2.2.1 解决问题(一)及答案

合集下载

2.2.1 等差数列-王后雄学案

2.2.1 等差数列-王后雄学案

张喜林制2.2.1 等差数列教材知识检索考点知识清单1.等差数列的定义:一般地,如果一个数列从第 项起,每一项与它的前一项的 都等于____ ,那么这个数列就叫做等差数列.这个常数d 叫做等差数列的 .2.等差数列的单调性:等差数列的公差 时,数列为递增数列;等差数列的公差 时,数列为递减数列; 等差数列的公差 时,数列为常数列.等差数列不会是 .3.等差数列的通项公式=n a4.要证明数列}{n a 为等差数列,只要证明:当2≥n 时,要点核心解读1.等差数列的定义在等差数列的定义中,要强调“从第二项起”和“同一常数”,这体现了等差数列的基本特征,还要注意公差是“每一项与它前一项的差”,防止将被减数和减数颠倒,如果用数学符号来描述,可叙述为:若d n d a a n n ,2(]≥=-- 为常数),则}{n a 是等差数列.还可以写成:若d N n d a a u n ,1++∈<=- 为常数),则}{n a 是等差数列.[注意] 以上定义中的常数是相对于变量n (项数)而言的.2.等差中项如果a 、b 、c 成等差数列,则称b 是a 与c 的等差中项,由以上定义知:b 是a 与c 的等差中项甘a 、b 、c 成等差数列22c a b b c a +=⇔=+⇔ 3.等差数列的判定(1)用定义判定:即判定d a a n n =-+1(常数))(+∈N n 或122++=+n n n a a a (即)112n n n n a a a a -=-+++ 是否成立.(2)用通项公式判定:即用}{n a 为等差数列q pn a n +=⇔q p 、(为常数)判定.4.等差数列的通项公式及其变式通项公式:d n a a n )1(1-+=(其中1a 为首项,d 为公差).变式1:).()(⋅=/-+=m n d m n a a m n变式2:).2(11+∈≥--=N n n n a a d n 且 变式3:).(m n m n a a d m n =/--= [注意] (1)等差数列的通项公式是关于变量n (项数)的一次函数或常数函数(d=0时),因此在解决有关问题时,可用函数方法处理.(2)等差数列的通项公式实质是d a n a n ,,,1四者之间的关系式,只要知道其中三个的值,由它们便可求出另一个的值,特别地,要求等差数列的通项公式,只需先求出首项1a 和公差d5.等差数列的性质(1)等差数列}{n a 中,⋅∈-=-+),()(N m n d m n a a m n(2)若a ,b ,c 成等差数列,则k mc k mb k ma +++,.,也成等差数列(m ,k 为常数).(3)等差数列}{n a 中,若,q p n m +=+则q p m n a a a a +=+).,,,(+∈N q p m n[特别注意] “数列}{n a 中,若,q p m +=则=m a ,,q P a a +是不成立的.(4)等差数列}{n a 中,若公差d>0,则数列}{n a 为递增数列;等差数列}{n a 中,若公差d<0,则数列}{n a 为递减数列.(5)等差数列}{n a 中,每隔相同的项抽出来的项按照原来的顺序排列,构成的新数列仍然是等差数列,但剩下的项按原来的顺序排列,构成的新数列不一定是等差数列,证明:假设从第p 项起,每隔q 项抽出等差数列的项,则组成的新数列是,,,,32q p q q p p a a a a +++ρ ,,)1(q n p a -+ 则有--+q n p a )1(=-+q n p a )2(---+]1)1({q n r p qd d q n p =--+]}1)2([为常数所以等差数列}{n a 中,每隔相同的项抽出来的项按照原来的顺序排列,构成的新数列仍然是等差数列,显然,剩下的项按原来的顺序排列,构成的新数列不一定是等差数列.(6)若数列}{n b 也是公差为d 的等差数列,则数列+n a 1{λ212}(λλλh n b 是常数)是公差为d )(21λλ+ 的等差数列.证明:因为,)1(,)1(11d n b b d n a a n n -+=-+=所以+n a ]λ])1([112d n a b n -+=λλ-++n b ([12λ,))(1()(]12]1211d n b a d λλλλ+-++=)所以=+--1211n n b a λλ+11[a λ+-])2(d n ])2([12d n b -+λ =)2()(1211-++n b a λλ+](λ,)2d λ所以=+-+--)()(121121n n n n b a b a λλλλ.)(21d λλ+所以数列2121,}{λλλλ<+n n b a 是常数)是公差为d )(21λλ+的等差数列.利用等差数列的性质可使有些问题的解题过程十分简捷.6.等差数列与一次函数的关系通项公式,)1(11d a dn d n a a n -+=-+=即n a 是n 的一次函数式,故表示等差数列各项的点都在一条直线上.如:首项为l ,公差为2的等差数列的通项公式为,12-=n a n 相应的图象是直线12)(-=x x f 上均匀排列开的无穷多个孤立的点,如图2 -2 -1 -1所示,由函数的图象可得等差数列的单调性:当d>0时,数列}{n a 为递增数列(图2 -2 -1-2甲);当d<0时,数列}{n a 为递减数列(图2 -2 -1-2乙);当d=0时,数列}{n a 为常数列(图2 -2 -1-2丙).请注意图象,公差d 恰好为所在直线的斜率,因此有=d ,(n m n m a a n m =/--斜率公式). 典例分类剖析考点1 等差数列的概念命题规律(1)判断所给出的数列是否为等差数列.(2)判断某一项或某些项是否为等差数列中的项.(3)证明某一数列为等差数列.[例1] (1)求等差数列8,5,2,…的第20项;(2) -401是不是等差数列-5,-9,-13,…中的项?如果是,是第几项?(3)若数列}{n a 的通项⎩⎨⎧≥+==),2(12),1(1n n n a n 试问数列}{n a 是等差数列吗? [解析] 第(1)小题是求等差数列的指定项,我们可以先求出首项1a 和公差d ,然后将它们代入等差数列的通项公式,即可求出相应的项,第(2)小题是判断一个数是否为一个等差数列的项,只需令此数等于通项公式,并求解此方程,如果它有正整数解,则此数为该数列的项,否则不是.[答案] (1) 由,20,385,81=-=-==n d a 得.49)3()120(820-=-⨯-+=a(2)由,4)5(9,51-=---=-=d a得到这个数列的通项公式为).1(45---=n a n设-401=-5 -4(n -1)成立.解这个关于n 的方程,得n=100.∴ -401是这个数列的第100项.(3)数列}{n a 不是等差数列,根据等差数列定义,一个数列是等差数列的充要条件是从第二项起,每一项与前一项的差都等于同一个常数,而此数列中虽然有,23423==-=- a a a a 但是,2412=/=-a a 因此此数列不满足等差数列的条件,所以它不是一个等差数列,但可以这样说:此数列从第2项起组成一个等差数列.[启示]d a ,]和n 是等差数列的三个基本量,有关等差数列的问题都可以利用这三个基本量来求解这种方法称为基本量法.[例2]在等差数列}{n a 中,已知,5,1185==a a 求⋅10a[解析] 由题目可获取以下主要信息:已知等差数列中的某两项,求另外一项,解答本题可利用通项公式进行.[答案] 设数列}{n a 的公差为d .由题意知:⎩⎨⎧=+=+,57,11411d a d a 解得⎩⎨⎧-==.2,191d a 故.212)2()1(19+-=-⨯-+=n n a n.12110210=+⨯-=∴a[规律方法] 在等差数列}{n a 中,首项1a 与公差d 是两个最基本的元素;有关等差数列的问题,如果条件与结论间的联系不明显,则均可化成有关d a 、1的关系列方程组求解,但是,要注意公式的变形及整体计算,以减少计算量.母体迁移 1.若,2b c a =+则是否有++c b c a (),5(22)(),2b ac a +能构成等差数列.考点2 等差数列的性质及应用命题规律(1)考查对性质的灵活运用.(2)利用等差数列的性质解决一些计算繁琐的问题,达到减小计算量,优化解题过程的目的.[例3] (1)在等差数列}{n a 中,==++642741,15a a a a a a ,45求数列的通项公式;(2)设}{n a 为等差数列,若,45076543=++++a a a a a 求,82a a +(3)若数列}{n a 为等差数列,),(,q p p a q a q p =/==求⋅+q p a[答案] ,2)1(62471a a a a a +==+.1354741==++∴a a a a10,5624=+∴=∴a a a 且.962=a a62,a a ∴是方程09102=+-x x 的两根,⎩⎨⎧==∴9,162a a 或⎩⎨⎧==1,962a a 若12=a 且,96=a 则.32,2-=∴=n a d n同理可得.213n a n -=故32-=n a n 或.213n a n -=(2)解法一:,28256473a a a a a a a +==+=+.0455576543==++++∴a a a a a a.1802,905825==+∴=∴a a a a解法二:因为}{n a 为等差数列,设首项为,1a 公差为d ,+=++++++=+++∴11117435632a d a d a d a a a a ,20d 即d a d a 4,45020511+∴=+ ,90=.180********=+=+++=+∴d a d a d a a a(3)解法一:可用通项公式求解,,)1(,)1(11d q a a d p a a q p -+=-+=①⎩⎨⎧=-+=-+∴.)1(,)1(11p d q a q d p a 两式相减,得⋅-=-p q d q p )(.1,-=∴=/d q p 代入①,有.1,)1)(1(11-+=∴=--+q p a q p a故.0)1()1(1)1(1=-⋅-++-+=-++=+q p q p d q p a a q p解法二:利用关系式d m n a a m n )(-+=求解,,)(,)(d q p p q d q p a a q p -+=∴-+=即.1,.)(-=∴=/-=-d q p d q p p q故.0)1()][(=-+=-++=+q q d p q p a a p q ρ解法三:利用一次函数图象求解.不妨设p<q ,由于等差数列中,n a 关于n 的图象是一条直线上均匀排开的一群孤立的点,故三点 ,(),,q a p p (),(),q p q a q p a ++共线.设,m a q p =+由已知得三点),(),,(),,(m q p p q q p +共线(如图2 -2 -1-3).由 △ABE ∽ △BCF 得,CFBF BE AE = pm p q q p m p p q p q -=∴-+-=--∴1)( 得,0=m 即.0=+q p a[启示] (1)等差数列性质q p n m +=+“且,,,p n m ”q p n m a a a a N q +=+⇒∈+是否可推广为“若,,+∈N n m 则+m a ”?n m n a a +=不行.例如,当n a n 213-=时,则,854=+a a 而.59-=a 显然 ,n m n m a a a +=/+但该性质可推广为三项情形,即s q p t n m ++=++且+⇒∈+m a N s q p t n m ,,,,,”s q p t n a a a a a ++=+以及四项乃至一般情形,只要两边项数一样,且下标和相等即可,请你完成它的证明.(2)上述各种解法无不体现了等差数列性质的灵活运用.母体迁移 2.等差数列}{n a 中:(1)若,,147n a m a ==则=21a(2)若,1531-=++a a a 则=++++54321a a a a a(3)若,52.,34525432==+++a a a a a a 且,24a a >则=5a(4)若,53=a 则=+412a a考点3 等差数列的通项公式命题规律(1)利用解方程组的方法求1a 和d ,从而求出通项公式.(2)利用通项公式及其变形形式解决一些简单的问题[例4] (2010年辽宁省部分重点中学联考题)在等差数列{n a }中,已知,5,1185==a a 求⋅10a[答案] 方法一:设数列}{n a 的公差为d ,由题意知:⎩⎨⎧=+=+,57,11411d a d a 解得 ⎩⎨⎧-==.2,191d a 故 .212)2()1(19+-=-⨯-+=n n a n.12110210=+⨯-=∴a 方法二:,,)(m n a a d d m n a a m n m n --=∴-+=,231155858-=-=--=∴a a d .1)2(252810=-⨯+=+=d a a[方法技巧] 在等差数列}{n a 中,首项1a 与公差d 是两个最基本的元素,有关等差数列的问题,如果条件与结论间的联系不明显,则均可化成有关d a 、1的关系列方程组求解,但是,要注意公式的变形及整体计算,以减少计算量.母体迁移 3.已知两个等差数列 ,11,8,5:}{n a 与,,11,7,3:}{ n b 它们的项数均为100项,则它们有多少个彼此具有相同数值的项?考点4 等差数列与一次函数命题规律(1)深刻理解等差数列,进一步理解数列是一特殊的函数,特例是等差数列是一次函数,其中公差d 为斜率.(2)可用函数的性质来处理等差数列问题.[例5] 已知(1,1),(3,5)是等差数列}{n a 图象上的两点.(1)求这个数列的通项公式;(2)画出这个数列的图象;(3)判断这个数列的单调性.[答案] (1)由于(1,1),(3,5)是等差数列}{n a 图象上的两点,所以,5,131==a a 由1213=+=d a a,52=+d 解得,2=d 于是.12-=n a n(2)图象是直线12-=x y 上一些等间隔的点(图略).(3)因为一次函数12-=x y 是增函数,所以数列}{n a 是递增数列.[启示] 本题综合考查数列的通项公式、图象和性质.母体迁移 4.已知数列}{n a 的通项公式为+=2pn a n qn (常数).,R q p ∈(1)当p ,q 满足什么条件时,数列}{n a 是等差数列?(2)求证:对于任意的实数p 和q ,数列}{1n n a a -+是等差数列.考点5 等差数列模型的实际应用命题规律(1)利用等差数列的知识从实际问题中抽象出等差数列的模型.(2)通过构造等差数列的模型去解决实际问题.[例6] 某人有七位朋友,第一位朋友每天晚上都去他家看他,第二位朋友每隔一个晚上到他家去,第三位朋友每隔两个晚上去他家串门,第四位朋友每隔三个晚上去他家做客.依此类推,直至第七位朋友每隔六个晚上在他家出现.这七位朋友昨晚在主人家中碰面,他们还会同一个晚上在主人家中碰面吗?[答案] 第一位朋友每天晚上在主人家;第二位朋友以后在主人家中的天数为:2,4,6,8,…,这些数构成以2为首项,公差为2的等差数列,通项公式为:,2⋅=n a n第三位朋友以后在主人家中的天数为:3,6,9,…,这些数构成以3为首项,公差为3的等差数列,通项公式为:,3⋅=n a n第四、五、六、七位朋友晚上在主人家的天数分别构成以4,5,6,7为首项,公差为4,5,6,7的等差数列;通项公式分别为:;7,6,5,4n a n a n a n a n n n n ====他们要在同一晚上出现,这个数应为这七个数列的公共项,这一项是2,3,4,5,6,7的倍数,而2,3,4,5,6,7的最小公倍数为420,因此第420,840,1260,…天晚上他们会同时在主人家出现.母体迁移 5.为了测试某种金属热膨胀性质,将这种金属的一根细棒加热,从C 100开始第1次测量细棒长度,以后每升高C50测量一次,把依次量得的数据所成的数列}{n l 表示成图象如图2 -2 -1-4,根据图象解答下列问题:(1)第5次量得金属棒的长度是多少?此时金属棒的温度是多少?(2)求}{n l 的通项公式和金属长度L (单位:m )关于温度t 单位:℃)的函数关系式(设长度是关于温度的一次函数);(3)在C 30的温度条件下,如果把两块这种矩形金属板平铺在一个平面上,这个平面的最高温度可达到,500C o 问铺设时两块金属板之间至少要留多宽的空隙?优化分层测讯学业水平测试1.2006是等差数列4,6,8,…的( ).A .第1002项B .第1001项C .第1003项D .第1006项 2.在数列}{n a 中,),(122,211++∈+==N n a a a n n 则101a 的值为( ).49.A 50.B 51.C 52.D3.在等差数列中,),(,n m m a n a n m =/==则n m a +为( ).n m A -. 0.B 2.m C 2.n D4.设数列}{},{n n b a 都是等差数列,且=+==2211,75,25b a b a ,100则3737b a +等于( ). 0.A 37.B 100.C 37.-D5.在等差数列}{n a 中,若,45076543=++++a a a a a 则82a a +的值等于 6.若,b a =/两个等差数列b x x a ,,,21与b y y y a ,,,,321的公差分别为,,21d d 则=21d d 7.已知数列}{n a 中,,66,2171==a a 通项n a 是项数n 的一次函数,则通项公式=n a 8.体育场一角的看台座位是这样排列的:第一排有15个座位,从第二排起每一排都比前一排多2个座位.你能用n a 表示第n 排的座位数吗?第10排能坐多少个人?高考能力测试(测试时间:90分钟测试满分:100分)一、选择题(本题包括8小题,每小题5分,共40分.每小题只有一个选项符合题意) 1.(2011年重庆高考题)在等差数列}{n a 中,,4,232==a a 则=10a ( ).12.A 14-B 16.C 18.D)23lg(2-⋅与)23lg(+的等差中项为( ).0.A 2323lg+-⋅B )625lg(-⋅C 1.D3.等差数列}{n a 中,),(,l m m a l a i m =/==则通项公式为( ).n l m a A n ++=. n m a B n -+=1. l m n a C n --=. 2.nl m a D n ++=4.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的等差数列,则=-||n m ( ). 1.A 43.B 21.C 83.D5.-个首项为23,公差为整数的等差数列,如果前6项均为正数,第7项起为负数,则它的公差是( ).2.-A3.-B4.-C 6.-D 6.(2010年湖北黄冈调考题)已知数列}{n a 的前n 项和为=n s ,2n 则++++322111a a a a200620051a a ++的值是( ).214010.-A 214011.-B 214012.-C 214013.-D 7.(高考题改编)下表给出一个等差数阵,其中每行每列都是等差数列,⋅ij a 表示第i 行第J 列的数,则66a 的值是( ).50.A 43.B 24.C 58.D8.(2010年北京海淀区练习题)已知数列}{},{n n b a 都是公差为l 的等差数列,其首项分别为,11b a 、且∈=+1111,,5b a b a ⋅+N 设),(+∈=N n a c n b n 则数列}{n c 的前10项和等于( ).55.A 70.B 58.C 010.D二、填空题(本题包括4小题,每小题5分.共20分)9.(2009年上海高考题)已知函数.,tan sin )(x x x f +=项数为27的等差数列}{n a 满足),2,2(ππ-∈n a 且公差.0=/d 若+)(1a f ,0)()(272=++a f a f 则当=k 时,.0)(=k a f10.(2010年南京市调考题)将等差数列2,7,12,17,22,…中的数按顺序抄写在本子上,如下表所示,若每行写12个数,每页共15行,则数2007应抄在第 页第 行第 个位置上.11.(2010年苏州市模拟题)在正整数100至500之间能被11整除的整数的个数为 12.若)23lg(),23lg(,lg +-x x x 成等差数列,则=22log x三、解答题(本题包括3小题,共40分.解答应写出文字说明、证明过程或演算步骤)13.(13分)已知数列}{n a 为等差数列,,1c a =公差为l ,若=n b ),(122++∈-N n a a n n 试判断数列}{n b 是否为等差数列?并证明你的结论.14.(13分)(2010年东北八校联考题)已知数列}{n a 为等差数列,关于x 的方程2122++++i i i a x a x a),,,2,1(0n i ==且d d a i (0=/为公差). (1)这些方程是否有公共根?若有,求出它;若没有,请说明理由; (2)在方程有一个公共根的条件下,设另一个根为,i x 则⋅+++11,,11,1121n x x x 是否成等差数列?证明你的结论.15.(14分)(2010年北京模拟题)已知数列}{n a 和}{n b 满足关系式:⋅∈+++=+)(21N n na a ab nn (1)若,2n b n =求数列}{n a 的通项公式;(2)若}{n b 是等差数列,求证:}{n a 也是等差数列.。

