2017-2018年河南省郑州一中高二上学期数学期中试卷及参考答案(文科)

合集下载

河南省郑州市第一中学2017-2018学年高三上学期期中考试数学(文)试题 Word版含答案

河南省郑州市第一中学2017-2018学年高三上学期期中考试数学(文)试题 Word版含答案

2017-2018学年第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}|24xA x =≤,集合(){}|y lg 1B x x ==-,则A B 等于( )A .()1,2B .(]1,2C .[)1,2D .[]1,2 2.在复平面内,复数2332ii-+对应的点的坐标为( ) A .()0,1- B .130,9⎛⎫-⎪⎝⎭ C .12,113⎛⎫- ⎪⎝⎭ D .1213,99⎛⎫- ⎪⎝⎭3.已知抛物线22y px =的准线方程是2x =-,则p 的值为( ) A .2 B .4 C .-2 D .-44.已知等差数列{}n a ,62a =,则此数列的前11项的和11S =( ) A .44 B .33 C .22 D .115.已知函数()21,0cos ,0x x f x x x ⎧+>=⎨≤⎩,则下列结论正确的是( )A .()f x 是偶函数B .()f x 在(),-∞+∞上是增函数C .()f x 是周期函数D .()f x 的值域为[]1,-+∞6.平面向量a 与b 的夹角为60°,()2,0,1a b ==,则2a b +等于( ) A...12 D7.已知,a b 都是实数,那么“0a b <<”是“11a b>”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件8.若不等式组0220x y x y x m -≤⎧⎪-+≥⎨⎪≥⎩,表示的平面区域是面积为169的三角形,则m 的值为( )A .12 B .23 C .23- D .569.已知函数()()322113f x x a x b x =--+,其中{}1,2,3,4a ∈,{}1,2,3b ∈,则函数()f x 在R 上是增函数的概率为( ) A .14 B .12 C .23 D .3410.设25log 3log 4ln311,,333a b c ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭,则,,a b c 的大小关系是( )A .c a b >>B .a b c >>C .c b a >>D .a c b >>11.已知直线2x =被双曲线22221x y a b -=的两条渐近线所截得线段的长度恰好等于其一个焦点到渐近线的距离,则此双曲线的离心率为( )A .2 D .312.如果函数()y f x =在区间I 上是增函数,而函数()f x y x=在区间I 上是减函数,那么称函数()y f x =是区间I 上“缓增函数”,区间I 叫做“缓增区间”.若函数()21322f x x x =-+是区间I 上“缓增函数”,则“缓增函数区间”I 为( )A .[)1,+∞B .⎡⎣C .[]0,1D .⎡⎣第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题 ,每小题5分,满分20分,将答案填在答题纸上13.将某班参加社会实践编号为:1,2,3,…,48的48名学生,采用系统抽样的方法抽取一个容量为6的样本,已知5号,21号,29号,37号,45号学生在样本中,则样本中还有一名学生的编号是____________.14.阅读左下面的程序框图,运行相应的程序,输出的结果为_______________.15.我国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器------商鞅铜方升,其三视图如上如图所示(单位:寸),若π取3,其体积为12.6(立方寸),则图中的x 为____________.16.已知数列{}n a 满足:对任意*n N ∈均有133n n a pa p +=+-(p 为常数,0p ≠且1p ≠),若{}2345,,,19,7,3,5,10,29a a a a ∈---,则1a 所有可能值的集合为_______________. 三、解答题 :本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)“郑一”号宇宙飞船返回舱顺利到达地球后,为了及时将航天员求出,地面指挥中心的在返回舱预计到达的区域安排了同一条直线上的三个救援中心(记为,,B C D ).当返回舱距地面1万米的P 点的时(假定以后垂直下落,并在A 点着陆),C 救援中心测得飞船位于其南偏东60°方向,仰角为60°,B 救援中心测得飞船位于其南偏西30°方向,仰角为30°,D 救援中心测得着陆点A 位于其正东方向.(1)求,B C 两救援中心间的距离; (2)D 救援中心与着陆点A 间的距离.18.(本小题满分12分)郑州一中研究性学习小组对本校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,并得到如图1的频率分布直方图.(1)若直方图中后四组的频数成等差数列,计算高三的全体学视力在5.0以下的人数,并估计这100名学生视力的中位数(精确到0.1);(2)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对高三全体学生成绩名次在前50名和后50名的学生进行了调查,得到如表1中数据,根据表1及表2中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?附表2:(参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)19.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,PA ⊥底面ABCD ,M 是棱PD 的中点,且2,PA AB AC BC ====(1)求证:CD ⊥平面PAC ;(2)如果N 是棱AB 上一点,且三棱锥N BMC -的体积为13,求AN NB的值. 20.(本小题满分12分)已知圆心在x 轴上的圆C 过点()0,0和()1,1-,圆D 的方程为()2244x y -+=.(1)求圆C 的方程;(2)由圆D 上的动点P 向圆C 作两条切线分别交y 轴于,A B 两点,求AB 的取值范围. 21.(本小题满分12分) 已知函数()()ln 1af x x a R x =+∈+在1x =处的切线方程为8190x y +-=. (1求,a b ;(2)如果函数()()g x f x k =-仅有一个零点,求实数k 的取值范围. 请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)选修4-4:坐标系与参数方程以直角坐标系的原点O 为极点,x 轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线l 的参数方程为1cos sin x t y t αα=+⎧⎨=⎩(t 为参数,0απ<<),曲线C 的极坐标方程为2sin 4cos ρθθ=.(1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 相交于A B 、两点,当α变化时,求AB 的最小值. 23. (本小题满分10分)选修4-5:不等式选讲 已知函数()121f x m x x =---+. (1)当5m =时,求不等式()2f x >的解集;(2)若二次函数223y x x =++与函数()y f x =的图象恒有公共点,求实数m 的取值范围.参考答案一、选择题:二、填空题: 13. 13 14. 13815. 1.6 16. {}1,3,67--- 三、解答题:17.解:(1)由题意知,PA AB PA AC ⊥⊥,则,PA C P AB ∆∆均为直角三角形,.............1分在Rt PAC ∆中,01,60PA PCA =∠=,解得AC =.................2分在Rt PAB ∆中,01,30PA PBA =∠=,解得AB =......................3分又090,CAB BC ∠===万米................................5分sin sin AC ACD AD ADC ∠==∠ 万米.......................12分18.解:(1)设各组的频率为()1,2,3,4,5,6i f i =,由图可知,第一组有3人,第二组7人,第三组27人,因为后四组的频数成等差数列,所以后四组频数依次为27,24,21,18则后四组频率依次为0.27,0.24,0.21,0.18...........................2分 视力在5.0以下的频率为3727242182++++=人, 故全年级视力在5.0以下的人数约为821000820100⨯=人............................4分设100名学生视力的中位数为x ,则有()()()0.150.35 1.350.2 4.60.240.20.5x ++⨯+-⨯÷=,4.7x ≈..........................6分(2)()221004216348200 3.509 3.8415050762457k ⨯-⨯==≈<⨯⨯⨯...................10分 因此在犯错误的概率不超过0.05的前提下认为视力与学习成绩没有关系..............12分19.解:(1)连结AC ,因为在ABC ∆中,2,BC AB AC ===222BC AB AC =+, 所以AB AC ⊥.因为//AB CD ,所以AC CD ⊥.又因为PA ⊥底面ABCD ,所以PA CD ⊥,因为AC PA A = , 所以CD ⊥平面PAC ........................5分(2)设BNx AB=,因为PA ⊥底面ABCD ,M 是棱PD 的中点, 所以24N BMC M BNC M ABC M ABCD P ABCD x xV V xV V V -----====,∴(112433N BMC x V -=⨯⨯⨯=,解得12x =,所以1ANNB=....................12分20.解:(1)设圆C 的方程为:()()2220x a y r r -+=>,.................1分因为圆C 过点()0,0和()1,1-,所以()2222211a r a r⎧=⎪⎨--+=⎪⎩........................3分 解得1,1a r =-=.所以圆C 的方程为()2211x y ++=.................5分 (2)设圆D 上的动点P 的坐标为()00,x y ,则()220044x y -+=, 即()2200440y x =--≥,解得026x ≤≤,........................6分由圆C 和圆D 的方程可知,过点P 向圆C 所作的两条切线的斜率必存在, 设PA 的方程为:()010y y k x x -=-,则点A 的坐标为()0100,y k x -, 同理可得点B 的坐标为()0200,y k x -,所以120AB k k x =-, 因为,PA PB 是圆C 的切线,所以12,k k1=,即12,k k 是方程()()2220000022110x x k y x k y +-++-=的两根,即()0012200201220021212y x k k x x y k k x x ⎧++=⎪+⎪⎨-⎪=⎪+⎩,所以120AB k k x x =-=, 因为()220044y x =--,所以AB =..................9分设()()0020562x f x x -=+,则()()00305222x f x x -+'=+.由026x ≤≤,可知()0f x 在222,5⎡⎫⎪⎢⎣⎭上是增函数,在22,65⎛⎤ ⎥⎝⎦上是减函数, 所以()0max 2225564f x f ⎛⎫==⎡⎤⎪⎣⎦⎝⎭,()()(){}0min 131min 2,6min ,484f x f f ⎧⎫===⎡⎤⎨⎬⎣⎦⎩⎭, 所以AB的取值范围为4⎦...........................12分 21.解:(1)()()()210af x x xx a -'=+>+, 由题,()()()2911411181a f b a f b ⎧==⎪+⎪⎨-'⎪=+=-+⎪⎩解得921a b ⎧=⎪⎨⎪=⎩.........................4分 (2)当92a =时,()()9ln 21f x x x =++,其定义域为()0,+∞, ()()()()()22212912121x x f x x x x x ---'=+=++,令()0f x '=得121,22x x ==, 因为当102x <<或2x >时,()0f x '>;当122x <<时,()0f x '<, 所以函数()f x 在10,2⎛⎫ ⎪⎝⎭上递增,在1,22⎛⎫⎪⎝⎭上递减,在()2,+∞上递增, 且()f x 的极大值为13ln 22f ⎛⎫=-⎪⎝⎭,极小值为()32ln 22f =+, 又当0x +→时,()f x →-∞;当x →+∞时,()f x →+∞, 因为函数()()g x f x k =-仅有一个零点,所以函数()y f x =的图象与直线y k =仅有一个交点, 所以3ln 2k >-或3ln 22k <+..........................12分 22.解:(1)由2sin4cos ρθθ=,得()2sin 4cos ρθρθ=,所以曲线C 的直角坐标方程为24y x =.....................5分(2)将直线l 的参数方程代入24y x =,得22sin 4cos 40t t αα--=,设A B 、两点对应的参数分别为12t t 、,则1212224cos 4,sin sin t t t t ααα+==-,∴1224sin AB t t α=-===, 当2πα=时,AB 的最小值为4..................10分23.解:(1)当5m =时,()()()()361211431x x f x x x x x +<-⎧⎪=-+-≤≤⎨⎪->⎩,.....................3分由()2f x >易得不等式的解集为4|03x x ⎧⎫-<<⎨⎬⎩⎭;............................5分 (2)由二次函数()222312y x x x =++=++,该函数在1x =-取得最小值2,因为()()()()311311311x m x f x x m x x m x ++<-⎧⎪=--+-≤≤⎨⎪-+->⎩在1x =-处取得最大值2m -,...............7分所以要使二次函数223y x x =++与函数()y f x =的图象恒有公共点, 只需22m -≥,即4m ≥.................10分。

【配套K12】[学习]河南省郑州市第一中学网校2017-2018学年高二数学上学期期中联考试题 文(

【配套K12】[学习]河南省郑州市第一中学网校2017-2018学年高二数学上学期期中联考试题 文(

郑州一中网校2017-2018学年(上)期中联考高二文科数学试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 数列的一个通项公式是()A. B. C. D.【答案】A【解析】:仔细观察数列1,3,6,10,15…可以发现:1=1,3=1+2,6=1+2+3,10=1+2+3+4,…∴第项为1+2+3+4+…+n∴数列的一个通项公式是,故选A.2. 下列命题正确的是()A. 若,则B. 若,则C. 若,则D. 若,则【答案】B【解析】对于A,取,时,,故A不正确;对于B,因为,那么,所以,故B正确;对于C,取,则,故C不正确;对于D,取,,,,则,故D不正确.故选B3. 不等式的解集是为()A. B. C. D.【答案】B..................4. 已知各项均为正数的等比数列,则的值()A. B. C. D.【答案】D【解析】∵为各项均为正数的等比数列∴,即∴,故选D5. 在中,分别为的对角,且,则()A. B. C. D.【答案】D【解析】∵∴ 根据正弦定理得:∴,故选D6. 下列命题错误的是()A. 命题“若,则”与命题“若,则”互为逆否命题B. 命题“”的否定是“”C. 且,都有D. “若,则”的逆命题为真【答案】D【解析】对于A.“若p则q”与命题“若,则”互为逆否命题,正确;对于B.“∃x∈R,x2﹣x>0”的否定是“∀x∈R,x2﹣x≤0”,正确;对于C.∀x>0且x≠1,都有>2=2,正确;对于D.“若am2<bm2,则a<b”的逆命题为“若a<b,则am2<bm2”为假命题,m=0时不成立.故选:D.7. 设实数满足且实数满足,则是的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】试题分析:“若且则”是真命题,其逆命题是假命题,故是的充分不必要条件,故选A.考点:充分必要条件.8. 若等比数列的各项均为正数,且(为自然对数的底数),则()A. B. C. D.【答案】B【解析】∵ 等比数列的各项均为正数,且∴∴,故选B.9. 若正数满足,则的最小值是()A. B. C. D.【答案】C【解析】由已知可得,则,所以的最小值,应选答案D。

