温度
温度的认识与换算
温度的认识与换算温度是物体内部或周围热能的一种表现形式,是描述物体热度高低的物理量。
温度测量通常使用不同的温标,包括摄氏温标、华氏温标和开氏温标。
在本文中,将介绍温度的概念与换算方法。
一、温度的概念温度是物体内部分子或原子的平均动能,反映物体冷热程度的物理量。
通常用符号T表示,单位是摄氏度(℃)、华氏度(℉)或开氏度(K)。
摄氏温度以水的冰点为0℃,沸点为100℃作为基准;华氏温度以水的冰点为32℉,沸点为212℉作为基准;开氏温度以绝对零度-273.15℃作为基准。
二、温度的换算温度之间可以进行相互换算,以下是常见的换算公式:1. 摄氏度与华氏度的换算公式:℉ = ℃ * 1.8 + 32℃ = (℉ - 32) / 1.82. 摄氏度与开氏度的换算公式:K = ℃ + 273.15℃ = K - 273.153. 华氏度与开氏度的换算公式:K = (℉ + 459.67) / 1.8℉ = K * 1.8 - 459.67通过以上换算公式,我们可以方便地在不同温度标准之间进行转换。
三、温度的实际应用温度的概念和换算在日常生活中有广泛的应用,以下是几个常见的应用场景:1. 食物烹饪:温度在烹饪中起着重要的作用。
合适的温度可以保证食物的熟度和口感。
比如,深炸食物通常需要170℃-190℃的温度,而烘焙蛋糕需要在180℃-200℃的温度下进行。
2. 医学领域:温度在医学领域用于测量体温和评估患者情况。
医用温度计通常采用摄氏温标,正常体温为36.5℃-37.5℃。
3. 天气预报:温度是天气预报中重要的因素之一。
气象部门使用摄氏温度来表示气温,供公众参考。
四、温度的重要性温度对于物体的性质和相互作用有着重要影响。
以下是几个方面的重要性:1. 物质状态改变:不同温度下,物质的状态会发生改变。
例如,水在0℃以下会凝固成冰,而在100℃以上会沸腾成蒸汽。
2. 反应速率:温度对于化学反应速率有着显著影响。
提高温度可以加快反应速率,增加反应的效率。
温度单位温度范围
温度单位温度范围
温度是描述物体冷热程度的物理量,温度的国际单位是开尔文,用符号“K”表示。
常用的温度单位有摄氏度(℃)和华氏度(°F)。
摄氏度用符号“°C”表示,一般人们用温度计来测量温度,温度计一般有水银温度计、体温计、电子温度计等。
华氏度用符号“°F”表示,目前世界上很多国家都使用摄氏度,美国和其他一些英语国家则使用华氏度。
两个温度单位之间的转换关系是:华氏度=32+摄氏度×1.8;摄氏度=(华氏度-32)÷1.8。
温度的测量和控制在许多领域都有广泛的应用,正确使用温度单位和温度计可以帮助人们更好地理解和控制环境。
温度的加减与换算
温度的加减与换算温度是人们常用来描述物体热度或冷度的物理量。
在日常生活中,我们常常需要进行温度的加减运算以及不同温度之间的换算。
本文将介绍温度的加减运算方法和温度单位之间的换算关系。
一、温度的加减运算方法1. 摄氏度(℃)的加减运算:摄氏度是最常见的温度单位,其加减运算十分简单。
当两个摄氏度数相加或相减时,直接将两个数的和或差即为所得结果。
例如,20℃ + 10℃ = 30℃;25℃ - 15℃ = 10℃。
2. 华氏度(℉)的加减运算:华氏度也是一种常见的温度单位,其加减运算方法与摄氏度类似。
当两个华氏度相加或相减时,直接将两个数的和或差即为所得结果。
例如,86℉ + 32℉ = 118℉;77℉ - 32℉ = 45℉。
3. 开氏度(K)的加减运算:开氏度是绝对温度,其加减运算涉及到温度的绝对零点,需要采用一定的计算方法。
开氏度的加减运算公式如下:T2 = T1 + ΔT其中,T1为初始温度,T2为最终温度,ΔT为温度的变化量。
例如,水的沸点是100℃,转换成开氏度为373.15K。
如果要计算水在50℃下的温度,可以使用以下公式:T2 = 273.15K + 50K = 323.15K二、温度单位之间的换算关系1. 摄氏度与华氏度的换算:摄氏度与华氏度之间的换算公式如下:℉ = ℃ × 9/5 + 32℃ = (℉ - 32) × 5/9例如,将25℃转换为华氏度:℉ = 25℃ × 9/5 + 32 = 77℉将77℉转换为摄氏度:℃ = (77℉ - 32) × 5/9 = 25℃2. 摄氏度与开氏度的换算:摄氏度与开氏度之间的换算公式如下:K = ℃ + 273.15℃ = K - 273.15例如,将100℃转换为开氏度:K = 100℃ + 273.15 = 373.15K将373.15K转换为摄氏度:℃ = 373.15K - 273.15 = 100℃3. 华氏度与开氏度的换算:华氏度与开氏度之间的换算公式如下:℉ = (K - 273.15) × 9/5 + 32K = (℉ - 32) × 5/9 + 273.15例如,将50℉转换为开氏度:K = (50℉ - 32) × 5/9 + 273.15 = 283.15K将283.15K转换为华氏度:℉ = (283.15K - 273.15) × 9/5 + 32 = 50℉通过以上的换算公式,我们可以方便地在不同温度单位之间进行换算。
温度知识点
温度知识点
温度是表示物体冷热程度的物理量,从分子热运动的观点看,温度越高,分子无规则运动越剧烈。
温度的国际单位是开尔文,单位符号是K;常用单位是摄氏度,单位符号是℃。
温度只能通过物体随温度变化的某些特性来间接测量,而用来量度物体温度数值的标尺叫温标。
1. 温度计的原理:根据液体的热胀冷缩的性质制成的。
2. 温度计的使用方法:
(1)在使用温度计测液体温度时,不能让玻璃泡接触到容器底和容器壁。
(2)温度计液柱停止上升或下降时才能读数。
3. 温度的常用单位:摄氏度(℃)。
4. 温度的国际单位:开尔文(K)。
5. 温度的测量:测量温度的工具是温度计,常用温度计是根据液体的热胀冷缩性质制成的。
常用的温度计有酒精温度计、水银温度计和气体温度计等。
6. 冷热的程度。
人对冷、热感知,由热量经体表和环境间的传递来完成。
皮肤中的冷感受器和温感受器受到不同强度的热刺激后,产生兴奋,经传入神经到达中枢神经系统,经中枢神经系统的综合分析后,形成冲动,传到效应器——皮肤、黏膜、内脏等,引起效应活动,产生冷或热的感觉。
以上内容仅供参考。
凉爽温暖炎热寒冷的温度划分
凉爽温暖炎热寒冷的温度划分
温度可以根据不同的标准和感觉来划分为凉爽、温暖、炎热和
寒冷。
首先,凉爽温暖炎热寒冷的划分可以根据气象学上的温度范围
来进行。
一般来说,凉爽的温度范围大约在15°C到20°C之间,
这种温度让人感到清爽舒适。
温暖的温度范围大约在20°C到
25°C之间,让人感到舒适和温暖。
炎热的温度范围通常超过30°C,让人感到闷热和不适。
寒冷的温度范围则通常在0°C以下,让人感
到寒冷。
其次,凉爽温暖炎热寒冷的划分还可以根据人们的主观感受来
进行。
对于不同的个体来说,对于温度的感受可能会有所不同。
一
般来说,凉爽的温度让人感到有点凉意但不至于感到寒冷,温暖的
温度让人感到舒适,炎热的温度让人感到燥热和汗流浃背,寒冷的
温度则让人感到冷到骨子里。
此外,凉爽温暖炎热寒冷的划分还可以根据不同的地理环境和
季节来进行。
比如对于热带地区来说,25°C可能被认为是相对凉
爽的温度,而对于北极地区来说,25°C可能被认为是相对温暖的
温度。
同样的温度,在夏季可能被认为是温暖的,而在冬季可能被认为是寒冷的。
综上所述,凉爽温暖炎热寒冷的温度划分是一个相对的概念,可以根据气象学标准、个人感受、地理环境和季节等多种因素来进行综合考量。
希望以上回答能够全面、完整地满足你的要求。
温度的读作和写作
温度的读作:温度,写作:°C(摄氏度)
温度是表示物体冷热程度的物理量。
在科学上,温度的读作:温度,用中文表示就是“温度”,写作°C(摄氏度)。
温度的计量单位有多种,如华氏度、开尔文等,其中摄氏度是最常用的温度计量单位之一。
摄氏度的符号为°C,是由瑞典天文学家安德斯·摄尔修斯于1742年发明的。
摄氏度的定义是:在标准大气压下,冰水混合物的温度为0°C,水的沸点为100°C。
温度的写作需要按照国际标准的计量单位进行。
具体来说,可以将温度的数值加上相应的单位符号“°C”,即可表示为温度的数值和计量单位。
例如,如果温度为35°C,则可以写作“35°C”。
温度在日常生活和科学领域中都有着广泛的应用。
在天气预报中,我们经常听到气温预报单位为摄氏度;在实验室中,温度是控制化学反应速度的重要参数;在医疗领域中,温度也是衡量人体健康状况的重要指标之一。
此外,温度还广泛应用于工业生产、农业生产、交通运输等领域中。
需要注意的是,虽然摄氏度是最常用的温度计量单位之一,但不同的国家和地区可能使用不同的温度计量单位。
因此,在进行温度的交流和计算时,需要确保使用相同的计量单位,以确保准确性和一致性。
总之,温度的读作和写作都是“温度”和°C(摄氏度),它广泛应用于各个领域,是衡量物体冷热程度的物理量。
在科学和日常生活中,温度都有着重要的地位和应用价值。
温度的拼音
温度的拼音
拼音:wēn dù
解释:1、冷热程度的定量表示法。
通常以水结冰与沸腾时的温度为基准,由温度计及温标定之。
也称为「热度」。
2、冷热的程度。
造句:1、温度降到摄氏零下十度。
2、技术人员勾绘出导热率对应平均温度的曲线。
3、我们家乡夏天的平均室外温度为摄氏25度。
4、在这个温度上。
5、因此我们升高一物体的温度。
6、“我们现在必须通过控制温度来确保它们不会继续繁殖,”他补充说到。
7、因为化学中我们所做的很多东西,都是在恒定
的温度和压强下进行的。
8、它取决于温度,而不是混合物中的另一成分。
9、在同样的压强和温度条件下。
10、它把压强,体积,和温度联系在一起。
11、如果你提高温度。
12、如果你知道状态方程,知道在体积恒定的时压强如何随着温度变化。
13、那是对于在这样的.,温度和压强下的纯液体。
14、这些变化导致早期宇宙的温度瞬间不同,这些我们能在宇宙的微波背景上看出来。
15、这意味着如果你确定了温度和压强的话,你就能确定在共存点的所有性质。
16、大多数的候选系统,如原子和半导体量子点,
只能在非常低的温度才能进行量子计算的工作。
与温度搭配的词语
与温度搭配的词语有:
1.体温:指人体内部的温度,通常在36.5℃左右波动,是衡量人体
健康状况的重要指标之一。
2.气温:指空气的温度,通常以摄氏度为单位表示。
气温的测量
对于气象预报、气候变化研究以及日常生活都有重要意义。
3.水温:指水的温度,通常以摄氏度为单位表示。
水温对于海洋
生物、渔业和水资源管理都有重要影响。
4.室温:指室内空气的温度,通常在20-25℃左右。
室温对于人体
舒适度和室内环境调节都有影响。
5.体温过低:指人体内部温度过低,可能导致身体机能障碍和生
命危险。
体温过低常见于长时间暴露在寒冷环境下或严重疾病
导致身体产热不足。
6.体温过高:指人体内部温度过高,可能导致高热惊厥、脱水、
心力衰竭等严重后果。
体温过高常见于感染、炎症、中暑等疾
病。
7.温差:指两个不同温度之间的差异,通常以摄氏度为单位表示。
温差对于人体舒适度和生物适应能力有影响。
8.温室效应:指地球大气层中的温室气体(如二氧化碳、甲烷等)
吸收红外辐射并重新辐射回地球表面的过程,导致地球表面温
度升高。
温室效应对于全球气候变化和人类活动都有重要影响。
