博学教育 七年级上册期末练习题
部编数学七年级上册期末测试卷02(解析版)含答案
2022-2023学年七年级数学上册期末测试卷02一、单选题1.-2021的绝对值是( )A .2021B .-2021C .12021D .12021-【答案】A【分析】根据绝对值的定义即可得出答案.【解析】解:-2021的绝对值为2021,故选:A .【点睛】本题考查了绝对值,掌握负数的绝对值等于它的相反数是解题的关键.2.中国的领水面积约为370000km 2,将数370000用科学记数法表示为( )A .37×104B .3.7×104C .0.37×106D .3.7×105【答案】D【分析】试题分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【解析】解:370000=3.7×105.故选D .【点睛】本题考查科学记数法—表示较大的数3.若2x =-是关于x 的方程4320x a -+=的解,则a 的值为( )A .1B .1-C .2D .2-【答案】D【分析】把x =-2代入方程,即可求出答案.【解析】解:把x =−2代入方程4320x a -+=得:()4232=0a ´--+,即−8-3a +2=0,解得:a =-2;故答案为:D .【点睛】本题主要考查了一元一次方程的解,掌握一元一次方程的解是解题的关键.4.下列说法正确的是( )A .一个平角就是一条直线;B .连接两点间的线段,叫做这两点的距离;C .两条射线组成的图形叫做角;D .两点之间线段最短.【答案】D【分析】根据平角、两点间的距离、角的定义和两点之间线段最短逐项进行解答即可得.【解析】A .平角的两条边在一条直线上,故本选项错误,不符合题意;B .连接两点的线段的长度叫做两点间的距离,故此选项错误,不符合题意;C .有公共端点是两条射线组成的图形叫做角,故此选项错误,不符合题意;D .两点之间线段最短,正确,符合题意.故选:D .【点睛】本题考查了平角、两点间的距离、角的概念以及直线公理的内容,熟练掌握相关知识是解题的关键.有公共端点是两条射线组成的图形叫做角、连接两点的线段的长度叫做两点间的距离.5.已知方程216x y -+=,则整式3610x y --的值为A .5B .10C .12D .15【答案】A【分析】根据题意求出x-2y ,利用添括号法则把原式变形,代入计算即可.【解析】解:∵x-2y+1=6,∴x-2y=5,∴3x-6y-10=3(x-2y )-10=3×5-10=5,故选A .【点睛】本题考查的是代数式求值,灵活运用整体思想是解题的关键.6.下列关于单项式223x y -的说法中,正确的是( )A .系数是2,次数是2B .系数是﹣2,次数是3C .系数是23-,次数是2D .系数是23-,次数是3【答案】D【分析】根据单项式的次数,系数定义判断即可.....-故选C .9.a ,b 是有理数,它们在数轴上对应的点的位置如图所示.把a ,−b ,a +b ,a −b 按照从小到大的顺序排列,正确的是( )A .a b a a b b-<<+<-B .a b a b a b <-<-<+C .b a a b a b-<<+<-D .a b b a a b-<-<<+【答案】D 【分析】先根据a ,b 两点在数轴上的位置判断出其符号,进而可得出结论.【解析】解:∵由图可知,a <0<b ,|a |<|b |,∴-b <a <0,a <a +b <b ,a -b <-b ,∴a -b <-b <a <a +b .故选:D .【点睛】本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大的特点是解答此题的关键.10.在所给的:①15°;②65°;③75°;④115°;⑤135°的角中,可以用一副三角板画出来的是( )A .②④⑤B .①②④C .①③⑤D .①③④【答案】C【分析】用一副三角板能画出来的角有:15°,30°,45°,75°,90°,105°,135°,150°,180°.【解析】解:①45°-30°=15°,可以用一副三角板画出来;②65°不可以用一副三角板画出来;③45°+30°=75°,可以用一副三角板画出来;④115°不可以用一副三角板画出来;⑤90°+45°=135°,可以用一副三角板画出来;故选:C .【点睛】本题考查了角的计算,熟记三角尺的角度,利用和、差关系求解是解答此题的关键.二、填空题11.数轴上表示2-和3+两个点之间的距离是______.【答案】5.由题意知,3:30,时针和分针中间相差∵钟表12个数字,每相邻两个数字之间的夹角为∴下午3:30分针与时针的夹角是故答案为:75.故答案为:8.【点睛】本题考查了两点间的距离,熟练掌握线段中点的定义是解题的关键.17.若关于a ,b 的多项式()43321a mab a ab +-+-不含二次项,则m =___________.【答案】2【分析】先利用整式的加减运算法则将其化简,再结合题意进行计算得出答案.【解析】解:()43321a mab a ab +-+-43321a mab a ab =+--+()43321a a m ab =-+-+,∵关于a ,b 的多项式不含二次项,∴20m -=,解得2m =,故答案为:2.【点睛】本题考查了整式的加减运算,准确的计算是解决本题的关键.18.我国古代的“九宫格”是由3×3的方格构成的,每个方格内均有不同的数,每一行每一列以及每一条对角线上的三个数之和相等.如图,给出了“九宫格”的一部分,则阴影部分的数值是______.【答案】9【分析】根据题意,利用左下角的数在最左边列,也在最下面的一行,即可列出关于x 的方程,从而可以得到x 的值,从而可得答案.【解析】解:由题意可得:4311,x +=++解得:5,x =所以这三个数的和为:412515,x x x +++=+=所以阴影部分的数值为:()1511569,x -+=-=故答案为:9【点睛】本题考查一元一次方程的应用,解答本题的关键是明确题意,找出题目中的等量关系,列出相应画射线EB,在射线EB上截取线段EC等于线段a,以截取端点C为起点,先后两次反向截取两条长度为∴线段EF为所求作.(1)请你帮忙确定交警最后所在地相对于A 地的方位?(2)若汽车每千米耗油0.2升,如果队长命令他马上返回出发点,这次巡逻(含返回)共耗油多少升?【答案】(1)交警最后所在地在A 地的东边20千米处(2)这次巡逻共耗油18.8升【分析】(1)把所给的路程记录相加,如果结果为正则在A 地东边,为负则在A 地西边,为0即在A 地;(2)先求出总路程,再根据总耗油=每千米油耗´路程即可得到答案.【解析】(1)解:()()()()()()()()14987136125++-+++-+++-+++-14987136125=-+-+-+-20=(千米),∴交警最后所在地在A 地的东边20千米处;(2)解:()0.2149871361252018.8´++++++++=(升),∴这次巡逻共耗油18.8升.【点睛】本题主要考查了有理数加法和有理数四则运算的应用,正确理解题意是解题的关键.26.完成一项工作,一个工人需要16天才能完成.开始先安排几个工人做1天后,又增加1人和他们一起做2天,结果完成了这项工作的一半,假设每个工人的工作效率相同.(1)开始安排了多少个工人?(2)如果要求再用2天做完剩余的全部工作,还需要再增加多少个工人一起做?【答案】(1)2;(2)1.【分析】(1)设开始安排了x 个工人,根据工作总量完成一半列一元一次方程,解一元一次方程即可;(2)设再增加y 个工人,根据用2天做完剩余的一半列一元一次方程,解一元一次方程即可.【解析】解:(1)设开始安排了x 个工人,由题意得:2(1)116162x x ++=,2(1)8x x ++=36x =2x \=,答:开始安排了2个工人.(2)设再增加y 个工人,由题意得:(2)设Ð=°COE x ,则3DOB x Ð=°∵OE 平分BOCÐ∴BOE COE x Ð=Ð=°∵CO DO^∴90DOC Ð=°∴390x x x °+°+°=°∴18x =∴18BOE COE Ð=Ð=°∴1801818144AOC AOB BOE COE Ð=Ð-Ð-Ð=°-°-°=°.【点睛】本题考查了角、角平分线、一元一次方程的知识;解题的关键是熟练掌握角平分线、余角、角度和差运算、一元一次方程的性质.28.A 、B 、C 、D 四个车站的位置如图所示,A 、B 两点之间的距离表示为AB ,AB a b =+,BC a b =-,42BD a b =-.(1)求A 、C 两站的距离AC ;(2)求C 、D 两站的距离CD ;(3)探究:CD AB -与BC 之间的数量关系.【答案】(1)AC 2a=(2)3CD a b=-(3)2CD AB BC-=【分析】(1)直接利用整式的加法法则计算即可;(2)直接利用整式的减法法则计算即可;(3)利用整式的减法法则计算出CD AB -,进而即可得出答案.【解析】(1)解:由图可知2AC AB BC a b a b a =+=++-=;(2)解:由图可知CD BD BC=-(42)()a b a b =---42a b a b=--+3a b =-;∵OE是∠COB的平分线,OE⊥OF.∴∠BOE=∠COE,∠COE+∠COF=90°,∵∠BOE+∠EOC+∠COF+∠FOA=180°,∴∠COE+∠FOA=90°,∴∠FOA=∠COF,即,OF平分∠AOC.【点睛】考查互为余角、互为补角、角平分线的意义,解题的关键是熟知:如果两角之和等于180°,那么这两个角互为补角.其中一个角叫做另一个角的补角;如果两个角的和是直角,那么称这两个角“互为余角”,简称“互余”,也可以说其中一个角是另一个角的余角.30.为发展校园足球运动,我市四校决定联合购买一批足球运动装备.经市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多60元,5套队服与8个足球的费用相等.经洽谈,甲商场优惠方案是每购买10套队服,送1个足球;乙商场优惠方案是购买队服超过80套,则购买足球打8折.(1)求每套队服和每个足球的价格各是多少?a a>个足球,请用含a的式子分别表示出到甲商场和乙商场购(2)若这四所学校联合购买100套队服和()10买装备所花的费用.a=,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?(3)在(2)的条件下,若70请说明理由.【答案】(1)每套队服和每个足球的价格各是160元,100元(2)甲商场:100a+15000;乙商场:80a+16000(3)到乙商场购买比较合算;理由见解析【分析】(1)设每个足球的价格是x元,根据相等关系:5套队服费用=8个足球的费用,即可列出方程,解方程即可;(2)买队服的费用+购买足球的费用=总费用,按照此计算方法即可完成;(3)把a=70代入(2)中到两商场的费用的表达式中,计算出值,比较即可得出结论.(1)设每个足球的价格是x元,依题意得()+=5608x x【答案】(1)126°;(2)45°;(3)35°【分析】(1)由互余得∠DOE 度数,进而由角平分线得到∠AOD 度数,根据BOD=180°-∠AOD 可得∠BOD 度数;(2)由角平分线得出∠AOE=12∠AOD=12(∠AOC+90°),∠BOF=12(∠BOD+90°),继而由∠EOF=180°-∠AOE-∠BOF 得出结论.(3)∠DOF=45°-12∠BOD ,结合已知∠AOC+∠DOF=∠EOF 和∠AOC+∠BOD=90°可求∠BOD=60°,再由∠FOP=∠DOF+∠DOP 即可解答.【解析】(1)∵∠COD=90°,∠COE=63°,∴∠DOE=∠COD-∠COE=27°,∵OE 是∠AOD 的平分线,∴∠AOD=2∠DOE=54°,∴∠BOD=180°-∠AOD=180°-54°=126°;答:∠BOD 的度数为126°;(2)∵OE 是∠AOD 的平分线,∴()119022AOE AOD AOC Ð=Ð=Ð+°∵OF 是BOC Ð的平分线,∴()119022BOF COF BOC BOD Ð=Ð=Ð=Ð+°,∴()11802EOF AOE BOF AOC BOD Ð=°-Ð-Ð=Ð+Ð,∵1809090AOC BOD Ð+Ð=°-°=°,∴190452EOF Ð=´°=°,答:EOF Ð的度数为45°;(3)由(2)得∠EOF=45°,∵∠AOC+∠DOF=∠EOF=45°,∴∠DOF=45°-∠AOC ,又∵()1190904522DOF COD COF BOD BOD Ð=Ð-Ð=°-Ð+°=°-Ð,∴145452AOC BOD °-Ð=°-Ð,∴12AOC BOD Ð=Ð,∵90AOC BOD Ð+Ð=°,∴30AOC Ð=°,60BOD Ð=°,∴453015DOF Ð=°-°=°,∵13DOP BOD Ð=Ð,∴20DOP Ð=°,∴152035FOP DOF DOP Ð=Ð+Ð=°+°=°.【点睛】本题考查了角平分线的定义、余角和补角的计算、平角的定义及角的和与差,能根据图形确定所求角和已知各角的关系是解此题的关键.。
七年级数学上册期末考试题及答案【全面】
七年级数学上册期末考试题及答案【全面】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.在平面直角坐标系的第二象限内有一点, 点到轴的距离为3, 到轴的距离为4, 则点的坐标是()A. B. C. D.2.如图, 函数和的图象相交于A(m, 3),则不等式的解集为()A. B. C. D.3. ①如图1,AB∥CD,则∠A +∠E +∠C=180°;②如图2,AB∥CD,则∠E =∠A +∠C;③如图3,AB∥CD,则∠A +∠E-∠1=180°;④如图4,AB∥CD,则∠A=∠C +∠P.以上结论正确的个数是()A. 、1个B. 2个C. 3个D. 4个4.用一根长为a(单位:cm)的铁丝, 首尾相接围成一个正方形, 要将它按图的方式向外等距扩1(单位:cm)得到新的正方形, 则这根铁丝需增加()A. 4cmB. 8cmC. (a+4)cmD. (a+8)cm5.如图, 函数 y1=﹣2x 与 y2=ax+3 的图象相交于点 A(m, 2), 则关于 x 的不等式﹣2x>ax+3 的解集是()A. x>2B. x<2C. x>﹣1D. x<﹣16. 在平面直角坐标系中, 将点A(1, ﹣2)向上平移3个单位长度, 再向左平移2个单位长度, 得到点A′, 则点A′的坐标是()A.(﹣1, 1)B.(﹣1, ﹣2) C.(﹣1, 2)D.(1, 2)7. 下列各组线段不能组成三角形的是 ( )A. 4cm、4cm、5cmB. 4cm、6cm、11cmC. 4cm、5cm、6cmD. 5cm、12cm、13cm8.如图, 已知在四边形中, , 平分, , , , 则四边形的面积是()A. 24B. 30C. 36D. 429.已知实数a、b满足a+b=2, ab= , 则a﹣b=()A. 1B. ﹣C. ±1D. ±10.若x﹣m与x+3的乘积中不含x的一次项, 则m的值为()A. 3B. 1C. 0D. ﹣3二、填空题(本大题共6小题, 每小题3分, 共18分)1. 9的平方根是_________.2.通过计算几何图形的面积, 可表示一些代数恒等式, 如图所示, 我们可以得到恒等式:________.3. 因式分解: =______.4. 若, 则m+2n的值是________.5. 若x=2是关于x的方程2x+3m﹣1=0的解, 则m的值等于_________. 6.如图, 已知AB∥CD, F为CD上一点, ∠EFD=60°, ∠AEC=2∠CEF, 若6°<∠BAE<15°, ∠C的度数为整数, 则∠C的度数为________.三、解答题(本大题共6小题, 共72分)1. 解方程(1)3x-7(x-1)=3-2(x+3)(2)12x-=413x--12. 解不等式组, 并写出它的所有非负整数解.3. 如图, 已知AM∥BN, ∠A=60°, 点P是射线M上一动点(与点A不重合), BC, BD分别平分∠ABP和∠PBN, 分别交射线AM于点C, D,(1)∠CBD=(2)当点P运动到某处时, ∠ACB=∠ABD, 则此时∠ABC=(3)在点P运动的过程中, ∠APB与∠ADB的比值是否随之变化?若不变,请求出这个比值:若变化, 请找出变化规律.4. 如图, 直线AB, CD相交于点O, OD平分∠BOE, OF平分∠AOE(1)判断OF与OD的位置关系, 并进行证明.(2)若∠AOC:∠AOD=1:5, 求∠EOF的度数.5. 为了解学生对“垃圾分类”知识的了解程度, 某学校对本校学生进行抽样调查, 并绘制统计图, 其中统计图中没有标注相应人数的百分比. 请根据统计图回答下列问题:(1)求“非常了解”的人数的百分比.(2)已知该校共有1200名学生, 请估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人?6. 华联超市购进一批四阶魔方, 按进价提高40%后标价, 为了让利于民, 增加销量, 超市决定打八折出售, 这时每个魔方的售价为28元.(1)求魔方的进价?(2)超市卖出一半后, 正好赶上双十一促销, 商店决定将剩下的魔方以每3个80元的价格出售, 很快销售一空, 这批魔方超市共获利2800元, 求该超市共购进魔方多少个?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.C2.C3.C4.B5.D6.A7、B8、B9、C10、A二、填空题(本大题共6小题, 每小题3分, 共18分)1.±32. .3、2(x+3)(x﹣3).4.-15.﹣16.36°或37°.三、解答题(本大题共6小题, 共72分)1.(1)x=5;(2)x=1.2、非负整数解是: 0, 1、2.3.(1)60°;(2)30°;(3)不变.4、(1)OF⊥OD, 证明详略;(2)∠EOF=60°.5.(1)20%;(2)6006.25元超市一共购进1200个魔方。
初一上期末测试题及答案
初一上期末测试题及答案一、选择题(每题2分,共20分)1. 以下哪个选项是正确的数词?A. 一十B. 十二C. 三百D. 四千2. 下列哪个成语与“画蛇添足”意思相近?A. 锦上添花B. 画龙点睛C. 画蛇添足D. 画饼充饥3. 根据题目“请找出下列句子中没有语病的一项”,正确的句子是:A. 他因为生病,所以没有来上课。
B. 他虽然生病,但是没有来上课。
C. 他生病了,所以没有来上课。
D. 他生病了,但是没有来上课。
4. 下列哪个选项是正确的英语单词拼写?A. colourB. colorC. collourD. colore5. 以下哪个数学公式表示圆的面积?A. A = πr²B. C = 2πrC. V = πr³D. S = 4πr6. 根据题目“请找出下列句子中主语和谓语不一致的一项”,正确的句子是:A. 学生们正在操场上做操。
B. 学生们做完操后,都回到了教室。
C. 学生们做完操,都回到了教室。
D. 学生们做完操后,都去了图书馆。
7. 以下哪个选项是正确的化学元素符号?A. 水 - H2OB. 铁 - FeC. 氧 - O2D. 金 - Au8. 下列哪个历史事件标志着中国近代史的开端?A. 鸦片战争B. 辛亥革命C. 五四运动D. 抗日战争9. 根据题目“请找出下列句子中没有使用比喻修辞手法的一项”,正确的句子是:A. 他像一只小鸟一样自由飞翔。
B. 她的笑容像春天的花朵一样灿烂。
C. 他的心像被针扎一样痛。
D. 他总是第一个到达教室。
10. 下列哪个选项是正确的物理公式?A. 功 = 力× 距离B. 功率 = 功 / 时间C. 速度 = 距离 / 时间D. 重力 = 质量× 加速度二、填空题(每空1分,共10分)11. 请写出“春眠不觉晓”的下一句:______。
12. 请用英语写出“你好”:______。
13. 请写出一个质数:______。
七年级上学期期末考试试题试题2101
卜人入州八九几市潮王学校参考答案1.B〔A.biē―biě;C.línɡ―lénɡ;D.suí―suǐ〕〔3分〕2.A〔B.拼凑C.混为一谈D.畅销〕〔3分〕3.C〔“劝慰〞是“劝解抚慰〞的意思。
用在这里不合语境〕〔3分〕4.C〔A.“拓展〞与“感受〞搭配不当,应删除“人生感受和〞;B.成分残缺,“折映出〞缺少宾语,应是“折映出婆娑多姿的影子〞;D.句式杂糅,应删除“认为是〞〕〔3分〕5.D〔“称〞读“chèn〞〕〔3分〕6.A〔3分〕7.B〔3分〕8.C〔在这里用作状语,“从通道〞的意思〕〔3分〕9.D〔A.副词,只、仅/动词,停顿;B.名词,神情、态度/动词,打算;C.动词,攻击/名词,敌人;〕〔3分〕10.A〔遇狼—惧狼—御狼—杀狼〕〔3分〕11.〔1〕骨头已经没有了,可是两只狼像原来一样一起追赶。
〔2分〕〔2〕过了一会儿,一只狼径直分开,另一只狼像狗似的蹲坐在前面。
〔2分〕12.狼很狡猾,但最终自取灭亡,这个故事启示我们,对像狼一样阴险狡诈的恶权力不能存在梦想,妥协让步,要敢于斗争,擅长斗争。
〔2分〕13.〔1〕写出了潼关耸入云天、寂寥辽远的特点。
〔2分〕〔2〕表达了诗人豪迈奔放的激情和冲破封建束缚、追求思想解放的愿望。
〔3分〕14.〔1〕百草丰茂〔2〕我寄愁心与明月〔3〕思而不学那么殆〔4〕何当一共剪西窗烛〔5〕断肠人在天涯〔6〕便引诗情到碧霄〔7〕逝者如斯夫〔8〕险躁那么不能治性15.〔1〕西游记〔1分〕罗刹女〔铁扇公主〕〔1分〕〔2〕因为“裙钗〞的儿子红孩儿想吃唐僧肉,被孙悟空请来的观音菩萨收做了善财童子,所以她对孙悟空怀恨在心。
〔2分〕16.〔1〕例如:①为吸引消费者、进步销量,很多商家用蝇头小利向消费者索要好评;②掺水的好评让很多消费者上了当;③为了种种“优惠〞而给出好评的人害人又害己。
〔2分,答出一点得1分,答出两点得2分。
意对即可〕〔2〕例如:妈妈,我们不能因为贪图这点小廉价就违心地给出好评,这样会误导购置者。
七年级上册期末考试试卷精选及答案
