第一性原理计算TiN_111_B_省略_面的电子结构_成键特性和结合强度_牛建钢
新能源材料研究中的第一性原理计算
新能源材料研究中的第一性原理计算近年来,随着节能减排和环保意识的逐步加强,新能源的开发和利用已成为世界各国共同关注的焦点。
而为了更有效地提高新能源的利用效率和降低成本,科学家们开始转向新能源材料的研究和开发。
在这一过程中,第一性原理计算发挥着越来越重要的作用。
第一性原理计算是指基于量子力学理论和数学方法对材料的电子结构和性质进行计算和模拟。
这种计算方法的好处在于既能提供高精度的计算结果,又能对材料的微观结构和电子能带等性质进行深入分析,为新材料的设计和开发提供有力的支持。
在新能源材料研究中,第一性原理计算可以帮助科学家们确定材料的电子结构、晶格结构、热力学性质、光电特性等重要参数。
以太阳能电池材料为例,研究者可以通过第一性原理计算预测材料的光吸收性能、载流子输运特性和光电转换效率等重要指标,从而优化材料的能带结构和界面特性,提高太阳能电池的转化效率。
除了太阳能电池材料之外,第一性原理计算在其他新能源领域的研究中也发挥着重要作用。
比如,在固态氢储存材料的研究中,第一性原理计算可以用来预测材料的结晶形态、氢吸附能力和释放能力等关键性质,为研发更高效、更安全的氢储存材料提供支持。
在燃料电池材料的研究中,第一性原理计算可以预测氧化还原反应的能垒、电子传输特性和催化活性等参数,为提高燃料电池的效率和寿命提供重要帮助。
需要指出的是,尽管第一性原理计算具有高计算精度和深入分析的优点,但该方法也存在一些挑战和限制。
其中,计算复杂度是最主要的问题之一。
由于第一性原理计算需要对大量的原子和电子进行计算,因此计算量非常大,需要使用高性能计算机进行处理。
而由于计算复杂度高,一些材料的性质无法通过第一性原理计算来预测,需要通过实验来验证。
另一方面,第一性原理计算还需要与实验相结合,以验证计算结果的准确性和可靠性。
特别是在新能源材料研究中,第一性原理计算和实验之间的结合非常重要。
通过实验,科学家们可以验证计算结果,并不断优化计算模型,提高计算精度和可靠性。
第一性原理计算
第一性原理计算第一性原理计算是指利用基本的物理学原理和数学方程,通过计算机模拟来预测材料的性质和行为。
它是材料科学和凝聚态物理领域中一种非常重要的研究方法,可以帮助科学家们快速、高效地设计新材料,优化材料结构,预测材料的性能等。
首先,第一性原理计算是建立在量子力学原理之上的。
量子力学是描述微观世界中粒子运动和相互作用的理论,它提供了描述原子和分子行为的数学框架。
基于量子力学的第一性原理计算方法可以准确地描述原子和分子的结构、能量、电子结构等性质,为材料科学和工程领域提供了重要的理论基础。
其次,第一性原理计算的核心是求解薛定谔方程。
薛定谔方程是描述微观粒子运动的基本方程,通过求解薛定谔方程可以得到材料的电子结构和能量。
基于薛定谔方程的第一性原理计算方法可以准确地预测材料的电子能带结构、电子云分布、原子间相互作用等信息,为理解材料的性质和行为提供了重要的手段。
第三,第一性原理计算方法包括密度泛函理论、量子分子动力学、格林函数方法等。
这些方法在计算材料的结构、热力学性质、电子输运性质等方面都有重要应用。
通过这些方法,科学家们可以快速地筛选材料候选者,预测材料的稳定性和反应活性,设计新型的功能材料等。
第一性原理计算在材料科学和工程领域有着广泛的应用。
它可以帮助科学家们理解材料的基本性质,预测材料的性能,加速材料研发过程,降低研发成本。
同时,随着计算机技术的不断发展,第一性原理计算方法的计算速度和精度也在不断提高,为材料科学和工程领域的发展带来了新的机遇和挑战。
综上所述,第一性原理计算是一种基于量子力学原理的计算方法,可以准确地预测材料的性质和行为。
它在材料科学和工程领域有着重要的应用价值,可以帮助科学家们加快材料研发过程,推动材料科学的发展。
随着计算机技术的不断进步,第一性原理计算方法将会发挥越来越重要的作用,成为材料研发的重要工具。
第一性原理计算方法
1 (2) 1 g (2)(2)
哈密顿算符: •每个电子的动能算符; •两个电子与两个原子核之间由于库仑作用 •两个电子之间的排斥作用
1 2 1 2 Z A ZB Z A ZB 1 H 1 2 2 2 r1A r1B r2 A r2 B r12
