四年级奥数讲解:行程问题

合集下载

完整版)四年级奥数行程问题

完整版)四年级奥数行程问题

完整版)四年级奥数行程问题行程问题是指关于物体运动速度、时间和路程的应用题。

主要的数量关系是路程=速度×时间、路程和÷速度和=相遇时间、路程差÷速度差=相遇时间。

练一:1.甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。

两车在距中点32千米处相遇。

求东西两地相距多少千米?解:两车在距中点32千米处相遇,即两车行的路程相差64千米。

有了路程差和速度差,可以求出相遇时间为8小时。

其他计算就容易了。

2.小玲每分钟行100米,每分钟行80米,两人同时从学校和少年宫相向而行,并在离中点120米处相遇,学校到少年宫有多少米?3.一辆汽车和一辆摩托车同时从甲乙两地相对开出,汽车每小时行40千克,摩托车每小时行65千米。

当摩托车行到两地中点处,与汽车相距75千米。

求甲乙两地相距多少千米?4.小轿车每小时行60千米,比客车每小时多行5千米,两车同时从甲乙两地相向而行,在距中点20千米处相遇,求甲乙两地之间的路程。

练二:1.快车和慢车同时从甲乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米。

慢车每小时行多少千米?解:先计算快车3小时行120千米,再减去25千米就是路程的一半,这时快车与慢车还相距7千米,则慢车行了63千米。

因此慢车的速度为21千米/小时。

2.兄弟二人同时从学校和家中出发,相向而行。

哥哥每分钟行120米,5分钟后哥哥已超过中点50米,这时兄弟二人还相距30米。

弟弟每分钟行多少米?3.汽车从甲地开往乙地,每小时行32千米,4小时后,剩下的路比全程的一半少8千米,如果改用每小时56千米的速度行驶,再行几小时到乙地?4.学校运来一批树苗,五(1)班的40个同学都去参加植树活动,如果每人植3棵,全班同学能植这批树苗的一半还多20棵。

如果这批树苗平均分给五(1)班的同学去植,平均每人植多少棵?练三:1.甲乙二人上午8时同时从东村骑车到西村去,甲每小时比乙快6千米。

四年级奥数:行程问题(一)

四年级奥数:行程问题(一)
【解析】因为提前 9 分钟相遇,说明李大爷出门时,小明已经比平时多走了两人 9 分钟合走的 路,即多走了(60+40)×9=900(米),
所以小明比平时早出门 900÷60=15(分).
3、甲、乙两人环绕周长是 400 米的跑道跑步,如果两人从同一地点出发背向而行,那么经过 2 分钟相遇;如果两人从同一地点出发同向而行,那么经过 20 分钟两人相遇,已知甲的速度比乙快, 求甲、乙两人跑步的速度各是多少? 【解析】 由两人同一地点出发背向而行,经过 2 分钟相遇知两人每分钟共行 400÷2=200(米) 由两人从同一地点出发同向而行,经过 20 分钟相遇知甲每分钟比乙多走 400÷20=20(米) 根据和差问题的解法可知甲的速度是每分钟(200+20)÷2=110(米) 乙的速度为每分钟 110-20=90(米).
解:(1)从家到学校的距离的 2 倍:1400×2=2800(米) (2)从出发到相遇所需的时间:2800÷(200+80)=10(分) (3)相遇处到学校的距离:1400-80×10=600(米)
答:从出发到相遇,妹妹走了 10 分钟,相遇处离学校有 600 米.
【巩固拓展】 1、甲车每小时行 40 千米,乙车每小时行 60 千米.两车分别从 A,B 两地同时出发,相向而行, 相遇后 3 小时,甲车到达 B 地.求 A,B 两地的距离. 【解析】先画示意图如下:
例1
如图,A、B是一条道路的两端点,亮亮在A点,明明在B点,两人同时出发,相向而行.他 们在离A点100米的C点第一次相遇.亮亮到达B点后返回A点,明明到达A点后返回B点,两人在 离B点80米的D点第二次相遇.整个过程中,两人各自的速度都保持不变.求A、B间的距离.
【解析】 第一次相遇,两人共走了 1 个全程,其中亮亮走了 100 米; 从开始到第二次相遇,两人共走了 3 个全程,则亮亮走了 100×3=300(米),亮亮共走 的路程是一个全程多 80 米,所以 A、B 间的距离是:300-80=220(米)

四年级数学拓展行程问题

四年级数学拓展行程问题

四年级数学拓展行程问题
行程问题是小学四年级数学中的一个重要内容,以下是一些常见的行程问题及其解法:
1. 相遇问题:两个物体同时从两地相向而行,经过一段时间后在途中相遇,这类问题叫做相遇问题。

其基本数量关系为:速度和×相遇时间=路程。

2. 追及问题:两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度要慢些,在一定时间之内,后面的追上前面的物体,这类问题就叫做追及问题。

其基本数量关系为:速度差×追及时间=路程。

3. 火车过桥问题:火车过桥是指火车车头上桥直到火车车尾离桥的整个过程,即火车行驶的路程是桥长与火车长度之和。

4. 流水行船问题:船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流
水行船问题。

其基本数量关系为:顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度。

5. 环形跑道问题:在环形跑道上,两个人同时同地背向而行,经过一段时间后两人会相遇,这就是环形跑道中的相遇问题;两个人同时同地同向而行,其中一人要追上另一人,这就是环形跑道中的追及问题。

