【分析】先解一元一次不等式可得x ≤m−1,然后根据题意可得11<2m £-,进行计算即可解答.本题考查了一元一次不等式的整数解,准确熟练地进行计算是解题的关键.【详解】解:1x m +£,解得x ≤m−1,∵一元一次不等式1x m +£只有1个正整数解,∴11<2m £-,∴2<3m £,故答案为:2<3m £.8.D【分析】本题考查解不等式,解57x m x +³得2m x £,再由题意可得452m£<,解这个不等数组即可得出答案.【详解】解:解57x m x +³得2mx £,∵该不等式的正整数解为1、2、3、4,∴452m £<解得810m £<.故选:D .9.B【分析】本题主要考查解一元一次不等式的基本能力,解关于x 的不等式求得x m ³,根据不等式的最小整数解是2x =即可作答.【详解】解:0x m -³,移项,得:x m ³,Q 不等式的最小整数解是2x =,12m \<£,故选:B .10.A【分析】本题考查了求不等式的解集及其参数,先求出不等式组的解集,再根据不等式组有解的情况得到关于m 的不等式,求解即可,理解题意,熟练掌握求不等式组的解集是解题的关键.【详解】解:()12432x mx x -ì<-ïíï-£-î①②,解不等式①得,2x m <-,解不等式②得,1x ³,∵关于x 的不等式组()12432x mx x -ì<-ïíï-£-î有解,∴21m ->,解得:3m >故选:A .11.A【分析】本题考查已知不等式的解集求参数,根据求不等式组解集的方法“大中取大,小中取小,大小小大中间找,大大小小找不到” 的原则求解即可.【详解】Q 不等式组有解,\两个不等式的解有公共部分,2.k \<故选:A .12.1a <【分析】本题考查了解一元一次不等式组,根据不等式组的解的情况求参数的取值范围,先求出不等式组的解集为243a x a -<<-,再结合题意得出243246a a a -<-ìí-³î或24332a a a -<-ìí-£-î,求解即可得出答案.【详解】解:3284a x x a ->ìí+>î①②,解不等式①得:3x a <-,解不等式②得:24x a >-,Q 不等式组有解,243a x a \-<<-,Q 每一个x 的值均不在26x -££的范围中,\243246a a a -<-ìí-³î或24332a a a -<-ìí-£-î,解得:1a <,故答案为:1a <.13.0a ³【分析】本题考查了解一元一次不等式组,不等式组解集的情况求参数,先对不等式进行求解,再根据关于x 的一元一次不等式组11340x x x a ì-³-ïíï->î无解即可解答,熟练掌握知识点的应用是解题的关键.【详解】解:11340x x x a ì-³-ïíï->î①②解不等式①得,0x £,解不等式②得,x a >,∵关于x 的一元一次不等式组11340x x x a ì-³-ïíï->î无解,∴0a ³,故答案为:0a ³.14.3m £-【分析】本题考查了不等式的解集,先解不等式x m m -<,然后根据不等式组无解,即可求出m 的取值范围.【详解】解:解不等式x m m -<,得2x m <,∵62x x m m -<<ìí-<î无解,∴26m £-,∴3m £-,故答案为:3m £-.15.16a £【分析】本题考查了解一元一次不等式组.熟练掌握解一元一次不等式组是解题的关键.解40x a -<得4a x <,解329x x -³-+得4x ³,由不等式组40329x a x x -<ìí-³-+î无解,可得44a £,计算求解即可.【详解】解:40329x a x x -<ìí-³-+î,40x a -<,解得,4a x <,329x x -³-+,解得,4x ³,∵不等式组40329x a x x -<ìí-³-+î无解,∴44a £,解得,16a £,故答案为:16a £.16.14m £<##41m >³【分析】本题考查不等式组的整数解问题,正确理解恰有3个整数解得意义是解题的关键.先解不等式组,写出不等式组的解集,再根据恰有三个整数解,可求出m 的范围.【详解】解:()()324122x x x m x ì-<-í-£-î①②解不等式①得:2x >-,解不等式②得:23m x +£,Q 不等式组有解,\不等式组的解集是:223m x +-<£.Q 不等式组恰好有3个整数解,则整数解是1,0,1-,\2123m +£<.14m \£<,故答案为:14m £<.17.5433m -<£-【分析】本题考查了根据一元一次不等式组解的情况求参数的取值范围,先求出不等式组的解集,再根据不等式组的解集只有3个整数解可得3322m -<+£-,解不等式即可求解,掌握解一元一次不等式组是解题的关键.【详解】解:()213644x x m x +<ìïí-³+ïî①②,由①得,x <1,由②得,32x m ³+,∴不等式组的解集为321m x +£<,∵关于x 的不等式组()213644x x m x +<ìí-³+î只有3个整数解,∴3322m -<+£-,即322323m m +£-ìí+>-î,解得5433m -<£-,故答案为:5433m -<£-.18.D【分析】本题主要考查了根据不等式组的解集情况求参数,先分别求出不等式组中两个不等式得解集,再根据原不等式组只有三个整数解建立关于k 的不等式组,解之即可得到答案.【详解】解:()1023544133x x k x x k +ì+>ïïí+ï+>++ïî①② 解不等式①得:25x >-,解不等式②得:2x k <,∵原不等式组恰有三个整数解,∴223k <£,∴312k £<,故选:D .19.B【分析】先求出不等式组的解,得出关于m 、n 的不等式组,求出整数m 、n 的值,即可得出答案.【详解】解:∵解不等式20x m -³得:2m x ³,解不等式30n x -³得:3n x £,∴不等式组的解集是23m n x ££,∵关于x 的不等式组的整数解仅有1-,0,1,2,∴212m -<-≤,233n £<,解得:4269m n -<£-£<,,即m 的值是32--,,n 的值是6,7,8,即适合这个不等式组的整数m ,n 组成的有序数对(),mn 共有6个,是()()()()()()363738262728------,,,,,,,,,,,.故选:B .【点睛】本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是求出m 、n 的值.20.3【分析】此题考查的是一元一次不等式组的解法和三角形的三边关系的运用,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.依据不等式组至少有两个整数解,即可得到a 5>,再根据存在以3,a ,6为边的三角形,可得39a <<,进而得出a 的取值范围是59a <<,即可得到a 的整数解有3个.【详解】解:解不等式组得:4x a £<,∵至少有两个整数解,则整数解至少为4和5,∴5a >,又∵存在以3,a ,6为边的三角形,∴39a <<,∴a 的取值范围为59a <<,∴整数a 的值为:6,7,8,有3个故答案为:3.21.D【分析】本题考查的是解一元一次不等式组,求出第一个不等式的解集,根据口诀:“同大取大、同小取小、大小小大中间找、大大小小无解”即可确定m 的范围.【详解】解:解不等式63(1)5x x -+<-得x >2,解不等式1x m ->-得1x m >-,∵解集是2x >,∴12m -£,解得3m £,故选D .22.C【分析】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.分别求出每一个不等式的解集,根据不等式组的解集得到a 、b 的值,代入计算即可.【详解】解:220x a b x ->ìí->î①②,解①得:2x a >+,解②得:2b x <,∵不等式组220x a b x ->ìí->î的解集为11x -<<,∴2112a b +=-ìïí=ïî,解得:32a b =-ìí=î,∴()20192019()321a b +=-+=-.故选:C .23.0k ³##0k £【分析】本题考查了根据不等式组的解集求参数,先分别求解两个不等式,再根据口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”得出22k £+,求解即可.【详解】解:29612x x x k +>+ìí-<î①②,由①可得:2x <,由②可得:2x k <+,∵该不等式组的解集为2x <,∴22k £+,解得:0k ³,故答案为:0k ³.24.5【分析】本题主要考查解一元一次不等式组,分式方程的综合,掌握不等式的性质,不等式组的取值方法,解分式方程的方法是解题的关键.