1 1 2 1 2 ZA ZB ZA ZB 1 E d 1d 2 [ 1 (1) 2 (2) 2 (1) 1 (2)][ 1 2 ] 2 2 2 r1A r1B r2 A r2 B r12 [ 1 (1) 2 (2) 2 (1) 1 (2)]
•交换电子的时候,-1s(1)1s(2)等于1s(2)1s(1)
第一激发态,一个电子被激发到2s轨道
1s(1)2s(2)
1s(2)2s(1) •函数不满足不可区分原则
线性组合
1 [1s(1)2s(2) 1s(2)2s(1)] 2
1 [1s(1)2s(2) 1s(2)2s(1)] 2
1s(1)1s(2)
{H1 H 2} ( r1, r2) E ( r1, r2)
波函数可以写为两个单电子波函数乘积的形式,
(r1, r2) 1( r1) 2(r2) E (r1, r2)
H1 H 21(r1) 2(r2) E1(r1) 2(r2)
两边乘以12,对整个空间积分有
4 分子轨道计算
4.1 氢原子:从波函数中计算能量 分子自旋轨道可以表达为原子轨道的线性组合。(LCAO)
i
c
1i i
k
为了解决分子轨道计算困难,把分子轨道按某个选定的安全基函数集 合(基组)展开。这样就可以把对分子轨道的变分转化为对展开系数 的变分。Hartree-Fock方程就从一组非线性的积分——微分方程转化为 一组数目有限的代数方程——Hartree-Fock-Roothaan 方程。这组方程 仍然是非线性方程,只能用迭代方法求解,但是比微分方程的求解简 单了。这是一种近似逼近方法。把在选定的有限基组下满足HartreeFock-Roothaan方程的解称为自洽场分子轨道。自洽场分子轨道的极限 精确值就是Hartree-Fock轨道。将分子轨道表达为原子轨道线性组合的 方法称为LCAO-MO方法。 H2低能状态简单的LCAO
量子力学第一性原理介绍
量子力学第一性原理:仅需五个物理基本常数——电子质量、电子电量、普郎克常数、光速和玻耳兹曼常数,通过求薛定谔方程得到材料的电子结构,而不依赖于任何经验常数即可以预测微观体系的状态和性质,预测材料的组分、结构、性能之间的关系,进一步设计具有特定性能的新材料。
作为评价事物的依据,第一性原理和经验参数是两个极端。
第一性原理是某些硬性规定或推演得出的结论,而经验参数则是通过大量实例得出的规律性的数据,这些数据可以来自第一性原理(称为理论统计数据),也可以来自实验(称为实验统计数据)。
如果某些原理或数据来源于第一性原理,但推演过程中加入了一些假设(这些假设当然是很有说服力的),那么这些原理或数据就称为“半经验的”。
量子化学的第一性原理是指多电子体系的Schrödinger方程,但是光有这个方程是无法解决任何问题的,量子力学能够准确的解决的问题很少很少,绝大多数都是有各种各样的近似,为此计算量子力学提出一个称为“从头计算”的原理作为第一性原理,除了Schrödinger方程外还允许使用下列参数和原理:(1) 物理常数,包括光速c、Planck常数h、电子电量e、电子质量me以及原子的各种同位素的质量,尽管这些常数也是通过实验获得的。
(在国际单位值中,光速是定义值,Planck 常数是测量值,在原子单位制中则相反。
)(2) 各种数学和物理的近似,最基本的近似是“非相对论近似”(Schrödinger方程本来就是非相对论的原理)、“绝热近似”(由于原子核质量比电子大得多,而把原子核当成静止的点处理)和“轨道近似”(用一个独立函数来描述一个独立电子的运动)。
量子化学的从头计算方法就是在各种近似上作的研究。
如果只考虑一个电子,而把其他电子对它的作用近似的处理成某种形式的势场,这样就可以把多电子问题简化成单电子问题,这种近似称为单电子近似,也称为平均场近似,例如最基本的从头计算方法哈特里-富克(Hartree-Fock)方法,是平均场近似的一种,它把所有讨论的电子视为在离子势场和其他电子的平均势场中的运动。
第一性原理计算
第一性原理计算引言第一性原理计算是一种基于量子力学原理的计算方法,用于研究材料的性质和行为。
它通过解析薛定谔方程,从头开始计算材料的性质,而不依赖于经验参数或已知的实验数据。
这使得第一性原理计算成为研究材料性质的重要工具,也为材料设计和开发提供了新的途径。
原理和方法第一性原理计算的核心是薛定谔方程的求解。
薛定谔方程描述了量子力学系统的行为,通过求解薛定谔方程可以得到体系的能量、电子结构、晶体结构、力学性能等信息。
然而,薛定谔方程的精确求解是不可行的,因此需要使用一些近似方法来简化计算过程。
其中最常用的方法是密度泛函理论(DFT)。