这些是行程问题中常见的几种类型,希望对你有所帮助。

如果你有具体的问题,可以提供给我,我会尽力为你解答。

小学生奥数行程问题知识点及应用题

小学生奥数行程问题知识点及应用题

小学生奥数行程问题知识点及应用题1.小学生奥数行程问题知识点篇一常用公式:1、速度×时间=路程;路程÷速度=时间;路程÷时间=速度;2、速度和×时间=路程和;3、速度差×时间=路程差。

2.小学生奥数行程问题知识点篇二行程问题中的公式:1、顺水速度=静水速度+水流速度;2、逆水速度=静水速度-水流速度。

3、静水速度=(顺水速度+逆水速度)/24、水流速度=(顺水速度–逆水速度)/23.小学生奥数行程问题应用题篇三1、姐妹两人骑车从相距10千米的甲地去乙地,妹妹比姐姐早出发10分钟,结果两人同时到达,姐妹两人骑车速度比是5:4,求姐姐甲地去乙地用了多少时间?2、小张爬山,下山按原路返回,往返共用了1.5小时。

上山时间是下山时间的1.5倍,上山速度比下山速度每分钟慢50米。

小张上下山共行了多少米?3、一辆汽车往返于甲、乙两地。

去时的速度是返回速度的3/4,去时比返回时多用了1小时,已知返回速度是每小时60千米,求甲、乙两地相距多少千米?4、一个自行车选手在相距950千米的甲、乙两地之间训练。

从甲地出发,去时每90千米休息一次;到达乙地并休息一天后再沿原路返回,每100千米休息一次;他发现恰好有一个休息的地点与去时的一个休息地点相同,那么这个休息地点距甲地有多少千米?5、一个圆的周长为1.26米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行。

这两只蚂蚁每秒分别爬5.5厘米和3.5厘米。

它们每爬行1秒,3秒、5秒……(连续的奇数),就调头爬行。

那么,它们相遇时,已爬行的时间是多少秒?4.小学生奥数行程问题应用题篇四1、一列快客和一列普客从甲乙两个城同时相对开出,快客每小时行90千米,普客每小时行48千米,经过2.5小时后,两列客车在途中相遇。

求甲乙两城市间的道路长多少千米?解:要知道甲、乙两城之间的道路长多少千米,就必须知道两车的速度和所行的时间。

因为两车是相对而行,所以速度应是两车速度和,时间是两车的相遇时间,这样就可以求出甲、乙两地的距离了。

(完整版)奥数四年级行程问题

(完整版)奥数四年级行程问题

(完整版)奥数四年级行程问题第三部分行程问题【专题知识点概述】行程问题是一类常见的重要应用题,在历次数学竞赛中经常出现。

行程问题包括:相遇问题、追及问题、火车过桥问题、流水行船问题、环形行程问题等等。

行程问题思维灵活性大,辐射面广,但根本在于距离、速度和时间三个基本量之间的关系,即:距离=速度?时间,时间=距离÷速度,速度=距离÷时间。

在这三个量中,已知两个量,即可求出第三个量。

掌握这三个数量关系式,是解决行程问题的关键。

在解答行程问题时,经常采取画图分析的方法,根据题意画出线段图,来帮助我们分析、理解题意,从而解决问题。

一、行程基本量我们把研究路程、速度、时间以及这三者之间关系的一类问题,总称为行程问题.我们已经接触过一些简单的行程应用题,行程问题主要涉及时间(t)、速度(v)和路程(s)这三个基本量,它们之间的关系如下:(1)速度×时间=路程可简记为:s = vt(2)路程÷速度=时间可简记为:t = s÷v(3)路程÷时间=速度可简记为:v = s÷t显然,知道其中的两个量就可以求出第三个量.二、平均速度平均速度的基本关系式为:平均速度=总路程÷总时间;总时间=总路程÷平均速度;总路程=平均速度?总时间。

【重点难点解析】1.行程三要素之间的关系2.平均速度的概念3.注意观察运动过程中的不变量【竞赛考点挖掘】1.注意观察运动过程中的不变量【习题精讲】【例1】(难度等级※)邮递员早晨7时出发送一份邮件到对面山里,从邮局开始要走12千米上坡路,8千米下坡路。

他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地停留1小时以后,又从原路返回,邮递员什么时候可以回到邮局?【分析与解】法一:先求出去的时间,再求出返回的时间,最后转化为时刻。

①邮递员到达对面山里需时间:12÷4+8÷5=4.6(小时);②邮递员返回到邮局共用时间:8÷4+12÷5+1+4.6 =2+2.4+1+4.6 = l0(小时)③邮递员回到邮局时的时刻是:7+10-12=5(时).邮递员是下午5时回到邮局的。