9.恒温动物:指能够在不同温度条件下保持体温相对稳定的动物,
如哺乳动物和鸟类。
恒温动物具有较高的代谢率和调节能力,
能够适应更广泛的环境条件。
10.气温变化:指气温在不同时间或空间范围内的变化,包括日夜
温差、季节温差、地区温差等。
气温变化对于生态系统和人类生活都有重要影响,如气候变化对农业、水资源、能源等方面的挑战。
温度简写字母表示
温度简写字母表示
温度是物体的热状态,通常用摄氏度(℃)或华氏度(℉)来表示。
另外,还有一些简写字母表示温度,如下:
1. K:开尔文温度,也称绝对温度,是温度的国际标准单位,用“K”来表示。
2. R:兰金温度,是一种以绝对零度(-27
3.15℃)为零点的温度单位,用“R”来表示。
3. C:摄氏度的简写,用“C”来表示。
4. F:华氏度的简写,用“F”来表示。
除此之外,还有一些其他的温度单位和简写字母,如雷氏度(°Re)、牛顿度(°N)等,但使用较少。
总的来说,不同的温度单位和简写字母在不同的领域有着不同的应用,需要根据具体情况选择使用。
- 1 -。
温度等级划分
温度等级划分
温度等级的划分通常根据实际需求和常见标准而定。
下面是一种常见的温度等级划分:
1. 绝对零度(0K):这是温度的最低点,表示物体内部分子
的热运动停止。
2. 低温:通常指接近绝对零度的温度,常见的低温包括液氮温度(77K,-196℃)和液氦温度(4.2K,-269℃)等。
3. 常温:指一般环境下的温度,常见的常温范围为20-25℃。
4. 高温:通常用来表示较高的温度,常见的高温包括水沸腾的温度(100℃)和熔化金属的温度。
5. 极高温:通常指超过一般物质的耐受范围的温度,常见的极高温包括太阳表面的温度(约5500℃)和高温等离子体的温度。
需要注意的是,不同领域和应用可能会有不同的温度等级划分。
例如,工程领域可能会根据不同材料的特性和使用环境来确定温度等级分类。
此外,还有一些特殊的温度尺度,如摄氏度、华氏度和开尔文度等。
温度的比较与计算
温度的比较与计算温度是衡量物体热度或冷度的物理量,是一个十分重要且常用的物理参数。
在日常生活和科学研究中,我们经常需要比较和计算温度。
本文将介绍温度的比较方法和常用的温度计算公式,以帮助读者更好地理解和应用温度。
一、温度的比较方法温度的比较是指通过对不同物体或物质的温度进行观察和测量,来判断它们的热度高低。
常用的温度比较方法有以下几种:1. 直观比较法:直接通过观察物体或物质的状况来判断其温度高低。
例如,我们可以观察水是否沸腾、冷冻食品是否融化等来判断它们的温度。
2. 手触比较法:通过用手触摸物体或物质的表面,来感受其温度高低。
然而,这种方法只适用于温度较低的物体,对高温或低温的物体并不安全或准确。
3. 温度计比较法:利用温度计测量物体或物质的温度,并将其数值进行比较。
温度计可采用水银温度计、酒精温度计、电子温度计等不同类型。
测得的温度数值可以直接进行比较,确定温度高低。
二、温度的计算公式在科学研究和工程实践中,我们常常需要进行温度的计算。
下面介绍几种常用的温度计算公式:1. 摄氏度与华氏度的转换公式:摄氏度和华氏度是两种常用的温度单位。
它们之间的转换公式如下:华氏度 = 摄氏度 × 9/5 + 32摄氏度 = (华氏度 - 32) × 5/92. 摄氏度与开尔文的转换公式:开尔文是国际单位制中的温度单位,在科学研究中经常使用。
摄氏度与开尔文的转换公式如下:开尔文 = 摄氏度 + 273.15摄氏度 = 开尔文 - 273.153. 热量计算公式:温度的计算也与热量有关。
当物体的质量、热容和温度变化量已知时,可以利用热量计算公式计算最终温度。
常用的热量计算公式如下:热量 = 质量 ×热容 ×温度变化量温度变化量 = 热量 / (质量 ×热容)三、应用实例为了更好地理解温度的比较与计算,以下举几个具体的实际应用实例。
【实例一】小明将一杯热水和一杯冷水放在同一个房间内,想比较它们的温度高低。
名词解释温度
名词解释温度温度是一种物理量,它用来衡量外界环境或物质体内某种有序性的程度。
它被定义为物质体中热力学参数,或它可以反映物质体外界环境的温度状态。
它是一种重要的物理量,广泛应用于实际生活中。
温度可以以摄氏度、华氏度和开尔文三种不同的单位表示。
下面介绍一下这三种不同的温度表示法:1.氏度(即Celsius):氏度是按照比利时化学家艾萨克特斯拉(Isaac?Telsa)于1742年提出的“热量单位”来衡量温度的,它主要是用水的熔点为0度,沸点为100度来表示的。
目前摄氏温度正在被广泛使用,它主要在欧洲、亚洲、拉丁美洲等地区使用。
2.氏度(即Fahrenheit):氏度是英国物理学家威廉菲尔斯(William?Fahrenheit)在1714年提出的衡量温度的单位,它将水的熔点定义为32度,沸点定义为212度。
它在美国和其他一些国家仍然使用,但主要用于测量体温。
3.尔文(即Kelvin):尔文是根据物理学家彼得开尔文(Peter?Kelvin)有关系统物理学原理以及它与其他物理量之间的关系提出的,它将绝对零点(-273.15摄氏度)作为一个物理量,称为绝对零点。
它用于实验物理学的研究,是一种标准热力学量,是热力学中最重要的量。
温度可以表示物质体内部的温度,也可以表示物质体外部环境的温度。
在物质体内部,物质体表面温度是一个对物质体内部温度的罕见测量,通常是衡量温度的主要方法。
物质体外部环境温度是通过温度计来测量的,它可以提供室外环境温度的量化描述,也可以用于测量深海和星际空间的温度。
温度在实际生活中起着重要的作用,它可以用于改变物质的物性,也可以用于控制物质的变性温度,这是生活中最常见的用途。
此外,温度也可以用于测量体温,诊断疾病的发病机制,调节室内温控装置,监控室外环境的温度以及控制气候变化等等。
总之,温度是一种重要的自然量,它不仅可以在我们日常生活中使用,还可以在科学研究中应用。
它在不同地区用不同的单位进行衡量,但不管怎样,它都表明物质体内外温度的变化,为我们提供重要的提示。
温度的计量单位
温度的计量单位主要有摄氏度(Celsius)、华氏度(Fahrenheit)和开尔文(Kelvin)。
1. 摄氏度(°C)是一种常用的温度计量单位,通常用于科学、工程和日常生活中。
当水的冰点为0°C,沸点为100°C时,我们称之为绝对温标。
2. 华氏度(°F)是英制体系下使用的温度计量单位,通常在美国和一些其他国家使用。
水的冰点为32°F,沸点为212°F。
3. 开尔文(K)是热力学温度的单位,也被称为绝对温标。
开尔文温度是以绝对零度(-273.15°C)为零点,单位与摄氏度相同。
开尔文是国际单位制(SI)中的温度单位。
这些温度计量单位可以通过特定的转换公式进行互相转换。
例如,从摄氏度到华氏度的转换公式为:F = C × 9/5 + 32;从摄氏度到开尔文的转换公式为:K = C + 273.15。
类似地,可以使用逆向的公式将其他单位转换为摄氏度。
需要根据具体的应用场景和需要选择合适的温度单位进行使用。
例如,科学实验常用开尔文温度,而日常生活中常使用摄氏度。
温度的简写
温度的简写
温度的简写是“℃”(读作摄氏度)。
下面是10个造句:
1. 今天的气温在20℃左右。
2. 昨晚温度骤降,降到了零下5℃。
3. 房间里太热了,温度已经达到了30℃。
4. 在高温天气中,人们要注意防暑降温,避免身体受热过度。
5. 煮水时,需要将温度升高至100℃以上才能沸腾。
6. 这种食材最适合在15℃以下储存,以保持其新鲜度和口感。
7. 天气预报说今晚的温度会降到-10℃,大家一定要注意保暖。
8. 实验室中的恒温器可以将温度控制在一个稳定的范围内,确保实验的准确性。
9. 为了让奶茶的味道更好,需要在55℃左右的温度下冲泡。
10. 医生建议在感冒发烧期间,将家中的温度保持在20℃以上有助于身体恢复。
温度的两种表示方法
温度的两种表示方法温度是一个重要的物理量,它反映了物质的热力学状态。
温度的表示方法有多种,有时候会混淆人们,包括摄氏温度和华氏温度两种。
摄氏温度(℃)是指用水的凝固温度作为零点,用气体的沸点来作为100度的温度表达方式。
摄氏温度可以用负温度和正温度来表示,负温度表示低于零度的温度,正温度表示高于零度的温度。
华氏温度(°F)又称弗氏温度,是指以摄氏温度零度时,弗氏温度的值为32度,并将其中一个气体的沸点作为212度,温度范围以负值和正值表示,负值表示低于32度,正值表示高于32度。
摄氏温度和华氏温度的温度范围是相似的,但它们的表达方式有别。
由于它们的转换关系是精确的,我们可以正确计算任何温度的摄氏与华氏温度之间的转换关系。
例如,我们可以把华氏温度32度转换成摄氏温度0度,把华氏温度104度转换成摄氏温度40度,把华氏温度212度转换成摄氏温度100度,等等。
摄氏温度和华氏温度是两个经常用到的温度表示方法。
它们都反映了物质的热力学状态,但由于它们的表达方式不一样,转换关系也不一样,在实际的生活和工作中,我们根据实际情况选择使用哪种表达方式。
温度的表达方式更深入地分析就是温度的单位,它们也是衡量温度大小的参数。
温度单位通常用kelvin (K),摄氏温度是K,华氏温度是K。
kelvin是国际单位,它是一种绝对温度单位,它的起源点是绝对零度,它以一种潜在的物质变化驱动,变化的范围是从-273.15度到无限大,它可以用来测量高温和低温的情况,并且可以对物质进行定性分析,因此被广泛用于物理学和化学学科中。
总之,温度是一个重要的物理量,它有多种表示方法。
摄氏温度和华氏温度是两种常用的温度表示方法,它们的表达方式不同,有着不同的转换关系。
kelvin是一种国际温度单位,它可以用来测量物质在不同温度下的状态。
在实际的生活和工作中,我们要根据实际情况灵活选择温度表示方法,使用合理的温度单位,进行恰当的温度表示。
温度的概念和基本原理
温度的概念和基本原理
温度是物体内部或周围环境的热能状态的度量。
它是描述物体热量传递方向和速率的重要物理量。
温度的基本原理可以通过分子动力学理论和热力学来解释。
温度与分子的平均动能有关。
物体内部的分子不断运动,它们具有动能。
温度高意味着分子的平均动能高,而温度低则表示分子的平均动能低。
分子之间通过碰撞和相互作用来传递热量。
当两个物体接触时,分子之间的碰撞会导致能量的传递,使得两个物体的温度趋于平衡。
这个过程被称为热平衡。
温度的测量通常使用温度计,其中最常见的是基于热胀冷缩原理的水银温度计。
温度可以用不同的温标来表示,包括摄氏度()、华氏度()和开尔文(K)。
温度的单位转换可以通过一些公式进行:
- 摄氏度与华氏度之间的转换:= ×9/5 + 32
- 摄氏度与开尔文之间的转换:K = + 273.15
总之,温度是描述物体热能状态的物理量,与分子的平均动能有关。
它通过分子之间的碰撞和能量传递来实现热平衡。
温度的测量可以使用温度计,并可以用不同的温标来表示。
人体舒适温度范围标准
人体舒适温度范围标准
人体舒适温度范围是指人们在不同的季节和环境下感到最舒适的温度范围。
这个范围受到人体感受温度和环境温度的共同作用,以及不同人群和不同时间的影响。
一、温度范围
.冬季温度范围
.在冬季,人体感到舒适的温度范围一般在18℃到25℃之间。
这是因为在寒冷的季节中,人体需要保持体温,避免受到寒冷的刺激,以免引发感冒和其他健康问题。
.夏季温度范围