人教版数学五年级下册2.2.12和5的倍数特征练习卷(基础提高)(含答案解析)

人教版数学五年级下册2.2.12和5的倍数特征练习卷(基础提高)(含答案解析)

人教版数学五年级下册2.2.12和5的倍数特征练习卷(基础提高)学校:___________姓名:___________班级:___________考号:___________一、填空题1.能被5整除数的特征个位上是________或________的数。

2.个位上是________的数,都是2的倍数.(从小到大填写)3.20以内所有的奇数的和是________。

4.三个连续奇数的和是51,这三个奇数从小到大分别是________、________和________。

5.三个连续偶数的和是78,其中最大的一个偶数是(______)。

6.一个两位数既是2的倍数,也是5的倍数,这个两位数最小是(______),最大是(______)。

7.一班学生,人数在30至50之间,在体操表演时,分做6人一行,8人一行,或者12人一行时,总是有一行少一个人。

这班学生有(______)人。

8.下面各数哪些数除以2没有余数,哪些数除以5没有余数?分别填入相应的圈里。

186 370 275 788 505 5269.三个连续的奇数中最小的奇数是a,最大的奇数是________。

10.三个连续奇数,中间一个是a,左、右两个分别是(______)和(______)。

二、选择题11.一个两位数既是5的倍数,又是偶数,它最小是()。

A.10 B.15 C.2012.下面数中,()既是2 的倍数,又是5的倍数.A.24 B.35 C.4013.当a是自然数时,2a+1一定是()。

A.奇数B.偶数C.奇数或偶数D.不能确定14.1+3+5+…+29的和是什么数?( )A.奇数B.偶数C.无法确定15.当n是一个大于0的自然数时,则2n+1一定是()。