密度泛函理论的基本思想是将体系中的电子密度视为基本变量,通过最小化体系的总能量来确定电子密度。
这可以通过Kohn-Sham方程来实现,其中包括了交换-相关能的近似处理。
通过求解Kohn-Sham方程,可以得到体系的电子结构和能量。
此外,还有一些其他的方法被用于提高计算精度,如GW近似、自洽Poisson方程、多体微扰理论等。
这些方法的选择取决于研究问题的特点和需要。
应用领域第一性原理计算在材料科学、物理学和化学等领域有着广泛的应用。
1.材料设计:第一性原理计算可以用于预测新材料的性质,从而加速材料的设计和开发过程。
它可以通过计算和优化材料的能带结构、晶体结构等来寻找具有特定性能的材料。
2.反应动力学:第一性原理计算还可以用于研究化学反应的动力学过程。
通过计算反应的势能面和反应路径,可以预测反应速率和产物选择性。
3.催化剂设计:催化剂是许多化学反应中的关键组分。
第一性原理计算可以帮助设计和优化催化剂的表面结构和活性位点,从而提高催化剂的效率和选择性。
4.电子器件:第一性原理计算在电子器件领域的应用也日益重要。
它可以用于模拟和优化半导体器件的性能,如晶体管、太阳能电池等。
5.生物物理学:第一性原理计算在生物物理学研究中也发挥着重要作用。
它可以用于预测蛋白质的结构和稳定性,研究生物分子的相互作用以及药物分子的设计等。
第一性原理计算石墨烯综述
第一性原理计算石墨烯综述第一性原理计算综述引言理论计算模拟是除了实验方法外的另一种更好的探究和理解微观物质的内在机理和运动规律手段,对实验的相关结果也起重要的参考和补充作用。
对于纳米尺度上的理论研究,基于密度泛函理论的第一性原理计算是最为常见的方法之一。
第一性原理计算方法中不使用经验参数,只使用光速,电子质量,质子和中子的质量等少数物理参数,通过自洽迭代方法求解薛定谔方程来预测纳米材料的有关结构和特性。
第一性原理方法可以从电子轨道层面准确地模拟和预测材料特性。
同时,结合基于密度泛函理论的分子动力学模拟方法,基本上可以准确地判断和预测材料的结构特性。
这一过程只需要一个基于若干计算机的工作机群内,对大投资的传统实验开发是一个巨大的冲击。
虽然目前第一性原理计算方法的结果与完全精确地物性模拟还有一段距离,但是通过各种理论的修正,可以在一定程度上减小计算误差,提高预测的准确性,这也是目前第一性原理计算所采用的主要处理手段。
可以想象,随着第一性原理计算体系的逐渐完善,它必将作为一个不可缺少的科研工具,在纳米器件的工作平台上作为交互前端出现,承担大部分的设计与预测工作。
理论基础第一性原理计算资源TD-DFT应用实例Hubbard模型和VASP应用实例Hubbard模型是考虑固体中电子短程库仑排斥力的一种非常简化的模型。
这个简化的模型考虑了固体中运动电子量子机理,和电子间的非线性排斥作用。
Hubbard模型在物理的理论研究方面还是一个非常重要的模型。
尽管模型中物理表示非常简化,但却能反映出各种有趣的现象,如金属.绝缘体的相互转变,反铁磁体系,铁磁体系,流体和超导体。
本文中我们利用在紧束缚近似下的Hubbard 模型验证了第一性原理的结果。
计算所采用的软件是VASP,,它使用赝势和平面波基组来进行从头算量子力学分子动力学计算。
离子和电子的相互作用用投影缀加波(PAW)方法来描述。
电子的交换关联采用GGA-PW91泛函。
第一性原理计算公式
第一性原理计算公式引言第一性原理计算是一种基于量子力学原理的理论和计算方法,可以用于研究和预测材料的物理和化学性质。
它是一种从头开始的计算方法,不依赖于任何经验参数和实验数据,因此被广泛应用于材料科学、化学、物理等领域的研究和设计。
在第一性原理计算中,通过求解薛定谔方程来得到体系的电子结构和能量。
这些计算需要使用一系列的公式和算法,本文将重点介绍一些常见的第一性原理计算公式,帮助读者理解这一领域的基本原理和方法。
基本概念在介绍具体的计算公式之前,我们先来回顾一些基本概念。
哈密顿算符哈密顿算符是量子力学中描述体系总能量和动力学演化的算符。
对于单电子体系,哈密顿算符可以写为:H = T + V其中T表示动能算符,V表示势能算符。
对于多电子体系,哈密顿算符则需要加入电子之间的相互作用算符,形式更加复杂。
波函数和薛定谔方程波函数是描述量子力学体系的状态的函数。
在薛定谔方程中,波函数满足以下的时间无关薛定谔方程:Hψ = Eψ其中H是哈密顿算符,ψ是波函数,E是能量。