.在夏季,人体感到舒适的温度范围一般在25℃到30℃之间。
这是因为在炎热的季节中,人体需要保持正常的代谢功能,避免出汗过多和脱水等问题。
二、湿度范围
.冬季湿度范围
.在冬季,人体感到舒适的湿度范围一般在30%到80%之间。
这是因为在干燥的季节中,人体需要保持呼吸道的湿润,避免出现口干舌燥和喉咙疼痛等问题。
.夏季湿度范围
.在夏季,人体感到舒适的湿度范围一般在20%到60%之间。
这是因为在炎热的季节中,人体需要保持汗腺的通畅,避免出现中暑和其他健康问题。
三、注意事项
.不同人群的舒适温度范围存在差异,因此需要根据不同年龄、不同性别、不同身体状况等因素进行调整。
.随着季节、地点、时间的变化,人体舒适温度范围也会发生变化,因此具体数值需要根据实际情况进行调整。
.在确定人体舒适温度范围时,需要注意保持室内空气流通,避免长时间处于封闭的环境中。
.在使用空调或暖气时,需要注意保持适宜的室内温度和湿度,避免过度调节导致身体不适。
.在进行户外活动时,需要注意保暖和防晒措施,避免受到寒冷的刺激和紫外线的伤害。
名词解释温度
名词解释温度温度是温度变化和物质状态变化的量化表征,是热力学活动和质量变化的客观反映,但由于温度对其他物理现象有着重要影响,被广泛应用到各个领域。
温度可以定义为一种描述热力学活动和质量变化的量。
它由摄氏度(° C)和华氏度(° F)组成,其中°C又称为开氏度。
温度是物质温度的量化表征,有时也可以描述为物质之间的能量交换。
温度指的是物体表面的表面温度,一般以摄氏度为单位表示,也可以用华氏度来表示,这两个温度单位之间的换算关系是:摄氏度=(华氏度-32)÷1.8。
温度变化是物质性状变化的主要原因之一。
当温度超过物质的凝固温度,物质就会凝固,如水凝固成冰;当温度高于物质的沸点,物质就会沸腾,如水沸腾成蒸汽;当温度高于物质的熔点,物质就会熔融,如水熔融成水汽等。
温度还与热力学有关。
热力学的研究表明,当温度增加时,物质的熵增加,当温度降低时,物质的熵减少。
而熵又是物质的特征之一,它是物质排列结构及其化学反应特性的量化表征。
因此,温度变化会影响物质的熵值,从而影响物质的状态。
此外,温度还影响许多其他物理现象,如电导率、溶解度、吸附、磁性、易燃性等。
这些影响,既有利也有弊,可以让物质在一定温度范围内具有更多的特性,也可能让物质在一定温度范围内产生不利变化,带来损害和危害。
因此,温度对于物质性能有着重要的意义。
温度可以有不同的形式,例如热量、加热量、蒸汽压力、电流和电场等。
它不仅能够用来影响物质的性质,而且还能用来控制和测量热力学系统的变化。
温度的应用涉及到人们日常生活的方方面面,例如温度的变化可以帮助农民掌握农作物的种植季节,也可以帮助餐厅控制食品的加工及储存温度;温度控制也帮助工厂控制加工环境以确保质量;温度还能帮助医学研究者掌握人体各个部位的温度,以解答一些健康问题;而在航空和水上运输过程中,则需要对温度进行实时测量,以确保安全的航行。
总之,温度是用于表示物质状态变化和热力学活动的量化表征,它不仅是物质性质变化的主要原因之一,而且还能用于控制及测量许多物质的性质变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A Novel Cascade Temperature Control System for aHigh-Speed Heat-Airflow Wind Tunnel Yunhua Li,Senior Member,IEEE,Chaozhi Cai,Kok-Meng Lee,Fellow,IEEE,and Fengjian TengAbstract—In order to meet stringent temperature-control re-quirements in a high-speed airflow wind tunnel(HA WT)for ther-mal simulation under complicated work conditions such as thermal strength experiment of aero engine blade and dynamic calibration of high temperature thermal coupler,this paper proposes a novel cascade fuzzy-PID(C-Fuzzy-PID)compound control method for regulating the fuel-oilflow rate in the inner loop and temperature in the outer loop.The mathematical models that characterize the dynamics of the heat airflow temperature in the combustor and the fuel-oilflow rate for combustion are derived,upon which the im-proved PID control laws for the inner and outer loops are described. The former employs a fuzzy-PID controller with a predictor for controllingflow rate in the inner loop,which effectively overcomes influences according to its characteristics of large inertia and trans-port lag in fuel-oil supply system on the temperature responses.The latter combines disturbance compensation and a fuzzy-PID feed-back law to suppress influences due to factors such as change in work conditions,disturbances,and time-varying parameter varia-tions.The C-Fuzzy-PID method has been numerically investigated by comparing simulation results against two traditional PID-based methods,as well as experimentally validated confirming that the proposed control algorithm has strong robustness and excellent adaptability for temperature control of an HA WT.Index Terms—Cascade control,fuzzy PID,high-speed heat air-flow simulation,predictive control,temperature control,thermal wind tunnel.I.I NTRODUCTIONT HE high-speed airflow wind tunnel(HAWT)for thermal simulation is an important aerospace experimental system. An HAWT that produces a uniform and controllable tempera-turefield has been widely used in heat-strength experiments of high temperature aeroengine blades and dynamic calibration of thermal sensors[1].Among the challenges in developing an HAWT is the modeling of the dynamic system and the design of a controller capable of regulating temperature and fuel oil with quick response for a wide range of the temperature.Manuscript received August17,2012;revised January14,2013and April 7,2013;accepted April30,2013.Date of publication May30,2013;date of current version July8,2013.Recommended by Guest Editor H.Gao.This work was supported in part by the China Scholarship Council and was partly carried out while thefirst author was with The George W.Woodruff School of Mechan-ical Engineering,Georgia Institute of Technology,as a Senior Research Fellow. Y.-H.Li,C.Cai,and F.Teng are with the School of Automation Science and Electric Engineering,Beihang University,Beijing100191,China(e-mail: yhli@;caichaozhi1983@;tengfengjian@).K.