A.奇数B.偶数C.质数D.合数三、判断题16.一个自然数不是奇数就是偶数。

(______)17.一个数既是2的倍数,又是5的倍数,那么这个数一定是10的倍数。

(__________)18.两个奇数的和还是奇数。

2020版数学人教B版必修5学案:第二章 2.2.1 第1课时 等差数列的概念及通项公式 Word版含解析

2020版数学人教B版必修5学案:第二章 2.2.1 第1课时 等差数列的概念及通项公式 Word版含解析

§2.2 等差数列2.2.1 等差数列第1课时 等差数列的概念及通项公式学习目标 1.理解等差数列的定义.2.会推导等差数列的通项公式,能运用等差数列的通项公式解决一些简单的问题.3.掌握等差中项的概念.知识点一 等差数列的概念一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示,可正可负可为零. 知识点二 等差中项的概念如果三个数x ,A ,y 组成等差数列,那么A 叫做x 与y 的等差中项,且A =x +y2.思考 下列所给的两个数之间,插入一个什么数后三个数就会成为一个等差数列: (1)2,4;(2)-1,5;(3)0,0;(4)a ,b .答案 插入的数分别为(1)3,(2)2,(3)0,(4)a +b2.知识点三 等差数列的通项公式若一个等差数列{a n },首项是a 1,公差为d ,则a n =a 1+(n -1)d .此公式可用叠加法证明.1.数列4,4,4,……是等差数列.( √ ) 2.数列3,2,1是等差数列.( √ )3.数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧1,n =1,n +1,n ≥2,则{a n }是等差数列.( × )4.等差数列{a n }中,a 1,n ,d ,a n 任给三个,可求其余.( √ )题型一 等差数列的概念例1 判断下列数列是不是等差数列? (1)9,7,5,3,…,-2n +11,…;(2)-1,11,23,35,…,12n -13,…; (3)1,2,1,2,…; (4)1,2,4,6,8,10,…; (5)a ,a ,a ,a ,a ,….解 由等差数列的定义得(1)(2)(5)为等差数列,(3)(4)不是等差数列.反思感悟 判断一个数列是不是等差数列,就是判断从第二项起该数列的每一项减去它的前一项的差是否为同一个常数,但当数列项数较多或是无穷数列时,逐一验证显然不行,这时可以验证a n +1-a n (n ≥1,n ∈N +)是不是一个与n 无关的常数. 跟踪训练1 数列{a n }的通项公式a n =2n +5(n ∈N +),则此数列( ) A .是公差为2的等差数列 B .是公差为5的等差数列 C .是首项为5的等差数列 D .是公差为n 的等差数列 答案 A解析 ∵a n +1-a n =2(n +1)+5-(2n +5)=2, ∴{a n }是公差为2的等差数列. 题型二 等差中项例2 在-1与7之间顺次插入三个数a ,b ,c ,使这五个数成等差数列,求此数列. 解 ∵-1,a ,b ,c ,7成等差数列, ∴b 是-1与7的等差中项, ∴b =-1+72=3.又a 是-1与3的等差中项,∴a =-1+32=1.又c 是3与7的等差中项,∴c =3+72=5.∴该数列为-1,1,3,5,7.反思感悟 在等差数列{a n }中,由定义有a n +1-a n =a n -a n -1(n ≥2,n ∈N +),即a n =a n +1+a n -12,从而由等差中项的定义知,等差数列从第2项起的每一项都是它前一项与后一项的等差中项. 跟踪训练2 若m 和2n 的等差中项为4,2m 和n 的等差中项为5,求m 和n 的等差中项. 解 由m 和2n 的等差中项为4,得m +2n =8. 又由2m 和n 的等差中项为5,得2m +n =10. 两式相加,得3m +3n =18,即m +n =6. 所以m 和n 的等差中项为m +n 2=3.题型三 等差数列通项公式的求法及应用 例3 在等差数列{a n }中,(1)若a 5=15,a 17=39,试判断91是否为此数列中的项. (2)若a 2=11,a 8=5,求a 10.解 (1)因为⎩⎪⎨⎪⎧ a 1+4d =15.a 1+16d =39,解得⎩⎪⎨⎪⎧a 1=7,d =2,所以a n =7+2(n -1)=2n +5. 令2n +5=91,得n =43.因为43为正整数,所以91是此数列中的项.(2)设{a n }的公差为d ,则⎩⎪⎨⎪⎧ a 1+d =11,a 1+7d =5,解得⎩⎪⎨⎪⎧a 1=12,d =-1.∴a n =12+(n -1)×(-1)=13-n , 所以a 10=13-10=3.反思感悟 根据已知量和未知量之间的关系,列出方程求解的思想方法,称为方程思想.等差数列{a n }中的每一项均可用a 1和d 表示,这里的a 1和d 就像构成物质的基本粒子,我们可以称为基本量.跟踪训练3 (1)求等差数列8,5,2,…的第20项;(2)判断-401是不是等差数列-5,-9,-13,…的项,如果是,是第几项? 解 (1)由a 1=8,a 2=5,得d =a 2-a 1=5-8=-3, 由n =20,得a 20=8+(20-1)×(-3)=-49.(2)由a 1=-5,d =-9-(-5)=-4,得这个数列的通项公式为a n =-5+(n -1)×(-4)=-4n -1. 由题意,令-401=-4n -1,得n =100, 即-401是这个数列的第100项.等差数列的判定与证明典例1 已知数列{a n }满足a n +1=3a n +3n ,且a 1=1.(1)证明:数列⎩⎨⎧⎭⎬⎫a n 3n 是等差数列;(2)求数列{a n }的通项公式.(1)证明 由a n +1=3a n +3n ,两边同时除以3n +1,得a n +13n +1=a n 3n +13,即a n +13n +1-a n 3n =13. 由等差数列的定义知,数列⎩⎨⎧⎭⎬⎫a n 3n 是以a 13=13为首项,13为公差的等差数列.(2)解 由(1)知a n 3n =13+(n -1)×13=n3,故a n =n ·3n -1,n ∈N +.典例2 已知数列{a n }:a 1=a 2=1,a n =a n -1+2(n ≥3). (1)判断数列{a n }是否为等差数列?说明理由; (2)求{a n }的通项公式.解 (1)当n ≥3时,a n =a n -1+2,即a n -a n -1=2, 而a 2-a 1=0不满足a n -a n -1=2(n ≥3), ∴{a n }不是等差数列.(2)当n ≥2时,a n 是等差数列,公差为2. 当n ≥2时,a n =1+2(n -2)=2n -3, 又a 1=1不适合上式,∴{a n }的通项公式为a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n ≥2.[素养评析] (1)证明一个数列是等差数列的基本方法:定义法,即证明a n -a n -1=d (n ≥2,d 为常数)或a n +1-a n =d (d 为常数),若证明一个数列不是等差数列,则只需举出反例即可. (2)证明一个数列是等差数列,主要的推理形式为演绎推理,通过学习,使学生形成重论据、有条理、合乎逻辑的思维品质,培养学生的数学核心素养.1.下列数列不是等差数列的是( ) A .1,1,1,1,1 B .4,7,10,13,16 C.13,23,1,43,53 D .-3,-2,-1,1,2答案 D2.已知等差数列{a n }的通项公式a n =3-2n (n ∈N +),则它的公差d 为( ) A .2 B .3 C .-2 D .-3 答案 C解析 由等差数列的定义,得d =a 2-a 1=-1-1=-2.3.已知在△ABC 中,三个内角A ,B ,C 成等差数列,则角B 等于( ) A .30° B .60° C .90° D .120° 答案 B解析 因为A ,B ,C 成等差数列,所以B 是A ,C 的等差中项,则有A +C =2B , 又因为A +B +C =180°,所以3B =180°,从而B =60°.4.若数列{a n }满足3a n +1=3a n +1,则数列{a n }是( ) A .公差为1的等差数列 B .公差为13的等差数列C .公差为-13的等差数列D .不是等差数列 答案 B解析 由3a n +1=3a n +1,得3a n +1-3a n =1,即a n +1-a n =13.所以数列{a n }是公差为13的等差数列.5.已知等差数列1,-1,-3,-5,…,-89,则它的项数是( ) A .92 B .47 C .46 D .45 答案 C解析 d =-1-1=-2,设-89为第n 项,则-89=a 1+(n -1)d =1+(n -1)·(-2),∴n =46.1.判断一个数列是否为等差数列的常用方法 (1)a n +1-a n =d (d 为常数,n ∈N +)⇔{a n }是等差数列; (2)2a n +1=a n +a n +2(n ∈N +)⇔{a n }是等差数列; (3)a n =kn +b (k ,b 为常数,n ∈N +)⇔{a n }是等差数列.但若要说明一个数列不是等差数列,则只需举出一个反例即可.2.由等差数列的通项公式a n =a 1+(n -1)d 可以看出,只要知道首项a 1和公差d ,就可以求出通项公式,反过来,在a 1,d ,n ,a n 四个量中,只要知道其中任意三个量,就可以求出另一个量.一、选择题1.设数列{a n }(n ∈N +)是公差为d 的等差数列,若a 2=4,a 4=6,则d 等于( ) A .4 B .3 C .2 D .1 答案 D解析 ∵a 4-a 2=2d =6-4=2.∴d =1.2.已知等差数列-5,-2,1,…,则该数列的第20项为( ) A .52 B .62 C .-62 D .-52 答案 A解析 公差d =-2-(-5)=3,a 20=a 1+(20-1)d =-5+19×3=52.3.在数列{a n }中,a 1=2,2a n +1-2a n =1,则a 101的值为( ) A .52 B .51 C .50 D .49 答案 A解析 因为2a n +1-2a n =1,a 1=2,所以数列{a n }是首项a 1=2,公差d =12的等差数列,所以a 101=a 1+100d =2+100×12=52.4.若5,x ,y ,z ,21成等差数列,则x +y +z 的值为( ) A .26 B .29 C .39 D .52 答案 C解析 ∵5,x ,y ,z ,21成等差数列,∴y 既是5和21的等差中项也是x 和z 的等差中项. ∴5+21=2y ,∴y =13,x +z =2y =26, ∴x +y +z =39.5.已知在等差数列{a n }中,a 3+a 8=22,a 6=7,则a 5等于( ) A .15 B .22 C .7 D .29 答案 A解析 设{a n }的首项为a 1,公差为d ,根据题意得⎩⎪⎨⎪⎧a 3+a 8=a 1+2d +a 1+7d =22,a 6=a 1+5d =7,解得a 1=47,d =-8.所以a 5=47+(5-1)×(-8)=15.6.等差数列20,17,14,11,…中第一个负数项是( ) A .第7项 B .第8项 C .第9项 D .第10项答案 B解析 ∵a 1=20,d =-3, ∴a n =20+(n -1)×(-3)=23-3n , ∴a 7=2>0,a 8=-1<0.故数列中第一个负数项是第8项.7.一个等差数列的前4项是a ,x ,b ,2x ,则ab 等于( )A.14B.12C.13D.23 答案 C解析 ∵b 是x,2x 的等差中项,∴b =x +2x 2=3x2,又∵x 是a ,b 的等差中项,∴2x =a +b , ∴a =x 2,∴a b =13.8.在数列{a n }中,a 2=2,a 6=0,且数列⎩⎨⎧⎭⎬⎫1a n +1是等差数列,则a 4等于( )A.12B.13C.14D.16 答案 A解析 由题意可得2a 4+1=1a 2+1+1a 6+1,解得a 4=12,故选A.二、填空题9.若一个等差数列的前三项为a,2a -1,3-a ,则这个数列的通项公式为__________________. 答案 a n =n4+1,n ∈N +解析 ∵a +(3-a )=2(2a -1),∴a =54.∴这个等差数列的前三项依次为54,32,74,∴d =14,a n =54+(n -1)×14=n4+1,n ∈N +.10.现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为________升. 答案6766解析 设此等差数列为{a n },公差为d ,则⎩⎪⎨⎪⎧ a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4,∴⎩⎪⎨⎪⎧4a 1+6d =3,3a 1+21d =4,解得⎩⎨⎧a 1=1322,d =766,∴a 5=a 1+4d =1322+4×766=6766.11.首项为-24的等差数列,从第10项起开始为正数,则公差d 的取值范围是________.答案 ⎝⎛⎦⎤83,3解析 设a n =-24+(n -1)d ,则⎩⎪⎨⎪⎧a 9=-24+8d ≤0,a 10=-24+9d >0,解得83<d ≤3.三、解答题12.已知{a n }为等差数列,且a 3=-6,a 6=0,求{a n }的通项公式. 解 设数列{a n }的公差为d ,由已知得⎩⎪⎨⎪⎧a 1+2d =-6,a 1+5d =0,解得⎩⎪⎨⎪⎧a 1=-10,d =2,所以数列{a n }的通项公式为a n =a 1+(n -1)d =-10+(n -1)×2=2n -12. 13.已知数列{a n }满足a n +1=6a n -4a n +2,且a 1=3(n ∈N +). (1)证明:数列⎩⎨⎧⎭⎬⎫1a n -2是等差数列;(2)求数列{a n }的通项公式.(1)证明 由1a n +1-2=16a n -4a n +2-2=a n +2(6a n -4)-2(a n +2)=a n +24a n -8=(a n -2)+44(a n -2)=1a n -2+14, 得1a n +1-2-1a n -2=14,n ∈N +,故数列⎩⎨⎧⎭⎬⎫1a n -2是等差数列.(2)解 由(1)知1a n -2=1a 1-2+(n -1)×14=n +34,所以a n =2n +10n +3,n ∈N +.14.已知数列{a n }中,a 1=1,a n -1-a n =a n a n -1(n ≥2,n ∈N +),则a 10=________. 答案110解析 易知a n ≠0,∵数列{a n }满足a n -1-a n =a n a n -1(n ≥2,n ∈N +),∴1a n -1a n -1=1(n ≥2,n ∈N +),故数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,且公差为1,首项为1,∴1a 10=1+9=10,∴a 10=110.15.已知数列{a n }满足:a 1=10,a 2=5,a n -a n +2=2(n ∈N +),求数列{a n }的通项公式. 解 由a n -a n +2=2知,{a n }的奇数项,偶数项 分别构成公差为-2的等差数列.当n =2k -1时,2k =n +1,a 2k -1=a 1+(k -1)·(-2)=12-2k ,∴a n =12-(n +1)=11-n (n 为奇数).当n =2k 时,a 2k =a 2+(k -1)·(-2)=5-2k +2=7-2k . ∴a n =7-n (n 为偶数).∴a n =⎩⎪⎨⎪⎧7-n ,n 为偶数,11-n ,n 为奇数.。

2.2.1对数与对数运算重难点题型(举一反三)(解析版)

2.2.1对数与对数运算重难点题型(举一反三)(解析版)

