八年级数学上册 第十四章一次函数复习学案 人教新课标版

合集下载

八年级数学上册-第十四章一次函数教案设计--人教新课标版

八年级数学上册-第十四章一次函数教案设计--人教新课标版

第十四章一次函数(共22课时)第一课时课题§11.1.1 变量课型:新授教学目标(一)知识与技能1.认识变量、常量.2.学会用含一个变量的代数式表示另一个变量.(二)过程与方法1.经历观察、分析、思考等数学活动过程,发展合情推理,有条理地、清晰地阐述自己观点.2.逐步感知变量间的关系.(三)情感与价值观要求1.积极参与数学活动,对数学产生好奇心和求知欲.2.形成实事求是的态度以及独立思考的习惯.教学重点1.认识变量、常量.2.用式子表示变量间关系.教学难点用含有一个变量的式子表示另一个变量.教学方法引导、探索法.教具准备多媒体演示.(小黑板)教学过程Ⅰ.提出问题,创设情境情景问题:一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米.•行驶时间为t小时.1.请同学们根据题意填写下表:t/时 1 2 3 4 5s/千米2.在以上这个过程中,变化的量是________.变变化的量是__________.3.试用含t的式子表示s.通过本节课的学习,相信大家一定能够解决这些问题.Ⅱ.导入新课[师]我们首先来思考上面的几个问题,可以互相讨论一下,然后回答.[生]从题意中可以知道汽车是匀速行驶,那么它1小时行驶60千米,2小时行驶2×60千米,即120千米,3小时行驶3×60千米,即180千米,4小时行驶4×60•千米,即240千米,5小时行驶5×60千米,即300千米……因此行驶里程s千米与时间t小时之间有关系:s=60t.其中里程s与时间t是变化的量,速度60千米/小时是不变的量.[师]很好!谢谢你正确的阐述.这种问题反映了匀速行驶的汽车所行驶的里程随行驶时间的变化过程.其实现实生活中有好多类似的问题,都是反映不同事物的变化过程,其中有些量的值是按照某种规律变化,其中有些量的是按照某种规律变化的,如上例中的时间t、•里程s,有些量的数值是始终不变的,如上例中的速度60千米/小时.[活动一]活动内容设计:1.每张电影票售价为10元,如果早场售出票150张,日场售出205张,晚场售出310张.三场电影的票房收入各多少元.设一场电影售票x张,票房收入y元.怎样用含x的式子表示y?2.在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10cm•,每1kg重物使弹簧伸长0.5cm,怎样用含有重物质量m的式子表示受力后的弹簧长度?设计意图:让学生熟练从不同事物的变化过程中寻找出变化量之间的变化规律,并逐步学会用含有一个变化量的式子表示另一个变化的量.教师活动:引导学生通过合理、正确的思维方法探索出变化规律.学生活动:在教师的启发引导下,经历尝试运算、猜想探究、归纳总结及验证等过程得到正确的结论.活动结论:1.早场电影票房收入:150×10=1500(元)日场电影票房收入:205×10=2050(元)晚场电影票房收入:310×10=3100(元)关系式:y=10x2.挂1kg重物时弹簧长度: 1×0.5+10=10.5(cm)挂2kg重物时弹簧长度:2×0.5+10=11(cm)挂3kg重物时弹簧长度:3×0.5+10=11.5(cm)关系式:L=0.5m+10[师]通过上述活动,我们清楚地认识到,要想寻求事物变化过程的规律,首先需确定在这个过程中哪些量是变化的,而哪些量又是不变的.在一个变化过程中,我们称数值发生变化的量为变量(variable),那么数值始终不变的量称之为常量(constant).如上述两个过程中,售出票数x、票房收入y;重物质量m,弹簧长度L都是变量.而票价10元,弹簧原长10cm……都是常量.Ⅲ.随堂练习1.购买一些铅笔,单价0.2元/支,总价y元随铅笔支数x变化,•指出其中的常量与变量,并写出关系式.2.一个三角形的底边长5cm,高h可以任意伸缩.写出面积S随h变化关系式,并指出其中常量与变量.Ⅳ.课时小结本节课从现实问题出发,找出了寻求事物变化中变量之间变化规律的一般方法步骤.它对以后学习函数及建立函数关系式有很重要意义.1.确定事物变化中的变量与常量.2.尝试运算寻求变量间存在的规律.3.利用学过的有关知识公式确定关系区.Ⅴ.课后作业习题:14.1----1、2、3Ⅵ.活动与探究瓶子或罐头盒等物体常如下图那样堆放.试确定瓶子总数y与层数x之间的关系式.过程:要求变量间关系式,需首先知道两个变量间存在的规律是什么.不妨尝试堆放,找出规律,再寻求确定关系式的办法.结论:从题意可知:堆放1层,总数y=1堆放2层,总数y=1+2堆放3层,总数y=1+2+3……堆放x层,总数y=1+2+3+…x 即y=12x(x+1)板书设计§11.1.1变量一、常量与变量二、寻求确定变量间关系式的方法三、随堂练习四、课时小结教学反馈:第二课时课题:变量与函数(2) 课型:新授教学目标(一)知识与技能理解函数的概念,能准确识别出函数关系中的自变量和函数(二)过程与方法会用变化的量描述事物(三)情感与价值观要求回用运动的观点观察事物,分析事物教学重点:函数的概念及相关计算教学难点:认识函数、领会函数的意义教学方法引导、探究法教具准备多媒体电脑(小黑板)计算器教学过程Ⅰ.提出问题,创设情境我们来回顾一下上节课所研究的每个问题中是否各有两个变化?同一问题中的变量之间有什么联系?也就是说当其中一个变量确定一个值时,另一个变量是否随之确定一个值呢?这将是我们这节研究的内容.Ⅱ.导入新课首先回顾一下上节活动一中的两个问题.思考它们每个问题中是否有两个变量,变量间存在什么联系.活动一两个问题都有两个变量.问题(1)中,经计算可以发现:每当售票数量x取定一个值时,票房收入y就随之确定一个值.例如早场x=150,则y=1500;日场x=205,则y=2050;晚场x=310,则y=3100.问题(2)中,通过试验可以看出:每当重物质量m确定一个值时,弹簧长度L•就随之确定一个值.如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm.当m=10时,则L=15,当m=20时,则L=20.由以上回顾我们可以归纳这样的结论:上面每个问题中的两个变量互相联系,当其中一个变量取定一个值时,另一个变量随之就有唯一确定的值与它对应.活动二:其实,在一些用图或表格表达的问题中,也能看到两个变量间的关系.我们来看下面两个问题,通过观察、思考、讨论后回答:(1)下图是体检时的心电图.其中横坐标x表示时间,纵坐标y•表示心脏部位的生物电流,它们是两个变量.在心电图中,对于x的每个确定的值,y都有唯一确定的对应值吗?(2)在下面的我国人口数统计表中,年份与人口数可以记作两个变量x与y,对于表中每个确定的年份(x),都对应着个确定的人口数(y)吗?中国人口数统计表年份人口数/亿1984 10.341989 14.061994 14.761999 12.52通过观察不难发现在问题(1)的心电图中,对于x的每个确定值,y都有唯一确定的值与其对应;在问题(2)中,对于表中每个确定的年份x,都对应着一个确定的人口数y.一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.如果当x=a 时,y=b,那么b叫做当自变量的值为a时的函数值.据此可以认为:上节情景问题中时间t是自变量,里程s是t的函数.t=1时的函数值s=60,t=2时的函数值s=120,t=2.5时的函数值s=150,…,同样地,在以上心电图问题中,时间x是自变量,心脏电流y是x的函数;人口数统计表中,年份x是自变量,人口数y是x的函数.当x=1999时,函数值y=12.52亿.从上面的学习中可知许多问题中的变量之间都存在函数关系.例1:一辆汽车油箱现有汽油50L,如果不再加油,那么油箱中的油量y(L)随行驶里程x(km)的增加而减少,平均耗油量为0.1L/km.1.写出表示y与x的函数关系式.2.指出自变量x的取值范围.3.汽车行驶200km时,油桶中还有多少汽油?结论:1.行驶里程x是自变量,油箱中的油量y是x的函数.行驶里程x时耗油为:0.1x油箱中剩余油量为:50-0.1x所以函数关系式为:y=50-0.1x2.仅从式子y=50-0.1x上看,x可以取任意实数,但是考虑到x•代表的实际意义是行驶里程,所以不能取负数,并且行驶中耗油量为0.1x,它不能超过油箱中现有汽油50L,即0.1x≤50,x≤500.因此自变量x的取值范围是:0≤x≤5003.汽车行驶200km时,油箱中的汽油量是函数y=50-0.1x在x=200时的函数值,将x=200代入y=50-0.1x得: y=50-0.1×200=30汽车行驶200km时,油箱中还有30升汽油.Ⅲ.随堂练习下列问题中哪些量是自变量?哪些量是自变量的函数?试写出用自变量表示函数的式子.1.改变正方形的边长x,正方形的面积S随之改变.2.秀水村的耕地面积是106m2,这个村人均占有耕地面积y随这个村人数n的变化而变化.解答:1.正方形边长x是自变量,正方形面积S是x的函数.函数关系式:S=x22.这个村人口数n是自变量,人均占有耕地面积y是n的函数.Ⅴ.作业1、p14--1,6题.2、练习册Ⅵ.活动与探究1、小明去商店为美术小组买宣纸和毛笔,宣纸每张3元,毛笔每支5元,商店正搞优惠活动,买一支毛笔赠一张宣纸.小明买了10支毛笔和x张宣纸,则小明用钱总数y (元)与宣纸数x之间的函数关系是什么?过程:根据题意可知:当小明所买宣纸数x小于等于10张时,所用钱数为:y=5×10=50(元)当小明所买宣纸数x大于10张时,所用钱数为:y=50+(x-10)×3=3x+20(元)结果:当0<x≤10时 y=50当x>10时 y=3x+202、为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过10吨时,水价为每吨1.2元;超过10吨时,超过的部分按每吨1.8元收费,该市某户居民5月份用水x吨(x >10),应交水费y元,请用方程的知识来求有关x和y的关系式,并判断其中一个变量是否为另一个变量的函数?(参考答案:Y=1.8x-6或)2、如图(二),请写出等腰三角形的顶角y与底角x之间的函数关系式.3.到邮局投寄平信,每封信的重量不超过20克时付邮费0.80元,超过20克而不超过40克时付邮费1.60元,依此类推,每增加20克须增加邮费0.80元(信重量在100克内).如果某人所寄一封信的质量为78.5克,则他应付邮费________元.板书设计§14.1.2 函数一、自变量、函数及函数值二、例析三、课堂练习教学反思:第三课时课题:变量与函数(3)课型:新授教学目标(一)知识与技能进一步理解掌握确定函数关系式.会确定自变量取值范围.(二)过程与方法会用变化的量描述事物(三)情感与价值观要求会用运动的观点观察事物,分析事物教学重点:1.进一步掌握确定函数关系的方法.2.确定自变量的取值范围.教学难点:认识函数、领会函数的意义.教学方法:引导法、合作学习教具准备:小黑板、计算器教学说明:①求自变量的取值范围②求实际问题中自变量的取值范围教学过程1.在计算器上按照下面的程序进行操作:填表:x 1 3 -4 0 101y显示的数y是输入的数x的函数吗?为什么?2.在计算器上按照下面的程序进行操作.下表中的x与y是输入的5个数与相应的计算结果:x 1 2 3 0 -1y 3 5 7 2 -1所按的第三、四两个键是哪两个键?y是x的函数吗?如果是,写出它的表达式(用含有x的式子表示y).活动结论:1.从计算结果完全可以看出,每输入一个x的值,操作后都有一个唯五的y值与其对应,所以在这两个变量中,x是自变量、y是x的函数.2.从表中两行数据中不难看出第三、四按键是1这两个键,且每个x•的值都有唯一一个y值与其对应,所以在这两个变量中,x是自变量,y是x的函数.关系式是:y=2x+1关于函数自变量的取值范围1.实际问题中的自变量取值范围问题1:在上面的联系中所出现的各个函数中,自变量的取值有限制吗?如果有.各是什么样的限制?问题2:某剧场共有30排座位,第l排有18个座位,后面每排比前一排多1个座位,写出每排的座位数与这排的排数的函数关系式,自变量的取值有什么限制。

