(参考)2019年高中数学1-2任意角的三角函数1-2-1三角函数的定义优化训练新人教B版必修4
高中数学三角函数121任意角的三角函数(一)PPT课件
6
6 62
3.已知角α的终边与单位圆的交点 P( 5 , 2 5 ),则
55
sinα+cosα= ( )
A . 5 B .5 C .25 D . 25
5
5
5
5
【解析】选B.因为 siny25,cosx5,
5
5
所以 sincos2555.
55 5
4.若角α终边上一点坐标为(-5,12),则cosα=
1.2 任意角的三角函数 1.2.1 任意角的三角函数(一)
整体概述
概况一
点击此处输入相关文本内容 点击此处输入相关文本内容
概况二
点击此处输入相关文本内容 点击此处输入相关文本内容
概况三
点击此处输入相关文本内容 点击此处输入相关文本内容
【自主预习】 主题1:任意角的三角函数的定义 使锐角α的顶点与原点O重合,始边与x轴的非负半轴 重合,在终边上任取一点P,作PM⊥x轴于M,设P(x,y), |OP|=r,据此回答下列问题:
主题2:三角函数值的符号法则及诱导公式一
1.设P(x,y)为α终边上任意一点(异于原点),记r=|OP|,
则 sin y,c o s x,ta n y(x 0 ),由此可知任意角α
r
r
x
的三角函数值的符号与谁有关?
提示:角α的三角函数值的符号与点P的坐标x,y的正负
有关.
2.取角α分别为30°,390°,-330°,它们的三角函数值是 什么关系?为什么? 用文字语言描述:它们的同名三角函数值相等,因为三 个角的终边相同.
2.已知角α,则角α的三角函数值符号确定,反之若角 α的某个三角函数值符号确定,则角α的终边所在象限 确定吗? 提示:不一定,若已知角α的一个三角函数值的符号,则 角α所在的象限可能有两种情况,若已知角α的两个三 角函数值的符号,则角α所在的象限就唯一确定.
数学人教A版(2019)必修第一册5-2-1 三角函数的概念
11
3
sin
71
6
tan
19
3
cos
4
3
sin
12
6
tan
6
3
cos sin tan
36 3
1 1 3 1 3 22
1. 内容总结: ①三角函数的概念. ②三角函数的定义域及三角函数值在各象限的符号. ③诱导公式一.
2 .方法总结: 运用了定义法、公式法、数形结合法解题.
cosα 1
tanα 0
30o 45o 60o 90o 180o 270o 360o
6 4 32
3 2
2
0 1 1 1
2
3
2
2
2
0
0 3
21
2
2
2
1 0 1
31
3
3 不存在 0 不存在 0
问题2 三角函数符号与公式
1.根据三角函数的定义,确定它们的定义域
探
(弧度制)
三角函数
定义域
究
sin
3
的终边与单位圆的交点坐标为
(1 , 3) 22
,
所以 sin 5 3 cos5 1 tan 5 3
y
,
32
32
3
思考:若把角 5 改为 7 呢?
5
3
7
1
6
3
o
﹒
A
x
﹒B
sin ,
6
2
cos 7 3 ,
6
2
tan 7 3
63
【例2】如图,设α是一个任意角,它的终边上任意一点P(不与原点O重合)
sin 2 2 5 ,cos 1 5 , tan 2 2
高一数学任意角的三角函数知识精讲.doc
高一数学任意角的三角函数【本讲主要内容】任意角的三角函数(三角函数的定义、单位圆与三角函数线)【知识掌握】 【知识点精析】1. 任意角的三角函数的定义:设P (x ,y )是角α的终边上任意一点,|OP|=r (r >0),则sin cos αα==y r xr, tan cot αα==y x x y , sec csc αα==r x r y, 正弦、余弦、正切、余切、正割、余割分别可以看成是从一个角的集合到一个比值的集合的映射,它们都是以角为自变量,以比值为函数值的函数,这六个函数统称为三角函数。
注意:①一个角的三角函数值只与这个角的终边位置有关,而与P 点的选取无关。
②为计算方便,我们把半径为1的圆(单位圆)与角的终边的交点选为P 点的理想位置。
2. 三角函数的定义域、值域确定三角函数的定义域时,要抓住分母不为0这一关键,当角的终边在坐标轴上时,点P 的坐标中必有一个为0。
3. 三角函数值符号记忆口诀为:“一全正,二正弦,三两切,四余弦”。
(注:余割和正弦互为倒数关系,正割和余弦互为倒数关系。
) 4. 诱导公式(一):根据三角函数的定义知,角的三角函数值是由角的终边位置确定的,所以终边相同的角的同一三角函数的值相等。
即:sin()sin ()cos()cos ()tan()tan ()()k k Z k k Z k k Z ²°²°²°诱导公式一360360360+=∈+=∈+=∈⎫⎬⎪⎭⎪ααααααsin()sin ()cos()cos ()tan()tan ()()()222k k Z k k Z k k Z πααπααπαα+=∈+=∈+=∈⎫⎬⎪⎭⎪诱导公式一弧度制用途:使用诱导公式(一),可以把求任意角的三角函数值问题化为0~2π间三角函数值,具体求法是将任意角化为2k π+α,()k Z ∈,其中0≤α<2π,然后利用诱导公式(一)化简,再求值。
任意角三角函数定义
01
在三角形中,已知两边长,可用正弦、余弦定理求解未知角。
求解边长
02
在三角形中,已知两角及一边,或已知两边及夹角,可用正弦、
余弦定理求解未知边长。
判断三角形形状
03
通过比较三角形内角的大小关系,可以判断三角形的形状(如
锐角、直角、钝角三角形)。
物理学中应用举例
简谐振动
描述物体在平衡位置附近的往复运动,其运动规律可 用三角函数表示。
弧度制
以弧长与半径之比来度量角的大小, 是国际单位制中的角度单位,常用于 微积分等高级数学领域。
三角函数定义域与值域
定义域
三角函数中的自变量,即角度或弧度,其取值范围通常是实数集或其子集。
值域
三角函数中的因变量,即函数值,其取值范围依赖于具体的三角函数。例如,正弦函数和余弦函数的值域为[1,1],而正切函数的值域为全体实数。
04
正切、余切函数性质与图 像
正切函数性质及图像特点
定义域
正切函数的定义域为所有不等于直角的角 度。
图像特点
正切函数的图像是一条连续的、无穷无尽 的曲线,以π为周期,在每个周期内,图像 从负无穷大增加到正无穷大。
值域
正切函数的值域为全体实数。
奇偶性
正切函数是奇函数,即tan(-x) = -tan(x) 。
THANKS
感谢观看
正切、余切关系式推导
正切与余切的关系式
tan(x) = 1/cot(x),cot(x) = 1/tan(x)。
VS
推导过程
根据三角函数的定义,正切函数和余切函 数可以表示为对边与邻边之比和邻边与对 边之比。因此,正切函数和余切函数互为 倒数关系。
05
三角函数在各领域应用举 例
高中数学 第一章 三角函数 1.2 任意角的三角函数 1.2.1 任意角的
高中数学第一章三角函数 1.2 任意角的三角函数 1.2.1 任意角的高中数学第一章三角函数1.2任意角的三角函数1.2.1任意角的1.2.1任意角度的三角函数互动课堂疏导1.任意角三角函数的定义设P(a,b)为角α,单位圆的最终边缘与单位圆的交点从P轴到X轴引出一条垂直线,垂直脚为m。
sin根据锐角三角函数α的定义得到=|mp||om||mp|b?.=b,cosα==a,tanα=|Op | om | a | Op |类似地,我们也可以使用单位圆定义任意角度的三角函数,如图1-2-2所示,集α为1个任意角,它的终边与单位圆交于点p(x,y),那么图1-2-2(1)y叫做α的正弦,记作sinα,即sinα=y.(2)x叫做α的余弦,记作cosα,即cosα=x.(3)YY被称为α,其切线被表示为tanα,tanα=。
三十二。
三角函数线设单位圆的圆心与坐标原点重合,则单位圆与x轴的交点分别为a(1,0)、a′(-1,0),与y轴的交点分别为b(0,1)、b′(0,-1).设角α的顶点在圆心o,始边与x轴的正半轴重合,终边与单位圆相交于点p(如图1-2-3(a)),过点p作pm垂直于x轴于m,则点m是点p 在x轴上的正射影(简称射影),由三角函数的定义可知点p的坐标为(cosα,sinα),即p(cosα,sinα).其中cosα=om,sinα=mp。
也就是说,角α的余弦和正弦分别等于最终边和单位圆相交的角度α横坐标和纵坐标,单位圆在点a和α处的切线,如果终端边或其反向延长线在点t(t’)处相交(图1-2-3(b)),则Ta nα=at(at’)。
我们把轴上向量om、mp、at(at')叫做α的余弦线、正弦线、正切线.图1-2-3三.三角函数在各象限的符号三角函数的符号可以通过三角函数的定义和每个象限点坐标的符号来确定sinα=y,于是sinα的符号与y的符号相同,即当α是第一、二象限的角时,sinα>0;当α当它是第三和第四象限的角度时,sinα<0cosα=x,于是cosα的符号与x的符号相同,即当α是第一、四象限角时,cosα>0;当α是第二、三象限的角时,cosα<0.tanα=y、当x和y有相同的符号时,它们的比率为正。
高中数学1.2.1 任意角的三角函数(1)优秀课件
三角函数的定义域、值域
函数
定义域
值域
y sin x
R
[1, 1]
ycosx
R
[1, 1]
ytanx {|k,kZ} R
2
角的概念推广后,实际上是把角的集合 与实数集R之间建立了一一对应的关系:
正角 零角 负角
正实数 零
负实数
角的集合
实数集R
每一个角都有唯一的一 个实数与它对应;反过来, 每一个实数也都有唯一的一 个角与它对应.