-M.Lee is with The George W.Woodruff School of Mechanical Engineer-ing,Georgia Institute of Technology,Atlanta,GA30332-0405USA(e-mail: kokmeng.lee@).Color versions of one or more of thefigures in this paper are available online at .Digital Object Identifier10.1109/TMECH.2013.2262077In an HAWT,the mixing of the aviation kerosene with air and their subsequent burning in the combustor results in a complex physicalfield;the thermal-flied environment being simulated is a high-speed airflow of high temperature.The high-temperature airflowfield is governed by theflow rate ratio between the kerosene and the air supplied to the combustor.In practice,the outlet airflow temperature of the HAWT for a specified air-flow speed is adjustable when conducting experiments.Thus, the output temperature of the combustor,which depends pri-marily on keroseneflow rate,can be theoretically controlled by precisely manipulating theflow rate of the fuel oil feeding to the combustor.However,variations in the input airflow along with inadequate fuel-oil combustion and other unknown fac-tors result in significant temperaturefluctuations which must be considered in the controller design for regulating fuel-oilflow rate and temperature.Prior research generally focused on the design and control of thermal wind tunnels particularly on three aspects:modeling and regulating theflow rate,developing a strategy for controllingflow rate,and designing a temperature control system for the combustion process.Three methods are commonly used forflow rate regula-tion;namely,valve control,variable-displacement pump con-trol,and variable-frequency(VF)drive motor-pump control. Among them,the VF drive control method has been widely studied and applied for its saving-energy superiority.A survey on VF speed-regulating technology in hydraulicfield can be found in Peng et al.[2].Zhao et al.[3]applied VF hydraulic pump to a central air conditioning system achieving good energy saving by means of optimization.Energy-saving problems with a VF hydraulic control have also been studied especially on the uses of VF speed-regulating technology for energy saving in hy-draulic elevators[4]–[6].In an attempt to address speed-tracking problems in the VF hydraulic system,an algorithm combining disturbance compensation with a proportional-plus-derivative feedback controller was proposed in[7]for eliminating errors and nonlinear effects.Due to some advantages including sim-plicity in structure,low cost,large adjustable range,energy saving,and good control performance,VF speed regulation has become an importantflow rate control method[8],[9].In the community offlow rate control research,Li et al.[10] presented a method for controlling theflow rate of a heat wind tunnel.Li et al.[11]proposed a pulse-and-gliding con-trol strategy to minimize fuel consumption of an automatic car. Apart from traditional methods(such as PID control of high-temperature hydraulic systemflow rate in[12]),a few other advanced techniques have been recently proposed.For exam-ple,Zhang and Li[13]employed a fuzzy-PID law(without taking into account inertia and pure time delay)for controlling1083-4435/$31.00©2013IEEEflow rate.A Smith predictor and PID control law was designed in[14]for plants with a pure time delay due toflow meter,which however needs an accurate mathematical model of the plant. Temperature control has many applications.For examples,a cascade neural-PID temperature control system for controlling the temperature of superheated steam boiler steam was devel-oped in[15];an optimal robust minimum-order observer was designed in[16]for high-precision steam temperature control;a back-propagation neural-network PID controller with an im-mune genetic algorithm was trained in[17]for overcoming in-fluences of steam temperature caused by time-delay,inertia and nonlinearities.Dong et al.[18]analyzed the effects of saturated output-feedback dissipative control on the steam temperature in a steam generator.Temperature control is also widely studied for engine thermal management.Widd et al.[19]proposed a predictive method based on physical models for temperature control of a homogeneous charge compression ignition com-bustor.Choukroun et al.[20]improved a traditional PI-based temperature control method for a single-loop engine thermal management system.Cipollone et al.[21]used a proportional valve as an alternative to traditional thermostat and studied its effects with a few control methods.Setlur et al.[22]established a model for heat management of an engine with nonlinear char-acteristics and realized nonlinear control of the temperature.To address temperature control of the engine,Salah et al.[23]stud-ied a back-stepping control law for the conventional radiator and a multiple-loop model for the engine thermal management sys-tem[24].Xu et al.[25]discussed using a genetic algorithm to design PID parameters for temperature control of a multiphase flow wind tunnel.Camporeale et al.[26]developed a nonlinear model for a gas turbine and designed a decoupled temperature controller.Kim and Kim[27]studied fuzzy-PI control for a gas turbine;a similar method was also used by Meza et al.[28] for a robot manipulator.Ho et al.[29]combined fuzzy control with an adaptive sliding mode control for speed control of a hydraulic motor.Li et al.