新人教版八年级上册第14章一次函数全章精品教案-7.doc

新人教版八年级上册第14章一次函数全章精品教案-7.doc

新人教版八年级数学上册第14章一次函数第3节用函数观点看方程(组)与不等式第2小节一次函数与一元一次不等式教学目标知识技能:通过数形结合领悟一次函数与一元一次不等式之间的联系.通过具体问题初步体会运用一次函数与一元一次不等式解决有关的问题.提高分析问题解决问题的能力、综合运用知识的能力.数学思考:形成新知识的体系,体会数形结合的思想.解决问题:通过动手操作、小组讨论从形与数两个角度体会一次函数与一元一次不等式的内在联系.情感态度:通过新知识的学习,加强知识的联系,体会数形结合的思想。

教学重点:一次函数与一元一次不等式之间的联系.教学难点:通过具体问题体会运用一次函数与一元一次不等式解决有关的问题. 教学过程设计活动一.知识回顾,引入新课一次函数的定义.一次函数的图象.直线y=kx+b与方程的联系.那么一次函数与一元一次不等式是怎样的关系呢?本节课研究一次函数与一元一次不等式的关系.活动二.分析比较,探索关系1.问题.看下面两个问题有什么关系:(1)解不等式5x+6>3x+10.(2)当自变量x为何值时函数y=2x-4的值大于0?在问题(1)中,不等式5x+6>3x+10可以转化为2x-4>0,解这个不等式得x>2;解问题(2)就是要解不等式2x-4>0,得出x>2时函数y=2x-4的值大于0,因此这两个问题实际上是同一个问题.从直线y=2x-4(图14.3-3)可以看出,当x>2时这条直线上的点在x轴的上方,即这时y=2x-4>0.2.思考:由上面两个问题的关系,能进一步得到“解不等式ax+b>0”与“求自变量x在什么范围内,一次函数y=ax+b的值大于0”有什么关系?3.通过观察、思考、小组讨论得出这两个问题实质是一个问题.活动三.知识应用,例题选讲例1.用画函数图象的方法解不等式5x+4<2x+10.解法1:原不等式化为3x-6<0,画出直线y=3x-6(图14.3-4),可以看出,当x<2时这条直线上的点在x轴的下方,即这时y=3x-6<0,所以不等式的解集为x<2.解法2:将原不等式的两边分别看作两个一次函数,画出直线y=5x+4与直线y=2x+10(图14.3-5),可以看出,它们交点的横坐标为2,当x<2时,对于同一个x,直线y=5x+4上的点在直线y=2x+10上相应点的下方,这时5x+4<2x +10,所以不等式的解集为x<2.图14.3.3 图14.3.4 图14.3.5 关于这两种解法,让学生实际画出图象,找出问题的答案。

