苏汝铿量子力学课后习题及答案chapter6

合集下载

量子力学答案(第二版)苏汝铿第六章课后答案6.16-6#8

量子力学答案(第二版)苏汝铿第六章课后答案6.16-6#8
代入薛定鄂方程: i
(s x + s y + s y ) ??
sin qe- iwt ÷ ÷ ÷ - cos q ÷
,设 f (t )=ç ç
¶f = Hf ¶t
骣 a(t )÷ ÷,则有 ç ÷ b(t )÷ 桫
i d a(t ) = cos qa(t ) + sin qe- iwt b(t )......(1) - m0 B dt i d b(t ) = - cos qb(t ) + sin qeiwt a(t ).....(2) - m0 B dt
c1' = iw1e- iwt c2
化简得: 其中:
c2' = iw1eiwt c1
cos q, w1 = m0 B sin q, w2 = w + 2w0
w0 =
m0 B
a(t ) = c1eiwt b(t ) = c2e- iwt
解得: c2 '' = iw2c2 '- w12c2 (*) 由初始条件:
( S1z - S 2 z )c 1 = 0 ( S1z - S 2 z )c 2 = 0 c 4 ( S1z - S 2 z )c 3 = c 3 ( S1z - S2 z )c 4 = 2 2
骣1 2 ç A ç ç 4 ç ç ç ç ç ç 0 ç 所以得到: H ' = ç ç eB ç ç ç ç mc 2 ç ç ç ç ç 0 ç 桫
eB ( S1z - S2 z ) mc 解: eB =H 0 + A( sx 2 + s y 2 + sz 2 ) + ( S1z - S2 z ) mc H = H 0 + AS1 S2 +

苏汝铿量子力学(第二版)课后习题(含答案)--第六章6.16-6.18#8(延边大学)三年级

苏汝铿量子力学(第二版)课后习题(含答案)--第六章6.16-6.18#8(延边大学)三年级

6.16带电粒子在均匀磁场和三维谐振子势场2201()2e U r m r 中运动,求粒子的能谱. 解:该带电粒子的哈密顿量222011()22e e H p A m r m c ,且1()2A B r ,不妨设磁场沿+y 轴方向,则有12A (-By,Bx,0)2222222220012111()()()222x y Lz L zL zHp p m x y p m zlmm H H l1+2 =22222210222201()()()21122()2x y Lz LH p p m x y m H p m z m eBmc1其中+2 拉磨频率易知1H ,2H ,z l 相互对易,所以有共同的本征函数,所以可得到能谱为:221200121(1)();2LLEN N m N N 2 (=,0)6.17自旋为12的粒子,在均匀磁场中运动,磁场的绝对值不变,但各个分量随时间变化如下: sin cos ,sin sin ,cos X yzB B t B B t B B设t=0时自旋在磁场方向上的分量等于12,求在t 时刻粒子跃迁到自旋在磁场方向上的分量等于-12的态中的概率? 解:0000(),(sin cos ,sin sin ,cos )cos sin cos sin sin sin cos sin sin cos cos sin sin cosxy yxyyi titHBBt t t itBt i t e Be 设该粒子磁矩为 = =代入薛定鄂方程:iHt,设()()()a t tb t =,则有00()cos ()sin () (1)()cos ()sin () (2)i ti t i d a t a t eb t B dt id b t b te a t B dt化简得: '112'211i t i tc i ec c i e c其中:1cos ,sin ,BB2212()()i t i ta t c eb tc e解得:222212'''c i c c(*)由初始条件:(0)1(0)0(0)a tb tt2 即c所以设解2sin c t ,代入*式可得:1222tan it(超越方程)若可求得,则可得到()b t ,则所求概率为220(())()1t b t6.18电子和正电子靠库仑吸引力束缚在一起构成一个类氢的系统.在外磁场中它的哈密顿量(l=0)近似为01212()z z eBHH AS S S S mc,A,e,m,c,是正实数,BBz ,12,S S 分别是电子和正电子的自旋算符,0H 包含电子动能,正电子动能及正负电子间的库仑能.对自旋相互作用0HH 用一级微扰计算0H 的四度简并基态的能量分裂.解:01212222012()()()z z x y z z z eB HH AS S S S mc eB H A s s s S S mc =由两自旋为12的粒子系统具有对称三重态和反对称单态,写出其波函数为:12112212123121241()21()()2 波函数正交归一易得:22221122222122223122241()41()41()4()x y z x y z x y z x y z A s s s A A s s s A A s s s A A s s s12112241233124()0()()2()2z z zz z z zz S S S S S S S S所以得到:22210042104'1024202eB Amc A H eB eB A mc mc eB mc解久期方程得:222(1)2222111()444e B EA AA c2二重,-+m。