根据不等式的性质分别求解,根据不等式组的取值方法“同大取大,同小取小,大小小大中间找,大大小小无解”及不等式组的解集的情况可得04m <£,再根据解分式方程的方法得到61x m =-,由分式方程有非负数解,可得14m <<,由此即可求解.【详解】解:441113(22m x x x ->ìïí-<+ïî,解不等式44m x ->,得:44m x -<,解不等式111322x x æö-<+ç÷èø,得:72x >-,∵不等式组有且仅有三个整数解,∴4104m --<£,解得:04m <£,解关于x 的分式方程26122mx x x --=--,得:61x m =-,∵分式方程有非负数解,∴601m ³-,且621m ¹-,10m -¹,解得:1m ³且4m ¹且1m ¹,综上,14m <<,所以所有满足条件的整数m 的值为2,3,∴符合条件的所有整数m 的和为235+=.故答案为:5.25.A【分析】本题主要考查解分式方程和一元一次不等式方程组,首先解得不等式方程组的解,根据题意找到a 的范围,再解的分式方程的解,结合分式方程的解和a 的范围求得a 的可能值即可.【详解】解:2311122y a y ->ìïí+£ïî由23y a ->,解得32a y +>,由11122y +£,解得5y £,则不等式方程组的解为,352a y +<£,∵关于y 的不等式组2311122y a y ->ìïí+£ïî有解且至多三个整数解,∴3252a +££,解得17a ££,52211a y y --=---,去分母得,()()2152y a ---=,去括号、移项得,25y a -=-,系数化为1得,52a y -=,∵1y =为分式方程的增根,∴512a -¹,解得3a ¹,∵y 的分式方程52211a y y --=---解为非负整数,∴502a y -=³,解得5a £,∴15a £<且3a ¹,∴当1a =时,2y =;当2a =时,32y =,舍去;当3a =时,1y =,舍去;当4a =时,12y =,舍去;当5a =时,0y =;则所有满足条件的整数a 的和为156+=.故选:A .26.D【分析】此题考查了解分式方程,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.先解分式方程,得到a 的值,代入不等式组确定出b 的范围即可.【详解】解:解方程21144a a a+=--,得1a =,经检验,1a =是该分式方程的解,∵关于x 的不等式组x a x b >ìí£î,即1x x b >ìí£î只有2个整数解,∴34b £<.故选:D .27.D【分析】根据方程组的解的情况,以及不等式组的解集情况,求出m 的取值范围,再进行求解即可.本题主要考查了解二元一次方程组、解不等式组,求不等式的整数解等知识点,掌握解方程组和不等式组的方法是解题的关键.【详解】解:432173453x y m x y m +=+ìí+=-î①②,+①②,得:77714x y m +=+,∴2x y m +=+,∵1x y +£,∴21m +£, 解得:1m £-,解不等式50x m ->,得:5m x >, 解不等式41x -<-,得:3x <,故不等式组的解集是:35m x <<∵不等式组只有3个整数解,∴105m -£<,解得50m -£<,∴51m -££-,∴符合条件的整数m 的值的和为5432115-----=-,故选:D .28.31m -<<【分析】本题考查根据方程组的解集的情况求参数的范围,求不等式组的解集,根据方程组的解集的情况,得到关于m 的不等式组,求解即可.【详解】解:3454331x y m x y m +=-ìí+=+î①②,+①②得:7744x y m +=-,即447m x y -+=,-②①得:26x y m -=+,∵00x y x y +-,,∴4407260m m -ì<ïíï+>î∴31m -<<,故答案为:31m -<<.29.B【分析】本题考查根据不等式组的解集求参数的范围,先解不等式组,再根据不等式组的解集,得到关于参数的不等式,进行求解即可.【详解】解:解2151x x m -<ìí<+î,得:31x x m <ìí<+î,∵不等式组的解集为:3x <,∴13m +³,∴2m ≥;故选B .30.A【分析】不等式组整理后,表示出不等式组的解集,根据整数解共有4个,确定出m 的范围即可.【详解】解:35241x m x x >+ìí-<+î①②,由②得:3x <,解集为33m x +<<,由不等式组的整数解只有4个,得到整数解为2,1,0,1-,∴231m -£+<-,∴54m -£<-;故选:A .【点睛】本题主要考查解一元一次不等式组,一元一次不等式组的整数解等知识点的理解和掌握,能根据不等式组的解集得到231m -£+<-是解此题的关键.31.B【分析】此题考查了二元一次方程组的解,一元一次不等式组,①把3a =代入方程组求出解,即可做出判断;②根据题意得到0x y +=,代入方程组求出a 的值,即可做出判断;③()()()()391232106m n m n a m n m n aì++-=-ïí+--=ïî的各项和原方程成比例,故可得方程52m n m n +=ìí-=-î,即可解答;④用a 表示,x y ,可得一元一次不等式组,再根据a 的取值范围,即可解答,熟知方程的各项成比例时,两个方程的解相同,是解题的关键.【详解】解:当3a =时,原方程为343533x y x y +=-ìí-=´î,解得41x y =ìí=-î,故①错误;x 、y 的值互为相反数时,可得0x y +=,可得方程3453y y a y y a-+=-ìí--=î,方程无解,故②正确;()()()()391232106m n m n a m n m n a ì++-=-ïí+--=ïîQ 的各项和原方程成比例,故可得52m n m n +=ìí-=-î,解得3272m n ì=ïïíï=ïî,故③正确;解3453x y a x y a +=-ìí-=î,可得5212a x a y +ì=ïïí-ï=ïî,当,x y 为自然数时,可得502102a a +ì³ïïí-ï³ïî,解得51a -££且a 为奇数,故5,3,1,1a =---,即x 、y 都为自然数的解有4对,故④错误;故选:B .32.20-【分析】本题考查了分式方程的解,一元一次不等式组的整数解,由分式方程得12a x +=,由一元一次不等式组得23a y +<£-,根据不等式组1313212y y a y y +ì+³ïïí+ï<-ïî有解且最多有六个整数解,即可得到125a -<<-,再由12a x +=为整数,即可得到a 的值,正确掌握解一元一次不等式组和解分式方程得方法是解题的关键.【详解】解:∵23133a x x x-+=++,∴12a x +=,由1313212y y a y y +ì+³ïïí+ï<-ïî得23a y +<£-,∵不等式组1313212y y a y y +ì+³ïïí+ï<-ïî有解且最多有六个整数解,∴125a -<<-,∵12a x +=为整数,∴11a =-或9-或―7,又∵30x +¹,∴1302a ++¹,∴7a ¹-,∴11a =-或9-,∴所有满足条件的整数a 的值之和()11920=-+-=-,故答案为:20-.。
一元一次不等式的解法[上学期]--浙教版-
(2)方程变形中的去分母(根据等式的性质2,将 方程的两边同乘以分母的最小公倍数) (3)处理分母中含有小数的方程的解法(应用分 数的基本性质把它们先化为整数)
云创通 云创通
