2014年中考数学专题测试试卷(含答案)(方程与不等式)

合集下载

安徽省2014年中考数学真题试卷(含答案和解析)

安徽省2014年中考数学真题试卷(含答案和解析)

2014年安徽省初中毕业学业考试数学(满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)1.(-2)×3的结果是()A.-5B.1C.-6D.62.x2·x3=()A.x5B.x6C.x8D.x93.如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是()A B C D4.下列四个多项式中,能因式分解的是()A.a2+1B.a2-6a+9C.x2+5yD.x2-5y5.某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表,则棉花纤维长度的数据在8≤x<32这个范围内的频率为()A.0.8B.0.7C.0.4D.0.26.设n为正整数,且n<<n+1,则n的值为()A.5B.6C.7D.87.已知x2-2x-3=0,则2x2-4x的值为()A.-6B.6C.-2或6D.-2或308.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A. B. C.4 D.59.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA 的距离为y,则y关于x的函数图象大致是()A B C D10.如图,正方形ABCD的对角线BD长为2,若直线l满足:①点D到直线l的距离为;②A,C两点到直线l的距离相等,则符合题意的直线l的条数为()A.1B.2C.3D.4二、填空题(本大题共4小题,每小题5分,满分20分)11.据报载,2014年我国将发展固定宽带接入新用户25 000 000户,其中25 000 000用科学记数法表示为.12.某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=.13.方程-=3的解是x=.-14.如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF,CF.则下列结论中一定成立的是.(把所有正确结论的序号都填在横线上)①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.三、(本大题共2小题,每小题8分,满分16分)15.计算:-|-3|-(-π)0+2 013.16.观察下列关于自然数的等式:32-4×12=5;①52-4×22=9;②72-4×32=13;③…根据上述规律解决下列问题:(1)完成第④个等式:92-4×()2=();(2)写出你猜想的第个等式(用含n的式子表示),并验证其正确性.四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC(顶点是网格线的交点).(1)将△ABC向上平移3个单位得到△A1B1C1,请画出△A1B1C1(点A,B,C的对应点分别为点A1,B1,C1);(2)请画一个格点三角形A2B2C2,使△A2B2C2∽△ABC,且相似比不为1(点A,B,C的对应点分别为点A2,B2,C2).18.如图,在同一平面内,两条平行高速公路l1和l2间有一条“Z”形道路连通,其中AB段与高速公路l1成30°角,长为20五、(本大题共2小题,每小题10分,满分20分)19.如图,在☉O中,半径OC与弦AB垂直,垂足为E,以OC为直径的圆与弦AB的一个交点为F,D是CF延长线与☉O的交点.若OE=4,OF=6,求☉O的半径和CD的长.20.2013年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费5 200元.从2014年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨,若该企业2014年处理的这两种垃圾数量与2013年相比没有变化,就要多支付垃圾处理费8 800元.(1)该企业2013年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业计划2014年将上述两种垃圾处理总量减少到240吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2014年该企业最少需要支付这两种垃圾处理费共多少元?六、(本题满分12分)21.如图,管中放置着三根同样的绳子AA1,BB1,CC1.(1)小明从这三根绳子中随机选一根,恰好选中绳子AA1的概率是多少?(2)小明先从左端A,B,C三个绳头中随机选两个打一个结,再从右端A1,B1,C1三个绳头中随机选两个打一个结.求这三根绳子能连接成一根长绳的概率.七、(本题满分12分)22.若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x的二次函数y1=2x2-4mx+2m2+1和y2=ax2+bx+5,其中y1的图象经过点A(1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求出当0≤x≤3时,y2的最大值.八、(本题满分14分)23.如图(1),正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF于点M,作PN∥CD交DE于点N.图(1)图(2)图(3)(1)①∠MPN=°;②求证:PM+PN=3a;(2)如图(2),点O是AD的中点,连接OM,ON.求证:OM=ON;(3)如图(3),点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊四边形?并说明理由.2014年安徽省初中毕业学业考试1.C【解析】两数相乘,同号得正,异号得负,并把绝对值相乘,故(-2)×3=-6.2.A【解析】同底数幂的乘法,底数不变,指数相加,故x2·x3=x2+3=x5.3.D【解析】俯视图是从物体的正上方观察物体所得到的平面图形,圆柱沿竖直方向切掉一半后,俯视图是半圆,故选D.4.B【解析】在选项B中,利用完全平方公式因式分解可得a2-6a+9=(a-3)2,选项A,C,D中的多项式都不能因式分解,故选项B符合题意.5.A【解析】根据统计表可知,棉花纤维长度在8≤x<32这个范围内的频数为2+8+6=16,所以频率为=0.8.故选A.6.D【解析】因为<<,所以8<<9,即8<<8+1,所以n=8.故选D.7.B【解析】由已知条件,可得x2-2x=3,所以2x2-4x=2(x2-2x)=2×3=6.故选B.8.C【解析】设BN=x,则DN=AN=9-x,BD=BC=3,在Rt△BND中,根据勾股定理,可得BN2+BD2=DN2,即x2+32=(9-x)2,解得x=4,即BN=4.故选C.9.B【解析】当点P在AB上移动时,点D到直线PA的距离等于AD的长,即y=4,此时x的取值范围为0<x≤3;当点P在BC上移动时,根据三角形面积公式,可得S△APD=AP×y=xy=×3×4,所以y=(3<x≤5).综上所述,选项B符合题意.10.B【解析】由条件①可知:以点D为圆心,为半径作圆,圆的切线即为满足条件①的直线l.连接AC,综合条件①②可知:直线l为☉D的切线且与AC平行.如图,由图可知有2条直线满足条件.11.2.5×107【解析】科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,故a=2.5,n的值为原数的整数位数减1,712.a(1+x)2【解析】根据题意,二月份研发资金为a(1+x)元,三月份研发资金为a(1+x)(1+x)元,所以研发资金y关于x 的函数关系式为y=a(1+x)2.13.6【解析】去分母,可得4x-12=3x-6,移项、合并同类项,可得x=6.检验:当x=6 时,x-2=6-2=4≠0,所以x=6是该分式方程的解.14.①②④【解析】如图,过F作FH∥AB,交BC于点H,CE于点O.因为AD=2AB,点F是AD的中点,所以点H是BC的中点,所以DF=CH=CD.又因为DF∥CH,所以四边形CDFH是菱形,所以CF平分∠BCD,故①正确.延长EF,CD交于点G,因为AB∥CG,所以∠ECG=∠BEC=90°,∠A=∠FDG,∠AEF=∠G.又因为AF=DF,所以△AEF≌△DGF,所以EF=FG.在Rt△ECG中,CF是EG边上的中线,所以EF=CF,故②正确.因为EF=FG,所以S△CEF=S△CFG.因为△AEF≌△DGF,所以S△AEF=S△DGF,所以2S△CEF=S△CEF+S△CFG=S△CEF+S△CDF+S△AEF=S梯形AECD>S平行四边形ABCD,而S△BEC<S平行四边形ABCD,所以S△BEC<2S△CEF,故③错误.由题意可知FH∥AB,所以∠AEF=∠EFH,∠EOF=∠BEC=90°.又因为EF=CF,所以OF垂直平分CE,容易证明Rt△EOF≌Rt△COF,所以∠EFH=∠CFH.由四边形CDFH是菱形,可得∠CFH=∠CFD,所以∠AEF=∠EFH=∠CFH=∠CFD,即∠DFE=3∠AEF,故④正确.15.【参考答案及评分标准】原式=5-3-1+2 013(6分)=2 014.(8分)16.【参考答案及评分标准】(1)417(4分)(2)第个等式为(2n+1)2-4×n2=4n+1.因为左边=4n2+4n+1-4n2=4n+1=右边,所以第个等式成立.(8分)17.【参考答案及评分标准】(1)△A1B1C1如图所示.(4分)(2)本题是开放题,答案不唯一,只要作出的△A2B2C2满足条件即可.(8分)18.【参考答案及评分标准】如图,过点A作AB的垂线交DC的延长线于点E,过点E作l1的垂线与l1,l2分别交于点H,F,则HF⊥l2.由题意知AB⊥BC,BC⊥CD.又AE⊥AB,∴四边形ABCE为矩形.∴AE=BC,AB=EC.(2分)∴DE=DC+CE=DC+AB=30+20=50(km).又AB与l1成30°角,易得∠EDF=30°,∠EAH=60°.在Rt△DEF中,EF=DEsin 30°=50×=25(km),(5分)在Rt△AEH中,EH=AEsin 60°=10×=5(km),∴HF=EF+HE=(25+5)km,即两高速公路间的距离为(25+5)km.(8分)归纳总结运用三角函数解决实际问题时,注意要在直角三角形中求解,根据已知条件选择合适的三角函数.当图形中没有直角三角形时,则根据实际情况构造直角三角形.19.【参考答案及评分标准】∵OC为小圆的直径,∴∠OFC=90°,∴CF=DF.(2分)∵OE⊥AB,∴∠OEF=∠OFC=90°.又∠FOE=∠COF,∴△OEF∽△OFC,∴=.∴OC===9.(7分)又CF=-=-=3,∴CD=2CF=6.(10分)20.【参考答案及评分标准】(1)设2013年该企业处理的餐厨垃圾为x吨,建筑垃圾为y吨,根据题意,得(3分)解得即2013年该企业处理的餐厨垃圾为80吨,建筑垃圾为200吨.(5分)(2)设2014年该企业处理的餐厨垃圾为m吨,建筑垃圾为n吨,需要支付的这两种垃圾处理费是z元.根据题意,得m+n=240且n≤3m,解得m≥60.z=100m+30n=100m+30(240-m)=70m+7 200.(7分)由于z的值随m的增大而增大,所以当m=60时,z最小,最小值为:70×60+7 200=11 400(元).即2014年该企业最少需要支付这两种垃圾处理费共11 400元.(10分)21.【参考答案及评分标准】(1)小明可选择的情况有三种,每种情况发生的可能性相等,恰好选中绳子AA1的情况为一种,所以小明恰好选中绳子AA1的概率P=.(4分)(2)依题意,分别在两端随机任选两个绳头打结,总共有9种情况,每种情况发生的可能性相等.画树状图如下:(9分) 其中左、右打结是相同字母(不考虑下标)的情况,不可能连接成为一根长绳.所以能连接成为一根长绳的情况有6种:①左端连AB,右端连A1C1或B1C1;②左端连BC,右端连A1B1或A1C1;③左端连AC,右端连A1B1或B1C1.故这三根绳子能连接成一根长绳的概率P==.(12分)22.【参考答案及评分标准】(1)本题是开放题,答案不唯一,符合题意即可,如:y1=2x2,y2=x2.(4分)(2)∵函数y1=2x2-4mx+2m2+1的图象经过点A(1,1),∴2-4m+2m2+1=1,解得m1=m2=1.∴y1=2x2-4x+3=2(x-1)2+1.(7分)解法一:∵y1+y2与y1为“同簇二次函数”,∴可设y1+y2=k(x-1)2+1(k>0),则y2=k(x-1)2+1-y1=(k-2)(x-1)2.由题可知函数y2的图象经过点(0,5),则(k-2)×(-1)2=5,∴k-2=5.∴y2=5(x-1)2=5x2-10x+5.当0≤x≤3时,根据y2的函数图象可知,y2的最大值为5×(3-1)2=20.(12分)解法二:∵y1+y2与y1是“同簇二次函数”,∴y1+y2=(a+2)x2+(b-4)x+8(a+2>0).∴-=1,化简得b=-2a.又=1,将b=-2a代入,解得a=5,b=-10.∴y2=5x2-10x+5.当0≤x≤3时,根据y2的函数图象可知,y2的最大值为5×32-10×3+5=20.(12分)23.【参考答案及评分标准】(1)①60(2分)②证明:如图(1),连接BE交MP于H点.在正六边形ABCDEF中,PN∥CD,又BE∥CD∥AF,所以BE∥PN∥AF.又PM∥AB,所以四边形AMHB、四边形HENP为平行四边形,△BPH为等边三角形. 所以PM+PN=MH+HP+PN=AB+BH+HE=AB+BE=3a.(5分)(2)证明:如图(2),连接BE,则BE过点O.由(1)知AM=EN.又AO=EO,∠MAO=∠NEO=60°,所以△MAO≌△NEO,所以OM=ON.(9分)图(1)图(2)图(3)(3)四边形OMGN是菱形.理由如下.如图(3),连接OE,OF,由(2)知∠MOA=∠NOE.因为∠AOE=120°,所以∠MON=∠AOE-∠MOA+∠NOE=120°.(11分)由已知OG平分∠MON,所以∠MOG=60°.又∠FOA=60°,所以∠MOA=∠GOF.又AO=FO,∠MAO=∠GFO=60°,所以△MAO≌△GFO.所以MO=GO.又∠MOG=60°,所以△MGO为等边三角形.同理可证△NGO为等边三角形,所以四边形OMGN为菱形.(14分)。

2014年天津市中考数学试卷(含解析版)

2014年天津市中考数学试卷(含解析版)