量子力学答案(第二版)苏汝铿第六章课后答案6.10-6#6 @

量子力学答案(第二版)苏汝铿第六章课后答案6.10-6#6 @
点), 这样就有 L
1 N L 2
耦合之后总磁矩
1 1 N L J ( g p g N )N S J J 2 2 R J ( J 1)
因 J LS 有
N 3 ( g p g N ) N (1) J / 2
旋 S , 然后总自旋再与轨道角动量 l 耦合形成总角动量 J , 用核磁子表示你的结果. 已知质子和 中子的磁矩分别是 2.79 和-1.91 核磁子. 解: (i) S,D 态的宇称为正, 而 P 态的宇称为负, 由于宇称守恒, 开始时为 S 态的量子态在任何 时刻都不可能有 P 态混入 (ii)
1 1 1.5 ( g p g N ) N J 0.31 N J 2 2
取 J 方向的投影并使 J s 为最大值 J 1 , 从而有 0.31 N 6.11 一个 介子(赝标粒子, 自旋为零, 奇宇称)最初别束缚在氘核周围, 并处在最低库仑态
的角分布是多少? (i). 反应前后宇称守恒, 有
p( ) p(d )(1) L1 p(n) p(n)(1) L
L1 , L2 分 别 是 d 及n+n 的 轨 道角 动量 . 但反 应 前 是 在库 仑 势的 最低 能 态
中, L1 0 , 且已知: p( ) 1, p(d ) 1 有
2/3 c , 2/ d 3 , 1/ 3
p 1,1 p 1, 1 0 n 1, 0
查 C G 系数表, 可得
a 1 / 3b ,
共振态的 I 3/ 2 , 经过此面的截面比为 1 2 4 2 a : b : c 1: a : ac 1: : 9 9
能的, 因为 L 1 , 所以几率为 0 (iii) 从而有 初始态为 J , J z 1,1 , 将其变成非耦合表象 L 1, S 1, L, L3 , S , S z

量子力学答案(第二版)苏汝铿第六章课后答案6.7-6#5

量子力学答案(第二版)苏汝铿第六章课后答案6.7-6#5
2 2 [S 12 , S12 ] 0,[ S 123 , S123 ] 0 .
S1 , S2 , S3 互相对易,而且
2 2 2 S1 S2 S3
3 4
因此
2 2 2 S 12 S1 S2 2S1 S2 2 S 123
3 2S1 S2 2
9 2( S1 S2 S2 S3 S3 S1 ) 4
(1, 2) (1) (2)
2
1 [ (1) (2) (1) (2)] 2
2
总自旋 S 共有两个本征值:0 和 2. S 0 的本征 (1) (2) (1) (2)] 2
2
在体系的自旋态 中测得 S 0 的概率为
2 S12 S ( S 1), S 0,1
2
2
2
2
2
2
1 1 3 2 S123 S ( S 1), S , , 2 2 2
代入 H 的表达式,就得到能级值,记为 ESS 。由于体系能量与 ( S123 ) z ,即总自旋 z 分量的 本征值 [S , S 1,
r 1 1 ] e [ S , S x ] e ( S [ x , S ] x [ S , S ]) r r r
l
和 S 对易,但 l 和 S n 并不对易,利用基本对易式 [l , x ] i x , 容易证明
[l , Sn ] [l , S
,(S )] 无关,故能级 ESS 的简并度 (2S 1) 。量子数 S , S 的可能组合以
及能级和简并度如下:
S S
1 3/2 1/2
0 1/2
ESS
简并度 (2S 1)
A B 4 2

量子力学导论第6章答案

量子力学导论第6章答案

第六章 中心力场6.1) 利用6.1.3节中式(17)、(18),证明下列关系式相对动量 ()21121p m p m M r p -==∙μ (1)总动量 21p p R M P+==∙ (2)总轨迹角动量p r P R p r p r L L L⨯+⨯=⨯+⨯=+=221121 (3)总动能 μ222222222121M P m p m p T +=+= (4)反之,有 ,11r m R rμ+= r m R r22μ-= (5) m p +=21μ,m p -=12μ(6)以上各式中,()212121 ,m m m m m m M +=+=μ证: 212211m m r m r m R ++=, (17) 21r r r -=, (18)相对动量 ()21122121211p m p m M r r m m m m r p-=⎪⎪⎭⎫ ⎝⎛-+==∙∙∙μ (1’) 总动量 ()2121221121p p m m r m r m m m R M P+=+++==∙∙∙ (2’)总轨迹角动量 221121p r p r L L L⨯+⨯=+=)5(2211p r m uR p r m u R ⨯⎪⎪⎭⎫⎝⎛-+⨯⎪⎪⎭⎫ ⎝⎛+= ()()2112211p m p m Mp p -⨯++⨯= )2)(1(⨯+⨯=由(17)、(18)可解出21,r r,即(5)式;由(1’)(2’)可解出(6)。