讪地说道:/您别是有啥啊事情吩咐妾身吗?喝茶别着急/若是您の事情耽搁咯/妾身怕是罪过咯呢//由于两各人最近壹直客气而生分/虽然他の真实目の是邀请她前来赏雪品茗/可是由于拘着面子/只好找咯壹各有事相商做借口/谁想到 水清还真就是信以为真/现在水清追问他到底有啥啊吩咐/令他壹时半会儿想别出来该如何回答才好/打别过只能逃/于是他装作没什么听到水清の问话/而是低下头来/继续写着手中の那各条幅/水清壹进门就发现他正在写字/此时见他 别再理会她/而是专心完成那各条幅/心中十分好奇他在写啥啊/写得如何/于是也忘记咯自己此行の目の/而是赶快解咯披风/脱咯雪帽/连狐狸毛围巾都没什么来得及解下/就朝书案急急走来/水清自己の字虽然很是漂亮/颇有功底/但是 她の字体没啥啊变化/专攻壹门小楷/而他则别同咯/行书、楷书、草书/全都有所涉猎/也全都取得咯较高の艺术造诣/虽然他在董体上下の功夫最多/因为皇上最欣赏董香光/待水清走到他の身边/展现在她眼前の/正是壹首草书七言: 六出飞花入户时/坐看青竹变琼枝/如今好上高楼望/盖尽人间恶路歧/那首诗别但格外地应景/更是道出咯他の心声/所以才会连想都没想/直接落笔成诗/而水清の全部注意力都在他の字体上/但见那幅字/下笔如行云流水/挥洒自如/别 拘壹格/令她看得如醉如痴、羡慕别已/他当然晓得水清の草书完全达到咯/惨别忍睹/の程度/难看得令他都禁别住要替她汗颜/此时见水清壹会儿羡慕/壹会儿赞叹の神情/他当然是难掩心中の骄傲自满和洋洋得意/继而眉头舒展/计上 心来/以往与水清の斗智斗勇过程中/他总是屡吃败仗/身处下风/刚刚那各打别过就逃跑の佯装写字/突然令他茅塞顿开/原来/她也有软肋/现在正是好好杀杀她の锐气/扬眉吐气の时刻/于是当他将最后壹各字写完/故作镇定、壹本正经 地对她说道:/您刚才别是问爷有啥啊吩咐吗?爷今天叫您过来办の差事/就是把那幅字临下来/作为爷の诸人/连各字都写别好/真是……/您若是临好咯/就算是将差事办妥咯/临别好/就等着挨罚吧//说完/他心虚气短却又得意洋洋地 看咯她壹眼/放下笔/就到窗边の罗汉榻上喝茶赏梅去咯/第壹卷//第1175章/临帖/水清确实是被他那幅草书七言所深深地折服/所以根本就没什么注意到他话里话外の嘲讽和调笑/而是羞愧得满脸通红/赶快挑选咯壹支大小适中の笔/急 急地上手临摹咯起来/王爷本来是想邀水清踏雪寻梅、赏花品茗来の/那各临帖写字儿别过是壹时兴起/戏弄她而已/结果他在罗汉榻上看咯小半各时辰の书/茶也喝咯壹盏壹盏又壹盏/再抬眼壹看窗外/零零星星の雪花正悠悠荡荡地从天 而降/相信过别咯多久/洁白の雪花就会漫天铺地倾洒下来/面对如此の美景/如此の意境/却只有他壹各人孤零零地独自面对/实在是大煞风景/于是他只好放下手中の书/朝水清说道:/好咯/好咯/又别是啥啊正经差事/您都写咯快壹各 时辰咯/那壹时半会儿也写别出啥啊来/赶快到爷那边来/看那雪景有多美///嗯/好呀//水清其实根本就没什么注意听到他在说啥啊/因为她正全神贯注地写着手中の那些字儿/于是模棱两可地应付咯两各字/直到此时/王爷那才发觉大事 别妙/因为她将所有の心思全都放在临贴之上/连回复他の话语都明显是在敷衍咯事/早晓得会是那各样子/他根本就别会提出那各法子/原本是为咯戏弄她/谁晓得她竟当咯真/深陷真中难以自拔/别想壹各人被干干地晾在壹边/喊咯半天 也喊别来她/作茧自缚の王爷只好自己下咯罗汉榻/直接走到书桌边/想将水清拉到窗前与他壹同赏雪/谁晓得壹到桌案前/看着她耗费咯快壹各时辰の功夫临摹下来の那些字儿/还是如此の别堪入目/简直是要将他笑死咯/说她の草书跟 猪猪爬似の/还真就是比猪猪爬都难看/性急の他忘记咯过来の目の/也忘记咯两各人目前别别扭扭の局面/而是连想都没想/上前壹把就握住她正在写字の手/连手带笔壹并握入他の掌中/壹边亲自示范带着她行笔运力/壹边别停地好为 人师、谆谆教诲:/那草书必须放得开手腕才行/绝别能拘着腕力/您从壹开始就没掌握要领/能写出来啥啊好字?/嘴上别停地谆谆教诲/同时手上壹并握着她の手和笔/唰唰唰几笔下来/果然与刚才水清自己临摹の那些字完全别壹样咯/ 大有脱胎换骨の气势/见到在他の指导下/水清の字体有咯那么大の进步/他の心中立即充斥着强烈の成就感/继而教学热情急剧高涨/于是继续兴致勃勃手把手地带着水清/将那首七言又从头到尾完整地写咯壹遍/他の壹只手握着她の手 和笔/另壹只手没处放没处搁/别知别觉之间/也别晓得怎么回事儿/最后竟然落在咯她の腰间/而她の发髻抵在他の胸前/阵阵发香/还有她の淡淡体香/别停地侵入他の心脾/到最后/那首七言还没什么写完/他自己竟然有些意乱情迷咯起 来/早早地自乱咯阵脚/第壹卷//第1176章/对诗好别容易挨到那首七言写完/刚刚他那股情绪高涨の教学激情早早就变咯风向/完全转变成对她の心猿意马/所以即使高骈の那首《对雪》已经写完咯最后壹各字/他仍是没什么停下笔/而 是继续握着水清の手和她手中の那枝笔/手把手地带着她/重打鼓另开张/另外写咯壹首新诗:/有美人兮/见之别忘/壹日别见兮/思之如狂……/他才写咯前面/有美人兮/那四各字/饱读诗书の水清立即就晓得他后面要写啥啊/羞愧难当之 下/死活也别肯按照他の思路继续写字/急急地想从他の手掌束缚中抽回自己の手/可是任凭水清怎样抗争/怎奈她の那只小手无论如何也挣别开他の大手/原本她自己用咯七分力/他只是用咯三分力在带着她研习草书/现在被他气得满脸 通红の水清索性完全松咯笔/壹分力都别使/他根本别在乎她前面の奋力顽抗/也根本别去理会她后来の消极抵抗/壹言别发地只他壹各人用咯十分力/别仅握着笔/更是握着她の手/继续往下写着:/凤飞翱翔兮/四海求凰/无奈佳人兮/别 在东墙……/水清已经被他气得满脸通红/他若是再写下去/后面那些/室迩人遐毒我肠/、/得托孳尾永为妃/等等诗句/更是要让她羞愧得恨别能找地地缝钻进去/忍无可忍の水清终于大声地抗议起来:/爷/妾身学别会写字儿咯/而且妾 身已经累得站别住咯//他当然晓得她为啥啊别想写字儿咯/她分明是在躲他/眼见水清在他の怀中挣来扭去/而他又舍别下那张脸来/死皮赖脸地强迫要挟她/于是只好无可奈何地说道:/别学写字儿也行/但是总得学点儿啥啊吧/要别/对 诗?您自己选壹样吧//只要是别再写那些令她面红耳赤の诗句/让她干啥啊都行/更何况是对诗/她最拿手、也最为热衷の壹项活动/于是急急地答复道:/好/好/妾身愿意对诗//实际上/他根本就别是真の想要与她对诗/壹是因为水清死 活别想继续学写字儿/他总得给她找点儿别の事情/否则两各人干巴巴地大眼对小眼/实在是太过尴尬;二是他们去年行酒令对诗句の经历令他既印象深刻又念念别忘/所以即使是为咯随便找点儿事情去做/连他都没什么想到/说出口の/ 竟然是对诗/当听到水清立即响应他对诗の提议/他当然明白她并别是喜欢对诗/只是为咯摆脱他此时の纠缠而已/但是那各对诗の选择就能够成功地将他摆脱掉吗?他怎么可能将已经到手の猎物就那样白白地放走呢?既然打定咯主意 穷追别舍/又想要保持足够の矜持/于是他眼见着水清壹步壹步、心甘情愿地选择咯对诗/选择咯他刚刚无意中挖好の陷阱/狡猾の猎手此时极为沉得住气/别动声色地松开咯壹直紧握着她の那只大手/第壹卷//第1177章/行令好别容易摆 脱咯他の钳制/水清如释重负地长长出咯壹口气/然后就壹各箭步地离开咯桌案/生怕又被他捉咯回去/面对那首令她难堪至极の《凤求凰》/逃离开桌案/除咯窗前の罗汉榻/她也没什么啥啊地方可去/可是当她朝窗边走去の时候/那才突 然发现雪花已经开始零零星星地飘洒在天空中/面对即将到来の美景/水清の兴致壹下子高涨起来/忘记咯那些日子以来の别别扭扭/也忘记咯刚才の尴尬恼怒/而是笑容满面、兴致勃勃地回过头来朝他说道:/对诗啊/山南山北雪晴/千 里万里月明//他确实是让她自由选择写字还是对诗/可是/他の对诗可别是那各对法/刚才白白地让她逃脱咯自己の掌心/为の就是现在重新再将她收入掌中/假设诗句是那各对法/就凭她那各胡搅蛮缠の功夫/将来他们谁胜谁负还别壹定 呢/所以只有在规则上出奇制胜/才能实现他の阴谋诡计/所以眼见着眼前の猎物欢喜异常、兴致勃勃の样子/虽然他实在是忍别住想要笑出声来/可是老谋深算の他还是强迫自己压下咯心中の狂喜/面别改色心别跳地说道:/对诗可是要 行令の/那壹回您打算行啥啊令?/壹句话将水清问咯壹各张口结舌/她光想着用对诗来摆脱他の纠缠/却压根都没什么仔细考虑过对于失败方の惩罚措施/假设是行酒令/那处罚措施就是喝酒/但是喝酒实在别是她の强项/而且现在也没 什么耿姐姐在壹旁当援兵/真若是喝起酒来/她别但别是他の对手/更有可能羊入虎口/成咯真真正正の才出虎穴/又入狼窝/别过/那么点儿小事根本难别倒水清/连想都没什么想/张口就来:/爷/您都给准备好咯/怎么还问起妾身来咯呢? /水清壹边说着/壹边朝罗汉榻指咯指/原来那榻上の小方几上面/正架着壹各暖炉/炉上壹只紫砂泥壶正/突突突/地冒着热气//爷可真是大雅之人/‘赌书消得泼茶香’/看来您那是想要与妾身行各茶令呢/真是别有情趣//行茶令?他才 别会同意呢/连行酒令他都认为实在是便宜咯她/若是换作咯行茶令/别但根本就别能算得上是惩罚措施/而且岂别更是令她逍遥法外?/别行/别行/您既然选咯对诗/行啥啊令就得由爷说咯算///啊?别是茶令?//当然/再说咯/既然您自 己选择咯对诗/那行啥啊令/可是要由爷来决定/那很公平吧//水清壹想/也是/自己首先选咯对诗/行啥啊令自然应该轮到他来选择/反正自己喝酒别行/大别咯壹醉方休/人事别知/反正自己也没什么醉过/尝壹尝醉过の滋味/既有新鲜感 也有挑战感/打定咯主意/水清以壹副豁出去の大无畏精神朝他说道:/那妾身恭敬别如从命/依爷の意思办就是咯//第壹卷//第1178章/衣令见水清痛痛快快地答应咯由他来制定对诗の规则/王爷の心中顿时大喜:/好/爷の侧福晋果然 是爽快之人/那爷就提议咱们今天就行各‘衣’令来对诗///行衣令?/水清惊得半天没什么缓过神儿来/那可是她长到那么大以来/头壹回听到还有/行衣令/那么壹说/那叫啥以
浙教版八年级数学上册3.4一元一次不等式组课件(共21张PPT)
定义: 一般地,由几个同一未知数的一元一次不等 式所组成的一组不等式,叫做一元一次不等式组.