七年级上册期末考试试卷精选及答案一、选择题1.有理数a ,b 在数轴上的对应点的位置如图所示,则下列各式成立的是( )A .a >bB .﹣ab <0C .|a |<|b |D .a <﹣b2.已知线段ABa ,,,C D E 分别是,,AB BC AD 的中点,分别以点,,C D E 为圆心,,,CB DB EA 为半径作圆得如图所示的图案,则图中三个阴影部分图形的周长之和为( )A .9a πB .8a πC .98a πD .94a π3.如图所示,数轴上A ,B 两点表示的数分别是2﹣1和2,则A ,B 两点之间的距离是( )A .22B .22﹣1C .22+1D .14.下列方程变形正确的是( ) A .方程110.20.5x x --=化成1010101025x x--= B .方程 3﹣x=2﹣5(x ﹣1),去括号,得 3﹣x=2﹣5x ﹣1 C .方程 3x ﹣2=2x+1 移项得 3x ﹣2x=1+2 D .方程23t=32,未知数系数化为 1,得t=1 5.若(1,2)表示教室里第1列第2排的位置,则教室里第2列第3排的位置表示为( ) A .(2,1)B .(3,3)C .(2,3)D .(3,2)6.不等式x ﹣2>0在数轴上表示正确的是( ) A . B . C .D .7.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店( ) A .赚了10元 B .赔了10元C .赚了50元D .不赔不赚8.用一个平面去截:①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的图形是( )A .①②④B .①②③C .②③④D .①③④9.某班30位同学,在绿色护植活动中共种树72棵,已知女生每人种2棵,男生每人种3棵,设女生有x 人,则可列方程( ) A .23(30)72x x +-= B .32(30)72x x +-= C .23(72)30x x +-=D .32(72)30x x +-=10.一项工程,甲独做需10天完成,乙单独做需15天完成,两人合作4天后,剩下的部分由乙独做全部完成,设乙独做x 天,由题意得方程( ) A .410 +415x -=1 B .410 +415x +=1 C .410x + +415=1 D .410x + +15x=1 二、填空题11.已知x=2是方程(a +1)x -4a =0的解,则a 的值是 _______. 12.若523m x y +与2n x y 的和仍为单项式,则n m =__________.13.某农村西瓜论个出售,每个西瓜以下面的方式定价:当一个a 斤重的西瓜卖A 元,一个b 斤重的西瓜卖B 元时,一个()a b +斤重的西瓜定价为 36ab A B ⎛++⎫⎪⎝⎭元,已知一个12斤重的西瓜卖21元,则一个18斤重的西瓜卖_____元.14.如图甲所示,格边长为cm a 的正方形纸片中间挖去一个正方形的洞,成为一个边宽为5cm 的正方形方框.把3个这样的方框按如图乙所示平放在集面上(边框互相垂直或平行),则桌面被这些方框盖住部分的面积是___________.15.如果向东走60m 记为60m +,那么向西走80m 应记为______m. 16.15030'的补角是______.17.若a-b=-7,c+d=2013,则(b+c)-(a-d)的值是______.18.已知线段AB=8cm ,在直线AB 上画线段BC ,使它等于3cm ,则线段AC=______cm . 19.一个长方体水箱从里面量得长、宽、高分别是50cm 、40cm 和30cm ,此时箱中水面高8cm ,放进一个棱长为20cm 的正方体实心铁块后,此时水箱中的水面仍然低于铁块的顶面,则水箱中露在水面外的铁块体积是______3cm . 20.比较大小:﹣8_____﹣9(填“>”、“=”或“<“).三、解答题21.当x 取何值时,式子13x -的值比x+12的值大﹣1?22.先化简,再求值:22111(83)3()223x xy x xy y ---+,其中2x =-,1y =. 23.(1)先化简,再求值:当(x ﹣2)2+|y+1|=0时,求代数式4(12x 2﹣3xy ﹣y 2)﹣3(x 2﹣7xy ﹣2y 2)的值;(2)关于x 的代数式(x 2+2x )﹣[kx 2﹣(3x 2﹣2x+1)]的值与x 无关,求k 的值. 24.某服装店购进一批甲、乙两种款型时尚T 恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T 恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完 这批T 恤衫商店共获利多少元?25.某校七年级400名学生到郊外参加植树活动,已知用2辆小客车和1辆大客车每次可运送学生85人,用3辆小客车和2辆大客车每次可运送学生150人. (1)每辆小客车和每辆大客车各能坐多少名学生?(2)若计划租小客车m 辆,大客车n 辆,一次送完,且恰好每辆车都坐满: ①请你设计出所有的租车方案;②若小客车每辆租金300元,大客车每辆租金500元,请选出最省线的租车方案,并求出最少租金.26.先化简,再求值:已知2(3xy ﹣x 2)﹣3(xy ﹣2x 2)﹣xy ,其中x ,y 满足|x+2|+(y ﹣3)2=0.27.小明爸爸给小明出了一道题,说明他本月炒股的盈亏情况(单位:元) 股票 每股净赚(元) 股票 招商银行 +23 500 浙江医药 ﹣(﹣2.8) 1000 晨光文具 ﹣1.5 1500 金龙汽车﹣1452000请你也来计算一下,小明爸爸本月投资炒股到底是赔了还是赚了?赔了或赚了多少元? 28.O 为数轴的原点,点A 、B 在数轴上表示的数分别为a 、b ,且满足(a ﹣20)2+|b+10|=0.(1)写出a 、b 的值;(2)P 是A 右侧数轴上的一点,M 是AP 的中点.设P 表示的数为x ,求点M 、B 之间的(3)若点C 从原点出发以3个单位/秒的速度向点A 运动,同时点D 从原点出发以2个单位/秒的速度向点B 运动,当到达A 点或B 点后立即以原来的速度向相反的方向运动,直到C 点到达B 点或D 点到达A 点时运动停止,求几秒后C 、D 两点相距5个单位长度? 29.计算题(1)()()()7410-+---(2)11312344⎛⎫⎛⎫-÷-⨯ ⎪ ⎪⎝⎭⎝⎭(3)()()()()75901531-⨯--÷-+⨯- (4)()22112442⎛⎫-⨯---⨯ ⎪⎝⎭30.东莞市出租车收费标准如下表所示,根据此收费标准,解决下列问题:(1)若行驶路程为5km ,则打车费用为______元;(2)若行驶路程为()km 6x x >,则打车费用为______元(用含x 的代数式表示); (3)某同学周末放学回家,已知打车费用为34元,则他家离学校多少千米?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据各点在数轴上的位置得出a 、b 两点到原点距离的大小,进而可得出结论. 【详解】解:∵由图可知a <0<b , ∴ab <0,即-ab >0 又∵|a |>|b |, ∴a <﹣b . 故选:D .本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.2.D解析:D【解析】【分析】根据中点的定义及线段的和差关系可用a表示出AC、BD、AD的长,根据三个阴影部分图形的周长之和等于三个圆的周长之和即可得答案.【详解】∵AB a,C、D分别是AB、BC的中点,∴AC=BC=12AB=12a,BD=CD=12BC=14a,∴AD=AC+BD=34 a,∴三个阴影部分图形的周长之和=aπ+12aπ+34aπ=94aπ,故选:D.【点睛】本题考查线段中点的定义,线段上一点,到线段两端点距离相等的点是线段的中点;正确得出三个阴影部分图形的周长之和等于三个圆的周长之和是解题关键.3.D解析:D【解析】【分析】根据题意列出算式,计算即可得到结果.【详解】解:∵A,B1∴A,B1)=1;故选:D.【点睛】此题考查了实数与数轴,掌握数轴上点的特点,利用数轴,数形结合求出答案.4.C解析:C【解析】【分析】各项中方程变形得到结果,即可做出判断.【详解】解:A、方程x1x10.20.5--=化成10x1010x25--=1,错误;B、方程3-x=2-5(x-1),去括号得:3-x=2-5x+5,错误;C、方程3x-2=2x+1移项得:3x-2x=1+2,正确,D、方程23t32,系数化为1,得:t=94,错误;所以答案选C.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.5.C解析:C【解析】【分析】根据数对(1,2)表示教室里第1列第2排的位置,可知第一个数字表示列,第二个数字表示排,由此即可求得答案.【详解】∵(1,2)表示教室里第1列第2排的位置,∴教室里第2列第3排的位置表示为(2,3),故选C.【点睛】本题考查了数对表示位置的方法的灵活应用,分析出数对表示的意义是解题的关键. 6.C解析:C【解析】【分析】先求出不等式的解集,再在数轴上表示出来,找出符合条件的选项即可.【详解】移项得,x>2,在数轴上表示为:故选:C.【点睛】本题考查的是在数轴上表示一元一次不等式的解集,解答此类题目的关键是熟知实心圆点与空心圆点的区别.7.A解析:A【解析】试题分析:第一个的进价为:80÷(1+60%)=50元,第二个的进价为:80÷(1-20%)=100元,则80×2-(50+100)=10元,即盈利10元.考点:一元一次方程的应用8.B解析:B【解析】【分析】根据圆锥、圆柱、球、五棱柱的形状特点判断即可.【详解】圆锥,如果截面与底面平行,那么截面就是圆;圆柱,如果截面与上下面平行,那么截面是圆;球,截面一定是圆;五棱柱,无论怎么去截,截面都不可能有弧度.故选B.9.A解析:A【解析】【分析】设女生x人,男生就有(30-x)人,再表示出男、女生各种树的棵数,根据题中等量关系式:男生种树棵数+女生种树棵数=72棵,列方程解答即可.【详解】设女生x人,∵共有学生30名,∴男生有(30-x)名,∵女生每人种2棵,男生每人种3棵,∴女生种树2x棵,男生植树3(30-x)棵,∵共种树72棵,∴2x+3(30-x)=72,故选:A.【点睛】本题考查一元一次方程的应用,正确找准数量间的相等关系是解题关键.10.B解析:B【解析】【分析】直接利用总工作量为1,分别表示出两人完成的工作量进而得出方程即可.【详解】设乙独做x天,由题意得方程:4 10+415x=1.故选B.本题主要考查了由实际问题抽象出一元一次方程,正确表示出两人完成的工作量是解题的关键.二、填空题 11.1 【解析】 【分析】把x=2代入转换成含有a 的一元一次方程,求解即可得 【详解】由题意可知2×(a+1)−4a=0 ∴2a+2−4a=0 ∴2a=2 ∴a=1故本题答案应为:1 【点睛】 解解析:1 【解析】 【分析】把x=2代入转换成含有a 的一元一次方程,求解即可得 【详解】由题意可知2×(a+1)−4a=0 ∴2a+2−4a=0 ∴2a=2 ∴a=1故本题答案应为:1 【点睛】解一元一次方程是本题的考点,熟练掌握其解法是解题的关键12.9 【解析】根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9.解析:9 【解析】根据523m x y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得m 3,n 2=-=,所以()239n m =-=,故答案为:9.【解析】 【分析】根据题意中的对应关系,由斤重的西瓜卖元,列方程求出6斤重的西瓜的定价;再根据“一个斤重的西瓜定价为元”可得出(12+6)斤重西瓜的定价. 【详解】解:设6斤重的西瓜卖x 元解析:33 【解析】 【分析】根据题意中的对应关系,由12斤重的西瓜卖21元,列方程求出6斤重的西瓜的定价;再根据“一个()a b +斤重的西瓜定价为 36ab A B ⎛++⎫ ⎪⎝⎭元”可得出(12+6)斤重西瓜的定价.【详解】解:设6斤重的西瓜卖x 元, 则(6+6)斤重的西瓜的定价为:363(21)6x x x =+++元, 又12斤重的西瓜卖21元, ∴2x+1=21,解得x=10. 故6斤重的西瓜卖10元. 又18=6+12,∴(6+12)斤重的西瓜定价为:6121021=3336⨯++(元). 故答案为:33. 【点睛】本题主要考查求代数式的值以及一元一次方程的应用,关键是理解题意,找出等量关系.14.【解析】 【分析】根据题意列出含a 的代数式表示桌面被这些方框盖住部分的面积即可. 【详解】解:算出一个正方形方框的面积为:, 桌面被这些方框盖住部分的面积则为: 故填:. 【点睛】 本题结合求 解析:60200a -【解析】 【分析】根据题意列出含a 的代数式表示桌面被这些方框盖住部分的面积即可. 【详解】解:算出一个正方形方框的面积为:22(10)a a --,桌面被这些方框盖住部分的面积则为:2223(10)4560200.a a a ⎡⎤--+⨯=-⎣⎦故填:60200a -. 【点睛】本题结合求阴影部分面积列代数式,理解题意并会表示阴影部分面积是解题关键.15.-80 【解析】 【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示. 【详解】解:如果向东走60m 记为,那么向西走80m 应记为. 故答案为. 【点睛】本题考查正数和负数解析:-80 【解析】 【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示. 【详解】解:如果向东走60m 记为60m +,那么向西走80m 应记为80m -. 故答案为80-. 【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.16.【解析】 【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可. 【详解】 解:. 故答案为. 【点睛】此题考查补角的意义,以及度分秒 解析:2930'【解析】【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】-=.解:18015030'2930'故答案为2930'.【点睛】此题考查补角的意义,以及度分秒之间的计算,注意借1当60.17.2020【解析】【分析】把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.【详解】代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),由已知解析:2020【解析】【分析】把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.【详解】代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),由已知,a-b=-7,c+d=2013,∴原式=7+2013=2020,故答案为:2020.【点睛】本题考查了整式加法交换律和结合律的运算,整体代换思想的应用,掌握整式加法运算律的应用是解题的关键.18.5或11【解析】【分析】由于C点的位置不能确定,故要分两种情况考虑AC的长,注意不要漏解.【详解】由于C点的位置不确定,故要分两种情况讨论:当C点在B点右侧时,如图所示:AC=AB+解析:5或11【解析】【分析】由于C点的位置不能确定,故要分两种情况考虑AC的长,注意不要漏解.【详解】由于C点的位置不确定,故要分两种情况讨论:当C点在B点右侧时,如图所示:AC=AB+BC=8+3=11cm;当C点在B点左侧时,如图所示:AC=AB﹣BC=8﹣3=5cm;所以线段AC等于11cm或5cm.19.4000【解析】【分析】设铁块沉入水底后水面高hcm,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm,由题意得:50×40×8+20×20×h=解析:4000【解析】【分析】设铁块沉入水底后水面高hcm,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm,由题意得:50×40×8+20×20×h=50×40×h,解得:h=10,则水箱中露在水面外的铁块的高度为:20-10=10(cm),所以水箱中露在水面外的铁块体积是:20×20×10=4000(cm3).故答案为:4000.【点睛】此题考查一元一次方程的实际运用,掌握长方体的体积计算公式是解决问题的关键.20.>.【解析】【分析】先求出两个数的绝对值,再根据绝对值大的反而小进行比较.【详解】∵|﹣8|=8,|﹣9|=9,8<9,∴﹣8>﹣9.故答案是:>.【点睛】考查简单的有理数比较大小解析:>.【解析】【分析】先求出两个数的绝对值,再根据绝对值大的反而小进行比较.【详解】∵|﹣8|=8,|﹣9|=9,8<9,∴﹣8>﹣9.故答案是:>.【点睛】考查简单的有理数比较大小,比较两个负数的大小的解题关键是绝对值大的反而小.三、解答题21.25.【解析】【分析】根据题意列出方程,求出方程的解即可得到结果.【详解】根据题意得:x11x132-⎛⎫-+=-⎪⎝⎭,即x11x132---=-,去分母得到:2(x﹣1)﹣6x﹣3=﹣6,去括号得:2x﹣2﹣6x﹣3=﹣6,移项合并得:﹣4x=﹣1,解得:x=0.25,则x=0.25时,13x-的值比12x+的值大﹣1.【点睛】本题考查了解一元一次方程的应用,能根据题意列出方程,进行解答是解题的关键.22.2x y-,3.【解析】【分析】先去括号,再根据合并同类项法则合并出最简结果,把x、y的值代入求值即可.【详解】原式222334322x xy x xy y x y =--+-=- 将2x =-,1y =代入得:原式2(2)13=--=【点睛】本题考查整式的加减——化简求值,熟练掌握合并同类项法则是解题关键.23.(1)﹣x 2+9xy+2y 2,﹣20;(2)k =4.【解析】【分析】(1)根据|x ﹣2|+(y+1)2=0可以求得x 、y 的值,然后将题目中所求式子化简,再将x 、y 的值代入化简后的式子即可解答本题.(2)利用多项式的值与x 无关,得出x 的系数和为0,即可得出k 的值,进而求出答案.【详解】解:(1)∵(x ﹣2)2+|y+1|=0,∴x =2、y =﹣1,则原式=2x 2﹣12xy ﹣4y 2﹣3x 2+21xy+6y 2=﹣x 2+9xy+2y 2=﹣22+9×2×(﹣1)+2×(﹣1)2=﹣4﹣18+2=﹣20;(2)原式=x 2+2x ﹣kx 2+3x 2﹣2x+1=(4﹣k )x 2+1∵代数式的值与x 无关,∴k =4.【点睛】本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.24.(1)甲种款型的T 恤衫购进60件,乙种款型的T 恤衫购进40件;(2)售完这批T 恤衫商店共获利5960元.【解析】【分析】(1)可设乙种款型的T 恤衫购进x 件,则甲种款型的T 恤衫购进1.5x 件,根据题意列出方程求解即可;(2)先求出甲款型的利润,乙款型前面销售一半的利润,后面销售一半的亏损,再相加即可求解.【详解】(1)设乙种款型的T 恤衫购进x 件,则甲种款型的T 恤衫购进1.5x 件,依题意有:78006400301.5x x+=,解得x=40,经检验,x=40是原方程组的解,且符合题意,1.5x=60. 答:甲种款型的T 恤衫购进60件,乙种款型的T 恤衫购进40件;(2)6400x=160,160﹣30=130(元), 130×60%×60+160×60%×(40÷2)﹣160×[1﹣(1+60%)×0.5]×(40÷2)=4680+1920﹣640=5960(元).答:售完这批T 恤衫商店共获利5960元.【点睛】本题考查分式方程的应用,根据等量关系建立方程是关键,注意分式方程需要验根.25.(1)每辆小客车能坐20人,每辆大客车能坐45人;(2)①租车方案有三种:方案一:小客车20辆、大客车0辆;方案二:小客车11辆,大客车4辆;方案三:小客车2辆,大客车8辆;②最省钱的是租车方案三,最少租金是4600元.【解析】【分析】(1)设每辆小客车能坐x 人,每辆大客车能坐y 人根据题意可得等量关系:2辆小客车座的人数+1辆大客车座的人数=85人;3辆小客车座的人数+2辆大客车座的人数=150人,根据等量关系列出方程组,再解即可(2)①根据题意可得小客车m 辆运的人数+大客车n 辆运的人数=400,然后求出整数解即可;②根据①所得方案和小客车每辆租金300元,大客车每辆租金500元分别计算出租金即可【详解】(1)设每辆小客车能坐x 人,每辆大客车能坐y 人,据题意;28532150x y x y +=⎧⎨+=⎩, 解得:2045x y =⎧⎨=⎩, 答:每辆小客车能坐20人,每辆大客车能坐45人;(2)①由题意得:2045400m n +=, ∴8049m n -=, ∵m 、n 为非负整数,∴200m n =⎧⎨=⎩或114m n =⎧⎨=⎩或28m n =⎧⎨=⎩, ∴租车方案有三种:方案一:小客车20辆、大客车0辆,方案二:小客车11辆,大客车4辆,方案三:小客车2辆,大客车8辆;②方案一租金:300206000⨯=(元),方案二租金:3001150045300⨯+⨯=(元),方案三租金:300250084600⨯+⨯=(元),∴最省钱的是租车方案三,最少租金是4600元.【点睛】此题考查二元一次方程组的应用和二元一次方程的应用,解题关键在于列出方程 26.2xy+4x 2,4.【解析】【分析】把所给的整式去括号后合并同类项得到最简结果,再利用非负数的性质求出x 、y 的值,代入即可求解.【详解】解:原式=6xy ﹣2x 2﹣3xy+6x 2﹣xy ,=2xy+4x 2,∵|x+2|+(y ﹣3)2=0,∴x+2=0且y ﹣3=0,解得:x=﹣2、y=3,则原式=2×(﹣2)×3+4×(﹣2)2,=﹣12+16,=4.【点睛】本题考查了整式的加减﹣化简求值及非负数的性质,熟练运用整式的加减运算法则把所给的整式化为最简是解本题的关键.27.赚了,赚了950元.【解析】【分析】先分别求出招商银行、浙江医药、晨光文具、金龙汽车这4种股票分别赚了多少钱;然后把它们相加,根据计算的结果即可判定投资者是赔了还是赚了,赔了或赚了多少元.【详解】解: 500×23 +2.8×1000﹣1.5×1500﹣1.8×2000,=4000+2800﹣2250﹣3600,=950(元),答:赚了,赚了950元.【点睛】本题主要考查了有理数的混合运算的应用,根据题意正确列出算式是解决问题的关键.28.(1)a =20,b =﹣10;(2)20+2x ;(3)1秒、11秒或13秒后,C 、D 两点相距5个单位长度【解析】【分析】(1)利用绝对值及偶次方的非负性,可求出a ,b 的值;(2)由点A ,P 表示的数可找出点M 表示的数,再结合点B 表示的数可求出点M 、B 之间的距离;(3)当0≤t≤203时,点C表示的数为3t,当203<t≤503时,点C表示的数为20﹣3(t﹣203)=40﹣3t;当0≤t≤5时,点D表示的数为﹣2t,当5<t≤20时,点D表示的数为﹣10+2(t﹣5)=2t﹣20.分0≤t≤5,5<t≤203及203<t≤503,三种情况,利用CD=5可得出关于x的一元一次方程,解之即可得出结论.【详解】解:(1)∵(a﹣20)2+|b+10|=0,∴a﹣20=0,b+10=0,∴a=20,b=﹣10.(2)∵设P表示的数为x,点A表示的数为20,M是AP的中点.∴点M表示的数为202x+.又∵点B表示的数为﹣10,∴BM=202x+﹣(﹣10)=20+2x.(3)当0≤t≤203时,点C表示的数为3t;当203<t≤503时,点C表示的数为:20﹣3(t﹣203)=40﹣3t;当0≤t≤5时,点D表示的数为﹣2t;当5<t≤20时,点D表示的数为:﹣10+2(t﹣5)=2t﹣20.当0≤t≤5时,CD=3t﹣(﹣2t)=5,解得:t=1;当5<t≤203时,CD=3t﹣(2t﹣20)=5,解得:t=﹣15(舍去);当203<t≤503时,CD=|40﹣3t﹣(2t﹣20)|=5,即60﹣5t=5或60﹣5t=﹣5,解得:t=11或t=13.答:1秒、11秒或13秒后,C、D两点相距5个单位长度.【点睛】本题考查了一元一次方程的应用、数轴、绝对值及偶次方的非负性,解题的关键是:(1)利用绝对值及偶次方的非负性,求出a,b的值;(2)根据各点之间的关系,用含x的代数式表示出BM的长;(3)找准等量关系,正确列出一元一次方程.29.(1)-1;(2)49;(3)38;(4)7【解析】【分析】(1)利用去括号的原则先去括号,再进行加减运算即可;(2)将带分数化为假分数,变除为乘,利用乘法运算法则进行约分即可;(3)由题意利用加减乘除运算的法则对式子进行运算;(4)先计算乘方,再计算乘法最后加减运算即可.【详解】(1) 解:原式=7410--+=1-(2) 解:原式=443394⨯⨯ =49(3) 解:原式=3563+-=38(4) 解:原式=1141642-⨯+⨯ =18-+=7【点睛】本题考查有理数的混合运算:先算乘方,再算乘除,然后进行加减运算;有括号先算括号.30.(1)15.8;(2)()2.6 2.8x +;(3)他家离学校12千米.【解析】【分析】(1)根据题意,分为不超过2km 的部分和超出2km 的部分,列式计算即可; (2)根据题意,分为不超过2km 的部分和超出2km 的部分,列式即可;(3)由(2)中的代数式列出方程,求解即可.【详解】(1)由题意,得8+2.6×(5-2)=15.8元;故答案为15.8;(2)由题意,得()8 2.628 2.6 5.2 2.6 2.8x x x +⨯-=+-=+故答案为()2.6 2.8x +;(3)设他家离学校x 千米由题意得:2.6 2.834x +=,解得:12x =,答:他家离学校12千米【点睛】此题主要考查一元一次方程的实际应用,解题关键是理解题意,列出等式.。
初中七年级数学上册期末考试卷及答案【完整版】