2014年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2014年天津市)计算(﹣6)×(﹣1)的结果等于()A.6 B.﹣6 C.1D.﹣12.(3分)(2014年天津市)cos60°的值等于()A.B.C.D.3.(3分)(2014年天津市)下列标志中,可以看作是轴对称图形的是()A.B.C.D.4.(3分)(2014年天津市)为了市民出行更加方便,天津市政府大力发展公共交通,2013年天津市公共交通客运量约为1608000000人次,将1608000000用科学记数法表示为()A.160.8×107B.16.08×108C.1.608×109D.0.1608×10105.(3分)(2014年天津市)如图,从左面观察这个立体图形,能得到的平面图形是()A.B.C.D.6.(3分)(2014年天津市)正六边形的边心距为,则该正六边形的边长是()A. B. 2 C. 3 D.27.(3分)(2014年天津市)如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于()A.20°B.25°C.40°D.50°8.(3分)(2014年天津市)如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:29.(3分)(2014年天津市)已知反比例函数y=,当1<x<2时,y的取值范围是()A.0<y<5 B.1<y<2 C.5<y<10 D.y>1010.(3分)(2014年天津市)要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=28 B.x(x﹣1)=28 C.x(x+1)=28 D.x(x﹣1)=28 11.(3分)(2014年天津市)某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:4的权.根据四人各自的平均成绩,公司将录取()A.甲B.乙C.丙D.丁12.(3分)(2014年天津市)已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c﹣m=0没有实数根,有下列结论:①b2﹣4ac>0;②abc<0;③m>2.其中,正确结论的个数是()A.0 B.1C.2D.3二、填空题(本大题共6小题,每小题3分,满分18分)13.(3分)(2014年天津市)计算x5÷x2的结果等于.14.(3分)(2014年天津市)已知反比例函数y=(k为常数,k≠0)的图象位于第一、第三象限,写出一个符合条件的k的值为.15.(3分)(2014年天津市)如图,是一副普通扑克牌中的13张黑桃牌,将它们洗匀后正面向下放在桌子上,从中任意抽取一张,则抽出的牌点数小于9的概率为.16.(3分)(2014年天津市)抛物线y=x2﹣2x+3的顶点坐标是.17.(3分)(2014年天津市)如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小为(度).18.(3分)(2014年天津市)如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.(Ⅰ)计算AC2+BC2的值等于;(Ⅱ)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为一边的矩形,使该矩形的面积等于AC2+BC2,并简要说明画图方法(不要求证明).三、解答题(本大题共7小题,共66分)19.(8分)(2014年天津市)解不等式组请结合题意填空,完成本题的解答:(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为.20.(8分)(2014年天津市)为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为,图①中m的值为;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?21.(10分)(2014年天津市)已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB 的平分线交⊙O于点D.(Ⅰ)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;(Ⅱ)如图②,若∠CAB=60°,求BD的长.22.(10分)(2014年天津市)解放桥是天津市的标志性建筑之一,是一座全钢结构的部分可开启的桥梁.(Ⅰ)如图①,已知解放桥可开启部分的桥面的跨度AB等于47m,从AB的中点C处开启,则AC开启至A′C′的位置时,A′C′的长为m;(Ⅱ)如图②,某校数学兴趣小组要测量解放桥的全长PQ,在观景平台M处测得∠PMQ=54°,沿河岸MQ前行,在观景平台N处测得∠PNQ=73°,已知PQ⊥MQ,MN=40m,求解放桥的全长PQ(tan54°≈1.4,tan73°≈3.3,结果保留整数).23.(10分)(2014年天津市)“黄金1号”玉米种子的价格为5元/kg,如果一次购买2kg以上的种子,超过2kg部分的种子的价格打8折.(Ⅰ)根据题意,填写下表:(Ⅲ)若小张一次购买该种子花费了30元,求他购买种子的数量.24.(10分)(2014年天津市)在平面直角坐标系中,O为原点,点A(﹣2,0),点B(0,2),点E,点F分别为OA,OB的中点.若正方形OEDF绕点O顺时针旋转,得正方形OE′D′F′,记旋转角为α.(Ⅰ)如图①,当α=90°时,求AE′,BF′的长;(Ⅱ)如图②,当α=135°时,求证AE′=BF′,且AE′⊥BF′;(Ⅲ)若直线AE′与直线BF′相交于点P,求点P的纵坐标的最大值(直接写出结果即可).25.(10分)(2014年天津市)在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1),①当点F的坐标为(1,1)时,如图,求点P的坐标;②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.2014年天津市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2014年天津市)计算(﹣6)×(﹣1)的结果等于()A.6 B.﹣6 C.1D.﹣1【考点】有理数的乘法.【分析】根据有理数的乘法运算法则进行计算即可得解.【解答】解:(﹣6)×(﹣1),=6×1,=6.故选A.【点评】本题考查了有理数的乘法运算,是基础题,熟记运算法则是解题的关键.2.(3分)(2014年天津市)cos60°的值等于()A.B.C.D.【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值解题即可.【解答】解:cos60°=.故选A.【点评】本题考查特殊角的三角函数值,准确掌握特殊角的函数值是解题关键.3.(3分)(2014年天津市)下列标志中,可以看作是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,符合题意.故选:D.【点评】此题主要考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.4.(3分)(2014年天津市)为了市民出行更加方便,天津市政府大力发展公共交通,2013年天津市公共交通客运量约为1608000000人次,将1608000000用科学记数法表示为()A.160.8×107B.16.08×108C.1.608×109D.0.1608×1010【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将1608000000用科学记数法表示为:1.608×109.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)(2014年天津市)如图,从左面观察这个立体图形,能得到的平面图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从左面看得到的图形是左视图,可得答案.【解答】解;从左面看下面一个正方形,上面一个正方形,故选:A.【点评】本题考查了简单组合体的三视图,从左面看得到的图形是左视图.6.(3分)(2014年天津市)正六边形的边心距为,则该正六边形的边长是()A. B. 2 C. 3 D.2【考点】正多边形和圆.【分析】运用正六边形的性质,正六边形边长等于外接圆的半径,再利用勾股定理解决.【解答】解:∵正六边形的边心距为,∴OB=,AB=OA,∵OA2=AB2+OB2,∴OA2=(OA)2+()2,解得OA=2.故选B.【点评】本题主要考查了正六边形和圆,注意:外接圆的半径等于正六边形的边长.7.(3分)(2014年天津市)如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于()A.20°B.25°C.40°D.50°【考点】切线的性质.【分析】连接OA,根据切线的性质,即可求得∠C的度数.【解答】解:如图,连接OA,∵AC是⊙O的切线,∴∠OAC=90°,∵OA=OB,∴∠B=∠OAB=25°,∴∠AOC=50°,∴∠C=40°.【点评】本题考查了圆的切线性质,以及等腰三角形的性质,已知切线时常用的辅助线是连接圆心与切点.8.(3分)(2014年天津市)如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2【考点】平行四边形的性质;相似三角形的判定与性质.【分析】根据题意得出△DEF∽△BCF,进而得出=,利用点E是边AD的中点得出答案即可.【解答】解:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴=,∵点E是边AD的中点,∴AE=DE=AD,∴=.故选:D.【点评】此题主要考查了平行四边形的性质以及相似三角形的判定与性质等知识,得出△DEF∽△BCF是解题关键.9.(3分)(2014年天津市)已知反比例函数y=,当1<x<2时,y的取值范围是()A.0<y<5 B.1<y<2 C.5<y<10 D.y>10【考点】反比例函数的性质.【分析】将x=1和x=2分别代入反比例函数即可确定函数值的取值范围.【解答】解:∵反比例函数y=中当x=1时y=10,当x=2时,y=5,∴当1<x<2时,y的取值范围是5<y<10,故选C.【点评】本题考查了反比例函数的性质:(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.10.(3分)(2014年天津市)要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=28 B.x(x﹣1)=28 C.x(x+1)=28 D.x(x﹣1)=28 【考点】由实际问题抽象出一元二次方程.【分析】关系式为:球队总数×每支球队需赛的场数÷2=4×7,把相关数值代入即可.【解答】解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=4×7.故选B.【点评】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.11.(3分)(2014年天津市)某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:候选人甲乙丙丁测试成绩(百分制)面试86 92 90 83笔试90 83 83 92 如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取()A.甲B.乙C.丙D.丁【考点】加权平均数.【分析】根据题意先算出甲、乙、丙、丁四位候选人的加权平均数,再进行比较,即可得出答案.【解答】解:甲的平均成绩为:(86×6+90×4)÷10=87.6(分),乙的平均成绩为:(92×6+83×4)÷10=88.4(分),丙的平均成绩为:(90×6+83×4)÷10=87.2(分),丁的平均成绩为:(83×6+92×4)÷10=86.6(分),因为乙的平均分数最高,所以乙将被录取.故选B.【点评】此题考查了加权平均数的计算公式,注意,计算平均数时按6和4的权进行计算.12.(3分)(2014年天津市)已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c﹣m=0没有实数根,有下列结论:①b2﹣4ac>0;②abc<0;③m>2.其中,正确结论的个数是()A.0 B.1C.2D.3【考点】二次函数图象与系数的关系.【分析】由图象可知二次函数y=ax2+bx+c与x轴有两个交点,进而判断①;先根据抛物线的开口向下可知a<0,由抛物线与y轴的交点判断c与0的关系,根据对称轴在y轴右侧得出b与0的关系,然后根据有理数乘法法则判断②;一元二次方程ax2+bx+c﹣m=0没有实数根,则可转化为ax2+bx+c=m,即可以理解为y=ax2+bx+c和y=m没有交点,即可求出m的取值范围,判断③即可.【解答】解:①∵二次函数y=ax2+bx+c与x轴有两个交点,∴b2﹣4ac>0,故①正确;②∵抛物线的开口向下,∴a<0,∵抛物线与y轴交于正半轴,∴c>0,∵对称轴x=﹣>0,∴ab<0,∵a<0,∴b>0,∴abc<0,故②正确;③∵一元二次方程ax2+bx+c﹣m=0没有实数根,∴y=ax2+bx+c和y=m没有交点,由图可得,m>2,故③正确.故选D.【点评】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(本大题共6小题,每小题3分,满分18分)13.(3分)(2014年天津市)计算x5÷x2的结果等于x3.【考点】同底数幂的除法.【分析】同底数幂相除底数不变,指数相减,【解答】解:x5÷x2=x3故答案为:x3.【点评】此题考查了同底数幂的除法,解题要注意细心明确指数相减.14.(3分)(2014年天津市)已知反比例函数y=(k为常数,k≠0)的图象位于第一、第三象限,写出一个符合条件的k的值为1.【考点】反比例函数的性质.【专题】开放型.【分析】反比例函数y=(k为常数,k≠0)的图象在第一,三象限,则k>0,符合上述条件的k的一个值可以是1.(正数即可,答案不唯一)【解答】解:∵反比例函数的图象在一、三象限,∴k>0,只要是大于0的所有实数都可以.例如:1.故答案为:1.【点评】此题主要考查反比例函数图象的性质:(1)k>0时,图象是位于一、三象限;(2)k<0时,图象是位于二、四象限.15.(3分)(2014年天津市)如图,是一副普通扑克牌中的13张黑桃牌,将它们洗匀后正面向下放在桌子上,从中任意抽取一张,则抽出的牌点数小于9的概率为.【考点】概率公式.【分析】抽出的牌的点数小于9有1,2,3,4,5,6,7,8共8个,总的样本数目为13,由此可以容易知道事件抽出的牌的点数小于9的概率.【解答】解:∵抽出的牌的点数小于9有1,2,3,4,5,6,7,8共8个,总的样本数目为13,∴从中任意抽取一张,抽出的牌点数小于9的概率是:.故答案为:.【点评】此题主要考查了概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.16.(3分)(2014年天津市)抛物线y=x2﹣2x+3的顶点坐标是(1,2).【考点】二次函数的性质.【专题】计算题.【分析】已知抛物线的解析式是一般式,用配方法转化为顶点式,根据顶点式的坐标特点,直接写出顶点坐标.【解答】解:∵y=x2﹣2x+3=x2﹣2x+1﹣1+3=(x﹣1)2+2,∴抛物线y=x2﹣2x+3的顶点坐标是(1,2).【点评】此题考查了二次函数的性质,二次函数y=a(x﹣h)2+k的顶点坐标为(h,k),对称轴为x=h,此题还考查了配方法求顶点式.17.(3分)(2014年天津市)如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小为45(度).【考点】等腰三角形的性质.【分析】设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°﹣∠ACE=90°﹣x﹣y,根据等边对等角得出∠ACE=∠AEC=x+y,∠BDC=∠BCD=∠BCE+∠DCE=90°﹣y.然后在△DCE中,利用三角形内角和定理列出方程x+(90°﹣y)+(x+y)=180°,解方程即可求出∠DCE的大小.【解答】解:设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°﹣∠ACE=90°﹣x﹣y.∵AE=AC,∴∠ACE=∠AEC=x+y,∵BD=BC,∴∠BDC=∠BCD=∠BCE+∠DCE=90°﹣x﹣y+x=90°﹣y.在△DCE中,∵∠DCE+∠CDE+∠DEC=180°,∴x+(90°﹣y)+(x+y)=180°,解得x=45°,∴∠DCE=45°.故答案为45.【点评】本题考查了等腰三角形的性质及三角形内角和定理,设出适当的未知数列出方程是解题的关键.18.(3分)(2014年天津市)如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.(Ⅰ)计算AC2+BC2的值等于11;(Ⅱ)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为一边的矩形,使该矩形的面积等于AC2+BC2,并简要说明画图方法(不要求证明)如图所示:.【考点】作图—应用与设计作图.【分析】(1)直接利用勾股定理求出即可;(2)首先分别以AC、BC、AB为一边作正方形ACED,正方形BCNM,正方形ABHF;进而得出答案.【解答】解:(Ⅰ)AC2+BC2=()2+32=11;故答案为:11;(2)分别以AC、BC、AB为一边作正方形ACED,正方形BCNM,正方形ABHF;延长DE交MN于点Q,连接QC,平移QC至AG,BP位置,直线GP分别交AF,BH于点T,S,则四边形ABST即为所求.【点评】此题主要考查了应用设计与作图,借助网格得出正方形是解题关键.三、解答题(本大题共7小题,共66分)19.(8分)(2014年天津市)解不等式组请结合题意填空,完成本题的解答:(Ⅰ)解不等式①,得x≥﹣1;(Ⅱ)解不等式②,得x≤1;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为﹣1≤x≤1.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:(I)解不等式①,得x≥﹣1;(II)解不等式②得,x≤1,(III)在数轴上表示为:;(IN)故此不等式的解集为:﹣1≤x≤1.故答案分别为:x≥﹣1,x≤1,﹣1≤x≤1.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.(8分)(2014年天津市)为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为40,图①中m的值为15;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?【考点】条形统计图;用样本估计总体;扇形统计图;中位数;众数.【专题】计算题.【分析】(Ⅰ)根据条形统计图求出总人数即可;由扇形统计图以及单位1,求出m的值即可;(Ⅱ)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可;(Ⅲ)根据题意列出算式,计算即可得到结果.【解答】解:(Ⅰ)本次接受随机抽样调查的学生人数为6+12+10+8+4=40,图①中m的值为100﹣30﹣25﹣20﹣10=15;故答案为:40;15;(Ⅱ)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为5;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为=36;(Ⅲ)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据,估计学校各年级中学生鞋号为35的人数比例约为30%,则计划购买200双运动鞋,有200×30%=60双为35号.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.21.(10分)(2014年天津市)已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB 的平分线交⊙O于点D.(Ⅰ)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;(Ⅱ)如图②,若∠CAB=60°,求BD的长.【考点】圆周角定理;等边三角形的判定与性质;勾股定理.【分析】(Ⅰ)利用圆周角定理可以判定△CAB和△DCB是直角三角形,利用勾股定理可以求得AC的长度;利用圆心角、弧、弦的关系推知△DCB也是等腰三角形,所以利用勾股定理同样得到BD=CD=5;(Ⅱ)如图②,连接OB,OD.由圆周角定理、角平分线的性质以及等边三角形的判定推知△OBD是等边三角形,则BD=OB=OD=5.【解答】解:(Ⅰ)如图①,∵BC是⊙O的直径,∴∠CAB=∠BDC=90°.∵在直角△CAB中,BC=10,AB=6,∴由勾股定理得到:AC===8.∵AD平分∠CAB,∴=,∴CD=BD.在直角△BDC中,BC=10,CD2+BD2=BC2,∴易求BD=CD=5;(Ⅱ)如图②,连接OB,OD.∵AD平分∠CAB,且∠CAB=60°,∴∠DAB=∠CAB=30°,∴∠DOB=2∠DAB=60°.又∵OB=OD,∴△OBD是等边三角形,∴BD=OB=OD.∵⊙O的直径为10,则OB=5,∴BD=5.【点评】本题综合考查了圆周角定理,勾股定理以及等边三角形的判定与性质.此题利用了圆的定义、有一内角为60度的等腰三角形为等边三角形证得△OBD是等边三角形.22.(10分)(2014年天津市)解放桥是天津市的标志性建筑之一,是一座全钢结构的部分可开启的桥梁.(Ⅰ)如图①,已知解放桥可开启部分的桥面的跨度AB等于47m,从AB的中点C处开启,则AC开启至A′C′的位置时,A′C′的长为23.5m;(Ⅱ)如图②,某校数学兴趣小组要测量解放桥的全长PQ,在观景平台M处测得∠PMQ=54°,沿河岸MQ前行,在观景平台N处测得∠PNQ=73°,已知PQ⊥MQ,MN=40m,求解放桥的全长PQ(tan54°≈1.4,tan73°≈3.3,结果保留整数).【考点】解直角三角形的应用.【专题】应用题.【分析】(1)根据中点的性质即可得出A′C′的长;(2)设PQ=x,在Rt△PMQ中表示出MQ,在Rt△PNQ中表示出NQ,再由MN=40m,可得关于x的方程,解出即可.【解答】解:(I)∵点C是AB的中点,∴A'C'=AB=23.5m.(II)设PQ=x,在Rt△PMQ中,tan∠PMQ==1.4,∴MQ=,在Rt△PNQ中,tan∠PNQ==3.3,∴NQ=,∵MN=MQ﹣NQ=40,即﹣=40,解得:x≈97.答:解放桥的全长约为97m.【点评】本题考查了解直角三角形的应用,解答本题的关键是熟练锐角三角函数的定义,难度一般.23.(10分)(2014年天津市)“黄金1号”玉米种子的价格为5元/kg,如果一次购买2kg以上的种子,超过2kg部分的种子的价格打8折.(Ⅰ)根据题意,填写下表:购买种子的数量/kg 1.5 2 3.5 4 …付款金额/元7.5 1016 18…(Ⅱ)设购买种子数量为xkg,付款金额为y元,求y关于x的函数解析式;(Ⅲ)若小张一次购买该种子花费了30元,求他购买种子的数量.【考点】一次函数的应用;一元一次方程的应用.【分析】(1)根据单价乘以数量,可得答案;(2)根据单价乘以数量,可得价格,可得相应的函数解析式;(3)根据函数值,可得相应的自变量的值.【解答】解:(Ⅰ)10,8;(Ⅱ)根据题意得,当0≤x≤2时,种子的价格为5元/千克,∴y=5x,当x>2时,其中有2千克的种子按5元/千克计价,超过部分按4元/千克计价,∴y=5×2+4(x﹣2)=4x+2,y关于x的函数解析式为y=;(Ⅲ)∵30>2,∴一次性购买种子超过2千克,∴4x+2=30.解得x=7,答:他购买种子的数量是7千克.【点评】本题考查了一次函数的应用,分类讨论是解题关键.24.(10分)(2014年天津市)在平面直角坐标系中,O为原点,点A(﹣2,0),点B(0,2),点E,点F分别为OA,OB的中点.若正方形OEDF绕点O顺时针旋转,得正方形OE′D′F′,记旋转角为α.(Ⅰ)如图①,当α=90°时,求AE′,BF′的长;(Ⅱ)如图②,当α=135°时,求证AE′=BF′,且AE′⊥BF′;(Ⅲ)若直线AE′与直线BF′相交于点P,求点P的纵坐标的最大值(直接写出结果即可).【考点】几何变换综合题;三角形的外角性质;全等三角形的判定与性质;含30度角的直角三角形;勾股定理.【专题】综合题.【分析】(1)利用勾股定理即可求出AE′,BF′的长.(2)运用全等三角形的判定与性质、三角形的外角性质就可解决问题.(3)首先找到使点P的纵坐标最大时点P的位置(点P与点D′重合时),然后运用勾股定理及30°角所对的直角边等于斜边的一半等知识即可求出点P的纵坐标的最大值.【解答】解:(Ⅰ)当α=90°时,点E′与点F重合,如图①.∵点A(﹣2,0)点B(0,2),∴OA=OB=2.∵点E,点F分别为OA,OB的中点,∴OE=OF=1∵正方形OE′D′F′是正方形OEDF绕点O顺时针旋转90°得到的,∴OE′=OE=1,OF′=OF=1.在Rt△AE′O中,AE′=.在Rt△BOF′中,BF′=.∴AE′,BF′的长都等于.(Ⅱ)当α=135°时,如图②.∵正方形OE′D′F′是由正方形OEDF绕点O顺时针旋转135°所得,∴∠AOE′=∠BOF′=135°.在△AOE′和△BOF′中,,∴△AOE′≌△BOF′(SAS).∴AE′=BF′,且∠OAE′=∠OBF′.∵∠ACB=∠CAO+∠AOC=∠CBP+∠CPB,∠CAO=∠CBP,∴∠CPB=∠AOC=90°∴AE′⊥BF′.(Ⅲ)在第一象限内,当点D′与点P重合时,点P的纵坐标最大.过点P作PH⊥x轴,垂足为H,如图③所示.∵∠AE′O=90°,E′O=1,AO=2,∴∠E′AO=30°,AE′=.∴AP=+1.∵∠AHP=90°,∠PAH=30°,∴PH=AP=.∴点P的纵坐标的最大值为.【点评】本题是在图形旋转过程中,考查了全等三角形的判定与性质、勾股定理、三角形的外角性质、30°角所对的直角边等于斜边的一半等知识,而找到使点P的纵坐标最大时点P的位置是解决最后一个问题的关键.25.(10分)(2014年天津市)在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1),①当点F的坐标为(1,1)时,如图,求点P的坐标;②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.【考点】一次函数综合题.【分析】(Ⅰ)①利用待定系数法求得直线OF与EA的直线方程,然后联立方程组,求得该方程组的解即为点P的坐标;②由已知可设点F的坐标是(1,t).求得直线OF、EA的解析式分别是y=tx、直线EA的解析式为:y=(2+t)x﹣2(2+t).则tx=(2+t)x﹣2(2+t),整理后即可得到y关于x的函数关系式y=x2﹣2x;(Ⅱ)同(Ⅰ),易求P(2﹣,2t﹣).则由PQ⊥l于点Q,得点Q(1,2t﹣),则OQ2=1+t2(2﹣)2,PQ2=(1﹣)2,所以1+t2(2﹣)2=(1﹣)2,化简得到:t(t ﹣2m)(t2﹣2mt﹣1)=0,通过解该方程可以求得m与t的关系式.【解答】解:(Ⅰ)①∵点O(0,0),F(1,1),∴直线OF的解析式为y=x.设直线EA的解析式为:y=kx+b(k≠0)、∵点E和点F关于点M(1,﹣1)对称,∴E(1,﹣3).又A(2,0),点E在直线EA上,∴,解得,∴直线EA的解析式为:y=3x﹣6.∵点P是直线OF与直线EA的交点,则,解得,∴点P的坐标是(3,3).②由已知可设点F的坐标是(1,t).∴直线OF的解析式为y=tx.设直线EA的解析式为y=cx+dy(c、d是常数,且c≠0).由点E和点F关于点M(1,﹣1)对称,得点E(1,﹣2﹣t).又点A、E在直线EA上,∴,解得,∴直线EA的解析式为:y=(2+t)x﹣2(2+t).∵点P为直线OF与直线EA的交点,∴tx=(2+t)x﹣2(2+t),即t=x﹣2.则有 y=tx=(x﹣2)x=x2﹣2x;(Ⅱ)由(Ⅰ)可得,直线OF的解析式为y=tx.直线EA的解析式为y=(t﹣2m)x﹣2(t﹣2m).∵点P为直线OF与直线EA的交点,∴tx=(t﹣2m)x﹣2(t﹣2m),化简,得 x=2﹣.有 y=tx=2t﹣.∴点P的坐标为(2﹣,2t﹣).∵PQ⊥l于点Q,得点Q(1,2t﹣),∴OQ2=1+t2(2﹣)2,PQ2=(1﹣)2,∵OQ=PQ,∴1+t2(2﹣)2=(1﹣)2,化简,得 t(t﹣2m)(t2﹣2mt﹣1)=0.又t≠0,∴t﹣2m=0或t2﹣2mt﹣1=0,解得 m=或m=.则m=或m=即为所求.【点评】本题考查了一次函数的综合题型.涉及到了待定系数法求一次函数解析式,一次函数与直线的交点问题.此题难度不大,掌握好两直线间的交点的求法和待定系数法求一次函数解析式就能解答本题.祝福语祝你考试成功!。

2014年中考数学试题及答案

2014年中考数学试题及答案

二0一四年初中毕业学业考试数 学 试 题考生注意:1.考试时间120分钟2全卷共三道大题,总分120分一、填空题(每小题3分,满分30分)1.下列计算中,正确的是 () A .a 2+a 2=2a 4B .-a 8÷a 4=-a 2 C .a +2b=3ab D .(3a 2)3=27a 62.一组数据由五个正整数组成,中位数是3且唯一众数是7。

则这个正整数的平均数是( ) A .4 B5. C .6 D .73.下面四个图形中,从几何图形的性质考虑,哪一个与其他三个不同 ( )A B C D4.反比例函数xky =的图象如图所示,点A 是该图像上的一点,A ⊥x 轴于点B , △AB O 的面积是3,则k 的值是 ( ) A .3 B .6 C .-3 D .-65.一家服装店将某种服装按进价提高50%后标价,又以八折销售,售价为每件360元,则每件服装获利 ( ) A .168元 B .108元 C .60元 D .40元6.锐角△AoB 内部一点P ,关于OA OB 的对称点分别为M N ,则△ABC 是 ( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .以上都不对7.关于x 的分式方程15=-x m,下列说法正确的是 ( )A .方程的解是x=m +5B .m >-5时,方程的解是正数C .m <-5时,方程的解是负数D .无法确定8.半径为8的半圆式一个圆锥的侧面展开图,那么这个圆锥的底面半径是 ( ) A .2 B .4 C .8 D .169.如图,直线f 上方有三个正方形a b c,若a c 的面积分别为5和11,则b 的面积为( )A .24B .6C .16D .5510.若等腰梯形三边长分别是5 6 12,则这个等腰梯形的周长为 ( ) A .28或29 B .29或35 C .28或35 D .28或29或35二、填空题(每小题3分,满分30分)1.亚洲是七大洲面积最大的,它的土地面积为4400万平方千米,用科学记数法表示为________平方千米2.函数 13--=x xy 中,自变量x 的取值范围是________ 3.已知四边形ABCD 中,AB ∥CD 请你添上一个条件________(只填一个)使四边形ABCD 成为平行四边形。

2014年四川省成都市中考数学试卷(附答案与解析)

2014年四川省成都市中考数学试卷(附答案与解析)