(3)正切:tanα= b . a
由相似三角形的知识知道,这些比值不会随点P的位置 改变而改变,所以通常取r=1的位置。
1. 任意角的三角函数的定义
设锐角α的顶点与原点O重合,始边与x轴的非负半轴重合,那么 α的终边在第一象限,在α的终边上的点P(a,b)与原点(即顶点)的距 离是1,那么根据所学过的三角函数的定义,有
解 : 由 已 知 得 r ( 3 ) 2 y 23 y 2
sin y y ,
r 3 y2
又 sin 2 y
4
y 2y 3 y2 4
即y0或3y222
解 得y0或 y5.
( 1 )当 y 0 时, P ( 3 , 0 ) , r3 ,
cos
( 2 )当 y 5 时 , P ( 3 , 5 ) , r 2 2 ,
1.2.1 任意角的三角函数〔1〕
我们已经学习过锐角三角函数,知道它们都是以锐角 α为自变量,以比值为函数值,定义了角α的正弦、余弦、 正切的三角函数.
角的范围已经推广,那么对任一角α是否也能 像锐角一样定义三角函数呢?
本节课我们研究当角α是一个任意角时,其三
角函数的定义及其几何表示.
高中数学1.2.1任意角的三角函数优秀课件
其中: OM a
sin MP b
OP r
MP b OP r a2 b2
cos OM a
OP r
y
﹒Pa, b
r b
tan MP b
OM a
o
﹒
aMx
5
诱思探究
如果改变点P在终边上的位置,这三个比值会改变吗?
y
P
﹒ P(a,b)
O
M M
OMP ∽ OM P
sin MP M P
y
T
M
A(1,0)
O
x
α的 P终边ຫໍສະໝຸດ (Ⅲ)yTα的 终边
P
A(1,0)
OM x
(Ⅰ)
y
M A(1,0)
O
x
PT
α的
(Ⅳ) 终边 34
这三条与单位圆有关的有向线段MP、OM、
AT,分别叫做角α的正弦线、余弦线、正切 线,统称为三角函数线
当角α的终边与x轴重合时,正弦线、正切 线,分别变成一个点,此时角α的正弦值和正 切值都为0;
OP OP
cos OM
OP
OM OP
x
tan MP
OM
M P OM
能否通过|op|取特殊值将表达式简化呢? 6
若OP r 1,则以原点为圆心,以单位
长度为半径的圆叫做 单位圆.
Y
P(a,b)
O
M
sin
MP OP
b
cos OM a
X
OP
tan MP b a OM
7
1、任意角的三角函数第一定义
弦和正切值 .
解:由已知可得 OP0 (3)2 (4)2 5
y
设角 的终边与单位圆交于 P(x, y) ,
任意角三角函数
45°的三角函数值
sin(45°) = cos(45°) = √2/2, tan(45°) = 1
30°、45°、60°和90°的三角函数值的推导
利用三角函数的定义和性质,可以推导出这些 特殊角的三角函数值。例如,利用正弦、余弦、 正切的定义,可以推导出sin(30°) = 1/2, cos(30°) = √3/2,tan(30°) = 1/√3。
sin(90°) = 1, cos(90°) = 0, tan(90°) = 无 穷大
30°的三角函数值
sin(30°) = 1/2, cos(30°) = √3/2, tan(30°) = 1/√3
60°的三角函数值
sin(60°) = √3/2, cos(60°) = 1/2, tan(60°) = √3
反余弦函数图像
反余弦函数的图像是一个连续的单调递减函数, 其值域为$[0, pi]$。在定义域内,反余弦函数先 从无定义开始,经过一个先增后减的过程,最后 又无定义结束。
单调性
反正弦函数和反余弦函数在其定义域内都是单调 的。
05
三角函数的应用
在几何学中的应用
确定平面内一点的位置
01
通过三角函数,可以确定平面内一个点的位置,例如在极坐标
解决物理问题
在解决物理问题时,经常需要用到三角函数,例 如在求解力学、电磁学、波动等问题时。
3
分析信号和波形
在信号处理和波形分析中,三角函数是常用的工 具,例如在频谱分析、滤波器设计等方面。
在工程学中的应用
结构设计
在工程结构设计中,三角函数可以用来计算角度、长度等参数, 以确保结构的稳定性和安全性。
同理,利用勾股定理和三角形的性质, 可以推导出其他特殊角的三角函数值。
高一数学《1.2.1任意角的三角函数(一)》
1.2.1任意角的三角函数(1)教学目的:知识目标:1.掌握任意角的三角函数的定义;2.已知角α终边上一点,会求角α的各三角函数值;3.记住三角函数的定义域、值域,诱导公式(一)。
能力目标:(1)理解并掌握任意角的三角函数的定义;(2)树立映射观点,正确理解三角函数是以实数为自变量的函数;(3)通过对定义域,三角函数值的符号,诱导公式一的推导,提高学生分析、探究、解决问题的能力。
德育目标: (1)使学生认识到事物之间是有联系的,三角函数就是角度(自变量)与比值(函数值)的一种联系方式;(2)学习转化的思想,培养学生严谨治学、一丝不苟的科学精神;教学重点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号),以及这三种函数的第一组诱导公式。
公式一是本小节的另一个重点。
教学难点:利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用他们的集合形式表示出来.教学过程:一、复习引入:初中锐角的三角函数是如何定义的?角推广后,这样的三角函数的定义不再适用,我们必须对三角函数重新定义。
二、讲解新课:1.三角函数定义在直角坐标系中,设α是一个任意角,α终边上任意一点P (除了原点)的坐标为(,)x y ,它与原点的距离为(0)r r ==>,那么(1)比值y r叫做α的正弦,记作sin α,即sin y r α=; (2)比值x r叫做α的余弦,记作cos α,即cos x r α=; (3)比值y x叫做α的正切,记作tan α,即tan y x α=; (4)比值x y 叫做α的余切,记作cot α,即cot x y α=; 说明:①α的始边与x 轴的非负半轴重合,α的终边没有表明α一定是正角或负角,以及α的大小,只表明与α的终边相同的角所在的位置;②根据相似三角形的知识,对于确定的角α,四个比值不以点(,)P x y 在α的终边上的位置的改变而改变大小; ③当()2k k Z παπ=+∈时,α的终边在y 轴上,终边上任意一点的横坐标x 都等于0, 所以tan y x α=无意义;同理当()k k Z απ=∈时,yx =αcot 无意义; ④除以上两种情况外,对于确定的值α,比值y r 、x r 、y x 、x y分别是一个确定的实数, 正弦、余弦、正切、余切是以角为自变量,比值为函数值的函数,以上四种函数统称为三角函数。
§1.2.1-2 任意角的三角函数(二)
O P=1
在 O M P中 , O M +M P>O P
y
P M x
o
即 : s in + c o s > 1
2013-1-11
重庆市万州高级中学 曾国荣 wzzxzgr@
12
§1.2.1-2 任意角的三角函数(二)
4
MP是正弦线 OM是余弦线
P
y
o
AT是正切线
重庆市万州高级中学 曾国荣 wzzxzgr@
o M
A x T
8
2013-1-11
§1.2.1-2 任意角的三角函数(二)
练习: 不查表,比较大小
(1) sin 2 3 和 sin 4 5 (2) cos 2 3 和 cos 4 5 (3) ta n 2 3 和 ta n 4 5
2013-1-11
§1.2.1-2 任意角的三角函数(二)
例 1 .作 出 下 列 各 角 的 三 角 正 弦 线 , 余 弦 线 , 正 切 线 , 并 根 据 三 角 函 数 线 求 它 的 正 弦 值 ,余 弦 值 ,正 切 值 . (1)
4
(2)
4 3
y
T P A M x
4 3
2
s in 1 cos
1 cos s in
证 明 : 如 图 连 接 AP 在 直 角 CPA中 ,
PCA APM
y
P x MA
2
C
2
o
在 直 角 AM P中 , MA OA OM 1 cos ta n A P M MP MP s in
高中数学第一章三角函数1.2.1.1三角函数的定义省公开课一等奖新名师优质课获奖PPT课件
探究二
探究三
(1)解析:依题意,x2+
5
3
2
3
α=± ,tan α=
2
3
答案:
5
±3
5
±3
思维辨析
2 2
=1,解得
3
5
x=± 3 ,于是
2
sin α=3,cos
2 5
.