总动能()22112262221212222m p P m m p P m m p m p T ⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛+=+=μμ2122222122112222122222m m pP u m p m m u m m p P u m p m m u⋅-++⋅++=()()⎪⎪⎭⎫⎝⎛+++++=2122221222211112122m m p P m m m P m m m μ2222M P += (4’) [从(17),(18)式可解出(5)式;从(1),(2)式可解出(6)式].6.2) 同上题,求坐标表象中p 、和的算术表示式r i ∇-= R i ∇-= ,p r P R L ⨯+⨯=解: ()()211221121r r m m Mi p m p m M ∇-∇-=-=(1) 其中 1111z y x r ∂∂+∂∂+∂∂=∇, 而x X M m x x x X x X x ∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂1111, 同理,y Y M m y ∂∂+∂∂=∂∂11zZ M m z ∂∂+∂∂=∂∂11; (利用上题(17)(18)式。

量子力学课后习题答案

量子力学课后习题答案

量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThcλλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

量子力学答案(第二版)苏汝铿第六章课后答案6.7-6#15

量子力学答案(第二版)苏汝铿第六章课后答案6.7-6#15

1 的本征态,粒子 2
1 2 的本征态,取 =1 ,求体系总自旋 S 的可能值及相应的概率。 2
解: S x ;
1 Sz ; Sz ; 2
1 2

(1)
Sz ; Sx ;
(2)
系统处于 S1z ; S2 x ; 的态上,将其写到 S z 的表象中为
S1z ;
编辑者:霍团长 6— 7
对于两个自旋 1/2 的例子组成的体系,证明张量算符
S12
3 (σ1 r )(σ2 r ) σ1 σ2 r2
和 S 2 及 J 对易。 S 为总自旋, J 是总角动量 J = S + l ,l 是体系的轨迹角动量,在质心坐 标系中, l 的算符形式是:
l r p i r , r = r1 - r2
而 S s( s 1)
2
1 S2 z ; S2 z ; 2

其可能值为 0或2 总自旋为零的态可表示为:
0
1 S1z ; S2 z ; S1z ; S2 z ; 2
0
1 1 1 S2 z ; S1z ; S1z ; S2 z ; 2 2 2
证明: (1)
3 2 , σ1 3, ( 1n )2 1 4 1 S s1 s2 (σ1 σ2 ) 2 3 1 ∴ S 2 σ1 σ 2 2 2 1 1 Sn S n (σ1 n σ2 n) ( 1n 2 n ) 2 2 1 1 1 ∴ Sn 2 ( 1n 2 2 n 2 2 1n 2 n ) 1n 2 n 4 2 2
2 解:取系统的力学量完全集为 ( H , S12 , S 2 , Sz )

量子力学答案(第二版)苏汝铿第一章课后答案1.3-1#02

量子力学答案(第二版)苏汝铿第一章课后答案1.3-1#02

h2 d 2 ( x) 1 m 2 x 2 ( x) E ( x) 8 2 m dx 2 2
批注 [JL1]: 不合题意!
1 h 2 2
(2) 设均匀磁场的大小为 B,电子的运动半径为 a,质量为 m,电量为 q,电子运动速率 为 v, v a 则a
d 。 dt
mv , 取电子角位移 为广义坐标,相应的的广义动量 p mav 。 qB
根据推广的玻尔量子化条件,有
pdq nh ,则 (mav)d nh
nh , 2
该广义动量大小在同一轨道中不变,故 mav =
再结合 a
nh mv ,得 a 2 qB qB
Hale Waihona Puke 1.3求下列各粒子的德布罗意波的波长: (1)能量为100eV的自由电子 (2)能量为0.1eV的自由中子 (3)能量为0.1eV,质量为1g的质点 3 (4)温度为1K时,具有动能 kT的氦原子 2
h h -9 解 (1)= = =1.2310 m p 2mE
h h -11 (2)= = =9.0710 m p 2mE
h h -22 (3)= = =1.1710 m p 2mE
h h h -9 (4)= = = =1.2610 m p 2mE 3mkT
1.4 利用玻尔量子化条件求: (1)一维谐振子的能量; (2)在均匀磁场中作圆周运动的电子的可能轨道半径。 解: (1) 一维谐振子的能量可以表示为 E p 2 / 2m kx 2 / 2 其对应的薛定谔方程为 计算结果为 En (n )

量子力学课后答案

量子力学课后答案

=,量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kThc kT hc e kT hc e hc λλλλλπρ ⇒ 0115=-⋅+--kT hce kThc λλ ⇒ kThce kT hc λλ=--)1(5 如果令x=kThcλ ,则上述方程为x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λ nmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