数学试卷 第1页(共28页) 数学试卷 第2页(共28页)绝密★启用前四川省成都市2014年高中阶段教育学校统一招生考试数 学本试卷满分150分,考试时间120分钟.A 卷(共100分)第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在2-,1-,0,2这四个数中,最大的数是 ( ) A .2- B .1- C .0 D .22.下列几何体的主视图是三角形的是 ( )ABCD3.正在建设的成都第二绕城高速全长超过220公里,串起我市二、三圈层以及周边的广汉、简阳等地,总投资达到290亿元.用科学记数法表示290亿元应为 ( )A .829010⨯元B .929010⨯元C .102.9010⨯元D .112.9010⨯元 4.下列计算正确的是( )A .23x x x +=B .235x x x +=C .235()x x =D .632x x x ÷= 5.下列图形中,不是轴对称图形的是( )ABC D6.函数5y x =-中,自变量x 的取值范围是( )A .5x ≥-B .5x ≤-C .5x ≥D .5x ≤7.如图,把三角板的直角顶点放在直尺的一边上,若130∠=,则2∠的度数为 ( )A .60B .50C .40D .308.近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为进一步普及环保和健康知识,我市某校举行了“建设宜居成都,关注环境保护”的知识竞赛,某班学生的成绩统计如下:成绩(分) 60 70 80 90 100 人 数4 812 115则该班学生成绩的众数和中位数分别是( )A .70分,80分B .80分,80分C .90分,80分D .80分,90分 9.将二次函数223y x x =-+化为2()y x h k =-+的形式,结果为 ( )A .2(1)4y x =++B .2(1)2y x =++C .2(1)4y x =-+D .2(1)2y x =-+ 10.在圆心角为120的扇形AOB 中,半径6cm OA =,则扇形AOB 的面积是 ( )A .26π cmB .28πcmC .212πcmD .224πcm第Ⅱ卷(非选择题 共70分)二.填空题(本大题共4小题,每小题4分,共16分,请把答案填在题中的横线上)11.计算:|2|=- .12.如图,为估计池塘岸边A ,B 两点间的距离,在池塘的一侧选取点O ,分别取OA ,OB 的中点M ,N ,测得32m MN =,则A ,B 两点间的距离是 m .13.在平面直角坐标系中,已知一次函数21y x =+的图象经过111(,)P x y ,222(,)P x y 两点,若12x x <,则1y 2y (填“>”“<”或“=”). 14.如图,AB 是O 的直径,点C 在AB 的延长线上,CD 切O 于点D ,连接AD .若25A ∠=,则C ∠= 度.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第4页(共28页)三、解答题(本大题共6小题,共54分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分,每题6分)(1)计算:0294sin30(2014π)2-+--.(2)解不等式组:315,2(2)7xx x-⎧⎨++⎩>①<②.16.(本小题满分6分)如图,在一次数学课外实践活动中,小文在点C处测得树的顶端A的仰角为37,20mBC=,求树的高度AB.(参考数据:sin370.60≈,cos370.80≈,tan370.75≈)17.(本小题满分8分)先化简,再求值:22(1)b ba b a b-÷--,其中31a=+,31b=-.18.(本小题满分8分)第十五届中国“西博会”将于2014年10月底在成都召开,现有20名志愿者准备参加某分会场的工作,其中男生8人,女生12人.(1)若从这20人中随机选取一人作为联络员,求选到女生的概率;(2)若该分会场的某项工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?请用树状图或列表法说明理由.19.(本小题满分10分)如图,一次函数5y kx=+(k为常数,且0k≠)的图像与反比例函数8yx=-的图象交于(2,)A b-,B两点.(1)求一次函数的表达式;(2)若将直线AB向下平移(0)m m>个单位长度后与反比例函数的图象有且只有一个公共点,求m的值.20.(本小题满分10分)如图,矩形ABCD中,2AD AB=,E是AD边上一点,1DE ADn=(n为大于2的整数),连接BE,作BE的垂直平分线分别交AD,BC于点F,G,FG与BE的交点为O,连接BF和EG.(1)试判断四边形BFEG的形状,并说明理由;(2)当AB a=(a为常数),3n=时,求FG的长;(3)记四边形BFEG的面积为1S,矩形ABCD的面积为2S,当121730SS=时,求n的值(直接写出结果,不必写出解答过程).B卷(共50分)一、填空题(本大题共5小题,每小题4分,共20分.请把答案填在题中的横线上)21.在开展“国学诵读”活动中,某校为了解全校1 300名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1 300名学生一周的课外阅读时间不少于7小时的人数是.22.已知关于x的分式方程111x k kx x+-=+-的解为负数,则k的取值范围是.23.在边长为1的小正方形组成的方格纸中,称小正方形的顶点为“格点”,顶点全在格点上的多边形为“格点多边形”.格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L.例如,图中的三角形ABC是格点三角形,其中2S=,0N=,6L=;图中格点多边形DEFGHI所对应的S,N,L分别是.经探究发现,任意格点多边形的面积S可表示为S aN bL c=++,其中,,a b c为常数,则当5N=,14L=时,S=(用数值作答).数学试卷第3页(共28页)数学试卷 第5页(共28页) 数学试卷 第6页(共28页)24.如图,在边长为2的菱形ABCD 中,=60A ∠,M 是AD 边的中点,N 是AB 边上一动点,将AMN △沿MN 所在的直线翻折得到A MN '△,连接A C ',则A C '长度的最小值是 .25.如图,在平面直角坐标系xOy 中,直线32y x =与双曲线6y x=相交于A ,B 两点, C 是第一象限内双曲线上一点,连接CA 并延长交y 轴于点P ,连接BP ,BC .若PBC △的面积是20,则点C 的坐标为 .二、解答题(本大题共3小题,共30分.解答应写出必要的文字说明、证明过程或演算步骤)26.(本小题满分8分)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m 长的篱笆围成一个矩形花园ABCD (篱笆只围AB ,BC 两边),设m AB x =.(1)若花园的面积为2192m ,求x 的值;(2)若在P 处有一棵树与墙CD ,AD 的距离分别是15m 和6 m ,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S 的最大值.27.(本小题满分10分)如图,在O 的内接ABC △中,90ACB ∠=,2AC BC =,过C 作AB 的垂线l 交O于另一点D ,垂足为E .设P 是AB 上异于A ,C 的一个动点,射线AP 交l 于点F ,连接PC 与PD ,PD 交AB 于点G . (1)求证:PAC PDF △∽△; (2)若5AB =,AP BP =,求PD 的长;(3)在点P 运动过程中,设AGx BG=,tan AFD y ∠=,求y 与x 之间的函数关系式(不要求写出x 的取值范围).28.(本小题满分12分)如图,已知抛物线(2)(4)8ky x x =+-(k 为常数,且0k >)与x 轴从左至右依次交于A ,B 两点,与y 轴交于点C ,经过点B的直线y x b =+与抛物线的另一交点为D . (1)若点D 的横坐标为5-,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P ,使得以A ,B ,P 为顶点的三角形与ABC △相似,求k 的值;(3)在(1)的条件下,设F 为线段BD 上一点(不含端点),连接AF .一动点M 从点A 出发,沿线段AF 以每秒1个单位的速度运动到F ,再沿线段FD 以每秒2个单位的速度运动到D 后停止.当点F 的坐标是多少时,点M 在整个运动过程中用时最少?毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共28页)数学试卷 第8页(共28页)四川省成都市2014年高中阶段教育学校统一招生考试数学答案解析A 卷 第Ⅰ卷一、选择题 1.【答案】D【解析】将各数在数轴上表示,通过数轴比较大小,其中最大的是2,故选D . 【考点】有理数的大小比较 2.【答案】B【解析】观察四种几何体,可以判断主视图为三角形的为圆锥,故选B . 【考点】简单几何体的三视图. 3.【答案】C【解析】科学记数法是将一个数写成10n a ⨯的形式,其中1||10a <<,n 为整数,a 是只有一位整数的数;当原数的绝对值10≥时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值小于1时,为负整数,n 的绝对值等于原数左起第一个非零数字前零的个数(含整数位上的零).1029029 000 000 000 2.910==⨯亿,故选C .【考点】科学记数法 4.【答案】B【解析】A ,B 为整式的加减运算,整式加减运算的实质为合并同类项,A 中两项不是同类项,不能合并,A 错误,B 正确;C 为幂的乘方,底数不变,指数应相乘,C 错误;D 为同底数幂的除法,同底数幂相除,底数不变,指数相减,D 错误,故选B . 【考点】整式的计算 5.【答案】A【解析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,B ,C ,D 选项中的图形沿竖直的直线折叠直线两旁的部分都能重合,A 中的图形不能重合,故选A . 【考点】轴对称图形 6.【答案】C第Ⅱ卷5/ 14数学试卷 第11页(共28页)数学试卷 第12页(共28页)tan BC C . 2037BC m C ==,∠20tan3720AB ∴=≈答:树高AB 约为15m. 【考点】三角函数 17.【答案】23【解析】解:=原式(2)用列表法表示如下:或画树状图如下:)点7/ 14数学试卷 第15页(共28页)数学试卷 第16页(共28页)平移后的直线与反比例函数的图像有且只有一个公共点FC GBO ∠BOG ∴△BG EF ∴=∴四边形BFEG 又FG BE ⊥平行四边形2)当AB Rt ABE △2+BE AB =A EOF =∠∠9 / 1456=483aOE AB a a AE a =【考点】四边形的综合应用B 卷22数学试卷 第19页(共28页)数学试卷 第20页(共28页)00000166166(33)2(33)2022x x x x x ++-+++-=,得ACB =∠是O 的直径 APB ∴∠ CPB PBA +∠l AB ⊥于点FAE +=∠PB ∴=∠∠ABP AFE ACP ==∠∠PAC =又∠(2)在Rt ABC △由勾股定理,得1122ABC S AB CE AC BC ==△,2CE ∴=,可得4AE =.当AP BP =时,有PA PB =,则OABP 为等腰直角三角形25222PAB AP AB ∴===∠,EF AB ⊥由垂径定理,得由(1)知故5622DF PA PD AC ⨯==)方法一:过点G 作,ACH ∠,,l AB AC AD ⊥∴=∠tan GHPH ∴=AP AD AG DB BG=12BD AG BC x AD BG AC == 1tan 2AP AFD ABP x PB ==∠=之间的的函数关系式为12y x = 【考点】圆,相似三角形,勾股定理,三角函数直线点22144144(6)81616k k -++26=2216k -=,即 又0,2k k >∴=A P AB227272(6)44k k -++2166=45k -=,即,0,k k >∴4255或 作DG y ⊥轴于点G ,过点A 作43)3。

2014年河南省中考数学试卷(含答案和解析)

2014年河南省中考数学试卷(含答案和解析)

编辑人:王练电话:18798126692014年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共24分).C【考点】:实数的大小比较M117【难易度】:容易题【分析】:根据实数的比较,有﹣3,所以最小的数是-3.【解答】:答案D.【点评】:本题考查了有理数比较大小,属于送分题,熟知正数大于0,0大于负数,两个负数比较大小,绝对值大的反而小是解题的关键.2.(3分)(2014•河南)据统计,2013年河南省旅游业总收入达到约3875.5亿元.若将3875.5n【考点】:科学记数法M11C【难易度】:容易题【分析】:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.因为3875.5亿=3875 5000 0000,则489 000用科学记数法表示为3.8755×1011【解答】:答案B.【点评】:此题考查了科学记数法的表示方法.属于基础题,是中考常见的考题,需要熟记科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键是要正确确定a的值以及n的值.3.(3分)(2014•河南)如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为()【考点】:相交线(对顶角、邻补角、同位角、同旁内角、内错角、)M31A垂线、垂线段M312【难易度】:容易题【分析】:因为射线OM平分∠AOC,∠AOM=35°,所以∠MOC=35°,又ON⊥OM,则∠CON=∠MON﹣∠MOC=90°﹣35°=55°.【解答】:答案C.【点评】:本题主要考查了垂线和角平分线的性质,难度不大,在解答有关角的题目时,准确找到角之间的关系解答题目的关键.【考点】:整式运算M11N【难易度】:容易题【分析】:A、由合并同类项法则知,a+2a=3a,故本选项错误;B、由积的乘方的运算有,(﹣a3)2=a6,故本选项正确;C、由同底数幂的乘法有,a3•a2=a5,故本选项错误;D、由完全平方公式展开式有,(a+b)2=a2+b2+2ab,故本选项错误【解答】:答案B.【点评】:本题考查了整式的运算,难度不大,主要考查学生的计算能力,熟知整式运算的法则以及一些基本公式即可解答本题。

2014年中考复习方程与不等式试题精选(含答案)

2014年中考复习方程与不等式试题精选(含答案)

新世纪教育网优选资料版权全部@新世纪教育网2014 年中考复习函数及其图像试题优选(含答案)一.选择题(共12 小题)1.( 2013?柳州)在以下所给出坐标的点中,在第二象限的是()A.(2, 3)B.(﹣ 2, 3)C.(﹣ 2,﹣ 3)D.( 2,﹣ 3)2.( 2013?德州)如图,动点P 从( 0, 3)出发,沿所示方向运动,每当遇到矩形的边时反弹,反弹时反射角等于入射角,当点P 第 2013 次遇到矩形的边时,点P 的坐标为()A.(1, 4)B.(5, 0)C.(6, 4)D.( 8, 3)(第2题图)(第6题图)3.( 2013?常德)函数 y=中自变量x的取值范围是()A. x≥﹣ 3 B. x≥3C. x≥0且 x≠1 D. x≥﹣ 3 且 x≠14.( 2013?黑龙江)如图,爸爸从家(点O)出发,沿着扇形AOB 上 OA →→BO的路径去匀速漫步,设爸爸距家(点O)的距离为S,漫步的时间为t ,则以下图形中能大概刻画S 与 t 之间函数关系的图象是()A. B. C.D.5.( 2013?徐州)以下函数中,y 随 x 的增大而减少的函数是()A . y=2x+8B . y=﹣ 2+4x C. y=﹣ 2x+8 D . y=4x6.( 2013?黔西南州)如图,函数y=2x 和 y=ax+4 的图象订交于点 A ( m, 3),则不等式2x <ax+4 的解集为()A . x<B . x< 3C. x> D . x>37.( 2013?菏泽)一条直线y=kx+b ,此中 k+b= ﹣ 5、 kb=6 ,那么该直线经过()A.第二、四象限B.第一、二、三象限C.第一、三象限D.第二、三、四象限8.( 2013?云南)若ab> 0,则一次函数y=ax+b 与反比率函数y=在同一坐标系数中的大致图象是()A.B.C.D.新世纪教育网-- 中国最大型、最专业的中小学教育资源门户网站。

2014年山西省中考数学试卷(附答案与解析)

2014年山西省中考数学试卷(附答案与解析)

数学试卷 第1页(共28页) 数学试卷 第2页(共28页)绝密★启用前山西省2014年高中阶段教育学校招生统一考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算23-+的结果是( )A .1B .1-C .5-D .6-2.如图,直线AB ,CD 被直线EF 所截,AB CD ∥,1110∠=,则2∠等于( )A .65B .70C .75D .80 3.下列运算正确的是( )A .224358a a a += B .6212aa a =C .222()a b a b +=+D .20(1)1a += 4.如图是我国古代数学家赵爽在为《周髀算经》作注解时给出的 “弦图”,它解决的数学问题是( )A .黄金分割B .垂径定理C .勾股定理D .正弦定理5.下右图是由三个小正方体叠成的一个几何体,它的左视图是( )ABCD6.我们学习了一次函数、二次函数和反比例函数,回顾学习过程,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质.这种研究方法主要体现的数学思想是( )A .演绎B .数形结合C .抽象D .公理化7.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是 ( )A .频率就是概率B .频率与试验次数无关C .概率是随机的,与频率无关D .随着试验次数的增加,频率一般会越来越接近概率8.如图,O 是ABC △的外接圆,连接OA ,OB ,50OBA ∠=,则C ∠的度数为( )A .30B .40C .50D .809. 2.5PM 是指大气中直径小于或等于2.5μm 1μm=0.0000(01m)的颗粒物,也称为可入肺颗粒物.它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.2.5μm 用科学记数法可表示为( )A .52.510m -⨯B .70.2510m -⨯C .62.510m -⨯D .52510m -⨯10.如图,点E 在正方形ABCD 的对角线AC 上,且2EC AE =,Rt FEG △的两直角边EF ,EG 分别交BC ,DC 于点M ,N .若正方形ABCD 的边长为a ,则重叠部分四边形EMCN 的面积为( )A.223aB .214aC .259aD .249a 第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填在题中的横线上) 11.计算:23232a b a b = . 12.化简21639x x ++-的结果是 . 毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共28页) 数学试卷 第4页(共28页)13.如图,已知一次函数4y kx =-的图象与x 轴、y 轴分别交于A ,B 两点,与反比例函数8y x=在第一象限内的图象交于点C ,且A 为BC 的中点,则k = .14.甲、乙、丙三位同学打乒乓球,想通过“手心手背”游戏来决定其中哪两人先打.规则如下:三人同时各用一只手随机出示手心或手背,若只有两个人手势相同(都是手心或都是手背),则这两人先打;若三人手势相同,则重新决定.那么通过一次“手心手背”游戏能决定甲打乒乓球的概率是 .15.一走廊拐角的横截面如图所示,已知AB BC ⊥,AB DE ∥,BC FG ∥,且两组平行墙壁间的走廊宽度都是1m .EF 的圆心为O ,半径为1m ,且90EOF ∠=,DE ,FG 分别与O 相切于E ,F 两点.若水平放置的木棒MN 的两个端点M ,N 分别在AB 和BC 上,且MN 与O 相切于点P ,P 是EF 的中点,则木棒MN 的长度为m .16.如图,在ABC △中,30BAC ∠=,AB AC =,AD 是BC 边上的中线,12ACE BAC ∠=∠,CE 交AB 于点E ,交AD 于点F ,若2BC =,则EF 的长为 .三、解答题(本大题共8小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分10分,每题5分)(1)计算:211(2)sin60()122---⨯;(2)分解因式:(1)(3)1x x --+.18.(本小题满分6分)解不等式组并求出它的正整数解.5229,12 3.x x x --⎧⎨--⎩>①≥②19.(本小题满分6分)阅读以下材料,并按要求完成相应的任务.几何中,平行四边形、矩形、菱形、正方形和等腰梯形都是特殊的四边形,大家对于它们的性质都非常熟悉.生活中还有一种特殊的四边形——筝形.所谓筝形,它的形状与我们生活中风筝的骨架相似. 定义:两组邻边分别相等的四边形,称之为筝形.如图,四边形ABCD 是筝形,其中AB AD =,CB CD =.判定:①两组邻边分别相等的四边形是筝形.②有一条对角线垂直平分另一条对角线的四边形是筝形.显然,菱形是特殊的筝形,就一般筝形而言,它与菱形有许多相同点和不同点.如果只研究一般的筝形(不包括菱形),请根据以上材料完成下列任务:数学试卷 第5页(共28页) 数学试卷 第6页(共28页)(1)请说出筝形和菱形的相同点和不同点各两条;(2)请仿照图1的画法,在图2所示的88⨯网格中重新设计一个由四个全等的筝形和四个全等的菱形组成的新图案,具体要求如下: ①顶点都在格点上;②所设计的图案既是轴对称图形又是中心对称图形;③将新图案中的四个筝形都涂上阴影(建议用一系列平行斜线表示阴影).图1图220.(本小题满分10分)某公司招聘人才,对应聘者分别进行阅读能力、思维能力和表达能力三项测试,其中(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将被录用? (2)根据实际需要,公司将阅读、思维和表达能力三项测试得分按3:5:2的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?(3)公司按照(2)中的成绩计算方法,将每位应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值,如最右边一组分数x 为8590x ≤<),并决定由高分到低分录用8名员工,甲、乙两人能否被录用?请说明理由,并求出本次招聘人才的录用率.21.(本小题满分7分)如图,点A ,B ,C 表示某旅游景区三个缆车站的位置,线段AB ,BC 表示连接缆车站的钢缆,已知A ,B ,C 三点在同一铅直平面内,它们的海拔高度'AA ,'BB ,'CC 分别为110米,310米,710米,钢缆AB 的坡度11:2i =,钢缆BC 的坡度21:1i =,景区因改造缆车线路,需要从A 到C 直线架设一条钢缆,那么钢缆AC 的长度是多少米?(注:坡度i 是指坡面的铅直高度与水平宽度的比)22.(本小题满分9分)某新建火车站站前广场需要绿化的面积为246000米,施工队在绿化了222000米后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程. (1)该项绿化工程原计划每天完成多少2米?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为562米,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?23.(本小题满分11分)课题学习:正方形折纸中的数学.动手操作:如图1,四边形ABCD 是一张正方形纸片,先将正方形ABCD 对折,使BC 与AD 重合,折痕为EF ,把这个正方形展平,然后沿直线CG 折叠,使B 点落在EF 上,对应点为'B .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效--数学试卷 第7页(共28页) 数学试卷 第8页(共28页)图1图2图3数学思考:(1)求'CB F ∠的度数;(2)如图2,在图1的基础上,连接'AB ,试判断'B AE ∠与'GCB ∠的大小关系,并说明理由. 解决问题:(3)如图3,按以下步骤进行操作:第一步:先将正方形ABCD 对折,使BC 与AD 重合,折痕为EF ,把这个正方形展平,然后继续对折,使AB 与DC 重合,折痕为MN ,再把这个正方形展平,设EF 和MN 相交于点O ;第二步:沿直线CG 折叠,使B 点落在EF 上,对应点为'B ;再沿直线AH 折叠,使D 点落在EF 上,对应点为'D ;第三步:设CG ,AH 分别与MN 相交于点P ,Q ,连接'B P ,'PD ,'D Q ,'QB .试判断四边形''B PD Q 的形状,并证明你的结论.24.(本小题满分13分)综合与探究:如图,在平面直角坐标系xOy 中,四边形OABC 是平行四边形,A ,C 两点的坐标分别为(4,0),(2,3)-,抛物线W 经过O ,A ,C 三点,D 是抛物线W 的顶点.(1)求抛物线W 的解析式及顶点D 的坐标;(2)将抛物线W 和□OABC 一起先向右平移4个单位后,再向下平移(03)m m <<个单位,得到抛物线'W 和□O A B C ''''.在向下平移的过程中,设□O A B C ''''与□OABC 的重叠部分的面积为S ,试探究:当m 为何值时S 有最大值,并求出S 的最大值;(3)在(2)的条件下,当S 取最大值时,设此时抛物线W '的顶点为F ,若点M 是x 轴上的动点,点N 时抛物线W '上的动点,试判断是否存在这样的点M 和点N ,使得以D ,F ,M ,N 为顶点的四边形是平行四边形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.5 / 14山西省2014年高中阶段教育学校招生统一考试数学答案解析第Ⅰ卷(选择题)一、选择题 1.【答案】A【解析】23(32)1-+=+-=,故选A. 【考点】有理数的加法运算 2.【答案】B【解析】2∠的补角是1∠的内错角(同位角),根据“两直线平行,内错角(同位角)相等”可得2∠的补角1110=∠=︒,所以218011070∠=︒-︒=︒,故选A. 【考点】平行线的性质 3.【答案】D【解析】根据合并同类项法则,222358a a a +=,A 错;根据同底数幂的乘法法则,62628aa a a +==,B错;根据完全平方公式222()2a b a ab b +=++,C 错;因为210a +≠,根据非零数的零次幂等于1,D正确,故选D. 【考点】整式的计算 4.【答案】C【解析】根据勾股定理的证明方法可知应选C. 【考点】勾股定理 5.【答案】C【解析】从左边看只能看到上下两个小正方形,故选C. 【考点】几何体的三视图 6.【答案】B【解析】所谓演绎推理,就是从一般性的前提出发,通过推导即“演绎”,得出具体陈述或个别结论的过程;所谓数形结合,就是根据数形之间的对应关系,通过数形的相互转化来解决数学问题的思想,实现数形结合;所谓抽象是从众多的事物中抽取出共同的、本质性的特征,而舍弃其非本质的特征;数学上所说的“公理”就是一些不加证明而公认的前提,然后以此为基础,推演出所讨论对象的进一步内容,故选B.数学试卷 第11页(共28页)数学试卷 第12页(共28页)【解析】OA OB =是圆心角的一半,【考点】等腰三角形的性质,圆周角定理【答案】C科学计数法是将一个数写成第Ⅱ卷(非选择题)222344232()()6a b a a b b a b =⨯=.【考点】整式的运算中单项式乘以单项式13- 1633(3)(3)(3)(3)(x x x x x x -=+=+++-+-分别于O相切于与O相切于点行墙壁间的走廊宽度相等,由对称性可知.连接OP,则OE于点H,则PH的延长线于点22MK=7/ 14数学试卷第15页(共28页)数学试卷第16页(共28页)(2)本小题是开放题,答案不唯一,参考答案如下:)93=x+甲=85(分)乙将被录用.)933865=3+5+2x⨯+⨯+'甲953+815+793+5+2⨯⨯x乙>,∴甲将被录用由直方图知成绩最高一组分数段【解析】解:9/ 14数学试卷 第19页(共28页)数学试卷 第20页(共28页)11:2i =,又FE BD =AE AF ∴=+∴在Rt AEC △2AC AE =答:钢缆AC 四边形30CB F '∴∠=︒.四边形.EF CD ⊥12CB D '=⨯GCB '∠,连接B D '为等边三角形,.四边形DB DA '=DAB '∴∠=B AE '∴∠=由(1)知EF BC ∥由折叠知,B AE '∴∠=证法二:如图四边形90.BKC=.又由折叠知,GCB GCB'∠=∠,B AE GCB''∴∠=∠.又四边形数学试卷第23页(共28页)PCN ∠=PCN GBC △.PN CN GB CB ∴=12PN ∴=以下同证法一)抛物线抛物线2 14y x=∴顶点D的坐标为(2)由OABC得又C点的坐标为∴B点的坐标为(2,3)如图,过点B作BE x⊥轴于点E,C B x BC G BEA'''∴∥轴,△△.BC C GBE EA''∴=,即32BC C G''=,2233C G BC m''∴==.由平移知,O A B C''''与OABC的重叠部分四边形222)3233)22G C E m mm mm'=-+-+23-<,且0m<<∴当32m=(3)点M【考点】求抛物线解析式,相似三角形的判定与性质,最值问题,点的存在性数学试卷第27页(共28页)。

中考数学《方程与不等式》专题训练50题(含参考答案)

中考数学《方程与不等式》专题训练50题(含参考答案)