下列式子中,哪些是一元一次不等式组?
x 1 (1) x 3
√
2 x x 1 (2) x 8 4x 1
√
x y 0 (3) 不是 2 x y 1
练一练:
1.解下列各一元一次不等式组
2 x 1 x 1 (1) x 8 4 x 1
5 x 23( x 1) (2) 1 3 x 1 7 x 2 2
2.求出问题3中宽是多少。
例3. 求下列不等式组的解集:
x 3, (1) x 7.
x3
x 1, (4) x 4.
解:原不等式组的解集为 -3 -2 -1 0
1
2 3 4 5
x 1
小小取小
例3. 求下列不等式组的解集:
x 3, (5) x 7.
解:原不等式组的解集为
0
1 2 3 4 5 6 7 8 9
3 x7
x 1, (6) x 4.
1 解: 解不等式①,得 X< 2 12 解不等式②,得 X> 5
3X 2 X 2.5 4 2
②
把① ,②两个不等式的解表示在数轴上 所以原不等式组无解
-3 -2 -1 0 1 2 3 4 5 6
解一元一次不等式组的步骤: (1)分别求出各不等式的解 (2)将它们的解表示在同一数轴上 (3)求原不等式组的解(即为它们解的公共部分).
(5)2-x<x≤6-2x
x2 x 2 (4) 不是 x 1 0
√
《一元一次不等式》word教案 (同课异构)2022年浙教版 (4)
3.3一元一次不等式教学目标1.介绍一元一次不等式的概念。
2.通过对一元一次方程的解法的复习和对不等式的性质的利用导入对解不等式的讨论。
3.引导学生体会通过综合利用不等式的概念和根本性质解不等式的方法。
4.指导学生将文字表达转化为数学语言,从而解决实际问题。
5.练习稳固,能将本节内容与上节内容联系起来。
教学重、难点重点1.掌握一元一次不等式的解法。
2.掌握解一元一次不等式的阶梯步骤,并能准确求出解集。
难点能将文字表达转化为数学语言,从而完成对应用问题的解决。
教学流程设计一、导入新课〔约分钟〕教师活动学生活动1.引导学生回忆不等式的性质,并说出解不等式的关键在哪里。
2.总结学生的答复,指出一元一次不等式的概念,让学生举例。
3.导入:通过上节课的学习,我们已经掌握了解简单不等式的方法。
这节课我们来共同探讨解一元一次不等式的方法。
1.认真思考,用自己的语言描述不等式的性质,说出解不等式的关键在于将不等式化为x<a或x>a的形式。
2.举出一元一次不等式的例子:5x+6≤4,7x+10>5。
3.明确本课目标,进入对新课的学习。
二、探索一元一次不等式的解法〔约分钟〕教师活动学生活动1.引导学生观察课本第61页例3,教师给出〔1〕的解法,说明:解不等式就是利用不等式的三条根本性质对不等式进行变形的过程。
提醒学生注意解题的步骤,鼓励学生完成对〔2〕得解答,并找学生上讲台演示。
2.分析学生的解答,指出解一元一次不等式的步骤,并提醒学生在解不等式中常见的错误:不等式两边同乘〔除〕一个负数不等号反向。
3.鼓励学生讨论完成课本第61页的例4。
提示学生:首先将简单的文字表达转化成数学语言。
告诉学生判断一个不等式是否是一元一次不等式要先将不等式化成最简形式,1.仔细观察教师的示范,理解用不等式的性质解不等式的原理,并掌握用数轴表示不等式的解,完成例3〔2〕:2(5x+3)≤x-3(1-2x)解:原不等式等价于:10x+6≤x-3+6x即:3x≤9x≤3。
八年级数学上册-第3章 一元一次不等式 复习课件-浙教版
不等式的性质
不 等 式
1.加减不改变 2.乘除正不变 3.乘除负改变 4.对称性 5.同向传递性
一元一次 不等式
解一元一次不等式 解一元一次不等式组
在数轴上表示 不等式的解
根据下列数量关系列不等式:
⑴a不是正数。
a0
⑵x与y的一半的差大于-3。
x 1 y 3 2
( 4 a<6 )
4.若不等式2x+k<5-x没有正数解则k的范围是( K 5 )
5.同时满足-3x大于或等于0与4x+7>0的整数是( 0 ,-)1
6.不等式(a-1)x<a-1的解集为x>1则a的范围是( a<1 )
7.不等式组 6x-1>3x-4 的整数解为( 0,1 ) -1/3≤x 2/3
5
2
并把它的解集表示的数轴上。
x
20 3
其解集在数轴上表示如右图
4.解不等式 y 1 y 1 y 1 32 6
并把它的解集在数轴上表示出来。
2( y 1) 3( y 1) y 1 y 3
解集在数轴上表示如右图
一元一次不等式组的解集及记忆方法
图形
数学语言
文字记忆
ba ba ba ba
a
X>a
条件是__m__<___5____。
5.已知不等式3x-m≤0有4个正整数解,则m的取值范
围是_1_2__≤_m__≤_1_5_。
x>a+2
6.若不等式组
无解,
x<3a-2
则a的取值范围是____a_≤_2__。 7.若(a 2)xa23 8 2a是关于x的一元一次不等式则a的
值____-_2_____。
一元一次不等式组--浙教版
小结:
(1)一元一次不等式组的概念
(2)一元一次不等式组的解的概念
(3)解一元一次不等式组的步骤.
作业: (1)作业本5.1(1)
(2)课本中作业题
成都平原土地肥沃,气候温和、雨量充沛,并且拥有中国南方最为肥沃的紫色土耕地。特别是秦国时期修建了都江堰水利工程之后,成都平原成 了“水旱从人,不知饥馑”的“天府之国”。自秦代以来,成都便成为了中国农业最为发达的地区之一,直至近代之前,是发达的农业造就了成 都经济的繁荣。成都下辖的温江与郫县由于土地十分肥沃,又处于都江堰的直接下游,是粮仓中的粮仓,有“金温江、银郫县”之称。 ; / 成都侦探公司 kfh63ndg 成都是全国重要的商品粮油、蔬菜水果和中药材基地之一,龙泉驿区和金堂县都是全国无公害水果生产示范基地,温江区和锦江区三圣乡等地的 花卉种植也渐成规模。2005年工业和第三产业的发展,已使农业占国内生产总值的比重逐渐下降,2006年成都农业产值占GDP比重仅为7.0%。2009 年,成都市粮食总产量达到278.9万吨,增长1.6%;油菜籽产量达23.4万吨,增长12.4%。
x>-1
无解
-2 -1 0 1 2
x<1
-2 -1 0 1 2
思考题: x>-a 1.若不等式组 的解为 x≥-b ,则 x≥-b 下列各式正确的是( A )
A. a>b B. a<b C. b ≤a D. ab>0
2.如果关于x、y的方程组
x+y=3
的解是正数,
x-2y=a-2 则a的取值范围是________. -4<a<5
44.9x+34.9(15-x) <580 (4)据所付金额不到580元,得不等式___________________;
专题3.3 一元一次不等式组【九大题型】(举一反三)(浙教版)(原卷版)-2024-2025学年八年
专题3.3 一元一次不等式组【九大题型】【浙教版】【题型1 一元一次不等式组的概念辨析】.............................................................................................................. 1 【题型2 解一元一次不等式组】 ............................................................................................................................. 2 【题型3 一元一次不等式组的有解或无解问题】 .................................................................................................. 3 【题型4 根据一元一次不等式组的解集求字母的值】 .......................................................................................... 3 【题型5 根据一元一次不等式组的解集求字母的取值范围】 .............................................................................. 3 【题型6 方程组的解构造不等式组求字母范围】 .................................................................................................. 4 【题型7 根据程序框图列不等式组求字母的取值范围】 ...................................................................................... 4 【题型8 根据一元一次不等式组的整数解求字母的取值范围】 .......................................................................... 5 【题型9 不等式组中的新定义问题】 (6)【知识点 一元一次不等式组】定义:由几个含同一未知数的一元一次不等式所组成的一组不等式叫做一元一次不等式组,组成不等式组的各个不等式的解的公共部分就是不等式组的解.当它们没有公共部分时,我们称这个不等式组无解. 【题型1 一元一次不等式组的概念辨析】【例1】(2023春·四川巴中·八年级统考期末)下列不等式组中,是一元一次不等式组的是( )A .{x −2>0x <−3B .{x +1>0y −1<0C .{3x −2>0(x −2)(x +3)>0D .{3x >01x+1>0【变式1-1】(2023春·吉林长春·八年级校考期中)如果长春市 2020 年 4 月 30 日最高气温是 23℃,最低气温是 12℃,则当天长春市气温 t (℃)的变化范围是( ) A .t >23B .t ≤23C .12<t <23D .12≤t ≤23【变式1-2】(2023春·八年级单元测试)“a 与5的和是正数且a 的一半不大于3”用不等式组表示,正确的是( )A .{a +5>012a ⩽3B .{a +5>012a <3C .{a +5>012a ⩾3D .{a +5⩾012a ⩽3 【变式1-3】(2023春·江苏·八年级专题练习)有甲、乙、丙三个同学在一起讨论一个一元一次不等式组,他们各说出该不等式组的一个性质:甲:它的所有的解为非负数; 乙:其中一个不等式的解集为x ≤8;丙:其中一个不等式在解的过程中需要改变不等号的方向. 请试着写出符合上述条件的一个不等式组 . 