八年级数学上册 第十四章 一次函数复习教案1 新人教版

八年级数学上册 第十四章 一次函数复习教案1 新人教版
C.小军比爸爸晚到山顶
D.爸爸前10分钟登山的速度比小军慢,
10分钟后登山的速度比小军快
3、猜测与验证
上述图形中还具有什么结论?(让学生自己总结,调动学生的积极性)
4、规律归纳
观察图形,你还能求出相遇时刻的路程吗?(和交点的有关)
(让学生自己总结,调动学生的积极性)
三、巩固应用、解决问题
1、例题解析:
四、知识小结与活动经验
1.一次函数的图像和性质。
2.找出利用一次函数的性质解决问题所需条件,要充分利用已知条件(包括给出图形中的条件)。
(注重作图严谨性)
两种方法求解
方案题的复习
五、作业布置:导航A: P89---90
B: P 91—92
板书
设计
第十四章一次函数复习(2)
一、性质:二、例:三、练习:
2、讨论与探究
一天, 小军和爸爸去登山,已知山脚到山顶的路程为300米.小军先走了一段路程,爸爸才开始出发.图中两条线段分别表示小军和爸爸离开山脚登山的路程S(米)与登山所用的时间t(分)的关系(从爸爸开始登山时 计时).根据图象,下列说法错误的是(D)
A.爸爸登山时,小军 已走了50米
B.爸爸走了5分钟,小军仍在爸爸的前面
① ② ③
④ A. 1个B. 2个C. 3个D. 4个
3.直线y = x+4与x轴交于A,与y轴交于B, O为原点,则△AOB的面积为(C)
A.12 B.24 C.6 D.10
二、操作与探究
1、观察与操作
小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与卖瓜的千克数之间的关系如图所示,那么小李赚了(B)A.32元B.36元C.38元D.44元、

最新人教版初二数学八年级上册第14章《一次函数》单元优秀导学案教学案

最新人教版初二数学八年级上册第14章《一次函数》单元优秀导学案教学案

第十四章一次函数 14.1.1变量(41课时)学习目标:1、通过探索具体问题中的数量关系和变化规律来了解常量、变量的意义;2、学会用含一个变量的代数式表示另一个变量;学习重点:了解常量与变量的意义;学习难点:较复杂问题中常量与变量的识别学习过程:一,提出问题,创设情景问题一:汽车以60千米/小时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时.2.化的量是__________.3.试用含t的式子表示s: s=________,t的取值范围是_________ .这个问题反映了匀速行驶的汽车所行驶的路程____随行驶时间___的变化过程.二,深入探究,得出结论(一)问题探究:问题二:每张电影票的售价为10元,如果早场售出票150张,午场售出205张,晚场售出310张,三场电影的票房收入各多少元?设一场电影售票x张,票房收入y元.•2.3.试用含x的式子表示y: y=______ ,x的取值范围是 .这个问题反映了票房收入_________随售票张数_________的变化过程.问题三:在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10cm•,•每1kg•重物使弹簧伸长0.5cm,设重物质量为mkg,受力后的弹簧长度为L cm.12.3.试用含m的式子表示L: L=____________ ,m的取值范围是 .这个问题反映了_________随_________的变化过程.问题四:要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?30 cm2呢?怎样用含有圆面积S的式子表示圆半径r?2..3.试用含s的式子表示r.r=_________,s的取值范围是 . 这个问题反映了___ _ 随_ __的变化过程.问题五:用10m长的绳子围成长方形,试改变长方形的长度,观察长方形的面积怎样变化.记录不同的矩形的长度值,计算相应的矩形面积的值,探索它们的变化规律。

最新人教版八年级数学第14章一次函数教案

最新人教版八年级数学第14章一次函数教案

最新人教版八年级数学第14章一次函数教案备课应有教师自己的东西,教案也应突出教参所没有的内容。

不仅有对教参的割舍与放弃,也有具体的知识拓展与补充,以及传授的方法与步骤。

今天在这里整理了一些最新人教版八年级数学第14章一次函数教案范文,我们一起来看看吧!最新人教版八年级数学第14章一次函数教案范文1一、教学目标:理解分式乘除法的法则,会进行分式乘除运算.二、重点、难点1.重点:会用分式乘除的法则进行运算.2.难点:灵活运用分式乘除的法则进行运算.3. 难点与突破方法分式的运算以有理数和整式的运算为基础,以因式分解为手段,经过转化后往经过转化后往往可视为整式的运算.分式的乘除的法则和运算顺序可类比分数的有关内容得到.所以,教给学生类比的数学思想方法能较好地实现新知识的转化.只要做到这一点就可充分发挥学生的主体性,使学生主动获取知识.教师要重点处理分式中有别于分数运算的有关内容,使学生规范掌握,特别是运算符号的问题,要抓住出现的问题认真落实.三、例、习题的意图分析1.P13本节的引入还是用问题1求容积的高,问题2求大拖拉机的工作效率是小拖拉机的工作效率的多少倍,这两个引例所得到的容积的高是,大拖拉机的工作效率是小拖拉机的工作效率的倍.引出了分式的乘除法的实际存在的意义,进一步引出P14[观察]从分数的乘除法引导学生类比出分式的乘除法的法则.但分析题意、列式子时,不易耽误太多时间.2.P14例1应用分式的乘除法法则进行计算,注意计算的结果如能约分,应化简到最简.3.P14例2是较复杂的分式乘除,分式的分子、分母是多项式,应先把多项式分解因式,再进行约分.4.P14例3是应用题,题意也比较容易理解,式子也比较容易列出来,但要注意根据问题的实际意义可知a1,因此(a-1)2=a2-2a+1四、课堂引入1.出示P13本节的引入的问题1求容积的高,问题2求大拖拉机的工作效率是小拖拉机的工作效率的倍.[引入]从上面的问题可知,有时需要分式运算的乘除.本节我们就讨论数量关系需要进行分式的乘除运算.我们先从分数的乘除入手,类比出分式的乘除法法则.1. P14[观察] 从上面的算式可以看到分式的乘除法法则.3.[提问] P14[思考]类比分数的乘除法法则,你能说出分式的乘除法法则?类似分数的乘除法法则得到分式的乘除法法则的结论.五、例题讲解P14例1.[分析]这道例题就是直接应用分式的乘除法法则进行运算.应该注意的是运算结果应约分到最简,还应注意在计算时跟整式运算一样,先判断运算符号,在计算结果.P15例2.[分析]这道例题的分式的分子、分母是多项式,应先把多项式分解因式,再进行约分.结果的分母如果不是单一的多项式,而是多个多项式相乘是不必把它们展开.P15例.[分析]这道应用题有两问,第一问是:哪一种小麦的单位面积产量?先分别求出“丰收1号”、“丰收2号”小麦试验田的面积,再分别求出“丰收1号”、“丰收2号”小麦试验田的单位面积产量,分别是、,还要判断出以上两个分式的值,哪一个值更大.要根据问题的实际意义可知a1,因此(a-1)2=a2-2a+1最新人教版八年级数学第14章一次函数教案范文2一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形.二、重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形.3.认知难点与突破方法教学难点是灵活应用分式的基本性质将分式变形.突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质.应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形.三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.四、课堂引入1.请同学们考虑:与相等吗? 与相等吗?为什么?2.说出与之间变形的过程,与之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质.五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.,,,,。

新人教版八年级上期末复习学案(第十四章一次函数)

新人教版八年级上期末复习学案(第十四章一次函数)