中考数学《方程与不等式》专题训练50题含参考答案一、单选题1.不等式组1036x x -<⎧⎨<⎩的解集是( )A .无解B .1x >C .2x <D .12x <<【答案】D【分析】分别解出两个不等式,取公共解集即可.【详解】解:1036x x -<⎧⎨<⎩①② 解①得:1x > , 解①得:2x < ,故此不等式组的解集为:12x << 故选D.【点睛】此题考查的是解不等式组,掌握解不等式的一般步骤、不等式的基本性质和不等式组公共解集的取法是解决此题的关键.2.如果3m =3n ,那么下列等式不一定成立的是( ) A . m -3=n -3 B .3m +3=3n +2 C .5+m =5+n D .3m -=3n -3.若()()221x ax x +--的展开式中不含x 的一次项,则a 的值为( )A .3-B .2-C .1-D .0【答案】B【分析】先将多项式展开,然后令x 的系数为0,求出a 的值即可.【详解】解:()()221x ax x +--32222x x ax ax x =-+--+()()32122x a x a x =+-+-++,①()()221x ax x +--展开后不含x 的一次项,①20a +=, ①2a =-; 故选:B .【点睛】本题考查了多项式乘多项式,熟练掌握多项式乘以多项式的运算法则是解题的关键. 4.方程23x +=11x -的解为( ) A .x =3 B .x =4C .x =5D .x =﹣5【答案】C【详解】方程两边同乘(x-1)(x+3),得 x+3-2(x-1)=0, 解得:x=5,检验:当x=5时,(x-1)(x+3)≠0, 所以x=5是原方程的解, 故选C.5.下列方程中,关于x 的一元二次方程的是( ) A .ax 2+bx +c =0 B .(x -1)2=x 2+3x +2 C .x 2=x +1D .2x 2-1x+1=0【答案】C【分析】根据一元二次方程的定义,逐项分析即可,一元二次方程的定义:含有一个未知数,未知数的最高次数是2;二次项系数不为0;是整式方程. 【详解】A. ax 2+bx +c =0(0a ≠),故该选项不正确,不符合题意;6.若2x-1=15与kx-1=15的解相同,则k的值为()A.8B.6C.-2D.2【答案】D【分析】先解2x-1=15求出x的值,再把求得的x的值代入kx-1=15,然后解关于k的方程即可求出k的值.【详解】①2x-1=15,①2x=16,①x=8.把x=8代入kx-1=15得8k-1=15,①k=2.故选D.【点睛】本题考查了一元一次方程解的定义及一元一次方程的解法,能使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解;解一元一次方程的基本步骤为:①去分母;①去括号;①移项;①合并同类项;①未知数的系数化为1.7.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x米,则可列方程为()A.10080807644⨯-=B.2x-+=(100)7644x x【分析】利用平移的方法,平移后的剩余部分仍是矩形,且长与宽均减小x 米,从而由面积可列出方程.【详解】矩形场地上的两条路分别向上和向右平移后如图所示,则平移后剩余部分的长为(100-x )米,宽为(80-x )米,题意得:(100-x )(80-x )=7644 故选:C .【点睛】本题考查了一元二次方程的实际应用,关键是运用平移的思想,问题得以简化并得到解决.8.下列各组数中,是方程x+y=7的解的是( ) A .23x y =-⎧⎨=⎩B .31x y =-⎧⎨=⎩C .43x y =⎧⎨=⎩D .23x y =⎧⎨=⎩【答案】C【分析】将四个答案逐一代入,能使方程成立的即为方程的解. 【详解】解:A 、2317-+=≠,故此选项不符合题意; B 、3127-+=-≠,故此选项不符合题意; C 、437+=,故此选项符合题意; D 、2357+=≠,故此选项不符合题意; 故选C .【点睛】本题考查二元一次方程的解,理解掌握方程的解的定义是解答关键. 9.若表格中每对,的值都是同一个二元一次方程的解,则这个方程为( )A .53+=x yB .5x y +=C .20x y -=D .35x y +=【分析】设方程为y=kx+b ,把x 与y 的两对值代入求出k 与b 的值,即可确定出方程.【详解】解:设方程为y=kx+b ,把(0,5)与(1,2)代入得:52b k b =⎧⎨+=⎩ 解得:53b k =⎧⎨=-⎩,①这个方程为y=-3x+5,即3x+y=5, 故选:D .【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.10.若0xy ≤x ,y 满足的条件是( ). A .0x ≥,0y ≥ B .0x ≥,0y ≤ C .0x ≤,0y ≥ D .0x ≤,0y ≤【答案】C【分析】根据二次根式有意义的条件得出20x y ≥,结合题意即可得出结果. 【详解】解:根据题意得,20x y ≥, ①20x ≥, ①0y ≥, ①0xy ≤, ①0x ≤, 故选C .【点睛】题目主要考查二次根式有意义的条件及不等式的性质,熟练掌握二次根式有意义的条件是解题关键.11.若a b <,则下列各式正确的是( ) A .22a b > B .22a b ->-C .34a b -<-D .22a b> 【答案】B【分析】根据不等式的性质,进行计算逐一判断即可解答. 【详解】解:A 、①a <b ,①2a <2b ,故该选项不符合题意; B 、①a <b ,①-2a >-2b ,故该选项符合题意;12.下列说法:①a为任意有理数,a2+1总是正数;①方程x+2=1x是一元一次方程;①若ab>0,a+b<0,则a<0,b<0;①代数式2,,23t a bb+都是整式;①若a2=(﹣2)2,则a=﹣2.其中错误的有()A.4个B.3个C.2个D.1个13.观察下列方程,经分析判断得知有实数根的是()A.33x=-B.22301x+=+C.()32x xx+=+D.221x xx-+=-【答案】C【分析】根据解分式方程的步骤逐一解答即可选出正确选项.去分母化为整式方程,解14.用配方法解一元二次方程x 2+6x ﹣3=0,原方程可变形为( ) A .(x +3)2=9 B .(x +3)2=12 C .(x +3)2=15 D .(x +3)2=39【答案】B【分析】移项后两边配上一次项系数一半的平方即可得. 【详解】解:①x 2+6x =3, ①x 2+6x +9=3+9,即(x +3)2=12, 故选:B .【点睛】本题考查了用配方法解一元二次方程,解题需要注意解题步骤的准确应用,选择配方法解一元二次方程时,最好使方程的二次项系数为1,一次项系数是2的倍数15.已知关于x 、y 的二元一次方程()()23230m x m y m -+-+-=,当m 每取一个值时,就有一个方程,而这些方程有一个公共解,这个公共解是( ) A .31x y =⎧⎨=-⎩B .13x y =⎧⎨=-⎩C .13x y =-⎧⎨=⎩D .31x y =-⎧⎨=⎩【答案】D【分析】把原方程整理得:m (x +y +2)-(2x +3y +3)=0,根据“当m 每取一个值时就有一个方程,而这些方程有一个公共解”,可知这个公共解与m 无关,得到关于x 和y 的二元一次方程组,解之即可. 【详解】解:原方程可整理得: m (x +y +2)-(2x +3y +3)=0,根据题意得:202330x y x y ++=⎧⎨++=⎩ 解得31x y =-⎧⎨=⎩.故选D .【点睛】本题考查了二元一次方程组的解以及解二元一次方程组,正确掌握解二元一次方程组是解题的关键. 16.利用求根公式求21562x x +=的根时,a ,b ,c 的值分别是( ) A .5,12,6 B .5,6,12C .5,﹣6,12D .5,﹣6,﹣1217.如表是德国足球甲级联赛某赛季的部分球队积分榜:规定:负一场积0分.观察后可知,柏林赫塔在这个赛季的胜场次数是( )A .18场 B .19场C .20场D .21场【答案】B胜场次数x 场,根据胜场积分与平场积分的和=总积分列出方程,解方程即可. 【详解】解:设球队胜一场积m 分,平一场积n 分, 由题意得:2166920767m n m n +=⎧⎨+=⎩, 解得:31m n =⎧⎨=⎩,球队胜一场积3分,平一场积1分,设柏林赫塔在这个赛季的胜场次数x 场,则平(34-x -8)=(26-x )场, 根据题意得:3x +(26-x )=64, 解得:x =19,①柏林赫塔在这个赛季的胜场次数是19, 故选:B .【点睛】考查了一元一次方程和二元一次方程组的应用,本类题型清楚积分的组成部分及胜负积分的规则及各个量之间的关系,并与一元一次方程相结合即可解该类题型.总积分等于胜场积分与平场的和.18.同型号的甲、乙两辆车加满气体燃料后均可行驶600km .它们各自单独行驶并返回的最远距离是300km .现在它们都从A 地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A 地,而乙车继续行驶,到B 地后再行驶返回A 地.则B 地最远可距离A 地( ) A .380km B .400kmC .450kmD .500km【答案】B【分析】设甲行驶到C 地时返回,到达A 地燃料用完,乙行驶到B 地再返回 A 地时燃料用完,根据题意得关于x 和y 的二元一次方程组,求解即可.【详解】解:如图,设行驶途中停下来的地点为C 地,AB xkm =,AC ykm =,根据题意,得226002600x y x y x +=⨯⎧⎨-+=⎩,解得400200x y =⎧⎨=⎩,①AB 的最大长度是400km .【点睛】本题考查了二元一次方程组在行程问题中的应用,理清题中的数量关系正确列出方程组是解题的关键.19.关于x 的方程220ax +=是一元二次方程,则a 满足( ) A .a >0 B .a =1C .a ≥0D .a ≠0【答案】A【详解】根据一元二次方程的定义,得000a a a ≠⎧⇒>⎨≥⎩ .故选A. 20.代数式22244619x xy y x -+++的最小值是( ) A .10 B .9 C .19 D .11【答案】A【分析】把代数式22244619x xy y x -+++根据完全平方公式化成几个完全平方和的形式,再进行求解即可.【详解】解:2222244619(3)(2)10x xy y x x x y -+++=++-+ ①22(3)0,(2)0x x y +≥-≥①代数式22244619x xy y x -+++的最小值是10. 故选:A .【点睛】本题考查的知识点是配方法的应用-用配方法确定代数式的最值,解此题的关键是将原代数式化成几个完全平方和的形式.二、填空题21.含有____________的_________叫方程. 【答案】 未知数; 等式.【分析】方程是指含有未知数的等式.所以方程必须具备两个条件:(1)含有未知数(2)等式.【详解】解:根据方程的定义可知:含有未知数的等式是方程. 故答案为未知数;等式.【点睛】本题主要考查了方程的定义,熟记方程的定义是解题的关键.22.某童装店按每套88元的价格购进1000套童装,应缴纳的税费为销售额的10%,如果要获得不低于20000元的纯利润,则每套童装至少售价_____元.【分析】设每套童装的售价为x 元,根据利润=销售收入﹣税费﹣进货成本结合利润不低于20000元,即可得出关于x 的一元一次不等式,解之取其最小值即可得出结论.【详解】解:设每套童装的售价为x 元,依题意,得:1000x ﹣10%×1000x ﹣88×1000≥20000,解得:x ≥120.故答案为:120.【点睛】此题主要考查一元一次不等式的应用,解题的关键是根据题意找到不等关系列式求解.23.如果方程1)k k x -(+3=0是关于x 的一元一次方程,那么k 的值是______. 【答案】-1【分析】根据一元一次方程的定义知|k |=1且未知数是系数k -1≠0,据此可以求得k 的值.【详解】解:①方程(k -1)x |k |+3=0是关于x 的一元一次方程,①|k |=1,且k -1≠0,解得,k =-1;故答案是:-1.【点睛】本题考查了一元一次方程的概念和绝对值方程.一元一次方程的未知数的指数为1,且未知数的系数不为零.24.我县某一天的最高气温是11①,最低气温是零下4①,则当天我县气温t (①)应满足的不等式是 __________.【答案】﹣4≤t ≤11【分析】根据题意写出不等式即可.【详解】解:因为最低气温是零下4①,所以﹣4≤t ,最高气温是11①,t ≤11,则今天气温t (①)的范围是﹣4≤t ≤11.故答案是:﹣4≤t ≤11.【点睛】本题考查的是不等式的定义,不等式的概念:用“>”或“<”号表示大小关系的式子,叫做不等式.25.已如m 是方程2350x x --=的一个根,则代数式262m m -的值为______.【答案】10-【分析】方程的根就是方程的解,就是能够使方程左右两边相等的未知数的值;即用这个数代替未知数所得式子仍然成立;将m 代入原方程即可求m 2-3m 的值,然后对原式进行变形代入计算.【详解】解:把x=m 代入方程2350x x --=可得:235m m -=①22622(3)2510=m m m m ---=-⨯=-;故答案为:-10.【点睛】此题考查了一元二次方程的解,解题时应注意把m 2-3m 当成一个整体.利用了整体的思想.26.如果x -2y =1,那么用含x 的代数式表示y ,则y =______.27.对任意四个有理数 a ,b ,c ,d 定义新运算:,a b ad bc c d =-那么当43 77x x=-时,x =________.28.某种药品的说明书上注明:口服,每天30~60mg ,分2~3次服用.这种药品一次服用的剂量范围是_____mg~_____mg.【答案】1030【详解】试题分析:根据等量关系:一次服用剂量=每日用量÷每日服用次数,即可求出服用剂量的最大值和最小值,而一次服用的剂量应介于两者之间,依题意列出不等式组求解即可.解:设这种药品一次服用的剂量为xmg当每日用量30mg,分3次服用时,一次服用的剂量最小;当每日用量60mg,分2次服用时,一次服用的剂量最大;根据依题意列出不等式组,解得所以这种药品一次服用的剂量范围是10mg~30mg.考点:一元一次不等式组的应用点评:解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的不等关系,列出不等式求解.29.若不等式(a﹣3)x>1的解集为13xa<-,则a的取值范围是_____.30.如果不等式组112x mx m-≤⎧⎨+≥⎩无解,则不等式2x+2<mx+m的解集是______.【答案】1x>-【详解】分析:首先根据不等式无解得出m的取值范围,然后根据不等式的解法得出不等式的解.详解:解不等式组可得:121x m x m ≤+⎧⎨≥-⎩,①不等式无解, ①2m -1>m+1,解得:m >2,①2x -mx <m -2, 即(2-m)x <m -2, ①m >2, ①2-m <0, ①x >-1. 点睛:本题主要考查的是解不等式及不等式组的方法,属于中等难度的题型.理解不等式的解法是解题的关键.系数含参时,我们首先要判断系数的正负性,然后进行求解.如果在不等式的两边同时乘以或除以一个负数,则不等符号需要改变. 31.已知关于x 的方程()344a x x a +-=-的解为2x =-,则=a ______.【答案】4【分析】将x=-2代入方程,然后解方程求得a 的值.【详解】解:①()344a x x a +-=-的解为2x =-,①()23424a a -+-=--,解得:4a =故答案为:4.【点睛】本题考查方程的解和解一元一次方程,掌握方程的解的概念及解一元一次方程的步骤,正确计算是解题关键.32.不等式2x-1>5的解集为______.【答案】x>3【详解】考点:解一元一次不等式.分析:先移项,再合并同类项,系数化为1即可.解:移项得,2x>5+1,合并同类项得,2x>6,系数化为1得,x>3.故答案为x>3.点评:本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键. 33.若关于x 的一元二次方程ax 2﹣4x +1=0有实数根,则a 的最大整数值为_____.【答案】4.【分析】由关于x 的一元二次方程ax 2﹣4x +1=0有实数根,则a ≠0,且①≥0,即①=42﹣4a =16﹣4a ≥0,解不等式得到a 的取值范围,最后确定a 的最大整数值.【详解】解:①关于x 的一元二次方程ax 2﹣4x +1=0有实数根,①a ≠0,且①≥0,即①=42﹣4a =16﹣4a ≥0,解得a ≤4,①a 的取值范围为a ≤4且a ≠0,所以a 的最大整数值为4.故答案为:4.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a≠0,a ,b ,c 为常数)根的判别式①=b 2−4ac .当①>0,方程有两个不相等的实数根;当①=0,方程有两个相等的实数根;当①<0,方程没有实数根.也考查了一元二次方程的定义和不等式的特殊解. 34.已知代数式4x -与3(2)x 的值相等,则x 的值为______.【答案】1x =【分析】根据题意列方程,然后进行解答即可得出x 的值.【详解】解:由题意,得4-x=3(2-x)解得x=1故答案为1x =.【点睛】本题考查了解一元一次方程.关键在于根据题意列出方程.35.某水果店销售50千克香蕉,第一天售价为9元/千克,第二天降价为6元/千克,第三天再降为3元/千克.三天全部售完,共计所得300元.若该店第二天销售香蕉t 千克,则第三天销售香蕉____千克.(用含t 的代数式表示.)36.若x 1,x 2是方程x 2+x -1=0的两根,则(x 12+x 1-2)(x 22+x 2-2)的值为_______.【答案】1【分析】根据一元二次方程的定义得到2111x x +=,2221x x +=,代入计算即可.【详解】解:①x 1,x 2是方程x 2+x -1=0的两根,①21110x x +-=,22210x x +-=,①2111x x +=,2221x x +=,①()()22112222x x x x +-+-=()()1212--=1故答案为:1.【点睛】本题考查了一元二次方程的解,解体的关键是掌握方程的解能使方程等式两边成立.37.若实数m 、n 满足|m ﹣3|+0,且m 、n 恰好是Rt △ABC 的两条边长,则第三条边长为_______.5##5【分析】先由非负数的性质求出m =3,n =4,由于题中直角三角形的斜边不能确定,38.若方程(a-3)x |a|-1+2x-8=0是关于x 的一元二次方程,则a 的值是_____.【答案】-3【分析】根据一元二次方程的定义列方程求出a 的值即可.39.一种药品现在售价56.10元,比原来降低了15%,原售价为____元.【答案】66.【详解】试题分析:设这种药品的原售价为x 元,则比原来降低了15%后的售价为(1-15%)x 元,根据题意得(1-15%)x=56.1,解得x=66.故答案为66.考点:列一元一次方程解应用题.40.如果关于x 的方程22220x ax b +-+=有两个相等的实数根,且常数a 与b 互为负倒数,那么a b +=__________. 【答案】0【分析】根据根的判别式求出0⊿=,得到222a b +=,再根据完全平方公式求出即可.【详解】关于x 的方程22220x ax b +-+=有两个相等的实数根,()()2224120a b ∴-⨯⨯-+=⊿=,化简得:222a b +=常数a 与b 互为负倒数,即1ab =-()222222(1)0a b a b ab ∴+=++=+⨯-= 0a b ∴+=故答案为0【点睛】本题考查了根的判别式,得到等式222a b +=和1ab =-是解题的关键.三、解答题41.某农场去年种植了10亩地的南瓜,亩产量为2000kg ,根据市场需要,今年该农场扩大了种植面积,并且全部种植了高产的新品种南瓜,今年南瓜亩产量的增长率是种植面积的增长率的12,设南瓜种植面积的增长率为x . (1)则今年南瓜的种植面积为________亩;今年南瓜亩产量为_______k g (用含x 的代数式表示)(2)今年南瓜的总产量为60000kg,求南瓜亩产量的增长率.42.已知点P(2m﹣4,m+4),解答下列问题:(1)若点P在y轴上,则点P的坐标为______;(2)若点P的纵坐标比横坐标大7,求出点P坐标;(3)若点P在过A(2,3)点且与x轴平行的直线上,则AP的长为多少?【答案】(1)(0,6)(2)P点的坐标为(﹣2,5)(3)AP=8【分析】(1)让横坐标为0求得m的值,代入点P的坐标即可求解;(2)利用纵坐标-横坐标=7得m的值,代入点P的坐标即可求解;(3)利用纵坐标为3求得m的值,代入点P的坐标即可求解.(1)解:令2m-4=0,解得m=2,所以P点的坐标为(0,6),故答案为:(0,6);(2)解:令m+4-(2m-4)=7,解得m=1,所以P点的坐标为(-2,5);(3)解:①点P在过A(2,3)点且与x轴平行的直线上,①m+4=3,解得m=-1.①P点的坐标为(-6,3),①AP=2+6=8.【点睛】本题考查坐标与图形性质,解题的关键是理解题意,灵活运用所学知识解决问题.43.甲乙两个施工队在六安(六盘水——安顺)城际高铁施工中,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离,若设甲队每天铺设x 米,乙队每天铺设y米.(1)依题意列出二元一次方程组;(2)求出甲乙两施工队每天各铺设多少米?【答案】(1)100 56x yx y-=⎧⎨=⎩(2)甲施工队每天各铺设600米,乙施工队每天各铺设500米.【分析】(1)利用每天甲队比乙队多铺设100米钢轨,得x-y=100;利用甲队铺设5天的距离刚好等于乙队铺设6天的距离,得5x=6y,从而可得答案(2)解方程组即可得到答案.(1)解:设甲队每天铺设x米,乙队每天铺设y米,则10056x y x y -=⎧⎨=⎩ (2)10056x y x y -=⎧⎨=⎩解得:600500x y =⎧⎨=⎩答:甲施工队每天各铺设600米,乙施工队每天各铺设500米.44.解不等式:并把不等式的解集在数轴上表示出来:4-()314x +≥()528x ++2 【答案】x ≤0,数轴表示见解析【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得,再在数轴上表示出来即可.【详解】解:去分母,得:32-6(x +1)≥5(x +2)+16,去括号,得:32-6x -6≥5x +10+16,移项,得:-6x -5x ≥10+16-32+6,合并,得:-11x ≥0,系数化为1,得:x ≤0,将不等式的解集表示在数轴上如下:【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变. 45.(1)用配方法解方程:21090x x -+=.(2)某商品经过连续两次降价,销售单价由原来的125元降到80元,求平均每次降价的百分率.【答案】(1)121,9x x ==;(2)平均每次降价的百分率为:20%.【详解】试题分析:(1)先配方,再进行开方,化简即可;(2)利用数量关系:商品原来价格×(1﹣每次降价的百分率)2=现在价格,设出未知数,列方程解答即可.试题解析:(1)21090x x -+=210252590x x -+-+=()2516x -=54x -=±121,9x x ==;(2) 设这种商品平均每次降价的百分率为x,根据题意列方程得,125(1﹣x )2=80,解得x 1=0.2=20%,x 2=﹣1.8(不合题意,舍去);故平均每次降价的百分率为:20%.考点:1. 配方法解方程,2. 一元二次方程的应用.46.解下列方程或不等式组:(1)解方程:122134x x -+=- (2)解不等式组()2563212x x x ⎧+≥⎨->+⎩47.在某校园超市中买1支英雄牌钢笔和3本硬皮笔记本需要18元钱;买同样的钢笔2支和笔记本5本需要31元.(1)求每支英雄牌钢笔和每本硬皮笔记本的价格;(2)九年一班准备用班费购买48件上述价格的钢笔和笔记本.作为毕业联欢会的奖品,已知班费不少于200元,求最少可以买多少本笔记本?【答案】(1)每支英雄牌钢笔3元,每本硬皮笔记本5元;(2)至少可以购买28本笔记本【分析】(1)用二元一次方程解决问题的关键是找到两个合适的等量关系.本问中两个等量关系是:1支钢笔的价钱+3本笔记本的价钱=18,2支钢笔的价钱+5本笔记本的价钱=31,根据这两个等量关系可以列出方程组;(2)本问可以列一元一次不等式解决.用钢笔数=48-笔记本数代入下列不等式关系:购买钢笔钱数+购买笔记本钱数≤200,可以列出一元一次不等式,求解即可.【详解】解:(1)设每支英雄牌钢笔x 元,每本硬皮笔记本y 元由题意得3182531x y x y +=⎧⎨+=⎩解得35x y =⎧⎨=⎩答:每支英雄牌钢笔3元,每本硬皮笔记本5元(2)设可以购买a 本笔记本由题意得()3485200a a -+≥解得28a ≥答:至少可以购买28本笔记本【点睛】本题考查了一元一次不等式的应用和二元一次方程组的应用,解题的关键是找出题中的等量关系或不等关系:1支钢笔的价钱+3本笔记本的价钱=18,2支钢笔的价钱+5本笔记本的价钱=31,购买钢笔钱数+购买笔记本钱数≤200.48.甲、乙两公司为“见义勇为基金会”各捐款3000元.已知甲公司的人数比乙公司的人数多20%,乙公司比甲公司人均多捐20元.请你根据上述信息,就这两个公司的“人数”或“人均捐款”提出一个用分式方程解决的题,并写出解题过程.【答案】问:甲、乙两公司各有多少名员工?;见解析;甲公司有30名员工,乙公司有25名员工【分析】问:甲、乙两公司各有多少名员工?设乙公司有x 名员工,则甲公司有1.2x 名员工,根据人均捐款钱数=捐款总钱数÷人数结合乙公司比甲公司人均多捐20元,即可得出关于x 的分式方程,解之经检验后即可得出结论.【详解】解:问:甲、乙两公司各有多少名员工?设乙公司有x 名员工,则甲公司有1.2x 名员工,49.列方程(组)或不等式(组)解应用题:(1)甲工人接到240个零件的任务,工作1小时后,因要提前完成任务,调来乙和甲合作,合做了5小时完成.已知甲每小时比乙少做4个,那么甲、乙每小时各做多少个?(2)某工厂准备购进A 、B 两种机器共20台用于生产零件,经调查2台A 型机器和1台B 型机器价格为18万元,1台A 型机器和2台B 型机器价格为21万元.①求一台A 型机器和一台B 型机器价格分别是多少万元?①已知1台A 型机器每月可加工零件400个,1台B 型机器每月可加工零件800个,经预算购买两种机器的价格不超过140万元,每月两种机器加工零件总数不低于12400个,那么有哪几种购买方案,哪种方案最省钱?【答案】(1)甲每小时加工个20零件,乙每小时加工24个零件;(2)①A ,B 两种型号机器的单价分别为5万元和8万元;①有三种购买方案:方案一:购买A 型机器7台,B 型机器13台,方案二:购买A 型机器8台,B 型机器12台,方案三:购买A 型机器9台,B 型机器11台,方案三更省钱.【分析】(1)设甲每小时加工x 个零件,乙每小时加工y 个零件,利用乙每小时比甲多做4个,以及利用甲工作了1小时后,调来乙工人与甲合作了5小时完成,240个零件的任务得出等式方程求出即可;(2)①设A ,B 两种型号机器的单价分别为x 万元和y 万元,根据题意得方程组218221x y x y +⎧⎨+⎩==,解答即可; ①设购买A 型机器m 台,则购买B 型机器(20-m )台,根据购买总价和生产数量列出不等式组求解即可.【详解】(1)设甲每小时加工x 个零件,乙每小时加工y 个零件,根据题意得:465240x y x y +⎧⎨+⎩==,50.解方程组:(1)2(1)61x yx y+-=⎧⎨=-⎩(2)3(1)51135x yy x-=+⎧⎪-⎨=+⎪⎩【答案】(1)56 xy=⎧⎨=⎩(2)57x y =⎧⎨=⎩【分析】(1)用代入法求解即可;(2)用加减法求解即可.【详解】(1)解:()2161x y x y ⎧+-=⎨=-⎩①② , 将①代入①得:6y =,把6y =代入①得5x =,①原方程组的解为56x y =⎧⎨=⎩; (2)解:整理得:383520x y x y -=⎧⎨-=-⎩①②, ①-①,得428y =,解得:7y =,把7y =代入①,得378x -=,解得:5x =,①方程组的解是57x y =⎧⎨=⎩. 【点睛】本题考查解二元一次方程组,熟练掌握用代入法或加减法解二元一次方程组是解题的关键.。

