2021《信号与系统》考研奥本海姆2021考研真题库

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021《信号与系统》考研奥本海姆2021

考研真题库

一、考研真题解析

下列关于冲激函数性质的表达式不正确的是()。[西安电子科技大学2012研] A.f(t)δ′(t)=f(0)δ′(t)

B.f(t)δ(t)=f(0)δ(t)

C.

D.

【答案】A查看答案

【解析】A项,正确结果应该为f(t)δ′(t)=f(0)δ′(t)-f′(0)δ(t)。

2x(t)=asint-bsin(3t)的周期是()。[西南交通大学研]

A.π/2

B.π

C.2π

D.∞

【答案】C查看答案

【解析】因为asint的周期为T1=2π/1=2π,bsin(3t)的周期为T2=2π/3,因为T1/T2=3/1为有理数,因此x(t)是周期信号,且x(t)=asint-bsin (3t)的周期是3T2=T1=2π。

3序列f(k)=e j2πk/3+e j4πk/3是()。[西安电子科技大学2012研]

A.非周期序列

B.周期N=3

C.周期N=6

D.周期N=24

【答案】B查看答案

【解析】f1(k)=e j2πk/3的周期N1=2π/(2π/3)=3,f2(k)=e j4πk/3的周期N2=2π/(4π/3)=3/2,由于N1/N2=2为有理数,因此f(k)为周期序列,周期为2N2=N1=3。

4积分[西安电子科技大学2011研]

A.2

B.1

C.0

D.4

【答案】A查看答案

【解析】

一电路系统H(s)=(10s+2)/(s3+3s2+4s+K),试确定系统稳定时系数K 的取值范围()。[山东大学2019研]

A.K>0

B.0<K<12

C.K>-2

D.-2<K<2

【答案】B查看答案

【解析】H(s)=(10s+2)/(s3+3s2+4s+K)=B(s)/A(s),其中A(s)=s3+3s2+4s+K,系统稳定需要满足K>0,3×4>K,因此0<K<12。7信号f(t)=6cos[π(t-1)/3]ε(t+1)的双边拉普拉斯变换F(s)=()。[西安电子科技大学2012研]

A.

B.

C.

D.

【答案】C查看答案

【解析】信号f(t)变形为

利用时移性质得到其拉式变换为

8系统函数为H(s)=s/(s2+s+1),则系统的滤波特性为()。[山东大学2019研]

A.低通

B.高通

C.带通

D.带阻

【答案】C查看答案

【解析】H(s)的极点位于左半平面,因此频率响应H(jω)=jω/(-ω2+jω+1),H(j0)=0,H(j∞)=0,因此系统是带通系统。

【总结】H(s)=a/(bs+c),系统的滤波特性为低通;H(s)=a/(bs2+cs +d),系统的滤波特性为低通;H(s)=as/(bs2+cs+d),系统的滤波特性为带通;H(s)=as2/(bs2+cs+d),系统的滤波特性为高通。

9信号f(t)=(t+2)ε(t-1)的单边拉式变换象函数F(s)等于()。[西安电子科技大学研]

A.(1+2s)e-s/s2

B.(1+3s)e-s/s2

C.(1+s)e-s/s2

D.e2s/s2

【答案】B查看答案

【解析】信号变形为f(t)=(t+2)ε(t-1)=(t-1+3)ε(t-1)=(t-1)ε(t-1)+3ε(t-1),所以利用时移性质得到F(s)=e-s/s2+3e-s/s=(1+3s)e-s/s2。

10已知信号f(t)的拉氏变换为(s+3)/[(s+1)(s+5)],则f(∞)=()。[西南交通大学研]

A.0

B.1

C.不存在

D.-1

【答案】A查看答案

【解析】首先根据极点在左半平面,因此可以使用终值定理,且终值为

11以下为四个信号的拉普拉斯变换,其中哪个信号不存在傅里叶变换()。[北京交通大学研]

A.1/s

B.1

C.1/(s+2)

D.1/(s-2)

【答案】D查看答案

【解析】根据系统傅里叶变换存在的必要条件可知,若信号s域表达式的极点在s平面的右半部,则该信号不存在傅里叶变换。在给出的四个信号中,只有1/(s-2)的极点在右半部。

12x(n)=a|n|,a为实数,X(z)的收敛域为()。[中山大学2018研] A.|a|<1,|z|>|a|

B.|a|>1,|z|<1/|a|

C.|a|<1,|a|<|z|<1/|a|

D.|a|>1,|a|<|z|<1/|a|

【答案】C查看答案

【解析】根据题目,可以得到x(n)其实是一个双边序列。其对应的表达式为

所以对应的z变换为

因此收敛域为|a|<|z|<1/|a|(条件:|a|<1)。

13单边z变换象函数F(z)=(z4-1)/[z3(z-1)]的原序列f(k)等于()。[西安电子科技大学研]

A.δ(k)-δ(k-4)

B.ε(k)-ε(k-3)

C.ε(k-2)-ε(k-6)

D.ε(k)-ε(k-4)

【答案】D查看答案

【解析】利用部分分式展开法得到

反变换得到原序列为f(k)=ε(k)-ε(k-4)。

14已知一双边序列

其z变换为()。[北京邮电大学2009研]

A.z(a-b)/[(z-a)(z-b)],a<|z|<b

B.(-z)/[(z-a)(z-b)],|z|≤a,|z|≤b

C.z/[(z-a)(z-b)],a<|z|<b

D.(-1)/[(z-a)(z-b)],a<|z|<b

【答案】A查看答案

【解析】由题意,根据常用z变换,得

相关文档
最新文档