求解薛定谔方程可以得到体系的能级结构和波函数。
密度泛函理论密度泛函理论是一种处理多电子体系的方法。
其核心思想是将多电子体系的性质建立在电子密度上。
密度泛函理论的基本方程是:E = T[n] + V[n] + E_{ee}[n]其中E是总能量,T[n]是电子动能的泛函,V[n]是外势能的泛函,E_{ee}[n]是电子之间相互作用的泛函。
第一性原理计算公式赝势方法赝势方法是一种快速计算材料电子结构的方法。
在赝势方法中,原子核和一部分芯层电子对价层电子的作用通过赝势进行描述。
赝势方法的基本方程是:H_{KS}ψ = Eψ其中H_{KS}是Kohn-Sham方程中的赝势哈密顿算符,ψ是波函数,E是能量。
平面波基组展开法平面波基组展开法是一种基于平面波基函数的展开方法。
平面波基组展开法的基本方程是:ψ(r) = ∑ c_k exp(ik·r)其中ψ(r)是波函数,c_k是展开系数,k是波矢。
第一性原理计算方法
第一性原理计算方法第一性原理计算方法是一种基于量子力学原理的计算方法,它可以用来研究原子和分子的结构、性质和反应。
与传统的经验性方法相比,第一性原理计算方法具有更高的精度和可靠性,能够提供更多的物理和化学信息。
本文将介绍第一性原理计算方法的基本原理和应用。
首先,第一性原理计算方法是建立在薛定谔方程的基础上的。
薛定谔方程描述了体系的波函数随时间的演化,通过求解薛定谔方程,我们可以得到体系的能量、波函数和其他物理性质。
在第一性原理计算中,我们通常采用密度泛函理论来近似求解薛定谔方程,通过求解库仑势和交换-相关势的作用,得到体系的基态能量和波函数。
其次,第一性原理计算方法的应用非常广泛。
它可以用来研究固体、液体和气体的结构和性质,预测材料的稳定相和晶体结构,计算分子的几何构型和振动频率,分析化学反应的动力学过程等。
同时,第一性原理计算方法还可以用来设计新型的功能材料,优化催化剂的性能,预测分子的电子结构和光学性质,研究纳米材料的电子输运行为等。
在第一性原理计算方法的发展过程中,科学家们提出了许多不同的计算框架和方法,如密度泛函理论、量子蒙特卡洛方法、格林函数方法等。
这些方法在不同的体系和问题上都有各自的优势和局限性,需要根据具体的研究目的来选择合适的方法。
总的来说,第一性原理计算方法是一种强大的工具,它在材料科学、物理化学、生物化学等领域都有重要的应用价值。
随着计算机硬件和软件的不断发展,第一性原理计算方法将会变得更加高效和精确,为科学研究和工程应用提供更多的支持和帮助。
通过以上介绍,我们可以看到第一性原理计算方法在材料科学和化学领域的重要性和广泛应用。
它不仅可以帮助我们理解物质的基本性质,还可以指导新材料的设计和合成,促进科学技术的发展和进步。
因此,掌握和应用第一性原理计算方法对于科研工作者和工程技术人员来说都是非常重要的。
希望本文的介绍能够为读者提供一些有益的信息,引起对第一性原理计算方法的兴趣和关注。
si(111)面电子结构,表面能和功函数的第一性原理研究
si(111)面电子结构,表面能和功函数的第一性原理研究
si(111)面电子结构,表面能和功函数的第一性原理研究
一、引言
现代半导体技术的发展不断推动着新型材料的研究。
其中,si(111)表面是半导体表面不断演变的重要基础,其研究可以为si(111)表面的制作提供重要参考。
因此,研究si(111)表面的电子结构、表面能和功函数具有十分重要的意义。
二、研究目的
研究si(111)表面的电子结构、表面能和功函数,是开展第一性原理研究的有效途径。
这样,可以更深入地了解材料的物理性质及表征,从而获取令人满意的结论。
三、研究过程
1. 步骤一:准备初始条件
首先,需要准备初始条件,即自洽场法计算si(111)表面所需要的物理和化学参数。
此外,还需要准备相关算法,以期获取计算si(111)表面的正确结果。
此外,还应针对si(111)表面进行有效优化,以期使表面能保持稳定。
2. 步骤二:设定功函数
其次,随后需要设定表示si(111)表面电子态的功函数,以期精确计算si(111)表面的表面能和功函数。
3. 步骤三:用第一性原理计算
最后,通过第一性原理计算,分析si(111)表面的电子结构、表面能和功函数。
与实验结果的比较,可以有效校正计算结果,以期获得较为准确的si(111)表面参数。
四、结论
综上所述,通过运用第一性原理计算,可以细致地分析si(111)表面的电子结构、表面能和功函数。