2.2.1对数与对数运算重难点题型【举一反三系列】【知识点1 对数的概念与基本性质】2.常用对数和自然对数(1)常用对数:通常我们将以10为底的对数叫做常用对数,并把N 10log 记为N lg .(2)自然对数:在科学技术中常使用以无理数e =2.71828…为底数的对数,以e 为底的对数称为自然对数,并把N e log 记为N ln . 3.对数与指数的关系当0>a ,且1≠a 时,N x N a a xlog =⇔=.4.对数的基本性质(1)负数和零没有对数,即0>N ; (2)01log =a )1,0(≠>a a 且; (3))1,0(1log ≠>=a a a a 且. 【知识点2 对数的运算性质】 1.2.abb c c a log log log =(a >0,且a ≠1;c >0,且c ≠1;b >0). 3.知识拓展(1)可用换底公式证明以下结论: ①a b b a log 1log =;②1log log log =⋅⋅a c b c b a ;③b b a na n log log =;④b nm b a m a n log log =;⑤b b a alog log 1-=.(2)对换底公式的理解:换底公式真神奇,换成新底可任意,原底加底变分母,真数加底变分子.【考点1 对数有意义条件】【例1】(2019秋•马山县期中)对数式log (a ﹣2)(5﹣a )中实数a 的取值范围是( ) A .(﹣∞,5) B .(2,5)C .(2,3)∪(3,5)D .(2,+∞)【分析】对数式有意义的条件是:真数为正数,底为正数且不为1,联立得到不等式组,解出即可. 【答案】解:要使对数式b =log (a ﹣2)(5﹣a )有意义,则,解得a∈(2,3)∪(3,5),故选:C.【点睛】本题主要考查了对数式有意义的条件,即真数为正数,底为正数且不为1,属于基础题.【变式1-1】(2019秋•龙岩期末)若对数式log(t﹣2)3有意义,则实数t的取值范围是()A.[2,+∞)B.(2,3)∪(3,+∞)C.(﹣∞,2)D.(2,+∞)【分析】根据对数式log(t﹣2)3的定义,底数大于0且不等于1,列出不等式组,求出解集即可.【答案】解:要使对数式log(t﹣2)3有意义,须;解得t>2且t≠3,∴实数t的取值范围是(2,3)∪(3,+∞).故选:B.【点睛】本题考查了对数定义的应用问题,是基础题目.【变式1-2】在M=log(x﹣3)(x+1)中,要使式子有意义,x的取值范围为()A.(﹣∞,3]B.(3,4)∪(4,+∞)C.(4,+∞)D.(3,4)【分析】由对数的定义可得,由此解得x的范围.【答案】解:由函数的解析式可得,解得3<x<4,或x>4.故选:B.【点睛】本题主要考查对数的定义,属于基础题.【变式1-3】若对数ln(x2﹣5x+6)存在,则x的取值范围为.【分析】由已知利用对数的概念可得x2﹣5x+6>0,解不等式即可得解.【答案】解:∵对数ln(x2﹣5x+6)存在,∴x2﹣5x+6>0,∴解得:3<x或x<2,即x的取值范围为:(﹣∞,2)∪(3,+∞).故答案为:(﹣∞,2)∪(3,+∞).【点睛】本题考查对数函数的定义域的求法,是基础题.解题时要认真审题,仔细解答.【考点2 对数式与指数式的互化】【例2】(2019秋•巴彦淖尔校级期中)将下列指数形式化成对数形式,对数形式化成指数形式.①54=625②()m=5.73③ln10=2.303④lg0.01=﹣2⑤log216=4.【分析】利用对数的定义进行指对互化.【答案】解:①log5625=4,② 5.73=m,③e2.303=10,④10﹣2=0.01,⑤24=16.【点睛】本题考查了指对互化,是基础题.【变式2-1】将下列指数式化为对数式,对数式化为指数式:(1)102=100;(2)lna=b;(3)73=343;(4)log6=﹣2.【分析】根据对数的定义进行转化.【答案】解:(1)lg100=2,(2)e b=a,(3)log7343=3;(4)6﹣2=.【点睛】本题考查了对数的定义,属于基础题.【变式2-2】将下列指数式与对数式互化:(1)log216=4(2)27=﹣3(3)43=64(4)﹣2=16.【分析】根据指数式a x=N等价于对数式x=log a N,可将指数式与对数式互化.【答案】解:(1)log216=4可化为:24=16;(2)27=﹣3可化为:;(3)43=64可化为:log464=3;(4)﹣2=16可化为:.【点睛】本题考查的知识点是指数式与对数式的互化,熟练掌握指数式a x=N等价于对数式x=log a N,是解答的关键.【变式2-3】将下列指数式化为对数式,对数式化为指数式.(1)3﹣2=;(2)9=﹣2;(3)1g0.001=﹣3.【分析】直接利用指数式与对数式的互化,写出结果即可.【答案】解:(1)3﹣2=;可得﹣2=1og3.(2)9=﹣2;()﹣2=9.(3)1g0.001=﹣3.0.001=10﹣3.【点睛】本题考查指数式与对数式的互化,考查计算能力.【考点3 解对数方程】【例3】求下列各式中x的值:(1)log4x=﹣,求x;(2)已知log2(log3x)=1,求x.【分析】(1)根据对数和指数之间的关系即可将log232=5化成指数式;(2)根据对数和指数之间的关系即可将3﹣3=化成对数式;(3)根据对数的运算法则即可求x;(4)根据对数的运算法则和性质即可求x.【答案】解:(1)∵log232=5,∴25=32(2)∵3﹣3=,∴log3=﹣3;(3)∵log4x=﹣,∴x===2﹣3=;(4)∵log2(log3x)=1,∴log3x=2,即x=32=9.【点睛】本题主要考查指数式和对数式的化简,根据指数和对数的关系是解决本题的关键.【变式3-1】求下列各式中x的值:(1)log x27=;(2)4x=5×3x.【分析】(1)根据log x27=,可得=,进而得到x=9,(2)根据4x=5×3x,可得,化为对数式可得答案.【答案】解:(1)∵log x27=,∴=27=33=,故x=9,(2)∵4x=5×3x.∴,∴x=【点睛】本题考查的知识点是指数式与对数式的互化,熟练掌握a x=N⇔log a N=x(a>0,且a≠1,N >0)是解答的关键.【变式3-2】先将下列式子改写指数式,再求各式中x的值.①log2x=﹣②log x3=﹣.【分析】化对数式为指数式,然后利用有理指数幂的运算性质化简求值.【答案】解:①由log2x=﹣,得==;②由log x3=﹣,得,即.【点睛】本题考查对数式化指数式,考查了有理指数幂的运算性质,是基础的计算题.【变式3-3】将下列对数式化为指数式求x值:(1)log x27=;(2)log2x=﹣;(3)log5(log2x)=0;(4);(5)x=16.【分析】利用指数式与对数的互化:a b=N⇔log a N=B(a>0,a≠1,)、对数的性质log a1=0及log a a =1、指数的性质即可得出.【答案】解:(1)∵,∴,∴x==32=9;(2),∴==;(3)∵log5(log2x)=0,∴log2x=1,∴x=2;(4)∵,∴,化为33x=3﹣2,∴3x=﹣2,得到;(5)∵,∴,∴2﹣x=24,解得x=﹣4.【点睛】熟练掌握指数式与对数的互化:a b=N⇔log a N=B(a>0,a≠1,)、对数的性质、指数的性质是解题的关键.【考点4 对数运算性质的化简求值】【例4】(2019春•东莞市期末)计算(1)2﹣()+lg+()lg1(2)lg52+lg8+lg5lg20+(lg2)2【分析】(1)进行分数指数幂和对数的运算即可;(2)进行对数的运算即可.【答案】解:(1)原式=;(2)原式=2lg5+2lg2+lg5(2lg2+lg5)+(lg2)2=2+(lg2+lg5)2=3.【点睛】考查分数指数幂和对数的运算,完全平方公式的运用.【变式4-1】(2019•西湖区校级模拟)计算:(1);(2).【分析】(1)进行对数的运算即可;(2)进行指数式和根式的运算即可.【答案】解:(1)原式=;(2)原式=.【点睛】考查对数的运算性质,以及指数式和根式的运算.【变式4-2】(2019春•大武口区校级月考)(1)()0+()+();(2)【分析】(1)进行分数指数幂的运算即可;(2)进行对数的运算即可.【答案】解:(1)原式=;(2)原式=.【点睛】考查分数指数幂和对数的运算,以及对数的定义.【变式4-3】(2019春•禅城区期中)(1)化简:(2a b)(﹣6a b)÷(﹣3a b);(2)求值:2(lg)2+lg2•lg5+.【分析】(1)由指数幂的运算得:原式=4a b=4a,(2)由对数的运算得:原式=2(lg2)2+lg2(1﹣lg2)+(1﹣lg2)=1.得解【答案】解:(1)(2a b)(﹣6a b)÷(﹣3a b)=4a b=4a,(2)2(lg)2+lg2•lg5+=2(lg2)2+lg2(1﹣lg2)+(1﹣lg2)=1.【点睛】本题考查了对数的运算及指数幂的运算,属简单题.【考点5 利用换底公式化简求值】【例5】(2019秋•中江县校级期中)利用对数的换底公式化简下列各式:(1)log a c•log c a;(2)log23•log34•log45•log52;(3)(log43+log83)(log32+log92).【分析】根据换底公式,把对数换为以10为底的对数,进行计算即可.【答案】解:(1)log a c•log c a=•=1;(2)log23•log34•log45•log52=•••=1;(3)(log43+log83)(log32+log92)=(+)(+)=(+)(+)=•=.【点睛】本题考查了对数的计算问题,也考查了换底公式的灵活应用问题,是基础题目.【变式5-1】利用对数的换底公式化简下列各式:(log43+log83)(log32+log92)【分析】利用对数性质、运算法则、换底公式直接求解.【答案】解:(log43+log83)(log32+log92)=(log6427+log649)(log94+log92)=log64243•log98===.【点睛】本题考查对数值的求法,考查对数性质、运算法则、换底公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.【变式5-2】利用对数的换底公式化简下列各式:(1)log43+log83(2)log45+log92.【分析】(1)利用对数的换底公式展开后通分计算;(2)直接利用对数的换底公式进行化简.【答案】解:(1)log43+log83==;(2)log45+log92==.【点睛】本题考查对数的换底公式,是基础的会考题型.【变式5-3】(2019秋•西秀区校级期中)利用换底公式求log225•log34•log59的值.【分析】利用对数的运算法则和对数的换底公式即可得出.【答案】解:原式==2log25•2log32•2log53=8log25•log32•log53==8.【点睛】本题考查了对数的运算法则和对数的换底公式,属于基础题.【考点6 用已知对数表示其他对数】【例6】已知log189=a,18b=5,用a、b表示log645.【分析】根据换底公式,化简计算即可得到答案.【答案】解:log189=a,18b=5,∴b=log185,∴log645====【点睛】本题考查了对数的运算性质,以及换底公式,属于基础题【变式6-1】(1)已知log310=a,log625=b,试用a,b表示log445.(2)已知log627=a,试用a表示log1816.【分析】(1)先用换底公式用a表示lg3,再用换底公式化简log625=b,把lg3代入求出lg2,再化简log445,把lg3、lg2的表达式代入即可用a,b表示log445.(2)先用换底公式化简log1816,由条件求出lg3,再把它代入化简后的log1816 的式子.【答案】解:(1)∵log310=a,∴a=,∵log625=b===,∴lg2=,∴log445=====.(2)∵log627=a==,∴lg3=,∴log1816====.【点睛】本题考查换底公式及对数运算性质,体现解方程的思想,属于基础题.【变式6-2】(1)已知log147=a,log145=b,用a、b表示log3528.(2)已知log189=a,18b=5,用a、b表示log3645.【分析】根据换底公式,化简计算即可得到答案.【答案】解:(1)log147=a,log145=b,∴log3528====,(2)∵log189=a,18b=5,∴log185=b,∴log3645====,【点睛】本题考查了对数的运算性质,以及换底公式,属于基础题.【变式6-3】.已知lg2=a,lg3=b,用a,b表示下列各式的值.(1)lg12;(2)log224;(3)log34;(4)lg.【分析】利用对数的换底公式与对数的运算法则即可得出.【答案】解:∵lg2=a,lg3=b,∴(1)lg12=2lg2+lg3=2a+b;(2)log224=+log23=3+;(3)log34==;(4)=lg3﹣3lg2=b﹣3a.【点睛】本题考查了对数的换底公式与对数的运算法则,属于基础题.【考点7 与对数有关的条件求值问题】【例7】(2018秋•龙凤区校级月考)(1)已知lgx+lg(4y)=2lg(x﹣3y),求x﹣y的值;(2)已知lg2=a,lg3=b,试用a,b表示log830.【分析】(1)由lgx+lg(4y)=2lg(x﹣3y),推导出=9,再由x﹣y==,能求出结果.(2)log830==,由此能求出结果.【答案】解:(1)∵lgx+lg(4y)=2lg(x﹣3y),∴,解得=9,∴x﹣y===4.(2)∵lg2=a,lg3=b,∴log830===.【点睛】本题考查对数式化简求值,考查对数性质、运算法则等基础知识,考查运算求解能力,是基础题.【变式7-1】(2019秋•江阴市期中)已知lgx+lgy=2lg(x﹣y),求.【分析】由题意可得x>0,y>0,x﹣y>0,xy=(x﹣y)2,从而解得=,从而解得.【答案】解:∵lgx+lgy=2lg(x﹣y),∴x>0,y>0,x﹣y>0,xy=(x﹣y)2,∴x2﹣3xy+y2=0,即()2﹣3+1=0,故=,故=()=(3+)﹣2.【点睛】本题考查了对数的化简与运算,同时考查了整体思想的应用,属于基础题.【变式7-2】已知lg(x+2y)+lg(x﹣y)=lg2+lgx+lgy,求log8的值.【分析】由已知条件推导出,由此能求出log8的值.【答案】解:∵lg(x+2y)+lg(x﹣y)=lg2+lgx+lgy,∴,整理,得,解得或=﹣1(舍),∴log8=log82==.∴log8的值为.【点睛】本题考查对数值的求法,是基础题,解题时要认真审题,注意对数的性质和运算法则的合理运用.【变式7-3】已知2lg=lgx+lgy,求.【分析】根据对数的运算法则进行化简即可.【答案】解:由得x>y>0,即>1,则由2lg=lgx+lgy,得lg()2=lgxy,即()2=xy,即(x﹣y)2=4xy,即x2﹣2xy+y2=4xy,即x2﹣6xy+y2=0,即()2﹣6()+1=0,则==3+2或=3﹣2(舍),则=(3+2)=(3﹣2)﹣1=﹣1【点睛】本题主要考查对数的基本运算,根据对数的运算法则是解决本题的关键.【考点8 对数的综合应用】【例8】设x、y、z均为正数,且3x=4y=6z(1)试求x,y,z之间的关系;(2)求使2x=py成立,且与p最近的正整数(即求与P的差的绝对值最小的正整数);(3)试比较3x、4y、6z的大小.【分析】(1)令3x=4y=6z=k,利用指对数互化求出x、y、z,由对数的运算性质求出、、,由对数的运算性质化简与,即可得到关系值;(2)由换底公式求出P,由对数函数的性质判断P的取值范围,找出与它最接近的2个整数,利用对数的运算性质化简P与这2个整数的差,即可得到答案;(3)由(1)得3x、4y、6z,由于3个数都是正数,利用对数、指数的运算性质化简它们的倒数的差,从而得到这3个数大小关系.【答案】解:(1)令3x=4y=6z=k,由x、y、z均为正数得k>1,则x=log3k,y=log4k,z=log6k,∴,,,∵=,且,∴;(2)∵2x=py,∴p=====2=log316,∴2<log316<3,即2<p<3,∵p﹣2=log316﹣2=,3﹣p=3﹣log316=,∵﹣=0,∴,即>,∴与p的差最小的整数是3;(3)由(1)得,3x=3log3k,4y=4log4k、6z=6log6k,又x、y、z∈R+,∴k>1,=﹣==>0,∴,则3x<4y,同理可求=>0,则4y<6z,综上可知,3x<4y<6z.【点睛】本题考查了对数的运算法则、换底公式、指数式与对数式的互化,考查了推理能力,化简、计算能力,属于中档题.【变式8-1】设a,b,c是直角三角形的三边长,其中c为斜边,且c≠1,求证:log(c+b)a+log(c﹣b)a=2loga•log(c﹣b)a.(c+b)【分析】依题意,利用对数换底公式log(c+b)a=,log(c﹣b)a=证明左端=右端即可.【答案】证明:由勾股定理得a2+b2=c2.log(c+b)a+log(c﹣b)a=+====2log(c+b)a•log(c﹣b)a.∴原等式成立.【点睛】本题考查对数换底公与对数运算性质的应用,考查正向思维与逆向思维的综合应用,考查推理证明与运算能力,属于中档题.【变式8-2】(2018秋•渝中区校级期中)令P=80.25×+()﹣(﹣2018)0,Q=2log32﹣log3 +log38.(1)分别求P和Q.(2)若2a=5b=m,且,求m.【分析】(1)利用指数与对数运算性质可得P,Q.(2)2a=5b=m,且=2,利用对数换底公式可得a=,b=,代入解出即可得出.【答案】解:(1)P=×+﹣1=2+﹣1=.Q==log39=2.(2)2a=5b=m,且=2,∴a=,b=,∴=2,可得lgm=,∴m=.【点睛】本题考查了指数与对数运算性质、非常的解法,考查了推理能力与计算能力,属于基础题.【变式8-3】已知2y•log y4﹣2y﹣1=0,•log5x=﹣1,问是否存在一个正整数P,使P=.【分析】由2y•log y4﹣2y﹣1=2y•log y4﹣=0可求y,再由•log5x=﹣1求出x即可.【答案】解:∵2y•log y4﹣2y﹣1=2y•log y4﹣=0,∴y=16;∵•log5x=﹣1,∴,解得,x=;故P===3.【点睛】本题考查了指数函数与对数函数的应用及方程的解法,属于基础题.。