八年级数学上册期末复习学案第十四章 一次函数第11章 一次函数复习教案(1)一、精心选一选:(当堂练习)1.在平面直角坐标系中,点(-1,-2)所在的象限是 ( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限2.函数y =中,自变量x 的取值范围是( )A . x < 1B . x ≤ 1C . x > 1D . x ≥13.右图是护士统计一位病人的体温变化图,这位病人中午12时的体温约为 ( )A .39.0℃B .38.5℃C .38.2℃D .37.8℃4.点M (1,2)关于x 轴对称点的坐标为( )A 、(-1,2)B 、(-1,-2)C 、(1,-2)D 、(2,-1)5. 如图,所示的象棋盘上,若○帅 位于点(1,-2)上,○相 位于点(3,-2)上,则○炮位于点( )A. (-1,1)B. (-1,2)C. (-2,1)D. (-2,2)6. 一次函数y=-2x+3的图像不经过的象限是( ).A 第一象限B 第二象限C 第三象限D 第四象限7.小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了部分西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与卖瓜的千克数之间的关系如图所示,那么小李赚了( )A .32元B .36元C .38元D .44元、8.下列函数中,y 随x 的增大而减小的有( )①12+-=x y ② x y -=6③ 31x y +-= ④ x y )21(-=A.1个B.2个C.3个D.4个9.直线 y=43 x +4与 x 轴交于 A,与y 轴交于B, O 为原点,则△AOB的面积为( )A .12B .24C .6D .1010.一天,小军和爸爸去登山,已知山脚到山顶的路程为300米.小军先走了一段路程,爸爸才开始出发.图中两条线段分别表示小军和爸爸离开山脚登山的路程S(米)与登山所用的时间t (分)的关系(从爸爸开始登山时计时).根据图象,下列说法错误的是( )A .爸爸登山时,小军已走了50米B .爸爸走了5分钟,小军仍在爸爸的前面C .小军比爸爸晚到山顶D .爸爸前10分钟登山的速度比小军慢,10分钟后登山的速度比小军快图3相帅炮二、师生互动:11.右图是某汽车行驶的路程S (km)与时间t (min)的 函 数关系图.观察图中所提供的信息,解答下列问题:(1)汽车在前9分钟内的平均速度是多少?(2)汽车在中途停了多长时间?(3)当16≤t ≤30时,求S 与t 的函数关系式.12.已知正比例函数x k y 1=的图像与一次函数92-=x k y 的图像交于点P (3,-6)。

八年级数学上册_第十四章 一次函数_本章综合学案人教版

八年级数学上册_第十四章 一次函数_本章综合学案人教版

第十四章 一次函数 14.1 变量与函数14 变量知能新视窗知识结构学点博览学点1 变量和常量在一个变化过程中,有些量的值是按照某种规律变化的,我们称它为变量,有些量的数值是始终不变的,我们称它为常量.理解要点:(1)判断一个量是常量还是变量的方法,需看两个方面:①看它是否在一个变化的过程中;②看它在这个变化过程中的取值情况.(2)变量与常量必须存在同一个变化过程中,常量是相对于某一过程或另一个变量而言的.如:圆的半径R 和周长C 的关系式C=2πR 中,其中C 、R 可取不同数值是变量,而圆周率π和2都保持不变,是常量.(3)在某一个变化过程中,变量、常量都可以有多个,常量可以是一个实数,也可以是一个代数式(数值始终保持不变). 学点2 变量与常量的关系常量与变量是相对的,变量是随不同的问题而有所不同,在这个式子中是变量,也许在其它式中就是常量,也就是说一个量是否是变量、常量是相对的,要看具体问题而定。

理解要点:(1)相对性:例如,在汽车行驶中有三个量:路程S ,行驶时间t,速度v ,当速度v 一定时,路程S 与时间t 是变量,速度v 是常量;当行驶时间t 一定时,路程S 与速度v 是变量,行驶的时间是常量;当路程S 一定时,速度v 与时间t 是变量,路程S 是常量.(2)常量也可以是常数,如C=2πR 中π是常数.名师开小灶金考点考点1判断变化过程中的变量和常量常量和变量是普遍存在的,它们只是相对于某个变化过程而言的两个概念,因此对它的判别应紧扣定义及相应的实际情境.[例1]指出下列各关系式中的常量与变量(1)圆的面积公式S=πr 2(S 是圆的面积,r 是半径)中,变量是,常量是. (2)求补角的公式y=180°-x 中,变量是,常量是. (3)△ABC 的底边是a ,底边的高为h ,则△ABC 的面积S=21ah ,若h 为一定长,则此式中,变量是,常量是.[点拨]根据变量、常量的定义,抓住“变“与”不变”来解答. [解答](1)S 和r ,π (2)y 和x ,180° (3)S 和a,21和h[方法规律]根据实际问题情境,判断“量”的变化与否,数值发生变化的量是变量,否则为常量. 考点2常量和变量的相对性常量是相对于某一过程或另一个变量而言的,绝对的常量是不存在的.[例2](1)设圆柱的底面半径R 不变,圆柱的体积V 与圆柱的高h 的关系式是V=πR 2h 在这个式子中,常量和变量分别是什么?(2)设圆柱的高h 不变,圆柱的体积V 与圆柱的底面半径R 的关系式是V=πR 2h 中在这个式子中,常量和变量分别又是什么?[点拨]常量和变量往往是相对的,相对于某个变化过程,并非一成不变。

(整理)初中数学八年级上册第十四章《一次函数》精品复习学案

(整理)初中数学八年级上册第十四章《一次函数》精品复习学案

新课标人教版初中数学八年级上册第十四章《一次函数》精品复习学案一、知识回顾:(1).甲、乙两地相距S千米,某人行完全程所用的时间t(时)与他的速度v(千米/时)满足vt=S,在这个变化过程中,下列判断中错误的是()A.S是变量 B.t是变量 C.v是变量 D.S是常量(2)、如图所示的图象分别给出了x与y的对应关系,其中y是x的函数的是()知识提要:1.在一个变化过程中,___________的量是变量,•___________的量是常量.2.一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有________的值与其对应,那么就称y是x的函数.(3)、在下列函数中, x是自变量, y是x的函数,那些是一次函数?那些是正比例函数?y=2x y=-3x+1 y=x2(4)、已知一次函数kxky)1(-=+3,则k= .知识提要:一次函数的概念:函数y=_______(k、b为常数,k______)叫做一次函数。

当b_____时,函数y=____(k____)叫做正比例函数。

(5)、有下列函数:①y=2x+1, ②y=-3x+4,③y=0.5x,④y=x-6;其中过原点的直线是________;函数y随x的增大而增大的是__________;函数y随x的增大而减小的是___________;图象在第一、二、三象限的是________ 。