5
=±
2 5
5
±
(2) 解析:由已知得 x=-6,y=8,
8
10
所以 r= 2 + 2 =10,于是 sin θ=
8
-6
4
4
一
二
三
3.做一做:求值
(1)sin 780°;
25
(2)cos 4 π;
(3)tan
15
-4π
.
3
2
解:(1)sin 780°=sin(2×360°+60°)=sin 60°= .
25
π
π
2
(2)cos 4 π=cos 3 × 2π + 4 =cos4 = 2 .
15
π
π
(3)tan - 4 π =tan -2 × 2π + 4 =tan4=1.
第27页
探究一
探究二
探究三
思维辨析
忽视对参数的分类讨论致误
【典例】 角 α 的终边过点 P(-3a,4a),a≠0,则 cos
α=
.
错解因为 x=-3a,y=4a,所以 r= (-3)2 + (4)2 =5a,于是 cos
-3 3
α= 5 =-5.
错解错在什么地方?你能发现吗?怎样避免这类错误呢?
高中数学必修一 讲义 专题5.3 三角函数的概念-重难点题型精讲(学生版)
专题5.3 三角函数的概念-重难点题型精讲1.任意角的三角函数(1)利用单位圆定义任意角的三角函数设是一个任意角,∈R,它的终边OP与单位圆相交于点P(x,y).①把点P的纵坐标y叫做的正弦函数,记作,即y=;②把点P的横坐标x叫做的余弦函数,记作,即x=;③把点P叫做的正切,记作,即=(x≠0).我们将正弦函数、余弦函数和正切函数统称为三角函数,通常将它们记为:(2)用角的终边上的点的坐标表示三角函数如图,设是一个任意角,它的终边上任意一点P(不与原点O重合)的坐标为(x,y),点P与原点的距离为r.则,=,=.2.三角函数的定义域和函数值的符号(1)三角函数的定义域(2)三角函数值在各象限的符号由于角的终边上任意一点P(x,y)到原点的距离r是正值,根据三角函数的定义,知①正弦函数值的符号取决于纵坐标y的符号;②余弦函数值的符号取决于横坐标x的符号;③正切函数值的符号是由x,y的符号共同决定的,即x,y同号为正,异号为负.因此,正弦函数()、余弦函数()、正切函数()的值在各个象限内的符号如图所示.3.诱导公式一由三角函数的定义,可以知道:终边相同的角的同一三角函数的值相等.由此得到一组公式(公式一):4.同角三角函数的基本关系(1)同角三角函数的基本关系(2)基本关系式的变形公式【题型1 任意角的三角函数的定义及应用】【例3】(2022·湖南·高一课时练习)求值:√3cos420°+tan330°+sin(−60°).【变式3-1】(2021·全国·高一课前预习)计算下列各式的值:(1)tan405°−sin450°+cos750°;(2)sin25π3+tan(−15π4).【变式3-2】(2021·全国·高一课时练习)化简下列各式:(1)sin760∘√1−cos240∘;(2)tanα√1sin2α−1(其中α是第二象限角).【变式3-3】(2021·全国·高一课前预习)求下列各式的值:【例5】(2021·福建·高一阶段练习)(1)已知cosα+2sinα=0求1−2cos 2αsin 2α−sinαcosα的值;(2)已知sinβ+cosβ=23,且β为第四象限角,求sinβ−cosβ的值.【变式5-1】(2022·全国·高一课时练习)已知3sin 2α−4sinαcosα+1=0. (1)求tanα的值; (2)求sinαcosα1+cos 2α的值.【变式5-2】(2022·全国·高一课时练习)已知tan α=2,求下列各式的值. (1)1sin αcos α;(2)11−sin α+11+sin α.【变式5-3】(2022·天津·模拟预测)已知3π4<α<π, tan α+1tana =−103. (1)求tanα的值; (2)求sinα+cosαsinα−cosα的值;(3)求2sin 2α−sin αco sα−3co s 2α .的值【例6】(2022·全国·高一课时练习)求证: (1)(1−cosαsinα+1sinα)(1−tanα+1cosα)=2;(2)sinα(1+tanα)+cosα(1+1tanα)=1sinα+1cosα.【变式6-1】(2021·全国·高一课时练习)求证: (1)1−2sinxcosx cos 2x−sinx 2=1−tanx 1+tanx(2)tan 2α−sin 2α=tan 2α⋅sin 2α【变式6-2】(2021·全国·高一专题练习)求证:sin 4α+cos 4α=1﹣2sin 2αcos 2α【变式6-3】(2022·全国·高一课时练习)求证: (1)sinα−cosα+1sinα+cosα−1=1+sinαcosα;(2)2(sin 6θ+cos 6θ)−3(sin 4θ+cos 4θ)+1=0。
高中数学必修四 第一章三角函数 1.2.1.1 三角函数的定义
解析:角
α
的终边在
y
轴的非负半轴上,则
α=2kπ+
π 2
(������∈Z),所以
tan α 无意义.
答案:A
【做一做 1-2】 若角 α 的终边与单位圆相交于点
2 2
,-
2 2
,
则 sin ������的值为( )
A.
2 2
B.
−
2 2
C.
1 2
D.
−1
解析:x=
2 2
,
������
=
−
2 2
,
则sin
题型一 题型二 题型三 题型四
解:(1)∵-670°=-2×360°+50°,
∴-670°是第一象限角,
∴sin(-670°)>0.
又1 230°=3×360°+150°,
∴1 230°是第二象限角,
∴cos 1 230°<0,
∴sin(-670°)cos 1 230°<0.
(2)∵
5π 2
<
8
<
(2)∵
5π 4
是第三象限角,
4π 5
是第二象限角,
11π 6
是第四象限角,∴
sin
5π 4
<
0,
cos
4π 5
<
0,
tan
11π 6
<
0,
∴sin
54π·cos
45π·tan
11π 6
<
0,
式子符号为负.