该方法可为si(111)表面的制作赋予良好的理论参考,实现材料创新与改性。
linbo3光学性质与热力学性质的第一性原理计算
linbo3光学性质与热力学性质的
第一性原理计算
Linbo3光学性质的第一性原理计算包括:电子结构、密度和全反射率的计算;热力学性质的第一性原理计算包括:能带结构、电子-热层析图以及热力学性质的分析和预测。
电子结构计算采用 DFT (Density Functional Theory) 方法,主要是计算出材料的电子态密度分布,从而获得复杂材料的电子结构信息,进而提供全反射率的计算。
密度计算是根据电子结构计算得出的电子态密度分布,通过求解 Poisson 方程,来计算出材料的总体电荷密度和电子密度。
全反射率的计算是根据经由电子结构计算得出的电子态密度分布和密度计算得出的总体电荷密度和电子密度,来求解 Maxwell 方程,得出材料在不同波长和不同入射角下的全反射率。
能带结构计算是根据电子结构计算得出的电子态密度分布,通过求解 Schrodinger 方程,来计算出材料的能带结构。
电子-热层析图计算是根据能带结构计算得出的能带结构,来求解 Boltzmann 方程,来得出材料的电子-热层析图,即材料的电子导热率随温度的变化情况。
热力学性质的分析和预测是根据电子结构计算得出的电子态密度分布和电子-热层析图计算得出的电子导热率,通过求解 Debye-Grüneisen 方程,来计算出材料的热力学性质,如声速、热容以及热扩散率等。
第一性原理计算
第一性原理根据原子核和电子互相作用的原理及其基本运动规律,运用量子力学原理,从具体要求出发,经过一些近似处理后直接求解薛定谔方程的算法,习惯上称为第一原理第一性原理通常是跟计算联系在一起的,是指在进行计算的时候除了告诉程序你所使用的原子和他们的位置外,没有其他的实验的,经验的或者半经验的参量,且具有很好的移植性。
作为评价事物的依据,第一性原理和经验参数是两个极端。
第一性原理是某些硬性规定或推演得出的结论,而经验参数则是通过大量实例得出的规律性的数据,这些数据可以来自第一性原理(称为理论统计数据),也可以来自实验(称为实验统计数据)。
但是就某个特定的问题,第一性原理和经验参数没有明显的界限,必须特别界定。
如果某些原理或数据来源于第一性原理,但推演过程中加入了一些假设(这些假设当然是很有说服力的),那么这些原理或数据就称为“半经验的”。
第一性原理,英文First Principle,是一个计算物理或计算化学专业名词,广义的第一性原理计算指的是一切基于量子力学原理的计算。
我们知道物质由分子组成,分子由原子组成,原子由原子核和电子组成。
量子力学计算就是根据原子核和电子的相互作用原理去计算分子结构和分子能量(或离子),然后就能计算物质的各种性质。
从头算(ab initio)是狭义的第一性原理计算,它是指不使用经验参数,只用电子质量,光速,质子中子质量等少数实验数据去做量子计算。
但是这个计算很慢,所以就加入一些经验参数,可以大大加快计算速度,当然也会不可避免的牺牲计算结果精度。
那为什么使用“第一性原理”这个字眼呢?据说这是来源于“第一推动力”这个宗教词汇。
第一推动力是牛顿创立的,因为牛顿第一定律说明了物质在不受外力的作用下保持静止或匀速直线运动。
如果宇宙诞生之初万事万物应该是静止的,后来却都在运动,是怎么动起来的呢?牛顿相信这是由于上帝推了一把,并且牛顿晚年致力于神学研究。
现代科学认为宇宙起源于大爆炸,那么大爆炸也是有原因的吧。
第一性原理简介
2第一性原理的作用以密度泛函理论(DFT)为基础以及在此基础上发展起来的简单而具有一定精度的局域密度近似(LDA)和广义梯度近似(GGA)的第一性原理电子结构计算方法,与传统的解析方法一样,不但能够给出描述体系微观电子特性的物理量如波函数、态密度、费米面、电子间互作用势等,以及在此基础上所得到的体现体系宏观物理特性的参量如结合能、电离能、比热、电导、光电子谱、穆斯堡尔谱等等,而且它还可以帮助人们预言许多新的物理现象和物理规律。
密度泛函计算的一些结果能够与实验直接进行比较,一些应用程序的发展乃至商业软件的发布,导致了基于密度泛函理论的第一原理计算方法的广泛应用。
密度泛函理论(DFT)为第一性原理中的一类,在物理系、化学、材料科学以及其他工程领域中,密度泛函理论(DFT)及其计算已经快速发展成为材料建模模拟的一种“标准工具”。
密度泛函理论可以计算预测固体的晶体结构、晶格参数、能带结构、态密度(DOS)、光学性能、磁性能以及原子集合的总能等等。