完整word版,2014年中考数学总复习专题测试试卷(方程与不等式)

完整word版,2014年中考数学总复习专题测试试卷(方程与不等式)

2014年中考数学总复习专题测试试卷(方程与不等式)一、选择题(本题共10 小题,每小题4 分,满分40分)每一个小题都给出代号为A,B,C,D的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号内.每一小题:选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分。

1.点(412)A m m --,在第三象限,那么m 值是( )。

A.12m > B.4m < C.142m << D.4m >2.不等式组⎩⎨⎧>>a x x 3的解集是x>a ,则a 的取值范围是( )。

A.a ≥3 B .a =3 C.a >3 D.a <33.方程2x x 2-4 -1=1x +2的解是( )。

A.-1 B .2或-1 C.-2或3 D.34.方程2-x 3 - x-14= 5的解是( )。

A. 5 B . - 5 C. 7 D.- 75.一元二次方程x 2-2x-3=0的两个根分别为( )。

A .x 1=1,x 2=-3B .x 1=1,x 2=3C .x 1=-1,x 2=3D .x 1=-1,x 2=-36.已知a b ,满足方程组2324a b m a b m +=-⎧⎨+=-+⎩,,则a b -的值为( )。

A.1- B.1m -C.0 D.1 7. 若方程组35223x y m x y m+=+⎧⎨+=⎩的解x 与y 的和为0,则m 的值为( )。

A.-2 B .0 C.2 D.48.如果x 1,x 2是两个不相等实数,且满足x 12-2x 1=1,x 22-2x 2=1,那么x 1·x 2等于( )。

A.2 B .-1 C.1 D.-29.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形图.如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为xcm , 那么x 满足的方程是( )。

2014年北京市中考数学试卷(附答案与解析)

2014年北京市中考数学试卷(附答案与解析)

数学试卷 第1页(共28页) 数学试卷 第2页(共28页)绝密★启用前北京市2014年高级中等学校招生考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共32分)一、选择题(本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.2的相反数是( )A .2B .2-C .12-D .122.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300000吨.将300000用科学记数法表示应为( )A .60.310⨯B .5310⨯C .6310⨯D .43010⨯ 3.如图,有6张扑克牌,从中随机抽取一张,点数为偶数的概率是( )A .16B .14C .13D .124.如图是某几何体的三视图,该几何体是( )A .圆锥B .圆柱C .正三棱柱D .正三棱锥5.某篮球队12名队员的年龄如下表所示:年龄18 19 20 21 人数5 41 2 则这12名队员年龄的众数和平均数分别是( ) A .18,19B .19,19C .18,19.5D .19,19.56.园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S (单位:平方米)与工作时间t (单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为 ( ) A .40平方米 B .50平方米 C .80平方米 D .100平方米7.如图,O 的直径AB 垂直于弦CD ,垂足是E ,22.5A ∠=,4OC =,CD 的长为( ) A .22 B .4 C .42 D .88.已知点A 为某封闭图形边界上一定点,动点P 从点A 出发,沿其边界顺时针匀速运动一周.设点P 运动的时间为x ,线段AP 的长为y ,表示y 与x 的函数关系的图象大致如图所示,则该封闭图形可能是( )ABCD第Ⅱ卷(非选择题 共88分)二、填空题(本大题共4小题,每小题4分,共16分.请把答案填在题中的横线上) 9.分解因式:429ax ay -= .10.在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为 m .11.如图,在平面直角坐标系xOy 中,正方形OABC 的边长为2.写出一个函数(0)ky k x=≠,使它的图象与正方形OABC 有公共点,这个函数的表达方式为 .毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共28页) 数学试卷 第4页(共28页)12.在平面直角坐标系xOy 中,对于点(,)P x y ,我们把点(1,1)P y x '-++叫做点P 的伴随点.已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,…,这样依次得到点1A ,2A ,3A ,…,n A ,….若点1A 的坐标为(3,1),则点3A 的坐标为 ,点2014A 的坐标为 ;若点1A 的坐标为(),a b ,对于任意的正整数n ,点n A 均在x 轴上方,则a ,b 应满足的条件为 .三、解答题(本大题共13小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤)13.(本小题满分5分)如图,点B 在线段AD 上,BC DE ∥,AB ED =,BC DB =. 求证:A E ∠=∠.14.(本小题满分5分)计算:011(6π)()3tan30|5--+--+-.15.(本小题满分5分)解不等式1211232x x --≤,并把它的解集在数轴上表示出来.16.(本小题满分5分)已知x y -=,求代数式2(1)2(2)x x y y x +-+-的值.17.(本小题满分5分)已知关于x 的方程2(2)20(0)mx m x m -++=≠. (1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m 的值.18.(本小题满分5分) 列方程或方程组解应用题:小马自驾私家车从A 地到B 地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元.已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.19.(本小题满分5分)如图,在□ABCD 中,AE 平分BAD ∠,交BC 于点E ,BF 平分ABC ∠,交AD 于点F ,AE 与BF 交于点P ,连接EF ,PD .(1)求证:四边形ABEF 是菱形;(2)若4AB =,6AD =,60ABC ∠=,求tan ADP ∠的值.20.(本小题满分5分)根据某研究院公布的2009—2013年我国成年国民阅读调查报告的部分相关数据,绘制的统计图表如下:2013年成年国民倾向的阅读方式人数分布统计图FPECBADECBAD数学试卷 第5页(共28页) 数学试卷 第6页(共28页)根据以上信息解答下列问题: (1)直接写出扇形统计图中m 的值;(2)从2009到2013年,成年国民年人均阅读图书的数量每年增长的幅度近似相等,估算2014年成年国民年人均阅读图书的数量约为 本;(3)2013年某小区倾向图书阅读的成年国民有990人,若该小区2014年与2013年成年国民的人数基本持平,估算2014年该小区成年国民阅读图书的总数量约为 本.21.(本小题满分5分)如图,AB 是O 的直径,C 是AB 的中点,O 的切线BD 交AC 的延长线于点D ,E 是OB 的中点,CE 的延长线交切线DB 于点F ,AF 交O 于点H ,连接BH .(1)求证:AC CD =; (2)若2OB =,求BH 的长.22.(本小题满分5分) 阅读下面材料:小腾遇到这样一个问题:如图1,在ABC △中,点D 在线段BC 上,75BAD ∠=,30CAD ∠=,2AD =,2BD DC =,求AC 的长.小腾发现,过点C 作CE AB ∥,交AD 的延长线于点E ,通过构造ACE △,经过推理和计算能够使问题得到解决(如图2).请回答:ACE ∠的度数为 ,AC 的长为 . 参考小腾思考问题的方法,解决问题:如图3,在四边形ABCD 中,90BAC ∠=,30CAD ∠=,75ADC ∠=,AC 与BD 交于点E ,2AE =,2BE ED =,求BC 的长.23.(本小题满分7分)在平面直角坐标系xOy 中,抛物线22y x mx n =++经过点2(0,)A -,(3,4)B . (1)求抛物线的表达式及对称轴;(2)设点B 关于原点的对称点为C ,点D 是抛物线对称轴上一动点,记抛物线在A ,B 之间的部分为图象G (包含A ,B 两点).若直线CD 与图象G 有公共点,结合函数图象,求点D 纵坐标t 的取值范围.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共28页) 数学试卷 第8页(共28页)24.(本小题满分7分)在正方形ABCD 外侧作直线AP ,点B 关于直线AP 的对称点为E ,连接,BE DE ,其中DE 交直线AP 于点F .(1)依题意补全图1;(2)若20PAB ∠=,求ADF ∠的度数;(3)如图2,若4590PAB ∠<<,用等式表示线段,,AB FE FD 之间的数量关系,并证明.25.(本小题满分8分)对某一个函数给出如下定义:若存在实数0M >,对于任意的函数值y ,都满足M y M -≤≤,则称这个函数是有界函数.在所有满足条件的M 中,其最小值称为这个函数的边界值.例如,下图中的函数是有界函数,其边界值是1.(1)分别判断函数1y x=(0)x >和1(42)y x x =+-<≤是不是有界函数?若是有界函数,求其边界值;(2)若函数1y x =-+(,)a x b b a ≤≤>的边界值是2,且这个函数的最大值也是2,求b 的取值范围;(3)将函数2(1,0)y x x m m =-≤≤≥的图象向下平移m 个单位,得到的函数的边界值是t ,当m 在什么范围时,满足314t ≤≤?北京市2014年高级中等学校招生考试数学答案解析5/ 14数学试卷 第11页(共28页)数学试卷 第12页(共28页)【解析】22.5A =∠sin OC COE =∠,又AB CD ⊥【考点】圆周角定理,垂径定理,解直角三角形. 【答案】A【解析】因为由图象看,点AP 是先增大再减小,直到半周的位置而当点动半周时,AP 是先增大再减小再增大;当点P 沿正方形边界运动半周时,第Ⅱ卷【答案】证明:BC DE∥EDB中,ABABCBC⎧⎪⎨⎪⎩∠,A∴=∠【考点】平行线的性质,全等三角形的判定和性质不等式的解集在数轴上表示如下:7/ 14数学试卷 第15页(共28页)数学试卷 第16页(共28页)x y -=【考点】代数式的化简求值17.【答案】)证明:0m ≠,2(mx m ∴-是关于x 的一元二次方程(2)m m =-2(2)m -≥∴方程总有两个实数根(2)由求根公式,得11x ∴=,方程的两个根都是整数,且19.【答案】(1)证明:BF 是ABC ∠的平分线,AD BC ∥AFB ∴=∠同理AB =∴四边形ABEF AB AF =9 / 14(2)过点P 作PG AD ⊥于点G ,如图.四边形4AB =,12AP ∴=在Rt AGP △cos601AG AP ∴==,sin 603GP AP ==. 6AD =,5DG ∴=3tan 5ADP ∴=∠. 【考点】角平分线的定义,平行四边形及菱形的判定和性质,解直角三角形等20.【答案】(2)5.00AB 是O 的直径,C 是AB 的中点,AC BC ∴=.CAB CBA ∴∠=∠=BD 是O 的切线,可证CBD D ∠=∠=BC CD ∴=.AC ∴=数学试卷 第19页(共28页)数学试卷 第20页(共28页)OA OC =COE ∴∠=E 是OB CEO ∠=BF OC ∴=.2OB =,由勾股定理,得AF =90ABF AHB ∠=∠=4=55AB BF BH AF ∴=【考点】切线的性质,等腰直角三角形的性质,全等角形的判定与性质,勾股定理等22.【答案】解:ACE ∠解决问题:过点D 作DF AB ∥交AC 于点F .如图.2 BE ED=CAD∠=2ABFD=,ADC∠=AC AD∴=在Rt ABC△【考点】相似三角形的判定与性质,勾股定理等23.【答案】)点∴抛物线的对称轴为1x=.24.【答案】(1)补全图形,如图1所示.(2)连接AE,如图2.点AB AD=AED∴∠=2ADF∴∠ADF∴∠=(3)AB,数学试卷第23页(共28页)点=AB AD∴∠=ADE∠=又DGF22∴+FB FD22=BD AB【解析】轴对称的性质,等腰三角形的性质,三角形的内角和定理,勾股定理等25.【答案】(1(=+-y xy函数的最大值是又函数的边界值是数学试卷第27页(共28页)。

2014年重庆市中考数学试卷(附答案与解析)

2014年重庆市中考数学试卷(附答案与解析)

数学试卷 第1页(共30页) 数学试卷 第2页(共30页)绝密★启用前重庆市2014年初中毕业暨高中招生考试数 学本试卷满分150分,考试时间120分钟.参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24(,)24b ac b a a --,对称轴为2b x a=-第Ⅰ卷(选择题 共48分)一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.实数17-的相反数是( ) A .17B .117C .17-D .117- 2.计算642x x ÷的结果是( ) A .2xB .22xC .42x D .102x 3.中,a 的取值范围是( ) A .0a ≥ B .0a ≤C .0a >D .0a < 4.五边形的内角和是( ) A .°180B .°360C .°540D .°6005.2014年1月1日零点,北京、上海、重庆、宁夏的气温分别是4568--℃,℃,℃,℃,当时这四个城市中,气温最低的是( ) A .北京B .上海C .重庆D .宁夏 6.关于x 的方程211x =-的解是( )A .4x =B .3x =C .2x =D .1x =7.2014年8月26日,第二届青奥会将在南京举行,甲、乙、丙、丁四位跨栏运动员在为该运动会积极准备.在某天“110米跨栏”训练中,每人各跑5次,据统计,它们的平均成绩都是13.2秒,甲、乙、丙、丁成绩的方差分别是0.110.030.050.02,,,,则当天这四位运动员“110米跨栏”的训练成绩最稳定的是( ) A .甲B .乙C .丙D .丁8.如图,直线AB CD ∥,直线EF 分别交直线,AB CD 于点,E F ,过点F 作FG FE ⊥,交直线AB 于点G .若142∠=,则2∠的大小是( )A .56B .48C .46D .409.如图,ABC △的顶点,,A B C 均在O 上,若90AOC ∠=,则AOC ∠的大小是( )A .30B .45C .60D .7010.2014年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文章,录入一段时间后因事暂停,过了一会儿,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x ,录入字数为y ,下面能反映y 与x 的函数关系的大致图象是( )ABCD11.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共30页) 数学试卷 第4页(共30页)积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律,则第(6)个图形中面积为1的正方形的个数为( )A .20B .27C .35D .4012.如图,反比例函数6y x=-在第二象限的图象上有两点,A B ,它们的横坐标分别为1,3--,直线AB 与x 轴交于点C ,则AOC △的面积为( ) A .8B .10C .12D .24第Ⅱ卷(非选择题 共102分)二、填空题(本大题共6小题,每小题4分,共24分.请把答案填在题中的横线上) 13.方程组3,5x x y =⎧⎨+=⎩的解是 .14.据有关部门统计,截止到2014年5月1日,重庆市私家小轿车已达到563000辆,将563000这个数用科学记数法表示为 .15.如图,菱形ABCD 中,60A ∠=,7BD =,则菱形ABCD 的周长为 .16.如图,OAB △中,4,30,OA OB A AB ==∠=与O 相切于点C ,则图中阴影部分的面积为 (结果保留π).17.从1,1,2-这三个数字中,随机抽取一个数,记为a .那么,使关于x 的一次函数2y x a =+的图象与x 轴、y 轴围成的三角形面积为14,且使关于x 的不等式组212x a x a +⎧⎨-⎩≤,≤有解的概率为 . 18.如图,正方形ABCD 的边长为6,点O 是对角线,AC BD 的交点,点E 在CD 上,且2DE CE =,连接BE .过点C 作CF BE ⊥,垂足为F ,连接OF ,则OF 的长为 .三、解答题(本大题共8小题,共78分.解答应写出文字说明、证明过程或演算步骤)19.(本小题满分7分)2011(3)2014|4|()6---⨯-+.20.(本小题满分7分)如图,ABC △中,AD BC ⊥,垂足为D ,若314,12,tan 4BC AD BAD ==∠=,求sin C 的值.数学试卷 第5页(共30页) 数学试卷 第6页(共30页)21.(本小题满分10分)先化简,再求值:221121()11x x x x x x +÷-+-++,其中x 的值为方程251x x =-的解.22.(本小题满分10分)为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生.某镇统计了该镇2014年1-5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:(1)某镇2014年1-5月新注册小型企业一共有 家,请将折线统计图补充完整; (2)该镇2014年3月新注册的小型企业中,只有2家是餐饮企业.现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.23.(本小题满分10分)为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.(1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,问最多用多少资金购买书桌、书架等设施?(2)经初步统计,有200户居民自愿参与集资,那么平均每户需集资150元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20000元.经筹委会进一步宣传,自愿参与的户数在200户的基础上增加了a %(其中0a >),则每户平均集资的资金在150元的基础上减少了109a %,求a 的值.24.(本小题满分10分)如图,ABC △中,90,,BAC AB AC AD BC ∠==⊥,垂足是,D AE 平分BAD ∠,交BC 于点E .在ABC △外有一点F ,使,FA AE FC BC ⊥⊥.(1)求证:BE CF =;(2)在AB 上取一点M ,使2BM DE =,连接MC ,交AD 于点N ,连接ME .求证: ①ME BC ⊥; ②DE DN =.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共30页) 数学试卷 第8页(共30页)25.(本小题满分12分)如图,抛物线223y x x =--+的图象与x 轴交于,A B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点. (1)求,,A B C 的坐标;(2)点M 为线段AB 上一点(点M 不与点,A B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ AB ∥交抛物线于点Q ,过点Q 作QN x ⊥轴于点N ,若点P 在点Q 左边,当矩形PMNQ 的周长最大时,求AEM △的面积;(3)在(2)的条件下,当矩形PMNQ 的周长最大时,连接DQ .过抛物线上一点F 作y 轴的平行线,与直线AC 交于点G (点G 在点F 的上方).若FC =,求点F 的坐标.26.(本小题满分12分)已知:如图1,在矩形ABCD 中,205,,3AB AD AE BD ==⊥,垂足是E .点F 是点E 关于AB 的对称点,连接,AF BF .(1)求AE 和BE 的长;(2)若将ABF △沿着射线BD 方向平移,设平移的距离为m (平移距离指点B 沿BD 方向所经过的线段长度),当点F 分别平移到线段AB AD ,上时,直接写出相应的m 值;(3)如图2,将ABF △绕点B 顺时针旋转一个角α(0180α<<),记旋转中的ABF △为A BF ''△,在旋转过程中,设A F ''所在的直线与直线AD 交于点P ,与直线BD 交于点Q .是否存在这样的P ,Q 两点,使DPQ △为等腰三角形?若存在,求出此时DQ 的长;若不存在,请说明理由.5 / 15重庆市2014年初中毕业暨高中招生考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】根据相反数的定义:只有符号不同的两个数是互为相反数,可知17-的相反数是17,故选A . 【考点】相反数的定义 2.【答案】B【解析】根据同底数幂的除法法则:底数不变,指数相减得64642222x x x x -÷==,故选B . 【考点】同底数幂的除法运算 3.【答案】A【解析】因为二次根式中被开方数是非负数,即0a ≥,故选A 【考点】二次根式中被开方数的取值范围 4.【答案】C【解析】n 边形的内角和是(2)180n -⨯︒,将5n =代人即得五边形的内角和是540,故选C . 【考点】多边形的内角和 5.【答案】D【解析】气温最低即数值最小,8-在这四个数中处在数轴的最左边,故8-最小,故选D 【考点】有理数的大小比较 6.【答案】B【解析】将方程的两边向时乘最简公分母1x -得整式方程21x =-,解得3x =.经检验,3x =是原分式方程的解,故选B . 【考点】分式方程的解法 7.【答案】D【解析】根据方差越小越稳定,而0.020.03 0.050.11<<<,故丁的成绩最稳定,故选D 【考点】方差的意义 8.【答案】B【解析】因为//AB CD ,根据“两直线平行,同位角相等”得142EFD ∠=∠=︒,又因为FG FE ⊥,所以2180904248∠=︒-︒-︒=︒,故选B .【考点】平行线的性质及垂直的定义数学试卷第11页(共30页)数学试卷第12页(共30页)7 / 15,OA OB =43=,43S AB OC ∴=242=3π.所以,DC BC =62210BC CE CF BE ⨯==CF BE ⊥45OCB ∠=OBM CBF ∠+∠△≌△O B M O C F数学试卷 第15页(共30页)数学试卷 第16页(共30页)【解析】解:AD BC ⊥3tan 4BAD ∠=,12AD =9BD ∴=2(1)(x 1)x x -+-11+补图如下:(2)用1A,2A表示餐饮企业,1B,2B表示非餐饮企业,画树状图如下:9 / 15数学试卷 第19页(共30页)数学试卷 第20页(共30页)10%)150(19-则3(1)(1x +24.【答案】证明:如图) BAC ∠=1EAC ∴∠+∠12∴∠=∠,AB AC =B FCA ∠=∠ABF ∴≅△BE CF ∴=45B ∠=︒BG EG ∴=AD BC ⊥2BM ED =⊥②AD BC ∠=∠,∴∠15=MC MC∴∠=∠78∠=BAC∴∠=ACB∴∠=∠57∠=ADE∴=DE DN 【解析】1ME=⨯12x=-,(3)由(2)知,当矩形PMNQ的周长最大时,2)5AB =,2BD AB =+1122ABD AB AD S BD AE ==△ 解得4AE =若点Q 在线段BD 的延长线上时,如图1,34∠=∠4+Q ∴∠∠'A Q A ∴=若点Q 在线段BD 上,如图2:1=3∠∠,3=5+∠∠35∴∠=∠4A ∴∠=∠'1A ∠=∠4A ∴∠=∠设QB QA =③当PD PQ =时,如图4,有1=2=3∠∠∠1A ∠=∠BQ A ∴=253DQ ∴=。