(3)∵191°角为第三象限角,∴tan 191°>0,cos 191°<0,
7.2.1三角函数的定义+教学设计2023-2024学年高一下学期数学人教B版(2019)必修第三册
教学设计题目三角函数的定义第 1 课时内容和内容解析内容本节内容主要包括三角函数的定义,根据定义求任意角的三角函数,判断三角函数在各象限的符号。
内容解析三角函数是一类最典型的周期函数,是解决实际问题的重要工具,是学习数学和物理、天文等其他学科的基础。
整体上任意角三角函数知识体系的建立,与其他基本初等函数类似,强调以周期变换为背景,构建从从抽象研究对象(即定义三角函数概念)到研究它的性质图像再到实际应用的过程。
学情分析学生在以前学习基本初等函数,涉及的量(常量与变量)较少,解析式都有明确的运算含义,而三角中,影响单位圆上点的坐标变化的因素较多,对应关系不以“代数运算”为媒介,而是角与x,y直接对应,无需计算。
目标和目标解析目标1.通过分析问题情境中摩天轮离地面高度问题,体会用坐标定义任意角三角函数的必要性,体会由特殊到一般的归纳思想,发展数学抽象和逻辑推理的学科素养;2.经历任意角三角函数定义的产生过程,理解任意角三角函数的定义,发展逻辑推理的学科素养;3.会运用定义求任意角的三角函数值、会判定给定三角函数值的符号,发展数学运算的学科素养.目标解析1、学生能如了解基本初等函数的背景那样,了解三角函数是刻画现实世界中“周而复始”变化规律的数学工具;2、学生能根据定义得出三角函数在各象限取值的符号规律。
教学重点1.任意角三角函数的定义;2.依据定义求三角函数值;3.判定三角函数值的符号.教学难点任意角三角函数定义的建构过程以及三角函数的对应关系。
教学方法分析本节课以新课标教学理念为知道,倡导积极主动、勇于探索的学习方式,采用情境导入借助多媒体的运用,让学生理解三角函数的背景及定义的构建过程。
教学过程设计教师活动与任务设计学生学习活动与任务解决设计意图或评价目标环节一创设情境任务一、情境导入本章导语中提到“天津之眼”的天津永乐桥摩天轮,设其半径为r m,中心离地面高度为,从水平位置B点出发,设半径AB转过的角度为,一、学生独立思考完成,展示答案:,,并作解释说明,进而猜想:.二、师生共研当点B在水平位置上方时,任意角三角函数定义的建构过程是本节课的难点,如何自然地引入坐标,使学生体会到用坐标定义的必要性和问题1:当时,B 点离地面的高度h如何表示?当呢?猜想当角为任意角时,h与之间的关系式如何表示?问题2:随着摩天轮的转动,角从最初的锐角推广到任意角,对任意角,该如何定义呢?这就是本节要学习的内容,任意角三角函数的定义.上述问题的猜想是否合理呢?我们共同分析:问题3:上述式子中,我们能否找到一个量替代,使上述形式更简单?它的绝对值与相等,在水平位置上方为正,下方为负.,当点当点B在水平位置下方时,,所以,结合猜想,得到,即.三、学生活动:学生思考后回答,引入直角坐标系,用点B的纵坐标y替代,所以.合理性是设置该问题情境的原因,并且通过摩天轮周而复始的旋转,让学生感受三角函数的背景就是周而复始的运动。
1.2 任意角的三角函数-人教A版高中数学必修四讲义(解析版)
知识点一任意角的三角函数使锐角α的顶点与原点O重合,始边与x轴的非负半轴重合,在终边上任取一点P,作PM⊥x轴于M,设P(x,y),|OP|=r.思考1角α的正弦、余弦、正切分别等于什么?答案sin α=yr,cos α=xr,tan α=yx.思考2对确定的锐角α,sin α,cos α,tan α的值是否随P点在终边上的位置的改变而改变?答案不会.因为三角函数值是比值,其大小与点P(x,y)在终边上的位置无关,只与角α的终边位置有关,即三角函数值的大小只与角有关.思考3在思考1中,当取|OP|=1时,sin α,cos α,tan α的值怎样表示?答案sin α=y,cos α=x,tan α=yx.梳理(1)单位圆在直角坐标系中,我们称以原点O为圆心,以单位长度为半径的圆为单位圆.(2)定义在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P(x,y),那么:教材要点学科素养学考高考考法指津高考考向1.三角函数的定义数学抽象水平1 水平11.以锐角三角函数的定义来推广记忆任意角的三角函数的定义。
2.充分理解同角三角函数的基本关系式,掌握公式成立的条件及公式的变形。
3.理解并记忆求值、化简及证明的模型,领会解题常用的方法技巧。
【考查内容】根据三角函数的定义求值,三角函数平方关系的应用。
【考查题型】选择题、填空题【分值情况】5分2.终边相同的角的同一三角函数值的关系数学运算水平1 水平23.单位圆数学直观水平1 水平24.同角三角函数的两个基本关系式数学运算水平1 水平2第二讲任意角的三角函数知识通关①y 叫做α的正弦,记作sin_α, 即sin α=y ;②x 叫做α的余弦,记作cos_α,即cos α=x ; ③y x 叫做α的正切,记作tan_α,即tan α=yx(x ≠0). 对于确定的角α,上述三个值都是唯一确定的.故正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,统称为三角函数.知识点二 正弦、余弦、正切函数值在各象限的符号思考 根据三角函数的定义,你能判断正弦、余弦、正切函数的值在各象限的符号吗?答案 由三角函数定义可知,在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=yx (x ≠0).当α为第一象限角时,y >0, x >0,故sin α>0,cos α>0,tan α>0,同理可得当α在其他象限时三角函数值的符号,如图所示.梳理 记忆口诀:“一全正,二正弦,三正切,四余弦”.知识点三 诱导公式一思考 当角α分别为30°,390°,-330°时,它们的终边有什么特点?它们的三角函数值呢? 答案 它们的终边重合.由三角函数的定义知,它们的三角函数值相等. 梳理 诱导公式一知识点四 三角函数的定义域思考 正切函数y =tan x 为什么规定x ∈R 且x ≠k π+π2,k ∈Z?答案 当x =k π+π2,k ∈Z 时,角x 的终边在y 轴上,此时任取终边上一点P (0,y P ),因为y P0无意义,因而x 的正切值不存在.所以对正切函数y =tan x ,必须要求x ∈R 且x ≠k π+π2,k ∈Z .梳理 正弦函数y =sin x 的定义域是R ;余弦函数y =cos x 的定义域是R ;正切函数y =tan x 的定义域是⎩⎨⎧⎭⎬⎫x ⎪⎪x ∈R 且x ≠k π+π2,k ∈Z .知识点五 三角函数线思考1 在平面直角坐标系中,任意角α的终边与单位圆交于点P ,过点P 作PM ⊥x 轴,过点A (1,0)作单位圆的切线,交α的终边或其反向延长线于点T ,如图所示,结合三角函数的定义,你能得到sin α,cos α,tan α与MP ,OM ,AT 的关系吗?答案 sin α=MP ,cos α=OM ,tan α=AT . 思考2 三角函数线的方向是如何规定的?答案 方向与x 轴或y 轴的正方向一致的为正值,反之,为负值. 思考3 三角函数线的长度和方向各表示什么?答案 长度等于三角函数值的绝对值,方向表示三角函数值的正负. 梳理角α的终边与单位圆交于点P ,过点P 作PM 垂直于x 轴,有向线知识点六 同角三角函数的基本关系式 思考1 计算下列式子的值: (1)sin 230°+cos 230°; (2)sin 245°+cos 245°; (3)sin 290°+cos 290°.由此你能得出什么结论?尝试证明它. 答案 3个式子的值均为1.由此可猜想:对于任意角α,有sin 2α+cos 2α=1,下面用三角函数的定义证明:设角α的终边与单位圆的交点为P (x ,y ),则由三角函数的定义,得sin α=y ,cos α=x . ∴sin 2α+cos 2α=x 2+y 2=|OP |2=1.思考2 由三角函数的定义知,tan α与sin α和cos α间具有怎样的等量关系? 