3第一性原理怎么用?目前我所学到的利用第一性原理的软件为Material Studio、V ASP软件。
其中Materials Studio(简称MS)是专门为材料科学领域研究者开发的一款可运行在PC上的模拟软件。
使化学及材料科学的研究者们能更方便地建立三维结构模型,并对各种晶体、无定型以及高分子材料的性质及相关过程进行深入的研究。
模拟的内容包括了催化剂、聚合物、固体及表面、晶体与衍射、化学反应等材料和化学研究领域的主要课题。
模块简介Materials Studio采用了大家非常熟悉的Microsoft标准用户界面,允许用户通过各种控制面板直接对计算参数和计算结果进行设置和分析。
目前,Materials Studio软件包括如下功能模块:Materials Visualizer:提供了搭建分子、晶体及高分子材料结构模型所需要的所有工具,可以操作、观察及分析结构模型,处理图表、表格或文本等形式的数据,并提供软件的基本环境和分析工具以及支持Materials Studio的其他产品。
第三节第一性原理计算简介
第三节第一性原理计算简介第一性原理计算简介在物理学中,第一性原理计算或称从头计算是指,基于构建物理学的基础定理,不作任何假设,例如:经验模型和拟合参数,所进行的计算研究。
特别地,在凝聚态物理中,指的是运用薛定愕方程在一定的近似情况下,但不包括拟合实验数据所得到的参数和模型,对物质的电子结构进行计算r 从而得到所研究物质的性质的一种研究方法。
近些年,随着计算机技术的飞速发展,其运算能力越来越强大,使得人们可以处理更庞大更繁杂的物质结构体系,同时也使得计算物理成为了现代物理学,尤其是在凝聚态物理领域的一个重要分支。
众所周知,固体是由相对重且带正电的粒子——原子核,以及相对轻且带负电的粒子——电子聚集在一起构成的。
如果有个原子,需要处理的问题是包含有N+ZN(Z 为原子核所含的质子的个数)个粒子的电磁相互作用,是一个多体问题。
另一方面,由于处理的是微观粒子的运动,所以需要运用量子力学来描述其基本的运动规律和相互作用。
对于该系统,精确的多粒子哈密顿量可以写作:i 2i ii 1122R H M ?=--∑∑Fuuuuuuuuj其中位于為处的原子核的质量为M,.,位于巧处的电子的质量为m 一第一项是原子核的动能算符,第二项是电子的动能算符。
后三项分别是描述电子与原子核,单个电子与其它电子以及单个原子核与其它原子核之间的库伦相互作用。
很显然,直接精确求解(1.64)式几乎是不可能的。
为了在合理的近似条件下得到体系的本征值,需要作不同层次的近似。
1.3.1波恩-奥本海默(Bom-Oppenheimer)近似由于原子核的质量远大于电子质量,所以,原子核的运动速度远小于电子。
因此,可以将原子“冻结”在固定的位置,并假设电子在瞬时与原子核是平衡的。
或者说,只有电子在这个多体问题中是考察对象,原子核仅仅被当作一个带正电的外源场,相对于电子云是外在独立的。
该近似被称为波恩-奥本海默(Bom-Oppenheimer)近似。
基于第一性原理计算的Li_(7)La_(3)Zr_(2)O_(12)固态电解质的研究进展
基于第一性原理计算的Li_(7)La_(3)Zr_(2)O_(12)固态电解质的研究进展陶梦琴;蔡振飞;吴慧敏;马扬洲;宋广生【期刊名称】《功能材料》【年(卷),期】2022(53)8【摘要】Li_(7)La_(3)Zr_(2)O_(12)固态电解质具备高离子电导率、对锂金属负极良好的化学稳定性以及宽电化学窗口等特点,被视为最具发展和应用前景的固态电解质之一。
基于密度泛函理论计算的第一性原理计算是从量子力学出发,在电子层面计算个体和总体的电子和原子行为。
将第一性原理计算与Li_(7)La_(3)Zr_(2)O_(12)固态电解质研究相结合可以在原子尺度上预测和解释电解质材料的性质和行为,同时将计算和系统模型相结合有助于解释该电池系统复杂的实验表征结果。
概括了第一性原理计算在Li_(7)La_(3)Zr_(2)O_(12)固态电解质中的应用,总结Li_(7)La_(3)Zr_(2)O_(12)的电子结构和晶体结构等微观结构特征,分析了锂负极与电解质的接触角、锂离子的迁移以及电解质热力学性质等物理化学性质,最后对第一性原理计算在固态电解质研究的未来方向进行展望。