知识提要:正比例函数y=kx(k≠0)的性质:正比例函数y=kx(k≠0)的图象是过_______的一条_________。

⑴当k>0时,图象过______象限;y随x的增大而____。

⑵当k<0时,图象过______象限;y随x的增大而____。

一次函数y=kx+b(k ≠ 0)的性质:一次函数y=kx+b(k≠0)的图象是一条__________。

⑴当k>0时,y 随x 的增大而_________。

⑵当k<0时,y 随x 的增大而_________。

第14章一次函数复习教案(人教新课标初二上)doc初中数学

第14章一次函数复习教案(人教新课标初二上)doc初中数学

第14章一次函数复习教案(人教新课标初二上)doc初中数学第14章一次函数复习教案(人教新课标初二上)doc初中数学一、差不多知识提炼整理〔一〕、差不多概念1.函数的概念一样地,在一个变化过程中,假如有两个变量x和y,同时关于x 的每一个确定的值,y都有惟一确定的值与其对应,那么我们就讲x是自变量,y是x的函数.2.一次函数和正比例函数的概念假设两个变量x,y之间的关系式能够表示成y=kx+b〔k,b为常数,且k≠0〕的形式,那么称y是x的一次函数〔x是自变量〕.专门地,当b=0时,称y是x的正比例函数.〔二〕、一次函数和正比例函数的图象和性质函数图象性质一次函数y=kx +b 〔k≠0〕过点〔0,b〕且平行于y=kx的一条直线〔1〕当k>0时,y随x的增大而增大,图象必过第一、三象限;①当b>0时,过第一、二、三象限;②当b=0时,只过第一、三象限;③当b<0时,过第一、三、四象限.〔2〕当k<0时,y随x的增大而减小,图象必过第二、四象限.①当b>0时,过第一、二、四象限;②当b=0时,只过第二、四象限;③当b<0时,过第二、三、四象限正比例函数y=kx (k≠0) 过原点的一条直线图象过原点.〔1〕当k>0,y随x的增大而增大,图象必过第一、三象限;〔2〕当k<0时,y随x的增大而减小,图象必过第二、四象限二、学法指导在本章的学习中,要逐步透彻明白得函数的概念,在明白得的基础上把握一次函数图象的性质,注意在解决咨询题过程中充分体会和运用数形结合的思想,除此之外,还要注意函数与方程、不等式、几何知识的内在联系,把一次函数的知识与其他学科有机地结合起来.三、知识网络图示专题总结及应用一、基础知识应用1.结合实例明白得函数的概念.2.熟练把握一次函数和正比例函数的概念.3.结合一次函数的图象,熟练把握一次函数和正比例函数的性质.4.会求一次函数的表达式.5.能灵活运用一次函数的图象解决实际咨询题.例1 一报亭从报社订购某晚报的价格是每份0.7元,销售价是每份1元,卖不掉的报纸还能够以每份0.2元的价格退回报社,在一个月内〔以30天运算〕有20天每天能够卖出100份,其余10天每天只能卖出60份,但每天报亭从报社订购的份数必须相同,假设以报亭每天从报社订购报纸的份数为自变量x,每月所获利润为y〔元〕.〔1〕写出y与x之间的函数关系式,并指出自变量x的取值范畴;〔2〕报亭应该每天从报社订购多少份报纸,才能使每月获得的利润最大?最大利润是多少?[分析] 〔1〕先确定x的取值范畴,60≤x≤100,且x是正整数,然后列出函数表达式.〔2〕利用一次函数的性质求出最大利润.解:〔1〕假设报亭每天从报社订购晚报x份,那么x应满足60≤x≤100,且x是正整数.那么每月共销售〔20x+10×60〕份,退回报社10〔x-60〕份.又因为卖出的报纸每份获利0.3元,退回的报纸每份亏损0.5元,因此每月获得的利润为,y=0.3(2Ox 十10×6O)一0.5×1O(x-6O)=x 十48O .自变量x的取值范畴是60≤x ≤100,且x 是正整数.〔2〕∵当60≤x ≤100时,y 随x 的增大而增大,∴当x=100时,y 有最大值. y 最大值=100+480=580〔元〕.∴报亭应该从报社订购100份报纸,才能使每月获得的利润最大,最大利润是580元.小结解有关一次函数的应用题要注意运用数形结合的方法综合分析咨询题,将所学知识灵活运用,融会贯穿,同时还要专门注意自变量的取值范畴的限制,它是解决咨询题的关键之一.例2 拖拉机耕地时,每小时的耗油量假定是个常量,拖拉机耕地2小时油箱中余油28升,耕地3小时油箱中余油22升.〔1〕写出油箱中余油量Q 〔升〕与工作时刻t 〔时〕之间的函数关系式;〔2〕画出函数图象;〔3〕这台拖拉机工作3小时后,油箱中的油还够拖拉机连续耕地几小时?(分析)由两组对应量可求出函数关系式,再画出图象〔在自变量取值范畴内〕.解:〔1〕设函数关系式为Q=kt+b(k ≠0). 由题意可知,=-=∴??+=+=.40,6,322,228b k b k b k ∴余油量Q 与时刻t 之间的函数关系式是Q=-6t+40.∵40-6t ≥0, ∴t ≤320. ∴自变量t 的取值范畴是0≤t ≤320.〔2〕当t=0时,Q=40;当t=320时,Q=0.得到点(0,40),(320,0).连接两点,得出函数Q=-6t+40(0≤t ≤320)的图象,如图11-53所示.〔3〕当Q=0时,t=320,那么320-3=332(时).∴拖拉机还能耕地332小时,即3小时40分.小结运用一次函数图象及其性质能够关心我们解决实际生活中的许多咨询题,如利润最大、成本最小、话费最省、最正确设计方案等咨询题,我们应善于总结规律,达到灵活运用的目的.二、数学思想方法的归纳及应用1.函数方法函数方法确实是应用运动、变化的观点来分析咨询题中的数量关系,抽象升华为函数的模型,进而解决有关咨询题的方法,函数的实质是研究两个变量之间的对应关系,灵活运用函数方法能够解决许多数学咨询题.例1 利用图象解二元一次方程组??-=+=- ②①.5,22y x y x〔分析〕方程组中的两个方程均为关于x,y 的二元一次方程,能够转化为y 关于x 的函数.由①得y=2x-2,由②得y=-x-5,实质上是两个y 关于x 的一次函数,在平面直角坐标系中画出它们的图象,可确定它们的交点坐标,即可求出方程组的解.解:由①得y=2x-2,由②得y=-x-5.在平面直角坐标系中画出一次函数y=2x-2,y=-x-5的图象如图11-54所示.观看图象可知,直线y=2x-2与直线y=-x-5的交点坐标是(-1,-4). ∴原方程组的解是?-=-=.4,1y x小结解方程组通常用消元法.但假如把方程组中的两个方程看作是两个一次函数,画出这两个函数的图象,那么它们的交点坐标确实是方程组的解.例2 我国是一个严峻缺水的国家,大伙儿应该倍加珍爱水资源,节约用水,据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05mL.小明同学在洗手时,没有把水龙头拧紧,当小明离开x 小时后,水龙头滴了ymL 水.〔1〕试写出y 与x 之间的函数关系式;〔2〕当滴了1620mL 水时,小明离开水龙头几小时?〔分析〕拧不紧的水龙头每秒滴2滴水,又∵1小时=3600秒,∴1小时滴水3600×2滴,又∵每滴水约0.05mL ,∴每小时约滴水3600×2×0.05=360mL.解:〔1〕y 与x 之间的函数关系式为x=360x(x ≥0). 〔2〕当y=1620时,有360x=1620,∴x=4.5.∴当滴了1620mL 水时,小明离开水龙头4.5小时.2.数形结合法数形结合法是指将数与形结合起来进行分析、研究、解决咨询题的一种思想方法.数形结合法在解决与函数有关的咨询题时,能起到事半功倍的作用.例3 如图11-55所示,一次函数的图象与x 轴、y 轴分不相交于A ,B 两点,假如A 点的坐标为A 〔2,0〕,且OA=OB ,试求一次函数的解析式.〔分析〕通过观看图象能够看出,要确定一次函数的关系式,只要确定B 点的坐标即可,因为OB=OA=2,因此点B 的坐标为〔0,-2〕,再结合A 点坐标,即可求出一次函数的关系式.解:设一次函数的关系式为y=kx+b(k,b 为常数,且k ≠0). ∵OA=OB ,点A 的坐标为(2,0), ∴点B 的坐标为(0,-2).∵点A ,B 的坐标满足一次函数的关系式y=kx+b ,∴??-=+=+,20,02b b k ∴?-==.2,1b k∴一次函数的关系式为y=x-2. 【讲明】利用函数图象研究数量之间的关系是数形结合思想的具体运用,在解决有关函数咨询题时有着重要的作用.3.分类讨论法分类讨论法是在对数学对象进行分类的过程中寻求答案的一种思想方法.分类讨论法既是一种重要的数学思想,又是一种重要的教学方法.分类的关键是依照分类的目的,找出分类的对象,分类既不能重复,也不能遗漏,最后要全面总结.例4 在一次遥控车竞赛中,电脑记录了速度的变化过程,如图11-56所示,能否用函数关系式表示这段记录?〔分析〕依照所给图象及函数图象的增减性,此题要分三种情形进行讨论.电脑记录提供了赛车时刻t(s)与赛车速度υ(m/s)之间的关系,在10s内,赛车的速度从0加速到7.5m/s,又减至0,因此要注意时刻对速度的阻碍.解:观看图象可知,当t在0~1s内时,速度υ与时刻t是正比例函数关系,υ=7.5t〔0≤t≤1〕;当t在1~8s内时,速度υ保持不变,υ=7.5〔1<t≤8〕;当t在8~10s内时,速度υ与时刻t是一次函数关系,υ=-3.75t+37.5〔8<t≤10=.例5 某商场打算投入一笔资金采购一批紧俏商品,通过市场调查发觉,假如月初出售可获利15%,并可用本利和再投资其他商品,到月末又可获利10%;假如月末出售可获利30%,但要付仓储费用700元,咨询他如何销售获利较多?〔分析〕两种方式获利多少与投入资金有关,需要分类讨论,题中的三个百分比是对投资来讲的,设该商场投入资金x元,那么按不同方式销售的获利情形:月初出售共获利15%x+(x+15%)·1O%;月末出售共获利3O%x-700.然后比较两种销售方式获利的多少.解:设商场打算投资x元,在月初出售共获利y1元,在月末出售共获利y2元,依照题意,得y1=15%x+〔x+15%x〕·10%=0.265x,y2=30%x-700=0.3x-700.∴y1-y2=0.265x-(0.3x-700)=700-0.035x.①当y1-y2=0时,有700-0.035x=0,∴x=20000.∵当x=20000时,两种销售方式获利一样多.②当y1-y2>0时,有700-0.035x>0,∴x<20000.∴当x<20000时,y1>y2.即月初出售获利较多.③当y1-y2<0时,有700-0.035x<0,∴x>20000.∴当x>20000时,y1<y2.即月末出售获利较多.【讲明】进行有关咨询题的分类讨论,要全面考察,可依照图形或题意找出所有可能的情形,然后进行总结.4.方程方法方程方法是指对所求数学咨询题通过列方程〔组〕使咨询题得解的方法.在函数及其图象中,方程方法的应用要紧表达在运用待定系数法确定函数关系式中.例6 一次函数y=kx+b(k ≠0)的图象通过点A 〔-3,-2〕及点B(1,6),求此函数关系式,并作出函数图象.(分析) 可将由条件给出的坐标分不代入y=kx+b 中,通过解方程组求出k ,b 的值,从而确定函数关系式.解:由题意可知,==∴??=+-=+-.4,2,6,23b k b k b k ∴函数关系式为y=2x+4. 图象如图11-57所示.【讲明】一次函数y=kx+b 中含有两个待定系数k,b ,依照待定系数法,只要列出方程组即可.例7 科学家通过研究得出:一定质量的某种气体在体积不变的情形下,压强p(kPa)随温度t(℃)变化的函数关系式是p=kt+b ,其图象如图11-58所示的直线.〔1〕依照图象求出上述气体的压强P 与温度t 之间的函数关系式;〔2〕当压强p 为200kPa 时,求上述气体的温度.(分析) 要求出p 与t 之间的函数关系式,需知图象上的两个点的坐标,由图象可知,点〔25,110〕,(50,120)在该图象上,通过解方程可得关系式.解:〔1〕观看图象可知,点(25,110),(50,120)在该图象上.∴??==∴+=+=.100,52,50120,25110b k b k b k∴函数关系式为p=52t+100. 〔2〕当p=200时,有 200=52t+100,∴t=250.∴当压强P 为200kPa 时,气体的温度是250℃.。