专题2.2 图形规律问题(压轴题专项讲练)(人教版)(原卷版)

专题2.2 图形规律问题(压轴题专项讲练)(人教版)(原卷版)

专题2.2 图形规律问题【典例1】国庆节期间,人民广场的一个公共区域用盆栽进行了美化,盆栽按如图的方式摆放,图中的盆栽被折线隔开分成若干层,第一层有1个盆栽,第二层有3个盆栽,第三层有5个盆栽,第四层有7个盆栽,…,以此类推.请观察图形规律,解答下列问题:(1)第10层有 个盆栽,前5层共有 个盆栽;(2)观察图计算1+3+5+7+⋯+17= ;(3)拓展应用:求51+53+55+⋯+2023的值.(1)后面一层比前面一层多2个盆栽,结合图形,根据规律可求出其值;(2)图形刚好构成正方形的面积,求面积即可;(3)先算出1+3+5+…+49+51+…+2023的和,1+3+5+…+49的和,再求它们的差即可.(1)解:根据题意可得,2×(10−1)+1=19,∴第10层有19个盆栽,5×5=25,∴前5层共有25个盆栽,故答案为:19;25.(2)解:观察图形可得,第9层盆栽数量为:2×9−1=17,∴1+3+5+7+⋯+17=92=81,故答案为:81.(3)解:根据题意可得,第1012层盆栽数量为:2×1012−1=2023,∴1+3+5+⋯+49+51+53+55+⋯+2023=10122,第25层盆栽数量为:2×25−1=49,∴1+3+5+⋯+49=252,∴51+53+55+⋯+2023=(1+3+5+⋯+51+53+55+⋯2023)−(1+3+5+⋯+49),=10122−252=1023519,∴51+53+55+⋯+2023的值为1023519.1.(2022秋·江苏·七年级期中)观察下列一组图形中点的个数,其中第一个图形中共有4个点,第2个图形中共有10个点,第3个图形中共有19个点,…按此规律第6个图形中共有点的个数是( )A.38B.46C.61D.642.(2022秋·浙江·七年级阶段练习)如图所示,按下列方法将数轴的正半轴绕在一个圆上(该圆周长为3个单位长,且在圆周的三等分点处分别标上了数字0,1,2)上;先让原点与圆周上0所对应的点重合,再将正半轴按顺时针方向绕在该圆周上,使数轴上1,2,3,4,…所对应的点分别与圆周上1,2,0,1,…所对应的点重合,这样,正半轴上的整数就与圆周上的数字建立了一种对应关系.若数轴绕过圆周99圈后,数轴上的一个整数点刚好落在圆周上数字1所对应的位置,则这个整数是( )A.297B.298C.299D.3003.(2023春·全国·七年级开学考试)观察图中正方形四个顶点所标的数字规律,可知第506个正方形的左上角标的数是( )A.2020B.2021C.2022D.20234.(2022秋·湖南·七年级期末)如图是由边长为1的木条组成的几何图案,观察图形规律,第一个图案由1个正方形组成,共用的木条根数S1=4,第二个图案由4个正方形组成,共用的木条根数S2=12,第三个图案由9个正方形组成,共用的木条根数S3=24,以此类推…那么第100个图案共用的木条根数S100为( )A.19600B.20400C.20200D.200005.(2023秋·贵州毕节·七年级校联考期末)如图,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行.若甲的速度是乙的速度的3倍,则它们第2022次相遇在边( )上.A.CD B.AD C.AB D.BC6.(2022秋·湖南娄底·七年级统考期中)观察如图所示图形构成的规律,根据此规律,第42个图中小圆点的个数为.7.(2023秋·全国·七年级课堂例题)观察并找出如图图形变化的规律,则第2025个图形中黑色正方形的数量是个.8.(2022秋·浙江杭州·七年级期末)如图,第(1)个多边形由正三角形“扩展”而来,边数记为a3,第(2)个多边形由正方形“扩展”而来,边数记为a4,……,依此类推,由正n边形“扩展”而来的多边形的边数记为a n(n≥3),当1a3+1a4+1a5+⋯+1a n的结果是6712022时,n的值为.9.(2022秋·全国·七年级期中)正整数按如图所示的规律排列,则第29行第30列的数字为.10.(2023·全国·七年级假期作业)同样大小的黑色棋子按如图所示的规律摆放:(1)图5有多少颗黑色棋子?(2)若第(n+2)个图形比第n个图形中多2021颗棋子,试求n的值.11.(2022秋·安徽合肥·七年级校联考期中)下列每一幅图都是由单位长度均为1的小正方形(包含白色小正方形和灰色小正方形)按某种规律组成的.(1)根据规律,第4个图中共有___________个小正方形,其中灰色小正方形共有___________个.(2)第n个图形中,白色小正方形共有___________个.(用含n的式子表示,n为正整数)(3)白色小正方形可能比灰色小正方形正好多2024个吗?如果可能,求出n的值;如果不可能,请说明理由.12.(2023秋·安徽六安·七年级统考期末)用火柴棒按如图的方式搭图形.(1)按图示规律完成下表:图形12345…火柴棒根数5913 …(2)按照这种方式搭下去,搭第n个图形需要 根火柴棒.(用含n的代数式表示)(3)小静同学说她按这种方式搭出来的一个图形用了200根火柴棒,你认为可能吗?如果可能,那么是第几个图形?如果不可能,请说明理由.13.(2022秋·安徽滁州·七年级校考阶段练习)以下是一幅幅平面镶嵌图案,它们由相同的灰色正方形和白色等边三角形排列而成,观察图案,如图1,当正方形只有1个时,等边三角形有4个;如图2,当正方形有2个时,等边三角形有7个;以此类推……(1)第5个图案中正方形有______个,等边三角形有______个.(2)第n个图案中正方形有______个,等边三角形有______个.(3)若此类图案中有2023个等边三角形,该图案中正方形有多少个?14.(2023秋·安徽合肥·七年级统考期末)下列图形是由边长为1的小正方形按照一定的规律组成的.观察图形.回答下列问题:(1)按上述规律排列,第⑤幅图中,图形的周长为______﹔(2)按上述规律排列,第n幅图中.图形的周长为______;(3)按上述规律排列,是否存在第n幅图形的周长为60,请说明理由.15.(2023春·四川成都·七年级成都外国语学校校考开学考试)某餐厅中,一张桌子可坐6人,有以下两种摆放方式:(1)有4张桌子,用第一种摆设方式,可坐多少人?用第二种摆设方式,可坐多少人?(2)用含有n的代数式表示:有n张桌子,用第一种摆设方式可坐多少人?用第二种摆设方式,可坐多少人?(3)一天中午,餐厅要接待80位顾客共同就餐,但餐厅只有20张这样的桌子可用,且每4张拼成一张大桌子.若你是这家餐厅的经理,你打算选择哪种方式来摆放餐桌,并说明理由.16.(2023·全国·七年级假期作业)如图,某链条每节长为2.8cm,每两节链条相连接部分重叠的圆的直径为1cm,按这种连接方式,完成下面各题.(1)2节链条的总长度为______cm;3节链条的总长度为______cm;4节链条的总长度为______cm;(2)根据上述规律,n节链条的总长度为多少cm;(用含n的式子表示,不用说理)(3)一根链条的总长度能否为73cm?若能,请求出该链条由几节组成;若不能,请说明理由.17.(2022秋·全国·七年级专题练习)(1)有一列数1、3、5、7……有无数项(无数个数),请观察其规律后写出其中第20项(从左往右数第20个数)是,第n项是;(2)二算法是数学的一种很重要的方法,用二算法可以得到许多很重要的数学公式.请观察下图,用二算法推导出1+3、1+3+5、1+3+5+7的计算结果,猜测1+3+5+7+……+(2n-1)的计算结果;(3)由(2)推导出2+4+6+……+2n的结果.18.(2022秋·广西北海·七年级统考期中)某矩形人行道由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图1表示此人行道的地砖排列方式,其中正方形地砖为连续排列.【观察思考】当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图2):(1)当正方形地砖有2块时,等腰直角三角形地砖有________块(如图3);(2)以此类推,人行道上每增加1块正方形地砖,则等腰直角三角形地砖增加________块;(3)【规律总结】若一条这样的人行道一共有n(n为正整数)块正方形地砖,则等腰直角三角形地砖的块数为________(用含n的代数式表示).(4)【问题解决】现有2022块等腰直角三角形地砖,若按此规律再建一条人行道,则需要正方形地砖多少块?19.(2023春·四川自贡·七年级四川省荣县中学校校考阶段练习)用火柴棒按图中的方式搭图形:(1)按图示规律填空:图形编号①②③④⑤火柴棒根数712___________ ___________ ___________(2)按照这种方式搭下去,请写出搭第n个图形需要的火柴根数;(3)小明发现:按照这种方式搭图形会产生若干个正方形,若使用2022根火柴搭图形,图中会产生多少个正方形?20.(2022秋·北京通州·七年级统考期末)现有一个长方形ABCD的宽为1,长为a(a>1)的纸片,先剪去一个正方形,余下一个长方形,在余下的长方形纸片中再剪去一个正方形,又余下一个长方形……,依此类推,如图是剪3次后余下的长方形恰好是正方形的其中一种示意图及相应a的值,请画出(与示意图不同)剪3次后余下的长方形恰好是正方形的示意图,并写出相应a的值.21.(2022秋·安徽滁州·七年级校考阶段练习)图①是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n层,将图①倒置后与原图拼成图②,如果图①-④中各有所示的形状,这样我们可以算出图①中所有圆圈的个数为1+2+3+⋯+n=n(n1)211层.(1)图①中共有___________个圆圈:(2)我们自上而下,在圆圈中按图③的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边圆图的数是___________.(3)我们自上而下,在圆圈中按图④的方式填上一串连续的整数−23,−22,−21,⋯求图④所有圆圈中各数的绝对值之和.22.(2023·全国·七年级假期作业)(1)为了计算1+2+3+⋯+8的值,我们构造图形(图1),共8行,每行依次比上一行多一个点.此图形共有(1+2+3+⋯+8)个点.如图2,添出图形的另一半,此时共8行9列,有8×9=72个点,由此可得1+2+3+⋯+8=12×(1+8)×8=36.用此方法,可求得1+2+3+⋯+20=(直接写结果).(2)观察下面的点阵图(如图3),解答问题:填空:①1+3+5+⋯+49=;②1+3+5+⋯+(2n+1)=.(3)请构造一图形,求12+122+123+⋯+122023(画出示意图,写出计算结果).。