[30]developed a fuzzy-control law for an equivalent nanosatellite radiator earth simulator.This paper addresses problems commonly encountered in designing a controller for simultaneously regulating both the fuel-oilflow rate and the temperature of an HAWT,where the plant is characterized by a wide temperature range from200to 1700◦C and high heating rate(with temperature raised from 200to1700◦C within30s).Additionally,the control law must be able to deal with large thermal andflow inertia,transport time lag,and robust in the presence of significant disturbances. To effectively solve these problems,there is a need to develop a mathematical model that takes into accounts the combined dynamics of fuel-oilflow and combustion,and a method for high-performance temperature control with strong robustness. The rest of this paper offers the following.1)The mathematical models that characterize the dynamicsof fuel-oilflow and the gas temperature in the combustor for a typical HAWT are derived,which provide the essen-tial basis for design analysis and numerical simulation.2)Along with the new approach for regulating theflow rateof the fuel-oil supply system,a new C-Fuzzy-PID control law(consisting an innerflow rate and an outertemperature Fig.1.Temperature control system of HAWT.control loops)is presented.The inner loop incorporates a predictive control law to overcome the influences of trans-port lag in the fuel-oil supply system while the outer loop is designed to suppress disturbances due to the wind speed pared with the traditional PID cascade con-trol,the C-Fuzzy-PID effectively rejects to the influence of the time lag and working conditions change.3)The C-Fuzzy-PID method has been numerically studiedby comparing simulation results against two traditional methods,PID-PID and PID-Smith,as well as experimen-tally evaluated demonstrating its robustness and excellent adaptability.II.S YSTEM D ESCRIPTION AND M ATHEMATICAL M ODEL Fig.1shows the temperature control system of a typical HAWT,which consists of three subsystems;fuel-oil supply, combustion,and computer control.The fuel-oil supply subsys-tem adjusts theflow rate of the aviation kerosene feeding to the combustor.The combustion subsystem mixes the fogged kerosene with preheated air,burns them,andfinally forms the heat airflow at a specified temperature.The control subsys-tem consists of a programmable logic controller(PLC)as a field controller,an industrial personal computer(IPC)as a re-mote controller,flow rate sensors,thermocouples,VF driver, and signal conditioning circuits.Specific control algorithms are implemented on the IPC considering that the operation ability of the PLC is limited.The PLC receives control commands from the IPC,adjusts the fuel-oilflow rate through controlling the VF motor and the proportional valve,andfinally achieves the closed-loop temperature control of the overall system.The block diagram of the overall system is shown in Fig.2. The inner loop controls the fuel-oilflow rate(measured by the gearflow meter),where the controlled plant consists of a VFFig.2.Control scheme of the overall system.TABLE IN OTATIONS AND V ALUES OF P ARAMETERS OF A PLANTdriver,motor pump,and transmitting line,while the outer loopcontrols the temperature (measured by using thermocouples)of the gas in the combustor.The output of the outer loop controller is the input of the inner control system,thus forming a cascade control system.For clarity and completeness,the notations and the values of the plant parameters are given Table I.HAWT is a complicated process concerning fuel regulation and transmission,and its subsequent combustion in air.Al-though classical laws governing the physics of the individ-ual processes may be widely known,the relatively completemodeling of the HAWT as an integrated thermal-mechatronic system for effective temperature control is still underexploited due to the complexity of the overall plant.A.Modeling of Flow Rate in the Inner LoopBecause the fuel-oil supply system is mainly operated in the VF speed-regulating mode,the mathematical model and flow rate control strategy have been setup in this mode.The operation mode of VFD in this system is variable voltage variable frequency,the input control signal is the output volt-age of the controller,and the output of the VFD is the voltage across to the stator coil of the VF induction motor.The rela-tionship between input and output of the VFD is linear;when not considering low frequency torque compensation,it can be expressed byU A =K f K inv u(1)where U A is the output voltage of VFD,K f is the gain between the frequency f and the input control voltage u of the VFD,and K inv is the voltage–frequency ratio.Generally,the VF induction motor is operated with a constant voltage–frequency ratio,where the electromagnetic time con-stant is much smaller than