2017-2018学年高二(上)期中数学试卷(文科)带答案精讲

2017-2018学年高二(上)期中数学试卷(文科)带答案精讲

2017-2018学年高二(上)期中数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设全集为R,集合A={x||x|≤2},B={x|>0},则A∩B()A.[﹣2,2]B.[﹣2,1)C.(1,2]D.[﹣2,+∞)2.(5分)在空间中,下列命题正确的是()A.三条直线两两相交,则这三条直线确定一个平面B.若平面α⊥β,且α∩β=l,则过α内一点P与l垂直的直线垂直于平面βC.若直线m与平面α内的一条直线平行,则m∥αD.若直线a与直线b平行,且直线l⊥a,则l∥b3.(5分)直线x+y=0被圆x2+y2﹣4y=0所截得的弦长为()A.1 B.2 C.D.24.(5分)在△ABC中,“cosA+sinA=cosB+sinB”是“C=90°”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.非充分非必要条件5.(5分)已知a>0,实数x,y满足:,若z=2x+y的最小值为1,则a=()A.2 B.1 C.D.6.(5分)一个四面体的三视图如图所示,则该四面体的表面积为()A.B.C.D.27.(5分)如图是用模拟方法估计圆周率π值的程序框图,P表示估计结果,则图中空白框内应填入()A.P=B.P=C.P=D.P=8.(5分)在等差数列{a n}中,首项a1=0,公差d≠0,若a k=a1+a2+a3+…+a7,则k=()A.22 B.23 C.24 D.259.(5分)已知直线x+y=a与圆x2+y2=4交于A、B两点,且|+|=|﹣|,其中O为原点,则实数a的值为()A.2 B.﹣2 C.2或﹣2 D.或﹣10.(5分)若f(x)是R上的减函数,且f(0)=3,f(3)=﹣1,设P={x|﹣1<f(x+t)<3},Q={x|f(x)<﹣1},若“x∈P”是”x∈Q”的充分不必要条件,则实数t的范围是()A.t≤0 B.t≥0 C.t≤﹣3 D.t≥﹣3二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.11.(5分)若数据组k1,k2...k8的平均数为3,方差为3,则2(k2+3),2(k2+3) (2)(k8+3)的方差为.12.(5分)甲、乙二人参加普法知识竞答,共有10个不同的题目,其中6个选择题,4个判断题,甲、乙二人依次各抽一题,则甲、乙两人中至少有一人抽到选择题的概率是.13.(5分)=.14.(5分)若正数a,b满足a+b=1,则+的最小值为.15.(5分)等比数列{a n}中,公比q=2,log2a1+log2a2+…+log2a10=35,则a1+a2+…+a10=.16.(5分)给出下列命题:以下命题正确的是(注:把你认为正确的命题的序号都填上)①非零向量、满足||=||=||,则与的夹角为30°;②•>0,是、的夹角为锐角的充要条件;③命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0”;④若()=0,则△ABC为等腰三角形.17.(5分)过点(2,3)且与直线l1:y=0和l2:都相切的所有圆的半径之和为.三、解答题:本大题共5小题,共65分,解答应写出文字说明,证明过程或演算步骤.18.(12分)在△ABC中,sin(C﹣A)=1,sinB=.(Ⅰ)求sinA的值;(Ⅱ)设AC=,求△ABC的面积.19.(12分)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1﹣2a n,证明数列{b n}是等比数列;(2)求数列{a n}的通项公式.20.(13分)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线AC与BD的交点,M是PD的中点,AB=2,∠BAD=60°.(1)求证:OM∥平面PAB;(2)求证:平面PBD⊥平面PAC;(3)当四棱锥P﹣ABCD的体积等于时,求PB的长.21.(14分)已知圆心为C的圆,满足下列条件:圆心C位于x轴正半轴上,与直线3x﹣4y+7=0相切,且被y轴截得的弦长为,圆C的面积小于13.(Ⅰ)求圆C的标准方程;(Ⅱ)设过点M(0,3)的直线l与圆C交于不同的两点A,B,以OA,OB为邻边作平行四边形OADB.是否存在这样的直线l,使得直线OD与MC恰好平行?如果存在,求出l的方程;如果不存在,请说明理由.22.(14分)设α,β为函数h(x)=2x2﹣mx﹣2的两个零点,m∈R且α<β,函数f(x)=(1)求的f(α)•f(β)值;(2)判断f(x)在区间[α,β]上的单调性并用函数单调性定义证明;(3)是否存在实数m,使得函数f(x)在[α,β]的最大值与最小值之差最小?若存在,求出m的值,若不存在,请说明理由.参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设全集为R,集合A={x||x|≤2},B={x|>0},则A∩B()A.[﹣2,2]B.[﹣2,1)C.(1,2]D.[﹣2,+∞)【分析】分别求出集合A和集合B中不等式的解集,求出两个解集的公共部分即为两个集合的交集.【解答】解:由集合B可知x﹣1>0即x>1;由集合A可知|x|≤2即﹣2≤x≤2.所以B∩A={x|1<x≤2}故选C.【点评】本题是一道以求不等式的解集为平台,求集合交集的基础题,也是高考中的基本题型.2.(5分)在空间中,下列命题正确的是()A.三条直线两两相交,则这三条直线确定一个平面B.若平面α⊥β,且α∩β=l,则过α内一点P与l垂直的直线垂直于平面βC.若直线m与平面α内的一条直线平行,则m∥αD.若直线a与直线b平行,且直线l⊥a,则l∥b【分析】根据平面的基本性质,可判断A;根据面面垂直的性质定理可判断B;根据线面平行的判定定理可判断C;根据异面直线夹角的定义,可判断D【解答】解:三条直线两两相交,则这三条直线确定一个平面或三个平面,故A 错误;若平面α⊥β,且α∩β=l,由面面垂直的性质定理可得:过α内一点P与l垂直的直线垂直于平面β,故B正确;若直线m与平面α内的一条直线平行,则m∥α或m⊂α,故C错误;若直线a与直线b平行,且直线a⊥l,则l⊥b,故D错误;故选:B【点评】本题考查的知识点是命题的真假判断与应用,平面的基本性质,面面垂直的性质定理,线面平行的判定定理,异面直线夹角的定义,难度不大,属于基础题.3.(5分)直线x+y=0被圆x2+y2﹣4y=0所截得的弦长为()A.1 B.2 C.D.2【分析】首先根据已知题意分析圆心与半径.通过直线与圆相交构造一个直角三角形.直角边分别为半弦长,弦心距.斜边为半径.按照勾股定理求出半弦长,然后就能求出弦长.【解答】解:根据题意,圆为x2+y2﹣4y=0故其圆心为(0,2),半径为:2圆心到直线的距离为:d==由题意,圆的半径,圆心到直线的距离,以及圆的弦长的一半构成直角三角形故由勾股定理可得:l=2=2故选:B.【点评】本题考查直线与圆的方程的应用,首先根据圆分析出圆的要素,然后根据直线与圆相交时构造的直角三角形按照勾股定理求出结果.属于基础题4.(5分)在△ABC中,“cosA+sinA=cosB+sinB”是“C=90°”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.非充分非必要条件【分析】对两个条件,“cosA+sinA=cosB+sinB”与“C=90°”的关系,结合三角函数的定义,对选项进行判断【解答】解:“C=90°”成立时,有A+B=90°,故一定有“cosA+sinA=cosB+sinB”成立又当A=B时cosA+sinA=cosB+sinB”成立,即“cosA+sinA=cosB+sinB”得不出“C=90°”成立所以“cosA+sinA=cosB+sinB”是“C=90°”的必要非充分条件故选B.【点评】本题考查充要条件,解答本题要熟练理解掌握三角函数的定义,充分条件,必要条件的定义,且能灵活运用列举法的技巧对两个命题的关系进行验证,本题考查了推理论证的能力,解题时灵活选择证明问题的方法是解题成功的保证.5.(5分)已知a>0,实数x,y满足:,若z=2x+y的最小值为1,则a=()A.2 B.1 C.D.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即先确定z的最优解,然后确定a的值即可.【解答】解:作出不等式对应的平面区域,(阴影部分)由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点C时,直线y=﹣2x+z的截距最小,此时z最小.即2x+y=1,由,解得,即C(1,﹣1),∵点C也在直线y=a(x﹣3)上,∴﹣1=﹣2a,解得a=.故选:C.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.6.(5分)一个四面体的三视图如图所示,则该四面体的表面积为()A.B.C.D.2【分析】由三视图想象出空间几何体,代入数据求值.【解答】解:如图所示,四面体为正四面体.是由边长为1的正方体的面对角线围成.其边长为,则其表面积为4×(××)=2.故选D.【点评】本题考查了学生的空间想象力,属于中档题.7.(5分)如图是用模拟方法估计圆周率π值的程序框图,P表示估计结果,则图中空白框内应填入()A.P=B.P=C.P=D.P=【分析】由题意以及框图的作用,直接推断空白框内应填入的表达式.【解答】解:由题意以及程序框图可知,用模拟方法估计圆周率π的程序框图,M是圆周内的点的次数,当i大于1000时,圆周内的点的次数为4M,总试验次数为1000,所以要求的概率,所以空白框内应填入的表达式是P=.故选:D.【点评】本题考查程序框图的作用,考查模拟方法估计圆周率π的方法,考查计算能力,属于基础题.8.(5分)在等差数列{a n}中,首项a1=0,公差d≠0,若a k=a1+a2+a3+…+a7,则k=()A.22 B.23 C.24 D.25【分析】根据等差数列的性质,我们可将a k=a1+a2+a3+…+a7,转化为a k=7a4,又由首项a1=0,公差d≠0,我们易得a k=7a4=21d,进而求出k值.【解答】解:∵数列{a n}为等差数列且首项a1=0,公差d≠0,又∵a k=(k﹣1)d=a1+a2+a3+…+a7=7a4=21d故k=22故选A【点评】本题考查的知识点是等差数列的性质,其中根据a4是数列前7项的平均项(中间项)将a k=a1+a2+a3+…+a7,化为a k=7a4,是解答本题的关键.9.(5分)已知直线x+y=a与圆x2+y2=4交于A、B两点,且|+|=|﹣|,其中O为原点,则实数a的值为()A.2 B.﹣2 C.2或﹣2 D.或﹣【分析】条件“||=||”是向量模的等式,通过向量的平方可得向量的数量积|2=||2,•=0,可得出垂直关系,接下来,如由直线与圆的方程组成方程组求出A、B两点的坐标,势必计算很繁,故采用设而不求的方法.【解答】解:由||=||得||2=||2,•=0,⊥,三角形AOB为等腰直角三角形,圆心到直线的距离为,即=,a=±2,故选C.【点评】若非零向量,,满足||=||,则.模的处理方法一般进行平方,转化成向量的数量积.向量是既有大小,又有方向的量,它既有代数特征,又有几何特征,通过向量可以实现代数问题与几何问题的互相转化,所以向量是数形结合的桥梁.10.(5分)若f(x)是R上的减函数,且f(0)=3,f(3)=﹣1,设P={x|﹣1<f(x+t)<3},Q={x|f(x)<﹣1},若“x∈P”是”x∈Q”的充分不必要条件,则实数t的范围是()A.t≤0 B.t≥0 C.t≤﹣3 D.t≥﹣3【分析】利用函数f(x)的单调性以及f(0)=3,f(3)=﹣1,求出集合P,Q 的解集,利用充分条件和必要条件的定义进行求解.【解答】解:∵f(x)是R上的减函数,且f(0)=3,f(3)=﹣1,∴不等式﹣1<f(x+t)<3,等价为f(3)<f(x+t)<f(0),即3>x+t>0,解得﹣t<x<3﹣t,即P={x|﹣t<x<3﹣t}.由f(x)<﹣1得f(x)<f(3),即x>3,∴Q={x|x>3},∵“x∈P”是”x∈Q”的充分不必要条件,∴﹣t≥3,即t≤﹣3.故选:C.【点评】本题主要考查函数单调性的应用,考查充分条件和必要条件的应用,利用函数的单调性先求解集合P,Q的等价条件是解决本题的关键.二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.11.(5分)若数据组k1,k2...k8的平均数为3,方差为3,则2(k2+3),2(k2+3) (2)(k8+3)的方差为12.【分析】由方差的性质得2(k2+3),2(k2+3)…2(k8+3)的方差为22×3=12.【解答】解:∵数据组k1,k2…k8的平均数为3,方差为3,∴2(k2+3),2(k2+3)…2(k8+3)的方差为:22×3=12.故答案为:12.【点评】本题考查方差的求法,是中档题,解题时要认真审题,注意方差性质的合理运用.12.(5分)甲、乙二人参加普法知识竞答,共有10个不同的题目,其中6个选择题,4个判断题,甲、乙二人依次各抽一题,则甲、乙两人中至少有一人抽到选择题的概率是.【分析】甲、乙二人中至少有一人抽到选择题的对立事件是甲、乙二人依次都抽到判断题,先做出甲和乙都抽到判断题的概率,根据对立事件的概率公式得到结果.【解答】(2)甲、乙二人中至少有一人抽到选择题的对立事件是甲、乙二人依次都抽到判断题, ∵甲、乙二人依次都抽到判断题的概率为, ∴甲、乙二人中至少有一人抽到选择题的概率为1﹣= 故答案为:. 【点评】本小题主要考查等可能事件的概率计算及分析和解决实际问题的能力,考查对立事件的概率.13.(5分)= .【分析】考查已知条件和要求的表达式,不难得到结果.【解答】解:因为1﹣sin 2x=cos 2x ,所以又=,所以= 故答案为:【点评】本题是基础题,考查同角三角函数的基本关系式的应用,考查计算能力.14.(5分)若正数a ,b 满足a +b=1,则+的最小值为 . 【分析】变形利用基本不等式即可得出.【解答】解:∵正数a ,b 满足a +b=1,∴(3a +2)+(3b +2)=7.∴+===,当且仅当a=b=时取等号. ∴+的最小值为. 故答案为:.【点评】本题考查了基本不等式的性质,属于中档题.15.(5分)等比数列{a n}中,公比q=2,log2a1+log2a2+…+log2a10=35,则a1+a2+…+a10=.【分析】等比数列{a n}中,公比q=2,可得a1a10=a2a9=...=a5a6=.由log2a1+log2a2+...+log2a10=35,利用对数的运算性质可得log2(a1a2 (10)==35,化为=27,可得a1.再利用等比数列的前n项和公式即可得出.【解答】解:∵等比数列{a n}中,公比q=2,∴a1a10=a2a9=…=a5a6=.∵log2a1+log2a2+…+log2a10=35,∴log2(a1a2…a10)==35,∴=27,∴a1=.∴a1+a2+…+a10==.故答案为:.【点评】本题考查了对数的运算性质、等比数列的性质通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.16.(5分)给出下列命题:以下命题正确的是①③④(注:把你认为正确的命题的序号都填上)①非零向量、满足||=||=||,则与的夹角为30°;②•>0,是、的夹角为锐角的充要条件;③命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0”;④若()=0,则△ABC为等腰三角形.【分析】根据向量加减法的平行四边形法则及菱形的性质可判断①,根据向量数量积的定义,及充要条件的定义,可判断②;根据否命题的定义,可判断③;根据向量数量积运算法则及向量模的定义,可判断④【解答】解:①非零向量、满足||=||=||,则以,为邻边的平行四边形为菱形,且,的夹角为60°,根据菱形的对角线平分对角,可得与的夹角为30°,故①正确; ②•>0,、的夹角为锐角或0,故•>0,是、的夹角为锐角的必要不充分条件,故②错误;③命题“若m 2+n 2=0,则m=0且n=0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”,故③正确;④若()===0,即,即AB=AC ,则△ABC 为等腰三角形,故④正确.故答案为:①③④【点评】本题以命题的真假判断为载体考查了向量加减法的平行四边形法则及菱形的性质,向量数量积的定义,充要条件的定义,否命题的定义,向量数量积运算法则及向量模的定义,是向量与逻辑的综合应用,难度中档.17.(5分)过点(2,3)且与直线l 1:y=0和l 2:都相切的所有圆的半径之和为 42 .【分析】设出圆的圆心坐标与半径,利用条件列出方程组,求出圆的半径即可.【解答】解:因为所求圆与y=0相切,所以设圆的圆心坐标(a ,r ),半径为r ,l 2:化为3x ﹣4y=0. 所以,解②得a=﹣r ,或a=3r ,由a=﹣r 以及①可得:a 2+14a +13=0,解得a=﹣1或a=﹣13,此时r=3或r=39, 所有半径之和为3+39=42.由a=3r以及①可得:9r2﹣18r+13=0,因为△=﹣144,方程无解;综上得,过点(2,3)且与直线l1:y=0和l2:都相切的所有圆的半径之和为:42.故答案为:42.【点评】本题考查圆的方程的求法,计算准确是解题的关键,考查计算能力.三、解答题:本大题共5小题,共65分,解答应写出文字说明,证明过程或演算步骤.18.(12分)在△ABC中,sin(C﹣A)=1,sinB=.(Ⅰ)求sinA的值;(Ⅱ)设AC=,求△ABC的面积.【分析】(I)利用sin(C﹣A)=1,求出A,C关系,通过三角形内角和结合sinB=,求出sinA的值;(II)通过正弦定理,利用(I)及AC=,求出BC,求出sinC,然后求△ABC 的面积.【解答】解:(Ⅰ)因为sin(C﹣A)=1,所以,且C+A=π﹣B,∴,∴,∴,又sinA>0,∴(Ⅱ)如图,由正弦定理得∴,又sinC=sin(A+B)=sinAcosB+cosAsinB=∴【点评】本小题主要考查三角恒等变换、正弦定理、解三角形等有关知识,考查运算求解能力.19.(12分)设数列{a n}的前n项和为S n,已知a1=1,S n+1=4a n+2(n∈N*).(1)设b n=a n+1﹣2a n,证明数列{b n}是等比数列;(2)求数列{a n}的通项公式.【分析】(1)由题设条件知b1=a2﹣2a1=3.由S n+1=4a n+2和S n=4a n﹣1+2相减得a n+1=4a n﹣4a n﹣1,即a n+1﹣2a n=2(a n﹣2a n﹣1),所以b n=2b n﹣1,由此可知{b n}是以b1=3为首项、以2为公比的等比数列.(2)由题设知.所以数列是首项为,公差为的等差数列.由此能求出数列{a n}的通项公式.【解答】解:(1)由a1=1,及S n+1=4a n+2,得a1+a2=4a1+2,a2=3a1+2=5,所以b1=a2﹣2a1=3.=4a n+2,①由S n+1则当n≥2时,有S n=4a n﹣1+2,②=4a n﹣4a n﹣1,所以a n+1﹣2a n=2(a n﹣2a n﹣1),①﹣②得a n+1又b n=a n+1﹣2a n,所以b n=2b n﹣1,所以{b n}是以b1=3为首项、以2为公比的等比数列.(6分)(2)由(I)可得b n=a n+1﹣2a n=3•2n﹣1,等式两边同时除以2n+1,得.所以数列是首项为,公差为的等差数列.所以,即a n=(3n﹣1)•2n﹣2(n∈N*).(13分)【点评】本题考查数列的性质和应用,解题时要掌握等比数列的证明方法,会求数列的通项公式.20.(13分)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线AC与BD的交点,M是PD的中点,AB=2,∠BAD=60°.(1)求证:OM∥平面PAB;(2)求证:平面PBD⊥平面PAC;(3)当四棱锥P﹣ABCD的体积等于时,求PB的长.【分析】(1)利用三角形中位线的性质,证明线线平行,从而可得线面平行;(2)先证明BD⊥平面PAC,即可证明平面PBD⊥平面PAC;(3)利用四棱锥P﹣ABCD的体积等于时,求出四棱锥P﹣ABCD的高为PA,利用PA⊥AB,即可求PB的长.【解答】(1)证明:∵在△PBD中,O、M分别是BD、PD的中点,∴OM是△PBD的中位线,∴OM∥PB,…(1分)∵OM⊄平面PAB,PB⊂平面PAB,…(3分)∴OM∥平面PAB.…(4分)(2)证明:∵底面ABCD是菱形,∴BD⊥AC,…(5分)∵PA⊥平面ABCD,BD⊂平面ABCD,∴BD⊥PA.…(6分)∵AC⊂平面PAC,PA⊂平面PAC,AC∩PA=A,∴BD⊥平面PAC,…(8分)∵BD⊂平面PBD,∴平面PBD⊥平面PAC.…(10分)(3)解:∵底面ABCD是菱形,AB=2,∠BAD=60°,∴菱形ABCD的面积为,…(11分)∵四棱锥P﹣ABCD的高为PA,∴,得…(12分)∵PA⊥平面ABCD,AB⊂平面ABCD,∴PA⊥AB.…(13分)在Rt△PAB中,.…(14分)【点评】本小题主要考查空间线面关系、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.21.(14分)已知圆心为C的圆,满足下列条件:圆心C位于x轴正半轴上,与直线3x﹣4y+7=0相切,且被y轴截得的弦长为,圆C的面积小于13.(Ⅰ)求圆C的标准方程;(Ⅱ)设过点M(0,3)的直线l与圆C交于不同的两点A,B,以OA,OB为邻边作平行四边形OADB.是否存在这样的直线l,使得直线OD与MC恰好平行?如果存在,求出l的方程;如果不存在,请说明理由.【分析】(Ⅰ)利用点到直线的距离公式,结合勾股定理,建立方程,根据圆C 的面积小于13,即可求圆C的标准方程;(Ⅱ)分类讨论,设出直线方程与圆的方程联立,利用韦达定理,再假设∥,则﹣3(x1+x2)=y1+y2,即可得出结论.【解答】解:(I)设圆C:(x﹣a)2+y2=R2(a>0),由题意知,解得a=1或a=,…(3分)又∵S=πR2<13,∴a=1,∴圆C的标准方程为:(x﹣1)2+y2=4.…(6分)(Ⅱ)当斜率不存在时,直线l为:x=0不满足题意.当斜率存在时,设直线l:y=kx+3,A(x1,y1),B(x2,y2),又∵l与圆C相交于不同的两点,联立,消去y得:(1+k2)x2+(6k﹣2)x+6=0,…(9分)∴△=(6k﹣2)2﹣24(1+k2)=3k2﹣6k﹣5>0,解得或.x 1+x2=,y1+y2=k(x1+x2)+6=,=(x1+x2,y1+y2),,假设∥,则﹣3(x1+x2)=y1+y2,∴,解得,假设不成立.∴不存在这样的直线l.…(13分)【点评】本题考查圆的方程,考查直线与圆的位置关系,考查韦达定理的运用,考查学生分析解决问题的能力,综合性强.22.(14分)设α,β为函数h(x)=2x2﹣mx﹣2的两个零点,m∈R且α<β,函数f(x)=(1)求的f(α)•f(β)值;(2)判断f(x)在区间[α,β]上的单调性并用函数单调性定义证明;(3)是否存在实数m,使得函数f(x)在[α,β]的最大值与最小值之差最小?若存在,求出m的值,若不存在,请说明理由.【分析】(1)结合韦达定理用m把α,β的和、乘积表示出来,代入所求化简即可;(2)利用定义进行证明,在判断结果的符号时,要适当结合第一问m与α,β间的关系,将m用α,β替换,根据α,β与x1,x2的大小关系进行化简判断符号.(3)先假设存在,根据已知构造出取最值时的等式,只要取等号的条件存在,即存在.【解答】解:(1)由题意得,故.(2)∀x1,x2∈[α,β],x1<x2,可得,因为(x1﹣α)(x2﹣β)≤0,(x1﹣β)(x2﹣α)<0,两式相加得2x1x2﹣(α+β)(x1+x2)+2αβ<0;又因为,∴(x2﹣x1)[4x1x2﹣4﹣m(x1+x2)]<0.所以f(x1)﹣f(x2)<0,所以函数f(x)在[α,β]上为增函数.(3)函数在[α,β]上为增函数,所以.当且仅当时,等号成立,此时f(β)=2,即.结合可得m=0.综上可得,存在实数m=0满足题意.【点评】本题综合考查了函数的零点与方程的根之间的关系,即利用函数的观点解决方程的问题,或利用方程思想来解决函数问题.属于综合题,有一定难度.。

河南省某重点高中2017_2018学年高二数学上学期期中试题文(含解析)

河南省某重点高中2017_2018学年高二数学上学期期中试题文(含解析)

2017-2018学年上期高二期中考试文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 中,角的对边分别为,已知,,,则()A. B. C. D.【答案】C【解析】在△ABC中,,∴则,∴由正弦定理可得:故选C2. 等比数列中,若,,则()A. 64B. -64C. 32D. -32【答案】A【解析】数列是等比数列,,,即解得那么故选A.3. 已知等差数列中,公差,,,则()A. 5或7B. 3或5C. 7或-1D. 3或-1【答案】D【解析】在等差数列中,公差,,,得,解得或.故选D.4. 中,,,,则()A. 15B. 9C. -15D. -9【答案】B【解析】中,,,则,如图所示;故选B.5. 已知成等比数列,且曲线的顶点是,则等于()A. 5B. 6C. 7D. 12【答案】B【解析】把配方得得到顶点坐标为,即由成等比数列,则,故选B.6. 已知等差数列的公差为整数,首项为13,从第五项开始为负,则等于()A. -4B. -3C. -2D. -1【答案】A【解析】在等差数列中,由,得,得,∵公差为整数,.故选A.7. 已知中,角的对边分别为,已知,,,则此三角形()A. 有一解B. 有两解C. 无解D. 不确定【答案】C【解析】由正弦定理有,所以,而,所以角A的值不存在,此三角形无解。

选C.8. 中,角的对边分别为,已知,则的形状是()A. 等腰三角形B. 直角三角形C. 等腰三角形或直角三角形D. 等腰直角三角形【答案】C【解析】由,可得,正弦定理,可得a即当时,的形状是等腰三角形,当时,即,那么,的形状是直角三角形.故选C.【点睛】本题考查正弦定理和三角形内角和定理的运用.解题的关键是得到一定要注意分类讨论.9. 中,角的对边分别为,已知,则()A. B. C. D.【答案】A【解析】因为三角形内角和为,所以,由正弦定理的推论有,选A.10. 《九章算术》中有“今有五人分五钱,令上二人所得与下三人等,问各得几何?”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”这个问题中,甲所得为()A. 钱B. 钱C. 钱D. 钱【答案】B【解析】设甲、乙、丙、丁、戊所得钱分别为,则,解得,又,则,故选B.11. 已知构成各项均为正数的等比数列,且公比,若去掉该数列中一项后剩余三个数仍按原顺序排列是等差数列,则()A. B. C. D.【答案】D【解析】由题意得,这4项分别为,若去掉第一项,则构成等差数列,,解得(舍去),或(舍去),;若去掉第二项,则构成等差数列,,解得(舍去),或(舍去),或;若去掉第三项,则构成等差数列,,解得,或(舍去),或(舍去);若去掉第四项,则构成等差数列,,解得(舍去),所以满足题意的,选D.点睛:本题主要考查等比数列的定义及通项公式,等差数列的定义和性质,体现了分类讨论思想,属于基础题。

2018年河南省郑州一中网校高二上学期数学期中试卷和解析(文科)

2018年河南省郑州一中网校高二上学期数学期中试卷和解析(文科)