【总页数】11页(P8067-8077)【作者】陶梦琴;蔡振飞;吴慧敏;马扬洲;宋广生【作者单位】安徽工业大学材料科学与工程学院;西安交通大学电子陶瓷与器件教育部重点实验室【正文语种】中文【中图分类】TM912.4【相关文献】1.固态无机电解质Li_(7)La_(3)Zr_(2)O_(12)的改性研究进展2.湿化学法制备石榴石型固态电解质Li_(7)La_(3)Zr_(2)O_(12)3.Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)固态电解质膜的制备与性能研究4.固态电解质锂镧锆氧(Li_(7)La_(3)Zr_(2)O_(12))制备及第一性原理研究5.石榴石型固态电解质Li_(7)La_(3)Zr_(2)O_(12)的改性研究现状因版权原因,仅展示原文概要,查看原文内容请购买。
第一性原理计算方法讲义
第一性原理计算方法引言前面讲述的有限元和有限差分等数值计算方法中,求解的过程中需要知道一些物理参量,如温度场方程中的热传导系数和浓度场方程中的扩散系数等,这些参量随着材料的不同而改变,需要通过实验或经验来确定,所以这些方法也叫做经验或者半经验方法。
而第一性原理计算方法只需要知道几个基本的物理参量如电子质量、电子的电量、原子的质量、原子的核电荷数、布朗克常数、波尔半径等,而不需要知道那些经验或半经验的参数。
第一性原理计算方法的理论基础是量子力学,即对体系薛定额方程的求解。
量子力学是反映微观粒子运动规律的理论。
量子力学的出现,使得人们对于物质微观结构的认识日益深入。
原则上,量子力学完全可以解释原子之间是如何相互作用从而构成固体的。
量子力学在物理、化学、材料、生物以及许多现代技术中得到了广泛的应用。
以量子力学为基础而发展起来的固体物理学,使人们搞清了“为什么物质有半导体、导体、绝缘体的区别”等一系列基本问题,引发了通讯技术和计算机技术的重大变革。
目前,结合高速发展的计算机技术建立起来的计算材料科学已经在材料设计、物性研究方面发挥着越来越重要的作用。
但是固体是具有~1023数量级粒子的多粒子系统,具体应用量子理论时会导致物理方程过于复杂以至于无法求解,所以将量子理论应用于固体系统必须采用一些近似和简化。
绝热近似(Born-Oppenheimei近似)将电子的运动和原子核的运动分开,从而将多粒子系统简化为多电子系统。
Hartree-Fock近似将多电子问题简化为仅与以单电子波函数(分子轨道)为基本变量的单粒子问题。
但是其中波函数的行列式表示使得求解需要非常大的计算量;对于研究分子体系,他可以作为一个很好的出发点,但是不适于研究固态体系。
1964年,Hohenberg和Kohn 提出了严格的密度泛函理论(Density Functional Theory, DFT)。
它建立在非均匀作为基本变量。
1965年,Kohn和Sham 电子气理论基础之上,以粒子数密度()r提出Kohn-Sham方程将复杂的多电子问题及其对应的薛定谔方程转化为相对简单的单电子问题及单电子Kohn-Sham方程。
第一性原理简介
2第一性原理的作用以密度泛函理论(DFT)为基础以及在此基础上发展起来的简单而具有一定精度的局域密度近似(LDA)和广义梯度近似(GGA)的第一性原理电子结构计算方法,与传统的解析方法一样,不但能够给出描述体系微观电子特性的物理量如波函数、态密度、费米面、电子间互作用势等,以及在此基础上所得到的体现体系宏观物理特性的参量如结合能、电离能、比热、电导、光电子谱、穆斯堡尔谱等等,而且它还可以帮助人们预言许多新的物理现象和物理规律。
密度泛函计算的一些结果能够与实验直接进行比较,一些应用程序的发展乃至商业软件的发布,导致了基于密度泛函理论的第一原理计算方法的广泛应用。
密度泛函理论(DFT)为第一性原理中的一类,在物理系、化学、材料科学以及其他工程领域中,密度泛函理论(DFT)及其计算已经快速发展成为材料建模模拟的一种“标准工具”。
密度泛函理论可以计算预测固体的晶体结构、晶格参数、能带结构、态密度(DOS)、光学性能、磁性能以及原子集合的总能等等。
3第一性原理怎么用?目前我所学到的利用第一性原理的软件为Material Studio、V ASP软件。
其中Materials Studio(简称MS)是专门为材料科学领域研究者开发的一款可运行在PC上的模拟软件。
使化学及材料科学的研究者们能更方便地建立三维结构模型,并对各种晶体、无定型以及高分子材料的性质及相关过程进行深入的研究。