答案 ∵tan α=y x (x ≠0),∴tan α=sin αcos α(α≠π2+k π,k ∈Z ).梳理 (1)同角三角函数的基本关系式 ①平方关系:sin 2α+cos 2α=1.②商数关系:tan α=sin αcos α ⎝⎛⎭⎫α≠k π+π2,k ∈Z . (2)同角三角函数基本关系式的变形 ①sin 2α+cos 2α=1的变形公式 sin 2α=1-cos 2α;cos 2α=1-sin 2α. ②tan α=sin αcos α的变形公式=sin αtan α.此时sin θ=312+32=31010,tan θ=31=3.当x=-1时,P(-1,3),此时sin θ=3(-1)2+32=31010,tan θ=3-1=-3.命题角度2已知角α终边所在直线求三角函数值规律方法例1-2已知角α的终边在直线y=3x上,则sin α,cos α,tan α的值分别为________.解析:因为角α的终边在直线y=3x上,所以可设P(a,3a)(a≠0)为角α终边上任意一点,则r=a2+(3a)2=2|a|(a≠0).若a>0,则α为第一象限角,r=2a,所以sin α=3a2a=32,cos α=a2a=12,tan α=3aa= 3.若a<0,则α为第三象限角,r=-2a,所以sin α=3a-2a=-32,cos α=-a2a=-12,tan α=3aa= 3.答案32,12,3或-32,-12, 3变式训练1-2在平面直角坐标系中,角α的终边在直线3x+4y=0上,求sin α-3cos α+tan α的值.解析:当角α的终边在射线y=-34x(x>0)上时,取终边上一点P(4,-3),所以点P到坐标原点的距离r=|OP|=5,所以sin α=yr=-35=-35,cos α=xr=45,tan α=yx=-34.所以sin α-3cos α+tan α=-35-125-34=-154.当角α的终边在射线y=-34x(x<0)上时,取终边上一点P′(-4,3),所以点P′到坐标原点的距离r=|OP′|=5,所以sin α=yr=35,cos α=xr=-45,tan α=yx=3-4=-34.所以sin α-3cos α+tan α=35-3×⎝⎛⎭⎫-45-34=35+125-34=94.综上,sin α-3cos α+tan α的值为-154或94.题型二 三角函数值符号的判断 规律方法例2、 判断下列各式的符号:(1)sin 145°cos(-210°);(2)sin 3·cos 4·tan 5. 解析: (1)∵145°是第二象限角,∴sin 145°>0. ∵-210°=-360°+150°,∴-210°是第二象限角, ∴cos (-210°)<0,∴sin 145°cos(-210°)<0. (2)∵π2<3<π<4<3π2<5<2π,∴sin 3>0,cos 4<0,tan 5<0, ∴sin 3·cos 4·tan 5>0.变式训练2 sin1cos3tan5的值( ) A .小于0 B .大于0 C .等于0 D .不存在解析: π3π013π52π22<<<<<<,, ∴sin10cos30tan50><<,,.答案 B题型三 诱导公式一的应用 规律方法(1)sin390°+cos(-660°)+3tan405°-cos540°;变式训练3tan 405°-sin 450°+cos 750°=________. 解析: tan 405°-sin 450°+cos 750°=tan(360°+45°)-sin(360°+90°)+cos(720°+30°) =tan 45°-sin 90°+cos 30°=1-1+32=32. 答案32题型四 三角函数线 规律方法sin ⎝⎛⎭⎫-5π8=MP ,cos ⎝⎛⎭⎫-5π8=OM , tan ⎝⎛⎭⎫-5π8=AT . 变式训练4、 在单位圆中画出满足sin α=12的角α的终边,并求角α的取值集合.解析: 已知角α的正弦值,可知P 点纵坐标为12.所以在y 轴上取点⎝⎛⎭⎫0,12,过这点作x 轴的平行线,交单位圆于P 1,P 2两点,则OP 1,OP 2是角α的终边,因而角α的取值集合为⎩⎨⎧⎭⎬⎫α⎪⎪α=2k π+π6或α=2k π+5π6,k ∈Z .题型五 利用同角三角函数的关系式求值 命题角度1 已知角α的某一三角函数值及α所在象限,求角α的其余三角函数值则tan α的值为( )A.125 B .-125 C.512 D .-512 解析: ∵sin α=-513,且α为第四象限角,∴cos α=1213,∴tan α=sin αcos α=-512,故选D.答案 D(2) 已知-π2<α<0,sin α+cos α=15,则tan α的值为( ) A .-43 B .-34 C.34 D.43解析: ∵sin α+cos α=15,等号两边同时平方得1+2sin αcos α=125,即sin αcos α=-1225,∴sin α,cos α是方程x 2-15x -1225=0的两根,又∵-π2<α<0,∴sin α=-35,cos α=45,∴tan α=sin αcos α=-34.答案 B变式训练5-1 已知tan α=43,且α是第三象限角,求sin α,cos α的值.解析: 由tan α=sin αcos α=43,得sin α=43cos α.①又sin 2α+cos 2α=1,②由①②得169cos 2α+cos 2α=1,即cos 2α=925.又α是第三象限角,∴cos α=-35,sin α=43cos α=-45.命题角度2 已知角α的某一三角函数值,未给出α所在象限,求角α的其余三角函数值 规律方法:例5-2已知cos α=-817,求sin α,tan α的值.解析: ∵cos α=-817<0,且cos α≠-1,∴α是第二或第三象限角. (1)当α是第二象限角时,则 sin α=1-cos 2α=1-⎝⎛⎭⎫-8172=1517, tan α=sin αcos α=1517-817=-158.(2)当α是第三象限角时,则 sin α=-1-cos 2α=-1517,tan α=158.变式训练5-2 已知cos α=1213,求sin α,tan α的值.解析: ∵cos α=1213>0且cos α≠1,∴α是第一或第四象限角. (1)当α是第一象限角时,则 sin α=1-cos 2α=1-⎝⎛⎭⎫12132=513,tan α=sin αcos α=5131213=512.(2)当α是第四象限角时,则sin α=-1-cos 2α=-513,tan α=-512.题型六 齐次式求值问题 规律方法:例6 已知tan α=2,求下列代数式的值. (1)4sin α-2cos α5cos α+3sin α;(2)14sin 2α+13sin αcos α+12cos 2α.解析: (1)原式=4tan α-25+3tan α=611.(2)原式=14sin 2α+13sin αcos α+12cos 2αsin 2α+cos 2α=14tan 2α+13tan α+12tan 2α+1=14×4+13×2+125=1330.变式训练6 已知4sin θ-2cos θ3sin θ+5cos θ=611,求下列各式的值. (1)5cos 2θsin 2θ+2sin θcos θ-3cos 2θ; (2)1-4sin θcos θ+2cos 2θ.解析: 由已知4sin θ-2cos θ3sin θ+5cos θ=611,∴4tan θ-23tan θ+5=611,解得tan θ=2.(1)原式=5tan2θ+2tan θ-3=55=1.(2)原式=sin2θ-4sin θcos θ+3cos2θ=sin2θ-4sin θcos θ+3cos2θsin2θ+cos2θ=tan2θ-4tan θ+31+tan2θ=-15.例8-1 ∴在单位圆中,利用三角函数线求出满足1sin 2α>的角α的范围.∴在单位圆中,利用三角函数线求出满足1sin 2≤α的角α的范围.解析:∴如图所示,π5π2π2π66k k k αα⎧⎫+<<+∈⎨⎬⎩⎭Z ,. ∴如图所示,5π132ππ2π66k k k αα⎧⎫++∈⎨⎬⎩⎭Z ≤≤,.