初中七年级数学上册期末考试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若2n +2n +2n +2n =2,则n=( )A .﹣1B .﹣2C .0D .142.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b3.如图,AB CD ⊥,且AB CD =.E 、F 是AD 上两点,CE AD ⊥,BF AD ⊥.若CE a =,BF b =,EF c =,则AD 的长为( )A .a c +B .b c +C .a b c -+D .a b c +-4.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱5.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .||n m ->C .||m n ->D .||||m n <6.下列图形中,不能通过其中一个四边形平移得到的是( )A .B .C .D .7.如图,△ABC 的面积为3,BD :DC =2:1,E 是AC 的中点,AD 与BE 相交于点P ,那么四边形PDCE 的面积为( )A .13B .710C .35D .1320 8.如图,△ABC ≌△ADE ,若∠B=70°,∠C=30°,∠DAC=35°,则∠EAC 的度数为( )A .40°B .45°C .35°D .25°9.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( )A .10°B .15°C .18°D .30° 10.一个多边形的内角和与外角和相等,则这个多边形是( )A .四边形B .五边形C .六边形D .八边形二、填空题(本大题共6小题,每小题3分,共18分)1.若0abc >,化简ac b abc a b c abc +++结果是________. 2.袋中装有6个黑球和n 个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为34”,则这个袋中白球大约有________个. 3.关于x 的不等式组430340a x a x +>⎧⎨-≥⎩恰好只有三个整数解,则a 的取值范围是_____________.4.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.5.如图,在△ABC 中,AF 平分∠BAC ,AC 的垂直平分线交BC 于点E ,∠B=70°,∠FAE=19°,则∠C=______度.6.已知13a a +=,则221+=a a__________; 三、解答题(本大题共6小题,共72分)1.解下列方程(1)12225y y y -+-=- (2)()()()22431233x x x ---=-+2.已知关于x 的方程23x m m x -=+与12x +=3x ﹣2的解互为倒数,求m 的值.3.如图,∠BAD=∠CAE=90°,AB=AD ,AE=AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD=2BF+DE .4.如图,直线AB,CD相交于点O,OD平分∠BOE,OF平分∠AOE(1)判断OF与OD的位置关系,并进行证明.(2)若∠AOC:∠AOD=1:5,求∠EOF的度数.5.某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?6.某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分) 1、A2、C3、D4、A5、C6、D7、B8、B9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、4或02、23、4332a ≤≤ 4、50°5、246、7三、解答题(本大题共6小题,共72分)1、(1)711=y (2)x=0 2、353、(1)证明见解析;(2)∠FAE=135°;4、(1)OF ⊥OD ,证明详略;(2)∠EOF =60°.5、(1)作图见解析;(2)120.6、(1)每台电脑机箱、液晶显示器的进价各是60元,800元;(2)利润最大为4400元.。
七年级上学期期末考试语文试卷(带答案)
七年级(上)期末语文试卷一、语文积累与综合运用.(35分)1.(10分)默写古诗文中的名句。
(1)补写出下列名句中的上句或下句。
①乡书何处达? 。
(王湾《次北固山下》)②晴空一鹤排云上, 。
(刘禹锡《秋词》(其一))③ ,却话巴山夜雨时。
(李商隐《夜雨寄北》)④ ,闻道龙标过五溪。
(李白《闻王昌龄左迁龙标遥有此寄》)⑤ ,而顷刻两毙, ?止增笑耳。
(蒲松龄《狼》)(2)根据提示写出相应的名句。
①唐太宗有一句名言“以人为鉴,可以知得失”,由此我们可以联想到《论语》中孔子说的“ , 。
”②《诫子书》一文中,常被人们用作志存高远的座右铭的句了是:“ , 。
”2.(9分)阅读下面的文字,完成各题。
在文人的笔下,大自然美丽而又多情。
春天,鸟儿将巢安在繁花嫩叶当中,雨热烈粗犷,别有一番风情,北海的菊花泼泼洒洒,在秋风中开得烂曼,济南的河水不忍得冻上,水藻真绿这一切,无不让人流连沉醉。
(1)根据拼音写出相应的汉字,给加点字注音。
hóu 咙 粗犷. 贮.蓄(2)文中有错别字的一个词语是“ ”,这个词语的正确写法是“ ”。
(3)“蓄”在《现代汉语词典》中有下面三个义项,文中“贮蓄”的“蓄”意思应为A .储存;积蓄B .留着而不去掉C .心里藏着(4)请将文中画线句子改为肯定句。
3.(4分)《从百草园到三味书屋》选自鲁迅的散文集 ,下列作品不是出自鲁迅的这本散文集的一项是 。
A .《五猖会》B .《风筝》C .《二十四孝图》D .《无常》4.猪八戒本是天上的 ,因醉酒调戏嫦娥,被贬下凡。
跟随唐僧取经成功后他被如来封为 。
5.(6分)某中学七年级(1)班以“读书的快乐”为主题开展综合实践活动。
活动中有一些问题,请你参与解决。
【我读书我释疑】一位同学在朗诵罗洛的《信念》时遇到些困难,请你帮助解决。
信念是一株树一株坚强的高山柏在险峻的群峰中高山柏站在崖层上长年不息的风像无数发怒的雄狮向它奔袭而来高山柏站立着不弯腰,不屈膝它的带着绿叶的树梢向上扬起(1)请用“/”给下面的诗句标出两处停顿。
七年级上册期末考试试卷精选含答案
七年级上册期末考试试卷精选含答案一、选择题1.近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65 000 000用科学记数法表示,正确的是( )A .0.65×108B .6.5×107C .6.5×108D .65×1062.晚上七点刚过,小强开始做数学作业,一看钟,发现此时时针和分针在同一直线上;做完数学作业八点不到,此时时针和分针又在同一直线上,则小强做数学作业花了多少时间( )A .30分钟B .35分钟C .42011分钟D .36011分钟 3.-2的倒数是( )A .-2B .12-C .12D .24.一周时间有604800秒,604800用科学记数法表示为( )A .2604810⨯B .56.04810⨯C .66.04810⨯D .60.604810⨯5.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是( )A .171B .190C .210D .3806.已知:有公共端点的四条射线OA ,OB ,OC ,OD ,若点()1P O ,2P ,3P ⋯,如图所示排列,根据这个规律,点2014P 落在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上7.不等式x ﹣2>0在数轴上表示正确的是( )A .B .C .D .8.15( )A .1,2B .2,3C .3,4D .4,59.当x=3,y=2时,代数式23x y -的值是( )A .43B .2C .0D .310.已知某商店有两个进价不同的计算器,都卖了100 元,其中一个盈利 60% ,另一个亏损20%,在这次买卖中,这家商店( )A .不盈不亏B .盈利 37.5 元C .亏损 25 元D .盈利 12.5 元二、填空题11.在灯塔O 处观测到轮船A 位于北偏西54︒的方向,同时轮船B 在南偏东15︒的方向,那么AOB ∠的大小为______.12.计算:()222a -=____;()2323x x ⋅-=_____.13.15030'的补角是______.14.如图,在数轴上点A ,B 表示的数分别是1,–2,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.15.计算7a 2b ﹣5ba 2=_____.16.如图,在平面直角坐标系中,动点P 按图中箭头所示方向从原点出发,第1次运动到P 1(1,1),第2次接着运动到点P 2(2,0),第3次接着运动到点P 3(3,-2),…,按这的运动规律,点P 2019的坐标是_____.17.如果,,a b c 是整数,且c a b =,那么我们规定一种记号(,)a b c =,例如239=,那么记作(3,9)=2,根据以上规定,求(−2,16)=______.18.观察一列有规律的单项式:x ,23x ,35x ,47x ,59x ⋅⋅⋅,它的第n 个单项式是______.19.一个商店把某件商品按进价提高20%作为定价,可是总卖不出去;后来按定价减价20%出售,很快卖掉,结果这次生意亏了4元.那么这件商品的进价是________元.20.比较大小:﹣(﹣9)_____﹣(+9)填“>”,“<”,或”=”符号)三、解答题21.如图,已知C 点为线段AB 的中点,D 点为BC 的中点,AB =10cm ,求AD 的长度.22.先化简,再求值:()()22326m n mn mn m n +--,其中3m =,2n =-. 23.先化简,再求值:22111(83)3()223x xy x xy y ---+,其中2x =-,1y =. 24.计算 (1)()22315a a a a +⋅-⋅. (2)()2232246()x y x y xy -÷. 25.定义:从一个角的顶点出发,在角的内部引两条射线,如果这两条射线所成的角等于这个角的一半,那么这两条射线所成的角叫做这个角的内半角.如图1,若1COD AOB 2∠∠=,则COD ∠是AOB ∠的内半角.()1如图1,已知AOB 70∠=,AOC 25∠=,COD ∠是AOB ∠的内半角,则BOD ∠=______; ()2如图2,已知AOB 60∠=,将AOB ∠绕点O 按顺时针方向旋转一个角度α(0α60)<<至COD ∠,当旋转的角度α为何值时,COB ∠是AOD ∠的内半角. ()3已知AOB 30∠=,把一块含有30角的三角板如图3叠放,将三角板绕顶点O 以3度/秒的速度按顺时针方向旋转(如图4),问:在旋转一周的过程中,射线OA ,OB ,OC ,OD 能否构成内半角?若能,请求出旋转的时间;若不能,请说明理由.26.已知方程313752x x -=+与关于 x 的方程3a -8=2(x +a)-a 的解相同. (1)求 a 的值;(2)若 a 、b 在数轴上对应的点在原点的两侧,且到原点的距离相等,c 是倒数等于本身的数,求(a + b - c )2018的值.27.计算:﹣0.52+14﹣|22﹣4| 28.如图,已知点C 为AB 上的一点,12AC =,23CB AC =,点D 是AC 的中点,点E 是AB 的中点,求DE 的长29.如图所示,OC 是AOD ∠的平分线,OE 是BOD ∠的平分线,65 25EOC DOC ∠=︒∠=,,求AOB ∠的度数.30.解方程:(1)3723x x --=+ (2)123126x x +--=-【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数. 详解:65 000 000=6.5×107.故选B .点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.D解析:D【解析】【分析】由题意知,开始写作业时,分针和时针组成一平角,写完作业时,分针和时针重合. 设小强做数学作业花了x 分钟,根据分针追上时针时多转了180°列方程求解即可.【详解】分针速度:30度÷5分=6度/分;时针速度:30度÷60分=0.5度/分.设小强做数学作业花了x 分钟, 由题意得6x -0.5x =180,解之得x =36011. 故选D. 【点睛】本题考查了一元一次方程的应用---追击问题,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.3.B解析:B【解析】【分析】根据倒数的定义求解.【详解】-2的倒数是-12故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握 4.B解析:B【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】604800的小数点向左移动5位得到6.048,所以数字604800用科学记数法表示为56.04810⨯,故选B .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数,表示时关键要正确确定a 的值以及n 的值.5.B解析:B【解析】分析:由于第一个图2条直线相交,最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交,最多有6个,由此得到3=1+2,6=1+2+3,那么第四个图5条直线相交,最多有1+2+3+4=10个,以此类推即可求解.详解:∵第一个图2条直线相交,最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交,最多有6个,而3=1+2,6=1+2+3,∴第四个图5条直线相交,最多有1+2+3+4=10个,∴20条直线相交,最多交点的个数是1+2+3+…+19=(1+19)×19÷2=190.故选B .点睛:此题主要考查了平面内直线相交时交点个数的规律,解题时首先找出已知条件中隐含的规律,然后根据规律计算即可解决问题.6.A解析:A【解析】【分析】根据图形可以发现点的变化规律,从而可以得到点2014P 落在哪条射线上.【详解】解:由图可得,1P 到5P 顺时针,5P 到9P 逆时针,()2014182515-÷=⋯,∴点2014P 落在OA 上,故选A .【点睛】本题考查图形的变化类,解答本题的关键是明确题意,利用数形结合的思想解答.7.C解析:C【解析】【分析】先求出不等式的解集,再在数轴上表示出来,找出符合条件的选项即可.【详解】移项得,x >2,在数轴上表示为:故选:C .【点睛】本题考查的是在数轴上表示一元一次不等式的解集,解答此类题目的关键是熟知实心圆点与空心圆点的区别.8.C【解析】【分析】.【详解】∵9<15<16,∴,故选C.【点睛】本题考查了无理数的估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.9.A解析:A【解析】【分析】当x=3,y=2时,直接代入代数式即可得到结果.【详解】23x y -=2323⨯-=43, 故选A【点睛】本题考查的是代数式求值,正确的计算出代数式的值是解答此题的关键.10.D解析:D【解析】【分析】设盈利的计算器的进价为x ,则(160%)100x +=,亏损的计算器的进价为y ,则(120%)100y -=,用售价减去进价即可.【详解】解:设盈利的计算器的进价为x ,则(160%)100x +=,62.5x =,亏损的计算器的进价为y ,则(120%)100y -=,125y =,20062.512512.5--=元,所以这家商店盈利了12.5元..故选:D【点睛】本题考查了一元一次方程的应用,找准等量关系列出方程是解题的关键.二、填空题11.【解析】根据线与角的相关知识:具有公共点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的两条边,明确方位角,即可得解.【详解】根据题意可得:∠AOB=(90解析:141︒【解析】【分析】根据线与角的相关知识:具有公共点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的两条边,明确方位角,即可得解.【详解】根据题意可得:∠AOB=(90-54)+90+15=141°.故答案为141°.【点睛】此题主要考查角度的计算与方位,熟练掌握,即可解题.12.【解析】【分析】根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答【详解】【点睛】此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键 解析:44a 56x -【解析】【分析】根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答【详解】()222a -=44a()2323x x ⋅-=56x - 【点睛】此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键13.【解析】【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.解:.故答案为.【点睛】此题考查补角的意义,以及度分秒解析:2930'【解析】【分析】利用补角的意义:两角之和等于180°,那么这两个角互为补角其中一个角叫做另一个角的补角直接列式计算即可.【详解】-=.解:18015030'2930'故答案为2930'.【点睛】此题考查补角的意义,以及度分秒之间的计算,注意借1当60.14.2+【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,–,∴AB=1–(–)=1+,则点C表示的数为1+1+解析:2+2【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,–2,∴AB=1–(–2)=1+2,则点C表示的数为1+1+2=2+2,故答案为2【点睛】本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.15.2a2b【解析】【分析】根据合并同类项法则化简即可.【详解】故答案为:【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.解析:2a2b【解析】【分析】根据合并同类项法则化简即可.【详解】()2222﹣﹣.7a b5ba=75a b=2a b2a b故答案为:2【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.16.(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动解析:(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动到点(1,1),第2次运动到点(2,0),第3次接着运动到点(3,-2),第4次运动到点(4,0),第5次运动到点(5,1)…,∴运动后点的横坐标等于运动的次数,第2019次运动后点P的横坐标为2019,纵坐标以1、0、-2、0每4次为一个循环组循环,∵2019÷4=504…3,∴第2019次运动后动点P的纵坐标是第504个循环组的第3次运动,与第3次运动的点的纵坐标相同,为-2,∴点P(2019,-2),故答案为:(2019,-2).【点睛】本题是对点的坐标的规律的考查,根据图形观察出点的横坐标与纵坐标的变化规律是解题的关键.17.4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的解析:4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的掌握零指数幂.18.【解析】【分析】首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第个单项式.【详解】单项式系数分别是1、3、5、7、9……,第个单项式的系数是;单解析:()21nn x - 【解析】【分析】首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第n 个单项式.【详解】单项式系数分别是1、3、5、7、9……,第n 个单项式的系数是21n -;单项式的次数分别是1、2、3、4、5……,第n 个单项式的次数是n ;第n 个单项式是()21nn x -; 故答案为()21nn x -. 【点睛】此题主要考查根据单项式的系数和次数探索规律,熟练掌握,即可解题.19.100【解析】根据题意可得关于x 的方程,求解可得商品的进价.解:根据题意:设未知进价为x ,可得:x•(1+20%)•(1-20%)=96解得:x=100;解析:100【解析】根据题意可得关于x 的方程,求解可得商品的进价.解:根据题意:设未知进价为x ,可得:x•(1+20%)•(1-20%)=96解得:x=100;20.>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:,,.故答案为:【点睛】本题考查了多重符号化简和有理数的大小比较,解析:>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:(9)9--=,(9)9-+=-,(9)(9)∴-->-+.故答案为:>【点睛】本题考查了多重符号化简和有理数的大小比较,掌握有理数的大小比较法则是解题的关键,理数的大小比较法则是负数都小于0,正数都大于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.三、解答题21.AD =7.5cm .【解析】【分析】已知C 点为线段AB 的中点,D 点为BC 的中点,AB =10cm ,根据线段中点的定义可得AC =CB =12AB =5cm ,CD =12BC =2.5cm ,由AD =AC+CD 即可求得AD 的长度. 【详解】∵C 点为线段AB 的中点,D 点为BC 的中点,AB =10cm ,∴AC =CB =12AB =5cm ,CD =12BC =2.5cm , ∴AD =AC+CD =5+2.5=7.5cm .【点睛】本题考查了比较线段的长短的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.22.24m n ;-72【解析】【分析】由题意先利用整式加减运算法则对式子进行化简,再将3m =,2n =-代入求解即可.【详解】解:()()22326m n mn mn m n +-- =22366m n mn mn m n +-+=24m n ;将3m =,2n =-代入得到243(2)72.⨯⨯-=-【点睛】本题考查整式加减运算中的化简求值,利用合并同类项原则对式子先化简再代入计算求值.23.2x y -,3.【解析】【分析】先去括号,再根据合并同类项法则合并出最简结果,把x 、y 的值代入求值即可.【详解】 原式222334322x xy x xy y x y =--+-=- 将2x =-,1y =代入得:原式2(2)13=--=【点睛】本题考查整式的加减——化简求值,熟练掌握合并同类项法则是解题关键.24.(1)32a a -;(2)46x -【解析】【分析】(1)原式利用单项式乘以多项式,以及单项式乘以单项式法则计算,合并即可得到结果; (2)原式先计算乘方运算,再利用多项式除以单项式法则计算即可求出值.【详解】解:(1) 原式3335a a a =+-32a a =-;(2)原式()22322246x y x y x y =-÷46x =-. 【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.25.(1)10°;(2) 20;(3)见解析.【解析】【分析】(1)根据内半角的定义解答即可;(2)根据内半角的定义解答即可;(3)根据根据内半角的定义列方程即可得到结论.【详解】解:()1COD ∠是AOB ∠的内半角,AOB 70∠=,1COD AOB 352∠∠∴==, AOC 25∠=,BOD 70352510∠∴=--=,故答案为10,()2AOC BOD α∠∠==,AOD 60α∠∴=+,COB ∠是AOD ∠的内半角, ()1BOC 60α60α2∠∴=+=-, α20∴=,∴旋转的角度α为20时,COB ∠是AOD ∠的内半角;()3在旋转一周的过程中,射线OA ,OB ,OC ,OD 能否构成内半角;理由:设按顺时针方向旋转一个角度α,旋转的时间为t ,如图1,BOC ∠是AOD ∠的内半角,AOC BOD α∠∠==,AOD 30α∠∴=+,()130302αα∴+=-, 解得:10α=,103t s ∴=; 如图2,BOC ∠是AOD ∠的内半角,AOC BOD ∠∠α==,30AOD ∠α∴=+,()130302αα∴+=-, 90α∴=,90303t s ∴==; 如图3,AOD ∠是BOC ∠的内半角,360AOC BOD ∠∠α==-,36030αBOC ∠∴=+-, ()136030α360α302∴+-=--, α330∴=,330t 110s 3∴==, 如图4,AOD ∠是BOC ∠的内半角,AOC BOD 360α∠∠==-,BOC 36030α∠∴=+-,()()136030α303036030α2∴+-=+-+-, 解得:α350=, 350t s 3∴=, 综上所述,当旋转的时间为10s 3或30s 或110s 或350s 3时,射线OA ,OB ,OC ,OD 能构成内半角.【点睛】本题考查了角的计算,角的和差,准确识图理清图中各角度之间的关系是解题的关键.26.(1)4a =-;(2)1.【解析】【分析】 (1)先求出方程313752x x -=+的解x=-8,再代入方程3a -8=2(x +a)-a 求出a 的值即可; (2)根据数a ,b 在数轴上的位置特点,可知a ,b 互为相反数,即a+b=0,再由倒数的定义可知xy=1,把它们代入所求代数式(a+b-c )2018,根据运算法则即可得出结果.【详解】(1)313752x x -=+解得8x =-,再将8x =-代入()382a x a a -=+-,解得4a =-,(2)∵a ,b 互为相反数,∴a+b=0,∵c 是倒数等于本身的数,∴c=±1;∴()()20182018011a b c +-=±=【点睛】本题主要考查了相反数、倒数的定义和性质及有理数的加法运算.注意,数轴上,在原点两侧,并且到原点的位置相等的点表示的两个数一定互为相反数.27.【解析】【分析】先算乘方,后算加减;同级运算,应按从左到右的顺序进行计算;如果有绝对值,要先做绝对值内的运算.【详解】 2210.5244-+-- 10.25444=-+-- 10.2504=-+- =0.【点睛】本题考查了有理数的混合运算,掌握有理数的混合运算是解题的关键.28.4【解析】【分析】 根据已知条件可求出28,203CB AC AB ===,再根据点D 是AC 的中点,点E 是AB 的中点,求出,DC AE ,由图可得出DE AE AD =-,计算求解即可.【详解】解:∵12AC =,23CB AC =∴28,203CB AC AB === ∵点D 是AC 的中点,点E 是AB 的中点∴10,6AE AD DC ===∴1064DE AE AD =-=-=.【点睛】本题考查的知识点是与线段中点有关的计算,能够根据图形找出相关线段间的数量关系是解此题的关键.29.130︒【解析】【分析】根据题意直接利用角平分线的性质得出∠AOD 和∠BOD ,进而求出AOB ∠的度数.【详解】解:∠EOD=∠EOC -∠DOC=65°-25°=40°,∵OC 是∠AOD 的平分线,OE 是∠BOD 的平分线,∴∠AOD=2∠DOC=2⨯25°=50°,∠BOD=2∠EOD=2⨯40°=80°,∴∠AOB=∠AOD +∠BOD =50°+80°=130°.【点睛】本题主要考查角的运算,熟练运用角平分线的定义以及正确掌握角平分线的性质是解题关键.30.(1)2x =-;(2)76- 【解析】【分析】(1)按照移项,合并同类项,系数化为1的步骤解答即可;(2)先去分母,然后去括号,移项,合并同类项,系数化为1即可.【详解】解:(1)-3x -2x =3+7-5x =10x =-2;(2)3(x +1)-(2-3x )=-63x +3-2+3x =-63x +3x =-6-3+26x =-7x =76-. 【点睛】本题考查了一元一次方程的解法,熟记解法的一般步骤是解决此题的关键.。