that of rotor dynamics.Denoting ωs as the synchronized angular frequency of the motor,R s as the phase resistance of the stator side,and L s and L re as the stator induc-tance and equivalent rotor inductance,respectively,and consid-ering that the slip ratio (s L =1−n p /n s )of the asynchronous motor is usually less than 5%under the common work con-ditions,therefore R re s L R s ,R re s L ωs (L s +L re ).Under the aforementioned conditions,the torque Γe (in N ·m )acting on the motor shaft,which can be derived from the electromag-netic moment equation of the VF motor,can be approximately written asΓe ≈3m p U 2A ωs R re s L =3m p U 2A2πR re fs L (2)where ωs =πn s /30;n s =60f/m p ;n p and n s are the actualrotational speed and the synchronous rotational speed of the motor in revolution per minute,respectively.Substituting the expressions of s L and n s into (2)yieldsΓe =3m p 2πR re K f U A −m 2p 40πR reK 2f n p =K 1U A −K 2n p .(3)Mechanically,the moment balance equation on the motor shaft is as follows:Γe =J Tπ30dn p dt +B T πn p30+D p p p 2πηpm(4)where p p is the output pressure of the pump in pascal.According to the continuity equation describing the flow rate of the volumetric chamber in the output port of the pump,and neglecting the influence of the compressibility of the fuel oil while considering that the pressure of the fuel oil is less than 1.2MPa and the volume elastic modulus of fuel oil is larger than 1.0GPa,the output flow rate of the oil supplying the pump canFig.3.Lumped-parameter model of a long pipeline.be approximately written as follows:q fuel =160D p n p −C p p p (5)where q fuel is actual flow rate of oil supplying pump,m 3/s .Since the energy loss of the long fuel-oil pipeline from the pump to the combustor nozzle of the HAWT is the pressure loss,it must be modeled to account for its influences.Moreover,there are also dynamic influences of the fluid inductance and capacitance of the pipeline,as well as the throttling resistance of the nozzle in the ing the lumped parameter method [13]to model the long pipeline system (in terms of its fluid resistance R ,capacitance C ,and inductance L as shown in Fig.3),the equation characterizing the transfer functions of the pipeline can be written asp 2(s )q 2(s ) =1+LCs 2−(R +Ls +RLCs 2)−Cs 1+RCs p 1(s )q 1(s )(6)where C =πd 2l4βe ;L =4ρf u e l l πd 2;R =R 1+R 2,R 1=128μl πd 4,R 1and R 2are the liquid resistance of the pipeline liquid or the nozzle,respectively.The resistance R N of the nozzle in Fig.3is obtainable from linearizing its pressure/flow rate relationship:q 2=C d A2p 2/ρfuel (7)where C d is the discharge coefficient,and A is the effectiveflow area of the hole.Linearizing (7)about the operating spout pressure ¯p 2(which is generally a measurement value at starting frequency)leads to (8)for a constant area nozzle holeΔq 2=K c Δp 2where K c =C d ¯A√2ρfuel ¯p 2.(8)There are six nozzles in the combustor,and the liquid resis-tance at the spout can be obtained according to the principle of resistance parallel as follows:R 2=16K c =16∂p 2∂q 2=√2ρoil ¯p 26C d A .(9)Neglecting the compressibility of fuel oil and consideringC =0in (6),and we can obtainq 1=q 2=q fuel =P pLs +R 1+R 2.(10)Combining (1)to (10)yields a transfer function between the oil fuel flow rate q fuel and the VFD input voltage u as follows:G 0(s )=q fuel (s )u (s )=b o ω2n s 2+2ζωn s +ω2n(11)Fig.4.Energy transfer diagram in a combustor.where ω2n =1J T C p L [(1+C p R )(B T +30πK 2)+d 2P R 40π2ηm ;2ζωn =1J T (B T +d 2P40π2ηm C p )+1+C p R C p L +30πK 2;and b o ω2n =K 1d p2πJ T C p L .To account for the pure time delay τexisted in gear flowmeter,the output flow rate q s of the flow meter is expressed byq s (s )=e −τs q fuel (s ).(11a)B.Modeling of Temperature in the Outer LoopFig.4illustrates the energy transfer in the combustor,where the gas temperature in the combustor is the controlled variable in the outer loop.Formulated using a lumped parameter approach,the gas tem-perature T (assumed uniform in the combustor)is governed by the law of energy conservation given in (12)along with the individual contributions of the heat powers Q (W)defined in (12a)–(12e)in terms of temperatures (◦C):V ρp c pdTdt=Q fuel +Q air −in −(Q air −ex +Q water +Q wall )(12)Q fuel =Hρfuel q fuel(12a)Q air −in =ρair −in q air −in c p 1T in (12b)Q air −ex =ρe q ex c pe T (12c)Q wall =hA c (T f −T ∞)(12d)andQ water =ρw q w c w (T w −T w 0)(12e)where Q oil is the heat power released by combustion of thefuel oil into the combustor;Q air −in and Q air −ex are the heat power brought into and out the combustor by the airflow and the exhaust gas,respectively;and Q wall and Q water are the power due to conduction heat transfer through the combustor wall and that due to heat circulation of the cooling water,respectively.T in is the temperature of the airflow entering the combustor;T f is the temperature of the inner combustor wall;T ∞is the ambient temperature;T w 0and T w are the temperature of the cooling water flowing into and out of the combustor,respectively;and ρe ,q ex ,and c pe are the density (kg /m 3),flow rate (m 3/s),and specific heat capacity (J/(kg ◦C))of the exhaust gas flowing out of the combustor.Substituting (12a)–(12e)into (12)yields V ρp c p dT dt =Hρfuel q fuel +ρair −in q air −in c p 1T in −ρex q ex c p 2T −KA 1(T f −T ∞)−ρw q w c w (T w −T w 0).