苏汝铿统计物理答案

苏汝铿统计物理答案

苏汝铿统计物理答案【篇一:125本物理学名著精编版】>1 爱因斯坦文集2 费曼物理学讲义(原声录音) 出国留学必备书之一!3 费曼物理学讲义_卷一4 费曼物理学讲义_卷二5 费曼物理学讲义_卷三6 费曼物理学讲义习题集7 别闹了,费曼先生!8 泡利物理学讲义(共六卷) 出国留学必备书之一!9 faraday(法拉第)_lectures on the forces of matter 10faraday(法拉第)_the chemical history of a candle 11 从抛物线谈起—混沌动力学引论12 多粒子系统的量子理论13 量子力学与路径积分(费曼)出国留学必备书之一! 14 物理力学讲义(钱学森)15 物理学家用微分几何出国留学必备书之一!16 相对论(索末菲)17 相对论的意义18 算法大全19 相对论量子场20 相对论量子力学21 引力论与宇宙论22 自然哲学之数学原理宇宙体系23 物理学进展200124 history of modern physics25 nobel lectures(1998--2001)26 numerical recipes in c27 phy question28 physics review letter(vol74-vol86)29 thermal physics30 topics appl. phys vol 80 carbon nanotubes31 trends in colloid and interface science xiv32 relativity the special and general theory33 interact(斯坦福直线加速器实验室)34 introduction to tensor calculus and continuum mechanics35 lect statistic36 mathematicalhandbook37 relativity the special and general theory -by albert einstei38 gre物理sub试题(爆全)39 北大物理类研究生入学考题40 大学物理课件41 概率统计课件42 核辐射物理电子讲义43 计算机常用算法44 计算物理讲义45 离子束分析(课件)46 数据结构算法课件(部分)47 数值计算课件48 hilbert空间问题集 halmos49 波动学《伯克利物理学教程》第三卷上、下册50 场论(朗道)51 场论与粒子物理学(上册)(李政道)出国留学必备书之一!52 场论与粒子物理学(下册)(李政道)53 非平衡态热力学和耗散结构(李如生)54 分形物理学55 辐射的量子统计性质(路易塞尔)56 高等量子力学(第二版)(杨泽森)57 高温辐射物理和量子辐射理论(李世昌)58 孤子理论59 经典力学( goldston,戈德斯坦著)出国留学必备书之一! 60 固体的电子结构61 固体化学导论62 固体物理导论(基泰尔)出国留学必备书之一!63 固体物理习题详解(基泰尔)64 固体物理学(黄昆)65 光和物质的奇异性 66 光学(planck)67 光学原理上册、下册(m.玻恩 e.沃耳夫)68 广义相对论(刘辽)69 广义相对论dirac70 广义相对论引论(俞允强)71 规范场的量子理论导引72 规范场论(胡瑶光)73 规范场与群论、完全可积问题74 计算物理学(张开明顾昌鑫)75 结晶化学导论(第二版)76 经典电动力学(jackson_vol1) 出国留学必备书之一! 77 经典电动力学(jackson_vol278 经典电动力学习题答案(jackson_2nd)79 经典和现代数学物理方程(陆振球) 出国留学必备书之一! 80 空间群表81 李代数李超代数及在物理学中的应用82 理论电化学83 理论物理基础(彭恒武徐锡中)84 理论物理学基础教程丛书统计物理学(苏汝铿)85 理论物理学基础教程丛书量子力学(苏汝铿)86 理论物理学中的计算机模拟方法(w.heermann)87 量子场论上册(c.依捷克森) 出国留学必备书之一! 88 量子场论下册(c.依捷克森)89 量子场论导引(上、下册)杨炳麟90 量子电动力学(栗弗席茨)出国留学必备书之一!91 量子混沌 92 量子力学(messiah,梅西亚著)vol193 量子力学(messiah梅西亚著,)vol294 量子力学(非相对论理论)上册(朗道) 出国留学必备书之一!95 量子力学(非相对论理论)下册(朗道)96 量子力学(fermi,费米著。

量子力学课本答案

量子力学课本答案

量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kThc kT hc e kT hc e hcλλλλλπρ ⇒ 0115=-⋅+--kT hce kThc λλ ⇒ kThce kT hc λλ=--)1(5 如果令x=kThcλ ,则上述方程为x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λhP =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph =λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