模拟的内容包括了催化剂、聚合物、固体及表面、晶体与衍射、化学反应等材料和化学研究领域的主要课题。
模块简介Materials Studio采用了大家非常熟悉的Microsoft标准用户界面,允许用户通过各种控制面板直接对计算参数和计算结果进行设置和分析。
目前,Materials Studio软件包括如下功能模块:Materials Visualizer:提供了搭建分子、晶体及高分子材料结构模型所需要的所有工具,可以操作、观察及分析结构模型,处理图表、表格或文本等形式的数据,并提供软件的基本环境和分析工具以及支持Materials Studio的其他产品。
第一性原理计算在锂硫电池中的应用进展评述
第一性原理计算是一种基于量子力学理论的计算方法,它可以用来精确计算物质的结构、性质和动态过程。
在锂硫电池中,第一性原理计算可以用来研究电池材料的电子结构、相互作用和动力学过程。
近年来,第一性原理计算在锂硫电池中的应用进展迅速。
研究人员通过第一性原理计算研究了锂硫电池材料的电子结构和相互作用,以优化电池的电化学性能。
例如,通过第一性原理计算研究锂硫电池的负极材料,可以揭示负极材料的电子结构和相互作用机制,从而优化负极材料的电化学性能。
此外,第一性原理计算还可以用来研究锂硫电池的动力学过程,如电池充放电过程中材料的相互作用和结构变化。
通过第一性原理计算研究锂硫电池的动力学过程,可以揭示电池充放电过程中材料的相互作用机制和结构变化规律,从而优化电池的电化学性能。
总之,第一性原理计算在锂硫电池中的应用进展非常快速。
近年来,研究人员通过第一性原理计算研究了锂硫电池材料的电子结构和相互作用,以优化电池的电化学性能。
此外,第一性原理计算还可以用来研究锂硫电池的动力学过程,如电池充放电过程中材料的相互作用和结构变化。
这些研究为提高锂硫电池的电化学性能和实用应用奠定了基础。
然而,第一性原理计算在锂硫电池中的应用也存在一些局限性。
例如,第一性原理计算时间复杂度较高,不能对大规模系统进行计算。
此外,第一性原理计算对系统的初始条件和边界条件要求较高,不能解决复杂的动力学过程。
因此,在应用第一性原理计算研究锂硫电池时,需要结合其它的计算方法和实验技术,以充分发挥第一性原理计算的优势。
例如,可以通过结合第一性原理计算和经典力学计算方法,来研究锂硫电池的动力学过程。
此外,可以通过结合第一性原理计算和实验技术,来验证和校正第一性原理计算的结果。
总之,第一性原理计算在锂硫电池中的应用进展迅速,为研究锂硫电池的电子结构和相互作用、动力学过程等提供了有力的手段。
但是,在应用第一性原理计算研究锂硫电池时,也应注意其局限性,并结合其它计算方法和实验技术,充分发挥其优势。
单壁纳米管第一性原理计算的开题报告
单壁纳米管第一性原理计算的开题报告【开题报告】题目:单壁纳米管第一性原理计算研究背景:随着纳米科技的发展,单壁纳米管成为当前最热门的研究领域之一。
单壁纳米管具有很多优异的性质,如高比表面积、高化学反应活性、高力学性能等,这使得单壁纳米管有广泛的研究和应用前景,在材料科学、能源储存和转化、生物医学、电子器件等领域具有广泛的应用前景。
因此,研究单壁纳米管的结构、性质、功能及其应用,对推动纳米科技的发展具有重要意义。
研究方法:单壁纳米管的第一性原理计算是目前研究单壁纳米管结构和性质的重要手段之一。
第一性原理计算是指从基本物理原理出发,通过量子力学计算方法,对材料的组成、结构、电子态等进行全原子级别、从头计算的分析研究方法。
这种计算方法可以提供单壁纳米管的结构、能带结构、电荷分布、力学性能和电子输运等重要信息,为理解单壁纳米管的基本性质和特异性能提供了基础。
研究内容:本研究拟从以下几个方面展开:(1)单壁纳米管的结构优化和能带结构计算:分别计算不同结构的单壁纳米管的优化结构和能带结构,分析其结构与能带之间的关系。
(2)电子输运性质的计算:采用传输理论方法计算单壁纳米管的电子输运性质,研究管径、壁厚、手性等对电子输运性质的影响。
(3)力学性能的计算:计算不同结构单壁纳米管的力学性能,在压缩和拉伸情况下研究其机械性能的规律和特性。
研究意义:本研究对深入理解单壁纳米管的结构和性质具有一定的理论指导意义,并将为其在材料学、生物医药、电子学等领域的应用提供重要支撑和参考。
【结论】本研究将采用第一性原理计算方法,对单壁纳米管的结构、能带、电子输运、力学性能等进行研究,探索单壁纳米管性质与结构之间的关系,提供对设计和制备具有特定结构和性能的单壁纳米管的指导意义。