初中七年级数学上册期末考试及答案【完整版】
初中七年级数学上册期末考试及答案【完整版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.计算12+16+112+120+130+……+19900的值为( ) A .1100 B .99100 C .199 D .100992.下列说法中正确的是( )A .若0a <,则20a <B .x 是实数,且2x a =,则0a >C .x -有意义时,0x ≤D .0.1的平方根是0.01±3.如图,直线AD ,BE 被直线BF 和AC 所截,则∠1的同位角和∠5的内错角分别是( )A .∠4,∠2B .∠2,∠6C .∠5,∠4D .∠2,∠44.下列图形具有稳定性的是( )A .B .C .D .5.两条直线被第三条直线所截,就第三条直线上的两个交点而言形成了“三线八角”.为了便于记忆,同学们可仿照图用双手表示“三线八角”(两大拇指代表被截直线,食指代表截线).下列三幅图依次表示( )A .同位角、同旁内角、内错角B .同位角、内错角、同旁内角C .同位角、对顶角、同旁内角D .同位角、内错角、对顶角6.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l的有()A.5个B.4个C.3个D.2个7.某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人()A.赚16元B.赔16元C.不赚不赔D.无法确定8.如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A.125°B.135°C.145°D.155°9.如果线段AB=3cm,BC=1cm,那么A、C两点的距离d的长度为()A.4cm B.2cm C.4cm或2cm D.小于或等于4cm,且大于或等于2cm 10.下列四个不等式组中,解集在数轴上表示如图所示的是()A.23xx≥⎧⎨>-⎩B.23xx≤⎧⎨<-⎩C.23xx≥⎧⎨<-⎩D.23xx≤⎧⎨>-⎩二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x的不等式组531xa x-≥-⎧⎨-<⎩无解,则a的取值范围是________.2.如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C平移的距离CC'=________.3.因式分解:2218x-=______.4.如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是________.5.如图,在△ABC和△DEF中,点B、F、C、E在同一直线上,BF = CE,AC∥DF,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是________.(只需写一个,不添加辅助线)6.如图,直线AB、CD相交于点O,OE⊥AB于点O,且∠COE=34°,则∠BOD为________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)32316x yx y-=⎧⎨+=⎩(2)25528x yx y-=⎧⎨+=⎩2.解不等式组:2(3)47{22x xxx+≤++>并写出它的所有整数解.3.如图,分别表示甲步行与乙骑自行车(在同一路上)行走的路程s甲,s乙与时间t的关系,观察图象并回答下列问题:(1)乙出发时,乙与甲相距千米;(2)走了一段路程后,乙的自行车发生故障,停下来修车的时间为小时;(3)乙从出发起,经过小时与甲相遇;(4)乙骑自行车出故障前的速度与修车后的速度一样吗?为什么?4.如图,已知∠A=∠ADE.(1)若∠EDC=3∠C,求∠C的度数;(2)若∠C=∠E.求证:BE∥CD.5.某校计划组织学生参加“书法”、“摄影”、“航模”、“围棋”四个课外兴题小組.要求每人必须参加.并且只能选择其中一个小组,为了解学生对四个课外兴趣小组的选择情況,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的扇形统计图和条形统计图(部分信息未给出).请你根据给出的信息解答下列问题:(1)求参加这次问卷调查的学生人数.并补全条形统计图(画图后请标注相应的数据);(2)________, ________;m n ==(3)若某校共有1200名学生,试估计该校选择“围棋”课外兴趣小组有多少人?6.为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A 、B 两类学校进行改扩建,根据预算,改扩建2所A 类学校和3所B 类学校共需资金7800万元,改扩建3所A 类学校和1所B 类学校共需资金5400万元.(1)改扩建1所A 类学校和1所B 类学校所需资金分别是多少万元?(2)该县计划改扩建A 、B 两类学校共10所,改扩建资金由国家财政和地方财政共同承担,若国家财政拨付资金不超过11800万元,地方财政投入资金不少于4000万元,其中地方财政投入到A 、B 两类学校改扩建资金分别为每所300万元和500万元,请问共有哪几种改扩建方案?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、A5、B6、B7、B8、A9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、a≥22、53、2(x+3)(x﹣3).4、40°5、AC=DF(答案不唯一)6、56°三、解答题(本大题共6小题,共72分)1、(1)5{2xy==;(2)21xy=⎧⎨=-⎩.2、原不等式组的解集为122x-≤<,它的所有整数解为0,1.3、(1)10;(2)1;(3)3;(4)不一样,理由略;4、(1)45°;(2)详略.5、(1)150;补图见解析;(2)36,16;(3)选择“围棋”课外兴趣小组的人数为192人.6、(1)1200万元、1800万元;(2)共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.。
部编版七年级数学上册期末考试(及参考答案)
部编版七年级数学上册期末考试(及参考答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-2.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球( )A .12个B .16个C .20个D .30个3.已知:20n 是整数,则满足条件的最小正整数n 为( )A .2B .3C .4D .54.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为( )A .(2,3)B .(-2,-3)C .(-3,2)D .(3,-2)5.如图,在△ABC 和△DEC 中,已知AB=DE ,还需添加两个条件才能使△ABC ≌△DEC ,不能添加的一组条件是( )A .BC=EC ,∠B=∠EB .BC=EC ,AC=DC C .BC=DC ,∠A=∠D D .∠B=∠E ,∠A=∠D6.在平面直角坐标系中,将点A (1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A ′,则点A ′的坐标是( )A .(﹣1,1)B .(﹣1,﹣2)C .(﹣1,2)D .(1,2)7.下列各组线段不能组成三角形的是 ( )A .4cm 、4cm 、5cmB .4cm 、6cm 、11cmC .4cm 、5cm 、6cmD .5cm 、12cm 、13cm8.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.若|abc |=-abc ,且abc ≠0,则||||b a c a b c ++=( ) A .1或-3 B .-1或-3 C .±1或±3 D .无法判断10.如图,△ABC 中,AD 为△ABC 的角平分线,BE 为△ABC 的高,∠C=70°,∠ABC=48°,那么∠3是( )A .59°B .60°C .56°D .22°二、填空题(本大题共6小题,每小题3分,共18分)1.有理数a 、b 、c 在数轴上的位置如图所示,化简|a+b|﹣|c ﹣a|+|b ﹣c|的结果是________.2.如图,点O 是直线AD 上一点,射线OC ,OE 分别平分∠AOB 、∠BOD .若∠AOC =28°,则∠BOE =________.3.如图,五边形ABCDE 是正五边形,若12l l //,则12∠-∠=__________.4.若()2320m n -++=,则m+2n 的值是________.5.已知1a -+5b -=0,则(a ﹣b )2的平方根是________.5.如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要______cm .三、解答题(本大题共6小题,共72分)1.解方程:(1)3(2x-1)=15 (2)21232x x -+-=-2.已知方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x 一2y=0的解,则k 的值是多少?3.如图,将边长为m 的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n 的小正方形纸板后,将剩下的三块拼成新的矩形.(1)用含m 或n 的代数式表示拼成矩形的周长;(2)m=7,n=4,求拼成矩形的面积.4.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=78°,求∠DAC的度数.5.“校园手机”现象越来越受到社会的关注.“寒假”期间,某校小记者随机调查了某地区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:(1)求这次调查的家长人数,并补全图1;(2)求图2中表示家长“赞成”的圆心角的度数;(3)已知某地区共6500名家长,估计其中反对中学生带手机的大约有多少名家长?6.某农产品生产基地收获红薯192吨,准备运给甲、乙两地的承包商进行包销.该基地用大、小两种货车共18辆恰好能一次性运完这批红薯,已知这两种货车的载重量分别为14吨/吨和8吨/辆,运往甲、乙两地的运费如下表:(1)求这两种货车各用多少辆;(2)如果安排10辆货车前往甲地,其余货车前往乙地,其中前往甲地的大货车为a辆,总运费为w元,求w关于a的函数关系式;(3)在(2)的条件下,若甲地的承包商包销的红薯不少于96吨,请你设计出使总运费最低的货车调配方案,并求出最低总运费.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、D4、C5、C6、A7、B8、A9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、-2a2、62°3、724、-15、±4.6、10三、解答题(本大题共6小题,共72分)1、(1)x 3=;(2)x 5=.2、5k =-3、(1)矩形的周长为4m ;(2)矩形的面积为33.4、44°5、(1)答案见解析(2)36°(3)4550名6、(1)大货车用8辆,小货车用10辆;(2)w=70a+11400(0≤a ≤8且为整数);(3)使总运费最少的调配方案是:3辆大货车、7辆小货车前往甲地;5辆大货车、3辆小货车前往乙地.最少运费为11610元.。
七年级上册数学期末试题及答案解答
七年级上册数学期末试题及答案解答一、选择题1.下列说法错误的是( ) A .25mn -的系数是25-,次数是2 B .数字0是单项式 C .14ab 是二次单项式D .23xy π的系数是13,次数是4 2.七年级数学拓展课上:同学们玩一种类似于古代印度的“梵塔游戏”,有3个柱子甲、乙、丙,在甲柱上现有4个盘子,最上面的两个盘子大小相同,从第二个盘子往下大小不等,大的在下,小的在上(如图),把这4个盘子从甲柱全部移到乙柱游戏即结束,在移动过程中每次只能移动一个盘子,甲、乙、丙柱都可以利用,且3个柱子上的盘子始终保持小的盘子不能放在大的盘子之下,设游戏结束需要移动的最少次数为n ,则n =( )A .9B .11C .13D .153.某商场周年庆期间,对销售的某种商品按成本价提高30%后标价,又以9折(即按标价的90%)优惠卖出,结果每件商品仍可获利85元,设这种商品每件的成本是x 元,根据题意,可得到的方程是( ) A .()130%90%85x x +⋅=- B .()130%90%85x x +⋅=+ C .()130%90%85x x +⋅=-D .()130%90%85x x +⋅=+4.骰子是一种特别的数字立方体(见下图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是( )A .B .C .D .5.小牧用60根长短相同的小木棍按照下图所示的方式,先连续摆出若干正方形,再摆出一些六边形,摆出的正方形和六边形一共有1个,要求所有的图形都摆在一行上,且相邻的图形只有一条公共边,同时没有木棍剩余.则t 可以取( )个不同的值.A .2B .3C .4D .56.按照如图所示的计算程序,若输入的x =﹣3,则输出的值为﹣1:若输入的x =3,则输出的结果为( )A .12B .112C .2D .37.下列运算正确的是( ) A .()a b c a b c -+=-+B .2(1)21x y x y --=-+C .22223m n nm m n -=-D .532x x -=8.如果-2a m b 2与12a 5b n+1的和仍然是单项式,那么m +n 的值为( ). A .5B .6C .7D .89.有理数,a b 在数轴上的位置如图所示,则下列结论正确的是( )A .0a b +>B .0a b -<C .b a >D .0ab <10.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,则在该正方体中,和“我”相对面上所写的汉字是( )A .美B .丽C .琼D .海11.对于一个自然数n ,如果能找到正整数x 、y ,使得n x y xy =++,则称n 为“好数”.例如:31111=++⨯,则3是一个“好数”,在8,9,10,11这四个数中,“好数”的个数共有( )个 A .1B .2C .3D .412.如图,在1000个“○”中依次填入一列数字1231000,,,m m m m 使得其中任意四个相邻“○”中所填数字之和都等于10-,已知251m x =-,9992m x =-,则x 的值为( )A .1B .1-C .2D .2-二、填空题13.如图,若D 是AB 的中点,E 是BC 的中点,若AC =8,BC =5,则AD =______.14.按一定顺序的一列数叫做数列,如数列:12,16,112,120,,则这个数列前2019个数的和为____.15.若关于x 的方程()||1 13n n x -+=是一元一次方程,则n 的值是_________.16.下列图案是我国古代窗格的一部分,其中“O ”代表窗纸上所贴的剪纸,则第51个图中所贴剪纸“O ”的个数为__________.17.小明受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作,请根据图中给出的信息,量筒中至少放入______个小球时有水溢出.18.将图中的三角形纸片沿AB 折叠所得的AB 右边的图形的面积与原三角形面积之比为2:3,已知图中重叠部分的面积为5,则图中三个阴影部分的三角形的面积之和为_____.19.如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由5个圆组成,第3个图由11个圆组成,…按照这样的规律排列下去,则第20个图形由_____个圆组成.20.已知关于x 的一元一次方程520202020xx m +=+的解为2019x =,那么关于y 的一元一次方程552020(5)2020yy m --=--的解为________. 21.阅读理解题:我们知道,根据乘方的意义:23235358,,,a a a a a a a a a a a a a ====通过以上计算你能否发现规律,得到m na a 的结果呢?请根据规律计算:23499100······a a a a a a =__________.22.如图,已知∠AOB =40°,自O 点引射线OC ,若∠AOC :∠COB =2:3,OC 与∠AOB 的平分线所成的角的度数为_____.三、解答题23.先阅读下列解题过程,然后解答问题(1)、(2)、(3). 例:解绝对值方程:|2x |=1.解:讨论:①当x ≥0时,原方程可化为2x =1,它的解是x =12. ②当x <0时,原方程可化为﹣2x =1,它的解是x =﹣12. ∴原方程的解为x =12和﹣12. 问题(1):依例题的解法,方程|12x |=2的解是 ; 问题(2):尝试解绝对值方程:2|x ﹣2|=6;问题(3):在理解绝对值方程解法的基础上,解方程:|x ﹣2|+|x ﹣1|=5. 24.计算、化简求值 (1)(16+12﹣112)×(﹣12)(运用运算律) (2)(1+12)×(﹣23)2÷13+(﹣1)3 (3)求2x ﹣[2(x+4)﹣3(x+2y)]﹣2y 的值,其中x =13,y =12.25.我们知道,可以单独用正三角形、正方形或正六边形镶嵌平面,如果我们要同时用两种不同的正多边形镶嵌平面.可能设计出几种不同的组合方案?猜想1:是否可以同时用正方形.正八边形两种正多边形组合进行平面镶嵌?验证l:在镶嵌平面时,设围绕某一点有x 个正方形和y 个正八边形的内角可以拼成一个周角.根据题意,可得方程:()82180903608x y -⨯+=,整理得: 238,x y +=我们可以找到方程的正整数解为12x y =⎧⎨=⎩ 结论1:镶嵌平面时.在一个顶点周围围绕着1个正方形和2个正八边形的内角可以拼成一个周角,所以同时用正方形和正八边形两种正多边形组合可以进行平面镶嵌.猜想2:是否可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌?若能,请按照上述方法进行验证,并写出所有可能的方案;若不能,请说明理由.26.如图,已知∠AOB=120°,射线OP从OA位置出发,以每秒2°的速度顺时针向射线OB 旋转;与此同时,射线OQ以每秒6°的速度,从OB位置出发逆时针向射线OA旋转,到达射线OA后又以同样的速度顺时针返回,当射线OQ返回并与射线OP重合时,两条射线同时停止运动. 设旋转时间为t秒.(1)当t=2时,求∠POQ的度数;(2)当∠POQ=40°时,求t的值;(3)在旋转过程中,是否存在t的值,使得∠POQ=12∠AOQ?若存在,求出t的值;若不存在,请说明理由.27.如图,已知点A在数轴上对应的数为a,点B对应的数为b,且a,b满足()220400a b++-=.(1)求点A与点B在数轴上对应的数a和b;(2)现动点P从点A出发,沿数轴向右以每秒4个单位长度的速度运动;同时,动点Q 从点B出发,沿数轴向左以每秒2个单位长度的速度运动,设点P的运动时间为t秒.①若点P和点Q相遇于点C, 求点C在数轴上表示的数;②当点P和点Q相距15个单位长度时,直接写出t的值.28.如图,线段AB上有一点O,AO=6㎝,BO=8㎝,圆O的半径为1.5㎝,P点在圆周上,且∠POB=30°.点C从A出发以m cm/s的速度向B运动,点D从B出发以n cm/s的速度向A运动,点E从P点出发绕O逆时针方向在圆周上旋转一周,每秒旋转角度为60°,C、D、E三点同时开始运动.(1)若m=2,n=3,则经过多少时间点C、D相遇;(2)在(1)的条件下,求OE与AB垂直时,点C、D之间的距离;(3)能否出现C、D、E三点重合的情形?若能,求出m、n的值;若不能,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据单项式系数、次数的定义逐一判断即可得答案.【详解】A.25mn-的系数是25-,次数是2,正确,故该选项不符合题意,B.数字0是单项式,正确,故该选项不符合题意,C.14ab是二次单项式,正确,故该选项不符合题意,D.23xyπ的系数是3π,次数是3,故该选项说法错误,符合题意,故选:D.【点睛】本题考查单项式系数、次数的定义,单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.单独一个数字也是单项式.