(13)According to the law of quality conservation(with negligible quality change of gas in the combustor),we haveρex q ex=ρfuel q fuel+ρair−in q air−in.(14) The massflow rate of the input airρair−in q air−in is much larger than the massflow rate of the oil fuelρfuel q fuel in the actual burn-ing process.So,we can considerρex q ex≈ρair−in q air−in,andalso can consider c p1≈c p2≈c p.Assume that the temperature of combustor wall T f=αT and cooling water temperatures in export T w=βT,then(13)can be simplified asVρp c p dTdt+ρair−in q air−in c p T+KA1αT+ρw q w c wβT= Hρfuel q fuel+ρair−in q air−in c p T in+KA1T∞+ρw q w c w T w0.(15) Because the inlet air,the inlet temperature,cooling environ-mental temperature of combustor wall,and temperature of the cooling water are basically stable and can be seen as a constant in the experimental process for the certain work conditions, so the rear three items of(15)can be considered as a constant item.Taking Laplace transformation of(15)leads to the transfer function between T(s)and q oil(s)as follows:G1(s)=T(s)q oil(s)=K pT p s+a(16)where a=ρair−in q air−in c p+KA1α+ρw q w c wβ,K p= Hρfuel,and T p=Vρp c p.III.D ESIGN OF THE C ONTROLLERSThe following two sections describe the design of the inner and outer loop controllers for regulating the fuel-oilflow rate and gas temperature,respectively.A.Design of a Flow Rate Controller in the Inner LoopAs modeled in(11)and(11a)and observed during the debug-ging of the system,the open-loop transfer function of the inner loop control system has a transport lag due to theflow rate sen-sor.In addition,the nonlinearity and uncertainty of the motor-pump and pipeline also makes it difficult to achieve the desired control effects by simply using a simplefixed-gain PID con-troller.Fuzzy control law and fuzzy rule-based control law have been widely applied in control systems because it relaxes the accuracy requirements on the mathematical model of the plant. According to the system characteristics of a typical HAWT,an improved fuzzy-PID controller with a predictive algorithm is designed for theflow rate control in the inner loop as shown in Fig.5.This new compound fuzzy PID control law is effective in overcoming the effects of time delay on the system.The fuzzy-PID predictive controller achieves its control per-formance through the combined effects of predictive control on the time-delay elimination and rule-based tuning PID gains on the improved system robustness and steady-state accuracy.As illustrated in Fig.5,the fuzzy-PID predictive controller is im-plemented in three steps.In thefirst step,a Levinson predictor is designed to determine the output value of the future d steps from the historical data of the process output.Next,the error is computed by comparing the predicted value that is fedback Fig.5.Fuzzy PID predictive controller.against the reference signal.Based on the computed error and the PID gain parameters that are updated by the fuzzy controller in real time,thefinal step determines the output of the PID controller.1)Levinson Predictor:The Levinson predictor method pre-dicts the values of the output variables in the future d steps built upon the moving output average y m of n process historical data. For the predictor output at k th time instant in(17),the predicted value of d step ahead is given by(18):y m(k)=−ni=1a i y(k−i)(17)y m(k+d|k)=−a1y m(k+d−1|k)−···−a p−1y m(k+1|k)−a p y(k)−···−a n y(k+d−n).(18) In(17)and(18),the optimal forecasting parameters,{a i} where i=1,...,n,are predetermined using a recursive least-squares method.2)Design of a Fuzzy-PID Controller:The three PID gains are generally determined through empirical methods such as process reaction curve criteria;once determined,they cannot be changed throughout the controlling process.Unfortunately, these simplefixed-gain PID controllers will not guarantee the adaptability of the actual fuel supply system to the change of its working conditions.In order to have a good control effect on theflow rate,this paper enhances the PID controller with fuzzy control which adjusts in real time the PID gains according to the state of the linguistic variables(E and EC)of the error e and the error change ec;namely,the inputs of the fuzzy PID controller are e and ec,and the output is the three