2017-2018学年河南省郑州一中网校高二(上)期中数学试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)数列1,3,6,10,…的一个通项公式是()A.a n=n2﹣(n﹣1)B.a n=n2﹣1 C.a n=D.2.(5分)下列命题正确的是()A.若a>b,则B.若a•c2>b•c2,则a>bC.若a>b,则a•c2>b•c2D.若a>b>0,c>d,则a•c>b•d3.(5分)不等式<0的解集为()A.(1,+∞)B.(﹣∞,﹣2)C.(﹣2,1)D.(﹣∞,﹣2)∪(1,+∞)4.(5分)已知各项均为正数的等比数列{a n},a1•a9=16,则a2•a5•a8的值()A.16 B.32 C.48 D.645.(5分)在△ABC中,a,b,c分别为A,B,C的对角,且A=45°,B=60°,a=6,则b=()A.B.C.D.6.(5分)下列命题错误的是()A.命题“若p则q”与命题“若¬q,则¬p”互为逆否命题B.命题“∃x∈R,x2﹣x>0”的否定是“∀x∈R,x2﹣x≤0”C.∀x>0且x≠1,都有x+>2D.“若am2<bm2,则a<b”的逆命题为真7.(5分)设p:实数x,y满足x>1且y>1,q:实数x,y满足x+y>2,则p 是q的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件8.(5分)若等比数列{a n}的各项均为正数,且a10a11+a9a12=2e3(e为自然对数的底数),则lna1+lna2+…+lna20=()A.20 B.30 C.40 D.509.(5分)若正数x,y满足x+3y=5xy,则3x+4y的最小值是()A.B.C.5 D.610.(5分)《九章算术》中有这样一段叙述:“今有良马与驽马发长安至齐,齐去长安三千里,良马初日行一百九十三里,日增一十三里;驽马初日行九十七里,日减半里.良马先至齐,复还迎驽马.”则现有如下说法:①驽马第九日走了九十三里路;②良马五日共走了一千零九十五里路;③良马和驽马相遇时,良马走了二十一日.则错误的说法个数为()A.0个 B.1个 C.2个 D.3个11.(5分)关于x的不等式≥0的解集是(1,a]∪(2,+∞),则a的取值范围是()A.(﹣∞,1)B.(2,+∞)C.(1,2) D.[1,2]12.(5分)在△ABC中,三内角A,B,C的对边分别为a,b,c且a2=b2+c2+bc,a=,S为△ABC的面积,则S+cosBcosC的最大值为()A.1 B.+1 C.D.3二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)在△ABC中,若AB=,BC=3,∠C=120°,则AC=.14.(5分)已知{a n}是各项都为正数的等比数列,其前n项和为S n,且S2=3,S4=15,则a3=.15.(5分)若对任意实数x,不等式x2﹣x﹣a2+a+1>0恒成立,则a的取值范围是.16.(5分)数列{a n}的前n项和为S n,已知,则S2017=.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知命题p:∀x∈R,x2+a≥0,命题q:∃x∈R,使x2+(2+a)x+1=0.若命题“p且q”为真命题,求实数a的取值范围.18.(12分)在△ABC中,设内角A,B,C的对边分别为a,b,c,a2+b2﹣c2=ab.(1)求∠C的大小;(2)若,求△ABC的面积.19.(12分)已知函数f(x)=x2﹣ax (a∈R).(1)若a=2,求不等式f(x)≥3的解集(2)若x∈[1,+∞)时,f(x)≥﹣x2﹣2恒成立,求a的取值范围.20.(12分)某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)用每天生产的卫兵个数x与骑兵个数y表示每天的利润W(元);(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?21.(12分)设△ABC的内角A,B,C所对的边分别为a、b、c,且bcosC+=a.(1)求角B的大小;(2)若b=1,求△ABC的周长l的取值范围.22.(12分)已知数列{a n}满足a1+2a2+3a3+…+na n=n(n∈N*).(1)求数列{a n}的通项公式a n;(2)令,写出T n关于n的表达式,并求满足T n>时n的取值范围.2017-2018学年河南省郑州一中网校高二(上)期中数学试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)数列1,3,6,10,…的一个通项公式是()A.a n=n2﹣(n﹣1)B.a n=n2﹣1 C.a n=D.【解答】解:设此数列为{ a n},则由题意可得a1=1,a2=3,a3=6,a4=10,…仔细观察数列1,3,6,10,15,…可以发现:1=1,3=1+2,6=1+2+3,10=1+2+3+4,…∴第n项为1+2+3+4+…+n=,∴数列1,3,6,10,15…的通项公式为a n=,故选:C.2.(5分)下列命题正确的是()A.若a>b,则B.若a•c2>b•c2,则a>bC.若a>b,则a•c2>b•c2D.若a>b>0,c>d,则a•c>b•d【解答】解:A.取a>0>b,则不成立,不正确;B.∵a•c2>b•c2,∴a>b,正确;C.若c=0时,虽然a>b,但是a•c2=b•c2=0,故C不正确;D.若5>2>0,﹣1>﹣2,但是5×(﹣1)<2×(﹣2),故D不一定成立.故选:B.3.(5分)不等式<0的解集为()A.(1,+∞)B.(﹣∞,﹣2)C.(﹣2,1)D.(﹣∞,﹣2)∪(1,+∞)【解答】解:不等式<0等价于(x﹣1)(x+2)<0,所以表达式的解集为:{x|﹣2<x<1}.故选:C.4.(5分)已知各项均为正数的等比数列{a n},a1•a9=16,则a2•a5•a8的值()A.16 B.32 C.48 D.64【解答】解:由等比数列的性质可得a1•a9==16,∵a n>0∴a5=4∴a2•a5•a8==64故选:D.5.(5分)在△ABC中,a,b,c分别为A,B,C的对角,且A=45°,B=60°,a=6,则b=()A.B.C.D.【解答】解:∵A=45°,B=60°,a=6,∴由正弦定理可得:b===3.故选:D.6.(5分)下列命题错误的是()A.命题“若p则q”与命题“若¬q,则¬p”互为逆否命题B.命题“∃x∈R,x2﹣x>0”的否定是“∀x∈R,x2﹣x≤0”C.∀x>0且x≠1,都有x+>2D.“若am2<bm2,则a<b”的逆命题为真【解答】解:对于A.“若p则q”与命题“若¬q,则¬p”互为逆否命题,正确;对于B.“∃x∈R,x2﹣x>0”的否定是“∀x∈R,x2﹣x≤0”,正确;对于C.∀x>0且x≠1,都有x+>2=2,正确;对于D.“若am2<bm2,则a<b”的逆命题为“若a<b,则am2<bm2”为假命题,m=0时不成立.故选:D.7.(5分)设p:实数x,y满足x>1且y>1,q:实数x,y满足x+y>2,则p 是q的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:由x>1且y>1,可得:x+y>2,反之不成立:例如取x=3,y=.∴p是q的充分不必要条件.故选:A.8.(5分)若等比数列{a n}的各项均为正数,且a10a11+a9a12=2e3(e为自然对数的底数),则lna1+lna2+…+lna20=()A.20 B.30 C.40 D.50【解答】解:∵等比数列{a n}的各项均为正数,且a10a11+a9a12=2e3(e为自然对数的底数),∴a10a11=a9a12=e3,∴lna1+lna2+…+lna20=ln(a1×a2×a3×…×a20)=ln(a10×a11)10=ln(e3)10=30.故选:B.9.(5分)若正数x,y满足x+3y=5xy,则3x+4y的最小值是()A.B.C.5 D.6【解答】解:∵正数x,y满足x+3y=5xy,∴=1∴3x+4y=()(3x+4y)=+++≥+2=5当且仅当=时取等号∴3x+4y≥5即3x+4y的最小值是5故选:C.10.(5分)《九章算术》中有这样一段叙述:“今有良马与驽马发长安至齐,齐去长安三千里,良马初日行一百九十三里,日增一十三里;驽马初日行九十七里,日减半里.良马先至齐,复还迎驽马.”则现有如下说法:①驽马第九日走了九十三里路;②良马五日共走了一千零九十五里路;③良马和驽马相遇时,良马走了二十一日.则错误的说法个数为()A.0个 B.1个 C.2个 D.3个【解答】解:根据题意,良马走的路程可以看成一个首项a1=193,公差d1=13的等差数列,记其前n项和为S n,驽马走的路程可以看成一个首项b1=97,公差为d2=﹣0.5的等差数列,记其前n 项和为T n,依次分析3个说法:对于①、b9=b1+(9﹣1)×d2=93,故①正确;对于②、S5=5a1+×d1=5×193+10×13=1095;故②正确;对于③、设第n天两马相遇,则有S n+T n≥6000,即na1+d1+nb1+d2≥6000,变形可得5n2+227n﹣4800≥0,分析可得n的最小值为16,故两马相遇时,良马走了16日,故③错误;3个说法中只有1个错误;故选:B.11.(5分)关于x的不等式≥0的解集是(1,a]∪(2,+∞),则a的取值范围是()A.(﹣∞,1)B.(2,+∞)C.(1,2) D.[1,2]【解答】解:∵不等式≥0⇒(x﹣a)(x﹣1)(x﹣2)≥0,(x≠1且x ≠2)∵不等式的解集为(1,a]∪(2,+∞),有数轴标根得:∴1<a<2;故选:C.12.(5分)在△ABC中,三内角A,B,C的对边分别为a,b,c且a2=b2+c2+bc,a=,S为△ABC的面积,则S+cosBcosC的最大值为()A.1 B.+1 C.D.3【解答】解:∵a2=b2+c2+bc,∴cosA===﹣,由0<A<π,可得A=,设△ABC外接圆的半径为R,则2R===2,解得R=1,∴S+cosBcosC=bcsinA+cosBcosC=bc+cosBcosC=sinBsinC+cosBcosC=cos(B﹣C),故S+cosBcosC的最大值为.故选:C.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)在△ABC中,若AB=,BC=3,∠C=120°,则AC=1.【解答】解:在△ABC中,∵AB=,BC=3,∠C=120°,∴由余弦定理可得:AB2=AC2+BC2﹣2AC•BC•cosC,即:()2=AC2+32﹣2×3×AC×cos120°.∴整理可得:AC2+3AC﹣4=0,解得:AC=1或﹣4(舍去).故答案为:1.14.(5分)已知{a n}是各项都为正数的等比数列,其前n项和为S n,且S2=3,S 4=15,则a3=4.【解答】解:由已知可得q≠1.∴=3,=15,解得a1=1,q=2.∴a3=22=4.故答案为:4.15.(5分)若对任意实数x,不等式x2﹣x﹣a2+a+1>0恒成立,则a的取值范围是().【解答】解:∵对任意实数x,不等式x2﹣x﹣a2+a+1>0恒成立,就是x2﹣x+>a2﹣a,而x2﹣x+≥0,所以命题转化为:0≥a2﹣a恒成立,解得﹣<a<,故答案为:(,).16.(5分)数列{a n}的前n项和为S n,已知,则S2017= 1009.【解答】解:∵S n=1﹣2+3﹣4+…+(﹣1)n﹣1•n,∴S2017=(1﹣2)+(3﹣4)+…+(2015﹣2016)+2017=﹣1008+2017=1009.故答案为:1009.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)已知命题p:∀x∈R,x2+a≥0,命题q:∃x∈R,使x2+(2+a)x+1=0.若命题“p且q”为真命题,求实数a的取值范围.【解答】解:若p为真命题,则﹣a≤x2在x∈R上恒成立,即﹣a≤0,即a≥0;(3分)若q为真命题,则△=(2+a)2﹣4≥0,即a≤﹣4或a≥0…(5分)命题“p且q”为真命题,即p为真命题且q为真命题,所以…(8分)故a的取值范围为[0,+∞)…(10分)18.(12分)在△ABC中,设内角A,B,C的对边分别为a,b,c,a2+b2﹣c2=ab.(1)求∠C的大小;(2)若,求△ABC的面积.【解答】解:(1)a2+b2﹣c2=ab,C∈(0,π),∴.(2)∵sinA=2sinB,∴a=2b,∵c2=a2+b2﹣2abcosC,∴,∴b=2,∴a=4,∴.19.(12分)已知函数f(x)=x2﹣ax (a∈R).(1)若a=2,求不等式f(x)≥3的解集(2)若x∈[1,+∞)时,f(x)≥﹣x2﹣2恒成立,求a的取值范围.【解答】解:(1)若a=2,f(x)≥3,即x2﹣2x﹣3≥0即(x﹣3)(x+1)≥0所以{x|x≤﹣1或x≥3}…(6分)(2)解:f(x)≥﹣x2﹣2,即a≤2(x+)在x∈[1,+∞)时恒成立,…(8分)令h(x)=2(x+),等价于a≤h(x)min在x∈[1,+∞)时恒成立,…(10分)所以,当且仅当x=,即x=1时,取等号;所以a≤4.…(12分)故所求a的取值范围是a≤4.…(13分)20.(12分)某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)用每天生产的卫兵个数x与骑兵个数y表示每天的利润W(元);(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?【解答】解:(1)依题意每天生产的伞兵个数为100﹣x﹣y,所以利润W=5x+6y+3(100﹣x﹣y)=2x+3y+300(x,y∈N).(2)约束条件为整理得目标函数为W=2x+3y+300,如图所示,作出可行域.初始直线l0:2x+3y=0,平移初始直线经过点A时,W有最大值.由得最优解为A(50,50),所以W max=550(元).答:每天生产卫兵50个,骑兵50个,伞兵0个时利润最大,为550(元)21.(12分)设△ABC的内角A,B,C所对的边分别为a、b、c,且bcosC+=a.(1)求角B的大小;(2)若b=1,求△ABC的周长l的取值范围.【解答】解:(1)由bcosC+c=a,可得:b•+c=a,故有a2+c2﹣b2=ac,∴cosB=,在△ABC中,B∈(0,π),可得:B=.(2)由b=1,sinB=,根据正弦定理得:a=,c=,∴l=a+b+c=1+(sinA+sinC)=1+[sinA+sin(A+B)]=1+[sinA+sin(A+)]=1+(sinA+sinA+cosA)=1+2(sinA+cosA)=1+2sin(A+)(12分)∵B=,∴A∈(0,),∴A+∈(,),∴sin(A+)∈(,1]于是l=1+2sin(A+)∈(2,3],故△ABC的周长l的取值范围为(2,3].22.(12分)已知数列{a n}满足a1+2a2+3a3+…+na n=n(n∈N*).(1)求数列{a n}的通项公式a n;(2)令,写出T n关于n的表达式,并求满足T n>时n的取值范围.【解答】解:(1)由a1+2a2+3a3+…+na n=n,可得a1+2a2+3a3+…+(n﹣1)a n=n﹣1(n>1),﹣1相减可得na n=1,即有a n=,(n>1),当n=1时,a1=1,上式也成立,可得a n=,(n∈N*);(2)由,结合(1)可得,b n=(2n﹣1)•()n,前n项和T n=1•+3•()2+…+(2n﹣3)•()n﹣1+(2n﹣1)•()n,T n=1•()2+3•()3+…+(2n﹣3)•()n+(2n﹣1)•()n+1,相减可得,T n=+2[()2+…+()n﹣1+()n]﹣(2n﹣1)•()n+1=+2•﹣(2n﹣1)•()n+1,化简可得,前n项和T n=3﹣.=3﹣﹣(3﹣)=,由T n﹣T n﹣1当n≥2时,T n>T n,可得数列{T n}递增,﹣1由T4=3﹣=<;T5=3﹣=>.即有n≥5时,T n≥T5>.故n的取值范围是n≥5,且n∈N*.赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC.(1)如图,当∠APB=90°时,若AC=5,PC=,求BC的长;(2)当∠APB=90°时,若AB=APBC的面积是36,求△ACB的周长.2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。

【K12教育学习资料】网校2017-2018学年高二数学上学期期中联考试题 文(含解析)

【K12教育学习资料】网校2017-2018学年高二数学上学期期中联考试题 文(含解析)

郑州一中网校2017-2018学年(上)期中联考高二文科数学试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 数列的一个通项公式是()A. B. C. D.【答案】A【解析】:仔细观察数列1,3,6,10,15…可以发现:1=1,3=1+2,6=1+2+3,10=1+2+3+4,…∴第项为1+2+3+4+…+n∴数列的一个通项公式是,故选A.2. 下列命题正确的是()A. 若,则B. 若,则C. 若,则D. 若,则【答案】B【解析】对于A,取,时,,故A不正确;对于B,因为,那么,所以,故B正确;对于C,取,则,故C不正确;对于D,取,,,,则,故D不正确.故选B3. 不等式的解集是为()A. B. C. D.【答案】B..................4. 已知各项均为正数的等比数列,则的值()A. B. C. D.【答案】D【解析】∵为各项均为正数的等比数列∴,即∴,故选D5. 在中,分别为的对角,且,则()A. B. C. D.【答案】D【解析】∵∴ 根据正弦定理得:∴,故选D6. 下列命题错误的是()A. 命题“若,则”与命题“若,则”互为逆否命题B. 命题“”的否定是“”C. 且,都有D. “若,则”的逆命题为真【答案】D【解析】对于A.“若p则q”与命题“若,则”互为逆否命题,正确;对于B.“∃x∈R,x2﹣x>0”的否定是“∀x∈R,x2﹣x≤0”,正确;对于C.∀x>0且x≠1,都有>2=2,正确;对于D.“若am2<bm2,则a<b”的逆命题为“若a<b,则am2<bm2”为假命题,m=0时不成立.故选:D.7. 设实数满足且实数满足,则是的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】试题分析:“若且则”是真命题,其逆命题是假命题,故是的充分不必要条件,故选A.考点:充分必要条件.8. 若等比数列的各项均为正数,且(为自然对数的底数),则()A. B. C. D.【答案】B【解析】∵ 等比数列的各项均为正数,且∴∴,故选B.9. 若正数满足,则的最小值是()A. B. C. D.【答案】C【解析】由已知可得,则,所以的最小值,应选答案D。

数学---河南省郑州市第一中学2016-2017学年高二上学期期中考试试题(文)(解析版)

数学---河南省郑州市第一中学2016-2017学年高二上学期期中考试试题(文)(解析版)

河南省郑州市第一中学2016-2017学年高二上学期期中考试文数试题一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在ABC ∆中,π2,4===a b A ,则角B =( ) A .π6 B .π6或5π6 C .π3 D .5π62.“0x <”是“11x<”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .即不充分也不必要条件3.已知数列 {}n a 中,()12111,4,22,*-+===+≥∈n n n a a a a a n n N ,当298n a =时,序号n =( )A .100B .99C .96D .101 4.命题“0,*∀∈∃∈x n R N ,使得20n x >”的否定形式是( )A .0,*∀∈∃∈x n R N ,使得20n x ≤B .,*∀∈∀∈x n R N 使得,2n x ≤C. 00,*∃∈∃∈x n R N ,使得 200n x ≤ D .0,*∃∈∀∈x n R N ,使得20n x ≤5.《莱茵德纸草书》 是世界上最古老的数学著作之一,书中有这样的一道题: 把个面包分成份,使每份的面包数成等差数列,且较多的三份之和恰好是较少的两份之和的倍,则最少的那份面包个数为( )A .4B .3 C.2 D . 1 6.已知等比数列的前n 项和n S ,且203021,49S S ==,则10S 为( ) A .7 B .9 C.63 D .7或63 7.设,a b 是非零实数,若,则一定有( ) A .11a b < B .2a ab > C.2211ab a b > D .11a b a b->- 8.设等差数列{}n a 的前n 项和为n S ,且满足,对任意正整数n ,都有n k a a ≥,则k 的值为( )12057{}()n n a a R ∈a b >201620170,0S S ><A .1006B .1007 C.1008 D .10099.已知变量满足430140x y x x y -+≤⎧⎪≥⎨⎪+-≤⎩,则x y -的取值范围是( )A .62,5⎡⎤-⎢⎥⎣⎦ B .[]2,0- C.60,5⎡⎤⎢⎥⎣⎦D .[]2,1--10.设,对于使成立的所有常数M 中, 我们把M 的最大值1-叫做的下确界.若,a b 为正实数,且1a b +=,则122a b +的下确界为( ) A .5 B .4 C.92D .311.在中,角、、所对的边分别为、、,若()π,1cos cos ,23=-==A b C c A b ,则的面积为( )AB.C.3D12.设{},min ,,a a b a b b a b≤⎧=⎨>⎩,若()2f x x p x q=++的图象经过两点,且存在正整数n ,使得1n n αβ<<<+成立,则( )A .()(){}1min ,14f n f n +>B .()(){}1min ,14f n f n +< C.()(){}1min ,14f n f n += D .()(){}1min ,14f n f n +≥二、填空题(本大题共4小题,每题5分,满分20分.)13.已知不等式()()22454130m m x m x +---+>对一切实数x 都成立,则实数m 的取值范围是__________.14.已知两个等差数列 {}n a 和{}n b 的前n 项和分别为,n n S T ,若231n n S nT n =+,则55a b =__________.15.在中,角、、所对的边分别为、、,且2,3,4a b c ===,则s i n 2sin CA= _________.16.已知数列{}n a 的通项公式为3n n a =,记数列{}n a 的前n 项和为n S ,若使得,x y x R ∈22x x M -≥22x x -ABC ∆A B C a b c ABC ∆()(),0,,0αβABC ∆A B C a b c n N *∃∈成立,则实数k 的取值范围是_________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分10分)已知命题对任意的恒成立;命题关于的不等式有实数解.若命题“”为真命题,且“”为假命题,求实数a 的取值范围.18.(本小题满分12分)在等比数列{}n a 中,公比1q ≠,等差数列{}n b 中,公差为d ,且满足11243133,,a b a b a b ====. (1)求数列{}n a 和{}n b 通项公式;(2)记()1nn n n c b a =-+,求数列{}n c 的前项和.19.(本小题满分12分)某人上午时, 乘摩托艇以匀速从港出发3362n S k n ⎛⎫+≥- ⎪⎝⎭25:04p x ax a --+≥x R ∈:q x 220x x a ++<p q ∨p q ∧n n S 7()/840vkm h v ≤≤A到距的港去, 然后乘汽车以匀速自港向距的市驶去.应该在同一天下午至点到达市. 设乘坐汽车、 摩托艇去目的地所需要的时间分别是.(1)作图表示满足上述条件的,x y 范围;(2)如果已知所需的经费(元),那么分别是多少时p 最小?此时需花费多少元?20.(本小题满分12分)在中,角、、所对的边分别为、、,()cos25cos 2B A C -+=.(1)求角的值; (2)若 1cos 7A =,的面积为求边上的中线长.21.(本小题满分12分)某城市响应城市绿化的号召, 计划建一个如图所示的三角形 ABC 形状的主题公园,其中一边利用现成的围墙, 长度为 另外两边使100km B ()/30100wkm h w ≤≤B 300km C 49C ,xh yh ()()1003528p x y =+-+-,v w ABC ∆A B C a b c B ABC ∆BC BC ,AB AC用某种新型材料围成,已知单位均为米). (1)求 ,x y 满足的关系式(指出,x y 的取值范围);(2)在保证围成的是三角形公园的情况下,如何设计能使所用的新型材料总长度最短? 最短长度是多少?22.(本小题满分12分)设数列的前项和为,且n S n ⎧⎫⎨⎬⎩⎭是等差数列, 已知. (1)求数列{}n a 的通项公式; (2)若数列12212n n n n n a a b a a ++++=+-,数列{}n b 的前n 项和为n T ,求证:12n T <.参考答案一、选择题120,,(,BAC AB x AC y x y ∠==={}n a n n S 32411,6234S S S a =++=1.A2.B【解析】试题分析:由11x <,得111100x x x x x ---=<⇒>,解得0x <或1x >,所以“2x >或0x <”是“11x<”的充分不必要条件,故选B.3.A【解析】试题分析:由121,4a a ==,则213d a a =-=,且()1122,*-+=+≥∈n n n a a a n n N ,则数列{}2n a 表示首项为1,公差为3的等差数列,所以1(1)1(1)332n a a n d n n =+-=+-⨯=-,令32298n -=,解得100n =,故选A.4.D5.C【解析】试题分析:设五个人所分得的面包为2,,,,2(0)a d a d a a d a d d --++>, 则有(2)()()(2)5120a d a d a a d a d a -+-+++++==,所以24a =,由27(2)a a d a d a d a d ++++=++-,解得337(23)a d a d +=-,所以2411d a =,解得11d =,所以最少的一份为224222a d -=-=,故选C. 6.A7.C【解析】试题分析:因为,a b 是非零实数,,所以0a b ->,所以2222110a b ab a b a b --=>,所以2211ab a b>,故选C. 8.D【解析】试题分析:由等差数列的求和公式及性质,可得120162016100810092016()1008()02a a S a a +==+>,所以100810090a a +>,同理可得12017201710092017()201702a a S a +==<,所以10090a <,所以100810090,0,0a a d ><<,对任意正整数n ,都有n k a a ≥,则1009k =,故选D. 9.A【解析】试题分析:由题意得,画出约束条件所表示的平面区域,如图所示,设目标函数z x y =-,当z x y =-过点137(,)55A 时,目标函数取得最大值,此时最大值为max 1376555z =-=;当z x y =-过点(1,3)B 时,目标函数取得最小值,此时最小值为min 132z =-=-,所以x y -的取值范围是62,5⎡⎤-⎢⎥⎣⎦,故选A.10.C11.Da b>12.B【解析】试题分析:因为()2f x x px q =++的图象经过两点,所以()2()()f x x px q x x αβ=++=--,所以()()2()(),1(1)(1)f n n pn q n n f n n n αβαβ=++=--+=+-+-,所以min{(),(1)}f n f n +=14≤==,故选B.二、填空题 13.[)1,1914.914【解析】试题分析:根据等差数列的性质,由1919591919599()299229()3911422a a a a a Sb b b b b T ++⨯=====++⨯+.()(),0,,0αβ15.-116.2,27⎡⎫+∞⎪⎢⎣⎭【解析】试题分析:因为3nn a =,所以3(13)3(31)132n n n S --==-,所以13322n n S ++=,因为3,362n n N S k n *⎛⎫∈+≥- ⎪⎝⎭,所以136362433322n n n n n n k S +---≥==+,因为112(1)424104333n n n n n n +++----=,所以数列24{}3nn -前3项单调递减,从第3项起单调递减,所以当3n =时,数列24{}3n n -有最大值227,所以实数 k 的取值范围2,27⎡⎫+∞⎪⎢⎣⎭.三、解答题 17.(1)p 真q 假,则51,11a a a -≤≤⎧∴=⎨≥⎩.(2)若p 假q 真,则51,51a a a a <->⎧∴<-⎨<⎩或,综上,a 的取值范围是{}|51a a a <-=或.18.试题解析:(1)由已知得:2234133,3,33,312a q a q b d b d ===+=+,即23333312q d q d=+⎧⎨=+⎩,解得2031d d q q ==⎧⎧⎨⎨==⎩⎩或 ( 舍) ,所以2d =,所以3,21n n n a b n ==+. (2)由题意得,所以,当 n 为偶数时,得()1313331322n n n S n n +-=+=+--,当 n 为奇数时,得 ,所以1133,2237,22n n n n n S n n ++⎧+-⎪⎪=⎨⎪--⎪⎩为正偶数为正奇数 . 19.试题解析:(1)依题意得100300,,840,30100,y x v w v w ==≤≤≤≤525310,22x y ∴≤≤≤≤ ①由于乘汽车、摩托艇所需的时间和应在至 14个小时之间,即914x y ≤+≤ ② 因此,满足①②的点(),x y 的存在范围是图中阴影部分(包括边界)(2)()()100352813132p x y x y =+-+-=-- ,上式表示斜率为32-的直线, 当动直线13132p x y =--通过图中的阴影部分区域(包括边界),通过点A 时,p 值最小.由1410x y x +=⎧⎨=⎩得,即当时,最小.()()()11213nnn n n n c b a n =-+=-++ ()()()12312...3579..121333...3n n n n S c c c n -=+++=-+-+++-++++++()()1313371211322n n n S n n n +-=--++=---x y +9104x y =⎧⎨=⎩10,4x y ==p此时,的最小值为 93元.20.试题解析:(1)由条件知 ,即 ,解得 1cos 2B =或cos 3B =-(舍去)又, 3B π∴=. (2)由于. ① 又由正弦定理得, sin sin 33bc A ππ=⎛⎫+ ⎪⎝⎭,又π1sin sin 5732214⎫⎛+=+=∴= ⎪⎝⎭A A A b c , ② 由①②知,7,5b c ==,由余弦定理得,边上的中线21. (2)要使所用的新型材料总长度最短只需x y +最小,由(1)知,()23000x y xy =+-,由于,当且仅当x y =时,等号成立. 所以,所以,故当边长均为 100米时,所用材料长度最短为 200米.22.试题解析:(1)由题意可得 1111366,1,12S d S a d ⨯+===∴=, 25,30,v w p ==22cos 15cos 2B B -+=22cos 5cos 30B B +-=0B π<<11cos ,sin sin 35772A A S bc A bc =∴===∴=8,a BC ==AD ==22x y xy +⎛⎫≤ ⎪⎝⎭()()()()2222300044x y x y x y xy x y ++=+-≥+-=200x y +≤,AB AC所以()1111,222n n n n S n n S n +-+=+=∴=, 所以当2n ≥时,1n n n a S S n -=-=, 当1n =时也成立,所以n a n =.。