(1)(2)变式训练8-1 已知-12≤cos θ<32,利用单位圆中的三角函数线,确定角θ的取值范围.解析: 图中阴影部分就是满足条件的角θ的范围, 即⎩⎨⎧⎭⎬⎫θ⎪⎪2k π-23π≤θ<2k π-π6或2k π+π6<θ≤2k π+23π,k ∈Z .命题角度2 利用三角函数线求三角函数的定义域 规律方法例8-2 求函数y =lg ⎝⎛⎭⎫sin x -22+1-2cos x 的定义域.解析: 由题意知,自变量x 应满足不等式组⎩⎪⎨⎪⎧1-2cos x ≥0,sin x -22>0,即⎩⎨⎧cos x ≤12,sin x >22.12(1)化简:sin 2αtan α+cos 2αtan α+2sin αcos α. 原式=sin 2α·sin αcos α+cos 2α·cos αsin α+2sin αcos α=sin 4α+cos 4α+2sin 2αcos 2αsin αcos α=(sin 2α+cos 2α)2sin αcos α=1sin αcos α.求证:tan αsin αtan α-sin α=tan α+sin αtan αsin α.∵右边=tan 2α-sin 2α(tan α-sin α)tan αsin α=tan 2α-tan 2αcos 2α(tan α-sin α)tan αsin α =tan 2α(1-cos 2α)(tan α-sin α)tan αsin α =tan 2αsin 2α(tan α-sin α)tan αsin α =tan αsin αtan α-sin α=左边,∴原等式成立.一、选择题1.已知角α的终边过点(-2,1),则cos α的值为()A.55 B.255C.-55D.-255答案 D2.如果角α的终边过点P(2sin 30°,-2cos 30°),则sin α等于()A.12B.-12C.-32D.-33解析:由题意得P(1,-3),它与原点的距离r=12+(-3)2=2,∴sin α=-32. 答案 C3.如图在单位圆中,角α的正弦线、正切线完全正确的是()A.正弦线为PM,正切线为A′T′B.正弦线为MP,正切线为A′T′C.正弦线为MP,正切线为ATD.正弦线为PM,正切线为AT答案 C4.函数y=tan⎝⎛⎭⎫x-π3的定义域为()A.⎩⎨⎧⎭⎬⎫x⎪⎪x≠π3,x∈R B.⎩⎨⎧⎭⎬⎫x⎪⎪x≠kπ+π6,k∈ZC.⎩⎨⎧⎭⎬⎫x⎪⎪x≠kπ+5π6,k∈Z D.⎩⎨⎧⎭⎬⎫x⎪⎪x≠kπ-5π6,k∈Z解析:∵x-π3≠kπ+π2,k∈Z,∴x≠kπ+5π6,k∈Z.答案 CA组基础演练5.若0<α<2π,且sin α<32,cos α>12,则角α的取值范围是( ) A.⎝⎛⎭⎫-π3,π3 B.⎝⎛⎭⎫0,π3 C.⎝⎛⎭⎫5π3,2πD.⎝⎛⎭⎫0,π3∪⎝⎛⎭⎫5π3,2π 解析: 角α的取值范围为图中阴影部分, 即⎝⎛⎭⎫0,π3∪⎝⎛⎭⎫5π3,2π.答案 D7.已知tan θ=2,则1sin 2θ+sin θcos θ-2cos 2θ等于( )A .-43 B.54 C .-34 D.45答案 B 8.1-2sin 10°cos 10°sin 10°-1-sin 210°的值为( ) A .1 B .-1 C .sin 10°D .cos 10°解析: 1-2sin 10°cos 10°sin 10°-1-sin 210°=(cos 10°-sin 10°)2sin 10°-cos 210°=|cos 10°-sin 10°|sin 10°-cos 10°=cos 10°-sin 10°sin 10°-cos 10°=-1.答案 B9.若α是第四象限角,5tan 12α=-,则sin α等于( ) A .15B .15-C .513D .513-解析:因为5tan 12α=-,所以sin 5cos 12αα=-,即12cos sin 5αα=-,因为22sin cos 1αα+=, 所以22144sin sin 125αα+=,即225sin 169α=,因为α是第四象限角,所以5sin 13α=-。
高中数学人教A版必修四课时训练:第一章三角函数1-2任意角的三角函数
图1
作直线 y= 23交单位圆于 A、B,连结 OA、OB,则 OA 与 OB 围成的区域(图 1 阴影部分), 即为角 α 的终边的范围. 故满足条件的角 α 的集合为 {α|2kπ+π3≤α≤2kπ+23π,k∈Z}. (2)
∴sin 2cos 3tan 4<0.
10.2
解析 ∵y=3x,sin α<0,∴点 P(m,n)位于 y=3x 在第三象限的图象上,且 m<0,n<0,
n=3m.
∴|OP|= m2+n2= 10|m|=- 10m= 10.
∴m=-1,n=-3,∴m-n=2.
11.解 (1)原式=cosπ3+-4×2π+tanπ4+2×2π=cos π3+tan π4=12+1=32.
3.诱导公式一的实质是说终边相同的角的三角函数值相等. 作用是把求任意角的三角函数值转化为求 0~2π(或 0°~360°)角的三角函数值.
答案
知识梳理
y 1.r
x r
y x
3.相等
sinα
cosα
tanα
作业设计
1.A 2.B
3.C [∵sinα<0,∴α 是第三、四象限角.又 tanα>0,
∴α 是第一、三象限角,故 α 是第三象限角.]
4.C [∵1,1.2,1.5 均在0,π2内,正弦线在0,π2内随 α 的增大而逐渐增大,
∴sin1.5>sin1.2>sin1.] 5.D [在同一单位圆中,利用三角函数线可得 D 正确.] 6.A [
如图所示,在单位圆中分别作出 α 的正弦线 MP、余弦线 OM、正切线 AT,很容易地观察出
OM<MP<AT,即 cosα<sinα<tanα.]
高中数学 1.2.1任意角的三角函数的定义及应用练习(含解析)苏教版必修4-苏教版高一必修4数学试题
1.2 任意角的三角函数1.2.1 任意角的三角函数的定义及应用在初中我们已经学了锐角三角函数,知道它们都是以锐角为自变量、边的比值为函数值的三角函数.你能用平面直角坐标系中角的终边上的点的坐标来表示锐角三角函数吗?改变终边上的点的位置,这个比值会改变吗?把角扩充为任意角,结论成立吗?一、任意角的三角函数1.单位圆:在平面直角坐标系中,以原点O 为圆心,以单位长度为半径的圆称为________.2.三角函数的定义:设角α的顶点与原点重合,始边与x 轴非负半轴重合.在平面直角坐标系中,角α终边与单位圆交于一点P (x ,y ),则r =|OP |=1.那么:(1)y 叫做________,记作sin α,即y =sin α; (2)x 叫做________,记作cos α,即x =cos α; (3)y x 叫做________,记作tan α,即y x=tan α(x ≠0).正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们把它们统称为________.答案:1.单位圆2.(1)α的正弦 (2)α的余弦 (3)α的正切 三角函数二、三角函数值在各个象限内的符号1.由三角函数的定义,以及各象限内的点的坐标的符号,可以确定三角函数在各象限的符号.sin α=y r,其中r >0,于是sin α的符号与y 的符号相同,即:当α是第________象限角时,sin α>0;当α是第________象限角时,sin α<0.cos α=x r,其中r >0,于是cos α的符号与x 的符号相同,即:当α是第__________象限角时,cos α>0;当α是第________象限角时,cos α<0.tan α=y x,当x 与y 同号时,它们的比值为正,当x 与y 异号时,它们的比值为负,即:当α是第________象限角时,tan α>0;当α是第 ________象限角时,tan α<0.2.根据终边所在位置总结出形象的识记口诀1:“sin α=yr :上正下负横为0;cos α=x r :左负右正纵为0;tan α=y x:交叉正负.” 形象的识记口诀2:“一全正、二正弦、三正切、四余弦.” 答案:1.