incremental gains(ΔK p,ΔK i,andΔK d)of the PID control law.When implementing the fuzzy PID control law,the controller inputs(e and ec)are quantified to the specified range(−5,5), upon which the membership degree for each linguistic variable is then determined.Here,the linguistic variable sets for the inputs and output of the fuzzy controller are chosen as{NB, NM,NS,ZO,PS,PM,PB}and expressed by{−4,−3,−2,−1, 0,1,2,3,4}.Unlike the traditional fuzzy control a Mamdanni’s rule table for fuzzy reasoning,the fuzzy rules for the fuzzy-PID controller are based on analytic formula with an adjusting factor to improve the adaptability of the fuzzy rule as follows:U=[λE+(1−λ)EC](19)Fig.6.Structure of an outer loop temperature controller.whereλis the correction factor,its adjustment law isλ=λ1|E|+λ2λ,λ1,λ2∈[0,1](20) whereλ1andλ2are selected according to the impact weights of the error on the control system performance.Using(19),the output of the fuzzy PID controller is calcu-lated,upon which the incremental PID gains are determined with a defuzzier.Thefire-membership functionμF(u)for the fuzzy control output of each fuzzy rule can be determined asμF(u)=5i=15jμ(i,j)(u)μi(e)μj(ec)(21)whereμi(e),μj(ec),andμ(i,j)(u)denote the triangular membership functions.Calculation of the defuzzier formula (based on the method in[30]and[31])can be written asu=5k=−5μF(u k)u k5k=−5μF(u k)(22)where u denotes the output of the fuzzy controller after de-fuzzier,and it has three gains of fuzzy PID.B.Design of Temperature Controller in the Outer LoopAs seen in(15),changes of the airflow,cooling waterflow rate,and environment temperature would appear as disturbances in the combustor gas-temperature control system.Because the flow rate of the cooling water can be adjusted by a water supply with a regulating valve and a water pump with afixed rotational speed in practice,the change inflow rate of the cooling water is not large.On the other hand,temperature experiments with different wind speeds at the same temperature are often needed. For example,the characteristics of a specimen at a specified temperature(say1000◦C)must be tested for a range of wind speeds(say0.6,0.8,and1Ma).Any switch in wind speed could have a significant influence on the model and control performance of the plant;thus,the control system not only must reject any disturbances quickly to achieve accurate temperature regulation,but also overcome any impact caused by a switch of work condition;for example,a change in the airflow from0.6 to0.8Ma.In order to accomplish this control objective,a compound controller has been designed as shown in Fig.6,which com-bines compensation for wind speed change with a fuzzy PID for temperature control.The fuzzy-PID temperature controller has the same structure for the fuzzy-PIDflow rate controller in the inner loop.The compensation coefficient to reflect theTABLE IIP ARAMETERS V ALUES OF AN I NNER CONTROLLERTABLE IIIP ARAMETERS V ALUES OF AN O UTER CONTROLLERchange of the wind speed is determined by combustion theory and empirical experience.IV.S IMULATIONSIn order to evaluate the effectiveness of the improved C-Fuzzy-PID controller described in Section III,simulations were performed in Simulink according to the mathematical models of HAWT in Section II.The relevant parameters of the plant,pre-dictor,and controllers used in the simulation are,respectively, given in Tables I–III.A.Setting of Simulation Cases and Comparative Control Laws Comparative numerical studies were conducted using three methods.1)C-Fuzzy-PID control law presented in the paper;2)PID-PID cascade control law,where both the inner fuel-oilflow rate loop and outer temperature loop are PID controlled;and3)PID-Smith cascade control law,where the inner loop usesPID with a Smith predictor and outer loop adopts PID. In order to realistically simulate the wind tunnel tempera-ture,the target temperature is initially set to400◦C,and then increased to800◦C after50s.The C-fuzzy-PID control law is evaluated numerically in the following simulation cases.1)Case A:Temperature responses to step command:To com-pare the step response of three kinds of control laws,the time lag is set to3s[see Fig.7(a)].2)Case B:Effect of pure time delay:To investigate the effectof pure time delay in the inner loopflowrate transfer func-tion of the system,the time delay is increased from3to 5s,while other simulation conditions remain unchanged [see Fig.7(b)].3)Case C:Effect of working condition(wind speed):Work-ing condition change in wind speed can be characterized by a change in Mach number.An increase in Mach number will result in a decrease in temperature(and vice versa) while the air-fuel ratio is larger than the optimal air-fuel ratio.To examine the effectiveness of handling impact on the system due to a change in wind speed from0.4to。