推荐一中2017-2018学年高二数学上学期期中模拟试题(含解析)

推荐一中2017-2018学年高二数学上学期期中模拟试题(含解析)

河南省郑州市一中2017-2018学年高二数学上学期期中模拟试题(含解析)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若,则下列不等式成立的是()A. B. C. D.【答案】C【解析】试题分析:考点:不等式性质2. 若命题,使,则该命题的否定为()A. ,使B.C. ,使D.【答案】D【解析】试题分析:特称命题的否定为:存在改为任意,结论变否定;所以命题,使的否定为:,故答案为D.考点:1、特称命题;2、命题的否定.3. 在等比数列中,是方程的两根,则等于()A. B. C. D. 以上都不对【答案】A【解析】试题分析:由题意得考点:1.二次方程根与系数的关系;2.等比数列4. 已知,则函数的最小值为()A. B. C. D.【答案】C【解析】试题分析:由于,则,所以,当且仅当,由于,即当时,上式取等号,因此函数的最小值为,故选C.考点:基本不等式5. 在中,,则的面积等于()A. B. C. 或 D. 或【答案】D【解析】试题分析:由余弦定理知,整理得,解得或,有三角形面积公式得或.考点:余弦定理及三角形面积的求法.6. 已知变量满足约束条件则的最大值为()A. B. C. D.【答案】B【解析】画出二元一次不等式所示的可行域,目标函数为截距型,,可知截距越大值越大,根据图象得出最优解为,则的最大值为2,选B.【点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式转化为(或),“”取下方,“”取上方,并明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.7. 设等比数列,是数列的前项和,,且依次成等差数列,则等于()A. B. C. D.【答案】C【解析】设等比数列的首项为,公比为,…….①,又依次成等差数列,则,即……②,①②两式相加得:,代入①得:,两式相比:,解得:或,则或,当时,,当时,,选C .8. 设,则的最小值为()A. B. C. D.【答案】A【解析】且,则,,选A.9. 已知等差数列前项和为,若,则在数列中绝对值最小的项为()A. 第项B. 第项C. 第项D. 第项【答案】C10. 已知不等式对一切正整数恒成立,则实数的范围为()A. B. C. D.【答案】B【解析】, 不等式对一切正整数恒成立,化为,只需,化为,选B.【点睛】裂项相消法是数列求和最常用的一种方法,本题为不等式恒成立问题,要注意到不等式要求对一切正整数n恒成立,首先把不等式化简后得出,何时恒成立,只需小于左边式子的最小值,其最小值为,其次得出的不等式如何解?可先换元,后利用图象法.11. 在中,是的中点,,则等于()A. B. C. D.【答案】B【解析】设,则选B.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.12. 已知等差数列的公差,且成等比数列,若是数列的前项和,则的最小值为()A. B. C. D.【答案】A【解析】,成等比数列,,得或(舍去),,,,时原式取得最小值为,故选A.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 在中,,则__________.【答案】【解析】 ,.14. 当实数满足约束条件(其中为小于零的常数)时,的最小值为,则实数的值是__________.【答案】【解析】略15. 已知数列为等比数列,其前项和为,且公比;数列为等差数列,,则__________.(填写“”“”或者“”)【答案】<【解析】比较与的大小,可以用比较法:,数列为等差数列,则,因为,即,因此只需研究的正负.由于数列为等比数列,其前项和为,且公比;则=,所以.。

2018年河南省郑州一中高二上学期数学期中试卷和解析(文科)

2018年河南省郑州一中高二上学期数学期中试卷和解析(文科)

2017-2018学年河南省郑州一中高二(上)期中数学试卷(文科)一、单选题1.(3分)已知数列,则是这个数列的第()项.A.20 B.21 C.22 D.232.(3分)已知{a n}为等比数列,q为公比,则“q>1”是“{a n}为递增数列”的()A.既不充分也不必要条件B.必要不充分条件C.充要条件D.充分不必要条件3.(3分)已知数列{a n}的前n项和为S n,若a n=,S n=10,则n=()A.90 B.121 C.119 D.1204.(3分)在等差数列{a n}中,已知5是a3和a6的等差中项,则a1+a8=()A.9 B.10 C.12 D.145.(3分)下列说法正确的是()A.在△ABC中,三边分别为a,b,c,若c2>a2+b2,则该三角形为钝角三角形B.x>1是1<x<2的充分不必要条件C.若b2=ac,则a,b,c成等比数列D.若p∨q为真命题,则p∧q为真命题6.(3分)设等差数列{a n}的前n项和为S n,且满足S17>0,S18<0,则S n取最大值时n的值为()A.7 B.8 C.9 D.107.(3分)若△ABC的角A,B,C所对应的边分别为a,b,c,且a=2,,S△ABC=4,则b=()A.B.C. D.8.(3分)已知数列{a n}是递减数列,且对任意的正整数n,恒成立,则实数λ的取值范围为()A.(﹣3,+∞)B.(﹣∞,1]C.(﹣∞,1)D.9.(3分)在锐角△ABC中,A,B,C所对应的边分别为a,b,c,若b=3,c=4,则a的取值范围是()A.(1,7) B.(1,5) C.D.10.(3分)若实数x,y满足,则|x+2y+1|的取值范围是()A.[0,4]B.[1,3]C.[2,6]D.[0,3]11.(3分)已知等比数列{a n}的前n项和为S n,且,若log2a1+log2a2+…+log2a n=10,则n=()A.2 B.3 C.4 D.512.(3分)已知x>0,y>0,且,若x+y>m2+8m恒成立,则实数m的取值范围是()A.(﹣8,0)B.(﹣9,1)C.D.(﹣8,1)二、填空题13.(3分)若1,a,b,c,9成等差数列,则c﹣a=.14.(3分)若关于x的不等式x2﹣ax+b<0的解集{x|1<x<2},则实数a+b=.15.(3分)已知S n为数列{a n}的前n项和,a1=1,2S n=(n+1)a n,若存在唯一的正整数n使得不等式a n2﹣ta n﹣2≤0成立,则实数t的取值范围为.三、解答题16.设命题p:实数x满足(x+a)(x﹣3a)<0,其中a>0,命题q:实数x满足x2﹣5x+4≤0.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.17.已知等差数列{a n}中,a1+a4=10,a5=10.(1)求数列{a n}的通项公式;(2)已知,求数列{b n}的前n项和S n.18.(2分)在△ABC中,角A,B,C的对边长分别是a,b,c,且满足(2b﹣c)cosA﹣acosC=0.(1)求角A的大小;(2)若,△ABC的面积,试判断△ABC的形状,并说明理由.19.某厂准备生产甲、乙两种适销产品,每件销售收入分别为3千元,2千元.甲、乙产品都需要在A,B两种设备上加工,在每台A,B上加工一件甲产品所需工时分别为1小时、2小时,加工一件乙产品所需工时分别为2小时、1小时,A、B两种设备每月有效使用台时数分别为400小时和500小时.如何安排生产可使月收入最大?20.已知数列{a n}满足,n∈N*,数列{b n}的前n 项和S n,满足,n∈N*.(1)求数列{a n}、{b n}的通项公式;(2)求数列{a n•b n}的前n项和T n.21.在锐角△ABC中,角A,B,C所对应的边分别为a,b,c,,.(1)若,求△ABC的面积;(2)求2b+c的取值范围.2017-2018学年河南省郑州一中高二(上)期中数学试卷(文科)参考答案与试题解析一、单选题1.(3分)已知数列,则是这个数列的第()项.A.20 B.21 C.22 D.23【解答】解:数列,则该数列的通项公式为a n=,若=3=,即2n﹣1=45,解可得n=23,则是这个数列的第23项;故选:D.2.(3分)已知{a n}为等比数列,q为公比,则“q>1”是“{a n}为递增数列”的()A.既不充分也不必要条件B.必要不充分条件C.充要条件D.充分不必要条件【解答】解:{a n}为递增数列⇔a n>a n⇔a1>0,q>1;a1<0,0<q<1.+1∴“q>1”是“{a n}为递增数列”的既不充分也不必要条件.故选:A.3.(3分)已知数列{a n}的前n项和为S n,若a n=,S n=10,则n=()A.90 B.121 C.119 D.120【解答】解:∵a n==﹣,∴S n=(﹣1)+(﹣)+…+(﹣)=﹣1=10,故n+1=121,故n=120;故选:D.4.(3分)在等差数列{a n}中,已知5是a3和a6的等差中项,则a1+a8=()A.9 B.10 C.12 D.14【解答】解:∵5是a 3和a6的等差中项,∴a3+a6=2×5=10.由等差数列的性质可得:a1+a8=a3+a6=10.故选:B.5.(3分)下列说法正确的是()A.在△ABC中,三边分别为a,b,c,若c2>a2+b2,则该三角形为钝角三角形B.x>1是1<x<2的充分不必要条件C.若b2=ac,则a,b,c成等比数列D.若p∨q为真命题,则p∧q为真命题【解答】解:对于A,在△ABC中,三边分别为a,b,c,c2=a2+b2﹣2abcosC,如果C是钝角,则c2>a2+b2,所以该三角形为钝角三角形,正确;对于B,x>1不一定有1<x<2,反之成立,所以是必要不充分条件,B不正确;对于C,若b2=ac,当b=a=0时,满足条件,但是a,b,c不是等比数列,所以C 不正确;对于D,若p∨q为真命题,说明至少一个是真命题,只有两个都是真命题是p ∧q为真命题,所以D不正确;故选:A.6.(3分)设等差数列{a n}的前n项和为S n,且满足S17>0,S18<0,则S n取最大值时n的值为()A.7 B.8 C.9 D.10【解答】解:∵等差数列{a n}中,S17>0,且S18<0即S17=17a9>0,S18=9(a10+a9)<0∴a10+a9<0,a9>0,∴a10<0,∴等差数列{a n}为递减数列,故可知a1,a2,…,a9为正,a10,a11…为负;∴S n取最大值时n的值为9.故选:C.7.(3分)若△ABC的角A,B,C所对应的边分别为a,b,c,且a=2,,S△ABC=4,则b=()A.B.C. D.=4=acsinB==c=4,解得:【解答】解:∵a=2,,S△ABCc=4,∴由余弦定理可得:b===2.故选:B.8.(3分)已知数列{a n}是递减数列,且对任意的正整数n,恒成立,则实数λ的取值范围为()A.(﹣3,+∞)B.(﹣∞,1]C.(﹣∞,1)D.【解答】解:数列{a n}是递减数列,且对任意的正整数n,恒成立,<a n,即为﹣(n+1)2+2λ(n+1)<﹣n2+2λn,可得a n+1化为2λ﹣1<2n对任意的正整数n成立,可得2λ﹣1<2,解得λ<,故选:D.9.(3分)在锐角△ABC中,A,B,C所对应的边分别为a,b,c,若b=3,c=4,则a的取值范围是()A.(1,7) B.(1,5) C.D.【解答】解:锐角△ABC中,A,B,C所对应的边分别为a,b,c,若b=3,c=4,则:cosA=,即:32+42>a2,解得:a<5,同理:,即:a2+b2﹣c2>0,解得:,故:a的范围是:<a<5,故选:C.10.(3分)若实数x,y满足,则|x+2y+1|的取值范围是()A.[0,4]B.[1,3]C.[2,6]D.[0,3]【解答】解:作出不等式组表示的可行域如图.令z=x+2y+1,则y=﹣x+z﹣,则z﹣表示直线z=x+2y在y轴上的截距,截距越大,z越大由题意可得A(﹣1,2),此时C(1,﹣2)又可行域过点B时,z最大,z max=﹣1+2×2+1=4过点D时z最小,z min=1+2×(﹣2)+1=﹣2,∴x+2y+1∈[﹣2,4],则|x+2y+1|的取值范围是[0,4].故选:A.11.(3分)已知等比数列{a n}的前n项和为S n,且,若log2a1+log2a2+…+log2a n=10,则n=()A.2 B.3 C.4 D.5【解答】解:等比数列{a n}的前n项和为S n,且,可得a n=2n﹣c﹣2n﹣1+c=2n﹣1,log2a1+log2a2+…+log2a n=10,可得a1a2…a n=210,即21+2+3+…+(n﹣1)=10,可得n=5,故选:D.12.(3分)已知x>0,y>0,且,若x+y>m2+8m恒成立,则实数m的取值范围是()A.(﹣8,0)B.(﹣9,1)C.D.(﹣8,1)【解答】解:∵x>0,y>0,且,∴(x+y)()=5++≥5+2=9,当且仅当x=3,y=6时取等号,∵x+y>m2+8m恒成立,∴m2+8m<9,解得﹣9<m<1,故选:B.二、填空题13.(3分)若1,a,b,c,9成等差数列,则c﹣a=4.【解答】解:根据题意,若1,a,b,c,9成等差数列,设其公差为d,则9﹣1=4d,则d=2,则c﹣a=2d=4,故答案为:4.14.(3分)若关于x的不等式x2﹣ax+b<0的解集{x|1<x<2},则实数a+b=5.【解答】解:不等式x2﹣ax+b<0的解集{x|1<x<2},即x2﹣ax+b=0的解为x1=1,x2=2,由韦达定理可得:x1+x2=a,即a=3x1•x2=b,即b=2.那么:a+b=5.故答案为515.(3分)已知S n为数列{a n}的前n项和,a1=1,2S n=(n+1)a n,若存在唯一的正整数n使得不等式a n2﹣ta n﹣2≤0成立,则实数t的取值范围为[﹣1,1).【解答】解:∵a1=1,2S n=(n+1)a n,∴n≥2时,2a n=2(S n﹣S n﹣1)=(n+1)a n﹣na n﹣1,化为:=,∴=,=…===1,∴a n=n.不等式a n2﹣ta n﹣2≤0化为:存在唯一的正整数n使得不等式:n2﹣tn﹣2≤0,设f(n)=n2﹣tn﹣2,由于f(0)=﹣2t2,∴,解得:﹣1≤t<1,∴实数t的取值范围为[﹣1,1),故答案为:[﹣1,1).三、解答题16.设命题p:实数x满足(x+a)(x﹣3a)<0,其中a>0,命题q:实数x满足x2﹣5x+4≤0.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.【解答】解:(1)当p为真命题时,由(x+a)(x﹣3a)<0,(a>0),得﹣a<x<3a,当a=1得﹣1<x<3,当q为真命题时,由x2﹣5x+4≤0,得1≤x≤4,∵p∧q为真,∴p真q真,∴1≤x<3,所以实数x的取值范围为{x|1≤x<3}.(2)∵¬p是¬q的充分不必要条件,∴q是p的充分不必要条件,∴{x|1≤x≤4}⊊{x|﹣a<x<3a},∴,∴,所以实数a的取值范围为.17.已知等差数列{a n}中,a1+a4=10,a5=10.(1)求数列{a n}的通项公式;(2)已知,求数列{b n}的前n项和S n.【解答】解:(1)等差数列{a n}中,设首项为a1,公差为d,由于:a1+a4=10,a5=10.则:,解得:,所以:a n=2+2(n﹣1)=2n,(2)由于:a n=2n,所以:=,则:,=1﹣,=.18.(2分)在△ABC中,角A,B,C的对边长分别是a,b,c,且满足(2b﹣c)cosA﹣acosC=0.(1)求角A的大小;(2)若,△ABC的面积,试判断△ABC的形状,并说明理由.【解答】(本小题满分12分)解:(1)∵由(2b﹣c)cosA﹣acosC=0,得:2sinBcosA=sinAcosC+sinCcosA,∴得:2sinBcosA=sin(A+C),即:2sinBcosA=sinB,…(4分)∵0<B<π,∴sinB≠0,∴cosA=,因为0<A<π,∴解得:A=.…(6分)(2)△ABC的形状为等边三角形,理由如下:=,∵A=,a=,△ABC的面积S△ABC∴利用三角形面积公式可得:=×bc×,可得:bc=3①∴由余弦定理可得:3=b2+c2﹣bc=(b+c)2﹣3bc=(b+c)2﹣9,可得:b+c=2,②∴利用①②联立,可解得:c=b=a=.∴三角形为等边三角形.…(12分)19.某厂准备生产甲、乙两种适销产品,每件销售收入分别为3千元,2千元.甲、乙产品都需要在A,B两种设备上加工,在每台A,B上加工一件甲产品所需工时分别为1小时、2小时,加工一件乙产品所需工时分别为2小时、1小时,A、B两种设备每月有效使用台时数分别为400小时和500小时.如何安排生产可使月收入最大?【解答】解:设甲、乙两种产品月的产量分别为x,y件,约束条件是目标函数是z=0.3x+0.2y由约束条件画出可行域,如图所示的阴影部分由z=0.3x+0.2y可得5z为直线z=0.3x+0.2y在y轴上的截距,截距最大时z最大.结合图象可知,z=0.3x+0.2y在A处取得最大值由可得A(200,100),此时z=80万故安排生产甲、乙两种产品月的产量分别为200,100件可使月收入最大.20.已知数列{a n}满足,n∈N*,数列{b n}的前n 项和S n,满足,n∈N*.(1)求数列{a n}、{b n}的通项公式;(2)求数列{a n•b n}的前n项和T n.【解答】解:(1)数列{a n}满足①,n∈N*,可得a1=;n≥2时,a1+2a2+…+2n﹣2a n﹣1=②①﹣②可得2n﹣1a n=,解得a n=()n,上式对n=1也成立,则a n=()n,n∈N*;数列{b n}的前n项和S n,满足,n∈N*.可得b1=2;n≥2时,b n=S n﹣S n﹣1=n2+n﹣(n﹣1)2﹣(n﹣1)=2n,则b n=2n,n∈N*.(2)a n•b n=n•()n﹣1,前n项和T n=1•()0+2•()1+3•()2+…+n•()n﹣1,T n=1•()0+2•()1+3•()2+…+n•()n﹣1,两式相减可得T n=()0+()1+()2+…+()n﹣1﹣n•()n﹣1=﹣n•()n﹣1,化简可得T n=4﹣(2n+4)•()n.21.在锐角△ABC中,角A,B,C所对应的边分别为a,b,c,,.(1)若,求△ABC的面积;(2)求2b+c的取值范围.【解答】解:(1)锐角△ABC中,,,∴﹣cos(A+B)+cosAcosB﹣sinBcosA=0,即﹣cosAcosB+sinAsinB+cosAcosB﹣sinBcosA=0,即sinB(sinA﹣cosA)=0,∴sinA﹣cosA=0,tanA=,∴A=.再根据,利用正弦定理可得=,即=,求得sinB=,∴B=,∴C=π﹣A﹣B=,∴sinC=sin=sin(+)=sin cos +cos sin =,∴△ABC 的面积为•ab•sinC==3+.(2)锐角△ABC 中,由(1)可得A=,∴B +C=,∵===4,∴2b +c=8sinB +4sinC=8sinB +4sin (﹣B )=8sinB +4sincosB ﹣4cos sinB=10sinB +2cosB=4(sinB +cosB )=4sin (B +α),其中,cosα==,sinα=,∴锐角α∈(0,).∵<B <,∴B +α∈( ,),∴sin (B +α)∈(,1],即2b +c=4sin(B +α)∈(2,4].赠送初中数学几何模型【模型三】 双垂型:图形特征:60°运用举例:1.在Rt △ABC 中,∠ACB =90°,以斜边AB 为底边向外作等腰三角形PAB ,连接PC .(1)如图,当∠APB =90°时,若AC =5,PC =,求BC 的长;(2) 当∠APB =90°时,若AB =APBC 的面积是36,求△ACB 的周长.2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。