一、二 三、四 一、四 二、三 一、三 二、四三、诱导公式一由定义可知,三角函数值是由角的终边的位置确定的,因此,终边相同的角的同一三角函数的值________,这样就有下面的一组公式(诱导公式一):sin(2k π+α)=sin α,cos(2k π+α)=cos α,tan(2k π+α)=tan α,k ∈Z. 答案:相等四、三角函数线1.有向线段:有向线段是规定了方向(即起点、终点)的线段,它是________、 ________的.在平面直角坐标系中,和坐标轴同向的有向线段为正,反向的为负.2.正弦线、余弦线、正切线:三角函数线是用来形象地表示三角函数值的有向线段.有向线段的________表示三角函数值的________,有向线段的________表示三角函数值的绝对值的________.三角函数线的作法如下:设角α的终边与单位圆的交点为P ,过点P 作x 轴的垂线,垂足为M ,则有向线段MP ,OM 就分别是角α的正弦线与余弦线,即MP =y =sin α,OM =x =cos α.过点A (1,0)作单位圆的切线,设这条切线与角α的终边(或终边的反向延长线)交于点T ,则有向线段AT 就是角α的正切线,即AT =tan α.3.填写下表中三角函数的定义域、值域:函数定义域值域 y =sin α y =cos α y =tan α答案:1.有长度 有正负 2.方向 正负 长度 大小 3.函 数定 义 域值 域 y =sin α R [-1,1] y =cos α R[-1,1]y =tan α⎩⎨⎧⎭⎬⎫α⎪⎪⎪α≠π2+k π,k ∈ZR任意角的三角函数的定义1.正弦、余弦、正切可分别看成是从一个角的集合到一个比值的集合的映射,它们都是以角为自变量,以比值为函数值的函数.2.三角函数值是比值,是一个实数.这个实数的大小和点P (x ,y )在终边上的位置无关,而是由角α的终边位置所决定.对于确定的角α,其终边的位置也是唯一确定的.因此,三角函数是角的函数.(1)三角函数值只与角α的终边所在的位置有关,与点P 在终边上的位置无关. (2)三角函数值是一个比值,没有单位.三角函数值的符号三角函数值在各象限的符号取决于终边所在的位置,具体说取决于x,y的符号,记忆时结合三角函数定义式记,也可用口诀只记正的“一全正、二正弦、三正切、四余弦”.三角函数线对于三角函数线,须明确以下几点:(1)当角α的终边在y轴上时,余弦线变成一个点,正切线不存在.(2)当角α的终边在x轴上时,正弦线、正切线都变成点.(3)正弦线、余弦线、正切线都是与单位圆有关的有向线段,所以作某角的三角函数线时,一定要先作单位圆.(4)线段有两个端点,在用字母表示正弦线、余弦线、正切线时,要先写起点字母,再写终点字母,不能颠倒;或者说,含原点的线段,以原点为起点,不含原点的线段,以此线段与x轴的公共点为起点.(5)三种有向线段的正负与坐标轴正负方向一致,三种有向线段的长度与三种三角函数值相同.三角函数的定义域1.由三角函数的定义式可以知道,无论角α终边落在哪里,sin α,cos α都有唯一的值与之对应,但对正切则要求α终边不能落在y轴上,否则正切将无意义.2.角和实数建立了一一对应关系,三角函数就可以看成是以实数为自变量的函数,所以就可以借助单位圆,利用终边相同的角的概念求出任意角的三角函数.基础巩固1.sin 810°+tan 765°+tan 1125°+cos 360°=________.答案:42.若α的终边过点P(2sin 30°,-2cos 30°),则sin α的值为________.答案:-3 23.若角α的终边过点P (3cos θ,-4cos θ)(θ为第二象限角),则sin α=________.答案:454.cos θ·tan θ<0,则角θ是________象限角. 答案:第三或第四5.已知点P (tan α,cos α)在第三象限,则角α的终边在第________象限. 答案:二6.角α的正弦线与余弦线长度相等,且符号相同,那么α(0<α<2π)的值为________.答案:π4或54π7.sin 1,sin 1.2,sin 1.5三者的大小关系是________. 答案:sin 1.5>sin 1.2>sin 1能力升级8.函数y =sin x +-cos x 的定义域是________.解析:∵⎩⎪⎨⎪⎧sin x ≥0,-cos x ≥0,∴⎩⎪⎨⎪⎧sin x ≥0,cos x ≤0,即角x 的终边落在第二象限内和两个半轴上.∴2k π+π2≤x ≤2k π+π,k ∈Z.答案:⎣⎢⎡⎦⎥⎤2k π+π2,2k π+π(k ∈Z)9.已知角α的终边在直线y =kx 上,若sin α=-255,cos α<0,则k =________.解析:∵sin α=-255,cos α<0,∴α的终边在第三象限.令角α的终边上一点的坐标为(a ,ka ),a <0,则r =-1+k 2·a ,sin α=-ka 1+k 2a=-255,∴k =2. 答案:210.在(0,2π)内,满足tan 2α=-tan α的α的取值X 围是________. 解析:由tan 2α=-tan α,知tan α≤0,在单位圆中作出角α的正切线,知π2<α≤π或3π2<α<2π. 答案:⎝ ⎛⎦⎥⎤π2,π∪⎝ ⎛⎭⎪⎫3π2,2π11.解不等式2+2cos x ≥0. 解析:2+2cos x ≥0⇔cos x ≥-22,利用单位圆,借助三角函数线(如图)可得出解集是⎣⎢⎡⎦⎥⎤2k π-34π,2k π+34π(k ∈Z).12.若π4<θ<π2,则下列不等式中成立的是( )A .sin θ>cos θ>tan θB .cos θ>tan θ>sin θC .sin θ>tan θ>cos θD .tan θ>sin θ>cos θ解析:作出角θ的三角函数线(如图),数形结合得AT >MP >OM ,即tan θ>sin θ>cosθ.答案:D13.函数y =sin x |sin x |+cos x |cos x |+tan x|tan x |的值域是( C )A .{-1,0,1,3}B .{-1,0,3}C .{-1,3}D .{-1,1}14.若0<α<π2,证明:(1)sin α+cos α>1; (2)sin α<α<tan α.证明:(1)在如图所示单位圆中, ∵0<α<π2,|OP |=1,∴sin α=MP ,cos α=OM . 又在△OPM 中,有 |MP |+|OM |>|OP |=1. ∴sin α+cos α>1.(2)如图所示,连接AP ,设△OAP 的面积为S △OAP ,扇形OAP 的面积为S 扇形OAP ,△OAT 的面积为S △OAT .∵S △OAP <S 扇形OAP <S △OAT , ∴12OA ·MP <12AP ︵·OA <12OA ·AT .∴MP <AP ︵<AT ,即sin α<α<tan α.15.已知f (n )=cosn π5(n ∈Z),求f (1)+f (2)+f (3)+…+f (2 014)的值.解析:角n5π(n =1,2,…,10)表示10个不同终边的角,这10条终边分成五组,每组互为反向延长线.∴f (1)+f (2)+…+f (10)=0,f (11)+f (12)+…+f (20)=0,…f (2 001)+f (2 002)+…+f (2 010)=0.∴f (1)+f (2)+…+f (2 010)=0.∴f (1)+f (2)+…+f (2 014)=f (2 011)+f (2 012)+f (2 013)+f (2 014)=cos π5+cos 2π5+cos 3π5+cos 4π5.由定义知cos π5与cos 4π5,cos 2π5与cos 3π5互为相反数,故f (1)+f (2)+…+f (2 014)=0.。
1.2.1 任意角的三角函数.ppt
2019-11-27
感谢你的阅读
6
归纳 总结
1. 内容总结:
①三角函数的概念. ②三角函数的定义域及三角函数值在各象 限的符号. ③诱导公式一.
2 .方法总结:
运用了定义法、公式法、数形结合法解题.
3 .体现的数学思想:
2019-1划1-27 归的思想,数形感谢结你的阅合读 的思想.