陕西省2014中考数学试卷(解析版)

陕西省2014中考数学试卷(解析版)

2014年陕西省中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)(2014•陕西)4的算术平方根是()A.﹣2 B.2C.±2 D.16考点:算术平方根.分析:根据算术平方根的定义进行解答即可.解答:解:∵22=4,∴4的算术平方根是2.故选B.点评:本题考查了算术平方根的定义,熟记定义是解题的关键.2.(3分)(2014•陕西)如图是一个正方体被截去一个直三棱柱得到的几何体,则该几何体的左视图是()A.B.C.D.考点:简单几何体的三视图;截一个几何体.分析:根据三视图的特点,知道左视图从图形的左边向右边看,看到一个正方形的面,在面上有一条实线,得到结果.解答:解:左视图从图形的左边向右边看,看到一个正方形的面,在面上有一条实线,故选:A.点评:本题考查空间图形的三视图,本题是一个基础题,正确把握三视图观察角度是解题关键.3.(3分)(2014•陕西)若点A(﹣2,m)在正比例函数y=﹣x的图象上,则m的值是()A.B.﹣C.1D.﹣1考点:一次函数图象上点的坐标特征.分析:利用待定系数法代入正比例函数y=﹣x可得m的值.解答:解:∵点A(﹣2,m)在正比例函数y=﹣x的图象上,∴m=﹣×(﹣2)=1,故选:C.点评:此题主要考查了一次函数图象上点的坐标特点,关键是掌握凡是函数图象经过的点必能满足解析式.4.(3分)(2014•陕西)小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是()A.B.C.D.考点:概率公式.分析:由一共有10种等可能的结果,小军能一次打开该旅行箱的只有1种情况,直接利用概率公式求解即可求得答案.解答:解:∵一共有10种等可能的结果,小军能一次打开该旅行箱的只有1种情况,∴小军能一次打开该旅行箱的概率是:.故选A.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.5.(3分)(2014•陕西)把不等式组的解集表示在数轴上,正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可解答:解:解得,故选:D.点评:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.(3分)(2014•陕西)某区10名学生参加市级汉字听写大赛,他们得分情况如下表:人数 3 4 2 1分数80 85 90 95那么这10名学生所得分数的平均数和众数分别是()A.85和82.5 B.85.5和85 C.85和85 D.85.5和80考点:众数;中位数.分析:根据众数及平均数的定义,即可得出答案.解答:解:这组数据中85出现的次数最多,故众数是85;平均数=(80×3+085×4+90×2+95×1)=85.故选B.点评:本题考查了众数及平均数的知识,掌握各部分的概念是解题关键.7.(3分)(2014•陕西)如图,AB∥CD,∠A=45°,∠C=28°,则∠AEC的大小为()A.17°B.62°C.63°D.73°考点:平行线的性质.分析:首先根据两直线平行,内错角相等可得∠ABC=∠C=28°,再根据三角形内角与外角的性质可得∠AEC=∠A+∠ABC.解答:解:∵AB∥CD,∴∠ABC=∠C=28°,∵∠A=45°,∴∠AEC=∠A+∠ABC=28°+45°=73°,故选:D.点评:此题主要考查了平行线的性质,以及三角形内角与外角的性质,关键是掌握两直线平行,内错角相等,三角形的外角等于与它不相邻的两个内角之和.8.(3分)(2014•陕西)若x=﹣2是关于x的一元二次方程x2﹣ax+a2=0的一个根,则a的值为()A.1或4 B.﹣1或﹣4 C.﹣1或4 D.1或﹣4考点:一元二次方程的解.分析:将x=﹣2代入关于x的一元二次方程x2﹣ax+a2=0,再解关于a的一元二次方程即可.解答:解:∵x=﹣2是关于x的一元二次方程x2﹣ax+a2=0的一个根,∴4+5a+a2=0,∴(a+1)(a+4)=0,解得a1=﹣1,a2=﹣4,故选B.点评:本题主要考查了一元二次方程的解的定义,解题关键是把x的值代入,再解关于a的方程即可.9.(3分)(2014•陕西)如图,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE的长为()A.4B.C.D.5考点:菱形的性质.分析:连接BD,根据菱形的性质可得AC⊥BD,AO=AC,然后根据勾股定理计算出BO长,再算出菱形的面积,然后再根据面积公式BC•AE=AC•BD可得答案.解答:解:连接BD,∵四边形ABCD是菱形,∴AC⊥BD,AO=AC,BD=2BO,∴∠AOB=90°,∵AC=6,∴AO=3,∴B0==4,∴DB=8,∴菱形ABCD的面积是×AC•DB=×6×8=24,∴BC•AE=24,AE=,故选:C.点评:此题主要考查了菱形的性质,以及菱形的性质面积,关键是掌握菱形的对角线互相垂直且平分.10.(3分)(2014•陕西)二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.c>﹣1 B.b>0 C.2a+b≠0D.9a+c>3b考点:二次函数图象与系数的关系.专题:数形结合.分析:由抛物线与y轴的交点在点(0,﹣1)的下方得到c<﹣1;由抛物线开口方向得a>0,再由抛物线的对称轴在y轴的右侧得a、b异号,即b<0;由于抛物线过点(﹣2,0)、(4,0),根据抛物线的对称性得到抛物线对称轴为直线x=﹣=1,则2a+b=0;由于当x=﹣3时,y<0,所以9a﹣3b+c>0,即9a+c>3b.解答:解:∵抛物线与y轴的交点在点(0,﹣1)的下方.∴c<﹣1;∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴x=﹣>0,∴b<0;∵抛物线过点(﹣2,0)、(4,0),∴抛物线对称轴为直线x=﹣=1,∴2a+b=0;∵当x=﹣3时,y<0,∴9a﹣3b+c>0,即9a+c>3b.故选D.点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.二、填空题(共2小题,每小题3分,共18分)11.(3分)(2014•陕西)计算:=9.考点:负整数指数幂.专题:计算题.分析:根据负整数指数幂的运算法则进行计算即可.解答:解:原式===9.故答案为:9.点评:本题考查的是负整数指数幂,即负整数指数幂等于该数对应的正整数指数幂的倒数.12.(3分)(2014•陕西)因式分解:m(x﹣y)+n(x﹣y)=(x﹣y)(m+n).考点:因式分解-提公因式法.分析:直接提取公因式(x﹣y),进而得出答案.解答:解:m(x﹣y)+n(x﹣y)=(x﹣y)(m+n).故答案为:(x﹣y)(m+n).点评:此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.请从以下两个小题中任选一个作答,若多选,则按所选做的第一题计分.13.(3分)(2014•陕西)一个正五边形的对称轴共有5条.考点:轴对称的性质.分析:过正五边形的五个顶点作对边的垂线,可得对称轴.解答:解:如图,正五边形的对称轴共有5条.故答案为:5.点评:本题考查了轴对称的性质,熟记正五边形的对称性是解题的关键.14.(2014•陕西)用科学计算器计算:+3tan56°≈10.02(结果精确到0.01)考点:计算器—三角函数;计算器—数的开方.分析:先用计算器求出′、tan56°的值,再计算加减运算.解答:解:≈5.5678,tan56°≈1.4826,则+3tan56°≈5.5678+3×1.4826≈10.02故答案是:10.02.点评:本题考查了计算器的使用,要注意此题是精确到0.01.15.(3分)(2014•陕西)如图,在正方形ABCD中,AD=1,将△ABD绕点B顺时针旋转45°得到△A′BD′,此时A′D′与CD交于点E,则DE的长度为2﹣.。

2014年云南省中考数学试题与答案

2014年云南省中考数学试题与答案

2014 年云南省中考数学试卷一、选择题(本大题共8 小题,每小题只有一个正确选项,每小题 3 分,满分24 分)1.( 3 分)(2014年云南省) |﹣ |=()A .﹣B .C.﹣7D. 7考点:绝对值.菁优网版权所有分析:根据负数的绝对值是它的相反数,可得答案.解答:解: |﹣ |=,故选: B.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.( 3 分)(2014年云南省)下列运算正确的是()A .3x2+2 x3=5x6B .50=0C. 2﹣ 3=D.( x3)2=x6考点:幂的乘方与积的乘方;合并同类项;零指数幂;负整数指数幂.菁优网版权所有分析:根据合并同类项,可判断A,根据非 0 的 0 次幂,可判断B,根据负整指数幂,可判断 C,根据幂的乘方,可判断D.解答:解: A、系数相加字母部分不变,故 A 错误;B、非 0 的 0 次幂等于1,故 B 错误;C、2,故C错误;D、底数不变指数相乘,故 D 正确;故选: D.点评:本题考查了幂的乘方,幂的乘方底数不变指数相乘是解题关键.3.( 3 分)(2014年云南省)不等式组的解集是()A . x>B .﹣1≤x<C. x<D. x≥﹣ 1考点:解一元一次不等式组.菁优网版权所有分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x>,由②得,x≥﹣1,故此不等式组的解集为:x>.故选 A.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.( 3 分)(2014年云南省)某几何体的三视图如图所示,则这个几何体是()A .圆柱B.正方体C.球D.圆锥考点:由三视图判断几何体.菁优网版权所有分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解答:解:根据主视图和左视图为三角形判断出是锥体,根据俯视图是圆形可判断出这个几何体应该是圆锥,故选D.点评:主视图和左视图的大致轮廓为三角形的几何体为锥体,俯视图为圆就是圆锥.5.( 3 分)(2014年云南省)一元二次方程2﹣x﹣ 2=0 的解是()xA . x1=1,x2=2B . x1=1,x2 =﹣ 2C. x1 =﹣1, x2=﹣ 2D. x1=﹣ 1, x2=2考点:解一元二次方程-因式分解法.菁优网版权所有分析:直接利用十字相乘法分解因式,进而得出方程的根解答:解: x2﹣ x﹣ 2=0(x﹣ 2)( x+1) =0 ,解得: x1=﹣ 1,x2=2.故选: D.点评:此题主要考查了十字相乘法分解因式解方程,正确分解因式是解题关键.6.( 3 分)(2014年云南省)据统计,2013 年我国用义务教育经费支持了13940000名农民工随迁子女在城市里接受义务教育,这个数字用科学计数法可表示为()A . 1.394 ×107B . 13.94×107C. 1.394×106D. 13.94×105考点:科学记数法—表示较大的数.菁优网版权所有分析:科学记数法的表示形式为a×10n的形式,其中1≤|a< 10,n 为整数.确定n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值> 1 时, n是正数;当原数的绝对值< 1 时, n 是负数.解答:解: 13 940 000=1.394×107,故选:A.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a< 10,n 为整数,表示时关键要正确确定 a 的值以及n 的值.7.( 3 分)(2014年云南省)已知扇形的圆心角为 45°,半径长为12,则该扇形的弧长为()A .B . 2πC. 3πD. 12π考点:弧长的计算.菁优网版权所有分析:根据弧长公式 l=,代入相应数值进行计算即可.解答:解:根据弧长公式:l==3π,故选: C.点评:此题主要考查了弧长计算,关键是掌握弧长公式l=.8.( 3 分)(2014年云南省)学校为了丰富学生课余活动开展了一次“爱我云南,唱我云南”的歌咏比赛,共有18 名同学入围,他们的决赛成绩如下表:成绩(分)9.409.509.609.709.809.90人数235431则入围同学决赛成绩的中位数和众数分别是()A . 9.70, 9.60B . 9.60, 9.60C. 9.60, 9.70D. 9.65,9.60考点:分析:众数;中位数.菁优网版权所有根据中位数和众数的概念求解.解答:解:∵共有18 名同学,则中位数为第9 名和第 10 名同学成绩的平均分,即中位数为:=9.60 ,众数为:故选 B.9.60.点评:本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.二、填空题(本大题共 6 个小题,每小题 3 分,满分18 分)9.( 3 分)(2014年云南省)计算:﹣=.考点:二次根式的加减法.菁优网版权所有分析:运用二次根式的加减法运算的顺序,先将二次根式化成最简二次根式,再合并同类二次根式即可.解答:解:原式 =2﹣ = .故答案为:.点评:合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.10.( 3 分)(2014年云南省)如图,直线a∥ b,直线 a,b 被直线 c 所截,∠ 1=37 °,则∠ 2= 143° .考点:平行线的性质.菁优网版权所有分析:根据对顶角相等可得∠3= ∠ 1,再根据两直线平行,同旁内角互补列式计算即可得解.解答:解:∠ 3= ∠1=37°(对顶角相等),∵a∥ b,∴∠ 2=180°﹣∠ 3=180°﹣ 37°=143°.故答案为: 143°.点评:本题考查了平行线的性质,对顶角相等的性质,熟记性质并准确识图是解题的关键.11.(3 分)(2014年云南省)写出一个图象经过一,三象限的正比例函数y=kx( k≠0)的解析式(关系式)y=2x .考点:正比例函数的性质.菁优网版权所有专题:开放型.分析:根据正比例函数y=kx 的图象经过一,三象限,可得k> 0,写一个符合条件的数即可.解答:解:∵正比例函数y=kx 的图象经过一,三象限,∴k> 0,取k=2 可得函数关系式y=2x.故答案为: y=2x.点评:此题主要考查了正比例函数的性质,关键是掌握正比例函数图象的性质:它是经过原点的一条直线.当k> 0 时,图象经过一、三象限,y 随 x 的增大而增大;当k<0 时,图象经过二、四象限,y 随 x 的增大而减小.12.( 3 分)( 2014?天津)抛物线y=x2﹣ 2x+3 的顶点坐标是(1,2).考点:二次函数的性质.菁优网版权所有专题:计算题.分析:已知抛物线的解析式是一般式,用配方法转化为顶点式,根据顶点式的坐标特点,直接写出顶点坐标.解答:解:∵ y=x2﹣ 2x+3=x2﹣2x+1﹣ 1+3=( x﹣ 1)2+2,∴抛物线y=x2﹣2x+3 的顶点坐标是(1, 2).点评:此题考查了二次函数的性质,二次函数2y=a( x﹣ h) +k 的顶点坐标为( h,k),对称轴为 x=h,此题还考查了配方法求顶点式.13.( 3 分)(2014年云南省)如图,在等腰△ ABC 中, AB=AC,∠ A=36 °,BD ⊥ AC 于点 D ,则∠ CBD = 18° .考点:等腰三角形的性质.菁优网版权所有分析:根据已知可求得两底角的度数,再根据三角形内角和定理不难求得∠DBC 的度数.解答:解:∵ AB=AC,∠ A=36°,∴∠ ABC=∠ ACB=72°.∵BD⊥AC 于点 D,∴∠ CBD =90°﹣ 72°=18°.故答案为: 18°.点评:本题主要考查等腰三角形的性质,解答本题的关键是会综合运用等腰三角形的性质和三角形的内角和定理进行答题,此题难度一般.14.( 3 分)(2014年云南省)观察规律并填空(1﹣)=?=;(1﹣)( 1﹣)=???==(1﹣)( 1﹣)( 1﹣)=?????=?=;(1﹣)( 1﹣)( 1﹣)( 1﹣)=???????=?=;⋯(1﹣)( 1﹣)( 1﹣)( 1﹣)⋯(1﹣) =.(用含 n 的代数式表示,n 是正整数,且 n≥2)考点:规律型:数字的变化类.菁优网版权所有分析:由前面算式可以看出:算式的左边利用平方差公式因式分解,中间的数字互为倒数,乘积为1,只剩下两端的( 1﹣)和( 1+)相乘得出结果.解答:解:( 1﹣)( 1﹣)( 1﹣)( 1﹣)⋯(1﹣)=??????⋯=.故答案为:.点评:此题考查算式的运算规律,找出数字之间的联系,得出运算规律,解决问题.三、解答题(本大题共9 个小题,满分60 分)15.( 5 分)(2014年云南省)化简求值:?(),其中x=.考点:分式的化简求值.菁优网版权所有专题:计算题.x 分析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,将的值代入计算即可求出值.解答:解:原式 =?=x+1,当 x=时,原式=.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.16.( 5 分)(2014年云南省)如图,在△ ABC 和△ ABD 中, AC 与 BD 相交于点E,AD =BC,∠DAB =∠ CBA,求证: AC =BD .考点:专题:分析:解答:全等三角形的判定与性质.菁优网版权所有证明题.根据“SAS”可证明△ ADB ≌△ BAC,由全等三角形的性质即可证明证明:在△ ADB 和△ BAC 中,AC=BD.,∴△ ADB ≌△ BAC( SAS),∴AC =BD.点评:本题考查了全等三角形的判定和性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.17.( 6 分)(2014年云南省)将油箱注满k 升油后,轿车科行驶的总路程S(单位:千米)与平均耗油量 a(单位:升 /千米)之间是反比例函数关系 S= ( k 是常数, k≠0).已知某轿车油箱注满油后,以平均耗油量为每千米耗油 0.1 升的速度行驶,可行驶 700 千米.(1)求该轿车可行驶的总路程S 与平均耗油量 a 之间的函数解析式(关系式);(2)当平均耗油量为 0.08 升 /千米时,该轿车可以行驶多少千米?考点:反比例函数的应用.菁优网版权所有分析:(1)将 a=0.1,s=700 代入到函数的关系S= 中即可求得 k 的值,从而确定解析式;(2)将 a=0.08 代入求得的函数的解析式即可求得s 的值.解答:解:( 1)由题意得: a=0.1, s=700,代入反比例函数关系S=中,解得: k=sa=70,所以函数关系式为:s=;(2)将 a=0.08 代入 s=得: s= ==875 千米,故该轿车可以行驶多875 米;点评:本题考查了反比例函数的应用,解题的关键是从实际问题中抽象出反比例函数模型.18.( 9 分)(2014年云南省)为了解本校九年级学生期末数学考试情况,销量在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A、B( 89~ 80 分)、C( 79~ 60 分)、D(59~0 分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计图解答以下问题:(1)这次随机抽取的学生共有多少人?(2)请补全条形统计图;(3)这个学校九年级共有学生 1200 人,若分数为 80 分(含 80 分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生人数大约有多少?考点:条形统计图;用样本估计总体;扇形统计图.菁优网版权所有分析:(1)抽查人数可由 C 等所占的比例为 50%,根据总数 =某等人数÷比例来计算;(2)可由总数减去 A、 C、 D 的人数求得 B 等的人数,再补全条形统计图;(3)用样本估计总体.用总人数1200 乘以样本中测试成绩等级在80 分(含 80 分)以上的学生所占百分比即可.解答:解:( 1) 20÷50%=40 (人),答:这次随机抽取的学生共有40 人;(2) B 等级人数: 40﹣ 5﹣20﹣ 4=11(人)条形统计图如下:(3) 1200××100%=480(人),这次九年级学生期末数学考试成绩为优秀的学生人数大约有480 人.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.( 7 分)(2014年云南省)某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演门票,他们决定采用抽卡片的办法确定谁去.规则如下:将正面分别标有数字1、 2、 3、 4 的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一张记下数字后放回;重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字.如果两个数字之和为奇数,则小明去;如果两个数字之和为偶数,则小亮去.(1)请用列表或画树状图的方法表示抽出的两张卡片上的数字之和的所有可能出现的结果;(2)你认为这个规则公平吗?请说明理由.考点:游戏公平性;列表法与树状图法.菁优网版权所有分析:(1)用列表法将所有等可能的结果一一列举出来即可;(2)求得两人获胜的概率,若相等则公平,否则不公平.解答:解:( 1)根据题意列表得:123412345234563456745678(2)由列表得:共16 种情况,其中奇数有8 种,偶数有8 种,∴和为偶数和和为奇数的概率均为,∴这个游戏公平.点评:本题考查了游戏公平性及列表与列树形图的知识,难度不大,是经常出现的一个知识点.20.( 6 分)(2014年云南省)“母亲节”前夕,某商店根据市场调查,用3000 元购进第一批盒装花,上市后很快售完,接着又用5000 元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的 2 倍,且每盒花的进价比第一批的进价少 5 元.求第一批盒装花每盒的进价是多少元?考点:分析:是:解答:2×分式方程的应用.菁优网版权所有设第一批盒装花的进价是x 元 /盒,则第一批进的数量是:,第二批进的数量,再根据等量关系:第二批进的数量=第一批进的数量×2可得方程.解:设第一批盒装花的进价是x 元 /盒,则=,解得x=30经检验,x=30 是原方程的根.答:第一批盒装花每盒的进价是30 元.点评:本题考查了分式方程的应用.注意,分式方程需要验根,这是易错的地方.21.( 6 分)(2014年云南省)如图,小明在AB 的顶端 B 的仰角为 30°,再向旗杆方向前进M 处用高10 米到1 米( DM=1 米)的测角仪测得旗杆F 处,又测得旗杆顶端 B 的仰角为60°,请求出旗杆AB 的高度(取≈ 1.73,结果保留整数)考点:解直角三角形的应用-仰角俯角问题.菁优网版权所有分析:首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造三角关系,进而可求出答案.解答:解:∵∠ BDE=30°,∠ BCE=60°,∴∠ CBD =60°﹣∠ BDE =30°=∠ BDE ,∴BC =CD=10 米,在 Rt△ BCE 中, sin60°=,即=,∴BE =5,AB=BE+AE=5+1≈ 10米.答:旗杆 AB 的高度大约是10 米.点评:主要考查解直角三角形的应用,本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.22.( 7 分)(2014年云南省)如图,在平行四边形ABCD 中,∠ C=60 °, M、N 分别是 AD、BC 的中点, BC=2CD .(1)求证:四边形MNCD 是平行四边形;(2)求证: BD=MN .考点:平行四边形的判定与性质.菁优网版权所有专题:证明题.分析:(1)根据平行四边形的性质,可得AD 与 BC 的关系,根据 MD 与 NC 的关系,可得证明结论;(2)根据根据等边三角形的判定与性质,可得∠DNC 的度数,根据三角形外角的性质,可得∠ DBC 的度数,根据正切函数,可得答案.解答:证明:( 1)∵ ABCD 是平行四边形,∴AD =BC, AD ∥ BC,∵M 、 N 分别是 AD 、 BC 的中点,∴MD =NC, MD∥ NC,∴MNCD 是平行四边形;(2)如图:连接ND ,∵MNCD 是平行四边形,∴MN =DC.∵N 是 BC 的中点,∴BN =CN,∵BC =2CD ,∠ C=60°,∴△ NVD 是等边三角形.∴ND =NC,∠ DNC=60°.∵∠ DNC 是△ BND 的外角,∴∠ NBD +∠NDB =∠DNC ,∵DN =NC=NB,∴∠ DBN =∠BDN =∠ DNC=30°,∴∠ BDC =90°.∵tan,∴DB= DC= MN.点评:本题考查了平行四边形的判定与性质,利用了一组对边平行且相等的四边形是平行四边形,等边三角形的判定与性质,正切函数.23.( 9 分)(2014年云南省)已知如图平面直角坐标系中,点O 是坐标原点,矩形ABCD 是顶点坐标分别为A( 3,0)、B( 3,4)、C( 0,4).点 D 在y 轴上,且点 D 的坐标为(0,﹣5),点P 是直线AC上的一动点.(1)当点 P 运动到线段AC 的中点时,求直线DP 的解析式(关系式);(2)当点 P 沿直线 AC 移动时,过点 D、 P 的直线与 x 轴交于点 M.问在 x 轴的正半轴上是否存在使△ DOM 与△ ABC 相似的点 M?若存在,请求出点 M 的坐标;若不存在,请说明理由;(3)当点 P 沿直线 AC 移动时,以点P 为圆心、 R( R> 0)为半径长画圆.得到的圆称为动圆 P.若设动圆P 的半径长为,过点D作动圆F.请探求在动圆P 中是否存在面积最小的四边形P 的两条切线与动圆P 分别相切于点E、DEPF ?若存在,请求出最小面积S 的值;若不存在,请说明理由.考点:圆的综合题;待定系数法求一次函数解析式;垂线段最短;勾股定理;切线长定理;相似三角形的判定与性质.菁优网版权所有专题:综合题;存在型;分类讨论.分析:(1)只需先求出AC 中点 P 的坐标,然后用待定系数法即可求出直线DP 的解析式.(2)由于△ DOM 与△ ABC 相似,对应关系不确定,可分两种情况进行讨论,利用三角形相似求出 OM 的长,即可求出点 M 的坐标.(3)易证 S△PED =S△PFD.从而有 S 四边形DEPF =2S△PED =DE .由∠ DEP =90 °得 DE2=DP 2﹣ PE2=DP2﹣.根据“点到直线之间,垂线段最短”可得:当 DP⊥ AC 时,DP 最短,此时 DE 也最短,对应的四边形 DEPF 的面积最小.借助于三角形相似,即可求出 DP ⊥AC 时 DP 的值,就可求出四边形 DEPF 面积的最小值.解答:解:( 1)过点 P 作 PH ∥ OA,交 OC 于点 H,如图 1 所示.∵PH ∥ OA,∴△ CHP ∽△ COA .∴= = .∵点 P是AC中点,∴CP = CA.∴HP = OA,CH = CO.∵A( 3,0)、 C( 0, 4),∴OA=3, OC=4.∴HP =,CH=2.∴OH =2.∵PH ∥ OA,∠ COA=90°,∴∠ CHP =∠COA=90°.∴点 P 的坐标为(,2).设直线 DP 的解析式为y=kx+b,∵D ( 0,﹣ 5), P(,2)在直线DP 上,∴∴∴直线 DP 的解析式为y=x﹣5.(2)①若△ DOM ∽△ ABC,图 2( 1)所示,∵△ DOM ∽△ ABC,∴ = .∵点 B 坐标为( 3,4),点 D 的坐标为( 0.﹣ 5),∴BC =3, AB=4, OD=5.∴ =.∴OM =.∵点 M 在 x 轴的正半轴上,∴点 M 的坐标为(, 0)②若△ DOM ∽△ CBA,如图2( 2)所示,∵△ DOM ∽△ CBA,∴= .∵BC =3, AB=4, OD=5,∴ =.∴OM =.∵点 M 在 x 轴的正半轴上,∴点 M 的坐标为(, 0).综上所述:若△ DOM 与△ CBA 相似,则点 M 的坐标为(, 0)或(, 0).(3)∵OA=3,OC=4,∠AOC =90°,∴AC =5.∴PE =PF = AC= .∵DE 、 DF 都与⊙ P 相切,∴DE =DF ,∠ DEP =∠ DFP =90°.∴S△PED=S△PFD.∴S 四边形DEPF =2S△PED=2× PE?DE=PE?DE = DE.∵∠ DEP =90°,∴DE 2=DP 2﹣PE2. =DP2﹣.根据“点到直线之间,垂线段最短”可得:当DP⊥ AC 时, DP 最短,此时 DE 取到最小值,四边形DEPF 的面积最小.∵DP ⊥ AC,∴∠ DPC =90°.∴∠ AOC=∠DPC .∵∠ OCA=∠PCD ,∠ AOC =∠DPC ,∴△ AOC∽△ DPC .∴=.∵AO=3, AC=5,DC =4﹣(﹣ 5) =9,∴= .∴DP =.∴DE 2=DP 2﹣=() 2﹣=.∴DE =,∴S 四边形DEPF = DE=.∴四边形DEPF面积的最小值为.点评:本题考查了相似三角形的判定与性质、用待定系数法求直线的解析式、切线长定理、勾股定理、垂线段最短等知识,考查了分类讨论的思想.将求DE的最小值转化为求DP的最小值是解决第3 小题的关键.另外,要注意“△ DOM 与△ ABC 相似”与“△ DOM ∽△ ABC“之间的区别.。