第14章一次函数复习教案(人教新课标八年级上)

第14章一次函数复习教案(人教新课标八年级上)

14.2.2 一次函数(二)学习目标(一)学习知识点1.学会用待定系数法确定一次函数解析式.2.具体感知数形结合思想在一次函数中的应用(二)能力训练目标1.经历待定系数法应用过程,提高研究数学问题的技能.2.体验数形结合,逐步学习利用这一思想分析解决问题.学习重点待定系数法确定一次函数解析式.学习难点灵活运用有关知识解决相关问题.学习方法归纳─总结学习过程一知识频道(交流与发现)1.议一议已知一次函数图象过点(3,5)与(-4,-9),求这个一次函数的解析式.分析:求一次函数解析式,关键是求出k、b值.因为图象经过两个点,所以这两点坐标必适合解析式.由此可列出关于k、b的二元一次方程组,解之可得.解:设这个一次函数解析式为y=kx+b.因为y=k+b的图象过点(3,5)与(-4,-9),所以所以这个一次函数解析式为。

结论:函数解析式 选取 满足条件的两定点 画出 一次函数的图象y=kx+b 解出 (x1,y1)与(x1,y2) 选取 直线L★像这样先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待定系数法.2 练一练(1)已知一次函数y=kx+2,当x=5时y的值为4,求k值.(2) 已知直线y=kx+b经过点(9,0)和点(24,20),求k、b值.(3) 生物学家研究表明,某种蛇的长度y (cm)是其尾长x(cm)的一次函数,当蛇的尾长为6 cm 时, 蛇的长为45.5 cm; 当蛇的尾长为14 cm 时, 蛇的长为105.5 cm.当一条蛇的尾长为10 cm 时,这条蛇的长度是多少?二 方法频道(由解题理解知识,由知识学会解题)例1:已知y-2与x 成正比例,当x=3时,y=1,求y 与x 的函数表达式。

解:∵y-2与x 成正比例, ∴可设y-2=kx∵当x=3时,y=1 ∴解得 ∴y-2=∴y 与x 的函数表达式是仿一仿已知y 与4x-1成正比例,且当x=3时,y=6,求出y 与x 的函数关系式。

2019-2020学年八年级数学上册 第十四章一次函数复习学案 人教新课标版.doc

2019-2020学年八年级数学上册 第十四章一次函数复习学案 人教新课标版.doc

2019-2020学年八年级数学上册 第十四章一次函数复习学案 人教新课标版课程标准要求:①结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式。

②会画一次函数的图象,根据一次函数的图象和解析表达式y=kx +b (k≠0)探索并理解其性质(h >0或b <0时,图象的变化情况)。

③理解正比例函数。

④能根据一次函数的图象求二元一次方程组的近似解。

⑤能用一次函数解决实际问题。

知识方法回顾:1.已知直线y =2x +m 不经过第二象限,那么实数m 的取值范围是 _.2.一次函数y=kx+b 的图象经过P(1,0)和Q(0,1)两点,则k= ,b= .3.正比例函数的图象与直线y= - 23x+4平行,则该正比例函数的解析式为____ .4.函数y= - 32x 的图象是一条过原点(0,0)及点(2, )的直线,这条直线经过第 _____象限,y 随的增大而 .5.已知一次函数y= - 12x+2当x= 时,y=0;当x 时y>0; 当x 时y<0.6.把直线y= - 32 x -2向 平移 个单位,得到直线y= - 32(x+4)7.一次函数y=kx+b 过点(-2,5),且它的图象与y 轴的交点和直线y=-12x+3与y 轴的交点关于x 轴对称,那么一次函数的解析式是 . 8. 直线y=kx+b 经过点(0,3),且与两坐标轴构成的直角三角形的面积是6,则其解析式为 . 典型例题讲解:例1 已知一次函数y=-2x-6。