小学奥数四年级行程练习题及答案【三篇】

小学奥数四年级行程练习题及答案【三篇】

小学奥数四年级行程练习题及答案【三篇】
【第一篇】
一列火车长180米,全车通过一座桥需要40秒钟,这列火车每秒行15米,求这座桥的长度。

【答案解析】
420米
【小结】全车通过桥是指从火车车头上桥直到火车车尾离桥,即火车行驶的路程是桥的长度与火车的长度之和,已知火车的速度以及过桥时间,所以这列车40秒钟走过:
40×15=600(米),桥的长度为:600-180=420(米)
【第二篇】
前进钢铁厂用两辆汽车从距工厂90千米的矿山运矿石,现有甲、乙两辆汽车,甲车自矿山,乙车自钢铁厂同时出发相向而行,速度分别为每小时40千米和50千米,到达目的地后立即返回,如此反复运行多次,如果不计装卸时间,且两车不作任何停留,则两车在第三次相遇时,距矿山多少千米?
【答案解析】
①第三次相遇时两车的路程和为:
90+90×2+90×2=450(千米)
②第三次相遇时,两车所用的时间:
450÷(40+50)=5(小时)
【第三篇】
园林工人在一条马路的两边栽树(包括端点),每两棵树之间的距离是5米,一共栽了300棵树。

这条马路有多少米?
【答案解析】
点拨:这道题也是两面植树问题,因此在解决问题时,将两边的问题变为一边的问题,然后再应用植树问题的规律解题。

一边植树的棵树:300\2=150(棵),由于两端植树,所以段数=棵树-1,由此求出马路长度:5*(150-1)=745(米)
解:一边植树的棵树:300\2=150(棵);马路的长度:5*(150-1)=745(米)
答:马路长745米。

(完整版)小学奥数行程问题汇总

(完整版)小学奥数行程问题汇总

小学数学行程问题基本公式:路程=速度×时间(s=v×t)速度=路程÷时间(v=s÷t)时间=路程÷速度(t=s÷v)用s表示路程,v表示速度,t表示时间。

一、求平均速度。

公式:平均速度=总路程÷总时间(v平=s总÷t总例题:摩托车驾驶员以每小时30千米的速度行驶了90千米到达某地,返回时每小时行驶45千米,求摩托车驾驶员往返全程的平均速度.分析:要求往返全程的平均速度是多少,必须知道摩托车“往”与“返”的总路程和“往”与“返”的总时间.摩托车“往”行了90千米,“返”也行了90千米,所以摩托车的总路程是:90×2=180(千米),摩托车“往”的速度是每小时30千米,所用时间是:90÷30=3(小时),摩托车“返”的速度是每小时45千米,所用时间是:90÷45=2(小时),往返共用时间是:3+2=5(小时),由此可求出往返的平均速度,列式为:90×2÷(90÷30+90÷45)=180÷5=36(千米/小时)1、山上某镇离山下县城有60千米路程,一人骑车从某镇出发去县城,每小时行20千米;从县城返回某镇时,由于是上山路,每小时行15千米。

问他往返平均每小时约行多少千米?2、小明去某地,前两小时每小时行40千米,之后又以每小时60千米开了2小时,刚好到达目的地,问小明的平均速度是多少?3、小王去爬山,上山的速度为每小时3千米,下山的速度为每小时5千米,那么他上山、下山的平均速度是每小时多少千米?4、一辆汽车从甲地开往乙地,在平地上行驶2.5小时,每小时行驶42千米;在上坡路上行驶1.5小时,每小时行驶30千米;在下坡路上行驶2小时,每小时行驶45千米,正好到达乙地。

求这辆汽车从甲地到乙地的平均速度。

总结:求平均速度:时间一定(v1+v2)÷2;路程一定2v1v2÷(v1+v2),牢记平均速度公式,就不会错。

四年级奥数第五讲 行程问题

四年级奥数第五讲 行程问题

第五讲行程问题行程问题是小学奥数中变化最多的一个专题,不论在奥数竞赛中还是在“小升初”的升学考试中,都拥有非常重要的地位。

行程问题中包括:火车过桥、流水行船、沿途数车、猎狗追兔、环形行程、多人行程,等等。

每一类问题都有自己的特点,解决方法也有所不同,但是,行程问题无论怎么变化,都离不开“三个量,三个关系”:这三个量是:路程(s)、速度(v)、时间(t)三个关系:1. 简单行程:路程 = 速度×时间2. 相遇问题:路程和 = 速度和×时间3. 追击问题:路程差 = 速度差×时间牢牢把握住这三个量以及它们之间的三种关系,就会发现解决行程问题还是有很多方法可循的。

①追击及遇问题一、例题与方法指导例1. 有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。

甲每分钟走40米,乙每分钟走38米,丙每分钟走36米。

在途中,甲和乙相遇后3分钟和丙相遇。

问:这个花圃的周长是多少米?例2. 东西两地间有一条公路长217.5千米,甲车以每小时25千米的速度从东到西地,1.5小时后,乙车从西地出发,再经过3小时两车还相距15千米。