河南省2017—2018学年高二数学上学期期中考试卷(六)

河南省2017—2018学年高二数学上学期期中考试卷(六)

河南省2017—2018学年高二数学上学期期中考试卷(六)(考试时间120分钟满分150分)一、单项选择题:本大题共12小题,每小题5分,共60分.1.已知集合M={x|﹣4≤x≤7},N={x|x2﹣x﹣12>0},则M∩N为()A.{x|﹣4≤x<﹣3或4<x≤7} B.{x|﹣4<x≤﹣3或4≤x<7}C.{x|x≤﹣3或x>4} D.{x|x<﹣3或x≥4}2.已知等比数列{a n}的公比为正数,且a3•a9=2a52,a2=1,则a1=()A.B.C.D.23.设等差数列{a n}的前n项和为S n,若S3=9,S6=36,则a7+a8+a9=()A.63 B.45 C.36 D.274.有下列四个命题:①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤1,则x2+2x+q=0有实根”的逆否命题;④“不等边三角形的三个内角相等”逆命题;其中真命题为()A.①② B.①③ C.②③ D.③④5.在△ABC中,“A>30°”是“sinA>”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也必要条件6.设命题P:∃n∈N,n2>2n,则¬P为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2n C.∀n∈N,n2≤2n D.∃n∈N,n2=2n7.在△ABC中,a=2,b=2,B=,则A等于()A.B.C.或 D.或8.若x、y满足条件,则z=﹣2x+y的最大值为()A.1 B.﹣C.2 D.﹣59.已知椭圆+=1(m>0 )的左焦点为F1(﹣4,0),则m=()A.2 B.3 C.4 D.910.已知双曲线C:﹣=1的离心率e=,且其右焦点为F2(5,0),则双曲线C的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=111.已知点F1、F2分别是椭圆的左、右焦点,过F1且垂直于x轴的直线与椭圆交于A、B两点,若△ABF2为正三角形,则该椭圆的离心率e是()A.B.C.D.12.若x,y∈R+,且2x+8y﹣xy=0,则x+y的最小值为()A.12 B.14 C.16 D.18二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上。

数学---河南省郑州市2017届高三上学期期中考试(文)

数学---河南省郑州市2017届高三上学期期中考试(文)

河南省郑州市2017届高三上学期期中考试(文)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题,其它题为必考题。

考生作答时,将答案答在答题卡上,在本试卷上答题无效。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。

2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。

3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。

4.保持卡面清洁,不折叠,不破损。

5.做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑。

第I 卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}1,21xM x x N x =<=>,则M N =( )A. ∅B. {}01x x <<C. {}0x x <D. {}1x x < 2.复数2i1iZ =+的虚部是 ( ) A .iB .-iC .1D .-13.在等比数列{}n a 中,若119a =,43a =,则该数列前五项的积为( )A .±3B .3C .±1D .14.某三棱锥的侧视图和俯视图如图所示,则该三棱锥的体积为 ( ) A .43B .83C .123D .2435.若直线1:60l x ay ++=与2:(2)320l a x y a -++=平行,则1l 与2l 间的距离为( )A B .3 C D6.在ABC ∆中,1tan ,cos 210A B ==,则tan C =( )A .-1B .1C D .-27.若对任意非零实数,a b ,若a b *的运算规则如右图的程序框图所示,则(32)4**的值 是( ) A .1213 B .21 C .23D .98.将函数sin(6)4y x =+π的图象上各点的横坐标伸长到原来的3倍(纵坐标不变),再向 右平移8π个单位,所得函数图像的一个对称中心是( ) A .,016⎛⎫⎪⎝⎭π B .,09⎛⎫ ⎪⎝⎭π C .,04⎛⎫ ⎪⎝⎭π D .,02⎛⎫ ⎪⎝⎭π9.双曲线22221(0,0)x y a b a b-=>>的渐近线与抛物线21y x =+相切,则该双曲线的离心率为( )A B .2C D 10.在区间[0,2]上任取两个实数a ,b ,则函数141)(22+-+=b ax x x f 没有零点的概率是( ) A .π8 B . 4π4- C . 4π8- D .π411.已知定义在R 上的奇函数()f x 满足()()2f x f x +=-,若()12f ->-,()1732a f a+-=-,则实数a 的取值范围为( ) A .3,12⎛⎫-- ⎪⎝⎭B .()2,1-C .31,2⎛⎫ ⎪⎝⎭D .()3,1,2⎛⎫-∞+∞⎪⎝⎭12.已知函数)(x f 定义在R 上的奇函数,当0<x 时,)1()(+=x e x f x ,给出下列命题:①当0>x 时,)1()(x e x f x -= ②函数)(x f 有2个零点③0)(>x f 的解集为),1()0,1(+∞⋃- ④12,R x x ∀∈,都有2|)()(|21<-x f x f 其中正确命题个数是( )A .1B .2C .3D .4第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分. 13.已知a >0,b >0,且a +b =1,求ba 11+的最小值____________. 14.已知|a |=2,|b |=2,a 与b 的夹角为45°,且λb -a 与a 垂直,则实数λ=________.15.在ABC ∆中,角C B A ,,的对边分别为c b a ,,_______________16.已知三棱柱111C B A ABC -的侧棱垂直于底面,各顶点都在同一球面上,若该棱柱的体 ,2AB =,60,1=∠=BAC AC ,则此球的表面积等于_______________. 三、解答题:解答应写出文字说明.证明过程或演算步骤 17.(本小题满分12分)等差数列{}n a 中,28a =,前6项的和666S =。

河南省郑州市一中高二数学上学期期中模拟试题(含解析)

河南省郑州市一中高二数学上学期期中模拟试题(含解析)

河南省郑州市一中2017-2018学年高二数学上学期期中模拟试题(含解析)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若,则下列不等式成立的是()A. B. C. D.【答案】C【解析】试题分析:考点:不等式性质2. 若命题,使,则该命题的否定为()A. ,使B.C. ,使D.【答案】D【解析】试题分析:特称命题的否定为:存在改为任意,结论变否定;所以命题,使的否定为:,故答案为D.考点:1、特称命题;2、命题的否定.3. 在等比数列中,是方程的两根,则等于()A. B. C. D. 以上都不对【答案】A【解析】试题分析:由题意得考点:1.二次方程根与系数的关系;2.等比数列4. 已知,则函数的最小值为()A. B. C. D.【答案】C【解析】试题分析:由于,则,所以,当且仅当,由于,即当时,上式取等号,因此函数的最小值为,故选C.考点:基本不等式5. 在中,,则的面积等于()A. B. C. 或 D. 或【答案】D【解析】试题分析:由余弦定理知,整理得,解得或,有三角形面积公式得或.考点:余弦定理及三角形面积的求法.6. 已知变量满足约束条件则的最大值为()A. B. C. D.【答案】B【解析】画出二元一次不等式所示的可行域,目标函数为截距型,,可知截距越大值越大,根据图象得出最优解为,则的最大值为2,选B.【点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式转化为(或),“”取下方,“”取上方,并明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.7. 设等比数列,是数列的前项和,,且依次成等差数列,则等于()A. B. C. D.【答案】C【解析】设等比数列的首项为,公比为,…….①,又依次成等差数列,则,即……②,①②两式相加得:,代入①得:,两式相比:,解得:或,则或,当时,,当时,,选C .8. 设,则的最小值为()A. B. C. D.【答案】A【解析】且,则,,选A.9. 已知等差数列前项和为,若,则在数列中绝对值最小的项为()A. 第项B. 第项C. 第项D. 第项【答案】C10. 已知不等式对一切正整数恒成立,则实数的范围为()A. B. C. D.【答案】B【解析】, 不等式对一切正整数恒成立,化为,只需,化为,选B.【点睛】裂项相消法是数列求和最常用的一种方法,本题为不等式恒成立问题,要注意到不等式要求对一切正整数n恒成立,首先把不等式化简后得出,何时恒成立,只需小于左边式子的最小值,其最小值为,其次得出的不等式如何解?可先换元,后利用图象法.11. 在中,是的中点,,则等于()A. B. C. D.【答案】B【解析】设,则选B.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.12. 已知等差数列的公差,且成等比数列,若是数列的前项和,则的最小值为()A. B. C. D.【答案】A【解析】,成等比数列,,得或(舍去),,,,时原式取得最小值为,故选A.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 在中,,则__________.【答案】【解析】 ,.14. 当实数满足约束条件(其中为小于零的常数)时,的最小值为,则实数的值是__________.【答案】【解析】略15. 已知数列为等比数列,其前项和为,且公比;数列为等差数列,,则__________.(填写“”“”或者“”)【答案】<【解析】比较与的大小,可以用比较法:,数列为等差数列,则,因为,即,因此只需研究的正负.由于数列为等比数列,其前项和为,且公比;则=,所以.【点睛】研究不等式的主要方法有比较法、分析法、综合法等,比较两个数的大小常用比较法,比较法又包括差值比较法与商值比较法,差值比较法主要研究差值的正负以说明两个数的大小,本题利用已知条件中等差数列和等比数列的通项公式外,还灵活的运用了等差数列的性质,借助等量代换巧妙的作差解决问题.16. 对于,当非零实数满足且使最大时,的最小值为__________.【答案】【解析】试题分析:设,则,代入到中,得,即……①因为关于的二次方程①有实根,所以,可得,取最大值时,或,当时,,当时,,综上可知当时,的最小值为.考点:1、一元二次方程根的判别式;2、二次函数求值域.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 给定两个命题:对任意实数都有恒成立;.如果为真命题,为假命题,求实数的取值范围.【答案】或【解析】试题分析:根据已知求出两个简单命题中参数的取值范围,命题,命题;再根据复合命题的真假,判断简单命题的真假,分两种情况进行讨论,(1)当真假时;(2)当假真时,从而得到实数的取值范围.试题解析:解:命题:ax2+ax+1>0恒成立当a=0时,不等式恒成立,满足题意)当a≠0时,,解得0<a<4∴0≤a<4命题:a2+8a﹣20<0解得﹣10<a<2∵为真命题,为假命题∴有且只有一个为真,当真假时得当假真时得所以﹣10<a<0或2≤a<4考点:复合命题的真假判断.18. 已知在中,内角的对边分别为.且.(1)求的值;(2)若,求的面积.【答案】(1)(2)【解析】试题分析:(1)已知条件是边角关系,且左边是角的余弦,要求的是,因此可用正弦定理“化边为角”,即,只要交叉相乘,再由两角和与差的正弦公式可得,而在三角形中此式即为,结论有了;(2)由(1)可得,结合余弦定理可求得,由面积公式可得.试题解析:(1)由正弦定理得整理得又∴,即(2)由余弦定理可知①由(1)可知,即②再由③,由①②③联立求得又∴考点:正弦定理,余弦定理,两角和与差的正弦公式,三角形的面积.19. 已知正项数列的前项和为是与的等比中项.(1)求证:数列是等差数列;(2)若,数列的前项和为,求.【答案】(1)见解析(2)【解析】试题分析:已知数列的递推关系中含有前n项和与第n项的关系,求数列的通项公式,一般分两步,第一步n=1时,第二步,常用前n项和减去前n-1项和(两式相减)去处理,化为与的关系后,再求通项公式;错位相减法是数列求和的常用方法,使用错位相减法求和时,要注意末项的符号及等比数列求和的项数,避免失误.试题解析:(1)证明:由是与的等比中项,得.当时,.当时,,,即.,即.数列是等差数列.(2)数列首项,公差,通项公式为.则,则.①两边同时乘以,得②①-②,得.解得.【点睛】数列的递推关系中为与的关系,求数列的通项公式,一般分两步,第一步n=1时,得出所表达的含义;第二步当时,常用两式相减去处理,化为与的关系后,再求通项公式;数列求和常用方法有错位相减法、倒序相加法、裂项相消法、分组求和法等;要根据数列的特征采用相应的方法准确求和,特别是使用错位相减法要注意运算的准确性.20. 已知函数,其中是自然对数的底数.(1)证明:是上的偶函数.(2)若关于的不等式在上恒成立,求实数的取值范围. 【答案】(1)见解析(2)【解析】试题分析:(1)根据函数奇偶性的定义即可证明是R上的偶函数;(2)利用参数分离法,将不等式m≤e-x+m-1在(0,+∞)上恒成立,进行转化对任意恒成立,求最值问题即可求实数m的取值范围.试题解析:(1),,∴是上的偶函数(2)由题意,,即∵,∴,即对恒成立令,则对任意恒成立∵,当且仅当时等号成立∴21. 如图,一辆汽车从市出发沿海岸一条笔直公路以每小时的速度向东均速行驶,汽车开动时,在市南偏东方向距市且与海岸距离为的海上处有一快艇与汽车同时出发,要把一份稿件交给这汽车的司机.(1)快艇至少以多大的速度行驶才能把稿件送到司机手中?(2)在(1)的条件下,求快艇以最小速度行驶时的行驶方向与所成的角.【答案】(1)快艇至少以的速度行驶才能把稿件送到司机手中. (2)快艇应向垂直于的方向向北偏东方向行驶.【解析】试题分析:解决三角函数应用问题,首先要审题读懂题意,设出快艇的速度和需要的时间,根据题意利用余弦定理列出关系式,建立函数模型,利用数学知识解决实际问题,本题采用配方法求最值,求出快艇行驶的最小速度后,利用余弦定理求角,得出快艇行驶的方向,给出行驶的方向角.试题解析:(1)如图,设快艇以的速度从处出发,沿方向,后与汽车在处相遇,在中,为边上的高,.设,则.由余弦定理,得,所以.整理,得当,即时,,即快艇至少以的速度行驶才能把稿件送到司机手中.(2)当时,在中,,由余弦定理,得,所以,故快艇应向垂直于的方向向北偏东方向行驶...................22. 在等比数列中,,且的等比中项为.(1)求数列的通项公式;(2)设,数列的前项和为,是否存在正整数,使得对任意恒成立?若存在,求出正整数的最小值;若不存在,请说明理由.【答案】(1)(2)存在满足条件的正整数,正整数的最小值为.【解析】试题分析:根据等比数列的性质,第1项与第5项的等比中项是第3项,利用公差和第三项的值求出首项,从而写出数列的通项公式;根据题意计算,可知为等差数列,利用等差数列前n项和公式写出前n项和,从而得出,而数列求和可以使用裂项相消法,最后根据不等式恒成立条件得出正整数的最小值.试题解析:(1)由的等比中项为,可知,又,则,公比且,.(2),易知数列是首项为,公差为的等差数列,,,则存在满足条件的正整数,且正整数的最小值为.【点睛】根据等比数列的性质,利用已知条件列方程,求出等差数列的公差和首项,从而写出数列的通项公式;根据题意计算,根据通项公式可以判断为等差数列,利用等差数列前n项和公式写出前n项和,从而得出,而数列求和可以使用裂项相消法,最后根据不等式恒成立条件得出正整数的最小值.。

精选2017-2018学年高二数学上学期期中联考试题文(含解析)(1)

精选2017-2018学年高二数学上学期期中联考试题文(含解析)(1)

郑州一中网校2017-2018学年(上)期中联考高二文科数学试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 数列的一个通项公式是()A. B. C. D.【答案】A【解析】:仔细观察数列1,3,6,10,15…可以发现:1=1,3=1+2,6=1+2+3,10=1+2+3+4,…∴第项为1+2+3+4+…+n∴数列的一个通项公式是,故选A.2. 下列命题正确的是()A. 若,则B. 若,则C. 若,则D. 若,则【答案】B【解析】对于A,取,时,,故A不正确;对于B,因为,那么,所以,故B正确;对于C,取,则,故C不正确;对于D,取,,,,则,故D不正确.故选B3. 不等式的解集是为()A. B. C. D.【答案】B..................4. 已知各项均为正数的等比数列,则的值()A. B. C. D.【答案】D【解析】∵为各项均为正数的等比数列∴,即∴,故选D5. 在中,分别为的对角,且,则()A. B. C. D.【答案】D【解析】∵∴ 根据正弦定理得:∴,故选D6. 下列命题错误的是()A. 命题“若,则”与命题“若,则”互为逆否命题B. 命题“”的否定是“”C. 且,都有D. “若,则”的逆命题为真【答案】D【解析】对于A.“若p则q”与命题“若,则”互为逆否命题,正确;对于B.“∃x∈R,x2﹣x>0”的否定是“∀x∈R,x2﹣x≤0”,正确;对于C.∀x>0且x≠1,都有>2=2,正确;对于D.“若am2<bm2,则a<b”的逆命题为“若a<b,则am2<bm2”为假命题,m=0时不成立.故选:D.7. 设实数满足且实数满足,则是的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】试题分析:“若且则”是真命题,其逆命题是假命题,故是的充分不必要条件,故选A.考点:充分必要条件.8. 若等比数列的各项均为正数,且(为自然对数的底数),则()A. B. C. D.【答案】B【解析】∵ 等比数列的各项均为正数,且∴∴,故选B.9. 若正数满足,则的最小值是()A. B. C. D.【答案】C【解析】由已知可得,则,所以的最小值,应选答案D。

河南省郑州市第一中学2017-2018学年高二数学上学期期中试题 文(含解析)

河南省郑州市第一中学2017-2018学年高二数学上学期期中试题 文(含解析)