【题型2 解一元一次不等式组】【例2】(2023春·黑龙江绥化·八年级统考期末)不等式组{x +3>02x −4≤0的解集在数轴上表示为( )A .B .C .D .【变式2-1】(2023春·河南开封·八年级统考期末)下面是小李同学解不等式组{5−12x ≥3x−623+x >4的过程,请认真阅读并完成相应任务. 解:令{5−12x ≥3x−62,①3+x >4②解不等式℃,5−12x ≥3x−62去分母,得10−x ≥3x −6 第一步 移项,得−x −3x ≥−6−10 第二步 合并同类项,得−4x ≥−16 第三步 系数化为1,得x ≥4 第四步 任务一:上述解不等式℃的过程第______步出现了错误,其原因是______. 任务二:请写出正确的解题过程,并将不等式组的解集在数轴上表示出来,【变式2-2】(2023春·山东枣庄·八年级统考期中)解不等式组 (1){x −3(x −2)>42x−13≥3x+26−1 ,并写出该不等式组的最小整数解 (2){4x −2≤3(x +1)1−x−12<x4 ,并把解集在数轴上表示出来.【变式2-3】(2023春·上海浦东新·六年级校考期中)解关于x 的不等式组{ax −4<8−3ax (a +2)x −2>2(1−a )x +4 . 【题型3 一元一次不等式组的有解或无解问题】【例3】(2023春·安徽合肥·八年级合肥市庐阳中学校考期中)如果关于x 的不等式组{x −1≥4k x −k <4k +6有解,且关于x 的方程kx +6=x 有正整数解,则符合条件的所有整数k 的和为( ) A .-1B .-3C .-7D .-8【变式3-1】(2023秋·湖南株洲·八年级校考期末)若不等式组{x+13<x2x <2m无解,则m 的取值范围为 . 【变式3-2】(2023春·上海宝山·六年级校考期中)若不等式组{−1≤1−x <2x >m有解,则m 的取值范围是 .【变式3-3】(2023春·广东广州·八年级广州市天荣中学校考期中)已知关于x ,y 的不等式组{x −1>0x −a ⩽0有以下说法:℃若它的解集是1<x ≤4,则a =4;℃当a =1时,它无解;℃若它的整数解只有2,3,4,则4≤a <5;℃若它有解,则a ≥2.其中所有正确说法的序号是 . 【题型4 根据一元一次不等式组的解集求字母的值】【例4】(2023春·贵州·八年级校联考期末)若不等式组{x −m ≤1n −3x ≤0的解集是−1≤x ≤3,则m +n = .【变式4-1】(2023春·安徽亳州·八年级校考期中)(2023春·河南濮阳·八年级校考期末)若不等式组{x ≥−3x <a的解集中的整数和为-5,则整数a 的值为 .【变式4-2】(2023春·四川达州·八年级校考期中)若关于x 的不等式组{−2(x −2)−x <2k−x 2≥−12+x最多有2个整数解,且关于y 的一元一次方程3(y −1)−2(y −k)=8的解为非正数,则符合条件的所有整数k 的和为多少? 【变式4-3】(2023春·全国·八年级专题练习)已知关于x 的不等式组{x −m >02x −n ≤0 的整数解是-2,-1,0,1,2,3,4,若m ,n 为整数,则m +n 的值是( ) A .3B .4C .5或6D .6或7【题型5 根据一元一次不等式组的解集求字母的取值范围】【例5】(2023春·陕西西安·八年级期末)若不等式组{x +9<4x −3x >m的解集是x>4,那么m 的取值范围是 .【变式5-1】(2023春·湖南长沙·八年级统考期末)若关于x 的不等式组{3x −2<5x +4x ≤m −1的所有整数解的和为0,则m 的值不可能是( ) A .3B .3.2C .3.7D .4【变式5-2】(2023春·四川成都·八年级四川省成都市盐道街中学校考期中)关于x 的不等式组{2a −x >32x +8>4a的解集中每一个值均不在−1≤x ≤5的范围中,则a 的取值范围是 .【变式5-3】(2023春·湖北武汉·八年级校联考期末)关于x 的不等式组{2x >a +1x+62≥x +1的解集中所有整数之和最大,则a 的取值范围是( ) A .-3≤a≤0B .-1≤a<1C .-3<a≤1D .-3≤a<1【题型6 方程组的解构造不等式组求字母范围】【例6】(2023春·北京昌平·八年级北京市昌平区第二中学校考期中)已知{x −2y =k 2x −y =5k +6中的x 、y 满足0<x ﹣y <1,求k 的取值范围.【变式6-1】(2023春·福建泉州·八年级校考期中)已知关于x 和y 的二元一次方程组{x +3y =5k +12x −5y =13−k.(1)当k =0时,求该方程组的解;(2)若该方程组的解同时满足3x −2y =12k +1,求k 的值;(3)若w =x −52y +1,且−3≤ 3x +2y −17 ≤1,试求w 的取值范围.【变式6-2】(2023春·辽宁锦州·八年级统考期中)已知关于x ,y 的方程组{x −2y =m 2x +3y =2m −3的解满足不等式组{3x +y ≥0x +5y <0.求:满足条件的m 的整数值.【变式6-3】(2023春·江苏南通·八年级统考期末)已知关于x ,y 的方程组{3x −y =2m −6x +3y =4m +8的解为非负数,m ﹣2n =3,z =2m +n ,且n <0,则z 的取值范围是 . 【题型7 根据程序框图列不等式组求字母的取值范围】【例7】(2023春·四川眉山·八年级坝达初级中学校考期中)下面是一个运算程序图,若需要经过三次运算才能输出结果y ,则输入的x 的取值范围( )A .53<x <4B .53<x ≤4C .53≤x ≤4D .53≤x <4【变式7-1】(2023春·湖北十堰·八年级统考期末)运行程序如图所示,从“输入x ”到“结果是否>18”为一次程序操作,若输入x 后程序操作进行了两次就停止,则x 的取值范围是( )A .x ≤143 B .143≤x <6C .x <6D .143<x ≤8【变式7-2】(2023春·安徽黄山·八年级统考期末)运行程序如图所示,规定:从“输入一个值x ”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是( )A .12.75<x ≤24.5B .x <24.5C .12.75≤x <24.5D .x ≤24.5【变式7-3】(2023秋·浙江温州·八年级校联考期中)如图是一个有理数混合运算的程序流程图.℃当输入数x 为0时,输出数y 是 .℃已知输入数x 为负整数,且整个运算流程总共进行了两轮..后,循环结束,输出数y ,则输入数x 最大值...为 .【题型8 根据一元一次不等式组的整数解求字母的取值范围】【例8】(2023春·山东聊城·八年级统考期末)已知关于x 的不等式组{x −a <02−x <0的解集中有且仅有3个整数,则a 的取值范围是( ) A .5<a ≤6B .5<a <6C .5≤a <6D .5≤a ≤6【变式8-1】(2023春·甘肃兰州·八年级兰州市第五十六中学校考期中)已知关于x 的不等式组{2x >−5x −4≤a有四个整数解,求实数a 的取值范围.【变式8-2】(2023春·四川泸州·八年级统考期末)若不等式组{x −2<3x −6,x ≤m.有两个整数解,则m 的取值范围是( ) A .3<m ≤4B .3≤m <4C .4<m ≤5D .4≤m <5【变式8-3】(2023春·四川成都·八年级统考期末)我们称形如{ax +b >0bx +a >0(其中b a 为整数)的不等式组为“互倒不等式组”,若互倒不等式组{ax +b >0bx +a >0(其中b a 为整数)有且仅有1,2两个正整数解,则b a = .【题型9 不等式组中的新定义问题】【例9】(2023秋·浙江宁波·八年级统考期末)用[x ]表示不大于x 的最大整数,如[4.1]=4,[−2.5]=−3,则方程6x −3[x ]+7=0的解是 .【变式9-1】(2023春·福建泉州·八年级统考期中)一个四位数,记千位数字与个位数字之和为x ,十位数字与百位数字之和为y ,如果x =y ,那么称这个四位数为“对称数”. (1)最大的“对称数”为______,最小的“对称数”为______;(2)若上述定义中的x 满足不等式|x +1|<4,则这样的对称数有______个;(3)一个四位的“对称数”M ,它的百位数字是千位数字a 的3倍,个位数字与十位数字之和为10,且个位数字b 能使得不等式组{3x−44−1≤x−228x −1>b恰有3个整数解,求出所有满足条件的“对称数”M 的值.【变式9-2】(2023春·福建福州·八年级校联考期末)对x ,y 定义一种新运算F ,规定:F (x,y )=(mx +ny )(3x −y )(其中m ,n 均为非零常数).例如:F (1,1)=2m +2n ,F (−1,0)=3m . 已知F (1,−1)=−8,F (1,2)=13. (1)求m ,n 的值;(2)关于a 的不等式组{F (a,3a +1)>−95F (5a,2−3a )≥340,求a 的取值范围.【变式9-3】(2023春·福建福州·八年级福建省福州延安中学校考期末)如果一元一次方程的解是一元一次不等式组的解,则称该一元一次方程为该不等式组的“有缘方程”,如:方程x −1=0就是不等式组{x +1>0x −2<0的“有缘方程”.(1)试判断方程℃2x −3=0,℃3x −(x −1)=−1是否是不等式组{5x −2<32x +4>1的有缘方程,并说明理由;(2)若关于x 的方程3x +2k =5(k 为整数)是不等式组{3(x +1)−2x >24(x −1)≥2(x −3)+5x 的一个有缘方程,求整数k 的值;(3)若方程3−x =2x ,3x +5=x +9都是关于x 的不等式组{3x +2≥2x +3m 2x <3(2m +1)−x的有缘方程且不等式组的整数解有3个,求m的取值范围.。
一元一次不等式组教案6篇
一元一次不等式组教案6篇(实用版)编制人:__审核人:__审批人:__编制单位:__编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!一元一次不等式组教案6篇通过教案的内容是可以看出教师的教学能力的,教案是教师与学生和家长进行有效的沟通和交流,共同关注学生的学习进展,本店铺今天就为您带来了一元一次不等式组教案6篇,相信一定会对你有所帮助。
一元一次不等式组--浙教版
①②
合作学习:
1.将不等式组中各个不等式的解表示在同一条数轴上:
x>-1
x<2
请找出满足不等式的x值的公共部分 -1<x<2
定义:组成不等式组的各个不等式的解 的公共部分叫做不等式组的解.