2019-2020学年高中数学北师大版必修1练习:2.2.1函数概念-附答案

2019-2020学年高中数学北师大版必修1练习:2.2.1函数概念-附答案

2.1函数概念课后篇巩固提升A组基础巩固1.对于函数y=f(x),下列命题正确的个数为()①y是x的函数;②对于不同的x值,y值也不同;③f(a)表示当x=a时函数f(x)的值,是一个常量;④f(x)一定可以用一个具体的式子表示.A.1B.2C.3D.4解析:①③正确.对于②,不同的x值可对应同一个y值,如y=x2;f(x)不一定是函数关系式,也可以用图像或表格等形式来体现.答案:B2.函数f(x)=--的定义域是()A.[2,3)B.(3,+∞)C.[2,3)∪(3,+∞)D.(2,3)∪(3,+∞)解析:由--解得x≥2,且x≠3.故函数f(x)的定义域为[2,3)∪(3,+∞).答案:C3.下列各组函数中表示同一函数的是()A.f(x)=,g(x)=()2B.f(x)=--,g(x)=x+1C.f(x)=|x|,g(x)=D.f(x)=-,g(x)=-解析:对于A选项,f(x)的定义域为R,g(x)的定义域为[0,+∞),∴不是同一函数.对于B选项,f(x)的定义域为{x|x≠1},g(x)的定义域为R,∴不是同一函数.对于C选项,f(x)的定义域为R,g(x)的定义域为R,且两函数解析式化简后为同一解析式,∴是同一函数.对于D选项,f(x)的定义域为[1,+∞),g(x)的定义域为(-∞,-1]∪[1,+∞),∴不是同一函数.故选C.答案:C4.下列式子不能表示函数y=f(x)的是()A.x=y2+1B.y=2x2+1C.x-2y=6D.x=解析:B中,y=2x2+1是二次函数;C中,y=x-3;D中,y=x2,x≥0;A中,y=±-,y不是x的函数.答案:A5.已知f(x)=x2-3x,且f(a)=4,则实数a等于()A.4B.-1C.4或-1D.-4或1解析:由已知可得a2-3a=4,即a2-3a-4=0,解得a=4或a=-1.答案:C6.下表表示y是x解析:∵5<6≤10,∴6对应的函数值是3.答案:37.函数f(x)=x2-2x,x∈{-2,-1,0,1}的值域为.解析:因为f(-2)=(-2)2-(-2)=6,f(-1)=(-1)2-2×(-1)=3,f(0)=02-2×0=0,f(1)=12-2×1=-1,所以f(x)的值域为{6,3,0,-1}.答案:{6,3,0,-1}8.已知函数f(x)=.(1)求f(2);(2)若f(m)=2,求m的值.解:(1)f(2)=.(2)∵f(m)==2,∴m=-3.9.求下列函数的定义域:(1)f(x)=-;(2)f(x)=--+2;(3)f(x)=-.解:(1)当x-|x|≠0,即|x|≠x,也即x<0时,f(x)有意义,故函数f(x)的定义域为(-∞,0).(2)要使函数有意义,应满足--解得1≤x≤4.故函数f(x)的定义域为[1,4].(3)要使函数f(x)有意义,应满足-解得x≤1,且x≠-1.故函数f(x)的定义域为(-∞,-1)∪(-1,1].10.求下列函数的值域:(1)y=1-;(2)y=;(3)f(x)=3-2x,x∈[0,2].解:(1)∵函数的定义域为{x|x≥0},∴≥0.∴1-≤1.∴函数y=1-的值域为(-∞,1].(2)∵y==2-,且其定义域为{x|x≠-1},∴≠0,即y≠2.∴函数y=的值域为{y|y∈R,且y≠2}.(3)∵0≤x≤2,∴0≤2x≤4.∴-1≤3-2x≤3,即-1≤f(x)≤3,故函数f(x)的值域是[-1,3].B组能力提升1.如图所示,可表示函数y=f(x)的图像的是()解析:由函数定义可知D正确.答案:D2.已知g(x)=1-2x,f(g(x))=-(x≠0),则f等于()A.1B.3C.15D.30解析:由已知1-2x=,∴x=,∴f -=15,故选C.答案:C3.若函数y=f(x+2)的定义域为[0,1],则函数y=f(x)的定义域为()A.[2,3]B.[0,1]C.[-2,-1]D.[0,-1]解析:解决此类问题的关键要弄清函数定义域是指x的变化范围,而借助的理论依据是y=f(x)中对应关系f所施加的对象取值是一致的.对于本题函数y=f(x)的定义域其实为函数y=f(x+2)中“x+2”的整体范围,因此可得y=f(x)的定义域为[2,3].答案:A4.导学号85104026(信息题)若一系列函数的关系式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么函数关系式为y=2x2-1,值域为{1,7}的“孪生函数”共有()A.10个B.9个C.8个D.4个解析:由2x2-1=1,得x=±1;由2x2-1=7,得x=±2.因此当y=2x2-1的定义域为{-2,-1},{-1,2},{-2,1},{1,2},{-2,2,1},{-2,2,-1},{2,-1,1},{-2,-1,1},{-1,1,2,-2}时,函数值域均为{1,7}.答案:B5.函数f(x)=--的值域为.解析:由--解得x=2 018.所以函数的定义域为{2 018}.显然f(2 018)=0+0=0.所以函数的值域为{0}.答案:{0}6.有下列三个命题:①y=|x|,x∈{-2,-1,0,1,2,3},则它的值域是{0,1,4,9};②y=--,则它的值域为R;③y=-,则它的值域为{y|y≥0}.其中正确命题的序号是.解析:对于①,当x=-2,-1,0,1,2,3时,|x|=2,1,0,1,2,3.因此函数的值域为{0,1,2,3}.故①不正确.对于②,∵y=--=x+1(x≠1),∴x=y-1≠1,∴y≠2.即值域为(-∞,2)∪(2,+∞).故②不正确.对于③,∵y=-≥0,∴其值域为[0,+∞),故③正确.答案:③7.已知函数f(x)=x2+x-1.(1)求f(2),f;(2)若f(x)=5,求x的值.解:(1)f(2)=22+2-1=5,f-1=-.(2)∵f(x)=x2+x-1=5,∴x2+x-6=0,∴x=2或x=-3.8.已知函数f(x)=.(1)求f(1),f(2)+f的值;(2)证明:f(x)+f等于定值;(3)求f(1)+f(2)+f(3)+…+f(2 018)+f+f+…+f的值.(1)解:f(1)=;f(2)=,f,所以f(2)+f=1.(2)证明:f,所以f(x)+f=1,为定值.(3)解:由(2)知,f(x)+f=1.所以f(1)+f(2)+f(3)+…+f(2 018)+f+f+…+f=f(1)+f(2)+f+f(3)+f+…+f(2 018)+f=….。

人教版小学一年级数学上学期第八单元《解决问题(一)》达标测试题及答案

人教版小学一年级数学上学期第八单元《解决问题(一)》达标测试题及答案

人教版小学一年级数学上学期第八单元《解决问题(一)》达标测试题及答案1.gs 少hǎo 兔tù 子zi ?左边有( )只,右边有( )只。

列式: (只) 白兔有( )只,灰兔有( )只。

列式:(只)2. 列 式 计算。

(1)方法一:(辆)(辆)(2)方法一: (朵)方法二: (朵)3.g多d u ō s 少hǎo t 条iáo c 船h u án ?方法二: □○□=□ 只z hī 多du ō□○□=□(条)还可以这样列式:□○□=□(条)4.饲sìg y员叔叔13 只zhīx小发果和héx g j蕉,确只z hīg果和héx g j蕉,他可以拿nál g?下m面画“√”参考答案1.8 7 8+7=159 6 9+6=152.(1)8+5=13 9+4=13(2)6+7=13 5+8=133.7+4=11 5+6=114.人教版小学一年级数学上学期第八单元《解决问题(一)》达标测试题及答案1.填一填,算一算。