山东2014年中考数学题选编2--方程与不等式

山东2014年中考数学题选编2--方程与不等式

2014年山东省中考数学题分类汇编----方程与不等式一、选择题:1.(滨州市)a ,b 都是实数,且a <b ,则下列不等式的变形正确的是( )A .a+x >b+xB . ﹣a+1<﹣b+1C . 3a <3bD . > 2.(淄博)一元二次方程x 2+2x ﹣6=0的根是( )A . x 1=x 2=B . x 1=0,x 2=﹣2C . x 1=,x 2=﹣3D . x 1=﹣,x 2=3 3.(淄博)方程﹣=0解是( ) A .x= B . x = C . x = D . x =﹣14.(枣庄)某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打 折后每件服装仍能获利20%,则该服装标价是( )A .350元B . 400元C .450元D .500元5.(威海)已知点P (3﹣m ,m ﹣1)在第二象限,则m 的取值范围在数轴上表示正确的是( )A .B .C .D .6.(临沂)不等式组﹣2≤x+1<1的解集,在数轴上表示正确的是( )A .B .C .D .7.(青岛)某工程队准备修建一条长1200m 的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前2天完成任务.若设原计划每天修建道路xm ,则根据题意可列方程为( )A .﹣=2B . ﹣=2C .﹣=2D .﹣=2 8. (潍坊) 若不等式组⎩⎨⎧--≥+2210x x a x 无解,则实数a 的取值范围是( ) A .a≥一1 B .a<-1 C .a≤1 D.a≤-19.(泰安)方程5x+2y=﹣9与下列方程构成的方程组的解为的是( ) A .x+2y=1B . 3x+2y=﹣8C . 5x+4y=﹣3D . 3x ﹣4y=﹣8 10.(德州)不等式组的解集在数轴上可表示为( )A .B .C .D .11.(德州)分式方程﹣1=的解是( ) A .x=1 B .x=﹣1+ C .x=2 D .无解12.(聊城)用配方法解一元二次方程ax 2+bx+c=0(a ≠0),此方程可变形为( )A .(x+)2=B .(x+)2=C .(x ﹣)2=D .(x+)2=13.(泰安)某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x 株,则可以列出的方程 是( )A .(3+x )(4﹣0.5x )=15B .(x+3)(4+0.5x )=15C .(x+4)(3﹣0.5x )=15D .(x+1)(4﹣0.5x )=1514.(滨州)王芳同学到文具店购买中性笔和笔记本,中性笔每支0.8元,笔记本每本1.2元,王芳同学花了10元钱,则可供她选择的购买方案的个数为(两样都买,余下的钱少于0.8元)( )A .6B . 7C . 8D . 915.(泰安)若不等式组有解,则实数a 的取值范围是( )A .a <﹣36B . a ≤﹣36C . a >﹣36D . a ≥﹣3616.(临沂)某校为了丰富学生的校园生活,准备购买一批陶笛,已知A 型陶笛比B 型陶笛的单价低20元,用2700元购买A 型陶笛与用4500购买B 型陶笛的数量相同,设A 型陶笛的单价为x 元,依题意,下面所列方程正确的是( ) A .= B .= C .= D .= 17.(菏泽)已知关于x 的一元二次方程x 2+ax+b =O 有一个非零根-b ,则a-b 的值为( )A .1B .-1C .0D .一218.(莱芜)已知A 、C 两地相距40千米,B 、C 两地相距50千米,甲乙两车分别从A 、B 两地同时出发到C 地.若乙车每小时比甲车多行驶12千米,则两车同时到达C 地,设乙车的速度为x 千米/小时,依题意列方程正确的是( )A . 1250x40-=x B .x 5012-x 40= C . 1250x 40+=x D .x 5012x 40=+ 二、填空题:1.(聊城)不等式组的解集是 .2. (济南)若代数式21-x 和123+x 的值相等,则=x . 3.(枣庄)已知x 、y 是二元一次方程组的解,则代数式x 2﹣4y 2的值为 . 4.(东营)如果实数x 、y 是方程组30,233x y x y +=⎧⎨+=⎩的解,那么代数式12xy x y x y ⎛⎫+÷ ⎪++⎝⎭的值为 . 5.(济宁)若一元二次方程ax 2=b (ab >0)的两个根分别是m+1与2m ﹣4,则= .6.(滨州市)某公园“6•1”期间举行特优读书游园活动,成人票和儿童票均有较大折扣.张凯、李利都随他们的家人参加了本次活动.王斌也想去,就去打听张凯、李利买门票花了多少钱.张凯说他家去了3个大人和4个小孩,共花了38元钱;李利说他家去了4个大人和2个小孩,共花了44元钱,王斌家计划去3个大人和2个小孩,请你帮他计算一下,需准备 元钱买门票.三、解答题:1.(菏泽):已知x 2-4x+l=O ,求xx x x 64)1(2+---的值2.(聊城)解分式方程:+=﹣1.3.(滨州市)(1)解方程:2﹣= (2)解方程组:.4.(威海)解方程组:.5. (济南):解不等式组:⎩⎨⎧+≥-<-24413x x x . 6.解不等式组:.7. (淄博)解不等式组:21,32(1)x x +⎧⎪⎨⎪-⎩<≤把解集在数轴上表示出来,并将解集中的整数解写出来.8. (淄博)为鼓励居民节约用电,某省试行阶段电价收费制,具体执行方案如表: 档次 每户每月用电数(度) 执行电价(元/度)第一档 小于等于200 0.55第二档 大于200小于400 0.6第三档 大于等于400 0.85例如:一户居民七月份用电420度,则需缴电费420×0.85=357(元).某户居民五、六月份共用电500度,缴电费290.5元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度.问该户居民五、六月份各月电多少度?9.(菏泽):食品安全是关乎民生的问题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A 、B 两种饮料均需加入同种添加剂,A 饮料每瓶需加该添加剂2克,B 饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A 、B 两种饮料共1OO 瓶,问A 、B 两种饮料各生产了多少瓶?10. (东营)为顺利通过“国家文明城市”验收,东营市政府拟对城区部分路段的人行道地砖、绿化带、排水管道等公用设施全面更新改造,根据市政建设的需要,须在40天内完成工程.现有甲、乙两个工程队有意承包这项工程.经调查知道:乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元.请你设计一种方案,既能按时完工,又能使工程费用最少.11.(泰安)某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?12.(威海)端午节期间,某食堂根据职工食用习惯,用700元购进甲、乙两种粽子260个,其中甲粽子比乙种粽子少用100元,已知甲种粽子单价比乙种粽子单价高20%,乙种粽子的单价是多少元?甲、乙两种粽子各购买了多少个?13.(日照)为了进一步落实“节能减排”措施,冬季供暖来临前,某单位决定对7200平方米的“外墙保温”工程进行招标,现有甲、乙两个工程队参与投标,比较这两个工程队的标书发现:乙队每天完成的工程量是甲队的1.5倍,这样乙队单独干比甲队单独干能提前15天完成任务.问甲队每天完成多少平方米? _14.(德州)目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,(1(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?15.(聊城)某服装店用6000元购进A,B两种新式服装,按标价售出后可获得毛利润3800元(毛利润=售价﹣进价),(1(2)如果A中服装按标价的8折出售,B中服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?16.(莱芜)某市为打造“绿色城市”,积极投入资金进行河道治污与园林绿化两项工程、已知2013年投资1000万元,预计2015年投资1210万元。

中考数学专题11方程、不等式和函数的应用综合(原卷板)

中考数学专题11方程、不等式和函数的应用综合(原卷板)

2014年中考数学试题分项版解析汇编(30套30专题)专题11:方程、不等式和函数的应用综合一、选择题目1.(遵义)已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象如图,其中正确的是【】二、填空题目三、解答题1.(玉林、防城港)(12分)给定直线l:y=kx,抛物线C:y=ax2+bx+1.(1)当b=1时,l与C相交于A,B两点,其中A为C的顶点,B与A关于原点对称,求a的值;(2)若把直线l向上平移k2+1个单位长度得到直线r,则无论非零实数k取何值,直线r与抛物线C都只有一个交点.①求此抛物线的解析式;②若P是此抛物线上任一点,过P作PQ∥y轴且与直线y=2交于Q点,O为原点.求证:OP=PQ.2.(毕节)(12分)某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但一天产量减少5件.(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;(2)若生产第x档次的产品一天的总利润为1120元,求该产品的质量档次.3.(黔东南)(12分)黔东南州某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若购进x(x>0)件甲种玩具需要花费y元,请你求出y与x的函数关系式;(3)在(2)的条件下,超市决定在甲、乙两种玩具中选购其中一种,且数量超过20件,请你帮助超市判断购进哪种玩具省钱.4.(遵义)(10分)为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行”活动.自行车队从甲地出发,途径乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,并且邮政车行驶速度是自行车队行驶速度的2.5倍,如图表示自行车队、邮政车离甲地的路程y(km)与自行车队离开甲地时间x(h)的函数关系图象,请根据图象提供的信息解答下列各题:(1)自行车队行驶的速度是▲ km/h;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?5.(河北)(本小题满分13分)某景区的环形路是边长为800米的正方形ABCD,如图,现有1号,2号两游览车分别从出口A和经典C同时出发,1号车顺时针,2号车逆时针沿环形路连续循环行驶,供游客随时乘车(上,下车的时间忽略不计),两车的速度均为200米/分.探究:设行驶时间为t分(1)当0≤t≤s时,分别写出1号车,2号车在左半环线离出口A的路程y1,y2(米)与t(分)的函数关系式,并求出当两车相距的路程是400米时t的值;(2)t为何值时,1号车第三次恰好经过点C?,并直接写出这一段时间内它与2号车相遇过的次数.发现:如图,游客甲在BC上一点K(不与点B,C重合)处候车,准备乘车到出口A,设CK=x米.情况一:若他刚好错过2号车,便搭乘即将到来的1号车;情况二:若他刚好错过1号车,便搭乘即将到来的2号车;比较哪种情况用时较多?(含候车时间)决策:已知游客乙在DA上从D向出口A走去,步行的速度是50米/分,当行进到DA上一点P(不与D,A重合)时,刚好与2号车相遇.(1)他发现,乘1号车会比乘2号车到出口A用时少,请你简要说明理由;(2)设PA=s(0<s<800)米,若他想尽快到达出口A,根据s的大小,在等候乘1号车还是步行这两种方式中,他该如何选择?6.(河南)(10分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍。

2014年江苏省徐州市中考数学试卷(附答案与解析)

2014年江苏省徐州市中考数学试卷(附答案与解析)

数学试卷 第1页(共22页) 数学试卷 第2页(共22页)绝密★启用前江苏省徐州市2014年中考数学试卷数 学本试卷满分140分,考试时间120分钟.第Ⅰ卷(选择题 共24分)一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.12-等于( ) A .2B .2-C .12D .12- 2.右图是用5个相同的立方体搭成的几何体,其主视图...是( )A B C D3.抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面朝上的概率( )A .12大于B .12等于C .12小于D .不能确定 4.下列运算中错误..的是( )ABCD.2=3( 5.将函数3y x =-的图像沿y 轴向上平移2个单位长度后,所得图像对应的函数关系式为( )A .32y x =+-B .32y x =--C .3(+2)y x =-D .( )32y x =--6.顺次连接正六边形的三个不相邻的顶点,得到如图所示的图形,该图形( )A .既是轴对称图形也是中心对称图形B .是轴对称图形但并不是中心对称图形C .是中心对称图形但并不是轴对称图形D .既不是轴对称图形也不是中心对称图形7.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是( ) A .矩形B .等腰梯形C .对角线相等的四边形D .对角线互相垂直的四边形8.点A 、B 、C 在同一条数轴上,其中点A 、B 表示的数分别为3-、1.若2BC =,则AC 等于( ) A .3B .2C .3或5D .2或6第Ⅱ卷(非选择题 共116分)二、填空题(本大题共10小题,每小题3分,共30分.不需要写出解答过程)9.函数21y x =-中,自变量x 的取值范围为 . 10.我国“钓鱼岛”周围海域面积约170 000 2km ,该数用科学记数法可表示为 .11.函数2y x =与1y x =+的图像的交点坐标为 . 12.若2ab =,1a b -=-,则代数式22a b ab -的值等于 . 13.半径为4 cm ,圆心角为60的扇形的面积为 2cm . 14.如图是某足球队全年比赛情况统计图:根据图中信息,该队全年胜了 场.15.在平面直角坐标系中,将点(4,2)A 绕原点逆时针方向旋转90后,其对应点A '的坐标为 .16.如图,在等腰三角形纸片ABC 中,AB AC =,50∠=A ,折叠该纸片,使点A 落在点B 处,折痕为DE ,则CBE ∠=.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共22页) 数学试卷 第4页(共22页)(第16题)(第17题)17.如图,以O 为圆心的两个同心圆中,大圆与小圆的半径分别为3 cm 和1 cm ,若P 与这两个圆都相切,则P 的半径为 cm .18.如图①,在正方形ABCD 中,点P 沿边DA 从点D 开始向点A 以1 cm/s 的速度移动;同时,点Q 沿边AB 、BC 从点A 开始向点C 以2 cm/s 的速度移动.当点P 移动到点A 时,P 、Q 同时停止移动.设点P 出发x s 时,PAQ △的面积为y 2cm ,y 与x 的函数图像如图②所示,则线段EF 所在的直线对应的函数关系式为 .三、解答题(本大题共10小题,共86分.解答应写出文字说明、证明过程或演算步骤) 19.(本题10分)(1)计算:21sin30()--+o ;(2)计算:11()(1)22a a a +÷+--.20.(本题10分)(1)解方程:2410x x +-=;(2)解不等式组:20315,.x x -⎧⎨-⎩≤<21.(本题7分)已知:如图,在□ABCD 中,点E 、F 在AC 上,且AE CF =. 求证:四边形BEDF 是平行四边形.22.(本题7分)甲、乙两人在5次打靶测试中命中的环数如下: 甲:8,8,7,8,9; 乙:5,9,7,10,9. (1)(2)(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差 .(填“变大”、“变小”或“不变”)23.(本题8分)某学习小组由3名男生和1名女生组成,在一次合作学习后,开始进行成果展示.(1)如果随机抽取1名同学单独展示,那么女生展示的概率为 ; (2)如果随机抽取2名同学共同展示,求同为男生展示的概率.数学试卷 第5页(共22页) 数学试卷 第6页(共22页)24.(本题8分)几个小伙伴打算去音乐厅观看演出,他们准备用360元购买门票.下面是两个小伙伴的对话:根据对话中的信息,请你求出小伙伴们的人数.25.(本题8分)如图,轮船从点A 处出发,先航行至位于点A 的南偏西15且点A 相距100km 的点B 处,再航行至位于点B 的北偏东75︒且与点B 相距200 km 的点C 处. (1)求点C 与点A 的距离(精确到1 km ); (2)确定点C 相对于点A 的方向.(1.414≈1.732≈)26.(本题8分)某种商品每天的销售利润y (元)与销售单价x (元)之间满足关系:275y ax bx =+-.其图像如图所示.(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元? (2)销售单价在什么范围时,该种商品每天的销售利润不低于16元?27.(本题10分)如图,将透明三角形纸片PAB 的直角顶点P 落在第四象限,顶点A 、B分别落在反比例函数ky x=图像的两支上,且PB x ⊥轴于点C ,PA y ⊥轴于点D ,AB 分别与x 轴,y 轴相交于点E 、F .已知(1,3)B .(1)k = ; (2)试说明AE BF =; (3)当四边形ABCD 的面积为214时,求点P 的坐标.28.(本题10分)如图,矩形ABCD 的边3AB = cm ,4AD = cm ,点E 从点A 出发,沿射线AD 移动,以CE 为直径作圆O ,点F 为O 与射线BD 的公共点,连接EF 、CF ,过点E 作EG EF ⊥,EG 与O 相交于点G ,连接CG .(1)试说明四边形EFCG 是矩形;(2)当O 与射线BD 相切时,点E 停止移动,在点E 移动的过程中,①矩形EFCG 的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由; ②求点G 移动路线的长.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________江苏省徐州市2014年中考数学试卷数学答案解析第Ⅰ卷数学试卷第7页(共22页)数学试卷第8页(共22页)5 / 117.【答案】C【解析】如图,根据题意得:四边形EFGH 是菱形,点E ,F ,G ,H 分别是边AD ,AB ,BC ,CD 的中点,有EF FG CH EH ===,2BD EF =,2AC FG =,所以BD AC =,即原四边形一定是对角线相等的四边形,故选C .【考点】三角形的中位线的性质,菱形的判定及转化思想. 8.【答案】D【解析】点A 、B 表示的数分别为3-、1,得4AB =.分情况讨论A ,B ,C 三点的位置关系,即①当点C 在线段AB 内,易求2AC =;②当点C 在线段AB 外,易求6AC =,综上,故选D . 【考点】数轴的定义,线段的和差的定义及分类思想.第Ⅱ卷二、填空题 9.【答案】1x ≠【解析】根据分母不等于0列式计算即可得解,即10x -≠,解得1x ≠. 故答案为:1x ≠.【考点】分式有意义的条件. 10.【答案】51.710⨯【解析】科学记数法的表示形式为10n a ⨯的形式,其中11|0|a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n 是正数;当原数的绝对值小于1时,n 是负数,故填51.710⨯. 【考点】科学记数法. 11.【答案】(1,2)【解析】根据两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解,所以解方程组21y x y x =⎧⎨=+⎩即可得到两直线的交点坐标.解方程组21y x y x =⎧⎨=+⎩得12x y =⎧⎨=⎩,所以函数2y x =与1y x =+的图像交点坐标为(1,2).【考点】已知函数关系式的函数图像的交点,二元一次方程组的解法.数学试卷 第11页(共22页)数学试卷 第12页(共22页)15.【答案】(2,4)-【解析】AB AC =的性质,求得ABE ∠【考点】等腰三角形的性质,轴对称图形的性质,三角形的内角和定理7 / 11数学试卷第15页(共22页)数学试卷第16页(共22页)15CAD∴∠=︒.即点C位于点A东偏南15︒.713x≤≤713x≤≤9 / 11数学试卷第19页(共22页)数学试卷第20页(共22页)PCD PBA△,都是平行四边形,【考点】直径对的圆周角的性质,矩形的判定和性质,解直角三角形的应用,勾股定理及分类思想,转化思想.11 / 11。