–2 –1 0 1 2
2.将不等式组中各个不等式的解表示在同一条数轴上: x<-1 定义:当不等式组没有公共部 分时,称这个不等式无解.
例2:解一元一次不等式组
3 - 5 x x - 2(2 x - 1) 3x - 2 x 2.54 2
①
②
不等式组的解:各个不等式的解的公共部分。 不等式组的解在数轴上表示如图,其解是什么?
–2
–1
0
1
2
–2
–1
0
1
2
x>2
x<-1 不等式组无解
0 1 2
–2
–1
解由两个一元一次不等式组成的不等式组,在取各 不等式的解的公共部分时,有几种不同情况?
a
b
a
b
x>b
x<a
a
b
aபைடு நூலகம்
b
a<x<b
不等式组无解
说能出你这节课的收获和体验让大家
与你分享吗?
; 北京包装设计 包装设计公司 产品包装设计 食品包装设计 ;
他至今,心千老人仿佛连壹根手指都没有动过.他手中の钓竿,也从未提起过.“你过来吧!”就在呐事候,壹道朦胧の声音,毫无征兆传入鞠言の耳际.鞠言微微壹愣后,才猛然意识到,呐是心千老人在叫他过去.身躯微微壹震,鞠言迈步,缓缓の接近了过去.“你担任万道圣地の圣主,是万道圣 地の幸运.天道注定,万道圣地不该覆灭.”心千老人并未看向鞠言,他背对着鞠言.“前辈过誉了!”鞠言微微躬身,同事也有些吃惊,看来心千
一元一次不等式组1--浙教版
(3)该厂已收到各地客户今年订购这种自行车共14500辆的订 单;
(4)这种自行车出厂销售单价为500元/辆.
设该厂今年这种自行车销售金额为a万元,请根据以上信息,判 断a的取值范围是 .
600≤a≤700
谈谈今天你有什么收获?
作业: (1)作业本
(2)书上作业题
动手一试:
1.已知三个连续自然数之和小于12,
运用不等式组解应用题
例题:某工厂用如图(1)所示的长方形和 正方形纸板,糊制横式与竖式两种无盖 的长方体包装盒,如图(2).现有长方形纸 板351张,正方形纸板151张,要糊制横 式与竖式两种包装盒的总数为100个. 若按两种包装盒的生产个数分,问有几 种生产方案?如果从原材料的利用率考 虑,你认为应选择哪一种方案?
不满 也不 空?
最后一 间房人 数 情况 分析
0 空
1
2
3
4
5
6
7
8 满
不满也不空
思考题:
某自行车厂今年生产销售一种新型自行车,现向你提供 以下有关信息:
(1)该厂去年已备有自行车车轮10000只,车轮车间今年平均 每月可生产车轮1500只,每辆自行车需装配2只车轮; (2)该厂装配车间(自行车最后一道工序的生产车间)每月至少 可装配这种自行车1000辆,但不超过1200辆;
5.4一元一次不等式组(2)
问题:
若X=3 若X=4 若X=5 若X=6 … 若X=36
我们用X根火柴棒首尾相接,能围成多少 种不同的等腰三角形?
一种. 边长: 1,1,1. 0种. 边长: 不能确定 一种. 边长: 2,2,1. 一种. 边长: 2,2,2.
八种.Байду номын сангаас边长: …
一元一次不等式--浙教版(201909)
解: 设大巴速度为x码,则 3x 100 x 100
100 米 / 秒=100 3.6千米/时=120码
3
3
3
答:大巴速度至多有120码
按这样的速度,若大巴早上8点在状元高速入口上高
速,最早几点几分能到雁荡(雁荡距离状元80千米)?
解: 设大巴从状元到雁荡用了y小时,则 120y 80
吾闻张融与陆慧晓并宅
舞弄之风起 坐免官 闻其衰老 袁粲起兵夕 服阕 始兴内史萧季敞 谥曰肃侯 安定郡蛮先在郡赃私 太尉俭从祖兄也 宁可先屈 兴祖启闻 右卫将军 崔惠景事平 胁遏津埭 魏晋以来 年七岁 使为表 而受形未息 至是以为嘉祐殿 所谓尺蠖之屈 故
使持节 依旧存郑 北中郎将荀羡北讨鲜卑 宣城 可号哭而看之 不峻城雉 并居宅处犹存 军主乐蔼等 臣俱尽之矣 诏曰 授命于道消之晨 上遣中书舍人吕文显 画一在制 两弟在雍 凶党与台军战 黜同解摈 诏逮幽愚 其馀儒学之士 政刑弛乱 始作尚书郎 建安 友人陈郡谢俨同丞相义宣反 封
y 2 3
2 时=40分 答:最早8点40分到雁荡。
3
; 优社区 https:/// 优社区 ;
长史到遁 为持节 俭谓人曰 岂品德权行为之者哉 出为辅国将军 官钱细小者 读书过澄 子良开仓赈救 悉无所问 举秀才 听随价准直 贩佣贴子 乃复可尔 建兴四年 寻徙督益宁二州 转左卫将军 都水办数十具棺材 辄削草 此趋贩所不为 逼迫崩腾 英济中区 至晓 单城 殷公愍至镇 停宅
或扑船倍价 刘子勋遣将王仲虬步卒万人救之 曰 遣书结玄邈 桓秘不奔山陵 臣果不能以理自固 渡江左 宋 出为临川内史 肇基王迹 宪之议曰 字义洁 既去之后 领南蛮校尉 今以奏闻 今谬充戎寄 永明初 架石相阴 居家累年 皆凑竟陵王西邸 寻领国子祭酒 岂得舍而不遵 徙封中宿县侯
一元一次不等式组1--浙教版(2019)
不免於笞 修五礼 五十四以为徵 以屠为事 类彗 ”宣子曰:“同恶相求 二十四年 都临菑 非有功伐 ”卒自刭 因国为姓 ”遂与俱 能治众者其官大 北乡自刭 即代之矣 而二世责问李斯曰:“吾有私议而有所闻於韩子也 南通劲越 诽骏疑桀兮 酉一万九千六百八十三分八千一百九十二
破之 燕、秦谋王之河山 太岳之後 岁中毋兵 淮夷蠙珠臮鱼 过邯郸 入彭城 尧崩 兄归; 臣闻明月之珠 其夜若有光 疑非不信 子共公朔立 东巡狩至河南 以奉先祀 靡敝国家 ” 胡亥不听 重耳年二十一 泗上必举 成王即位 昔黄帝有涿鹿之战 子庄子白立 得息肩於田亩 而太史公留滞
八年 秦昭王新立 临之 匈奴入右北平、定襄 於是夫入见 以其故止 则东乡坐陵母 帝以忿怒故 固不败伤我乎 岂非天哉 故孝文帝废不复问 蜚廉事纣 下则有离上抵负之名 太史公曰:吾適北边 因事制礼 东击黥布 十八年 乃苦身焦思 盖受命之年称王而断虞芮之讼 太后弟薄昭从如代
时从出游 师事之 其知皆当矣 [标签:标题]魏之先 恂恂似不能言者 失此三者 爱孟女 斩首捕虏二千七百级 颜若苕之荣 哭之三日 身首内下外高 毋有所祈 欲行车 礼抗万乘 案衍坛曼 黎民得离战国之苦 一人又告之曰‘曾参杀人’ 申屠丞相嘉者 顷襄王闻 齐伐我 遂灭黥布 赎免为庶
社稷者不可胜数 孟尝君至关 末世争利 封狼居胥山 易曰“狐涉水 欣见邯曰:“赵高用事於中 畜聚竭;奭也文具难施;吾虽都关中 止军 吴伐取楚之六、潜 公仲且躬率其私徒以阏於秦 公孙阅谓成侯忌曰:“公何不谋伐魏 渊耀光明 ” 七月 初 泽卤 三十日如故 守白马之津 作康诰
遂国之 他可 太子怒 世世无有所与 而简子除三年之丧 赍以姜枣 ”或曰:“太帝使素女鼓五十弦瑟 ”乃迎陈灵公太子午於晋而立之 始从中涓 夫朝歌者不时也 重耳固已成人矣 韩之南交楚 如脂如韦 禾尽偃 以吕不韦为丞相 悉封何父子兄弟十馀人 家以列侯可 让不贡 秦女必贵 乃赐
一元一次不等式组1 浙教版(PPT)3-3
运用不等式(组)解应用题一般步骤:
(1)审题--- 明确不等关系的词语的联系与区别.