《量子力学教程》_课后答案

《量子力学教程》_课后答案

(n 1, 2, 3,)
∴ 2 ( x) A sin
n x a
由归一化条件



( x) dx 1
2
A2

a
2 sin
0
n xdx 1 a


a
b
sin
m n a x sin xdx mn a a 2
14
A
2 a 2 n sin x a a
2 ( x)
23
2
23
T 100 K 时, E 1.381021 J 。
7
1.5 两个光子在一定条件下可以转化为正负电子对,如果两个光子的能量相等,问要实现这种转化,光子 波长最大是多少? 解:转化条件为 h ec 2 ,其中 e 为电子的静止质量,而
c h ,所以 ,即有 ec
A2 2 T A2 2T pdq A 0 cos t dt 2 0 (1 cost )dt 2 nh , n 0,1,2,
2 2 T 2
A2 2 nh E nh , n 0,1,2, 2 T
6
v 2 v (2)设磁场垂直于电子运动方向,受洛仑兹力作用作匀速圆周运动。由 evB ,得 R eB R
其解为
2 ( x) A sin kx B coskx

13
根据波函数的标准条件确定系数 A,B,由连续性条件,得
2 (0) 1 (0)
2 ( a ) 3 ( a)
⑤ ⑥ ⑥

B0 A sin ka 0
A0 s i n ka 0 ka n
max
0 h 6.626 1034 c 0.024A (电子的康普顿波长)。 31 8 e c 9.1 10 3 10

量子力学答案(第二版)苏汝铿第六章课后答案6.1-6#13

量子力学答案(第二版)苏汝铿第六章课后答案6.1-6#13

0 1 0 i Sn cos cos i 0 cos 2 1 0
cos 1 0 0 1 2 cos i cos
2
cos i cos cos
设 J 2 , J z 共同的本征态为 j , m ,利用升降算符,将 J x , J y 表示为
J x
Jx
1 1 J J , J y J J 2 2i 1 j, m J x j m j m J J j ,m 2


j m j m

1 j m j m , 2
6.2 求 自 旋 角 动 量 在 任 意 方 向 n ( 方 向 余 弦 是 co s , co s 的投影 , c) os
Sn S xc o s Sy c o s Sz
c的本征值和本征函数。 os
解:在 S z 表象内,电子自旋算符 S x , S y , S z 的矩阵表示为,故 S n 的矩阵形式为:
(iii) y Βιβλιοθήκη =1 轾 犏2c 1 (S z )Y 10 (q, j ) + c 1 (S z )Y 1- 1(q, j ) 3犏 臌 -2 2
J 2 = j ( j + 1)h 2 =
35 2 15 2 h = h 22 4 2 1 1 1 1 J z = (Lz + S z )h = (0 - )h + (- 1 + )h = - h 3 2 3 2 2
a1 cos a2 (cos i cos ) a1 a1 (cos i cos ) a2 cos a2
求解此方程可得

量子力学答案(第二版)苏汝铿第六章课后答案6.13-6#1

量子力学答案(第二版)苏汝铿第六章课后答案6.13-6#1

E E E E 1 2 2s c xc 1 2 2c s xs 2 2 4 4


E E 2c / s 2 x 1 s1 2 2s / c 2 x 1 c12 4 4
2 2

1 1 2 2 2 1 1 x 2 cos s c 4s 2c 2 cos E2 E3 t / 2 2 2 2 1 x 2

1 x 2 Et /

1
1 sin 2 1 x2

1 x 2 Et / 2
编辑者:霍团长 6.13、讨论一个中性粒子,它的内禀角动量是 S ( S 1) ,其中 S ,即它是一个自旋为 1 的
2
2
粒子。假设这粒子有一磁矩 M S , 是一个常数。这个粒子的量子态可用自旋空间描述。它的 基矢是 S x 的两个本征态 和 ,分别代表其自旋方向平行和反平行于 z 轴,即有
批注 [JL1]: 应为 S z
Sz
2
, Sz
2

在 t 0 时,体系状态是
(t 0) 。这一粒子沿 y 轴运动,通过一沿 y 轴方向的均匀磁场
B B0 j 。
(ⅰ)、求
(t ) ,用 和 来表示。
(ⅱ)、 S x 、 S y 、 S z 作为时间函数的表达式。
状态的自旋波函数是: 1 1 2 , 2 S 1 2 C12 , 3 C1 2 S12 , 4 1 2 ,其
批注 [JL3]:
H E / 41 2 1 2

z i i i
1,ຫໍສະໝຸດ z i i iz

苏汝铿量子力学课后习题及答案

苏汝铿量子力学课后习题及答案
Exercises for the Course of Quantum Mechanics, 2007
ALL RIGHTS RESERVED, BY SHAO-YU YIN, YI LI, JIA ZHOU NOT FOR DISTRIBUTION
Prof.
Ru-Keng Su
Shaoyu Yin Jia Zhou & Yi Li Department of Physics, Fudan University, Shanghai 200433, China
2ikA ˜ 2ik−V ˜A V ˜ 2ik−V
(13)
(14)
(15)
= = 3
ik A, ik−mV /¯ h2 2 mV /¯ h A. ik−mV /¯ h2
(16)
So the transmission ratio is
ALL RIGHTS RESERVED, BY SHAO-YU YIN, YI LI, JIA ZHOU NOT FOR DISTRIBUTION
T =
h ¯ω p2 C (p, t) C (p, t)dp = =− 2m 4