熟练掌握定义是解题关键.2.B解析:B【解析】【分析】首先不考虑题目中最上面两个盘子大小相同的情况,分别求出盘子数量n=1,n=2和n=3时所需要移动的最少次数,而当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,然后计算即可.【详解】解:首先不考虑题目中最上面两个盘子大小相同的情况,当盘子数量n=1时,游戏结束需要移动的最少次数为1;当盘子数量n=2时,小盘→丙柱,大盘→乙柱,小盘再从丙柱→乙柱,游戏结束需要移动的最少次数为3;盘子数量n=3时,小盘→乙柱,中盘→丙柱,小盘从乙柱→丙柱,也就是用n=2的方法把中盘和小盘移到丙柱,大盘移到乙柱,再用n=2的方法把中盘和小盘从丙柱移到乙柱,至此完成,游戏结束时需要移动的最少次数为3+1+3=7;当有四个盘子,且最上面两个盘子大小相同时,相当于操作三个盘子的时候,最上面的那个盘子动了几次,就会增加几次,故游戏结束需要移动的最少次数为7+4=11,故选B.【点睛】本题考查了图形变化的规律问题,理解题意,正确分析出完成移动的过程是解题的关键.3.B解析:B 【解析】 【分析】由题意可知:成本+利润=售价,设这种商品每件的成本是x 元,则提高30%后的标价为(130%)x +元;打9折出售,则售价为(130%)90%x +,列出方程即可.【详解】由题意可知:售价=成本+利润,设这种商品每件的成本是x 元,则提高30%后的标价为(130%)x +元;打9折出售,则售价为(130%)90%x +;根据:售价=成本+利润,列出方程:()130%90%85x x +⋅=+ 故选B 【点睛】本题考查了一元一次方程的应用,熟练掌握等量关系:“成本+利润=售价”是解答本题的关键.4.C解析:C 【解析】 【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解. 【详解】根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A 、1点与3点是向对面,4点与6点是向对面,2点与5点是向对面,所以不可以折成符合规则的骰子,故本选项错误;B 、3点与4点是向对面,1点与5点是向对面,2点与6点是向对面,所以不可以折成符合规则的骰子,故本选项错误;C 、4点与3点是向对面,5点与2点是向对面,1点与6点是向对面,所以可以折成符合规则的骰子,故本选项正确;D 、1点与5点是向对面,3点与4点是向对面,2点与6点是向对面,所以不可以折成符合规则的骰子,故本选项错误. 故选C . 【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.5.C解析:C 【解析】 【分析】由题意可知:摆a 个正方形需要4+3(a -1)=3a +1根小木棍;摆b 个六边形需要6+5(b -1)=5b +1根小木棍;由此得到方程3a +1+5b +1-1=60,再确定正整数解的个数即可求得答案. 【详解】设摆出的正方形有a 个,摆出的六边形有b 个,依题意有 3a +1+5b +1-1=60, 3a +5b =59,当a =3时,b =10,t =13; 当a =8时,b =7,t =15; 当a =13时,b =4,t =17; 当a =18时,b =1,t =19. 故t 可以取4个不同的值. 故选:C . 【点睛】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,利用规律解决问题.6.D解析:D 【解析】 【分析】直接利用已知代入得出b 的值,进而求出输入﹣3时,得出y 的值. 【详解】∵当输入x 的值是﹣3,输出y 的值是﹣1,∴﹣1=32b-+, 解得:b =1,故输入x 的值是3时,y =2331⨯-=3. 故选:D . 【点睛】本题主要考查了代数式求值,正确得出b 的值是解题关键.7.C解析:C 【解析】 【分析】分别判断各选项是否正确. 【详解】A 中,a b +c a b c -=--(),错误;B 中,2(1)22x y x y --=-+,错误;C 中,22223m n nm m n -=-,正确;D 中,532x x x -=,错误 故选:C . 【点睛】本题考查整式的加减法,需要注意合并同类项时,仅是系数的加减.8.B解析:B 【解析】 【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项. 【详解】 解:∵-2a m b 2与12a 5b n+1是同类项, ∴m=5,n+1=2, 解得:m=1, ∴m+n=6. 故选B . 【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的定义是解题的关键.9.B解析:B 【解析】 【分析】先根据点在数轴上的位置,判断出a 、b 的正负,然后再比较出a 、b 的大小,最后结合选项进行判断即可. 【详解】解:由点在数轴上的位置可知:a <0,b <0,|a|>|b|, A 、∵a <0,b <0,∴a+b <0,故A 错误; B 、∵a <b ,∴a-b <0,故B 正确; C 、|a|>|b|,故C 错误; D 、ab >0,故D 错误. 故选:B . 【点睛】本题主要考查的是绝对值、数轴、有理数的加法、减法、乘法运算,掌握运算法则是解题的关键.10.B解析:B 【解析】 【分析】利用正方体及其表面展开图的特点解题即可.【详解】解:这是一个正方体的平面展开图,共有六个面,其中面“爱”与面“琼”相对,面“海”与面“美”相对,面“我”与面“丽”相对;故选:B.【点睛】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手、分析及解答问题.11.C解析:C【解析】【分析】根据题意,由n=x+y+xy,可得n+1=x+y+xy+1,所以n+1=(x+1)(y+1),因此如果n+1是合数,则n是“好数”,据此判断即可.【详解】根据分析,∵8=2+2+2×2,∴8是好数;∵9=1+4+1×4,∴9是好数;∵10+1=11,11是一个质数,∴10不是好数;∵11=2+3+2×3,∴11是好数.综上,可得在8,9,10,11这四个数中,“好数”有3个:8、9、11.故选C.【点睛】此题主要考查了有理数的混合运算,要熟练掌握,解答此题的关键是要明确:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化;此题还考查了对“好数”的定义的理解,要熟练掌握,解答此题的关键是要明确:如果n+1是合数,则n是“好数”.12.C解析:C【解析】【分析】由于任意四个相邻数之和都是-10得到a1+a2+a3+a4=a2+a3+a4+a5,a5+a6+a7+a8=a6+a7+a8+a9,…,则a1=a5=a9=…=,利用同样的方法可得到a1=a5=a9=…=x-1,a2=a6=a10=…-7,a3=a7=a11=…=-2x,a4=a8=a12=…=0,所以已知a999=a3=-2x,a25=a1=x-1,由此联立方程求得x即可.【详解】∵a1+a2+a3+a4=a2+a3+a4+a5,a5+a6+a7+a8=a6+a7+a8+a9,…,∴a1=a5=a9=…=x-1,同理可得a2=a6=a10=…=-7,a3=a7=a11=…=-2x,a4=a8=a12= 0∵a1+a2+a3+a4=-10,∴x-1-7-2x+0=-10,解得:x=2.故答案为:2.【点睛】本题考查数字的变化规律,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.二、填空题13.5【解析】【分析】根据AC=8,BC=5得出BC的长,再由D是AB的中点,即可求出AD的长.【详解】∵AC=8,BC=5,∴AB= AC-BC=3,又∵D是AB的中点,∴AD=1.5,故答解析:5【解析】【分析】根据AC=8,BC=5得出BC的长,再由D是AB的中点,即可求出AD的长.【详解】∵AC=8,BC=5,∴AB= AC-BC=3,又∵D是AB的中点,∴AD=1.5,故答案为1.5.【点睛】此题主要考查了两点之间的距离以及线段中点的性质,根据已知得出AB,的长是解题关键.14.【解析】【分析】根据数列得出第n个数为,据此可得前2019个数的和为,再用裂项求和计算可得.【详解】解:由数列知第n个数为,则前2019个数的和为:====故答案为:.【点 解析:20192020【解析】【分析】根据数列得出第n 个数为()11n n +,据此可得前2019个数的和为111 (122320192020)+++⨯⨯⨯,再用裂项求和计算可得. 【详解】解:由数列知第n 个数为()11n n +, 则前2019个数的和为: 11111 (26122020192020)+++++⨯ =111 (122320192020)+++⨯⨯⨯ =11111111 (2233420192020)-+-+-++- =112020- =20192020故答案为:20192020. 【点睛】本题主要考查数字的变化类,解题的关键是根据数列得出第n 个数为()11n n +,并熟练掌握裂项求和的方法. 15.-1【分析】只含有一个未知数,并且未知数的最高次数为1的方程叫做一元一次方程,据此进一步求解即可.【详解】∵关于的方程是一元一次方程,∴,∴且,即:,故答案为:.【点睛】解析:-1【解析】【分析】只含有一个未知数,并且未知数的最高次数为1的方程叫做一元一次方程,据此进一步求解即可.【详解】∵关于x 的方程()||1 13n n x -+=是一元一次方程, ∴110n n =-≠且,∴1n =±且1n ≠,即:1n =-,故答案为:1-.【点睛】本题主要考查了一元一次方程的定义,熟练掌握相关概念是解题关键.16.155【解析】【分析】观察图形发现,后一个图形比前一个图形多3个剪纸“○”,然后写出第n 个图形的剪纸“○”的表达式,再把n =51代入表达式进行计算即可得解.【详解】解:第1个图形有5个剪纸解析:155【解析】【分析】观察图形发现,后一个图形比前一个图形多3个剪纸“○”,然后写出第n 个图形的剪纸“○”的表达式,再把n =51代入表达式进行计算即可得解.解:第1个图形有5个剪纸“○”,第2个图形有8个剪纸“○”,第3个图形有11个剪纸“○”,……,依此类推,第n个图形有(3n+2)个剪纸“○”,当n=51时,3×51+2=155.故答案为:155.【点睛】本题是对图形变化规律的考查,属于常考题型,观察出后一个图形比前一个图形多3个剪纸“○”是解题的关键.17.11【解析】【分析】本题首先算出放入一个球水面上升多少厘米,继而求解量筒高度与原水面高度之差,最后用两者之比求解此题.【详解】由图已知:放入一个小球水面上升:,量筒与原水面高度差:,解析:11【解析】【分析】本题首先算出放入一个球水面上升多少厘米,继而求解量筒高度与原水面高度之差,最后用两者之比求解此题.【详解】由图已知:-÷=,放入一个小球水面上升:(18.514)3 1.5cm-=,量筒与原水面高度差:301416cm÷≈,∵16 1.510.7∴量筒中至少放入11个球,水会溢出.故填:11.【点睛】本题考查有理数的运算,难点在于从图中获取有效信息点,并理清题目中蕴含的数学关系,其次注意计算仔细即可.18.5【解析】设图中三个阴影部分的三角形的面积之和为y,可得AB右边的图形的面积=5+y,原三角形面积=2×5+y=10+y,由题意列出方程可求解.【详解】设图中三个阴影部分的三角形的解析:5【解析】【分析】设图中三个阴影部分的三角形的面积之和为y,可得AB右边的图形的面积=5+y,原三角形面积=2×5+y=10+y,由题意列出方程可求解.【详解】设图中三个阴影部分的三角形的面积之和为y,则AB右边的图形的面积=5+y,原三角形面积=2×5+y=10+y,由题意可得:(5+y):(10+y)=2:3,∴y=5,故答案为:5.19.【解析】【分析】首先分析题意,找到规律,并进行推导得出答案.【详解】解:根据图形的变化,发现第n个图形的最上边的一排是1个圆,第二排是2个圆,第三排是3个圆,…,第n排是n个圆;则第n个解析:【解析】【分析】首先分析题意,找到规律,并进行推导得出答案.【详解】解:根据图形的变化,发现第n个图形的最上边的一排是1个圆,第二排是2个圆,第三排是3个圆,…,第n排是n个圆;则第n个图形的圆的个数是:2(1+2+…n﹣1)+(2n﹣1)=n2+n﹣1.当n=20时,202+20﹣1=419,故答案为:419.【点睛】本题考查图形的变化类问题,重点考查了学生通过观察、归纳、抽象出数列的规律的能力,难度不大.20.2024【解析】【分析】根据关于x 的一元一次方程的解,可以得到m 的值,把m 的值代入关于y 的方程式中,可以得到y 的解.【详解】∵的解为,∴,解得:,∴方程可化为,∴,∴,∴,解析:2024【解析】【分析】根据关于x 的一元一次方程的解,可以得到m 的值,把m 的值代入关于y 的方程式中,可以得到y 的解.【详解】 ∵520202020x x m +=+的解为2019x =, ∴52020120201920290m +=⨯+, 解得:52020201920202019m =+-⨯, ∴方程552020(5)2020y y m --=--可化为 25052020(5)5202020192020202019y y --=---+⨯, ∴52020(5)20192020201920202020y y ---=-+⨯, ∴(2020)(5)2019(2020)2020202011y --=-⨯-, ∴52019y -=-,∴2024y =,故答案为:2024.【点睛】本题考查了已知一元一次方程的解求参数,整体代换解一元一次方程,掌握整体代换的思想是解题的关键.21.【解析】【分析】先通过已知的计算得出乘方运算的规律,再根据乘法的结合律和交换律即可得.【详解】归纳类推得:则故答案为:.【点睛】本题考查了有理数的乘方、乘法的结合解析:5050a【解析】【分析】先通过已知的计算得出乘方运算的规律,再根据乘法的结合律和交换律即可得.【详解】112a a a a +⋅==2213a a a a a a a +⋅⋅=⋅==23235a a a a +⋅==35358a a a a +⋅==归纳类推得:m nm n a a a +⋅= 则23499100a a a a a a ⋅⋅⋅⋅⋅⋅10029939849749525051=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅()()()()()()a a a a a a a a a a a a101101101101101101=⋅⋅⋅⋅⋅⋅a a a a a a101101101101=a++++10150a⨯=5050=aa.故答案为:5050【点睛】本题考查了有理数的乘方、乘法的结合律和交换律,依据已知计算等式,归纳出乘方运算的计算规律是解题关键.22.4°或100°.【解析】【分析】由题意∠AOC:∠COB=2:3,∠AOB=40°,可以求得∠AOC的度数,OD是角平分线,可以求得∠AOD的度数,∠COD=∠AOD-∠AOC.【详解】解解析:4°或100°.【解析】【分析】由题意∠AOC:∠COB=2:3,∠AOB=40°,可以求得∠AOC的度数,OD是角平分线,可以求得∠AOD的度数,∠COD=∠AOD-∠AOC.【详解】解:若OC在∠AOB内部,∵∠AOC:∠COB=2:3,∴设∠AOC=2x,∠COB=3x,∵∠AOB=40°,∴2x+3x=40°,得x=8°,∴∠AOC=2x=2×8°=16°,∠COB=3x=3×8°=24°,∵OD平分∠AOB,∴∠AOD=20°,∴∠COD=∠AOD﹣∠AOC=20°﹣16°=4°.若OC在∠AOB外部,∵∠AOC:∠COB=2:3,∴设∠AOC=2x,∠COB=3x,∵∠AOB=40°,∴3x﹣2x=40°,得x=40°,∴∠AOC=2x=2×40°=80°,∠COB=3x=3×40°=120°,∵OD平分∠AOB,∴∠AOD=20°,∴∠COD=∠AOC+∠AOD=80°+20°=100°.∴OC与∠AOB的平分线所成的角的度数为4°或100°.【点睛】本题考查角的计算,结合角平分线的性质分析,当涉及到角的倍分关系时,一般通过设未知数,建立方程进行解决.三、解答题23.(1)x=4或﹣4;(2)x=5或﹣1;(3)x=4或﹣1.【解析】【分析】(1)分为两种情况:①当x≥0时,②当x<0时,去掉绝对值符号后求出即可.(2)分为两种情况:①当x﹣2≥0时,②当x﹣2<0时,去掉绝对值符号后求出即可.(3)分为三种情况:①当x﹣2≥0,即x≥2时,②当x﹣1≤0,即x≤1时,③当1<x<2时,去掉绝对值符号后求出即可.【详解】解:(1)|12x|=2,①当x≥0时,原方程可化为12x=2,它的解是x=4;②当x<0时,原方程可化为﹣12x=2,它的解是x=﹣4;∴原方程的解为x =4和﹣4,故答案为:x =4和﹣4.(2)2|x ﹣2|=6,①当x ﹣2≥0时,原方程可化为2(x ﹣2)=6,它的解是x =5;②当x ﹣2<0时,原方程可化为﹣2(x ﹣2)=6,它的解是x =﹣1;∴原方程的解为x =5和﹣1.(3)|x ﹣2|+|x ﹣1|=5,①当x ﹣2≥0,即x ≥2时,原方程可化为x ﹣2+x ﹣1=5,它的解是x =4;②当x ﹣1≤0,即x ≤1时,原方程可化为2﹣x +1﹣x =5,它的解是x =﹣1;③当1<x <2时,原方程可化为2﹣x +x ﹣1=5,此时方程无解;∴原方程的解为x =4和﹣1.【点睛】本题考查解绝对值方程,理解题干中解绝对值方程的方法是解题的关键.24.(1)-7;(2)1;(3)-5.【解析】【分析】(1)利用乘法分配律计算可得;(2)根据有理数的混合运算顺序和运算法则计算可得;(3)先去括号再合并同类项,对原代数式进行化简,然后把x 、y 的值代入计算即可.【详解】 (1)(1116212+-)×(﹣12) =()()()1111212126212⨯-+⨯--⨯- =(﹣2)+(﹣6)+1=﹣7; (2)(112+)×(﹣23)213÷+(﹣1)3 =()343129⨯⨯+- =2+(﹣1)=1;(3)原式=2x ﹣2x ﹣8+3x+6y ﹣2y =3x+4y ﹣8,当x =13,y =12时,原式=1+2﹣8=﹣5. 【点睛】 本题主要考查整式的加减﹣化简求值,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则与有理数的混合运算顺序和运算法则,这是各地中考的常考点.25.可以,验证与方案见解析.【解析】【分析】在镶嵌平面时,设围绕某一点有x 个正三角形和y 个正六边形的内角可以拼成一个周角,根据平面镶嵌的体积可得方程:60x+120y=360.整理得:x+2y=6,求出正整数解即可.【详解】解:可以;验证:在镶嵌平面时,设围绕某一点有x 个正三角形和y 个正六边形的内角可以拼成一个周角,正三角形的每个内角的度数为60︒,正六边形的每个内角的度数为()621801206︒︒-•=根据题意,可得方程:60120360x y +=整理得26x y +=方程的正整数解为22x y =⎧⎨=⎩或41x y =⎧⎨=⎩ 所以可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌,在一个顶点周围围绕2个正三角形和2个正六边形或者围绕着4个正三角形和1个正六边形.【点睛】本题考查了平面镶嵌,正多边形的组合能否铺满地面,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明能铺满;反之,则说明不能铺满.解决此类题,可以记住几个常用正多边形的内角,及能够用两种正多边形镶嵌的几个组合.也考查了二元一次方程的应用.26.(1)∠POQ =104°;(2)当∠POQ =40°时,t 的值为10或20;(3)存在,t =12或18011或1807,使得∠POQ =12∠AOQ . 【解析】【分析】当OQ ,OP 第一次相遇时,t =15;当OQ 刚到达OA 时,t =20;当OQ ,OP 第二次相遇时,t =30;(1)当t =2时,得到∠AOP =2t =4°,∠BOQ =6t =12°,利用∠POQ =∠AOB -∠AOP-∠BOQ 求出结果即可;(2)分三种情况:当0≤t ≤15时,当15<t ≤20时,当20<t ≤30时,分别列出等量关系式求解即可;(3)分三种情况:当0≤t ≤15时,当15<t ≤20时,当20<t ≤30时,分别列出等量关系式求解即可.【详解】解:当OQ ,OP 第一次相遇时,2t +6t =120,t =15;当OQ 刚到达OA 时,6t =120,t =20;当OQ ,OP 第二次相遇时,2t 6t =120+2t ,t =30;(1)当t =2时,∠AOP =2t =4°,∠BOQ =6t =12°,∴∠POQ =∠AOB -∠AOP-∠BOQ=120°-4°-12°=104°.(2)当0≤t ≤15时,2t +40+6t=120, t =10;当15<t ≤20时,2t +6t=120+40, t =20;当20<t ≤30时,2t =6t -120+40, t =20(舍去);答:当∠POQ =40°时,t 的值为10或20.(3)当0≤t ≤15时,120-8t=12(120-6t ),120-8t=60-3t ,t =12; 当15<t ≤20时,2t –(120-6t )=12(120 -6t ),t=18011. 当20<t ≤30时,2t –(6t -120)=12(6t -120),t=1807. 答:存在t =12或18011或1807,使得∠POQ =12∠AOQ . 【分析】 本题考查了角的和差关系及列方程解实际问题,解决本题的关键是分好类,列出关于时间的方程.27.(1)20a =-,40b =;(2)①20; ②7.5t =或12.5秒【解析】【分析】(1)由绝对值和偶次方的非负性即可求出a 、b 值;(2)①t 秒后P 点表示的数为:204-+t ,t 秒后Q 点表示的数为:402-t ,根据t 秒后P 点和Q 点表示的是同一个数列式子即可得出t 的值;②分当P 和Q 未相遇时相距15个单位及当P 和Q 相遇后相距15个单位列式子即可得出答案.【详解】解:(1)由题意中绝对值和偶次方的非负性知,200a +=且 400b -=.解得20a =-,40b =.故答案为:20a =-,40b =.(2)① P 点向右运动,其运动的路程为4t ,t 秒后其表示的数为:204-+t ,Q 点向左运动,其运动的路程为2t ,t 秒后其表示的数为:402-t ,由于P 和Q 在t 秒后相遇,故t 秒后其表示的是同一个数,∴204402t t -+=-解得 10t =.∴此时C 在数轴上表示的数为:2041020-+⨯=.故答案为:20.② 情况一:当P 和Q 未相遇时相距15个单位,设所用的时间为1t故此时有:114+21540(20)+=--t t解得17.5=t 秒情况二:当P 和Q 相遇后相距15个单位,设所用的时间为2t故此时有:224+21540(20)-=--t t解得212.5=t 秒.故答案为:7.5t =或12.5秒【点睛】本题考查了一元一次方程的应用、两点间的距离、数轴、绝对值以及偶次方的非负性,根据两点间的距离结合线段间的关系列出一元一次方程是解题的关键.28.(1)145;(2)9cm 或6cm ;(3)能出现三点重合的情形,95m =,195n =或1511m =,1311n = 【解析】【分析】(1)设经过x 秒C 、D 相遇,根据14AC BD AO BO +=+=列方程求解即可; (2)分OE 在线段AB 上方且垂直于AB 时和OE 在线段AB 下方且垂直于AB 时两种情况,分别运动了1秒和4秒,分别计算即可;(3)能出现三点重合的现象,分点E 运动到AB 上且在点O 左侧和点E 运动到AB 上且在点O 右侧两种情况讨论计算即可.【详解】解:(1)设经过x 秒C 、D 相遇,则有,23=14x x +, 解得:14=5x ; 答:经过145秒C 、D 相遇; (2)①当OE 在线段AB 上方且垂直于AB 时,运动了1秒, 此时,1421319CD cm =-⨯-⨯=,②当OE 在线段AB 下方且垂直于AB 时,运动了4秒, 此时,1424346CD cm =-⨯-⨯=;(3)能出现三点重合的情形;①当点E 运动到AB 上且在点O 左侧时,点E 运动的时间18030 2.560t -==, ∴6 1.592.55m -==,8 1.5192.55n +==;②当点E运动到AB上且在点O右侧时,点E运动时间360305.560t-==,∴6 1.5155.511m+==,8 1.5135.511n-==.【点睛】本题考查的知识点是一元一次方程的应用,读懂题意,找出题目中的已知量和未知量,明确各数量间的关系是解此题的关键.。