(1)当x=-4时,则y= ,当y=-2时,则x= ; (2)画出函数图象;(3)不等式-2x-6>0解集是_____,不等式-2x-6<0解集是_____;(4)函数图像与坐标轴围成的三角形的面积为 ;(5)若直线y=3x+4和直线y=-2x -6交于点A,则点A 的坐标______; (6)如果y 的取值范围-4≤y ≤2,则x 的取值范围__________;(7)如果x 的取值范围-3≤x ≤3,则y 的最大值是________,最小值是_______. 例2 在边长为 2 的正方形ABCD 的边BC 上,有一点P 从B 点运动到C 点,设PB=x ,四边形APCD 的面积为y ,写出y 与自变量x 的函数关系式,并且在直角坐标系中画出它的图象.例3 已知一次函数y=32x+m 和y=-12x+n 的图象交于点A (-2,0)且与y 轴的交点分别为B 、C 两点,求△ABC 的面积.例4 某单位要印刷产品说明书,甲印刷厂提出:每份说明书收1元印刷费,另收1500元制版费;乙印刷厂提出:每份说明书收2.5元印刷费,不收制版费。

人教版八年级上册第14章一次函数新编全章学案-13

人教版八年级上册第14章一次函数新编全章学案-13

14.2.3一次函数(2)2011年 月 日 教、学目标:1. 理解直线y=kx+b 与直线y=kx 之间的位置关系,会利用两个合适的点画出一次函数的图像,掌握一次函数的性质。

2. 通过描点法画一次函数图像,合作研究一次函数图像,经历知识的归纳探究过程;通过一次函数图像归纳一次函数性质体验“数形结合”法的应用及“数形结合”法在解决问题中的作用。

3. 在探究一次函数的图像和性质的活动中,通过富有探究性的问题培养学生与他人交流合作的意识和探究精神。

教、学重点:一次函数的图像和性质。

教、学难点:由一次函数的图像归纳得出一次函数的性质及对性质的理解。

教、学方法:引导、探究式 教、学手段:多媒体 教、学过程: 一、学前准备1、一次函数的定义是什么?2、已知函数y=(2-m)x+2m-3.求当m 为何值时,(1)此函数为正比例函数;(2)此函数为一次函数。

二、探究新知1.动手操作:画出下列函数的图象 (1)y=2x+1(2)y=-2x+1总结:任何一个一次函数的图象都是 .因此在画一次函数图像时只要取 个点即可。

填空:两函数的图象都是一条________,函数y=2x+1从左至右________,y 随x 的增大而________,函数图象过________象限;函数y=-2x+1从左至右________,y 随x的增大而________,函数图象过________ 象限。

xx2、画出函数y=3x-2和y=-3x-1的图象并观察:xx观察y=2x+1 和y=3x-2的两个图象,同样是上升,但是一个经过一、二、三象限,一个经过一、三、四象限。

这是由什么影响 ?总结:(1) 决定图象的变化趋势,即图象是上升的还是下降的; ,y 随x 的增大而增大 ,y 随x 的增大而减小 (2) 决定图象交于y 轴的位置; ,交于y 轴的正半轴例题:(1)当k >0时,函数y=kx+1的图象经过哪几个象限?(2)当k <0时,函数y=kx+1的图象经过哪几个象限?(3)当b >0时,函数y=4x+b 的图象经过哪几个象限?(4)当b <0时,函数y=-4x+b 的图象经过哪几个象限?四、课堂小结本节课你有哪些新收获?五、反馈检测1、如图(1)所示,是一次函数y=kx+b 的图象,则y 随x 的增大而________ (填“增大”或“减小”)2、如图(2)所示,是一次函数y=kx+b 的图象,则k____0,b___0(填“>”、“=”、“<”)3、若点(3,1y )和(4,y 2)都是直线y=-2x+1上的点,则y 1 y 2 。

人教版八年级上册第14章一次函数新编全章学案-3

人教版八年级上册第14章一次函数新编全章学案-3

14.1.3函数的图像(3)2011年月日教、学目标:1.运用丰富的实例,帮助学生全面理解函数的三种表示方法;2.通过观察、作图、交流归纳等数学实践活动,使学生加深对函数三种表示方法的认识,提高把实际问题转化为数学问题的能力;3.让学生通过实际操作,体会函数的三种表示方法在实际生活中的应用价值,以激发学生对数学的学习兴趣.教、学重点:函数的三种表示方法应用.教、学难点:函数的三种表示方法及其应用.教、学方法:引导、探究式教、学手段:多媒体教、学过程:一、学前准备实验演示:倾斜木板,将小车置于木板顶端,观察小车下滑过程.小车沿斜坡下滑,下滑速度与其下滑时间的关系如上图所示.1.填写下表:2.写出V与t之间的关系式.二、探索新知1、表示函数有哪些方法?三、新知应用例题:在“泰利”台风来临时,某水库的水位在最近的5小时持续上涨,下表记录了这五小时问题1:观察记录表中的6组数值,你认为这两个变量之间有什么关系?问题2:请你写出水位高度y(米)随时间t(时)变化的函数解析式.问题3:请你画出这个函数的图象.问题4:请你预测一下,再过2小时,水位高度将达到多少米?四、课堂小结本节课你有什么新收获?五、反馈检测1、某辆汽车油箱中原有汽油100升,汽车每行驶50千米耗油4升,那么油箱的余油量y(升)与汽车行驶路程x(千米)之间的函数关系式为_______________(1)y _________(“是”“不是”)x的函数.(3)自变量x的取值范围是:(4)函数的图象是一条:2、弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂物体的质量x(kg)有下面关系:那么弹簧总长y(cm)与所挂物体质量x(kg)之间的函数关系式为_________.思考题:某电视机厂要印制一批产品宣传资料.甲厂提出:每份资料收1元印制费,所有资料另收1500元的制版费;乙厂提出:每份资料收2.5元印制费,不收制版费.1)分别写出两厂的收费y(元)与印制数量x(份)之间的关系式.2)在同一直角坐标系内作出它们的图象.3)根据图象回答以下问题:(1)印制800份宣传资料,选择哪家印刷厂比较合算?(2)电视机厂拟拿出3000元用于印制宣传资料,选择哪家印刷厂宣传资料能多印一些?六、布置作业目标检测。

人教版八年级数学上册一次函数全章复习学案

人教版八年级数学上册一次函数全章复习学案

人教版八年级数学上册一次函数全章复习学案人教版八年级上期末复习学案班级姓名得分一次函数全章复习学案一、本章知识点小结:1、变量与函数(1) 称为变量,称为常量。

xx (2) 一般地,在一个变化过程中,如果有两个变量与,并且对于的每一个确定的值,都有唯一确定的yyx,a值与其对应,那么我们就说是的函数,x是。

如果当时,那么叫做当自变量y,b的值为时的函数值。

(3) 一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内。

由这些点组成的图形,就是(4) 描点法画函数图象的一般步骤是:(1) ;(2) ;(3) 。

(5) 函数的表示方法共有种。

分别是法、法和法。

、一次函数 2(1) 一般地,形如 ( ) 的函数叫做正比例函数,其中做。

k(2) 一般地,正比例函数的图象是一条,我们称它为。

当时,直线经y,kxk,0x过第象限,从左向右,即随着增大 ;当时,直线经过第象限,y,kxyk,0 x从左向右,即随着增大。

y(3) 一般地,形如 ( ) 的函数,叫做一次函数.当时,得,y,b,0所以说是一种特殊的一次函数。

(4) 一次函数y,kx,b的图象是,我们称它为,它可以看作由直线y,kx平移个单位长度而得到。

当时,向上平移;当时向下平移。

x (5) 观察一次函数的图象,可以发现:当时,直线y,kx,b ;此时随的增大yk,0x而 ;当时,直线 ;此时随的增大而 ; y,kx,byk,0(6) 先,再,从而的方法,叫做待定系数法。