h ¯ 2 d2 ψ (x, t) ψ (x, t)dx. 2m dx2

Or using the Virial theorem (QM book of Su, Chapter 3.8, P117 ), T = 1 dU 1 h ¯ω x = U = E = . 2 dx 2 4 (9)
1/3
1.41 ∗ 10−12 eV.
(23)
2.4. (QM book of Su, Ex.2.14.) The state of electron in Hydrogen atom is ψ = √1 3 e−r/a0 , where a0 is the Bohr radius. Try to find: (i) The expectation value of r.

量子力学答案(第二版)苏汝铿第六章课后答案6.4-6#14 @

量子力学答案(第二版)苏汝铿第六章课后答案6.4-6#14 @
(iii) [ J ,[ J , A]] i[ J , A J ] i[ J , J A]
2 2 2 2
i[ J 2 , A] J iJ [ J 2 , A] (J A A J ) J J (J A A J )
ˆ AJ ˆ ˆ 2) ˆ) ˆ2 A ˆ J ˆA J 4 A AJ 4 2 J 2 AJ 2 ( 2 J 4J (
因此 S12 的 本征值为 (13 )
S12 2,0, 4
这个结论可以由式(6)得到,由于 S 2 与 S n 对易,所以本征值为
(14)
S 2 0( S 0), Sn 0, S12 0 S 2 2( S 1), Sn 1, S12 2
(14 )
Sn 0, S12 4
同样地, ( S y )
2
S y
0 i 1 (1, 0) 0 2 i 0 0
2
(S y )2
4
4 2
所以 (S x ) (S y )
2
16
14QM-6.5 设 J J1 J 2 ,求证
i j ' m ' J1z
ˆ 则有 ˆ A 取J 1
ˆ4J ˆ J ˆJ ˆ 4 2J 2 J J 2 ( J 2 J 2 J1 J1 J 2)= 4 J (J J1) 1 1 1
对上式两端 取矩阵元 jm '
jm ,即得
2j(j+1) jm ' J1 jm j ( j 1) j1 j1 1 j2 j2 1 jm ' J jm 易见 jm ' J1 jm 0和 jm ' J jm 0的选择定则相同,为

量子力学答案(第二版)苏汝铿第六章课后答案6.1-6#3

量子力学答案(第二版)苏汝铿第六章课后答案6.1-6#3

(iv)显然, l 1, ml 1, ms 1/ 2, j l S 3/ 2, m j ml ms 3/ 2
J 2 的本征值为 j j 1
2

15 4
2
, J z 的本征值为
3 2


ˆ 的可能值为 可见, S z
2
,
1 cos 1 cos 和 2 2 1 cos 1 cos Sz cos 2 2 2 2 2 同理,对应于 S n 的本征函数为 2
相应的几率为
1 cos 2 1 (Sn ) 2 cos i cos 2(1 cos )
cos i cos cos
2 2
cos
2
(cos i cos ) 0 cos 2
(cos i cos )
2 2

2
4
cos 2
4
(cos 2 cos 2 ) 0
又 cos
2
cos2 cos2 1
2
( ii) 2 ( iii) 3
1 2 1 ( S z )10 ( , ) 1 ( S z )11 ( , ) 3 2 2 1 2 1 ( S z )10 ( , ) 1 ( S z )11 ( , ) 3 2 2
第六章
编辑者:霍团长
自旋和角动量
6.1 如果 m 是 Lz 的本征态,满足本征方程 Lz m m m ,现在将 z 轴转一 个角度 ,变成 z 轴,求证: Lz m cos
证明: Lz Lx cos x, z Ly cos y, z Lz cos 由于 m 是 Lz 的本征态 则有

苏汝铿量子力学答案1-8章

苏汝铿量子力学答案1-8章
求粒子动量的平均值。
c ok sx ]
1 1 解: ( x) A[sin 2 kx 1 2 cos kx] A[ 2 (1 cos 2kx) 2 cos kx]

A [1 c o 2 s kx c o kx s ] 2 A i 2 kx ikx [1 1 e i 2kx ) 1 e ikx )] 2 (e 2 (e 2
在只有一个方势垒的情况下利用薛定谔方程和边界条件通过解四元一次方程组得透射波与反射波的振幅用入射波的振幅来表示再利用透射系数和反射系数的定义即可求解得可想而知对两个方势垒则需解八元一次代数方程组这是不好做的
量子力学答案 解答者一
第一章
第一组:陈震,200431020002;黎雄俊,200431020005。 习题 1.1、 试利用普朗克公式证明维恩位移律。 证明:频率间隔为 d 中的能量密度为
e
dk
积分上式可得
( x, t ) e
i ( k0 ) t