2017-2018学年上期中考19届高二文科数学试题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知数列,则是这个数列的第()项A. 20B. 21C. 22D. 23【答案】D【解析】由,得即,解得,故选D2. 已知为等差数列,为公比,则“”是“为递增数列”的()A. 既不充分也不必要条件B. 必要不充分条件C. 充要条件D. 充分不必要条件【答案】A【解析】当等比数列的首项而公比时,是递减数列,反过来,当为递增数列,也可以,公比,故为等差数列,为公比,则“”是“为递增数列”的既不充分也不必要条件选A3. 已知数列的前项和为,若,,则()A. 90B. 119C. 120D. 121【答案】C【解析】,故,故;故选C.4. 在等差数列中,已知5是和的等差中项,则()A. 9B. 10C. 12D. 14【答案】B【解析】由题意在等差数列中,已知5是和的等差中项,则,则由等差数列的性质可得故选B5. 下列说法正确的是()A. 在中,三边分别为,若,则该三角形为钝角三角形B. 是的充分不必要条件C. 若,则成等比数列D. 若为真命题,则为真命题【答案】A【解析】对于A.根据题意,由余弦定理可得∴是钝角三角形.反之也成立,故A正确;对于B. 对于,反之不成立,因此是的必要不充分条件,不正确;对于C.若,则不成等比数列,不正确;对于D. 若为真命题,则则不一定为真命题故选A.6. 已知等差数列的前项和为,,,则当取得最大值时,为()A. 7B. 8C. 9D. 10【答案】C【解析】∵等差数列中,,,,,∴数列的前9项和最大.故选C【点睛】本题考查等差数列的性质和前项和,本题解题的关键是根据等差数列的性质得到所给的数列的项的正负7. 若的角所对应的边分别为,且,,,则()A. B. C. D.【答案】B【解析】在中,,,可得,解得.由余弦定理可得:故选B.8. 已知数列是递减数列,且对任意的正整数,恒成立,则实数的取值范围为()A. B. C. D.【答案】D【解析】由已知数列是递减数列,恒成立又由恒成立即,又由故选D【点睛】本题考查等差数列的单调性,利用二次函数单调性讨论较繁,且易错,利用恒成立较方便.但要注意的隐含条件,这也是本题的易忽略点.9. 在锐角中,所对应的边分别为,若,则的取值范围是()A. B. C. D.【答案】C【解析】,因为是锐角三角形∴需满足,故选C10. 若实数满足,则的取值范围是()A. B. C. D.【答案】A【解析】作出不等式组表示的可行域如图.令,则,则表示直线在轴上的截距,截距越大,越大由题意可得,此时)又可行域过点时,最大,过点时最小,,,则故选A11. 已知等比数列的前项和为,且,若,则()A. 2B. 3C. 4D. 5【答案】D【解析】时,.时,对于上式也成立,..解得.故选D.12. 已知,且,若恒成立,则实数的取值范围是()A. B. C. D.【答案】B【解析】,且(当且仅当时取到等号)..恒成立,即,解得:.故选B.【点睛】本题考查基本不等式与函数恒成立问题,,考查学生分析转化与应用基本不等式的能力.其中将问题转化为求的最小值是解题的关键.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 若成等差数列,则__________.【答案】4【解析】成等差数列,,∴,即答案为4.14. 已知不等式的解集为,则__________.【答案】5【解析】由已知不等式的解集为,则对应方程的两个根分别为1和2,则即答案为515. 已知命题“若存在,使得”为真命题,得不等式成立,则实数的取值范围为__________.【答案】【解析】当时,...............解得或故答案为:-或三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)16. 设命题:实数满足,其中,命题:实数满足. (1)若,且为真,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围.【答案】(1);(2)【解析】试题分析:(1)若,分别求出成立的等价条件,利用且为真,求实数的取值范围;(2)利用是的充分不必要条件,即是的充分不必要条件,求实数的取值范围.试题解析:(1)当为真命题时,由,,得,当得,当为真命题时,由,得,∵为真,∴真真,∴,所以实数的取值范围为.(2)∵是的充分不必要条件,∴是的充分不必要条件,∴,∴,∴,所以实数的取值范围为. 【点睛】本题主要考查复合命题与简单命题之间的关系,利用逆否命题的等价性将是的充分不必要条件,转化为是的充分不必要条件是解决本题的关键,17. 已知等差数列中,,.(1)求数列的通项公式;(2)已知,求数列的前项和.【答案】(1);(2)【解析】试题分析:(1)设等差数列的公差为由已知条件得到,由此能求出.(2)由此利用裂项求和法能求出数列{b n}的前n项和.试题解析:(1)设等差数列的公差为,∵,,∴,∴,∴(2)由上问可得:∴18. 在中,内角所对应的边分别为,且满足.(1)求角的大小;(2)若,,试判断的形状.【答案】(1);(2)等边三角形【解析】试题分析:(1)将条件中的式子利用正弦定理将其转换为关于角的式子,再进行三角恒等变形,从而可得,即可得;(2)由条件可知,再根据余弦定理的变式,从而可知是等边三角形.试题解析:(1)∵,∴,∴,∴,∴,∴;(2)∵,∴,∴,∵,∴,∴,又∵,∴是等边三角形.考点:1.正余弦定理解三角形;2.三角恒等变形.19. 某厂拟生产甲、乙两种适销产品,每件销售收入分别为3万元、2万元,甲、乙产品都需要在两种设备上加工,在每台上加工1件甲所需工时分别是1、2,加工1件乙所需工时分别为2、1,两种设备每月有效使用台时数分别为400和500,如何安排生产可使收入最大?【答案】800万【解析】试题分析:先设甲、乙两种产品月产量分别为件,写出约束条件、目标函数,欲求生产收入最大值,即求可行域中的最优解,将目标函数看成是一条直线,分析目标函数与直线截距的关系,进而求出最优解.试题解析:设每月安排生产甲产品件,乙产品件,由题意知,,目标函数,可行域如图所示:,可得点坐标为,由目标函数得:,当直线截距最大时,最大,所以当直线过点时,即当时,取到最大值为800万20. 已知数列满足,,数列的前项和,满足,.(1)求数列、的通项公式;(2)求数列的前项和.【答案】(1),;(2)(2)由(1)可知:,利用错位相减法可求数列的前项和.试题解析:(1)∵,∴,,且∴,当时,符合上式,所以,∵,∴,所以当时,;当时,,所以,.(2)由上问可知:,所以,所以21. 在锐角中,角所对应的边分别为,,. (1)若,求的面积;(2)求的取值范围.【答案】(1);(2)【解析】试题分析:(1)由已知可得,化简可得又由余弦定理可得=,可得,由此可求的面积;(2)由正弦定理可得:,由此可得,又因为为锐角三角形,则,从而得到,由此可得的取值范围.试题解析:(1)∵,∴,∵,∴,∴∵,,∴,∴(2)由正弦定理可得:其中,,,为锐角,因为为锐角三角形,则从而,得,,所以所以,从而的取值范围为。

河南省郑州市第一中学网校2017_2018学年高二数学上学期期中联考试题文(含解析)

河南省郑州市第一中学网校2017_2018学年高二数学上学期期中联考试题文(含解析)

郑州一中网校2017-2018学年(上)期中联考高二文科数学试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 数列的一个通项公式是()A. B. C. D.【答案】A【解析】:仔细观察数列1,3,6,10,15…可以发现:1=1,3=1+2,6=1+2+3,10=1+2+3+4,…∴第项为1+2+3+4+…+n∴数列的一个通项公式是,故选A.2. 下列命题正确的是()A. 若,则B. 若,则C. 若,则D. 若,则【答案】B【解析】对于A,取,时,,故A不正确;对于B,因为,那么,所以,故B正确;对于C,取,则,故C不正确;对于D,取,,,,则,故D不正确.故选B3. 不等式的解集是为()A. B. C. D.【答案】B..................4. 已知各项均为正数的等比数列,则的值()A. B. C. D.【答案】D【解析】∵为各项均为正数的等比数列∴,即∴,故选D5. 在中,分别为的对角,且,则()A. B. C. D.【答案】D【解析】∵∴根据正弦定理得:∴,故选D6. 下列命题错误的是()A. 命题“若,则”与命题“若,则”互为逆否命题B. 命题“”的否定是“”C. 且,都有D. “若,则”的逆命题为真【答案】D【解析】对于A.“若p则q”与命题“若,则”互为逆否命题,正确;对于B.“∃x∈R,x2﹣x>0”的否定是“∀x∈R,x2﹣x≤0”,正确;对于C.∀x>0且x≠1,都有>2=2,正确;对于D.“若am2<bm2,则a<b”的逆命题为“若a<b,则am2<bm2”为假命题,m=0时不成立.故选:D.7. 设实数满足且实数满足,则是的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】试题分析:“若且则”是真命题,其逆命题是假命题,故是的充分不必要条件,故选A.考点:充分必要条件.8. 若等比数列的各项均为正数,且(为自然对数的底数),则()A. B. C. D.【答案】B【解析】∵等比数列的各项均为正数,且∴∴,故选B.9. 若正数满足,则的最小值是()A. B. C. D.【答案】C【解析】由已知可得,则,所以的最小值,应选答案D。