初中七年级学习教学上册的数学期末考试习题以及答案
七年级数学模拟试卷一、选择题.我市2013年12月21日至24日每日的最高气温与最低气温以下表:日期12月21日12月22日12月23日12月24日B A最高气温8℃7℃5℃6℃02最低气温-3℃-5℃-4℃-2℃图1此中温差最大的一天是?????????????????????????????????【】A.12月21日B.12月22日C.12月23日D.12月24日.如图1所示,A,B两点在数轴上,点A对应的数为2.若线段AB的长为3,则点B对应的数为【】A.-1B.-2C.-3D.-4.与算式32+32+32的运算结果相等的是?????????????????????????【】A.33B.23C.35D.3612( x+2-2(3x-3).化简)的结果是????????????????????????【】B.-5x+11111A.-7x+C.-5x-D.-5x+366.由四舍五入法获得的近似数×103,以下说法中正确的选项是???????????????【】A.精准到十分位,有2个有效数字B.精准到个位,有2个有效数字C.精准到百位,有2个有效数字D.精准到千位,有4个有效数字.以以下图,以下图形所有下于柱体的是??????????????????????????【】A B C D7.如图2,一副三角板(直角极点重合)摆放在桌面上,若∠AOD=150°,则∠BOC等于?????【】A.30° B.45° C.50° D.60°50cm图2 图3 图418.如图3,以下说法中错误的是?????????????????????????????【】..A.OA的方向是东北方向B.OB的方向是北偏西60°C.OC的方向是南偏西60°D.OD的方向是南偏东60°9.如图4,宽为50cm的长方形图案由10个大小相等的小长方形拼成,此中一个小长方形的面积为?【】A.4000cm2B.600cm2C.500cm2D.400cm2二、填空题(本大题共4小题,每题5分,满分20分)10.已知∠α=36°14′25″,则∠的α余角的度数是_________ .11.王老师每晚19:00都要看央视的“新闻联播”节目,这一时辰钟面上时针与分针的夹角是度.12.按以下图所示的程序流程计算,若开始输入的值为x=3,则最后输出的结果是 ____.是输入x 计算x(x+1)的值2值大于100 输出结果否将值给x,再次运算13.已知线段AB=10cm,直线AB上有一点 C,且BC=4cm,M是线段BC的中点,则AM的长是cm .三、解答题(共90分)14.计算以下各式(此题共小题,每题8分,合计16分)()-2÷+2×-312×-3+11+71÷-2+(2)-÷--3.75)×2424())(1)(81(3)342(2(2315.先化简再求值(8分)5(2a+b)2-2(2a+b)-4(2a+b)2+3(2a+b) ,此中a=1,b=92217.某生态示范园要对1号、2号、3号、4号四个品种共500株果树幼苗进行成活实验,从中选出成活率高的品种进行推行,经过实验得悉,3号果树幼苗成活率为89.6%,把实验数据绘制成以下两幅统计图(部分500501502信息未给出).503株幼苗中各样幼苗所占百分比统计图各品种细菌成活数统计图成活数(株)1号30%150100135 117854号25%2号503号25%01号2号3号4号品种图1图2(1)实验所用的2号果树幼苗的数目是株;(2)恳求出3号果树幼苗的成活数,并把图2的统计图增补完好;(3)你以为应选哪一种品种进行推行?请经过计算说明原因.(8分)18.小王家购置了一套经济合用房,他家准备将地面铺上地砖,地面构造以下图.依据图中的数据(单位:m),解答以下问题:(1)写出用含x、y的代数式表示地面总面积;22(2)已知客堂面积比洗手间面积多21m,且地面总面积是洗手间面积的15倍,铺1m地砖的均匀花费为80元,求铺地砖的总花费为多少元?(10分)3y卫寝室2生厨房2x客厅6319.以下图,已知O为AD上一点,∠AOC与∠AOB互补,OM、ON分别是∠AOC、∠AOB的均分线,若∠MON=40°,试求∠ AOC与∠AOB的度数.(10分)MCBND AO20.已知,如图,B,C两点把线段AD分红2∶5∶3三部分,M为AD的中点,BM=6cm,求CM和AD的长.(10分)AA B M C D21.据电力部门统计,每日8:00至21:00是用电的顶峰期,简称“峰时”,21:00至第二天8:00是用电的低谷期间,简称“谷时”,为了缓解供电需求紧张矛盾,某市电力部门于本月初一致换装“峰谷分时”电表,对用电推行“峰谷分时电价”新政策,详细见下表:换表后时间换表前峰时(8:00~21:00)谷时(21:00~第二天8:00)电价每度元每度元每度元(1)小张家上月“峰时”用电50度,“谷时”用电20度,若上月初换表,则相关于换表前小张家的电费是增加了仍是减少了?增加或减少了多少元?请说明原因.(2)小张家这个月用电95度,经测算比换表前使用95度电节俭了元,问小张家这个月使用“峰时电”和“谷时电”分别是多少度?(12分)42013~2014年度第一学期期末考试七年级数学模拟试卷数学参照答案及评分标准一、选择题题号12345678910答案B A A D CC A D C D二、填空题11.53°45′35″12.15013.23114.8或12三、解答题.()-2217÷1÷-++2×-3(2)-÷-2×-3+11+-3.75)×24 24)))(8151(3)(342(2(2(1)3433111715=9××(-)+4+4×(-)?4分=-×4×(-1)+24+××24-×24??4分9224834=-6+4-6??6分=1+33+56-90=-8??8分=016.(1)5(2a+b)2-2(2a+b)-4(2a+b)2+3(2a+b)=(2a+b)2+(2a+b)??3分11由于a=,b=9,因此2a+b=2×+9=10??6分22故17.(1)X=-1(2)X=118.(1)100(2)500×25%×89.6统计图以下图:(3)1号果树幼苗成851501352号果树幼苗成活率为×100%=85%1128510100117 504号果树幼苗成活率为×100%=93.6%12 502号3号1号6分8分117 4号品种5由于93.6%>90%>89.6%>85%因此应选择4号品种进行推行??8分19.(1)地面总面积为:(6x+2y+18)2?????3分m6x-2y=21x=4(2)由题意,得6x+2y+18=15×2y 解得3y=?????6分2因此地面总面积为32)?????8分(m6x+2y+18=6×4+2×2+18=45由于铺1m2地砖的均匀花费为80元,因此铺地砖的总花费为:45×80=3600(元)????10分20.由于OM、ON均分∠AOC和∠AOB,因此∠AOM=1,∠AON=12分∠AOC∠AOB?????1122因此∠MON=∠-∠AON=∠AOC-∠AOB=40°????????????4分AOM22又由于∠AOC与∠AOB互补,因此∠AOC+∠AOB=180°,????????????6分1=40°∠∠故可得方程组2AOC-2AOB∠AOC+∠AOB=180°????????????8分解得∠AOC=130°,∠AOB=50°???????????10分21.解:设AB=2xcm,BC=5xcm,CD=3xcm因此AD=AB+BC+CD=10xcm???????????2分由于M是AD的中点,因此AM=MD=1AB=5xcm 2因此BM=AM-AB=5x-2x=3xcm???????????6分由于BM=6cm,因此3x=6,x=2???????????8分故CM=MD-CD=5x-3x=2x=2×2=4cm,AD=10x=10×2=20cm???????10分22.(1)换表前:×(50+20)(元)换表后:××(元)-36.4=-(元)因此若上月初换表,则相关于换表前小张家的电费节俭了元.??????????6分(2)设小张家这个月使用“峰时电”是x度,则“谷时电”为(95-x)度,-x-x=60由题意可得方程+0.3(95)=×95,解之得,95-60=35,即小张家这个月使用“峰时电”60度,“谷时电”35度.??????????12分6。
初一上学期期末考试题目及答案
初一上学期期末考试题目及答案随着学期的结束,学生们即将迎来重要的期末考试。
为了帮助大家更好地复习和准备,以下是初一上学期期末考试的题目及答案,涵盖了语文、数学、英语等主要科目。
语文:1. 请解释“春眠不觉晓”中“晓”的含义。
答案:在这句诗中,“晓”指的是早晨,表达了诗人在春天的早晨因为睡得太沉而没有察觉到天亮的意境。
2. 请写出《论语》中孔子关于“学”的一句名言。
答案:“学而不思则罔,思而不学则殆。
”这句话强调了学习与思考的重要性,指出只学习而不思考会导致迷惑,而只思考而不学习则会带来危险。
数学:1. 如果一个数的平方等于36,那么这个数是多少?答案:这个数可以是6或者-6,因为6的平方是36,-6的平方也是36。
2. 计算下列表达式的值:(2x - 3)(x + 4)。
答案:将表达式展开得到2x^2 + 5x - 12。
英语:1. 请用英语写出“我每天早晨都跑步”的句子。
答案:I run every morning.2. 请翻译下列句子:“Please pass me the book on the table.”答案:请把桌子上的书递给我。
科学:1. 请列举三种常见的可再生能源。
答案:太阳能、风能和水能是三种常见的可再生能源。
2. 什么是生态系统?答案:生态系统是指自然界中相互依赖的生物和非生物组成部分,它们共同构成了一个复杂的网络,通过能量流动和物质循环相互联系。
历史:1. 请简述秦始皇统一六国的历史意义。
答案:秦始皇统一六国,结束了长期的战国纷争,实现了中国历史上的第一次大一统,奠定了中国多民族国家的基础,对后世产生了深远的影响。
2. 请列举唐朝的三位著名诗人。
答案:李白、杜甫和白居易是唐朝三位著名的诗人,他们的作品至今仍被广泛传颂。
地理:1. 请描述地球的自转和公转。
答案:地球自转是指地球围绕自己的轴线旋转,方向是从西向东,周期为一天,导致昼夜交替。
地球公转是指地球围绕太阳的轨道运动,方向也是从西向东,周期为一年,导致四季变化。
七年级上学期期末考试试题_3 2(共16页)
或者问“三余〞之意。遇言“冬者岁之余,夜者日之余,阴雨者时之余也。〞
9、解释以下句中加点的词。〔4分〕
①采稆负贩②为?老子?作训注
③读书(dúshū)百遍,其义自见④或者问“三余〞之意
10、下面句中“而〞字的用法不同其他三项的是〔〕〔3分〕
A.性质讷而好学B.其兄笑之而遇不改
C.面山而居D.非死那么徒尔,而吾以捕蛇独存
⑨我说:这是我的——父亲!热烈的掌声响起……
⑩放学时,我和父亲步出礼堂,父亲说:你其实没必要自卑,别人的歧视都是暂时的。男子汉,只要勤奋,别人有的,咱们自己也会有……
17、这篇文章主要写了一件什么事?〔2分〕
18、分析文中画线句子的描写方法及表达效果。〔5分〕
〔A〕父亲的笑容一下子凝固了。
_____________________________________________________________________
B.记者在2021年3月30日的植树现场看到,活干得最漂亮的当属驻京解放HY、武警HY的官兵们,他们挖坑栽苗一丝不苟。
C.照片总能给我们带来美妙的回忆,当年的人,当年的景让人历历在目。
D.公园里的道路比拟复杂,波波不久就辨不清方向了,就在他走投无路之时,一位管理人员及时帮助了他。
七年级上学期期末考试 (数学)(含答案)052841
七年级上学期期末考试 (数学)试卷考试总分:115 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1. 的相反数是 A.B.C.D.2. 作为世界文化遗产的长城,其总长约为米,将用科学记数法表示为A.B.C.D.3. 已知,则的值为( )A.B.C.D.不能确定4. 如果单项式与的和仍然是一个单项式,则、的值是 A.,B.,C.,D.,5. 如图所示的几何体的俯视图是( )A.−2()2−212−1267000006700000()6.7×1056.7×1066.7×1076.7×108(x−1=a +b +cx+d )3x 3x 2a +b +c +d −11x 2y m+2y x n m n ()m=2n =2m=−2n =2m=−1n =2m=2n =−1B. C. D.6. 现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因为A.两点之间,线段最短B.过一点有无数条直线C.两点确定一条直线D.两点之间线段的长度,叫做这两点之间的距离7. 为比较两条线段与的大小,小明将点与点重合使两条线段在一条直线上,点在的延长线上,则 A.B.C.=D.以上都有可能8. 将一块含角的直角三角尺按照如图所示的方式放置,点落在直线上,点落在直线上,,,则的度数是( )A.B.C.D.()AB CD A C B CD ()AB <CDAB >CDAB CD45∘ABC C a B b a//b ∠1=25∘∠215∘20∘25∘30∘9. 如图所示,直线,直线,若,则的度数为( )A.B.C.D.10. 如图,图中有个三角形,图中有个三角形,图中有个三角形,图中有个三角形,,则图中三角形的个数为( )A.个B.个C.个D.个二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )11. 如果有理数,满足,那么________.12. 多项式化简后不含项,则为________.13. 如图是一正方体的平面展开图,若,则该正方体上、两点间的距离为________.14. 如图,请你写出一个能判定的条件:________.15.如图,,且,,则的度数为________.三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )16. 计算:a//b AB ⊥AC ∠1=50∘∠250∘45∘40∘30∘(1)2(2)6(3)12(4)20…(8)36707290x y |x+y+5|+=0(y−4)2xy =2−xy−8+3kxy−6x 2y 2xy k AB =5A B //l 1l 2AB//CD ∠ABE =70∘∠ECD =150∘∠BEC; .17. 先化简,再求值:,其中=. 18.十一黄金周期间,某风景区在天假期中每天旅游人数变化如表(正号表示人数比前一天多,负号表示比前天少),已知月日的旅客人数为万人.日期日日日日日日日人数变化单位:万人月日的旅客人数为________万人;七天中旅客人数最多的一天比最少的一天多________万人;如果每万人带来的经济收入约为万元,则该风景区黄金周七天的旅游总收入约为多少万元?19. 如图是一所住宅的建筑平面图(图中长度单位:米).(1)用式子表示这所住宅的建筑面积.(2)当=时,试计算该住宅的面积.20.如图,处在处的南偏西方向,处在处的南偏东方向,处在处的北偏东方向,求的度数.21. 如图,在一条不完整的数轴上从左到右有点,,,其中,设点,,对应数的和是.若点为原点, ,写出点,所对应的数以及的值;若点为原点, ,求的值;若原点到点的距离为,且,求的值.22. 如图,,,平分,,.(1)3×(−4)−28÷(−7)(2)−−×[(−2−6]1412)2(x−1)(x+6)−(6+10−12)÷2x 4x 3x 2x 2x 27930 4.21234567+1.8−0.6+0.2−0.7−1.3+0.5−2.4(1)104(2)(3)100x 7B A 45∘C A 15∘C B 85∘∠ACB A B C AB =2BC A B C m (1)C BC =2A B m (2)B AC =9m (3)O C 8OC =AB m EF//AD AD//BC CE ∠BCF ∠DAC =3∠BCF ∠ACF =20∘求的度数;若,求证:;当________时,.23.已知,直线,点为平面上一点,连接与.如图,点在直线,之间,当,时,则________.如图,点在直线,之间,与的角平分线相交于点,直接写出与之间的数量关系;如图,点落在外,与的角平分线相交于点,上述结论还成立吗?并说明理由.(1)∠EFC (2)∠BAC =3∠B AB ⊥AC (3)∠DAB =CF ⊥AB AB//DC P AP CP (1)1P AB CD ∠BAP =60∘∠DCP =25∘∠APC =(2)2P AB CD ∠BAP ∠DCP K ∠AKC ∠APC (3)3P CD ∠BAP ∠DCP K参考答案与试题解析七年级上学期期末考试 (数学)试卷一、 选择题 (本题共计 10 小题 ,每题 5 分 ,共计50分 )1.【答案】A【考点】相反数【解析】此题暂无解析【解答】解:互为相反数的两个数相加得,的相反数是,故选2.【答案】B【考点】科学记数法--表示较大的数【解析】用科学记数法表示较大的数时,一般形式为,其中,为整数,据此判断即可.【解答】解:.故选.3.【答案】B【考点】列代数式求值【解析】令,即可求出原式的值.【解答】解:令,得:.故选4.∵0∴−22A.a ×10n 1≤|a |<10n 6700000=6.7×106B x =1x =1a +b +c +d =0B.同类项的概念【解析】本题考查同类项的定义,单项式与的和仍然是一个单项式,意思是与是同类项,根据同类项中相同字母的指数相同得出.【解答】解:由同类项的定义,可知,,解得,.故选.5.【答案】B【考点】简单组合体的三视图【解析】利用几何体的结构特征即可判断【解答】解:该几何体从上往下看到的是圆且中间有一顶点,如图所示.故选.6.【答案】A【考点】线段的性质:两点之间线段最短【解析】根据线段的性质,直线的性质,可得答案.【解答】解:现实生活中有部分行人选择横穿马路而不走天桥或斑马线,用数学知识解释这一现象的原因,两点之间线段最短.故选.7.x 2y m+2y x n x 2y m+2y x n 2=n m+2=1m=−1n =2C B A线段的和差【解析】解:由点与点重合使两条线段在一条直线上,点在的延长线上,得.故选.【解答】此题暂无解答8.【答案】B【考点】平行线的性质【解析】利用两直线平行,同旁内角互补进行求解即可.【解答】解:如图:∵,∴,∴,又∵,∴.故选.9.【答案】C【考点】平行线的性质余角和补角【解析】根据两直线平行,内错角相等可得,根据垂直的定义和补角、余角的定义列式计算得到.【解答】解:如图,A CB CD AB >CD B a//b ∠FBC +∠ECB =180∘∠1++∠2+=90∘45∘180∘∠1=25∘∠2=20∘B ∠3=∠1∠2∵直线,,∴.∵直线,∴,∴.故选.10.【答案】C【考点】规律型:图形的变化类【解析】本题考查了规律型,图形变化类,关键是找到图形的变化规律:图有个三角形,根据图有个三角形即可求得答案.【解答】解:图有个三角形,即,图有个三角形,即,图有个三角形,即,图有个三角形,即,所以图有个三角形,图有个三角形.故选.二、 填空题 (本题共计 5 小题 ,每题 5 分 ,共计25分 )11.【答案】【考点】非负数的性质:绝对值非负数的性质:偶次方【解析】利用非负数的性质得出,的值,进而得出答案.【解答】解:,,,解得:,,故.故答案为:.12.a//b ∠1=50∘∠3=∠1=50∘AB ⊥AC ∠2+∠3=−=180∘90∘90∘∠2=−=90∘50∘40∘C n n(n+1)n n(n+1)121×2262×33123×44204×5⋅⋅⋅⋅⋅⋅n n(n+1)88×9=72C −36x y ∵|x+y+5|+=0(y−4)2∴x+y+5=0y−4=0y =4x =−9xy =4×(−9)=−36−36【答案】【考点】多项式合并同类项【解析】直接利用多项式的定义得出多项式的系数为,解答即可.【解答】解:∵多项式化简后不含项,∴合并同类项后项系数为,∴,解得.故答案为:.13.【答案】【考点】勾股定理几何体的展开图【解析】利用立方体展开图与平面图对应情况可得出,两点间的距离.【解答】解:由题意可得出:正方体上、两点间的距离为正方形对角线长,则、两点间的距离为.故答案为:.14.【答案】=或=或=【考点】平行线的判定【解析】根据平行线的判定定理即可求解,如=(内错角相等,两直线平行),=(同位角相等,两直线平行),=(同旁内角互补,两直线平行).【解答】若=,根据内错角相等,两直线平行,若=,根据同位角相等,两直线平行,若=,根据同旁内角互补,两直线平行,15.1302−xy−8+3kxy−6x 2y 2xy xy 03k −1=0k =13132.5AB A B A B 2.52.5∠1∠2∠3∠5∠3+∠4180∘∠1∠2∠3∠5∠3+∠4180∘∠1∠2∠3∠5∠3+∠4180∘【答案】【考点】平行线的性质【解析】作,根据,求出,即可解决问题.【解答】解:作,如图,,,..,,.故答案为:.三、 解答题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )16.【答案】解:原式.原式.【考点】有理数的混合运算有理数的乘方【解析】根据有理数的混合运算,得出结论;根据有理数的混合运算和乘方的计算,得出结论.【解答】解:原式.40∘EF//CD ∠BEC =∠BEF −∠CEF∠BEF ∠CEF EF//CD ∵AB//CD ∴AB//EF ∴∠ABE =∠BEF =70∘∵CD//EF∴∠ECD+∠CEF =180∘∵∠ECD =150∘∴∠CEF =30∘∴∠BEC =∠BEF −∠CEF =40∘40∘(1)=(−12)−(−4)=−12+4=−8(2)=−1−×(4−6)12=−1−×(−2)12=−1−(−1)=−1+1=0(1)(2)(1)=(−12)−(−4)=−12+4=−8−1−×(4−6)1原式.17.【答案】原式====,当=时,原式==.【考点】整式的混合运算——化简求值【解析】先根据多项式乘以多项式和多项式除以单项式进行计算,再合并同类项,最后代入求出即可.【解答】原式====,当=时,原式==.18.【答案】根据表格得:每天旅客人数分别为:万人、万人、万人、万人、万人、万人、万人,则黄金周七天的旅游总收入约为:(万元).【考点】有理数的加减混合运算正数和负数的识别【解析】(1)根据题意列得算式,计算即可得到结果;(2)根据表格找出旅客人数最多的与最少的,相减计算即可得到结果;【解答】解:根据题意列式得:(万人).故答案为:.根据表格得:日:,日:,日:,日:,日:,日:,日:,(2)=−1−×(4−6)12=−1−×(−2)12=−1−(−1)=−1+1=0+5x−6−(3+5x−6)x 2x 2+5x−6−3−5x+6x 2x 2−3x 2x 2−2x 2x 2−2×22−8+5x−6−(3+5x−6)x 2x 2+5x−6−3−5x+6x 2x 2−3x 2x 2−2x 2x 2−2×22−84.94.3(3)6 5.4 5.6 4.9 3.6 4.1 1.7(6+5.4+5.6+4.9+3.6+4.1+1.7)×100=3130(1)4.2+(1.8−0.6+0.2−0.7)=4.2+0.7=4.94.9(2)1 4.2+1.8=626−0.6=5.43 5.4+0.2=5.64 5.6−0.7=4.95 4.9−1.3=3.66 3.6+0.5=4.17 4.1−2.4=1.7∴天中旅客最多的是日为万人,最少的是日为万人,则七天中旅客人数最多的一天比最少的一天多(万人).故答案为:.根据表格得:每天旅客人数分别为:万人、万人、万人、万人、万人、万人、万人,则黄金周七天的旅游总收入约为:(万元).19.【答案】住宅的建筑面积为:=;当=时,住宅的建筑面积有=.【考点】列代数式列代数式求值【解析】(1)把四个小长方形的面积合并起来即可;(2)把=代入(1)中的代数式求得答案即可.【解答】住宅的建筑面积为:=;当=时,住宅的建筑面积有=.20.【答案】解:如图:由处在处的南偏西方向,处在处的南偏东方向,处在处的北偏东方向,得:,,.由得.∴,.由三角形的内角和定理,得.【考点】方向角【解析】根据方向角的表示,可得,,,根据角的和差,可得,,根据三角形的内角和,可得答案.