(7)一次函数与x轴的交点坐标是(-k/b, 0); 与y轴的交点坐标是(0,b)。

(8) 一次函数图象有什么特点,怎样画一次函数图象更简单,3、一次函数与一元一次方程、一元一次不等式、二元一次方程组之间的关系。

(1) 解一元一次不等式可以看作是:当一次函数值大于(或小于)0时,求自变量相应的取值范围((2) 解关于x的不等式kx+b>mx+n可以转化为:当自变量x取何值时,直线y=(k-m)x+b-n上的点在x轴的上方(或求当x取何值时,直线y=kx+b上的点在直线y=mx+n上相应的点的上方((3) 解关于x、y的方程组,从“数”的角度看,•相当于考虑当自变量为何值时两个函数的值相等,以及这个函数值是多少,从“形”的角度看,相当于确定两条直线y=kx+b与y=mx+n的交点坐标(4) 两条直线的交点坐标,•就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解(5) 解关于x的方程kx+b=0可以转化为:已知函数y=kx+b的函数值为0,•求相应的自变量的值(从图象上看,相当于已知直线y=kx+b,确定它与x•轴的交点的横坐标二、本章基础练习:14.1.1 变量nn1(齿轮每分钟120转,如果表示转数,表示转动时间,那么用表示的关系是, tt其中为变量,为常量(52(摄氏温度C与华氏温度F之间的对应关系为C,(F,32)?,则其中的变量是,常量9是。

人教版数学八年级上第14 章一次函数导学案

人教版数学八年级上第14 章一次函数导学案

19.1.1变量【自学目标】:了解变量的概念,会区别常量与变量.【重难点】:变量与常量,对变量的判断,找变量之间的简单关系,试列简单关系式学习过程:(一)课前预习:(问题一:“嫦娥二号”进入地月转移轨道时速度是11千米/秒,如果飞行速度不变,飞行路程为s千米,飞行时间为t秒.(1)请根据题意填表:(2)在以上这个过程中,变化的量是______.不变化的量是_______.(3)试用含t的式子表示s=_________________这个问题反映了飞行路程随飞行时间的变化过程.发现:在这个变化过程中,当时间t_____________时, 路程s就随之____________。

.问题二:上海世博会门票,每张普通票售价为160元。

(1)若一天售出2万张门票,则该天的门票收入是_______万元;(2)若一天售出3万张门票,则该天的门票收入是_______万元;(3)若设一天售出x万张门票,门票收入为y万元,则y= _______ 在以上这个过程中,变化的量是____________.不变化的量是____________.这个问题反映了门票收入随售出门票的变化过程.发现:在这个变化过程中,当____________确定一个值时, __________就随之确定一个值。

(二)归纳概念:1、常量与变量: _____________________________________________叫常量。

____________________________________________ 叫变量。

2、指出前面三个问题中的常量、变量.(1)“嫦娥飞行问题”中s=11t,常量是____________,变量是____________;(2)“世博门票问题”中y=160x,常量是__________,变量是____________ ;3、做一做:(1).某位教师为学生购买数学辅导书,书的单价是4元,则总金额y(元)与学生数n(个)的关系式是_________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数复习学案
课程标准要求:
①结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式。

②会画一次函数的图象,根据一次函数的图象和解析表达式y=kx +b (k≠0)探索并理解其性质(h >0或b <0时,图象的变化情况)。

③理解正比例函数。

④能根据一次函数的图象求二元一次方程组的近似解。

⑤能用一次函数解决实际问题。

知识方法回顾:
1.已知直线y =2x +m 不经过第二象限,那么实数m 的取值范围是 _.
2.一次函数y=kx+b 的图象经过P(1,0)和Q(0,1)两点,则k= ,b= .
3.正比例函数的图象与直线y= - 2
3
x+4平行,则该正比例函数的解析式为
____ .
4.函数y= - 3
2
x 的图象是一条过原点(0,0)及点(2, )的直线,这条直线经过
第 _____象限,y 随的增大而 .
5.已知一次函数y= - 1
2
x+2当x= 时,y=0;当x 时y>0; 当x 时y<0.
6.把直线y= - 32 x -2向 平移 个单位,得到直线y= - 3
2
(x+4)
7.一次函数y=kx+b 过点(-2,5),且它的图象与y 轴的交点和直线y=-1
2
x+3
与y 轴的交点关于x 轴对称,那么一次函数的解析式是 . 8. 直线y=kx+b 经过点(0,3),且与两坐标轴构成的直角三角形的面积是6,则其解析式为 . 典型例题讲解:
例1 已知一次函数y=-2x-6。

(1)当x=-4时,则y= ,
当y=-2时,则x= ; (2)画出函数图象;
(3)不等式-2x-6>0解集是_____,
不等式-2x-6<0解集是_____;
(4)函数图像与坐标轴围成的三角形的面积为 ;
(5)若直线y=3x+4和直线y=-2x -6交于点A,则点A 的坐标______; (6)如果y 的取值范围-4≤y ≤2,则x 的取值范围__________;
(7)如果x 的取值范围-3≤x ≤3,则y 的最大值是________,最小值是_______. 例2 在边长为 2 的正方形ABCD 的边BC 上,有一点P 从B 点运动到C 点,设PB=x ,四边形APCD 的面积为y ,写出y 与自变量x 的函数关系式,并且在直角坐标系中画出它的图象.
例3 已知一次函数y=
32x+m 和y=-1
2
x+n 的图象交于点A (-2,0)且与y 轴的交点分别为B 、C 两点,求△ABC 的面积.
例4 某单位要印刷产品说明书,甲印刷厂提出:每份说明书收1元印刷费,另收1500元制版费;乙印刷厂提出:每份说明书收2.5元印刷费,不收制版费。

(1)分别写出两个印刷厂的收费y 甲、y 乙(元)与印刷数量x (份)之间的函数
关系式;
(2)在同一坐标系中作出它们的图像; (3)根据图像回答问题:
①印刷800份说明书时,选择哪家印刷厂比较合算?
②该单位准备拿出3000元用于印刷说明书,找哪家印刷厂印制的说明书
多一些?
探究实践:
【问题1】已知:一次函数的图象经过点(2,1)和点(-1,-3).
(1)求此一次函数的解析式;
(2)求此一次函数与x轴、y•轴的交点坐标以及该函数图象与两坐标轴所围成的三角形的面积;
(3)若一条直线与此一次函数图象相交于(-2,a)点,且与y轴交点的纵坐标是5,•求这条直线的解析式;
(4)求这两条直线与x轴所围成的三角形面积.
【问题2】有一卖报人,从报社批进某种证券报是每份1.5元,卖出的价格是每份2元,卖不掉的报纸以每份1元的价格退回报社,在30天的时间里有20天每天可卖出150份,其余10天只能卖出100份,但这30天每天从报社批进的份数必须相同.•设卖报人每天从报社批出x份报纸,月利润为y元.(1)写出y与x的函数关系式;
(2)画出此函数的图象;
(3)此卖报人应该每天从报社批进多少份报纸时才能使月利润最高?最高利润是多少?巩固练习:
1.直线y=kx+b经过一、二、四象限,则直线y=-bx+k不经过第____象限.
2.已知等腰三角形周长为20,写出底边长y关于腰长x的函数解析式(x为自变量),并写出自变量取值范围,画出函数图象.
3.已知A(8,0)及在第一象限的动点P(x,y),且x+y=10,设△OPA的面积为S.(1)求S关于x的函数解析式;(2)求x的取值范围;(3)求S=12时P点坐标;(4)画出函数S的图象.
4.某果品公司欲请汽车运输公司或火车货运站将60吨水果从A地运到B地。

已知汽车和火车从A地到B地的运输路程均为s千米。

这两家运输单位在运输过程中,除都要收取运输途中每吨每小时5元的冷藏费外,要收取的其它费用及有关运输资料由下表给出:
(1)请分别写出这两家运输单位运送这批水果所要收取的总费用y1(元)和y2(元)(用含s的式子表示);
(2)为减少费用,你认为果品公司应选择哪家运输单位运送这批水果更为合算?。

相关文档
最新文档