【中考宝典】2014年中考数学真题分类汇编 二、方程(组)与不等式组

【中考宝典】2014年中考数学真题分类汇编 二、方程(组)与不等式组

第二单元 方程(组)与不等式组一、 一次方程(方程组)(一)一次方程的有关概念1.(2014•襄阳)若方程mx+ny=6的两个解是、、则m 、n 的值为( A ) A . 4、2 B . 2、4C . ﹣4、﹣2D . ﹣2、﹣4解析:将、分别代入mx+ny=6中、得:、①+②得:3m=12、即m=4、将m=4代入①得:n=2、故选A2. (2014泰安)方程5x+2y=﹣9与下列方程构成的方程组的解为的是( ) A .x+2y=1B . 3x+2y=﹣8C . 5x+4y=﹣3D . 3x ﹣4y=﹣8解析:将x 与y 的值代入各项检验可得、方程5x+2y=﹣9与下列方程构成的方程组的解为的是3x ﹣4y=﹣8.故选D.3.(2014•娄底)已知关于x 的方程2x+a ﹣5=0的解是x=2、则a 的值为 1 . 解析:把x=2代入方程、得:4+a ﹣5=0、解得:a=1.4.(2014贺州)已知关于x 、y 的方程组的解为、求m 、n 的值.解:将x=2、y=3代入方程组得:、②﹣①得:29n=29、即n=1、 将n=1代入②得:m=1、 ∴m=1、n=1.(二)一次方程的解法1.(2014滨州)方程2x ﹣1=3的解是( D )A .﹣1B .C . 1D . 22. (2014海南)方程x+2=1的解是( D )A .3B .-3C .1D .-1解析:方程两边同时减去2得、x=-1、故选D. 3.(2014•娄底)方程组的解是( D )A .B .C .D .解析:、(1)+(2)得、3x=6、x=2、把x=2代入(1)得、y=﹣1、∴原方程组的解.故选D .4.(2014孝感)已知⎩⎨⎧=-=21y x 是二元一次方程组⎩⎨⎧=-=+123y nx my x 的解、则m-n 的值是( D )A .1B .2C .3D .4解析:解方程组143123x y x y ⎧-=⎪⎪⎨⎪+=⎪⎩、 得、所以x+y=9+(-1)=86、(2014•枣庄)已知x 、y 是二元一次方程组的解、则代数式x 2﹣4y 2的值为.解析:解方程组、得11418x y ⎧=⎪⎪⎨⎪=-⎪⎩.∴x 2﹣4y 2=()=、7.(2014湖州)3723x y x y +=⎧⎨-=⎩①解方程组②3723x y x y +=⎧⎨-=⎩①解:②①+②、得5x=10 解得x=2把x=2代入②、得4-y=3 解得y=1所以原方程组的解是21x y =⎧⎨=⎩8.(2014威海)解方程组:解:方程组整理得:(三)一次方程的应用1.(2014枣庄)某商场购进一批服装、每件进价为200元、由于换季滞销、商场决定将这种服装按标价的六折销售、若打折后每件服装仍能获利20%、则该服装标价是(B)A.350元B.400元C.450元D.500元解析:设该服装标价为x元、由题意、得0.6x-200=200×20%、解得:x=400.故选B.2.(2014•滨州)王芳同学到文具店购买中性笔和笔记本、中性笔每支0.8元、笔记本每本1.2元、王芳同学花了10元钱、则可供她选择的购买方案的个数为(两样都买、余下的钱少于0.8元)( B )A.6B.7C.8D.9解;设购买x只中性笔、y只笔记本、根据题意得出:9.2<0.8x+1.2y≤10、当x=2时、y=7、当x=3时、y=6、当x=5时、y=5、当x=6时、y=4、当x=8时、y=3、当x=9时、y=2、当x=11时、y=1、故一共有7种方案.故选B.3.(2014•温州)20位同学在植树节这天共种了52棵树苗、其中男生每人种3棵、女生每人种2棵.设男生有x 人、女生有y人、根据题意、列方程组正确的是( D )A.B.C.D.解析:根据男女生人数为20、共种了52棵树苗、列出方程组.故选D.4.(2014绍兴)如图1、天平呈平面状态、其中左侧秤盘中有一袋玻璃球、右侧秤盘中也有一袋玻璃球、还有2个各20克的砝码、现将左侧袋中一颗玻璃球移至右侧秤盘、并拿走右侧秤盘的1个砝码后、天平仍呈平衡状态、如图2、则被移动的玻璃球的质量为( A )A.10克B.15克C.20克D.25克解析:设被移动的玻璃球的质量为x克、根据题意得:20-x=x、解得:x=10、故选B.5.(2014•苏州)某地准备对一段长120m的河道进行清淤疏通.若甲工程队先用4天单独完成其中一部分河道的疏通任务、则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天、则余下的任务由乙工程队单独完成需要3天.设甲工程队平均每天疏通河道xm、乙工程队平均每天疏通河道ym、则(x+y)的值为20 .解析:设甲工程队平均每天疏通河道xm、乙工程队平均每天疏通河道ym、由题意、得、解得:.∴x+y=20.6.(2014•湘潭)七、八年级学生分别到雷锋、毛泽东纪念馆参观、共589人、到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.设到雷锋纪念馆的人数为x人、可列方程为2x+56=589﹣x .解析:根据到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.列方程为2x+56=589﹣x.7.(2014荆门)我们知道、无限循环小数都可以转化为分数.例如:将0.3转化为分数时、可设0.3=x、则x=0.3+1x、解得x=1、即0.3=1.仿此方法、将0.45化成分数是4599.解析:设x=0.45=0.454545……、那么100x=45.4545……、而45.4545……=45+0.4545……、∴100x=45+x化简得99x=45、解得4599x 、∴0.45=4599.8.(2014•菏泽)食品安全是关乎民生的问题、在食品中添加过量的添加剂对人体有害、但适量的添加剂对人体无害且有利于食品的储存和运输、某饮料加工厂生产的A、B两种饮料均需加入同种添加剂、A饮料每瓶需加该添加剂2克、B饮料每瓶需加该添加剂3克、已知270克该添加剂恰好生产了A、B两种饮料共100瓶、问A、B 两种饮料各生产了多少瓶?解:(1)设A饮料生产了x瓶、则B饮料生产了(100﹣x)瓶、由题意得、2x+3(100﹣x)=270、解得:x=30、100﹣x=70、答:A饮料生产了30瓶、则B饮料生产了70瓶.9.(2014•安徽)2013年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准、共支付餐厨和建筑垃圾处理费5200元.从2014年元月起、收费标准上调为:餐厨垃圾处理费100元/吨、建筑垃圾处理费30元/吨.若该企业2014年处理的这两种垃圾数量与2013年相比没有变化、就要多支付垃圾处理费8800元.(1)该企业2013年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业计划2014年将上述两种垃圾处理总量减少到240吨、且建筑垃圾处理量不超过餐厨垃圾处理量的3倍、则2014年该企业最少需要支付这两种垃圾处理费共多少元?解:(1)设该企业2013年处理的餐厨垃圾x吨、建筑垃圾y吨、根据题意、得、解得.答:该企业2013年处理的餐厨垃圾80吨、建筑垃圾200吨;(2)设该企业2014年处理的餐厨垃圾x吨、建筑垃圾y吨、需要支付这两种垃圾处理费共a元、根据题意得、、解得x≥60.a=100x+30y=100x+30(240﹣x)=70x+7200、由于a的值随x的增大而增大、所以当x=60时、a值最小、最小值=70×60+7200=11400(元).答:2014年该企业最少需要支付这两种垃圾处理费共11400元.10.(2014•滨州)某公园“6•1”期间举行特优读书游园活动、成人票和儿童票均有较大折扣.张凯、李利都随他们的家人参加了本次活动.王斌也想去、就去打听张凯、李利买门票花了多少钱.张凯说他家去了3个大人和4个小孩、共花了38元钱;李利说他家去了4个大人和2个小孩、共花了44元钱、王斌家计划去3个大人和2个小孩、请你帮他计算一下、需准备34 元钱买门票.解析:设大人门票为x、小孩门票为y、由题意、得:、解得:、则3x+2y=34.即王斌家计划去3个大人和2个小孩、需要34元的门票.11.(2014•泰州)今年“五一”小长假期间、某市外来与外出旅游的总人数为226万人、分别比去年同期增长30%和20%、去年同期外来旅游比外出旅游的人数多20万人.求该市今年外来和外出旅游的人数.解:设该市去年外来人数为x 万人、外出旅游的人数为y 万人、 由题意得、、解得:、则今年外来人数为:100×(1+30%)=130(万人)、 今年外出旅游人数为:80×(1+20%)=96(万人).答:该市今年外来人数为130万人、外出旅游的人数为96万人.12.(2014遂宁)我市某超市举行店庆活动、对甲、乙两种商品实行打折销售.打折前、购买3件甲商品和1件乙商品需用190元;购买2间甲商品和3件乙商品需用220元.而店庆期间、购买10件甲商品和10件乙商品仅需735元、这比不打折前少花多少钱? 解:设甲商品单价为x 、乙商品单价为y 、 由题意得:、解得:、则购买10件甲商品和10件乙商品需要900元、 ∵打折后实际花费735、∴这比不打折前少花165元.答:这比不打折前少花165元.换母本P 28、T 713.(2014呼和浩特)为鼓励居民节约用电、我市自2012年以来对家庭用电收费实行阶梯电价、即每月对每户居民的用电量分为三个档级收费、第一档为用电量在180千瓦时(含180千瓦时)以内的部分、执行基本价格;第二档为用电量在180千瓦时到450千瓦时(含450千瓦时)的部分、实行提高电价;第三档为用电量超出450千瓦时的部分、执行市场调节价格. 我市一位同学家今年2月份用电330千瓦时、电费为213元、3月份用电240千瓦时、电费为150元.已知我市的一位居民今年4、5月份的家庭用电量分别为160和 410千瓦时、请你依据该同学家的缴费情况、计算这位居民4、5月份的电费分别为多少元? 解:设基本电价为x 元/千瓦时、提高电价为y 元/千瓦时、由题意得: ⎩⎪⎨⎪⎧180x +150y=213180x +60y =150 解之得:⎩⎨⎧x=0.6y=0.7∴ 4月份的电费为:160×0.6=96元5月份的电费为:180×0.6+230×0.7 = 108+161 = 269元答:这位居民4、5月份的电费分别为96元和269元。

2014中考数学试题及答案

2014中考数学试题及答案

2014中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程2x-3=7的解?A. x=1B. x=2C. x=3D. x=4答案:C2. 一个长方形的长是宽的两倍,如果宽是4厘米,那么长是多少厘米?A. 8厘米B. 6厘米C. 10厘米D. 12厘米答案:A3. 圆的面积公式是:A. πr²B. 2πrC. πdD. d²答案:A4. 一个数的平方根是2,那么这个数是:A. 4B. -4C. 2D. -2答案:A5. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 以上都不是答案:C6. 计算下列哪个选项的结果为0?A. 3-3B. 2+2C. 4×0D. 5÷5答案:C7. 一个三角形的三个内角的和为:A. 180°B. 360°C. 90°D. 270°答案:A8. 一个数乘以0的结果为:A. 0B. 1C. 这个数D. 无法确定答案:A9. 下列哪个选项是不等式3x-5>7的解?A. x>2B. x<2C. x>3D. x<3答案:C10. 一个数除以它自己等于:A. 0B. 1C. 这个数D. 无法确定答案:B二、填空题(每题4分,共20分)1. 一个数的立方等于8,这个数是______。

答案:22. 一个数的倒数是1/3,这个数是______。

答案:33. 一个数的平方是25,这个数是______。

答案:±54. 一个数的绝对值是6,这个数是______。

答案:±65. 一个数的平方根是3,这个数是______。

答案:9三、解答题(每题10分,共50分)1. 解方程:3x-2=11。

答案:x=52. 计算:(2x-3)(x+4)。

答案:2x²+5x-123. 已知一个直角三角形的两条直角边长分别为3和4,求斜边的长度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年中考数学专题测试试卷一
(方程与不等式)
一、选择题(本题共10 小题,每小题4 分,满分40分)
每一个小题都给出代号为A,B,C,D的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号内.每一小题:选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分。

1.点(412)A m m --,
在第三象限,那么m 值是( )。

A.12
m >
B.4m <
C.
1
42
m << D.4m >
2.不等式组⎩
⎨⎧>>a x x 3
的解集是x>a ,则a 的取值范围是( )。

A.a ≥3 B .a =3 C.a >3 D.a <3 3.方程2x x 2-4 -1=1
x +2 的解是( )。

A.-1 B .2或-1 C.-2或3 D.3 4.方程2-x 3 - x-1
4 = 5的解是( )。

A. 5 B . - 5 C. 7 D.- 7
5.一元二次方程x 2-2x-3=0的两个根分别为( )。

A .x 1=1,x 2=-3 B .x 1=1,x 2=3 C .x 1=-1,x 2=3 D .x 1=-1,x 2=-3 6.已知a b ,满足方程组2324a b m a b m +=-⎧⎨+=-+⎩,

则a b -的值为( )。

A.1-
B.1m -
C.0
D.1
7. 若方程组352
23x y m x y m
+=+⎧⎨+=⎩的解x 与y 的和为0,则m 的值为( )。

A.-2 B .0 C.2 D.4 8.如果x 1,x 2是两个不相等实数,且满足x 12-2x 1=1,x 22-2x 2=1, 那么x 1·x 2等于( )。

A.2 B .-1 C.1 D.-2
9.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形图.如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为xcm , 那么x 满足的方程是( )。

A .x 2+130x-1400=0
B .x 2
+65x-350=0 C .x 2-130x-1400=0 D .x 2-65x-350=0
10.若解分式方程2x
x -1 -m +1x 2+x =x +1x 产生增根,则m 的值是( )。

A.-1或-2 B .-1或2 C.1或2 D.1或-2
二、填空题(本题共 4 小题,每小题 5 分,满分 20 分)
11.不等式(m-2)x>2-m 的解集为x<-1,则m 的取值范围是__________________。

12.已知关于x 的方程10x 2-(m+3)x+m -7=0,若有一个根为0,则m=_________,这时方
程的另一个根是_________。

13.不等式组⎩⎨
⎧-<+<2
1
2m x m x 的解集是x <m -2,则m 的取值应为_________。

14.用换元法解方程
4112=-+-x x x x ,若设y x x
=-1
,则可得关于y 的整式方程为___________________________。

三、(本题共2小题,每小题8分,满分 16 分)
15.解方程:
(1) (2x – 3)2 = (3x – 2)2
(2) 解方程:
112
62213x x
=---
16.解不等式组,并把其解集在数轴上表示出来:
3
3213(1)8.
x x x x -⎧+⎪

⎪--<-⎩,≥
四、(本题共2小题,每小题8分,满分16分) 17. 如图,8块相同的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是多少?
↑↓60cm
18.某科技公司研制成功一种新产品,决定向银行贷款200万元资金用于生产这种产品,签定的合同约定两年到期时一次性还本付息,利息为本金的8%,该产品投放市场后,由于产销对路,使公司在两年到期时除还清贷款的本金和利息外,还盈余72万元;若该公
司在生产期间每年比上一年资金增长的百分数相同,试求这个百分数。

五、(本题共2小题,每小题10分,满分20分)
19.将4个数a ,b ,c ,d 排成2行、2列,两边各加一条竖直线记成
a b c
d
,定义
a b c
d
=ad -bc ,上述记号就叫做2阶行列式.若11
11
x x x x +--+
=6,求x 的值。

20.已知关于x ,y 的方程组⎩
⎨⎧=+=+12
by ax y x 与⎩⎨⎧=-=-452by ax y x 的解相同,求a ,b 的值。

六、(本题满分12 分)
21.小华在沿公路散步,往返公交车每隔8分钟就有一辆迎面而过;每隔
40
3
分钟就有一辆从小华的背后而来.若小华与公交车均为匀速运动,求车站每隔几分钟发一班公交车?
七、(本题满分12分)
22.“十一”黄金周期间,某学校计划组织385名师生租车旅游,现知道出租公司有42座和
60座两种客车,42座客车的租金每辆为320元,60座客车的租金每辆为460元。

(1)若学校单独租用这两种车辆各需多少钱?
(2)若学校同时租用这两种客车8辆(可以坐不满),而且要比单独租用一种车辆节省租金。

请你帮助该学校选择一种最节省的租车方案。

八、(本题满分 14 分)
23.机械加工需要用油进行润滑以减少摩擦,某企业加工一台大型机械设备润滑用油量为
90千克,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油量为36千克.为了建设节约型社会,减少油耗,该企业的甲、•乙两个车间都组织了人员为减少实际耗油量进行攻关.
(1)甲车间通过技术革新后,加工一台大型机械设备润滑油用油量下降到70千克,用
油的重复利用率仍然为60%.问甲车间技术革新后,加工一台大型机械设备的实际耗油量是多少千克?
(2)乙车间通过技术革新后,不仅降低了润滑用油量,•同时也提高了用油的重复利用
率,并且发现在技术革新的基础上,润滑用油量每减少1千克,用油量的重复利用率将增加1.6%.这样乙车间加工一台大型机械设备的实际耗油量下降到12千克.问乙车间技术革新后,加工一台大型机械设备润滑用油量是多少千克?用油的重复利用率是多少?
2014年中考数学总复习专题测试卷(一)参考答案
一、1、C 2、A 3、D 4、D 5、C 6、D 7、C 8、B
9、B 10、A 二、11、m <2; 12、7,1; 13、m≥-3; 14、01422=+-y y 。

三、15、(1)±1;
(2)去分母,得1314x =-+.
32x =-,解这个方程,得2
3
x =-.
经检验,2
3x =-是原方程的解.
16.解:解不等式3
32
x x -+≥,得3x ≤, 解不等式13(1)8x x --<-,得2x >-.
所以,原不等式组的解集是23x -<≤.在数轴上表示为
四、17. 每块长方形地砖的长是45cm ,宽是15cm 。

18.设每年增长的百分数为x 。

72%)81(200)1(2002++⨯=+x 解得:%202.01==x 2.22-=x (不合题意,舍去) 答:(略) 五、19.因为
a
b c d
=ad -bc ,所以1111x x x x +--+ =6可以转化为(x +1)(x +1)-(x -1)
(1-x )=6,即(x +1)2+(x -1)2=6,所以x 2
=2,即x =
20.
65=
a ,2
3=b 。

六、21.10分钟.(提示:设车站每隔x 分钟发一班车,小华的速度为1υ米/分,公交车
的速度为2υ米/分,则()()1222128403
x x υυυυυυ+=⎧⎪
⎨-=⎪⎩,
.)
七、22.(1)385÷42≈9.2
∴单独租用42座客车需10辆,租金为320×10=3200元.
385÷60≈6.4
∴单独租用60座客车需7辆,租金为460×7=3220元.
(2)设租用42座客车 x 辆,则60座客车(8-x )辆,由题意得:


⎧≤-+≥-+.)(,)(3200846032038586042x x x x 解之得:733≤x≤185
5. ∵x 取整数, ∴x =4,5.
当x =4时,租金为320×4+460×(8-4)=3120元; 当x =5时,租金为320×5+460×(8-5)=2980元. 答:租用42座客车5辆,60座客车3辆时,租金最少。

说明:若学生列第二个不等式时将“≤”号写成“<”号,也对. 八、23.(1)由题意,得70×(1-60%)=70×40%=28(千克). (2)设乙车间加工一台大型机械设备润滑用油量为x 千克.
由题意,得:x×[1-(90-x )×1.6%-60%]=12,
整理得x 2
-65x-750=0,解得:x 1=75,x 2=-10(舍去), (90-75)×1.6%+60%=84%.
答:(1)技术革新后,•甲车间加工一台大型机械设备的实际耗油量是28千克.(2)技术革新后,•乙车间加工一台大型机械设备润滑用油量是75千克,用油的重复利用率是84%.。

相关文档
最新文档