(1)左边有()只,右边有()只,□+□=□(只)(2)白兔有()只,灰兔有()只,□+□=□(只)2.看谁算得又对又快。

3+7= 9+4= 5+9=4+8= 5+7= 8-2=8+3= 2+8= 5+8=3.一共有多少人?□〇□=□(人)还可以这样解答:□〇□=□(人)4.在〇里填上“>”“<”或“=”。

3+9〇10 7+3〇105+7〇14 5+6〇125.一共有多少个圆柱?(用两种方法解答)一共有多少只?一共有多少只?10-6=10+7=12+4=2+9〇3+84+8〇6+6□〇□=□(个)□〇□=□(个)参考答案1.(1)8 7 8+7=15 (2)10 5 10+5=152.10 13 14 4 12 12 6 17 11 10 13 163.5+7=12 6+6=124.>==<<=5.6+6=12 7+5=12人教版小学一年级数学上学期第八单元《解决问题(一)》达标测试题及答案1.看谁算得都对。

人教版五年级数学上册第1单元《解决问题》练习题(含答案)

人教版五年级数学上册第1单元《解决问题》练习题(含答案)

人教版五年级数学上册第1单元《解决问题》练习题(含答案)1.学校图书馆购进科技书和漫画书各180套。

科技书每套28.2元,漫画书每套3.李大爷有一块菜地长12.56m,宽8.5m。

它的面积是多少平方米?4.一列火车的平均速度是86.5千米/时,这列火车从甲地到乙地行了3.4小时后,离乙地还有12.4千米,甲乙两地相距多少千米?5.一列火车长180米,以每分钟1.3千米的速度通过一座大桥。

已知从车头上桥到车尾离桥共用了0.8分钟,这座桥长多少米?6.一个玩具厂做一种玩具汽车,原来需要成本5.5元.后来进行了技术改革,每个只需要成本4.8元,原来准备做288个玩具汽车的成本,现在可以做多少个?7.四川乐山大佛高76米,无锡灵山大佛比四川乐山大佛的1.25倍还高0.7米,无锡灵山大佛高多少米?8.五(1)班45名同学去看电影,电影院规定:个人票每张8元,40人以上可以买团体票,每张便宜1.5元,请你算一算,全班买票最少要多少钱?9.爸爸带100元钱去超市购物,买了2壶食用油,每壶39.6元。

(1)剩下的钱购买一瓶15元的酸奶吗?(2)剩下的钱够买2瓶15元的酸奶吗?10.方方的奶奶带了20元钱去买花鲢鱼。

每千克花鲢鱼8.6元,买了1.9千克,还剩多少钱?11.小明带60元钱去超市购物,他买了4千克大米,每千克4.5元;还买了0.8千克肉,每千克24.5元。

剩下的钱还够买一袋15元的苹果吗?12.一个排球的价格是42元,一个足球的价格比排球的1.3倍还多2.7元,买一个足球和一个排球一共需要多少钱?13.1千克芝麻可以榨出芝麻油0.45千克,100千克芝麻可以榨出芝麻油多少千克?14.五年级(1)班准备布置教室。

计划花24元去花市买花。

花市的月季花1.2元一盆,玫瑰花2元一盆。

如果要刚好把钱用完,而且不能只买一种花,该怎么买?有几种购买方案?请你用喜欢的方式解答。

15.某种品牌饮料每瓶的售价是3.85元,妈妈想购买一箱(18瓶)这样的饮料,她带了70元钱,够吗?16.小华的体重是28.5千克,爸爸的体重是妈妈的1.2倍,妈妈的体重是小华的1.8倍.爸爸、妈妈各多少千克?17.世界上最小的海是马尔马拉海,比我国太湖的面积的4倍还多0.14万平方千米。

人教版高中数学必修三课件:2.2.1第二课时茎 叶 图

人教版高中数学必修三课件:2.2.1第二课时茎 叶 图

(3)用茎叶图刻画数据有两个优点: 一是所有的信息都可以从茎叶图中得到; 二是茎叶图便于记录和表示,能够展示数据的分布情 况.但当样本数据较多或数据位数较多时,茎叶图就显得不太 方便了.
茎叶图有什么统计意义?
答:(1)茎叶图通常用来记录两位数的数据,可以用其分析单 组数据,也可以对两组数据进行比较. (2)茎叶图反映数据的大致集中趋势,并能直接得到中位数, 对数据的稳定性作出判断.
(2)甲、乙两组数据用茎叶图表示如图,中间一列的数字表 示该数据的十位数,两边的数字表示该数据的个位数,则甲组 数据的平均数是________,乙组数据的中位数是________.
18+19+20+22+23+21+20+35+31×2 - 【解析】 x 甲= 10 =24,又乙组数据中间两位是 24,22,故中位数是 23. 【答案】 24 23
【解析】 由给定的茎叶图可知,这10名学生身高数据的 161+163 中位数为 =162. 2 【答案】 B
(2)某苗圃基地为了解基地内甲、乙两 块地种植的同一种树苗的长势情况,从两 块地各随机抽取了10株树苗,用茎叶图表 示上述两组数据,对两块地抽取树苗的高度的平均数 - x 甲, - x 乙 和中位数y甲, y乙进行比较,下面结论正确的是( A. - x 甲>- x 乙,y甲>y乙 C.- x 甲<- x 乙,y甲 >y乙 )
2.2.1
用样本的频率分布估计总体分布 第2课时 茎 叶 图
1.理解茎叶图. 2.会画茎叶图. 3.理解平均数与中位数的概念. 4.应用茎叶图解决简单问题.
1.重点:茎叶图的画法及理解. 2.难点:用茎叶图解决问题.
要点 茎叶图 (1)统计中还有一种被用来表示数据的图叫做茎叶图,茎是 指中间的一列数,叶是从茎的旁边生长出来的数.一般情况下 茎按从小到大的顺序从上向下列出,共茎的叶同行列出.

2.2.1同类项(教案)

2.2.1同类项(教案)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与同类项相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示合并同类项的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“同类项在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
二、核心素养目标
本节课的核心素养目标主要包括以下三个方面:
1.培养学生的代数思维能力,使其能够理解和运用同类项的概念,提高分析和解决代数问题的能力。
2.培养学生的数学抽象能力,通过合并同类项的过程,让学生体会数学的概括性和简洁性,培养数学审美观念。
3.培养学生的团队合作意识,课堂上通过小组讨论、互动交流等形式,提高学生合作解决问题的能力,培养沟通与协作的素养。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了同类项的基本概念、合并规则以及它在实际生活中的应用。通过实践活动和小组讨论,我们加深了对同类项的理解。我希望大家能够掌握这些知识点,并在解决代数问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解同类项的基本概念。同类项是指字母相同且相应字母的指数也相同的代数项。它在代数运算中非常重要,可以帮助我们简化表达式。

2.2.1椭圆及其标准方程(人教A版选修2-1)

2.2.1椭圆及其标准方程(人教A版选修2-1)
2 2
x y 1 25 16
y x 1 25 16
1.已知定点 F1,F2,且|F1F2|=8,动点 P 满足|PF1|+|PF2|=8,则动点 P 的轨迹是( ). A.椭圆 B.圆 C.直线 D.线段 答案:D 解析:由于|PF1|+|PF2|=|F1F2|,所以动点 P 的轨迹不是椭圆,而是线 段 F1F2.
答:在 y 轴。(0,-5)和(0,5)
判断椭圆标准方程的焦点在哪个轴上的准则:
焦点在分母大的那个轴上。
2013-11-25
x y 1 例2.已知椭圆的方程为: 25 16 ,则 5 4 3 a=_____,b=_______,c=_______,焦点坐标
(3,0)、(-3,0) 6 为:____________焦距等于______
2 (0,-1)、(0,1) ___________焦距等于__________;曲线上一点P到焦 点F1的距离为3,则点P到另一个焦点F2的距离等于 2 5 3 2 52 _________,则△F1PF2的周长为___________ y F2
2
2
P
O
2013-11-25
x F1
x y (3) 2 2 1 k 10 x 2 k y 2
a 2
2

b
2
y x 8 m 4且m b 0 1 或 1 a 2 a
2
8 m
2
2
4m
b
2
拓展:方程Ax By C表示椭圆,
2 2
(5) x 4 则____ y A、B、C同号,且A B 1
2 2
提高:
2 y2 x 1、已知椭圆的方程为: 1, 16 m2 焦点在x轴上,则m的范围( ) A: m4且m0 -4 B:4m4且m0 C:m4或m4 D:0 m 4

2024年人教版一年级数学上册教案学案及教学反思2.2.2 用加法解决问题

2024年人教版一年级数学上册教案学案及教学反思2.2.2 用加法解决问题

第二单元 6~10的认识和加、减法2.2.2 用加法解决问题【课题名称】第7课时用加法解决问题【课型、课时】新授课 1课时【教学内容】人教版一年级上册45页。

【教学目标】1.知道图中大括号和问号的意义,能正确列式解决简单的实际问题。

2.培养学生初步的观察能力、收集信息的能力和解决简单实际问题的能力。

3.体会生活中处处有数学,激发学生用数学解决问题的兴趣。

【重点难点】教学重点:能看懂图意,会正确地口述题意和列式,并正确进行运算。

教学难点:理解大括号和问号所表示的意思。

【课前准备】1.教师:教学课件:《七彩课堂》课件2.学生:课前预习:标注完成《七彩课堂素养提升手册预习卡》【教学过程】一、创设情境,导入新课。

教师:兔爸爸和兔妈妈带领小兔子们采蘑菇。

它们采了好多蘑菇。

看!它们多开心。

课件出示教材45页情境图:教师:请大家认真观察这幅图,你能从图中找到哪些数学信息?预设1:学生可能会说有兔爸爸、兔妈妈,还有4只兔宝宝。

预设2:学生能回答左边有4只兔子,右边有2只兔子。

教师:你能根据图中信息提出数学问题吗?预设1:一共有几只兔子?预设2:一共有6只兔子,左边有4只,右边有几只兔子?预设3:一共有6只兔子,右边有2只,左边有几只兔子?教师:兔妈妈还给我们带来了一个问题,下面我们就去帮兔妈妈解决问题吧!【设计意图】直接出示情境图,在情境中导入新课,激发学生的学习兴趣。

二、交流实践,探究新知。

1.认识大括号。

教师:(手指着情境图中的大括号)你们认识它吗?(学生回答:大括号)在前面的学习中,我们已经见过它了,那么大括号表示什么意思呢?预设:引导学生说出大括号就是“合起来”的意思。

(教师板书:合起来)教师示范把两部分合起来的手势,带领学生一起做。

教师:在这里,大括号表示把什么和什么合起来呢?预设:学生会说是把左边的兔子和右边的兔子合起来。

教师:对,我们把左边的兔子看成一部分,右边的兔子看成一部分,大括号表示的是把这两部分合起来。

2023-2024学年高中化学2.2.1溶液组成的定量研究教案苏教版必修第一册

2023-2024学年高中化学2.2.1溶液组成的定量研究教案苏教版必修第一册
针对以上问题,教师在教学过程中应注重引导学生从实际问题中提出假设,通过实验和计算来验证假设,培养他们的科学探究能力。同时,教师应提供充足的实践机会,让学生在操作中感受溶液配制的原理和方法,提高他们的实验能力。此外,教师还应鼓励学生进行自主学习,培养他们的批判性思维和独立解决问题的能力。
教学资源准备
1.教材:确保每位学生都有本节课所需的教材《2023-2024学年高中化学2.2.1溶液组成的定量研究》的相关内容。
教师总结各组的亮点和不足,并提出进一步的建议和改进方向。
6.课堂小结(5分钟)
目标:回顾本节课的主要内容,强调溶液组成的定量研究的重要性和意义。
过程:
简要回顾本节课的学习内容,包括溶液的基本概念、组成部分、案例分析等。
强调溶液组成的定量研究在现实化学实验或研究中的价值和作用,鼓励学生进一步探索和应用溶液组成的定量研究。
③引入相关的趣味性例子或案例,让学生在轻松愉快的氛围中学习溶液组成的定量研究。
教学评价与反馈
2.小组讨论成果展示:评估学生在小组讨论中的表现,包括他们的合作能力、问题解决能力和创新思维能力。
3.随堂测试:通过随堂测试来评估学生对溶液组成的定量研究知识的理解和应用能力。
4.课后作业:检查学生完成的课后作业,评估他们对教学内容的理解和掌握程度。
3.科学探究能力:学生能够运用溶液组成的定量研究方法解决实际问题。他们能够提出假设,设计实验方案,通过实验和计算来验证假设,并能够分析实验结果,得出合理的结论。
4.合作与交流能力:学生在小组讨论中能够与同学合作,共同解决问题。他们能够有效地沟通和交流自己的想法,倾听他人的意见,并能够综合各方的观点得出共识。
答案:首先计算稀释后的溶液体积,然后根据稀释前后溶质的物质的量相等的原则,计算稀释后的物质的量浓度。