【解答】解:如图:7367 1.76−1.7=4.34.3(3)6 5.4 5.6 4.9 3.6 4.1 1.7(6+5.4+5.6+4.9+3.6+4.1+1.7)×100=31302x++3×2+4×3x 2+2x+18x 2x 7+2x+18x 281x 72x++3×2+4×3x 2+2x+18x 2x 7+2x+18x 281B A 45∘C A 15∘C B 85∘∠BAE =45∘∠CAE =15∘∠CBD =85∘AE//BD ∠DBA =∠BAE =45∘∠ABC =∠DBC −∠DBA =−=85∘45∘40∘∠BAC =∠BAE+CAE =+=45∘15∘60∘∠C =−∠BAC −∠ABC180∘=−−=180∘60∘40∘80∘∠BAE =45∘∠CAE =15∘∠CBD =85∘∠ABC ∠BAC由处在处的南偏西方向,处在处的南偏东方向,处在处的北偏东方向,得:,,.由得.∴,.由三角形的内角和定理,得.21.【答案】解:∵点为原点, ,∴所对应的数为,∵,∴,∴点所对应的数为,∴.∵点为原点,,,∴点所对应的数为,点所对应的数为,∴.∵原点到点的距离为,∴点所对应的数为,∵,∴,当点对应的数为,∵,,∴,∴点所对应的数为,点所对应的数为,∴;当点所对应的数为 ,∵,,∴,∴点所对应的数为,点所对应的数为,∴.综上所述或.【考点】数轴两点间的距离【解析】此题暂无解析【解答】解:∵点为原点, ,∴所对应的数为,∵,∴,∴点所对应的数为,∴.∵点为原点,,,∴点所对应的数为,点所对应的数为,∴.∵原点到点的距离为,∴点所对应的数为,∵,B A 45∘C A 15∘C B 85∘∠BAE =45∘∠CAE =15∘∠CBD =85∘AE//BD ∠DBA =∠BAE =45∘∠ABC =∠DBC −∠DBA =−=85∘45∘40∘∠BAC =∠BAE+CAE =+=45∘15∘60∘∠C =−∠BAC −∠ABC180∘=−−=180∘60∘40∘80∘(1)C BC =2B −2AB =2BC AB =4A −6m=−6−2+0=−8(2)B AC =9AB =2BC A −6C 3m=−6+3+0=−3(3)O C 8C ±8OC =AB AB =8C 8AB =8AB =2BC BC =4B 4A −4m=4−4+8=8C −8AB =8AB =2BC BC =4B −12A −20m=−20−12−8=−40m=8−40(1)C BC =2B −2AB =2BC AB =4A −6m=−6−2+0=−8(2)B AC =9AB =2BC A −6C 3m=−6+3+0=−3(3)O C 8C ±8OC =AB∴,当点对应的数为,∵,,∴,∴点所对应的数为,点所对应的数为,∴;当点所对应的数为 ,∵,,∴,∴点所对应的数为,点所对应的数为,∴.综上所述或.22.【答案】解:设的度数为.∵平分,∴.∵,∴.∵,∴.∵,∴∴,∴,∴,∴.∵,,∴,∴,∴.证明:∵,∴,又∵,由知,∴,∴∴,∴.【考点】平行线的性质平行线的判定【解析】此题暂无解析【解答】解:设的度数为.∵平分,∴.∵,∴.∵,∴.∵,∴∴,AB =8C 8AB =8AB =2BC BC =4B 4A −4m=4−4+8=8C −8AB =8AB =2BC BC =4B −12A −20m=−20−12−8=−40m=8−40(1)∠BCF 2x CE ∠BCF ∠BCE =∠ECF =∠BCF =x 12∠DAC =3∠BCF ∠DAC =6x ∠ACF =20∘∠ACB =∠BCF +∠ACF =2x+20∘AD//BC ∠DAC +∠ACB =180∘6x+2x+=20∘180∘x =20∘∠BCE =∠FCE =20∘∠BCF =40∘EF//AD AD//BC EF//BC ∠EFC +∠BCF =180∘∠EFC =−∠BCF 180∘=140∘(2)AD//BC ∠DAB =∠B ∠BAC =3∠B (1)∠DAC =120∘∠DAC =4∠B =120∘∠B =30∘∠BAC =3∠B =90∘AB ⊥AC 50∘(1)∠BCF 2x CE ∠BCF ∠BCE =∠ECF =∠BCF =x 12∠DAC =3∠BCF ∠DAC =6x ∠ACF =20∘∠ACB =∠BCF +∠ACF =2x+20∘AD//BC ∠DAC +∠ACB =180∘6x+2x+=20∘180∘∴,∴,∴.∵,,∴,∴,∴.证明:∵,∴,又∵,由知,∴,∴∴,∴.解:∵由知.∵当时,,∵,∴.故答案为:.23.【答案】.理由如下:如图,过作,∵,∴,∴,,∴.过作,同理,得,∵与的角平分线相交于点,∴,∴.成立.理由如下:如图,过作,∵,∴,∴,,∴.过作,同理,得,∵与的角平分线相交于点,∴ ,∴.【考点】x =20∘∠BCE =∠FCE =20∘∠BCF =40∘EF//AD AD//BC EF//BC ∠EFC +∠BCF =180∘∠EFC =−∠BCF 180∘=140∘(2)AD//BC ∠DAB =∠B ∠BAC =3∠B (1)∠DAC =120∘∠DAC =4∠B =120∘∠B =30∘∠BAC =3∠B =90∘AB ⊥AC (3)(1)∠BCF =40∘CF ⊥AB ∠B =50∘AD//BC ∠DAB =50∘50∘85∘(2)∠AKC =∠APC 122K KE//AB AB//CD KE//AB//CD ∠AKE =∠BAK ∠CKE =∠DCK ∠AKC =∠AKE+∠CKE =∠BAK +∠DCK P PF//AB ∠APC =∠BAP +∠DCP ∠BAP ∠DCP K ∠BAK +∠DCK =∠BAP +∠DCP1212=(∠BAP +∠DCP)=∠APC 1212∠AKC =∠APC 12(3)3K KH//AB AB//CD KH//AB//CD ∠BAK =∠AKH ∠DCK =∠CKH ∠AKC =∠AKH−∠CKH =∠BAK −∠DCK P PG//AB ∠APC =∠BAP −∠DCP ∠BAP ∠DCP K ∠BAK −∠DCK =∠BAP −∠DCP1212=(∠BAP −∠DCP)=∠APC 1212∠AKC =∠APC 12平行线的性质角平分线的定义【解析】根据平行线的性质来解答即可.根据平行线的性质和角平线的性质来解答即可.根据平行线的性质和角平分线的性质来解答即可.【解答】解:如图,过作,∵,∴,∴,,∴.故答案为:..理由如下:如图,过作,∵,∴,∴,,∴.过作,同理,得,∵与的角平分线相交于点,∴,∴.成立.理由如下:如图,过作,∵,∴,∴,,∴.过作,同理,得,∵与的角平分线相交于点,∴ ,∴.(1)1P PQ//AB AB//CD PQ//AB//CD ∠APQ =∠BAP ∠CPQ =∠DCP ∠APC =∠APQ +∠CPQ=∠BAP +∠DCP =+=60∘25∘85∘85∘(2)∠AKC =∠APC 122K KE//AB AB//CD KE//AB//CD ∠AKE =∠BAK ∠CKE =∠DCK ∠AKC =∠AKE+∠CKE =∠BAK +∠DCK P PF//AB ∠APC =∠BAP +∠DCP ∠BAP ∠DCP K ∠BAK +∠DCK =∠BAP +∠DCP1212=(∠BAP +∠DCP)=∠APC 1212∠AKC =∠APC 12(3)3K KH//AB AB//CD KH//AB//CD ∠BAK =∠AKH ∠DCK =∠CKH ∠AKC =∠AKH−∠CKH =∠BAK −∠DCK P PG//AB ∠APC =∠BAP −∠DCP ∠BAP ∠DCP K ∠BAK −∠DCK =∠BAP −∠DCP1212=(∠BAP −∠DCP)=∠APC 1212∠AKC =∠APC 12。
淄博市七年级上册数学期末试题及答案解答
淄博市七年级上册数学期末试题及答案解答一、选择题1.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A .垂线段最短B .经过一点有无数条直线C .两点之间,线段最短D .经过两点,有且仅有一条直线2.球从空中落到地面所用的时间t (秒)和球的起始高度h (米)之间有关系式5h t,若球的起始高度为102米,则球落地所用时间与下列最接近的是( )A .3秒B .4秒C .5秒D .6秒 3.计算:31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…,归纳各计算结果中的个位数字的规律,猜测32018﹣1的个位数字是( )A .2B .8C .6D .0 4.下列四个数中最小的数是( )A .﹣1B .0C .2D .﹣(﹣1) 5.以下调查方式比较合理的是( )A .为了解一沓钞票中有没有假钞,采用抽样调查的方式B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式C .为了解某省中学生爱好足球的情况,采用普查的方式D .为了解某市市民每天丢弃塑料袋数量的情况,采用普查的方式6.“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是( )A .两点确定一条直线B .两点之间,线段最短C .直线可以向两边延长D .两点之间线段的长度,叫做这两点之间的距离7.如图,小明将自己用的一副三角板摆成如图形状,如果∠AOB=155°,那么∠COD 等于( )A .15°B .25°C .35°D .45°8.A 、B 两地相距450千米,甲乙两车分别从A 、B 两地同时出发,相向而行,已知甲车的速度为120千米/小时,乙车的速度为80千米/小时,经过t 小时,两车相距50千米,则t的值为( )A .2或2.5B .2或10C .2.5D .2 9.已知105A ∠=︒,则A ∠的补角等于( )A .105︒B .75︒C .115︒D .95︒ 10.如图,4张如图1的长为a ,宽为b (a >b )长方形纸片,按图2的方式放置,阴影部分的面积为S 1,空白部分的面积为S 2,若S 2=2S 1,则a ,b 满足( )A .a =32b B .a =2b C .a =52b D .a =3b11.某同学晚上6点多钟开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针和分针的夹角还是120°,此同学做作业大约用了( )A .40分钟B .42分钟C .44分钟D .46分钟12.阅读:关于x 方程ax=b 在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=b a;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x 的方程3x •a= 2x ﹣ 16 (x ﹣6)无解,则a 的值是( ) A .1B .﹣1C .±1D .a≠1二、填空题13.已知a ,m ,n 均为有理数,且满足5,3a m n a -=-=,那么m n -的值为______________.14.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.15.小明妈妈支付宝连续五笔交易如图,已知小明妈妈五笔交易前支付宝余额860元,则五笔交易后余额__________元.支付宝帐单日期 交易明细10.16乘坐公交¥ 4.00-10.17 转帐收入¥200.00+ 10.18 体育用品¥64.00- 10.19 零食¥82.00- 10.20餐费¥100.00-16.定义-种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则(1)2-⊕=__________.17.学校组织七年级部分学生参加社会实践活动,已知在甲处参加社会实践的有27人,在乙处参加社会实践的有19人,现学校再另派20人分赴两处,使在甲处参加社会实践的人数是乙处参加社会实践人数的2倍,设应派往甲处x 人,则可列方程______.18.请先阅读,再计算:因为:111122=-⨯,1112323=-⨯,1113434=-⨯,…,111910910=-⨯, 所以:1111122334910++++⨯⨯⨯⨯ 1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭11111111911223349101010=-+-+-++-=-= 则111110010110110210210320192020++++=⨯⨯⨯⨯_________. 19.数字9 600 000用科学记数法表示为 .20.若关于x 的方程2x +a ﹣4=0的解是x =﹣2,则a =____.21.小康家里养了8头猪,质量分别为:104,98.5,96,91.8,102.5,100.7,103,95.5(单位:kg ),每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为_____.22.8点30分时刻,钟表上时针与分针所组成的角为_____度.23.一个长方体水箱从里面量得长、宽、高分别是50cm 、40cm 和30cm ,此时箱中水面高8cm ,放进一个棱长为20cm 的正方体实心铁块后,此时水箱中的水面仍然低于铁块的顶面,则水箱中露在水面外的铁块体积是______3cm .24.若-3x 2m+6y 3与2x 4y n 是同类项,则m+n=______. 三、压轴题25.如图,已知数轴上有三点 A ,B ,C ,若用 AB 表示 A ,B 两点的距离,AC 表示 A ,C 两点的 距离,且 BC = 2 AB ,点 A 、点C 对应的数分别是a 、c ,且| a - 20 | + | c +10 |= 0 .(1)若点 P ,Q 分别从 A ,C 两点同时出发向右运动,速度分别为 2 个单位长度/秒、5个单位长度/ 秒,则运动了多少秒时,Q 到 B 的距离与 P 到 B 的距离相等?(2)若点 P ,Q 仍然以(1)中的速度分别从 A ,C 两点同时出发向右运动,2 秒后,动点R 从 A 点出发向左运动,点 R 的速度为1个单位长度/秒,点 M 为线段 PR 的中点,点 N 为线段 RQ 的中点,点R 运动了x 秒时恰好满足 MN + AQ = 25,请直接写出x 的值.26.东东在研究数学问题时遇到一个定义:将三个已经排好顺序数:x 1,x 2,x 3,称为数列x 1,x 2,x 3.计算|x 1|,122x x +,1233x x x ++,将这三个数的最小值称为数列x 1,x 2,x 3的最佳值.例如,对于数列2,-1,3,因为|2|=2,()212+-=12,()2133+-+=43,所以数列2,-1,3的最佳值为12. 东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列-1,2,3的最佳值为12;数列3,-1,2的最佳值为1;….经过研究,东东发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,最佳值的最小值为12.根据以上材料,回答下列问题: (1)数列-4,-3,1的最佳值为 (2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为 ,取得最佳值最小值的数列为 (写出一个即可);(3)将2,-9,a (a >1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a 的值.27.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB =22,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)出数轴上点B 表示的数 ;点P 表示的数 (用含t 的代数式表示)(2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.28.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填数之和都相等.6 a b x -1 -2 ...(1)可求得x =______,第 2021 个格子中的数为______;(2)若前k 个格子中所填数之和为 2019,求k 的值;(3)如果m ,n为前三个格子中的任意两个数,那么所有的|m-n | 的和可以通过计算|6-a|+|6-b|+|a-b|+|a-6| +|b-6|+|b-a| 得到.若m ,n为前8个格子中的任意两个数,求所有的|m-n|的和.29.如图1,线段AB的长为a.(1)尺规作图:延长线段AB到C,使BC=2AB;延长线段BA到D,使AD=AC.(先用尺规画图,再用签字笔把笔迹涂黑.)(2)在(1)的条件下,以线段AB所在的直线画数轴,以点A为原点,若点B对应的数恰好为10,请在数轴上标出点C,D两点,并直接写出C,D两点表示的有理数,若点M 是BC的中点,点N是AD的中点,请求线段MN的长.(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D处开始,在点C,D之间进行往返运动;乙从点N开始,在N,M之间进行往返运动,甲、乙同时开始运动,当乙从M点第一次回到点N时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.30.已知,如图,A、B、C分别为数轴上的三点,A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,C点在B点左侧,C点到A点距离是B点到A点距离的4倍.(1)求出数轴上B点对应的数及AC的距离.(2)点P从A点出发,以3单位/秒的速度向终点C运动,运动时间为t秒.①当P点在AB之间运动时,则BP=.(用含t的代数式表示)②P点自A点向C点运动过程中,何时P,A,B三点中其中一个点是另外两个点的中点?求出相应的时间t.③当P点运动到B点时,另一点Q以5单位/秒的速度从A点出发,也向C点运动,点Q到达C点后立即原速返回到A点,那么Q点在往返过程中与P点相遇几次?直.接.写.出.相遇时P点在数轴上对应的数31.数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如:如图①,若点A,B在数轴上分别对应的数为a,b(a<b),则AB的长度可以表示为AB=b-a.请你用以上知识解决问题:如图②,一个点从数轴上的原点开始,先向左移动2个单位长度到达A点,再向右移动3个单位长度到达B点,然后向右移动5个单位长度到达C点.(1)请你在图②的数轴上表示出A,B,C三点的位置.(2)若点A以每秒1个单位长度的速度向左移动,同时,点B和点C分别以每秒2个单位长度和3个单位长度的速度向右移动,设移动时间为t秒.①当t=2时,求AB和AC的长度;②试探究:在移动过程中,3AC-4AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.32.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以3cm /s 的速度向右运动,到达点B 后立即返回,以3cm /s 的速度向左运动;动点Q 从点C 出发,以1cm/s 的速度向右运动. 设它们同时出发,运动时间为s t . 当点P 与点Q 第二次重合时,P Q 、两点停止运动.(1)求AC ,BC ;(2)当t 为何值时,AP PQ =;(3)当t 为何值时,P 与Q 第一次相遇;(4)当t 为何值时,1cm PQ =.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C 【解析】【详解】用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB 的长小于点A 绕点C 到B 的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选C .【点睛】根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB 的长小于点A 绕点C 到B 的长度,从而确定答案.本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.2.C解析:C【解析】【分析】根据题意直接把高度为102代入即可求出答案.【详解】由题意得,当h=102时,24.5=20.25 25=25 且20.25<20.4<25∴∴4.5<t<5∴与t最接近的整数是5.故选C.【点睛】本题考查的是估算问题,解题关键是针对其范围的估算.3.B解析:B【解析】【分析】由31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…得出末尾数字以2,8,6,0四个数字不断循环出现,由此用2018除以4看得出的余数确定个位数字即可.【详解】∵2018÷4=504…2,∴32018﹣1的个位数字是8,故选B.【点睛】本题考查了尾数的特征,关键是能根据题意得出个位数字循环的规律是解决问题的关键.4.A解析:A【解析】【分析】首先根据有理数大小比较的方法,把所给的四个数从大到小排列即可.【详解】解:﹣(﹣1)=1,∴﹣1<0<﹣(﹣1)<2,故选:A.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.5.B解析:B【解析】【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【详解】解:A.为了解一沓钞票中有没有假钞,采用全面调查的方式,故不符合题意;B.为了解全区七年级学生节约用水的情况,采用抽样调查的方式,故符合题意;C.为了解某省中学生爱好足球的情况,采用抽样调查的方式,故不符合题意;D.为了解某市市民每天丢弃塑料袋数量的情况,采用抽样调查的方式,故不符合题意;故选:B.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.A解析:A【解析】【分析】根据题目可知:两棵树的连线确定了一条直线,可将两棵树看做两个点,再运用直线的公理可得出答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,这种做法运用到的数学知识是“两点确定一条直线”.故答案为:A.【点睛】本题考查的知识点是直线公理的实际运用,易于理解掌握.7.B解析:B【解析】【分析】利用直角和角的组成即角的和差关系计算.【详解】解:∵三角板的两个直角都等于90°,所以∠BOD+∠AOC=180°,∵∠BOD+∠AOC=∠AOB+∠COD,∵∠AOB=155°,∴∠COD等于25°.故选B.【点睛】本题考查角的计算,数形结合掌握角之间的数量关系是本题的解题关键.8.A解析:A【解析】【分析】分相遇前相距50千米和相遇后相距50千米两种情况,根据路程=速度×时间列方程即可求出t值,可得答案.【详解】①当甲,乙两车相遇前相距50千米时,根据题意得:120t+80t=450-50,解得:t=2;(2)当两车相遇后,两车又相距50千米时,根据题意,得120t+80t=450+50,解得t=2.5.综上,t的值为2或2.5,故选A.【点睛】本题考查一元一次方程的应用,能够理解有两种情况、能够根据题意找出题目中的相等关系是解题关键.9.B解析:B【解析】【分析】由题意直接根据互补两角之和为180°求解即可.【详解】解:∵∠A=105°,∴∠A的补角=180°-105°=75°.故选:B.【点睛】本题考查补角的知识,属于基础题,掌握互补两角之和为180°是关键.10.B解析:B【解析】【分析】从图形可知空白部分的面积为S2是中间边长为(a﹣b)的正方形面积与上下两个直角边为(a+b)和b的直角三角形的面积,再与左右两个直角边为a和b的直角三角形面积的总和,阴影部分的面积为S1是大正方形面积与空白部分面积之差,再由S2=2S1,便可得解.【详解】由图形可知,S2=(a-b)2+b(a+b)+ab=a2+2b2,S1=(a+b)2-S2=2ab-b2,∵S2=2S1,∴a2+2b2=2(2ab﹣b2),∴a2﹣4ab+4b2=0,即(a﹣2b)2=0,∴a=2b,故选B.