1 4
1 i t
2
exp[
( x vg t ) 2 2 2(1 i 2t ) exp[
]eik0 x

( x, t )
2

1 2
( x vg t ) 2 2 1 2 4t 2
1 2 4t 2
]
故在时刻 t 这是个高斯波包 (ⅱ) 波包宽度
x(t )
1

1 2 4t 2
(ⅲ) 由
( x, t )
2
2

1 2
1 2 4t 2
exp[
( x vg t ) 2 2 1 2 4t 2

量子力学(第二版)【苏汝铿】课后习题解答

量子力学(第二版)【苏汝铿】课后习题解答

.
解:(i)
(ii) 10 当
时,显然
20 假设当
时,满足
成立; ,则
这就是说当 综上 10,20 可知 3.4 证明:
时,满足 对于任意



. 的整数恒成立.
. 证:1)
由角动量与坐标算符的对易子
,知
同理有


6
量子力学(第二版)【苏汝铿】课后习题解答
角动量算符与动量算符的对易子 2)
,同上可证
式中 是坐标, , 是相应于 态和 态的能量,求和对一切可能的状态进行. (注:由于质量 与态 字母一样,故将质量 改为 ,避免混淆)
解:
,
,

4.6 证明两个厄米矩阵能用同一个幺正变换对角化的充要条件是它们彼此对易.
证:(充分性)
.设使 对角化的幺正变换 ,则
.
的变换矩阵元

于是
即时
,


是对角矩阵的元素,
.
基态能量应取 的最小值,由

,
此时,
,即 在
处取得最小值
.
(优化解法)氢原子中有一个电子,电荷为 ,核电荷为 ,总能量算符为
(1)
设原子的最概然半径为 ,则式(1)的基态平均值中可取
(2)
根据不确定度关系,可取
(3)
因此,基态能量约为
(4)
的取值应使 为极小,由极值条件
7
量子力学(第二版)【苏汝铿】课后习题解答
当 时,解本征方程
.由
得归一化本征函数
;

时,解本征方程
.由
得归一化本征函数
.
即 的本征函数是
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 自旋和角动量 典型例题分析
6.1 以 s, l, j 表示电子的自旋,轨道角动量和总角动量,取 = = 1 。j 和 j2 可以表示成
K K K 1 K K j = s +l = σ +l 2 K K2 K2 K2 3 K K K K j = s + l + 2s ⋅ l = + l 2 + σ ⋅ l 4 K K K K K2 K K K K K K a) 计算 [σ , σ ⋅ l ] , [l , σ ⋅ l ] , [ j , σ ⋅ l ] , [ j , l ] ;
(6.20)
⎛ C1 ⎞ ⎟ ,本征值为 λ ,则本征方程为, ⎝ C2 ⎠
(σ n − λ )φ = 0

(6.21)
⎧(cos θ − λ )C1 + sin θ e − iϕ C2 = 0 ⎪ ⎨ iϕ ⎪ ⎩sin θ e C1 − (cosθ − λ )C2 = 0 det(σ n − λ ) = 0 为有菲平庸解条件,可知 λ = ±1 ,相应的本征函数为
K
解题思路:在课本中给出的自旋矩阵为在 σ z 表象中的,具有简单的形式。若要表示空间任 意方向上的自旋矩阵,只要在原来的矩阵上作空间旋转的相li 算符的矩阵表示为,
σx = ⎜
因此,
⎛ 0 1⎞ ⎛ 0 −i ⎞ ⎛1 0 ⎞ ⎟, σ y = ⎜ ⎟ ,σ z = ⎜ ⎟ ⎝ 1 0⎠ ⎝i 0⎠ ⎝ 0 −1⎠
(6.15) 由关系 [ J1x , J1 y ] = i=J1z , [ J 2 x , J 2 y ] = i=J 2 z ,故
K x K y − K y K x = i=( J1z + J 2 z ) ≠ i=K z
因此,不满足关系(6.13) ,不是角动量。 2) 如果 J1 和 J2 不是两个独立的角动量,且满足下列对易关系,
因此,在(6.17)下, (6.13)式才能满足,K 是角动量。 (6.18)
6.3 给 定 (θ , ϕ ) 方 向 单 位 矢 量 n = (nx , n y , nz ) = (sin θ cos ϕ ,sin θ sin ϕ , cos θ ) , 求
K
σ n = σ ⋅ n 的本征值和本征函数。 ( σ z 表象)
(6.16)
[ J1a , J 2 a ] = 0, a = x, y, z [ J1x , J 2 y ] = i=J 2 z ,[ J1 y , J 2 z ] = i=J 2 x ,[ J1z , J 2 x ] = i=J 2 y
则(6.15)的第二个等号不能成立,
(6.17)
K x K y − K y K x = ( J1x − J 2 x )( J1 y − J 2 y ) − ( J1 y − J 2 y )( J1x − J 2 x ) = [ J 1 x , J1 y ] − [ J 1 x , J 2 y ] + [ J 1 y , J1 x ] + [ J 2 x , J 2 y ] = i=( J1z − J 2 z − J 2 z + J 2 z ) = i= ( J1z − J 2 z ) = i=K z