2017-2018学年高二上学期期中数学试卷 Word版含解析

2017-2018学年高二上学期期中数学试卷 Word版含解析

2017-2018学年高二上学期期中数学试卷一.选择题(每小题5分,共40分)1.(5分)已知两条相交直线a,b,a∥平面α,则b与α的位置关系是()A.b⊂平面αB.b⊥平面αC.b∥平面αD.b与平面α相交,或b∥平面α2.(5分)已知过点A(﹣2,m)和B(m,4)的直线与直线2x+y﹣1=0平行,则m的值为()A.0 B.﹣8 C.2 D.103.(5分)过点M(﹣1,5)作圆(x﹣1)2+(y﹣2)2=4的切线,则切线方程为()A.x=﹣1 B.5x+12y﹣55=0C.x=﹣1或5x+12y﹣55=0 D.x=﹣1或12x+5y﹣55=04.(5分)设m,n表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是()A.m⊥α,m⊥β,则α∥βB.m∥n,m⊥α,则n⊥αC.m⊥α,n⊥α,则m∥n D.m∥α,α∩β=n,则m∥n5.(5分)点P(4,﹣2)与圆x2+y2=4上任一点连线的中点轨迹方程是()A.(x﹣2)2+(y+1)2=1 B.(x﹣2)2+(y+1)2=4 C.(x+4)2+(y﹣2)2=1 D.(x+2)2+(y﹣1)2=16.(5分)在△ABC中,AB=4,BC=3,∠ABC=90°,若使△ABC绕直线BC旋转一周,则所形成的几何体的体积是()A.36πB.28πC.20πD.16π7.(5分)某正三棱柱的三视图如图所示,其中正(主)视图是边长为2的正方形,该正三棱柱的表面积是()A.B.C.D.8.(5分)已知点A(0,2),B(2,0).若点C在函数y=x2的图象上,则使得△ABC的面积为2的点C的个数为()A.4 B.3 C.2 D.1二.填空题(每小题5分,共30分)9.(5分)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为.10.(5分)棱锥的高为16cm,底面积为512cm2,平行于底面的截面积为50cm2,则截面与底面的距离为.11.(5分)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则球O的表面积为.12.(5分)如图,若边长为4和3与边长为4和2的两个矩形所在平面互相垂直,则cosα:cosβ=.13.(5分)已知直线ax+y﹣2=0与圆心为C的圆(x﹣2)2+(y﹣2)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=.14.(5分)在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.三.解答题(公3小题,共30分)15.(10分)在平面直角坐标系xOy内有三个定点A(2,2).B(1,3),C(1,1),记△ABC的外接圆为E.(I)求圆E的方程;(Ⅱ)若过原点O的直线l与圆E相交所得弦的长为,求直线l的方程.16.(10分)如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分别为AB,AC中点.(Ⅰ)求证:DE∥面PBC;(Ⅱ)求证:AB⊥PE;(Ⅲ)求三棱锥B﹣PEC的体积.17.(10分)在四棱柱ABCD﹣A1B1C1D1中,AA1⊥底面ABCD,底面ABCD为菱形,O为A1C1与B1D1交点,已知AA1=AB=1,∠BAD=60°.(Ⅰ)求证:A1C1⊥平面B1BDD1;(Ⅱ)求证:AO∥平面BC1D;(Ⅲ)设点M在△BC1D内(含边界),且OM⊥B1D1,说明满足条件的点M的轨迹,并求OM的最小值.四.填空题(每小题4分,共20分)18.(4分)已知(ax+1)5的展开式中x3的系数是10,则实数a的值是.19.(4分)已知正三棱锥P﹣ABC的每个侧面是顶角为30°,腰长为4的三角形,E,F分别是PB,PC上的点,则△AEF的周长的最小值为.20.(4分)空间四边形ABCD中,若AB=BC=CD=DA=BD=1,则AC的取值范围是.21.(4分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是.(4分)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y).则|PA|•|PB| 22.的最大值是.五.解答题(共3题,共30分)23.(10分)如图,在三棱柱ABC﹣A1B1C中,AA1⊥底面ABC,AB⊥AC,AC=AA1,E、F分别是棱BC、CC1的中点.(Ⅰ)求证:AB⊥平面AA1 C1C;(Ⅱ)若线段AC上的点D满足平面DEF∥平面ABC1,试确定点D的位置,并说明理由;(Ⅲ)证明:EF⊥A1C.24.(10分)已知点P(2,0)及圆C:x2+y2﹣6x+4y+4=0.(Ⅰ)若直线l过点P且与圆心C的距离为1,求直线l的方程;(Ⅱ)设过P直线l1与圆C交于M、N两点,当|MN|=4时,求以MN为直径的圆的方程;(Ⅲ)设直线ax﹣y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.25.(10分)设圆C1的方程为(x﹣2)2+(y﹣3m)2=4m2,直线l的方程为y=x+m﹣1.(Ⅰ)求C1关于l对称的圆C2的方程;(Ⅱ)当m变化且m≠0时,求证:C2的圆心在一条定直线上,并求C2所表示的一系列圆的公切线方程.2017-2018学年高二上学期期中数学试卷参考答案与试题解析一.选择题(每小题5分,共40分)1.(5分)已知两条相交直线a,b,a∥平面α,则b与α的位置关系是()A.b⊂平面αB.b⊥平面αC.b∥平面αD.b与平面α相交,或b∥平面α考点:空间中直线与平面之间的位置关系.专题:阅读型.分析:根据空间中直线与平面的位置关系可得答案.解答:解:根据空间中直线与平面的位置关系可得:b可能与平面α相交,也可能b与平面相交α,故选D.点评:解决此类问题的关键是熟练掌握空间中点、直线以及平面之间的位置关系.2.(5分)已知过点A(﹣2,m)和B(m,4)的直线与直线2x+y﹣1=0平行,则m的值为()A.0 B.﹣8 C.2 D.10考点:斜率的计算公式.专题:计算题.分析:因为过点A(﹣2,m)和B(m,4)的直线与直线2x+y﹣1=0平行,所以,两直线的斜率相等.解答:解:∵直线2x+y﹣1=0的斜率等于﹣2,∴过点A(﹣2, m)和B(m,4)的直线的斜率K也是﹣2,∴=﹣2,解得,故选 B.点评:本题考查两斜率存在的直线平行的条件是斜率相等,以及斜率公式的应用.3.(5分)过点M(﹣1,5)作圆(x﹣1)2+(y﹣2)2=4的切线,则切线方程为()A.x=﹣1 B.5x+12y﹣55=0C.x=﹣1或5x+12y﹣55=0 D.x=﹣1或12x+5y﹣55=0考点:圆的切线方程.专题:直线与圆.分析:首先讨论斜率不存在的情况,直线方程为x=﹣1满足条件.当斜率存在时,设直线方程为:y﹣5=k (x+1).利用圆心到直线的距离等于半径解得k的值,从而确定圆的切线方程.解答:解:①斜率不存在时,过点M(﹣1,5)的直线方程为x=﹣1.此时,圆心(1,2)到直线x=﹣1的距离d=2=r.∴x=﹣1是圆的切线方程.②斜率存在时,设直线斜率为k,则直线方程为:y﹣5=k(x+1).即kx﹣y+k+5=0.∵直线与圆相切,∴圆心到直线的距离.解得,.∴直线方程为5x+12y﹣55=0.∴过点M(﹣1,5)且与圆相切的直线方程为x=﹣1或5x+12y﹣55=0.故选:C.点评:本题考查直线与圆相切的性质,点到直线的距离公式等知识的运用.做题时容易忽略斜率不存在的情况.属于中档题.4.(5分)设m,n表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是()A.m⊥α,m⊥β,则α∥βB.m∥n,m⊥α,则n⊥αC.m⊥α,n⊥α,则m∥n D.m∥α,α∩β=n,则m∥n考点:空间中直线与平面之间的位置关系.专题:空间位置关系与距离.分析:充分利用线面平行和线面垂直的性质和判定定理对四个选项逐一解答.A选项用垂直于同一条直线的两个平面平行判断即可;B选项用两个平行线中的一条垂直于一个平面,则另一条也垂直于这个平面;C选项用线面垂直的性质定理判断即可;D选项由线面平行的性质定理判断即可.解答:解:A选项中命题是真命题,m⊥α,m⊥β,可以推出α∥β;B选项中命题是真命题,m∥n,m⊥α可得出n⊥α;C选项中命题是真命题,m⊥α,n⊥α,利用线面垂直的性质得到n∥m;D选项中命题是假命题,因为无法用线面平行的性质定理判断两直线平行.故选D.点评:本题考查了空间线面平行和线面垂直的性质定理和判定定理的运用,关键是熟练有关的定理.5.(5分)点P(4,﹣2)与圆x2+y2=4上任一点连线的中点轨迹方程是()A.(x﹣2)2+(y+1)2=1 B.(x﹣2)2+(y+1)2=4 C.(x+4)2+(y﹣2)2=1 D.(x+2)2+(y﹣1)2=1考点:轨迹方程.专题:直线与圆.分析:设圆上任意一点为(x1,y1),中点为(x,y),则,由此能够轨迹方程.解答:解:设圆上任意一点为(x1,y1),中点为(x,y),则代入x2+y2=4得(2x﹣4)2+(2y+2)2=4,化简得(x﹣2)2+(y+1)2=1.故选A.点评:本题考查点的轨迹方程,解题时要仔细审题,注意公式的灵活运用.6.(5分)在△ABC中,AB=4,BC=3,∠ABC=90°,若使△ABC绕直线BC旋转一周,则所形成的几何体的体积是()A.36πB.28πC.20πD.16π考点:旋转体(圆柱、圆锥、圆台).专题:空间位置关系与距离.分析:使△ABC绕直线BC旋转一周,则所形成的几何体是一个底面半径为4,高为3的一个圆锥,代入圆锥体积公式,可得答案.解答:解:将△ABC绕直线BC旋转一周,得到一个底面半径为4,高为3的一个圆锥,故所形成的几何体的体积V=×π×42×3=16π,故选:D点评:本题考查的知识点是旋转体,其中分析出旋转得到的几何体形状及底面半径,高等几何量是解答的关键.7.(5分)某正三棱柱的三视图如图所示,其中正(主)视图是边长为2的正方形,该正三棱柱的表面积是()A.B.C.D.考点:由三视图求面积、体积.专题:计算题.分析:利用三视图的数据,直接求解三棱柱的表面积.解答:解:因为正三棱柱的三视图,其中正(主)视图是边长为2的正方形,棱柱的侧棱长为2,底面三角形的边长为2,所以表面积为:2×+2×3×2=12+2.故选C.点评:本题考查几何体的三视图的应用,几何体的表面积的求法,考查计算能力.8.(5分)已知点A(0,2),B(2,0).若点C在函数y=x2的图象上,则使得△ABC的面积为2的点C的个数为()A.4 B.3 C.2 D.1考点:抛物线的应用.专题:函数的性质及应用.分析:本题可以设出点C的坐标(a,a2),求出C到直线AB的距离,得出三角形面积表达式,进而得到关于参数a的方程,转化为求解方程根的个数(不必解出这个跟),从而得到点C的个数.解答:解:设C(a,a2),由已知得直线AB的方程为,即:x+y﹣2=0点C到直线AB的距离为:d=,有三角形ABC的面积为2可得:=|a+a2﹣2|=2得:a2+a=0或a2+a﹣4=0,显然方程共有四个根,可知函数y=x2的图象上存在四个点(如上面图中四个点C1,C2,C3,C4)使得△ABC的面积为2(即图中的三角形△ABC1,△ABC2,△ABC3,△ABC4).故应选:A点评:本题考查了截距式直线方程,点到直线的距离公式,三角形的面积的求法,就参数的值或范围,考查了数形结合的思想二.填空题(每小题5分,共30分)9.(5分)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为x2+(y﹣1)2=1.考点:圆的标准方程.专题:直线与圆.分析:利用点(a,b)关于直线y=x±k的对称点为(b,a),求出圆心,再根据半径求得圆的方程.解答:解:圆心与点(1,0)关于直线y=x对称,可得圆心为(0,1),再根据半径等于1,可得所求的圆的方程为x2+(y﹣1)2=1,故答案为:x2+(y﹣1)2=1.点评:本题主要考查求圆的标准方程,利用了点(a,b)关于直线y=x±k的对称点为(b,a),属于基础题.10.(5分)棱锥的高为16cm,底面积为512cm2,平行于底面的截面积为50cm2,则截面与底面的距离为11cm.考点:棱柱、棱锥、棱台的体积.专题:计算题.分析:利用面积之比是相似比的平方,求出截取棱锥的高,然后求出截面与底面的距离.解答:解:设截取棱锥的高为:h,则,∴h=5,所以截面与底面的距离:16﹣5=11cm故答案为:11cm点评:本题是基础题,考查面积之比是选上比的平方,考查计算能力,空间想象能力.11.(5分)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则球O的表面积为12π.考点:球的体积和表面积.专题:计算题;空间位置关系与距离.分析:利用平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,求出球的半径,然后求解球O的表面积.解答:解:因为平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,所以球的半径为:=.所以球O的表面积为4π×3=12π.故答案为:12π.点评:本题考查球的表面积的求法,考查空间想象能力、计算能力.12.(5分)如图,若边长为4和3与边长为4和2的两个矩形所在平面互相垂直,则cosα:cosβ=.考点:平面与平面垂直的性质.专题:计算题;空间位置关系与距离.分析:由题意,两个矩形的对角线长分别为5,=2,利用余弦函数,即可求出cosα:cosβ.解答:解:由题意,两个矩形的对角线长分别为5,=2,∴cosα==,cosβ=,∴cosα:cosβ=,故答案为:.点评:本题考查平面与平面垂直的性质,考查学生的计算能力,比较基础.13.(5分)已知直线ax+y﹣2=0与圆心为C的圆(x﹣2)2+(y﹣2)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=±.考点:直线与圆相交的性质.专题:计算题;直线与圆.分析:根据圆的标准方程,求出圆心和半径,根据点到直线的距离公式即可得到结论.解答:解:圆心C(2,2),半径r=2,∵△ABC为等边三角形,∴圆心C到直线AB的距离d=,即d==,解得a=±,故答案为:±.点评:本题主要考查点到直线的距离公式的应用,利用条件求出圆心和半径,结合距离公式是解决本题的关键.14.(5分)在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.考点:圆与圆的位置关系及其判定;直线与圆的位置关系.专题:直线与圆.分析:由于圆C的方程为(x﹣4)2+y2=1,由题意可知,只需(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.解答:解:∵圆C的方程为x2+y2﹣8x+15=0,整理得:(x﹣4)2+y2=1,即圆C是以(4,0)为圆心,1为半径的圆;又直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,∴只需圆C′:(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.设圆心C(4,0)到直线y=kx﹣2的距离为d,则d=≤2,即3k2﹣4k≤0,∴0≤k≤.∴k的最大值是.故答案为:.点评:本题考查直线与圆的位置关系,将条件转化为“(x﹣4)2+y2=4与直线y=kx﹣2有公共点”是关键,考查学生灵活解决问题的能力,属于中档题.三.解答题(公3小题,共30分)15.(10分)在平面直角坐标系xOy内有三个定点A(2,2).B(1,3),C(1,1),记△ABC的外接圆为E.(I)求圆E的方程;(Ⅱ)若过原点O的直线l与圆E相交所得弦的长为,求直线l的方程.考点:圆的标准方程;直线与圆的位置关系.专题:计算题;直线与圆.分析:(I)设圆E的方程为x2+y2+Dx+Ey+F=0,将A、B、C的坐标代入,建立关于D、E、F的方程组,解之即可得到△ABC的外接圆E的方程;(II)化圆E为标准方程,得圆心为E(1,2),半径r=1.设直线l方程为y=kx,由点到直线的距离公式和垂径定理建立关于k的方程,解之得到k=1或7,由此即可得到直线l的方程.解答:解:(I)设圆E的方程为x2+y2+Dx+Ey+F=0∵A(2,2)、B(1,3)、C(1,1)都在圆E上∴,解之得因此,圆E的方程为x2+y2﹣2x﹣4y+4=0;(II)将圆E化成标准方程,可得(x﹣1)2+(y﹣2)2=1∴圆心为E(1,2),半径r=1设直线l方程为y=kx,则圆心E到直线l的距离为d=∵直线l与圆E相交所得弦的长为,∴由垂径定理,得d2+()2=r2=1可得d2=,即=,解之得k=1或7∴直线l的方程是y=x或y=7x.点评:本题给出三角形ABC三个顶点,求它的外接圆E的方程,并求截圆所得弦长为的直线方程.着重考查了直线的方程、圆的方程和直线与圆的位置关系等知识,属于中档题.16.(10分)如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分别为AB,AC中点.(Ⅰ)求证:DE∥面PBC;(Ⅱ)求证:AB⊥PE;(Ⅲ)求三棱锥B﹣PEC的体积.考点:直线与平面垂直的性质;直线与平面平行的判定.专题:计算题;证明题;空间位置关系与距离.分析:(I)根据三角形中位线定理,证出DE∥BC,再由线面平行判定定理即可证出DE∥面PBC;(II)连结PD,由等腰三角形“三线合一”,证出PD⊥AB,结合DE⊥AB证出AB⊥平面PDE,由此可得AB ⊥PE;(III)由面面垂直性质定理,证出PD⊥平面ABC,得PD是三棱锥P﹣BEC的高.结合题中数据算出PD=且S△BEC=,利用锥体体积公式求出三棱锥P﹣BEC的体积,即得三棱锥B﹣PEC的体积.解答:解:(I)∵△ABC中,D、E分别为AB、AC中点,∴DE∥BC∵DE⊄面PBC且BC⊂面PBC,∴DE∥面PBC;(II)连结PD∵PA=PB,D为AB中点,∴PD⊥AB∵DE∥BC,BC⊥AB,∴DE⊥AB,又∵PD、DE是平面PDE内的相交直线,∴AB⊥平面PDE∵PE⊂平面PDE,∴AB⊥PE;(III)∵PD⊥AB,平面PAB⊥平面ABC,平面PAB∩平面ABC=AB∴PD⊥平面ABC,可得PD是三棱锥P﹣BEC的高又∵PD=,S△BEC=S△ABC=∴三棱锥B﹣PEC的体积V=V P﹣BEC=S△BEC×PD=点评:本题在三棱锥中求证线面平行、线线垂直,并求锥体的体积.着重考查了线面平行、线面垂直的判定与性质和锥体体积公式等知识,属于中档题.17.(10分)在四棱柱ABCD﹣A1B1C1D1中,AA1⊥底面ABCD,底面ABCD为菱形,O为A1C1与B1D1交点,已知AA1=AB=1,∠BAD=60°.(Ⅰ)求证:A1C1⊥平面B1BDD1;(Ⅱ)求证:AO∥平面BC1D;(Ⅲ)设点M在△BC1D内(含边界),且OM⊥B1D1,说明满足条件的点M的轨迹,并求OM的最小值.考点:直线与平面平行的判定;直线与平面垂直的判定;直线与平面垂直的性质.专题:空间位置关系与距离.分析:(Ⅰ)先根据线面垂直的性质证明出BB1⊥A1C1.进而根据菱形的性质证明出A1C1⊥B1D1.最后根据线面垂直的判定定理证明出A1C1⊥平面B1BDD1.(Ⅱ)连接AC,交BD于点E,连接C1E.先证明OC1∥AE和OC1=AE,推断出AOC1E为平行四边形,进而推断AO∥C1E,最后利用线面平行的判定定理证明出AO∥平面BC1D.(Ⅲ)先由E为BD中点,推断出BD⊥C1E,进而根据C1D=C1B,推断出ME⊥BD,进而根据OM⊥BD,推断出BD∥B1D1.直角三角形OC1E中利用射影定理求得OM.解答:解:(Ⅰ)依题意,因为四棱柱ABCD﹣A1B1C1D1中,AA1⊥底面ABCD,所以BB1⊥底面A1B1C1D1.又A1C1⊂底面A1B1C1D1,所以BB1⊥A1C1.因为A1B1C1D1为菱形,所以A1C1⊥B1D1.而BB1∩B1D1=B1,所以A1C1⊥平面B1BDD1.(Ⅱ)连接AC,交BD于点E,连接C1E.依题意,AA1∥CC1,且AA1=CC1,AA1⊥AC,所以A1ACC1为矩形.所以OC1∥AE.又,,A1C1=AC,所以OC1=AE,所以AOC1E为平行四边形,则AO∥C1E.又AO⊄平面BC1D,C1E⊂平面BC1D,所以AO∥平面BC1D.(Ⅲ)在△BC1D内,满足OM⊥B1D1的点M的轨迹是线段C1E,包括端点.分析如下:连接OE,则BD⊥OE.由于BD∥B1D1,故欲使OM⊥B1D1,只需OM⊥BD,从而需ME⊥BD.又在△BC1D中,C1D=C1B,又E为BD中点,所以BD⊥C1E.故M点一定在线段C1E上.当OM⊥C1E时,OM取最小值.在直角三角形OC1E中,OE=1,,,所以.点评:本题主要考查了线面平行和线面垂直的判定定理的应用.考查了学生基础知识的综合运用.四.填空题(每小题4分,共20分)18.(4分)已知(ax+1)5的展开式中x3的系数是10,则实数a的值是1.考点:二项式系数的性质.专题:计算题;二项式定理.分析:在展开式的通项公式,令x的指数为3,利用(ax+1)5的展开式中x3的系数是10,即可实数a的值.解答:解:(ax+1)5的展开式的通项公式为T r+1=,则∵(ax+1)5的展开式中x3的系数是10,∴=10,∴a=1.故答案为:1.点评:二项展开式的通项公式解决二项展开式的特定项问题的重要方法.19.(4分)已知正三棱锥P﹣ABC的每个侧面是顶角为30°,腰长为4的三角形,E,F分别是PB,PC上的点,则△AEF的周长的最小值为4.考点:棱锥的结构特征.专题:空间位置关系与距离.分析:根据侧面展开图求解得出,再利用直角三角形求解.解答:解:∵正三棱锥P﹣ABC的每个侧面是顶角为30°,腰长为4的三角形,∴侧面展开为下图连接AA得:RT△中,长度为4,∴△AEF的周长的最小值为4,故答案为:4,点评:本题考查了空间几何体中的最小距离问题,属于中档题.20.(4分)空间四边形ABCD中,若AB=BC=CD=DA=BD=1,则AC的取值范围是(0,].考点:棱锥的结构特征.专题:空间位置关系与距离.分析:运用图形得||=||,再根据向量求解.解答:解:0为BD中点,∵AB=BC=CD=DA=BD=1,∴|OA|=|OB|=,||=||==,θ∈(0°,180°]∴AC的取值范围是(0,]故答案为:(0,]点评:本题考查了向量的运用求解距离,属于中档题.21.(4分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是[﹣1,1].考点:直线与圆的位置关系.专题:直线与圆.分析:根据直线和圆的位置关系,利用数形结合即可得到结论.解答:解:由题意画出图形如图:点M(x0,1),要使圆O:x2+y2=1上存在点N,使得∠OMN=45°,则∠OMN的最大值大于或等于45°时一定存在点N,使得∠OMN=45°,而当MN与圆相切时∠OMN取得最大值,此时MN=1,图中只有M′到M″之间的区域满足MN=1,∴x0的取值范围是[﹣1,1].故选:A.点评:本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.(4分)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y).则|PA|•|PB| 22.的最大值是5.考点:点到直线的距离公式.专题:直线与圆.分析:先计算出两条动直线经过的定点,即A和B,注意到两条动直线相互垂直的特点,则有PA⊥PB;再利用基本不等式放缩即可得出|PA|•|PB|的最大值.解答:解:有题意可知,动直线x+my=0经过定点A(0,0),动直线mx﹣y﹣m+3=0即 m(x﹣1)﹣y+3=0,经过点定点B(1,3),注意到动直线x+my=0和动直线mx﹣y﹣m+3=0始终垂直,P又是两条直线的交点,则有PA⊥PB,∴|PA|2+|PB|2=|AB|2=10.故|PA|•|PB|≤=5(当且仅当时取“=”)故答案为:5点评:本题是直线和不等式的综合考查,特别是“两条直线相互垂直”这一特征是本题解答的突破口,从而有|PA|2+|PB|2是个定值,再由基本不等式求解得出.直线位置关系和不等式相结合,不容易想到,是个灵活的好题.五.解答题(共3题,共30分)23.(10分)如图,在三棱柱ABC﹣A1B1C中,AA1⊥底面ABC,AB⊥AC,AC=AA1,E、F分别是棱BC、CC1的中点.(Ⅰ)求证:AB⊥平面AA1 C1C;(Ⅱ)若线段AC上的点D满足平面DEF∥平面ABC1,试确定点D的位置,并说明理由;(Ⅲ)证明:EF⊥A1C.考点:直线与平面垂直的判定.专题:空间位置关系与距离.分析:(I)由线面垂直得A1A⊥AB,再由AB⊥AC,能证明AB⊥面A1CC1.(II)由AB∥DE,在△ABC中,E是棱BC的中点,推导出D是线段AC的中点.(III)由已知条件推导出A1C⊥AC1,AB⊥A1C,从而得到A1C⊥面ABC1,由此能证明EF⊥AC1.解答:(I)证明:∵AA1⊥底面ABC,∴A1A⊥AB,(2分)∵AB⊥AC,A1A∩AC=A,∴AB⊥面A1CC1.(4分)(II)解:∵面DEF∥面ABC1,面ABC∩面DEF=DE,面ABC∩面ABC1=AB,∴AB∥DE,(7分)∵在△ABC中,E是棱BC的中点,∴D是线段AC的中点.(8分)(III)证明:∵三棱柱ABC﹣A1B1C1中,A1A=AC,∴侧面A1ACC1是菱形,∴A1C⊥AC1,(9分)由(Ⅰ)得AB⊥A1C,∵AB∩AC1=A,∴A1C⊥面ABC1,(11分)∴A1C⊥BC1.(12分)又∵E,F分别为棱BC,CC1的中点,∴EF∥BC1,(13分)∴EF⊥AC1.(14分)点评:本题考查直线与平面垂直的证明,考查点的位置的确定,考查异面直线垂直的证明,解题时要认真审题,注意空间思维能力的培养.24.(10分)已知点P(2,0)及圆C:x2+y2﹣6x+4y+4=0.(Ⅰ)若直线l过点P且与圆心C的距离为1,求直线l的方程;(Ⅱ)设过P直线l1与圆C交于M、N两点,当|MN|=4时,求以MN为直径的圆的方程;(Ⅲ)设直线ax﹣y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.考点:直线与圆的位置关系.专题:综合题.分析:(Ⅰ)分两种情况:当直线l的斜率存在时,设出直线l的斜率为k,由P的坐标和设出的k写出直线l的方程,利用点到直线的距离公式表示出P到直线l的距离d,让d等于1列出关于k的方程,求出方程的解即可得到k的值,利用求出的k和P写出直线l的方程即可;当直线l的斜率不存在时,得到在线l的方程,经过验证符合题意;(Ⅱ)由利用两点间的距离公式求出圆心C到P的距离,再根据弦长|MN|的一半及半径,利用勾股定理求出弦心距d,发现|CP|与d相等,所以得到P为MN的中点,所以以MN为直径的圆的圆心坐标即为P的坐标,半径为|MN|的一半,根据圆心和半径写出圆的方程即可;(Ⅲ)把已知直线的方程代入到圆的方程中消去y得到关于x的一元二次方程,因为直线与圆有两个交点,所以得到△>0,列出关于a的不等式,求出不等式的解集即可得到a的取值范围,利用反证法证明:假设符合条件的a存在,由直线l2垂直平分弦AB得到圆心必在直线l2上,根据P与C的坐标即可求出l2的斜率,然后根据两直线垂直时斜率的乘积为﹣1,即可求出直线ax﹣y+1=0的斜率,进而求出a的值,经过判断求出a的值不在求出的范围中,所以假设错误,故这样的a不存在.解答:解:(Ⅰ)设直线l的斜率为k(k存在)则方程为y﹣0=k(x﹣2).又圆C的圆心为(3,﹣2),半径r=3,由,解得.所以直线方程为,即3x+4y﹣6=0;当l的斜率不存在时,l的方程为x=2,经验证x=2也满足条件;(Ⅱ)由于,而弦心距,所以d=,所以P为MN的中点,所以所求圆的圆心坐标为(2,0),半径为|MN|=2,故以MN为直径的圆Q的方程为(x﹣2)2+y2=4;(Ⅲ)把直线ax﹣y+1=0即y=ax+1.代入圆C的方程,消去y,整理得(a2+1)x2+6(a﹣1)x+9=0.由于直线ax﹣y+1=0交圆C于A,B两点,故△=36(a﹣1)2﹣36(a2+1)>0,即﹣2a>0,解得a<0.则实数a的取值范围是(﹣∞,0).设符合条件的实数a存在,由于l2垂直平分弦AB,故圆心C(3,﹣2)必在l2上.所以l2的斜率k PC=﹣2,而,所以.由于,故不存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB.点评:此题考查学生掌握直线与圆的位置关系,灵活运用点到直线的距离公式及两点间的距离公式化简求值,考查了分类讨论的数学思想,以及会利用反证法进行证明,是一道综合题.25.(10分)设圆C1的方程为(x﹣2)2+(y﹣3m)2=4m2,直线l的方程为y=x+m﹣1.(Ⅰ)求C1关于l对称的圆C2的方程;(Ⅱ)当m变化且m≠0时,求证:C2的圆心在一条定直线上,并求C2所表示的一系列圆的公切线方程.考点:直线与圆相交的性质.专题:直线与圆.分析:(Ⅰ)由圆的方程找出圆心坐标,设出圆心关于直线l的对称点的坐标,由直线l的斜率,根据两直线垂直时斜率的乘积为﹣1求出直线C1C2的斜率,由圆心及对称点的坐标表示出斜率,等于求出的斜率列出一个关系式,然后利用中点坐标公式,求出两圆心的中点坐标,代入直线l的方程,得到另一个关系式,两关系式联立即可用m表示出a与b,把表示出的a与b代入圆C2的方程即可;(Ⅱ)由表示出的a与b消去m,得到a与b的关系式,进而得到圆C2的圆心在定直线上;分公切线的斜率不存在和存在两种情况考虑,当公切线斜率不存在时,容易得到公切线方程为x=0;当公切线斜率存在时,设直线y=kx+b与圆系中的所有圆都相切,根据点到直线的距离公式表示出圆心(a,b)到直线y=kx+b的距离d,当d等于圆的半径2|m|,化简后根据多项式为0时各项的系数为0,即可求出k与b的值,从而确定出C2所表示的一系列圆的公切线方程,这样得到所有C2所表示的一系列圆的公切线方程.解答:解:(Ⅰ)∵圆C1的方程为(x﹣2)2+(y﹣3m)2=4m2,∴圆心为(2,3m),设它关于直线l:y=x+m﹣1的对称点为(a,b),则,解得a=2m+1,b=m+1,∴圆C2的圆心为(2m+1,m+1),∴圆C2的方程为:(x﹣2m﹣1)2+(y﹣m﹣1)2=4m2,∴C1关于l对称的圆C2的方程:(x﹣2m﹣1)2+(y﹣m﹣1)2=4m2.(Ⅱ)根据(Ⅰ)得圆C2的圆心为(2m+1,m+1),令,消去m得x﹣2y+1=0,它表示一条直线,故C2的圆心在一条定直线上,①当公切线的斜率不存在时,易求公切线的方程为x=0;②当公切线的斜率存在时,设直线y=kx+b与圆系中的所有圆都相切,∴=2|m|,即:(1﹣4k)m2+2(2k﹣1)(k+b﹣1)m+(k+b﹣1)2=0∵直线y=kx+b与圆系中的所有圆都相切,所以上述方程对所有的m值都成立,∴所以有:,解得,∴C2所表示的一系列圆的公切线方程为:y=,∴故所求圆的公切线为x=0或y=.点评:此题考查了直线与圆的位置关系,以及关于点与直线对称的圆的方程.此题的综合性比较强,要求学生审清题意,综合运用方程与函数的关系,掌握直线与圆相切时圆心到直线的距离等于半径,在作(Ⅱ)时先用消去参数的方法求定直线的方程,然后采用分类讨论的数学思想分别求出C2所表示的一系列圆的公切线方程.。

郑州市2017-2018学年高二数学上学期期中试题 文

郑州市2017-2018学年高二数学上学期期中试题 文

2017-2018学年高二上学期期中考试数学试题(文科)注意:本试卷包含Ⅰ、Ⅱ两卷.第Ⅰ卷为选择题,所有答案必须用2B铅笔涂在答题卡中相应的位置.第Ⅱ卷为非选择题,所有答案必须填在答题卷的相应位置。

答案写在试卷上均无效,不予记分。

一、选择题(本大题共12小题,共60。

0分)1.在△ABC中,b=2,A =,B =,则a的值为()A. B. C。

D.2.在等比数列{a n}中,a1=1,q =,a n =,则n=( )A。

5 B. 6C。

7 D. 83.不等式2的解集为()A。

[—1,0)B。

[—1,+∞)C。

(-∞,-1]D。

(—∞,—1]∪(0,+∞)4.设a>0,b>0,若a+b=1,则的最小值为()A. 4B。

8C。

1D。

5.△ABC中,角A、B、C的对边分别为a、b、c且b2+c2-a2+bc=0,则等于()A. B. C. D。

6.已知命题p:1∈{x|(x+2)(x-3)<0},命题q:∅={0},则下面判断正确的是()A. p假q真B. “p∨q”为真C. “p∧q”为真D。

“¬q”为假7.给出下列说法:①终边相同的角同一三角函数值相等;②在三角形中,若sin A=sin B,则有A=B;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sinα=sinβ,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确说法的个数是( )A. 1B. 2C 。

3D 。

4 8. 设x ,y 满足,则z =x +y ( )A. 有最小值2,最大值3B. 有最小值2,无最大值C 。

有最大值3,无最小值D 。

既无最小值,也无最大值9. 已知等比数列{a n }中,a 5a 7=6,a 2+a 10=5,则等于( ) A 。

B. C 。

D. 或10. 不等式≥2的解集为( )A 。

[—1,0)B 。

[-1,+∞)C. (-∞,-1] D 。

(—∞,—1]∪(0,+∞)11. 设A ={x |2x 2-px +q =0},B ={x |6x 2+(p +2)x +5+q =0},若A ∩B ={},则A ∪B 等于( )A. { ,,-4}B. {,-4} C . {,} D. { } 12.设a >b >0,则a 2++的最小值是( )A. 1 B 。