7ห้องสมุดไป่ตู้
练习
P15 练习 4,5, 6, 7 P20 习题1.2 A组 6 , 9
(1)
cos
9
4
(2)tan( 11 )
6
解:(1)cos 9 cos( 2 ) cos 2
4
4
42
(2)tan( 11 ) tan( 2 ) tan tan 3
6
6
6 63
练习 求下列三角函数值
tan 19
3
3
1 tan( 31 ) 4
2019-11-27
感谢你的阅读
4
例4 确定下列三角函数值的符号:
(1)cos 250(2)tan( 672)(3)sin
4 解(1)因为 250 是第三象限角,所以 cos250 0
(2)因为 tan(672)= tan(48 2 360) tan 48,
o
x
( )( )
cos
y
( ) ( )
o
x
(
)(
tan
)
2019-11-27
感谢你的阅读
2
例3 求证:当且仅当下列不等式组成立时,
sin 0 ①
角 为第三象限角.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(参考)2019年高中数学1-2任意角的三角函数1-2-1三角函数的定义优化训练新人教B 版必修45分钟训练(预习类训练,可用于课前)1.已知角α终边经过点P (,),则sinα+tanα等于( )21,2321 A.+ B.+ C.+ D.21232133213365 解析:由三角函数定义,知x=,y=,2321∴r=OP==1.22y x +∴sinα==,tanα=,sinα+tanα=+.r y 2133=xy 2133答案:B2.角α的正割secα=_______________=_______________; 角α的余割cscα=_______________=_______________. 解析:由定义,secα=,xr=αcos 1 cscα=.yr=αsin 1 答案:yr xr ααsin 1cos 13.在空格内填上符号+、-.函数 第一象限 第二象限第三象限第四象限Sin α Cos α Tan α解析:由三角函数的定义,以及各象限内点的坐标的符号,可以确定三角函数的符号.答案:sinα:+ + - - cosα:+ - - + tanα:+ - + -4.角α的终边上有一点P (m ,m )(m∈R,且m≠0),则sinα的值是_____________.解析:因为x=m ,y=m ,所以r=OP=±m.所以sinα==±=±.2r y 2122 答案:±22 10分钟训练(强化类训练,可用于课中)1.已知点P (4,-3)是角α终边上一点,则下列三角函数值中正确的是( )A.tanα=B.cotα=34-34- C.sinα= D.cosα=54-53解析:由三角函数的定义,知x=4,y=-3,r=5,所以sinα==,cosα==,tanα=, cotα=.r y 53-r x 5443-=x y 34-=y x答案:B2.如果cosα=,则下列是角α终边上的一点的是( )21-A.P (1,)B.P (,1)3-3-C.P (,-1)D.P (-1,)33 解析:由余弦函数的定义cosα=及cosα=,知x <0,淘汰A 、C ,再检验选项B 、D ,知D 项正确.22y x x +21-答案:D3.已知点P 在角α的终边上且|OP|=1,则点P 的坐标是( ) A.(,) B.(,)22222123C.(,)D.(cosα,sinα)2321解析:由三角函数定义及|OP|==1,得cosα=x,sinα=y.∴P 点坐标为(cosα,sinα).22y x +答案:D4.如果sinα<0且cosα<0,则角α是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角 解析:由sinα<0,则α终边位于第三象限或第四象限或y 轴的负半轴上.由cosα<0,则α终边位于第二象限或第三象限或x 轴的负半轴上.所以角α的终边只能位于第三象限. 答案:C5.函数y=的定义域是___________________.x x cos sin -+解析:依题意,得⎩⎨⎧≤≥⇔⎩⎨⎧≥-≥.0cos ,0sin 0cos 0sin x x x x故x 的范围是2kπ+≤x≤2kπ+π(k∈Z).2π答案:[2kπ+,2kπ+π](k∈Z)2π6.若角α的终边落在直线y=-3x 上,求cosα、sinα、tanα的值. 解:设直线y=-3x 上任意一点(x ,-3x )(x≠0),当x >0时,r=,∴cosα==,sinα=,tanα=;x x x 10)3(22=-+r x 101010103-=r y 3-=xy当x <0时,r=,x x x 10)3(22-=-+ ∴cosα=,sinα=,tanα==-3.1010-=rx10103=r y xy30分钟训练(巩固类训练,可用于课后)1.若cosθ>0,sinθcosθ<0,则角θ的终边所在象限是( )A.第一象限B.第二象限C.第三象限D.第四象限解析:由cosθ>0和sinθcosθ<0,知sinθ<0,所以θ为第四象限角. 答案:D2.设θ是第二象限角,则必有( )A.tan >cotB.tan <cot 2θ2θ2θ2θC.sin >cosD.sin <cos2θ2θ2θ2θ解析:∵θ是第二象限角,故有2kπ+<θ<2kπ+π,k∈Z,2π∴kπ+<<kπ+(k∈Z).4π2θ2π当k=2n (n∈Z)时,2nπ+<<2nπ+;4π2θ2π当k=2n+1(n∈Z)时,2nπ+<<2nπ+.45π2θ23π可知在单位圆中的范围如下图中阴影部分所示,不难知tan >cot.2θ2θ2θ答案:A3.若>1,则α在( )α2sin )43(A.第一、三象限B.第二、四象限C.第三、四象限D.第一、二象限 解析:由>1,则sin2α<0,α2sin )43( ∴2kπ+π<2α<2kπ+2π,k∈Z. ∴kπ+<α<kπ+π,k∈Z.2π当k=2n 时,2nπ+<α<2nπ+π,k∈Z;2π当k=2n+1时,2nπ+<α<2nπ+2π,k∈Z.∴α为第二、第四象限角.23π 答案:B4.若θ为第一象限角,则能确定为正值的是( )A.sinB.cosC.tanD.cos2θ2θ2θ2θ解析:∵2kπ<θ<2kπ+(k∈Z),2π∴kπ<<kπ+(k∈Z),4kπ<2θ<4kπ+π(k∈Z).2θ4π可知是第一、第三象限角,sin 、cos 都可能取负值,只有tan 能确定为正值.2θ2θ2θ2θ2θ是第一、第二象限角,cos2θ可能取负值. 答案:C5.(2006福建质检题,8)在△ABC 中,下列结论正确的是( ) A.若∠A 为锐角,则sinA >0 B.若sinA >0,则∠A 为锐角C.∠A 为锐角sinA >0D.“∠A 为锐角”与“sinA>0”不能相互推导解析:∠A 为锐角时一定有sinA >0;sinA >0时∠A 不一定为锐角,∠A 还可为直角或钝角. 答案:A6.已知A 为锐角,lg (1+cosA )=m ,=n ,则lgsinA 的值为( )Acos 11lg-A.m+B.m-nC.(m+)D.(m-n )n 121n 121解析:两式相减得lg (1+cosA )-lg=m-nlg [(1+cosA )(1-cosA )]=m-nlgsin2A=m-n ,Acos 11-⇒⇒∵A 为锐角,∴sinA>0. ∴2lgsinA=m -n.∴lgsinA=.2nm - 答案:D7.若点P (2m ,-3m )(m <0)在角α的终边上,则sinα=_____________,cosα=_____________,tanα=_____________,secα=_____________,cscα=_____________,cotα=_____________. 解析:因为点P (2m ,-3m )(m <0)在第二象限,且r=,m 13- 所以,s inα=,cosα=,131331333=--=-m m r m 131321322-=-=mm r m tanα=,213cos 1sec ,2323-==-=-ααm m cscα=,cotα=.313sin 1=α32tan 1-=α 答案:32313213231313213133----8.sin0°+cos90°+tan180°+cot270°+2 006cos0°+2tan45°=___________________. 解析:原式=0+0+0+0+2 006×1+2=2 008. 答案:2 0089.已知α是第三象限角,则sin (cosα)·cos (sinα)_____________0.解析:因为α是第三象限角,∴-1<cosα<0,-1<sinα<0.∴sin (cosα)<0,cos (sinα)>0. ∴sin(cosα)·cos(sinα)<0. 答案:<10.已知角α的终边上一点P 的坐标为(,y )(y≠0),且sinα=y,求cosα、tanα的值.3-42 解:由r2=x2+y2=3+y2,得r=,由三角函数的定义,得23y +sinα=,∴y=±.y y y ry 4222=+=22,5=r ∴cosα=,tanα=.46-=r x 315±=x y 11.证明恒等式.2csc 11sec 11cos 11sin 112222=+++++++αααα证明:设M (x ,y )为角α终边上异于原点的一点,|OM|=r ,由三角函数的定义有sinα=,cosα=,secα=,cscα=.r y r x x r yr∴左边=2222222222222222222*********r y y r x x x r r y r r yr x r r x r y +++++++=+++++++ 22222222x r x r y r y r +++++==1+1=2=右边.∴原等式成立.。