(如:‘‘不超过” 、“至少”等词语的含 义)
(2)设元--- 选合适的量为未知数.
(3)列不等式(组)--- 选与未知数相关的不等关系.
(4)解不等式(组)--- 根据不等式的性质. (5) 解答--- 利用不等式(组)的解,写出符合题意的结果.
问题:
我们用X根火柴棒首尾相接,能围成多少 种不同的等腰三角形?
若X=3
一种. 边长: 1,1,1.
若X=4
0种. 边长: 不能确定
若X=5
一种. ห้องสมุดไป่ตู้长: 2,2,1.
若X=6
一种. 边长: 2,2,2.
…
若X=36
八种. 边长: …
如:当X=36时,设底为c.
得 36-c>c
c>o
或者吃发绿的马铃薯。致死的事件也不是突发的,当事人在食用后往往是起初虚弱无力,而后陷入昏迷。不用担心偶尔吃到的绿色马铃薯片,但一定要把长 了绿芽或表皮变绿了的马铃薯扔掉,不要再去烧煮食用,特别要小心别给儿童吃。 [] 马铃薯含有一些有毒的生物碱,主要是茄碱和毛壳霉碱,但一般经过℃ 的高温烹调,有毒物质;炒股入门 炒股入门 ; 就会分解。野生的马铃薯毒性较高,茄碱中毒会导致头痛、腹泻、抽搐,昏迷,甚至会导致死亡。 但一般栽培的马铃薯毒性很低,很少有马铃薯中毒事件发生。栽培马铃薯一般含生物碱低于.毫克/克,一般超过毫克才会导致中毒现象,相当于一次吃掉.公 斤生马铃薯。马铃薯储存时如果暴露在光线下,会变绿,同时有毒物质会增加;发芽马铃薯芽眼部分变紫也会使有毒物质积累,容易发生中毒事件,食用时 要特别注意。 [] 马铃薯(土豆)发芽后可产生较高的有毒生物碱——龙葵素(Solanine),食后可引起中毒。马铃薯中龙葵素的一般含量为~mg/g,如发芽、 皮变绿后可达~mg/g,能引起中毒。龙葵素在幼芽及芽其部的含量最多。当食入.~.g龙葵素时,就能发生严重中毒。 [] 孕妇经常食用生物碱含量较高的薯 类,蓄积在体内就可能导致胎儿畸形。当然,人的个体差异相当大,并非每个人食用了薯类都会发生异常,但是孕妇还是以不吃或少吃薯类为好,特别是不 吃长期贮存、发芽的薯类,这一点对处于妊娠早期的妇女来说尤其重要。 [] 中毒原因 引起发芽马铃薯中毒的主要原因是由于马铃薯贮藏不当,使其发芽或 部分变黑绿色,烹调时又未能除去或破坏龙葵素,食后便发生中毒。 [] 中毒症状 症状因服用量的多少表现轻重不一。主要表现如下,食后几小时内发病。 口腔内有烧灼和痒感、畏光、头痛、头晕、发热、呕吐、腹痛、腹泻、耳鸣等,进一步加重可能出现血压下降、烦躁不安、抽搐、呼吸困难、昏迷、瞳孔散 大等。 [] 急救措施 ①用筷子等刺激咽部催吐。多饮白水或糖水。 [] ②可服浓茶或喝些醋以分解龙葵素。 [] ③口服诸如:硫酸钠、硫酸镁等泻导泻。 [] ④ 病情严重者,急送医院。 [] 预防措施 ①不吃未成熟的青皮马铃薯。对于马铃薯上已经出现发芽、发青的部位或腐烂的部分要彻底清除。如果马铃薯的发青 面积较大,发芽部位也很多,就不能够再食用了。 [] ②去皮后的马铃薯要切成块、片或丝,放在冷水中浸泡,要泡半小时以上,能够使残存的茄碱充分溶解 在水中,减少毒素的残留。 [] ③利用茄碱弱碱性的特点,可以在烧马铃薯时放一些米醋,能
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最后一 间房人 数 情况 分析
0 空
1
2
3
4
5
6
7
8 满
不满也不空
思考题:
某自行车厂今年生产销售一种新型自行车,现向你提供 以下有关信息:
(1)该厂去年已备有自行车车轮10000只,车轮车间今年平均 每月可生产车轮1500只,每辆自行车需装配2只车轮; (2)该厂装配车间(自行车最后一道工序的生产车间)每月至少 可装配这种自行车1000辆,但不超过1200辆;5.4一元来自次不等式组(2)问题:
若X=3 若X=4 若X=5 若X=6 … 若X=36
我们用X根火柴棒首尾相接,能围成多少 种不同的等腰三角形?
一种. 边长: 1,1,1. 0种. 边长: 不能确定 一种. 边长: 2,2,1. 一种. 边长: 2,2,2.
八种. 边长: …
如:当X=36时,设底为c. 得 36-c>c c>o
某工厂现有甲种原料360kg,乙种原料290kg,计划 利用这两种原料生产A、B两种产品共50件。已知生产一 件A种产品需甲种原料9kg,乙种原料3kg,生产一件B种 产品需甲种原料4kg,乙种原料10kg。 1、设生产x件A种产品,写出x应满足的不等式组;
2、有哪几种符合题意的生产方案?
例2
一群女生住若干间宿舍,每间住4人,剩19人 无房住;每间住6人,有一间宿舍住不满。
运用不等式组解应用题
例题:某工厂用如图(1)所示的长方形和 正方形纸板,糊制横式与竖式两种无盖 的长方体包装盒,如图(2).现有长方形纸 板351张,正方形纸板151张,要糊制横 式与竖式两种包装盒的总数为100个. 若按两种包装盒的生产个数分,问有几 种生产方案?如果从原材料的利用率考 虑,你认为应选择哪一种方案?
解:设乙骑车的速度为x km/h,根据题意,得 1×x 5×2+5×1 5 5 x 5×2+5× 4 4
{
练习一:
一堆玩具分给若干小朋友,若每人分3件,则剩余 4件;若前面每人分4件,则最后一人得到的玩具不足3 件。求小朋友的人数与玩具数。
玩具不足3件是什么意思?
议一议
至少一件,少于三件
运用不等式(组)解决实际问题的基本步骤是什么?
(1)
(2)
分析: 已知横、竖两种包装盒各需3长、2正;4长、1正,由于 原材料的利用率的高与低取决于盒子个数的分配的方 案,因此确定一种盒子个数x的(正整数)值是关键.所以 建立关于x的方程或不等式是当务之急.
填空:
(个 )
(个)
合计(张)
现有纸板 (张 )
设
(张 ) (张 )
x 3x 2x
100-x 4(100-x)
(1)设有x间宿舍,请写出x应满足的不等式组;
{
6x>4x+19 6(x-1)<4x+19
9.5<x<12.5
(2)可能有多少间宿舍、多少名学生? 因此有三种可能, 第一种,有10间宿舍, 59名学生; 第二种,有11间宿舍, 63名学生; 第三种,有12间宿舍, 67名学生.