乙车每小时行多少千米?例3. 兄妹二人同时从家里出发到学校去,家与学校相距1400米。

哥哥骑自行车每分钟行200米,妹妹每分钟走80米。

哥哥刚到学校就立即返回来在途中与妹妹相遇。

从出发到相遇,妹妹走了几分钟?相遇处离学校有多少米?二、巩固训练1. 两城市相距328千米,甲、乙两人骑自行车同时从两城出发,相向而行。

甲每小时行28千米,乙每小时行22千米,乙在中途修车耽误1小时,然后继续行驶,与甲相遇,求出发到相遇经过多少时间?2.快车和慢车同时从甲乙两地相对开出,已知快车每小时行40千米,经过3小时快车已过中点12千米与慢车相遇,慢车每小时行多少千米?3.小华和小明同时从甲、乙两城相向而行,在离甲城85千米处相遇,到达对方城市后立即以原速沿原路返回,又在离甲城35千米处相遇,两城相距多少千米?三、拓展提升1.客车和货车同时从甲、乙两地相对开出,客车每小时行54千米,货车每小时行48千米,两车相遇后又以原来的速度继续前进,客车到达乙站后立即返回,货车到达甲站后也立即返回,两车再次相遇时,客车比货车多行216千米。

四年级奥数行程问题及答案【三篇】

四年级奥数行程问题及答案【三篇】

【导语】海阔凭你跃,天⾼任你飞。

愿你信⼼满满,尽展聪明才智;妙笔⽣花,谱下锦绣第⼏篇。

学习的敌⼈是⾃⼰的知⾜,要使⾃⼰学⼀点东西,必需从不⾃满开始。

以下是为⼤家整理的《四年级奥数⾏程问题及答案【三篇】》供您查阅。

【第⼀篇】甲、⼄两个港⼝之间的⽔路长300千⽶,⼀只船从甲港到⼄港,顺⽔5⼩时到达,从⼄港返回甲港,逆⽔6⼩时到达。

求船在静⽔中的速度和⽔流速度? 解答:由题意可知,船在顺⽔中的速度是300÷5=60千⽶/⼩时,在逆⽔中的速度是300÷6=50千⽶/⼩时,所以静⽔速度是(60+50)÷2=55千⽶/⼩时,⽔流速度是(60-50)÷2=5千⽶/⼩时。

【第⼆篇】某船在静⽔中的速度是每⼩时15千⽶,它从上游甲地开往下游⼄地共花去了8⼩时,⽔速每⼩时3千⽶,问从⼄地返回甲地需要多少时间? 【分析】顺⽔速度是15+3=18千⽶/⼩时,从甲地到⼄地的路程是18×8=144千⽶,从⼄地返回甲地时是逆⽔,逆⽔速度是15-3=12千⽶/⼩时,⾏驶时间为144÷12=12⼩时。

【第三篇】A、B两港相距360千⽶,甲轮船往返两港需35⼩时,逆流航⾏⽐顺流航⾏多花了5⼩时。

⼄轮船在静⽔中的速度是每⼩时12千⽶,⼄轮船往返两港要多少⼩时? 解答:⾸先要求出⽔流速度,由题意可知,甲轮船逆流航⾏需要(35+5)÷2=20⼩时,顺流航⾏需要 20-5=15⼩时,由此可以求出⽔流速度为每⼩时[360÷15-360÷20]÷2=3千⽶,从⽽进⼀步可以求出⼄船的顺流速度是每⼩时 12+3=15千⽶,逆⽔速度为每⼩时12-3=9千⽶,最后求出⼄轮船往返两港需要的时间是360÷15+360÷9=64⼩时。

四年级奥数行程问题

四年级奥数行程问题

知识框架(一)行程问题基本公式:路程=速度⨯时间;总路程=平均速度⨯总时间速度=路程÷时间;时间=路程÷速度(二)相遇问题(相向而行):速度和⨯相遇时间=相遇距离(三)追及问题(同向而行):速度差⨯追及时间=追及距离(四)列车进入隧道是指从车头进入隧道开始算起到车尾离开隧道为止;因此,这个过程中列车所走的路程等于隧道的长度加上车的长度。

(五)两车相遇,错车而过是指从两列列车的车头相遇开始算起到两列列车的车尾分开为止;这个过程实际上是以两列列车相遇点为起点的相背运动问题,这两列列车在这段时间所走的路程之和等于这两个列车的车长之和。

(六)错车时间=两列列车车长之和÷两车的速度之和。

典型例题一、相遇问题1、一列客车通过250米长的隧道用25秒,通过210米长的隧道用23秒。

已知在客车的前方有一列行驶方向与它相同的货车,车身长为320米,速度每秒17米。

求列车与货车从相遇到离开所用的时间。

2、有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米。

现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇后6分钟后,甲又与丙相遇。

那么,东、西两村之间的距离是多少米?二、立即返回问题3、甲、乙两地之间的距离是420千米,两辆汽车同时从甲地开往乙地,第一辆汽车每小时行42千米,第二辆汽车每小时行38千米,第一辆汽车到达乙地立即返回,两辆车从开出到相遇共用了多少小时?4、某解放车队伍长450米,以每秒1.5米的速度行进。