面对困境测试题及答案

面对困境测试题及答案

面对困境测试题及答案一、单选题1. 当你面对困境时,以下哪种态度是最为积极的?A. 逃避现实B. 抱怨不公C. 积极寻找解决方案D. 放弃努力答案:C2. 在困境中,以下哪种行为是不利于解决问题的?A. 保持冷静B. 寻求帮助C. 过度自责D. 分析问题根源答案:C3. 面对困境时,以下哪种心态可以帮助你更好地应对?A. 悲观消极B. 乐观积极C. 无所谓D. 愤怒答案:B4. 在困境中,以下哪种资源是最为重要的?A. 金钱B. 人际关系C. 个人能力D. 运气答案:C5. 当你陷入困境时,以下哪种方法可以帮助你缓解压力?A. 过度饮酒B. 逃避问题C. 进行体育锻炼D. 沉迷于电子游戏答案:C二、多选题6. 面对困境时,以下哪些因素可以帮助你找到解决问题的方法?A. 过去的经验B. 他人的建议C. 创新思维D. 情绪化反应答案:A、B、C7. 在困境中,以下哪些行为可以帮助你保持积极的心态?A. 与朋友分享感受B. 专注于自己的长处C. 制定实际可行的计划D. 总是看到事物的负面答案:A、B、C8. 面对困境,以下哪些策略可以帮助你恢复信心?A. 设定小目标并实现它们B. 回顾过去的成功经历C. 避免与他人比较D. 忽视问题的存在答案:A、B、C9. 在困境中,以下哪些资源可以为你提供支持?A. 家人的支持B. 朋友的帮助C. 专业的咨询服务D. 社交媒体上的虚拟朋友答案:A、B、C10. 面对困境时,以下哪些心态是不利于解决问题的?A. 害怕失败B. 过于焦虑C. 乐观接受D. 逃避现实答案:A、B、D三、判断题11. 面对困境时,保持冷静和理性是非常重要的。

(对)12. 困境中,我们应该完全依赖他人来解决问题。

(错)13. 积极的心态可以帮助我们更好地应对困境。

(对)14. 困境中,我们应该避免任何形式的自我反思。

(错)15. 在困境中,我们应该总是看到事物的积极面。

(错)四、简答题16. 描述一个你曾经面对的困境,并说明你是如何克服它的。

1819 第2章 2.2 2.2.1 2.2.2 第1课时 等差数列的概念及通项公式

1819 第2章 2.2 2.2.1 2.2.2 第1课时 等差数列的概念及通项公式

双 基
量,已知其中的三个量,可以求得另一个量,即“知三求一”.
合 作 探 究 • 攻 重
2.已知数列的其中两项,求公差 d,或已知一项、公差和其中一项的序 号,求序号的对应项时,通常应用变形 an=am+(n-m)d.
课 时 分 层 作 业

返 首 页













[跟踪训练]



2.已知递减等差数列{an}前三项的和为 18,前三项的积为 66.求该数列
• 固



合 作 探 究 • 攻 重
可知aa11+ +411dd==1301,, 解得ad=1=3-,2, ∴an=-2+(n-1)×3=3n-5.


(2)由 an=13,得 3n-5=13,解得 n=6.
时 分




返 首 页






习 •
[规律方法]
标 •


新 知
1.从方程的观点看等差数列的通项公式,an=a1+(n-1)d 中包含了四个
合 作
的通项公式,并判断-34 是该数列的项吗?





课 时 分 层 作 业

返 首 页




预 习 • 探
[解] 依题意得aa11+ a2aa32=+6a63= ,18,
达 标 • 固


知 合
∴3aa1·1+a1+3d= d·1a8, 1+2d=66,

济南版生物七年级上册2.2.1无脊椎动物的主要类群(中考试题及答案)

济南版生物七年级上册2.2.1无脊椎动物的主要类群(中考试题及答案)

第一节无脊椎动物的主要类群1.青岛是座美丽的海滨城市,海洋动物种类繁多。

下列关于海洋动物特点的叙述,正确的是()A.蛤蜊身体柔软,有外套膜和贝壳,属于软体动物B.海蜇体表有刺细胞,有口无肛门,属于扁形动物C.对虾身体由头、胸、腹三部分组成,属于节肢动物D.鲅鱼通过头部的摆动以及鳍的协调作用游泳,属于鱼类2.石明决是一味珍贵的中药,其主要成分是鲍鱼壳,鲍鱼身体柔软,营养丰富,身体不分节,据此推测鲍鱼属于()A.节肢动物B.爬行动物C.软体动物D.腔肠动物3.下表中的动物,与其主要特征描述相符合的是()选项动物名称主要特征A 涡虫有体节B 蛔虫靠刚毛运动C 水螅身体呈辐射对称D 蚯蚓有外骨骼A.A B.BB.C.C D.D4. 生物的结构特征和行为表现与其生活环境是相适应的。

以下说我与这一现念不符的是()A. 蛔虫体表的角质层,适于生活在人体的肠道内B. 鸟类的长骨中空,适宜飞行C. 仙人掌叶为针状,适于干旱环境D. 鱼类用鳃呼吸,适于陆地生活5.下列对四种动物特征的描述,正确的是()A.涡虫﹣背腹扁平,体表有角质层,有口无肛门B.蛔虫﹣身体由相似的体节组成,有口无肛门C.河蚌﹣身体表面有外套膜,用气管呼吸D.海蜇﹣身体呈辐射对称,体表有刺细胞,有口无肛门6.下列食物与其特征及其与人类关系的对应正确的是()A 有茎和叶,没有真正的根,植物体下部附着海底岩石上的固着器属于假根可食用及提取碘、褐藻胶、甘露醇等工业原料。

素有“长寿菜”和“含碘冠军”的美誉B 有真正的根、茎、叶,根、茎、叶中有输导组织可作为检测空气污染程度的指示植物C 身体呈左右对称,体壁仅由内外两层细胞构成可作为鱼类和虾类的饵料,被广泛应用于水产养殖中D 身体有许多相似的环状体节构成,身体两侧对称。

主要依靠体壁肌肉的收缩和舒张缓慢地蠕动可用于疏松土壤A.A B.BC.C D.D7.如图中间阴影部分为四种动物的共同特征,下列说法正确的是()A.营养方式都是寄生B.体内都有脊柱C.身体和附肢都分节D.前端都有口,后端都有肛门8.如表所示实验或探究活动中,相关操作与所要达到的目的对应,正确的是()名称操作目的A 绿叶在光下制造淀粉将叶片放到清水中加热溶解叶绿素B 观察植物蒸腾现象将一盆栽植物放到密闭透明的玻璃罩内,放到在光下照几个小时玻璃罩内必有水珠产生C 观察蚯蚓用浸水的棉球轻擦蚯蚓的体表保证蚯蚓正常呼吸D 制作人口腔上皮细胞临时装片在载玻片上滴加清水保持细胞形状A.A B.BC.C D.D9.钉螺属于水陆两栖软体动物,偶尔会在林中看到。

人教新课标二年级数学上册2.2.1《两位数减一位数》教案

人教新课标二年级数学上册2.2.1《两位数减一位数》教案

人教新课标二年级数学上册2.2.1《两位数减一位数》教案一. 教材分析《两位数减一位数》是人教新课标二年级数学上册第二单元2.2.1的内容,本节课主要让学生掌握两位数减一位数的计算方法,为后续三位数减一位数的计算打下基础。

教材通过例题和练习题的形式,帮助学生理解和掌握计算方法。

二. 学情分析二年级的学生已经掌握了整数的加法和减法,对一位数的加减法运算较为熟悉。

但两位数减一位数的运算涉及到数位的对应,学生可能会在这方面产生困惑。

因此,在教学过程中,需要关注学生的掌握情况,及时进行引导和解释。

三. 教学目标1.让学生掌握两位数减一位数的计算方法。

2.培养学生独立思考和解决问题的能力。

3.增强学生对数学运算的兴趣。

四. 教学重难点1.教学重点:两位数减一位数的计算方法。

2.教学难点:数位的对应和运算过程的理解。

五. 教学方法采用问题驱动法、情境教学法和小组合作法,通过实例讲解、练习和讨论,引导学生主动探索,提高学生对两位数减一位数的理解和运用能力。

六. 教学准备1.教学PPT:包含例题、练习题和教学过程的引导。

2.教学素材:两位数减一位数的计算题卡。

3.教学工具:黑板、粉笔。

七. 教学过程1.导入(5分钟)通过一个生活实例引出两位数减一位数的计算问题,激发学生的兴趣。

例如:妈妈买了23个苹果,吃掉了7个,还剩多少个?2.呈现(10分钟)呈现例题,让学生观察和思考。

例如:35减去8等于多少?引导学生注意数位的对应,从个位开始减。

3.操练(10分钟)让学生独立完成计算题卡上的题目,教师巡回指导,及时解答学生的疑问。

题目包括两位数减一位数的计算,以及一些相关的巩固题目。

4.巩固(10分钟)通过小组合作,让学生互相检查计算结果,讨论计算过程中遇到的问题。

教师选取一些典型的题目进行讲解,帮助学生巩固两位数减一位数的计算方法。

5.拓展(5分钟)引导学生思考:两位数减一位数还有其他计算方法吗?让学生尝试用不同的方法进行计算,培养学生的创新能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2.1 解决问题(一)
一、填空。

1、12的91是( );54的21是( );32米的6倍是( );15个5
2吨是( )。

2、“已经修了全长的
43”,把( )看作单位“1”,( )×4
3=( ) 3、“一袋大米,吃去5
2”,把( )看作单位“1”,( )×5
2=( ) 4、“乙数相当于甲数的3
1”,把( )看作单位“1”,( )×3
1=( ) 5、“一本书看了3
2”,这里把( )看作单位“1”,求看了多少,就是求( )的3
2是多少? 6、“长的5
4等于宽”,这里把( )看作单位“1”,求宽多少,就是求( )的5
4是多少?
二、看图列式,并计算。

一台彩电2400元
原价
现价
?元
三、应用题。

7、养鸡场共养鸡3000只,其中的5
3是蛋鸡。

蛋鸡有多少只?
8、一堆煤54吨,每天用去它20
1的,10天一共用去多少吨?
9、小汽车的速度6
5与大客车相等,已知小汽车每小时行120千米,大客车每小时行多少千米?
10、学校购进3600本儿童读物,其中181是经典名著,40
3是科普读物。

经典名著和科普读物各多少本?
11、某工厂一月份用电4800度,二月份比一月份节约用电
10
1,二月份比一月份节约用电多少度?二月份实际用电多少度?
答案
一、1、34 5
2 4 6 2、全长 全长 已经修了的长度
3、一袋大米 一袋大米 吃了的大米
4、甲数 甲数 乙数
5、一本书的总页数 一本书的总页数
6、长 长
二、2400×6
5=2000(元) 三、7、1800只
8、5
2吨 9、100千米
10、经典名著200本 科普读物270本
11、节约480度 二月份用电4320度。

相关文档
最新文档