河南省郑州市七校联考2017-2018学年高二上学期期中考试数学(文)试题 Word版含答案

河南省郑州市七校联考2017-2018学年高二上学期期中考试数学(文)试题 Word版含答案

2017-2018学年 高二数学(文科) 郑州市实验高级中学一、选择题(本题共12小题,每题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知a b >,c d >,且c ,d 不为0,那么下列不等式成立的是( ) A .ad bc > B .ac bd > C .a c b d ->- D .a c b d +>+2.不等式(1)(2)0x x --≤的解集为( )A .{}|12x x ≤≤B .{}|12x x x ≤≥或 C .{}|12x x << D .{}|12x x x <>或3.在数列{}n a 中,若12a =-,且对任意的*n N ∈有1212n n a a +=+,则数列{}n a 前10项的和为( )A .2B .10C .52 D .544.已知等比数列{}n a 满足13a =,13521a a a ++=,则357a a a ++等于( ) A .21 B .42 C.63 D .845.已知△ABC 中,a x =,2b =,45B =︒,若三角形有两解,则x 的取值范围是( ) A .2x > B .2x <C. 2x <<.2x <<6.在△ABC 中,60A =︒,2AB =,且ABC ∆,则BC 的长为( )A .2B .2 7.若不等式22253x x a a -+≥-对任意实数x 恒成立,则实数a 的取值范围为( ) A .[1,4]- B .(,2][5,)-∞-⋃+∞ C. (,1][4,)-∞-⋃+∞ D .[2,5]-8.若变量想x ,y 满足约束条件,1,1,y x x y y ≤⎧⎪+≤⎨⎪≥-⎩且2z x y =+的最大值和最小值分别为m 和n ,则m n -等于( )A .5B .6 C.7 D .89.如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时气球的高度是60m ,则河流的宽度BC 等于( )A.1)m B.1)mC. 1)m D.1)m10.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若A ,B ,C 成等差数列,2a ,2b ,2c 成等比数列,则cos cos A B =( ) A .14 B .16 C. 12 D .2311.已知数列{}n a :12,1233+,123444++,…,123910101010+++,…,若11n n n b a a +=⋅,那么数列{}n b 的前n 项和n S 为( ) A .1n n + B .41n n + C. 31n n + D .51nn + 12.已知各项均为正数的等比数列{}n a 满足7652a a a =+,若存在两项m a,n a 使得14a =,则14m n+的最小值为( ) A .32 B .53 C. 94 D .256第Ⅱ卷(共90分)二、填空题(本题共4个小题,每题5分,共20分) 13.已知数列{}n a 中,11a =且*1111()3n n n N a a +=+∈,则10a = . 14.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知cos 0b C C a c --=,则角B = .15.设实数x ,y 满足1,21,,y y x x y m ≥⎧⎪≤-⎨⎪+≤⎩若目标函数z x y =-的最小值为-1,则实数m = .16.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,8,13,……,其中从第三个数起,每一个数都等于它前面两个数的和,人们把这样的一列数所组成的数列{}n a 称为“斐波那契数列”,该数列是一个非常美丽、和谐的数列,有很多奇妙的属性,比如:随着项数的增加,前一项与后一项的比值越逼近黄金分割.06180339887.若把该数列{}n a 的每一项除以4所得的余数按相对应的顺序组成新数列{}n b ,在数列{}n b 中第2016项的值是 .三、解答题 :解答应写出文字说明,证明过程或演算步骤. 17. 已知不等式20x bx c ++>的解集为{}|21x x x ><或, (1)求b 和c 的值;(2)求不等式210cx bx ++≤的解集.18. 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos 2cos 2cos A C c aB b--=.(1)求sin sin CA的值; (2)若1cos 4B =,△ABC 的周长为5,求b 的长.19. 已知数列{}n a 的前n 项和22n n n S +=,*n N ∈.(1)求数列{}n a 的通项公式;(2)设2(1)n an n n b a =+-,求数列{}n b 的前2n 项和.20. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知2cos()cos a b A C c C++=. (1)求角C 的大小;(2)若2c =,求使△ABC 面积最大时,a ,b 的值.21.小王在年初用50万元购买一辆大货车,第一年因缴纳各种费用支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小王在该车运输累计收入超过总支出后,考虑大货车作为二手车出售,若该车在第x 年年底出售,其销售价格为25-x 万元(国家规定大货车的报废年限为10年).(1)大货车运输到第几年年底,该车运输累计收入超过总支出?(2)在第几年年底将大货车出售,能使小王获得的年平均利润最大(利润=累计收入+销售收入-总支出)?22. 已知数列{}n a ,{}n b 满足:13a =,26a =, {}n b 是等差数列,且对任意正整数n ,都有n b,1n b +成等比数列. (1)求数列{}n b 的通项公式;(2)设12111n n S a a a =+++,试比较2n S 与2112n n b a ++-的大小.2016-2017学年上学期期中考试高二年级七校考试题高二数学(理科)参考答案一、选择题1-5:DACBC 6-10:BABCA 11、12:BA 二、填空题 13.14 14. 3π15. 5 16.0 三、解答题17.(1)由不等式的解集为{}|21x x x ><或,(2)由(1)知所求不等式即为22310x x -+≤ 方程式22310x x -+=的两根分别是1和12, (7分) 所以所求不等式的解集为1|12x x ⎧⎫≤≤⎨⎬⎩⎭(10分) 18. (1)由正弦定理2sin sin sin a b c R A B C===知, cos 2cos 22sin 2sin cos 2sin A C R C R AB R B-⋅-=, (2分)即cos sin 2cos sin 2cos sin cos sin A B C B B C B A -=-,即sin()2sin()A B B C +=+, (4分) 又由A B C ++=π知,sin 2sin C A =,所以sin 2sin CA=. (6分) (2)由(1)可知sin 2sin CA=,∴2c a =, (8分) 由余弦定理得2222(2)22cos 4b a a a a B a =+-⋅⋅=∴2b a =, (10分) ∴225a a a ++=,∴1a =,∴2b =. (12分)19. (1)当1n =时,111a S ==; (2分) 当2n ≥时,221(1)(1)22n n n n n n n a S S n -+-+-=-=-=. (4分)1a 也满足n a n =,故数列{}n a 的通项公式为n a n =. (6分) (2)由(1)知n a n =,故2(1)n n n b n =+-. 记数列{}n b 的前2n 项和为2n T ,则1222(222)(12342)n n T n =++++-+-+-+.记122222n A =+++,12342B n =-+-+-+,则2212(12)2212n n A +-==--, (8分) [](12)(34)(21)2B n n n =-++-+++--+=. (10分)故数列{}n b 的前2n 项和21222n n T A B n +=+=+-. (12分) 20. (1)因为cos()cos(cos A C B +=-=-πB), 由题意及正弦定理,得2sin sin cos sin cos A B BC C+-=, (2分)即2sin cos (sin cos cos sin )sin()sin A C B C B C B C A =-+=-+=-. (4分) 因为(0,)A ∈π ,所以sin 0A >. 所以1cos 2C =-,又因为(0,)C ∈π ,所以23C =π. (6分) (2)因为余弦定理2222cos c a b ab C =+-, 所以221422a b ab ⎛⎫=+-⋅-⎪⎝⎭,即224a b ab =++. (8分) 所以22423a b ab ab ab ab =++≥+= 所以43ab ≥,43ab ≤(当且仅当a b =时等号成立).因为1sin 24ABC S ab C ab ∆==, (11分) 所以当a b =时△ABC面积最大为3,此时3a b ==故当a b ==ABC(12分) 21.(1)设大货车运输到第x 年年底,该车运输累计收入与总支出的差为y 元,则225[6(1)]502050y x x x x x x =-+--=-+-(010x <≤,x N ∈)由220500x x -+->,可得1010x -<<+∵2103<-<,故从第三年,该车运输累计收入超过总支持; (2)∵利润=累计收入+销售收入-总支出, ∴二手车出售后,小王的年平均利润为(25)2519()19109y x y x x x+-==-+≤-=当且仅当5x =时,等号成立.∴小王应当在第5年将大货车出售,能使小王获得的年平均利润最大.22.(1)∵正项数列{}n a ,{}n b 满足对任意正整数n ,都有n b,1n b +成等比数列. ∴1n n n a b b +=,∵13a =,26a =,∴123bb =,236b b =∵{}n b 是等差数列,∴1322b b b +=,∴1b2b =∴1)n b n =+; (2)1(1)(2)2n n n n n a b b +++==,则1112()12n a n n =-++ ∴11111122[()()()]12334122n S n n n =-+-++-=-+++ ∴4222n S n =-+∵2112223n n b n a n +++-=-+∴221182(2)(2)(3)n n n b n S a n n ++---=++ ∴当1n =,2时,21122n n n b S a ++<-;当3n ≥时,21122n n n b S a ++>-.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年河南省郑州一中高二(上)期中数学试卷(文科)一、单选题1.(3分)已知数列,则是这个数列的第()项.A.20 B.21 C.22 D.232.(3分)已知{a n}为等比数列,q为公比,则“q>1”是“{a n}为递增数列”的()A.既不充分也不必要条件B.必要不充分条件C.充要条件D.充分不必要条件3.(3分)已知数列{a n}的前n项和为S n,若a n=,S n=10,则n=()A.90 B.121 C.119 D.1204.(3分)在等差数列{a n}中,已知5是a3和a6的等差中项,则a1+a8=()A.9 B.10 C.12 D.145.(3分)下列说法正确的是()A.在△ABC中,三边分别为a,b,c,若c2>a2+b2,则该三角形为钝角三角形B.x>1是1<x<2的充分不必要条件C.若b2=ac,则a,b,c成等比数列D.若p∨q为真命题,则p∧q为真命题6.(3分)设等差数列{a n}的前n项和为S n,且满足S17>0,S18<0,则S n取最大值时n的值为()A.7 B.8 C.9 D.107.(3分)若△ABC的角A,B,C所对应的边分别为a,b,c,且a=2,,S△ABC=4,则b=()A.B.C. D.8.(3分)已知数列{a n}是递减数列,且对任意的正整数n,恒成立,则实数λ的取值范围为()A.(﹣3,+∞)B.(﹣∞,1]C.(﹣∞,1)D.9.(3分)在锐角△ABC中,A,B,C所对应的边分别为a,b,c,若b=3,c=4,则a的取值范围是()A.(1,7) B.(1,5) C.D.10.(3分)若实数x,y满足,则|x+2y+1|的取值范围是()A.[0,4]B.[1,3]C.[2,6]D.[0,3]11.(3分)已知等比数列{a n}的前n项和为S n,且,若log2a1+log2a2+…+log2a n=10,则n=()A.2 B.3 C.4 D.512.(3分)已知x>0,y>0,且,若x+y>m2+8m恒成立,则实数m的取值范围是()A.(﹣8,0)B.(﹣9,1)C.D.(﹣8,1)二、填空题13.(3分)若1,a,b,c,9成等差数列,则c﹣a=.14.(3分)若关于x的不等式x2﹣ax+b<0的解集{x|1<x<2},则实数a+b=.15.(3分)已知S n为数列{a n}的前n项和,a1=1,2S n=(n+1)a n,若存在唯一的正整数n使得不等式a n2﹣ta n﹣2≤0成立,则实数t的取值范围为.三、解答题16.设命题p:实数x满足(x+a)(x﹣3a)<0,其中a>0,命题q:实数x满足x2﹣5x+4≤0.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.17.已知等差数列{a n}中,a1+a4=10,a5=10.(1)求数列{a n}的通项公式;(2)已知,求数列{b n}的前n项和S n.18.(2分)在△ABC中,角A,B,C的对边长分别是a,b,c,且满足(2b﹣c)cosA﹣acosC=0.(1)求角A的大小;(2)若,△ABC的面积,试判断△ABC的形状,并说明理由.19.某厂准备生产甲、乙两种适销产品,每件销售收入分别为3千元,2千元.甲、乙产品都需要在A,B两种设备上加工,在每台A,B上加工一件甲产品所需工时分别为1小时、2小时,加工一件乙产品所需工时分别为2小时、1小时,A、B两种设备每月有效使用台时数分别为400小时和500小时.如何安排生产可使月收入最大?20.已知数列{a n}满足,n∈N*,数列{b n}的前n 项和S n,满足,n∈N*.(1)求数列{a n}、{b n}的通项公式;(2)求数列{a n•b n}的前n项和T n.21.在锐角△ABC中,角A,B,C所对应的边分别为a,b,c,,.(1)若,求△ABC的面积;(2)求2b+c的取值范围.2017-2018学年河南省郑州一中高二(上)期中数学试卷(文科)参考答案与试题解析一、单选题1.(3分)已知数列,则是这个数列的第()项.A.20 B.21 C.22 D.23【解答】解:数列,则该数列的通项公式为a n=,若=3=,即2n﹣1=45,解可得n=23,则是这个数列的第23项;故选:D.2.(3分)已知{a n}为等比数列,q为公比,则“q>1”是“{a n}为递增数列”的()A.既不充分也不必要条件B.必要不充分条件C.充要条件D.充分不必要条件【解答】解:{a n}为递增数列⇔a n>a n⇔a1>0,q>1;a1<0,0<q<1.+1∴“q>1”是“{a n}为递增数列”的既不充分也不必要条件.故选:A.3.(3分)已知数列{a n}的前n项和为S n,若a n=,S n=10,则n=()A.90 B.121 C.119 D.120【解答】解:∵a n==﹣,∴S n=(﹣1)+(﹣)+…+(﹣)=﹣1=10,故n+1=121,故n=120;故选:D.4.(3分)在等差数列{a n}中,已知5是a3和a6的等差中项,则a1+a8=()A.9 B.10 C.12 D.14【解答】解:∵5是a 3和a6的等差中项,∴a3+a6=2×5=10.由等差数列的性质可得:a 1+a8=a3+a6=10.故选:B.5.(3分)下列说法正确的是()A.在△ABC中,三边分别为a,b,c,若c2>a2+b2,则该三角形为钝角三角形B.x>1是1<x<2的充分不必要条件C.若b2=ac,则a,b,c成等比数列D.若p∨q为真命题,则p∧q为真命题【解答】解:对于A,在△ABC中,三边分别为a,b,c,c2=a2+b2﹣2abcosC,如果C是钝角,则c2>a2+b2,所以该三角形为钝角三角形,正确;对于B,x>1不一定有1<x<2,反之成立,所以是必要不充分条件,B不正确;对于C,若b2=ac,当b=a=0时,满足条件,但是a,b,c不是等比数列,所以C 不正确;对于D,若p∨q为真命题,说明至少一个是真命题,只有两个都是真命题是p ∧q为真命题,所以D不正确;故选:A.6.(3分)设等差数列{a n}的前n项和为S n,且满足S17>0,S18<0,则S n取最大值时n的值为()A.7 B.8 C.9 D.10【解答】解:∵等差数列{a n}中,S17>0,且S18<0即S17=17a9>0,S18=9(a10+a9)<0∴a10+a9<0,a9>0,∴a10<0,∴等差数列{a n}为递减数列,故可知a1,a2,…,a9为正,a10,a11…为负;∴S n取最大值时n的值为9.故选:C.7.(3分)若△ABC的角A,B,C所对应的边分别为a,b,c,且a=2,,S △ABC=4,则b=()A.B.C. D.=4=acsinB==c=4,解得:【解答】解:∵a=2,,S△ABCc=4,∴由余弦定理可得:b===2.故选:B.8.(3分)已知数列{a n}是递减数列,且对任意的正整数n,恒成立,则实数λ的取值范围为()A.(﹣3,+∞)B.(﹣∞,1]C.(﹣∞,1)D.【解答】解:数列{a n}是递减数列,且对任意的正整数n,恒成立,<a n,即为﹣(n+1)2+2λ(n+1)<﹣n2+2λn,可得a n+1化为2λ﹣1<2n对任意的正整数n成立,可得2λ﹣1<2,解得λ<,故选:D.9.(3分)在锐角△ABC中,A,B,C所对应的边分别为a,b,c,若b=3,c=4,则a的取值范围是()A.(1,7) B.(1,5) C.D.【解答】解:锐角△ABC中,A,B,C所对应的边分别为a,b,c,若b=3,c=4,则:cosA=,即:32+42>a2,解得:a<5,同理:,即:a2+b2﹣c2>0,解得:,故:a的范围是:<a<5,故选:C.10.(3分)若实数x,y满足,则|x+2y+1|的取值范围是()A.[0,4]B.[1,3]C.[2,6]D.[0,3]【解答】解:作出不等式组表示的可行域如图.令z=x+2y+1,则y=﹣x+z﹣,则z﹣表示直线z=x+2y在y轴上的截距,截距越大,z越大由题意可得A(﹣1,2),此时C(1,﹣2)又可行域过点B时,z最大,z max=﹣1+2×2+1=4过点D时z最小,z min=1+2×(﹣2)+1=﹣2,∴x+2y+1∈[﹣2,4],则|x+2y+1|的取值范围是[0,4].故选:A.11.(3分)已知等比数列{a n}的前n项和为S n,且,若log2a1+log2a2+…+log2a n=10,则n=()A.2 B.3 C.4 D.5【解答】解:等比数列{a n}的前n项和为S n,且,可得a n=2n﹣c﹣2n﹣1+c=2n﹣1,log2a1+log2a2+…+log2a n=10,可得a1a2…a n=210,即21+2+3+…+(n﹣1)=10,可得n=5,故选:D.12.(3分)已知x>0,y>0,且,若x+y>m2+8m恒成立,则实数m的取值范围是()A.(﹣8,0)B.(﹣9,1)C.D.(﹣8,1)【解答】解:∵x>0,y>0,且,∴(x+y)()=5++≥5+2=9,当且仅当x=3,y=6时取等号,∵x+y>m2+8m恒成立,∴m2+8m<9,解得﹣9<m<1,故选:B.二、填空题13.(3分)若1,a,b,c,9成等差数列,则c﹣a=4.【解答】解:根据题意,若1,a,b,c,9成等差数列,设其公差为d,则9﹣1=4d,则d=2,则c﹣a=2d=4,故答案为:4.14.(3分)若关于x的不等式x2﹣ax+b<0的解集{x|1<x<2},则实数a+b=5.【解答】解:不等式x2﹣ax+b<0的解集{x|1<x<2},即x2﹣ax+b=0的解为x1=1,x2=2,由韦达定理可得:x1+x2=a,即a=3x1•x2=b,即b=2.那么:a+b=5.故答案为515.(3分)已知S n为数列{a n}的前n项和,a1=1,2S n=(n+1)a n,若存在唯一的正整数n使得不等式a n2﹣ta n﹣2≤0成立,则实数t的取值范围为[﹣1,1).【解答】解:∵a1=1,2S n=(n+1)a n,∴n≥2时,2a n=2(S n﹣S n﹣1)=(n+1)a n﹣na n﹣1,化为:=,∴=,=…===1,∴a n=n.不等式a n2﹣ta n﹣2≤0化为:存在唯一的正整数n使得不等式:n2﹣tn﹣2≤0,设f(n)=n2﹣tn﹣2,由于f(0)=﹣2t2,∴,解得:﹣1≤t<1,∴实数t的取值范围为[﹣1,1),故答案为:[﹣1,1).三、解答题16.设命题p:实数x满足(x+a)(x﹣3a)<0,其中a>0,命题q:实数x满足x2﹣5x+4≤0.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.【解答】解:(1)当p为真命题时,由(x+a)(x﹣3a)<0,(a>0),得﹣a<x<3a,当a=1得﹣1<x<3,当q为真命题时,由x2﹣5x+4≤0,得1≤x≤4,∵p∧q为真,∴p真q真,∴1≤x<3,所以实数x的取值范围为{x|1≤x<3}.(2)∵¬p是¬q的充分不必要条件,∴q是p的充分不必要条件,∴{x|1≤x≤4}⊊{x|﹣a<x<3a},∴,∴,所以实数a的取值范围为.17.已知等差数列{a n}中,a1+a4=10,a5=10.(1)求数列{a n}的通项公式;(2)已知,求数列{b n}的前n项和S n.【解答】解:(1)等差数列{a n}中,设首项为a1,公差为d,由于:a1+a4=10,a5=10.则:,解得:,所以:a n=2+2(n﹣1)=2n,(2)由于:a n=2n,所以:=,则:,=1﹣,=.18.(2分)在△ABC中,角A,B,C的对边长分别是a,b,c,且满足(2b﹣c)cosA﹣acosC=0.(1)求角A的大小;(2)若,△ABC的面积,试判断△ABC的形状,并说明理由.【解答】(本小题满分12分)解:(1)∵由(2b﹣c)cosA﹣acosC=0,得:2sinBcosA=sinAcosC+sinCcosA,∴得:2sinBcosA=sin(A+C),即:2sinBcosA=sinB,…(4分)∵0<B<π,∴sinB≠0,∴cosA=,因为0<A<π,∴解得:A=.…(6分)(2)△ABC的形状为等边三角形,理由如下:=,∵A=,a=,△ABC的面积S△ABC∴利用三角形面积公式可得:=×bc×,可得:bc=3①∴由余弦定理可得:3=b2+c2﹣bc=(b+c)2﹣3bc=(b+c)2﹣9,可得:b+c=2,②∴利用①②联立,可解得:c=b=a=.∴三角形为等边三角形.…(12分)19.某厂准备生产甲、乙两种适销产品,每件销售收入分别为3千元,2千元.甲、乙产品都需要在A,B两种设备上加工,在每台A,B上加工一件甲产品所需工时分别为1小时、2小时,加工一件乙产品所需工时分别为2小时、1小时,A、B两种设备每月有效使用台时数分别为400小时和500小时.如何安排生产可使月收入最大?【解答】解:设甲、乙两种产品月的产量分别为x,y件,约束条件是目标函数是z=0.3x+0.2y由约束条件画出可行域,如图所示的阴影部分由z=0.3x+0.2y可得5z为直线z=0.3x+0.2y在y轴上的截距,截距最大时z最大.结合图象可知,z=0.3x+0.2y在A处取得最大值由可得A(200,100),此时z=80万故安排生产甲、乙两种产品月的产量分别为200,100件可使月收入最大.20.已知数列{a n}满足,n∈N*,数列{b n}的前n 项和S n,满足,n∈N*.(1)求数列{a n}、{b n}的通项公式;(2)求数列{a n•b n}的前n项和T n.【解答】解:(1)数列{a n}满足①,n∈N*,可得a1=;n≥2时,a1+2a2+…+2n﹣2a n﹣1=②①﹣②可得2n﹣1a n=,解得a n=()n,上式对n=1也成立,则a n=()n,n∈N*;数列{b n}的前n项和S n,满足,n∈N*.可得b1=2;n≥2时,b n=S n﹣S n﹣1=n2+n﹣(n﹣1)2﹣(n﹣1)=2n,则b n=2n,n∈N*.(2)a n•b n=n•()n﹣1,前n项和T n=1•()0+2•()1+3•()2+…+n•()n﹣1,T n=1•()0+2•()1+3•()2+…+n•()n﹣1,两式相减可得T n=()0+()1+()2+…+()n﹣1﹣n•()n﹣1=﹣n•()n﹣1,化简可得T n=4﹣(2n+4)•()n.21.在锐角△ABC中,角A,B,C所对应的边分别为a,b,c,,.(1)若,求△ABC的面积;(2)求2b+c的取值范围.【解答】解:(1)锐角△ABC中,,,∴﹣cos(A+B)+cosAcosB﹣sinBcosA=0,即﹣cosAcosB+sinAsinB+cosAcosB﹣sinBcosA=0,即sinB(sinA﹣cosA)=0,∴sinA﹣cosA=0,tanA=,∴A=.再根据,利用正弦定理可得=,即=,求得sinB=,∴B=,∴C=π﹣A﹣B=,∴sinC=sin=sin(+)=sin cos+cos sin=,∴△ABC的面积为•ab•sinC==3+.(2)锐角△ABC中,由(1)可得A=,∴B+C=,∵===4,∴2b+c=8sinB+4sinC=8sinB+4sin(﹣B)=8sinB+4sin cosB﹣4cos sinB=10sinB+2cosB=4(sinB+cosB)=4sin(B+α),其中,cosα==,sinα=,∴锐角α∈(0,).∵<B<,∴B+α∈(,),∴sin(B+α)∈(,1],即2b+c=4sin(B+α)∈(2,4].。

相关文档
最新文档