一战士以每秒3米的速度从排尾到排头并立即返回排尾,那么这需要多少时间?三、提前出发问题5、学生甲和乙同事从家里出发,相向而行,学生甲每分钟走52米,学生乙每分钟走70米,两人在途中A处相遇,若甲提前4分钟出发,且速度不变,学生乙改为每分钟走90米,两人仍在A处相遇,问学生甲乙两家相距多远?四、二次相遇问题6、东、西两城相距75千米。

小明从东向西走,每小时走6.5千米;小强从西向东走,每小时走6千米;小辉骑自行车从东向西,每小时骑行15千米。

小学奥数四年级行程问题

小学奥数四年级行程问题

小学奥数四年级行程问题1、小明从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路、一半下坡路。

小明上学走两条路所用的时间一样多。

已知下坡的速度是平路的1.5倍,那么上坡的速度是平路的多少倍?【解析】设路程为180,则上坡和下坡均是90。

设走平路的速度是2,则下坡速度是3。

走下坡用时间90/3=30,走平路一共用时间180/2=90,所以走上坡时间是90-30=60 走与上坡同样距离的平路时用时间90/2=45 因为速度与时间成反比,所以上坡速度是下坡速度的45/60=0.75倍。

2、3、两名游泳运动员在长为30米的游泳池里来回游泳,甲的速度是每秒游1米,乙的速度是每秒游0.6米,他们同时分别从游泳池的两端出发,来回共游了5分钟。

如果不计转向的时间,那么在这段时间内两人共相遇多少次?有甲、乙第n次相遇时,甲、乙共游了30×(2n-1)米的路程;于是,有30×(2n-1)<5×60×(1+0.6)=480,(2n -1)<16,n可取1,2,3,4,5,6,7,8;有30×(2m-1)<5×60×(1-0.6)=120,(2m-1)<4,m可取1,2;于是,甲、乙共相遇8+2=10次。

4、兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。

哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。

问他们家离学校有多远?要求距离,速度已知,所以关键是求出相遇时间。

从题中可知,在相同时间(从出发到相遇)内哥哥比妹妹多走(180×2)米,这是因为哥哥比妹妹每分钟多走(90-60)米,那么,二人从家出走到相遇所用时间为180×2÷(90-60)=12(分钟)家离学校的距离为90×12-180=900(米)5、有一个人去徒步旅行,去时每走40分钟就休息5分钟,到达目的地时共花去3小时11分。

行程问题,四年级奥数

行程问题,四年级奥数

行程问题(一)我们把研究路程、速度、时间这三者之间关系的问题,称为行程问题。

行程问题主要包括相遇问题、相背问题的追及问题。

例1.甲、乙两人分别从相距30千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。

两人几小时后相遇?例2.南北两村相距90千米,甲、乙两人分别从两村同时出发相向而行,甲比乙每小时多行2千米,5小时后两人相遇。

两人的速度各是什么?例3.两地相距900千米,甲、乙两列火车同时从两地出发相向而行。

甲车每小时行驶60千米,乙车每小时行驶90千米,两车在途中相遇后继续前进。

从两车相遇算起,它们开到对方的出发点各需要多长时间?例4.甲每小时行8千米,乙每小时行6千米,两人于相隔32千米的两地同时相背而行,几小时后二人相隔144千米?例5.下午放学时,弟弟以每分40米的速度步行加家,5分后,哥哥以每分60米的速度也从学校步行回家。

哥哥出发后,经过几分可以追上弟弟?(假定从学校到家和路程足够远,哥哥追上弟弟时仍没有到家。

)例6.幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒跑6米,晶晶每秒跑4米。

问:冬冬第一次追上晶晶时两人各跑了多少米?第二次追上晶晶时两人各跑了多少圈?练习与思考1. 甲、乙两艘轮船分别从两港同时出发相向而行,甲船每小时行驶19千米,乙船每小时行驶13千米,经过8小时两艘轮船在途中相遇。

两港间的水路长多少千米?2. 甲、乙两车分别从相距240千米的A、B两地同时出发,相向而行,已知甲车到达B城需3小时,乙车到达A城需6小时,两车出发后多少时间相遇?3. 东、西两镇相距45千米,甲、乙两人分别从两镇同时出发相向而行,甲每小时行的路程是乙的2倍,5小时后两人相遇。

甲乙两人的速度各是多少?4. 两地相距6600千米,甲、乙两列火车同时从两地出发,相向而行。

甲车每小时行驶100千米,乙车每小时行驶120千米,两车在途中相遇后继续前进。

从相遇时算起,两车开到对方的出发点各需多少小时?5. 甲每小时行9千米,乙每小时比甲少行3千米,两人于相隔20千米的两地同时相背而行,几小时后两人相隔80千米?6. 甲每小时行12千米,乙每小时行8千米,甲自南庄向南行,同时乙自北庄向北行,经过5小时后,两人相隔103千米 。

四年级奥数行程问题及解析

四年级奥数行程问题及解析

四年级奥数行程问题及解析
四年级奥数行程问题及解析
1、在一只野兔跑出90米后,猎狗去追。

野兔跑8步的路程,猎狗只需要跑3步。

猎狗跑3步的时间,野兔能跑4步。

问,猎狗至少跑出多远,才能追上野兔。

2、小红从甲地往乙地走,小花同时从乙地向甲地走,当各自到达终点后,又迅速返回,行走路程中,各自速度不变,两人第一次相遇时在距甲地40米处,第二次相遇在距乙地15米处,问,甲.乙两地相距多少米。