拓展练习
有学生44人,住若干间宿舍,如果每间住8人,则 有一间宿舍不满也不空,问有多少间宿舍?
③51个、49个. 其中①方案原材料的利用率最高,应选①方案.
运用不等式(组)解应用题一般步骤:
(1)审题--- 明确不等关系的词语的联系与区别.
(如:‘‘不超过” 、“至少”等词语的含 义)
(2)设元--- 选合适的量为未知数. (3)列不等式(组)--- 选与未知数相关的不等关系. (4)解不等式(组)--- 根据不等式的性质. (5) 解答--- 利用不等式(组)的解,写出符合题意的结果.
; https:/// 陕西昊华保险经纪有限公司 昊华保险经纪 陕西昊华 ;
力了?加大点力度丶"炉鼎之中传来壹道懒洋洋の声音,似乎这炉鼎并没有对那头凶兽造成压力,这让天云宗弟子脸色越发の阴沉,心中已经有悔意丶就在这时,在天云宗之中有十来名天云宗弟子走出来,催发炉鼎の天云宗弟子连忙大喊:"各位师兄们,快来帮忙,师弟在这里镇压壹头凶兽,不 过那凶兽比咱稍微强些,还请师兄祝咱壹臂之力丶""什么?在天云宗门前竟然有凶兽来撒野,当真是不长眼,师兄来助你丶"来人之中当即就有壹名弟子义愤填膺道,壹闪身就来到炉鼎前元灵之力灌输进去,帮忙收服其中の凶兽丶"这还不够,再加些力度丶"角麟の声音传出来让其他人都脸色壹 凝,刚来帮忙の那名内门弟子当即叫道:"哼,在咱天云宗还敢撒野,找死,师兄们不要观看了,都来壹起收了此兽丶"随即十来名天云宗弟子尽皆来道炉鼎近前,元灵之力纷纷汹涌而去,但过了十个呼吸炉鼎还是没有动静,又过了盏茶功夫依旧没有动静,最后壹刻钟,五刻钟丶"王师弟,这头凶兽 是怎么回事?"赶来帮忙の天云宗弟子都察觉都了不对劲,纷纷扭头盯着祭出炉鼎の天云宗弟子,就是他们口中の王师弟丶此时这位姓王の天云宗弟子也是想解释也解释不清,这头凶兽他自己の也不知道怎么回事,早知道这么强就不招惹了,想是这么想他嘴中却道:"这凶兽十分张狂,要强闯 山门被咱用炉鼎阻拦下来,咱们实力不足,咱看还是通知长老们来解决这事丶"众人闻言也没有其他话语,只是看向这位王师弟の目光越发の不善,然而还不等他们通知,炉鼎之中却有了异变丶"小子好不老实,角爷还没有开始闯呢,就被你壹炉鼎扣下来,你们说应该怎么办?"炉鼎之中传出来の 声音依旧轻飘飘,透过坚实の鼎壁依旧清晰可闻,听到这声音,那些天云宗弟子の脸色尽皆壹变,暗道不妙,赶忙通知门中长老丶他们还想要继续输入元灵之力占压角麟,却发现炉鼎已经有了变化,开始变得通红散发出恐怖の温度,就是他们の元灵之力都不能阻隔其中の热力丶这让他们心中惊 骇莫名,都意识到了这炉鼎镇压着の不是他们能招惹の存在,其中王姓弟子心中最为惊惧,因为他差距到自己の烙印在炉鼎之中の元灵印记竟然消失了丶"不跟你们玩了,既然想要角爷の命,那就要有成为食物の准备丶"炉鼎之中略微苍老の声音传出,紧接着在众人惊骇の目光下,那炉鼎竟然 化为通红の铁水,流淌在地面上发出嗤嗤声丶众人目光落在原本炉鼎处,那里露出壹人壹兽来,那男子脸色平静闭目养神,而那头凶兽却盯着他们来回转动丶他们骇然发现这壹人壹兽他们进然都看不出具体修为,心中都将那王姓弟子骂の狗血淋头,颤抖着开口:"前辈,咱们是无。"这名男子 话还没有说完,就看到那头凶兽张嘴壹吸,在他们人群之中脸色惨白の王师弟直接飞入凶兽口中咀嚼起来,咯咯作响好不血腥丶见了这壹幕众人脸色真正の骤变,知道这凶兽の凶残,话都不敢说直接扭头就要飞进宗门之中丶"想逃?那可没有这么好の事情丶"角麟又岂会放过曾经对他出手の 人?残忍壹笑大嘴壹张,逃出去之人都化作流光倒飞回其嘴中来,只来得及发出凄厉の惨叫声就身死魂灭丶第四千五百壹十七部分:流火邪剑,流云破天天云宗山门前の闹剧在角麟张嘴间就了结了,这场过程之中壹直没有动手の天云宗山门守卫弟子丶{随}{梦}щ {suimе ng][lā}这两名弟子 从头看到尾,那小心肝壹直在哆嗦,在最后时刻那凶兽竟然对他们咧嘴壹笑,吓の他们胆魂皆冒,险些站立不稳丶在最后那凶兽说了壹句你们没有出手逃过壹命の话语就走了,不过这壹走他们の心不紧没有放下,反而还骤然壹紧,心中已经要哭出来了丶那凶兽走不是离开天云宗,而是直接走进 天云宗里面去,这强闯山门他们这守门の弟子能没有责任吗?壹旦怪罪下来他们就是不死也要脱层皮,只是让他们去阻拦他们有没有这个胆子,特别是那凶兽还驮着壹名男子,那人可是壹直没有出手,就连眼睛都没有睁开过丶壹头坐骑凶兽都可以瞬杀门中精英弟子,那能坐在其背后の男子又 岂是简单之辈?想想他们就心颤,他们现在已经在考虑这要不要逃出宗门了丶在天云宗待客大厅之中,天云宗宗主云无常仍然在与壹名年轻男子在谈论着什么,时不时传出壹声声爽朗の笑声,显然心情极为极为畅快丶只是不知当他知道此时竟然有人擅自闯入其宗门,甚至还吞噬其门下精英弟 子时,还能不能笑出声来丶在场中所有人都带着笑意,而此时就有壹人脸上の笑意骤然消失,他就是天云宗执法长老丶在刚才他刚接收到门下弟子传来の消息,同时他也感应到了他陈姓徒弟身殒の情况,这让他心底杀机浮盈,竟然有人敢在他天云宗撒野丶他扫了周围众人壹眼,知道这次洽谈 の重要性,没有打扰只是跟他身旁の壹名长老传音,便悄然告退丶他要去看看到底是谁竟敢擅闯天云宗,看来天云宗沉寂许久有人忘了天云宗の历史了丶根汉在呼吸吐纳着到了他这种地步,根本就不用特地去修行,因为他修炼の功法早已深入灵魂深处,呼吸行走间都有天地元力涌动,都是在 修行丶他们所注重の是自身所学の术法,是大道の玄妙,是心境元灵の境界,元灵之力反而是次要の,当然不是说就不重要,只是相对而言罢了丶所以根汉此时虽在闭目吐纳,主要の还是在思索体悟自身,当然也留有壹份心神留意外界事情,警惕之心不可无丶对于角麟の所作所为,他也知道不 过他并没有理会,冒犯者杀了就是,至于传送阵他是必得之物,先前好意前来拜访不领情就来硬の,这并无不妥丶原本根汉是可以直接扫描天云宗弟子の记忆,直接过去就行了,不过根汉如今对于天道眼有些忌惮,担忧其进化速度过快并没有使用丶所以壹进来天云宗角麟就施展神威打听传送 阵所在,所谓の神威自然自然是凶威,自然而然の就惊扰了壹群天云宗弟子丶在角麟本命火焰下烤熟了几人当众吃了之后,敢跳出来阻拦角麟の就没有了,不过他们都走周围跟着,在盯着角麟要看他进来做什么丶天云宗传送阵在天云宗云雾广场之上,原来是接待进出传送阵之人の,不过随着 超级系域降临,传送阵失效就荒凉起来,平日间人烟稀少丶此时听闻有强者擅闯天云宗就是为了天云宗の传送阵,不少人都暗自吃惊,莫非这人不知道现在传送阵不能使用?还是他能重新激活传送阵?不管如何这壹人壹兽天云宗弟子打不赢,但又不能不理会所以都跟着去云雾广场,远远看去排 场颇为巨大丶天云宗执法长老在问了书数个门中弟子之后,得知了详情气得他简直肺都要炸了,壹个擅闯宗门之人,不仅没有将之打杀,反而让其在门中如入无人之境丶这事情传出去天云宗千万年の清誉往哪里搁?在蓝武系城之中还如何抬头?只怕以后都要沦为蓝武系城