【点睛】本题主要考查了求阴影部分面积和因式分解,关键是正确列出阴影部分与空白部分的面积和正确进行因式分解.11.C解析:C【解析】试题解析:设开始做作业时的时间是6点x分,∴6x﹣0.5x=180﹣120,解得x≈11;再设做完作业后的时间是6点y分,∴6y﹣0.5y=180+120,解得y≈55,∴此同学做作业大约用了55﹣11=44分钟.故选C.12.A解析:A【解析】要把原方程变形化简,去分母得:2ax=3x﹣(x﹣6),去括号得:2ax=2x+6,移项,合并得,x=31a,因为无解,所以a﹣1=0,即a=1.故选A.点睛:此类方程要用字母表示未知数后,清楚什么时候是无解,然后再求字母的取值.二、填空题13.2或8.【解析】【分析】根据绝对值的性质去掉绝对值符号,分类讨论解题即可【详解】∵|a-m|=5,|n-a|=3∴a−m=5或者a−m=-5;n−a=3或者n−a=-3当a−m=5,n解析:2或8.【解析】【分析】根据绝对值的性质去掉绝对值符号,分类讨论解题即可【详解】∵|a-m|=5,|n-a|=3∴a−m=5或者a−m=-5;n−a=3或者n−a=-3当a−m=5,n−a=3时,|m-n|=8;当a−m=5, n−a=-3时,|m-n|=2;当a−m=-5,n−a=3时,|m-n|=2;当a−m=-5,n−a=-3时,|m-n|=8故本题答案应为:2或8【点睛】绝对值的性质是本题的考点,熟练掌握其性质、分类讨论是解题的关键14.【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a+3b)元解析:(23)a b【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.故选C.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系. 15.810【解析】【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛解析:810【解析】【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛】本题考查有理数的加减运算,理解题意根据题意对支出与收入进行加减运算从而求解. 16.8【解析】【分析】根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.【详解】解:因为;所以故填8.【点睛】本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解解析:8【解析】【分析】根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.【详解】解:因为22a b b ab ⊕=-;所以2(1)222(1)28.-⊕=-⨯-⨯=故填8.【点睛】本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解本题的关键. 17.【解析】【分析】设应派往甲处x 人,则派往乙处人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x 的一元一次方程,此题得解.【详解】解:设应派往甲处x 人,则派往乙处人,解析:()27x 21920x ⎡⎤+=+-⎣⎦【解析】【分析】设应派往甲处x 人,则派往乙处()20x -人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x 的一元一次方程,此题得解.【详解】解:设应派往甲处x 人,则派往乙处()20x -人,根据题意得:()27x 21920x ⎡⎤+=+-⎣⎦.故答案为()27x 21920x ⎡⎤+=+-⎣⎦.【点睛】本题考查由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.18.【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】解:故答案为【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的 解析:242525【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】 解:111110010110110210210320192020++++⨯⨯⨯⨯ 1111111110010110110210210320192020⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1111111110010110110210210320192020-+-+-++-=9610100242525== 故答案为242525【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的规律,利用规律将所求算式进行化简计算. 19.6×106【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.在确定n 的值时,看该数是大于或等于1还是解析:6×106【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.在确定n 的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0).9 600 000一共7位,从而9 600 000=9.6×106.20.8【解析】【分析】把x=﹣2代入方程2x+a ﹣4=0求解即可.【详解】把x=﹣2代入方程2x+a ﹣4=0,得2×(﹣2)+a ﹣4=0,解得:a=8.故答案为:8.【点睛】本题考查了一解析:8【解析】【分析】把x =﹣2代入方程2x +a ﹣4=0求解即可.【详解】把x =﹣2代入方程2x +a ﹣4=0,得2×(﹣2)+a ﹣4=0,解得:a =8.故答案为:8.【点睛】本题考查了一元一次方程的解,解答本题的关键是把x=﹣2代入方程2x+a﹣4=0求解.21.5.【解析】【分析】利用有理数的减法运算即可求得答案.【详解】解:每头猪超过100kg的千克数记作正数,不足100kg的千克数记作负数.那么98.5对应的数记为﹣1.5.故答案为:﹣1.解析:5.【解析】【分析】利用有理数的减法运算即可求得答案.【详解】解:每头猪超过100kg的千克数记作正数,不足100kg的千克数记作负数.那么98.5对应的数记为﹣1.5.故答案为:﹣1.5.【点睛】本题考查了“正数”和“负数”..解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.依据这一点可以简化数的求和计算.22.75【解析】钟表8时30分时,时针与分针所成的角的角的度数为30×8-(6-0.5)×30=240-165=75度,故答案为75.解析:75【解析】钟表8时30分时,时针与分针所成的角的角的度数为30×8-(6-0.5)×30=240-165=75度,故答案为75.23.4000【解析】【分析】设铁块沉入水底后水面高hcm,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm,由题意得:50×40×8+20×20×h=解析:4000【解析】【分析】设铁块沉入水底后水面高hcm,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm,由题意得:50×40×8+20×20×h=50×40×h,解得:h=10,则水箱中露在水面外的铁块的高度为:20-10=10(cm),所以水箱中露在水面外的铁块体积是:20×20×10=4000(cm3).故答案为:4000.【点睛】此题考查一元一次方程的实际运用,掌握长方体的体积计算公式是解决问题的关键.24.2【解析】【分析】根据同类项的定义列出方程,求出n,m的值,再代入代数式计算即可.【详解】∵单项式-3x2m+6y3与2x4yn是同类项,∴2m+6=4,n=3,∴m=-1,∴m+n解析:2【解析】【分析】根据同类项的定义列出方程,求出n,m的值,再代入代数式计算即可.【详解】∵单项式-3x2m+6y3与2x4y n是同类项,∴2m+6=4,n=3,∴m=-1,∴m+n=-1+3=2.故答案为:2.【点睛】本题考查同类项的定义. 所含字母相同,并且相同字母的指数相等的项叫做同类项.三、压轴题25.(1)107秒或10秒;(2)1413或11413.【解析】【分析】(1)由绝对值的非负性可求出a,c的值,设点B对应的数为b,结合BC = 2 AB,求出b 的值,当运动时间为t秒时,分别表示出点P、点Q对应的数,根据“Q到B的距离与P 到B的距离相等”列方程求解即可;(2)当点R运动了x秒时,分别表示出点P、点Q、点R对应的数为,得出AQ的长,由中点的定义表示出点M、点N对应的数,求出MN的长.根据MN+AQ=25列方程,分三种情况讨论即可.【详解】(1)∵|a-20|+|c+10|=0,∴a-20=0,c+10=0,∴a=20,c=﹣10.设点B对应的数为b.∵BC=2AB,∴b﹣(﹣10)=2(20﹣b).解得:b=10.当运动时间为t秒时,点P对应的数为20+2t,点Q对应的数为﹣10+5t.∵Q到B的距离与P到B的距离相等,∴|﹣10+5t﹣10|=|20+2t﹣10|,即5t﹣20=10+2t或20﹣5t=10+2t,解得:t=10或t=107.答:运动了107秒或10秒时,Q到B的距离与P到B的距离相等.(2)当点R运动了x秒时,点P对应的数为20+2(x+2)=2x+24,点Q对应的数为﹣10+5(x+2)=5x,点R对应的数为20﹣x,∴AQ=|5x﹣20|.∵点M为线段PR的中点,点N为线段RQ的中点,∴点M对应的数为224202x x++-=442x+,点N对应的数为2052x x-+=2x+10,∴MN=|442x+﹣(2x+10)|=|12﹣1.5x|.∵MN+AQ=25,∴|12﹣1.5x|+|5x﹣20|=25.分三种情况讨论:①当0<x<4时,12﹣1.5x+20﹣5x=25,解得:x =1413; 当4≤x ≤8时,12﹣1.5x +5x ﹣20=25,解得:x =667>8,不合题意,舍去; 当x >8时,1.5x ﹣12+5x ﹣20=25, 解得:x 31141=. 综上所述:x 的值为1413或11413. 【点睛】本题考查了一元一次方程的应用、数轴、绝对值的非负性以及两点间的距离,找准等量关系,正确列出一元一次方程是解题的关键.26.(1)3;(2)12;-3,2,-4或2,-3,-4.(3)a=11或4或10. 【解析】【分析】(1)根据上述材料给出的方法计算其相应的最佳值为即可;(2)按照三个数不同的顺序排列算出最佳值,由计算可以看出,要求得这些数列的最佳值的最小值;只有当前两个数的和的绝对值最小,最小只能为|−3+2|=1,由此得出答案即可;(3)分情况算出对应的数值,建立方程求得a 的数值即可.【详解】(1)因为|−4|=4,-4-32=3.5,-4-312+=3,所以数列−4,−3,1的最佳值为3.故答案为:3;(2)对于数列−4,−3,2,因为|−4|=4,432--=72,432||2--+=52, 所以数列−4,−3,2的最佳值为52; 对于数列−4,2,−3,因为|−4|=4,||422-+=1,432||2--+=52, 所以数列−4,2,−3的最佳值为1;对于数列2,−4,−3,因为|2|=2,224-=1,432||2--+=52, 所以数列2,−4,−3的最佳值为1;对于数列2,−3,−4,因为|2|=2,223-=12,432||2--+=52,所以数列2,−3,−4的最佳值为1 2∴数列的最佳值的最小值为223-=12,数列可以为:−3,2,−4或2,−3,−4.故答案为:12,−3,2,−4或2,−3,−4.(3)当22a+=1,则a=0或−4,不合题意;当92a-+=1,则a=11或7;当a=7时,数列为−9,7,2,因为|−9|=9,972-+=1,9722-++=0,所以数列2,−3,−4的最佳值为0,不符合题意;当972a-++=1,则a=4或10.∴a=11或4或10.【点睛】此题考查数字的变化规律,理解新定义运算的方法是解决问题的关键.27.(1)﹣14,8﹣5t;(2)2.5或3秒时P、Q之间的距离恰好等于2;(3)点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,其值为11,见解析.【解析】【分析】(1)根据已知可得B点表示的数为8﹣22;点P表示的数为8﹣5t;(2)设t秒时P、Q 之间的距离恰好等于2.分①点P、Q相遇之前和②点P、Q相遇之后两种情况求t值即可;(3)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据AC﹣BC=AB,列出方程求解即可;(3)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=22,∴点B表示的数是8﹣22=﹣14,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒,∴点P表示的数是8﹣5t.故答案为:﹣14,8﹣5t;(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=22,解得t=2.5;②点P、Q相遇之后,由题意得3t﹣2+5t=22,解得t=3.答:若点P、Q同时出发,2.5或3秒时P、Q之间的距离恰好等于2;(3)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC﹣BC=AB,∴5x﹣3x=22,解得:x=11,∴点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,都等于11;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=12×22=11;②当点P运动到点B的左侧时:MN=MP﹣NP=12AP﹣12BP=12(AP﹣BP)=12AB=11,∴线段MN的长度不发生变化,其值为11.【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.28.(1)6,-1;(2)2019或2014;(3)234【解析】【分析】(1)根据三个相邻格子的整数的和相等列式求出a、x的值,再根据第9个数是-2可得b=-2,然后找出格子中的数每3个为一个循环组依次循环,在用2021除以3,根据余数的情况确定与第几个数相同即可得解.(2)可先计算出这三个数的和,再照规律计算.(3)由于是三个数重复出现,因此可用前三个数的重复多次计算出结果.【详解】(1)∵任意三个相邻格子中所填整数之和都相等,∴6+a+b=a+b+x,解得x=6,a+b+x=b+x-1,∴a=-1,所以数据从左到右依次为6、-1、b、6、-1、b,第9个数与第三个数相同,即b=-2,所以每3个数“6、-1、-2”为一个循环组依次循环.∵2021÷3=673…2,∴第2021个格子中的整数与第2个格子中的数相同,为-1.故答案为:6,-1.(2)∵6+(-1)+(-2)=3,∴2019÷3=673.。
七年级上册期末考试试卷及答案
七年级上册期末考试试卷及答案一、选择题1.有理数a ,b 在数轴上的对应点的位置如图所示,则下列各式成立的是( )A .a >bB .﹣ab <0C .|a |<|b |D .a <﹣b2.如图,已知,,A O B 在一条直线上,1∠是锐角,则1∠的余角是( )A .1212∠-∠B .132122∠-∠C .12()12∠-∠D .21∠-∠3.下列分式中,与2x y x y---的值相等的是() A .2x y y x +- B .2x y x y +- C .2x y x y -- D .2x y y x-+ 4.在下边图形中,不是如图立体图形的视图是( )A .B .C .D .5.若(1,2)表示教室里第1列第2排的位置,则教室里第2列第3排的位置表示为( ) A .(2,1)B .(3,3)C .(2,3)D .(3,2) 6.如图,已知AB ∥CD,点E 、F 分别在直线AB 、CD 上,∠EPF=90°,∠BEP=∠GEP ,则∠1与∠2的数量关系为( )A .∠1=∠2B .∠1=2∠2C .∠1=3∠2D .∠1=4∠27.某商店有两个进价不同的计算器都卖了135元,其中一个盈利25%,另一个亏本25%,在这次买卖中,这家商店( )A .不赔不赚B .赚了9元C .赚了18元D .赔了18元 8.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱 9.下列选项中,运算正确的是( ) A .532x x -=B .2ab ab ab -=C .23a a a -+=-D .235a b ab += 10.一根绳子弯曲成如图①所示的形状.当用剪刀像图②那样沿虚线a 把绳子剪断时,绳子被剪为5段;当用剪刀像图③那样沿虚线b (b ∥a )把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a 、b 之间把绳子再剪(n ﹣2)次(剪刀的方向与a 平行),这样一共剪n 次时绳子的段数是( )A .4n+1B .4n+2C .4n+3D .4n+5二、填空题11.根据下列图示的对话,则代数式2a +2b ﹣3c +2m 的值是_____.12.如图,将一张长方形纸片分別沿着EP ,FP 对折,使点B 落在点B ,点C 落在点C ′.若点P ,B ′,C ′不在一条直线上,且两条折痕的夹角∠EPF =85°,则∠B ′PC ′=_____.13.36.35︒=__________.(用度、分、秒表示)14.如图,点B 在线段AC 上,且AB =5,BC =3,点D ,E 分别是AC ,AB 的中点,则线段ED 的长度为_____.15.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示 为_________.16.下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第n 个图案用_____根火柴棒.17.若关于x 的方程2x +a ﹣4=0的解是x =﹣2,则a =____.18.若523m x y +与2n x y 的和仍为单项式,则n m =__________.19.为了了解我市2019年10000名考生的数学中考成绩,从中抽取了200名考生成绩进行统计.在这个问题中,下列说法:①这10000名考生的数学中考成绩的全体是总体:②每个考生是个体;③从中抽取的200名考生的数学中考成绩是总体的一个样本:④样本容量是200.其中说法正确的有(填序号)______20.单项式﹣22πa b的系数是_____,次数是_____.三、解答题21.阅读下面解题过程: 计算:13(15)3632⎛⎫-÷--⨯ ⎪⎝⎭解:原式=25(15)66⎛⎫-÷-⨯ ⎪⎝⎭(第一步) =25(15)66⎛⎫-÷-⨯ ⎪⎝⎭(第二步) =(﹣15)÷(﹣25)(第三步) =﹣35(第四步) 回答:(1)上面解题过程中有两个错误,第一处是第 步,错误的原因是 ,第二处是第 步,错误的原因是 ;(2)正确的结果是 .22.小明同学有一本零钱记账本,上面记载着某一周初始零钱为100元,周一到周五的收支情况如下(记收入为+,单位:元):+25,-15.5,-23,-17,+26(1)这周末他可以支配的零钱为几元?(2)若他周六用了a 元购得2本书,周日他爸爸给了他10元买早饭,但他实际用了15元,恰好用完了所有的零钱,求a 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
博学教育 七年级上册期末练习题
一、选择题(每小题3分,共30分)
1、下列说法正确的是 ( )
A 、过一点P 只能作一条直线
B 、射线AB 和射线BA 表示同一条射线
C 、直线AB 和直线BA 表示同一条直线
D 、射线a 比直线b 短
2、下列四个方程中,是一元一次方程的是( )
A 、2x-y=1
B 、x 2-3 x + 1=0
C 、x = -1
D 、x
2= 1 3、下列事件中,必然发生的事件是 ( )
A 、明天会下雨
B 、小明数学考试得99分
C 、今天是星期一,明天就是星期二
D 、明年有370天
4、“a 与b 的两数平方的和”的代数式是 ( )
A 、a 2+b 2
B 、a+b 2
C 、a 2+b
D 、(a+b )2
5、甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍,乙现在的年龄是( )
A 、10岁
B 、15岁
C 、20岁
D 、30岁
6、长方体的截面中,边数最多的多边形是 ( )
A 、四边形
B 、五边形
C 、六边形
D 、七边形
7、把方程5
2221+-=--x x x 去分母,正确的是 ( ) A 、)2(22)1(510+-=--x x x B 、 )2(220)1(510+-=--x x x
C 、 )2(20)1(510+-=--x x x
D 、 )2(22)1(10+-=--x x x
8、一个电器商店卖出一件电器,售价为1820元,以进价计算,获利40%,则进价为 ( )
A 、728元
B 、1300元
C 、1092元
D 、455元
9、七巧板中没有的图形是 ( )
A 、平行四边形
B 、正方形
C 、等腰直角三角形
D 、长方形
10、一个两位数的十位数字与个位数字的和是7,把这个两位数加上45后,结果恰好成为数字对调后组成的两位数,则这个两位
数是
( )
A 、16
B 、25
C 、34
D 、61 二、填空题(每小题3分,共30分) B A C D B
第14题
11、—4的倒数是 。
12、三个视图都一样的几何体是: 。
13、数字580000000用科学计数法表示为 。
14、如14题图,∠AOC 和∠BOD 都是直角,如果∠DOC=︒4612’,则∠AOB 是__ ______度。
15、已知5x =是方程820ax a -=+的解,a = 。
16、已知代数式x +2y 的值是3,则代数式2x +4y +1
的值是 。
17、如第17题图所示,图中有 个小于平角的角。
18、在数轴上,距原点5个单位长度的点表示的数是 。
19、在某月日历上一个竖列相邻的五个数之和为80,
这五个数分别是___________________ 。
20、观察下列图形:(5分)
它们是按一定规律排列的,依照此规律,第16个图形共有 个★。
三、解答题
21、一个袋子中有6个红球,5个白球,1个黄球,这些球除颜色外都相同,从袋子中任意摸出一球,摸到红球、白球、黄球的可能性分别是多大?(4分)
22、读句画图(5分)
如图,直线CD 与直线AB 相交于C,根据下列 语句画图(保留作图痕迹不写作法) (1)、过点P 作PQ ∥CD,交AB 于点Q.
(2)、过点P 作PR ⊥CD,垂足R
23、计算:( 5分)-44×2)4(1--│-2│3×(-21
)0
24、先化简,再求值(5分):[]x y x y x y x 4)2()(2)24(-++----,其中第17
题
A B
C D
P o
30-==y x , ;
25、解方程(10分):①
3412114
x x -=+ (要求检验);
② 5.203
.01.02.02.05.13=---x x (不需检验)
26、(5分)如右图,C 是线段AB 上任意一点,M 、N 分别是AC 、BC 的中点,如果 AB =12cm ,求线段 MN 的长。
27、(6分)王大爷存入银行2500元,定期一年到期后扣除20%的利息税后得到本息和为2650元,求这种储蓄的年利率。
A B
C M N
28、(6分)请根据图中提供的信息,回答下列问题 :
38元 84元
求一个暖瓶与一个水杯分别是多少元?
29、(6分)小明要从甲村走到乙村,如果她每小时走4km,那么走到预定时间,离乙村还有0.5km;如果她每小时走5km,那么比预定时间少用0.5h就可到达乙村.求预定时间和两村的路程.
30、(8分)小华对我校七年级(2)班的同学就“父母回家后,你会主动给他们倒一杯水吗”情况调查结果:主动倒水27人,偶尔倒水18人,不倒水15人。
(1)计算各类人数所占百分比及各个扇形圆心角的度数。
(2)制作扇形统计图,并标上百分比。