解析:
本题需要根据已知条件找出兔和狗之间的'速度关系。

野兔跑4步的时间,猎狗跑3步,猎狗的3步,相当于野兔跑8步的路程,它们的速度比为1:2V狗=8/3×3/4V兔=2V兔(V狗-V兔)×T=90=>V狗×T=180,野兔跑出90米后,猎狗去追,猎狗至少跑出180米才能追上野兔。

解析:
第一次相遇,两人共行了1个全程,小东行了40米,第一次相遇,两人共行了3个全程,小东行了40×3=120米,同时小东行的还是1个全程多15米,甲乙两地的距离是40×3-15=105米。

四年级奥数行程问题

四年级奥数行程问题

四年级奥数行程问题行程问题1、一辆汽车从甲地开往乙地,平均每小时行驶75千米,6小时到达乙地。

甲乙两地相距多少千米?2、甲乙两地相距420千米,一辆汽车从甲地到乙地需要7小时。

如果要求汽车提前1小时到达乙地,速度应提高多少千米/小时?3、小明家到小华家的距离有1160米。

一天,小明和小华同时从自家出发,到对方家去,小明每分钟走75米,小华每分钟走70米,几分钟后他俩会在途中相遇?4、小光早晨从家到学校一共用了15分钟,平均每分钟走60米。

中午放学时,小光跑不回家,只用了10分钟。

小光回家时平均每分钟跑多少米?5、小英每分钟走70米,小兰每分钟走60米。

她俩同时从同一地点出发,相背而行。

问5分钟后,两人相距多少千米?16、小英每分钟走70米,小兰每分钟走60米。

她俩同时从同一地点出发,相背而行。

经过几分钟后,两人相距1300米?7、一辆汽车和一辆客车同时从两地出发,相向而行。

汽车每小时行80千米,客车每小时比汽车少行5千米。

6小时候,两车在途中相遇。

两地相距多少千米?8、小红和小花在学校400米的环形跑道上,从同一起跑线出发,相背而行,4分钟后两人相遇,小红平均每分钟走45米,小花平均每分钟走多少米?9、一辆客车上午8时从甲站开出,每小时行50千米。

经过2小时后,一辆汽车从乙站开出,每小时行60千米,中午12时两车在途中相遇。

甲、乙两站相距多少千米?10、甲、乙两港之间的水路长180千米,一艘轮船从甲港开往乙港,顺水行驶,每小时行驶60千米,从乙港返回时,因为逆水行驶,每小时行驶30千米。

这艘轮船往返一次的平均速度是多少千米/小时?211、一辆客车上午8时从武汉出发,开往郑州,平均每小时行驶60千米。

3小时后,一辆汽车从武汉出发,开往郑州,平均每小时行驶100千米。

几小时后,汽车能追上客车?12、一只猎狗发现在它前方300米处有一只兔子。

兔子同时也发现了猎狗,猎狗以每分钟240米的速度去追赶兔子,兔子以每分钟180米的速度逃跑,请问猎狗要追上兔子需要几分钟?13、学校组织学生去天台山游玩,租两辆车从学校出发,大客车每小时行驶60千米,上午7:00出发,面包车晚出发1小时,每小时行驶80千米,结果两车同时到达天台山。

四年级数学奥数培优讲义-专题08行程问题(含解析)

四年级数学奥数培优讲义-专题08行程问题(含解析)

专题08行程问题1.A 、B 两地相距330千米,一辆客车和货车同时分别从A 、B 两地相向出发,客车以60千米/时的速度行驶,货车以50千米/时的速度行驶,客车和货车行驶几小时后相遇?2.同方向行驶的火车,快车每秒行30米,慢车每秒行22米.如果从辆车头对齐开始算,则行24秒后快车超过慢车,如果从辆车尾对齐开始算,则行28秒后快车超过慢车.快车长多少米,慢车长多少米?3.现有速度不变的甲、乙两车,如果甲车以现在速度的2倍去追乙车,5小时后能追上,如果甲车以现在速度的3倍去追乙车,3小时后能追上.那么甲车以现在的速度去追,几小时后能追上乙车?4.货车和客车同时从两地相对开出,货车速度是68千米/时,客车速度是95千米/时,经过2.8小时相遇,两地相距多少千米?5.甲、乙两车从相距325千米的两地同时相向而行,2.5小时后还相距65千米,已知甲车每小时行45千米,乙车每小时行多少千米?6.兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米。

哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇,问他们家离学校有多远?7.甲乙两地相距770千米,一列客车和一列货车同时从甲乙两地相对开出,货车每小时行50千米,客车的速度是货车的1.2倍,两车开出后几小时相遇?8.甲、乙两车同时从A 、B 两地出发相向而行,4小时相遇后又相距9千米,已知甲车行完全程要7小时,乙车每小时行27千米,AB 两地间的路程是多少千米?9.学校组织学生步行去野外实习,每分钟走80米,出发9分钟后,班长发现有重要东西还在学校,就以原速度返回,找到东西再出发时发现又耽搁了18分钟,为了在到达目的地之前赶上队伍他改骑自行车,速度为260米/分,当他追上学生队伍时距目的地还有120米.求走完全程学生队伍步行需多长时间?10.甲、乙两人分别从相距 35.8千米的两地出发,相向而行.甲每小时行 4 千米,但每行 30 分钟就休息 5 分钟;乙每小时行 12 千米,则经过多少时间两人相遇?19.A、B两地相距960km。