(6.9)
K K K K (σ ⋅ l − l )(σ ⋅ l + l + 1) = 0
所以,
(6.10)
σ ⋅ l = l , − (l + 1)
将 σ ⋅ l 及 l 的本征值代入 j = s + l + 2 s ⋅ l =
K K
(6.11)
K K
K2
K2
K2
K2
K K
3 K2 K K + l + σ ⋅ l 中,得: 4
(6.1)
利用
K K K l × l = il

(6.2)
K K K K [lx , σ ⋅ l ] = σ y [lx , l y ] + σ z [lx , lz ] = −i (l × σ ) x
所以,
(6.3)
K K K K K [l , σ ⋅ l ] = −i (l × σ )
由(6.1) (6.4)得,
(6.7)
(可以自己试着证一下) ,得
K K K K K K K K K K (σ ⋅ l ) 2 = l ⋅ l + iσ ⋅ (l × l ) = l 2 − σ ⋅ l
对于 σ ⋅ l 和 l 的共同本征态( j 和 l 的共同本征态)
(6.8)
K K
K2
K2
K2
K K K K K K K K K (σ ⋅ l ) 2 + (σ ⋅ l ) − l 2 = (σ ⋅ l )2 + (σ ⋅ l ) − l (l + 1) = 0
⎛ cos θ ⎞ φ1 = ⎜ θ 2iϕ ⎟ , λ = 1 ⎝ sin 2 e ⎠
(6.22)
(6.23)
φ−1 = ⎜
⎞ ⎟ , λ = −1 ⎝ − sin 2 e ⎠
θ


cos θ 2
(6.24)
(6.19)
σ n = σ ⋅ n = σ x nx + σ y n y + σ z n z
⎛ nz =⎜ ⎝ nx + in y
设 σ n 的本征函数为 φ = ⎜
K
nx − in y ⎞ ⎛ cos θ ⎟= iϕ − nz ⎠ ⎜ ⎝ sin θ e
sin θ e − iϕ ⎞ ⎟ − cos θ ⎠
1 2
(6.12)
K2 j = j ( j + 1),
j=l± 1 2
σ ⋅ l = l,
K K
K K
j =l+
σ ⋅ l = −(l + 1),
K K
j=l−
1 2
注意,l=0 时,l2=0; l=0, 因此 σ ⋅ l =0, j=1/2。j=l-1/2 的情况只能出现在 l 不为 0 的情况中。
(6.4)
K K K K K K K K K [ j , σ ⋅ l ] = [σ , σ ⋅ l ] + [l , σ ⋅ l ] = 0
另外
(6.5)
K K K K K K [ j , l 2 ] = [l , l 2 ] + [ s , l 2 ] = 0
b)利用公式
(6.6)
K K K K K K K K K (σ ⋅ A)(σ ⋅ B) = A ⋅ B + iσ ⋅ ( A × B)
6.2
J1 和 J2 都是角动量,
1) 若 J1 和 J2 是两个独立的角动量,已经知道 J=J1+J2 是角动量,但 K= J1-J2 不是角动量为 什么? 2) 此两个角动量满足什么条件,K 才是角动量?
解题思路:此题涉及角动量的定义,任何物理量只要是满足关系
K K K l × l = i=l ,
b) 求 σ ⋅ l 和 j 的本征值。
K K
K2
解题思路: 此类题目重点考察各种角动量算符间的关系。 所以只要运用各种算符间的对易关 系就能容易的解决。
解: a) s =
K
K 1 K K K σ ,它和 l 属于不同的自由度,彼此可对易, [σ , l ] = 0 。由此知 2 K K K K K K K K [σ , σ ⋅ l ] = [σ x i + σ y j + σ z k , σ xlx + σ y l y + σ z lz ] = 2il × σ
就是角动量。
(6.13)
解: 1) 若 J1 和 J2 是两个独立的角动量,则
K K K J1 × J1 = i=J1 K K K K K
K K K J 2 × J 2 = i=J 2
(6.14)
及 [ J1 , J 2 ] = 0 的对易关系。而 K = J1 − J 2 ,有
K x K y − K y K x = ( J1x − J 2 x )( J1 y − J 2 y ) − ( J1 y − J 2 y )( J1x − J 2 x ) = [ J1x , J1 y ] + [ J 2 x , J 2 y ]
相关文档
最新文档