奥数行程问题的基本公式完整版

奥数行程问题的基本公式完整版

奥数行程问题的基本公式HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】行程问题的基本公式基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。

关键问题:确定行程过程中的位置相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)追击问题:追击时间=路程差÷速度差(写出其他公式)流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2流水问题:关键是确定物体所运动的速度,参照以上公式。

过桥问题:关键是确定物体所运动的路程,参照以上公式。

仅供参考:【和差问题公式】(和+差)÷2=较大数;(和-差)÷2=较小数。

【和倍问题公式】和÷(倍数+1)=一倍数;一倍数×倍数=另一数,或和-一倍数=另一数。

【差倍问题公式】差÷(倍数-1)=较小数;较小数×倍数=较大数,或较小数+差=较大数。

【平均数问题公式】总数量÷总份数=平均数。

【一般行程问题公式】平均速度×时间=路程;路程÷时间=平均速度;路程÷平均速度=时间。

【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。

这两种题,都可用下面的公式解答:(速度和)×相遇(离)时间=相遇(离)路程;相遇(离)路程÷(速度和)=相遇(离)时间;相遇(离)路程÷相遇(离)时间=速度和。

【同向行程问题公式】追及(拉开)路程÷(速度差)=追及(拉开)时间;追及(拉开)路程÷追及(拉开)时间=速度差;(速度差)×追及(拉开)时间=追及(拉开)路程。

四年级奥数:行程问题

四年级奥数:行程问题

四年级奥数:行程问题四年级奥数:行程问题奥数:行程问题145名学生要到离学校30千米的郊外劳动。

学校只有一辆汽车能乘坐15人,汽车的速度是每小时60千米。

学生步行的速度是每小时4千米。

为使他们尽早到达劳动地点,他们最少要用几小时才能全部到达?[解答]:45人分三组出发,每组15人。

为了尽快到达,三组必须同时到达。

每一组都是步行了一些路程,坐车行了一些路程。

由于同时到达,所以每一组坐车的时间相等,当然步行的时间也相等。

汽车速度是步行速度的15倍,所以如果时间相同,汽车行的路程是人步行路程的15倍。

我们设第二组第一条红色线段的长度为1份。

可得出第一条蓝色线段=8份,当然,第3条,第5条蓝色线段的长度也等于8份。

还可以得到第三组的红色线段=2份,当然,第1组的红色线段也等于2份。

所以全程是8+2=10份,8份路程坐车,2份路程步行。

每份长度为30÷10=3公里。

所以坐车时间为3×8÷60=0.4小时步行时间为3×2÷4=1.5小时一共需要0.4+1.5=1.9小时。

四年级奥数:行程问题2专题简析:在静水中行船,单位时间内所行的路程叫船速,逆水的速度叫逆水速度,顺水下行的速度叫顺水速度。

船在水中漂流,不借助外力只顺水而行,单位时间内所走的路程叫水流速度,简称水速。

行船问题与一般行程问题相比,除了用速度、时间和路程之间的关系外,还有如下的特殊数量关系:顺水速度=船速+水速逆水速度=船速-水速(顺水速度+逆水速度)÷2=船速(顺水速度-逆水速度)÷2=水速例1:货车和客车同时从东西两地相向而行,货车每小时行48千米,客车每小时行42千米,两车在距中点18千米处相遇。

东西两地相距多少千米?分析与解答:由条件“货车每小时行48千米,客车每小时行42千米”可知货、客车的速度和是48+42=90千米。

由于货车比客车速度快,当货车过中点18千米时,客车距中点还有18千米,因此货车比客车多行18×2=36千米。

四年级奥数之行程问题

四年级奥数之行程问题

四年级奥数之行程问题内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)行程问题知识要点:1、相遇问题(或背向问题)AB两地的距离=甲走的距离+乙走的距离 = 甲的速度×时间+乙的速度×时间=(甲的速度+乙的速度)×时间.2、追击问题:甲乙的距离=甲走的距离-乙走的距离 = 甲的速度×时间-乙的速度×时间= (甲的速度-乙的速度)×追击的时间相遇问题例1.甲乙二人分别从相距30千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米,问:二人几小时后相遇?例2.东、西镇相距45千米,甲、乙二人分别从两镇同时出发相向而行,甲比乙每小时多行1千米,5小时后两人相遇,问两人的速度各是多少?例 3. 甲、乙两车分别从相距240千米的A、B两城同时出发,相向而行,已知甲车到达B城需3小时,乙车到达A城需6小时,问:两车出发后多长时间相遇?例4.两列火车相向而行,甲车每小时行36千米,乙车每小时行54千米.两车错车时,甲车上一乘客发现:从乙车车头经过他的车窗时开始到乙车车尾经过他的车窗共用了14秒,求乙车的车长。

例5.甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米处第一次相遇.相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,问两次相遇点相距多少千米?例6.有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等。

某人骑自行车过桥时,上坡、走平路和下坡的速度分别为4米/秒、6米/秒和8米/秒,求他过桥的平均速度。

同步练习:1、汽车以40千米/时的速度从甲地到乙地,到达后立即以60千米/时的速度返回甲地。

求该车的平均速度。

2.A、B两地相距480千米,甲、乙两车同时从两站相对开出,甲车每小时行驶35千米,乙车每小时行驶45千米,一只燕子以每小时50千米的速度和甲车同时出发飞向乙车,遇到乙车又折回向甲车飞去,遇到甲车又折回飞向乙车,这样一直飞下去,燕子飞了多少千米两车才能相遇?3.甲、乙两人同时从A、B两地相向而行,甲每小时行12千米,乙每小时行10千米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四年级奥数讲解:行程问题
行程问题(一)
专题简析:
我们把研究路程、速度、时间这三者之间关系的问题称为行程问题。

行程问题主要包括相遇问题、相背问题和追及问题。

这个周我们来学习一些常用的、基本的行程问题。

解答行程问题时,要理清路程、速度和时间之间的关系,紧扣基本数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果。

例1:甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。

两人几小时后相遇?
分析与解答:这是一道相遇问题。

所谓相遇问题就是指两个运动物体以不同的地点作为出发地作相向运动的问题。

根据题意,出发时甲乙两人相距20千米,以后两人的距离每小时缩短6+4=10千米,这也是两人的速度和。

所以,求两人几小时相遇,就是求20千米里面有几个10千米。

所以,两人20÷(6+4)=2 小时后相遇。

练习一
1,甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。

两地间的水路长多少千米?
2,一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。

8小时后两车相距多少千米?
3,甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时。

两车出发后多少小时相遇?
例2:王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米。

如果一只狗与王欣同时同向而行,每分钟行500 米,遇到陆亮后,立即回头向王欣跑去;遇到王欣后再回头向陆亮跑去。

这样持续来回,直到王欣和陆亮相遇为止,狗共行了多少米?
分析与解答:要求狗共行了多少米,一般要知道狗的速度和狗所行的时间。

根据题意可知,狗的速度是每分钟行500米,关键是要求出狗所行的时间,根据题意可知:狗与主人是同时行走的,狗持续来回所行的时间就是王欣和陆亮同时出发到两人相遇的时间,即2000÷(110+90)=10分钟。

所以狗共行了500×10=5000米。

练习二
1,甲乙两队学生从相隔18千米的两地同时出发相向而行。

一个同学骑自行车以每小时15千米的速度在两队之间不停地往返联络。

甲队每小时行5千米,乙队每小时行4千米。

两队相遇时,骑自行车的同学共行多少千米?
2,A、B两地相距400千米,甲、乙两车同时从两地相对开出,甲车每小时行38千米,乙车每小时行42千米。

一只燕子以每小时50千米的速度和甲车同时出发向乙车飞去,遇到乙车又折回向甲车飞去。

这样一直飞下去,燕子飞了多少千米,两车才能相遇?
3,甲、乙两个车队同时从相隔330千米的两地相向而行,甲队每小时行60千米,乙队每小时行50千米。

一个人骑摩托车以每小时行80千米的速度在两车队中间往返联络,问两车队相遇时,摩托车行驶了多少千米?
例3:甲每小时行7千米,乙每小时行5千米,两人于相隔18千米的两地同时相背而行,几小时后两人相隔54千米?
分析与解答:这是一道相背问题。

所谓相背问题是指两个运动的物体作背向运动的问题。

在相背问题中,相遇问题的基本数量关系仍然成立,根据题意,甲乙两人共行的路程应该是54-18=36千米,而两人每小时共行7+5=12千米。

要求几小时能行完36千米,就是求36千米里面有几个12千米。

所以,36÷12=3小时。

练习三
1,甲车每小时行6千米,乙车每小时行5千米,两车于相隔10千米的两地同时相背而行,几小时后两人相隔65千米?
2,甲每小时行9千米,乙每小时行7千米,甲从南庄向南行,同时乙从北庄向北行。

经过3小时后,两人相隔60千米。

南北两庄相距多少千米?
3,东西两镇相距20千米,甲、乙两人分别从两镇同时出发相背而行,甲每小时的路程是乙的2倍,3小时后两人相距56千米。

两人的速度各是多少?
例4:甲乙两人分别从相距24千米的两地同时向东而行,甲骑自行车每小时行13千米,乙步行每小时走5千米。

几小时后甲能够追上乙?
分析与解答:这是一道追及问题。

根据题意,甲追上乙时,比乙多行了24千米(路程差)。

甲骑自行车每小时行13千米,乙步行每小时走5千米,甲每小时比乙多行13-5=8千米(速度差),即甲每小时能够追上乙8千米,所以要求追上乙所用的时间,就是求24千米里面有几个8千米。

所以,24÷8=3小时甲能够追上乙。

练习四。

相关文档
最新文档