初中数学课堂教学实录集锦(一)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学课堂教学实录集锦(一)

1 高村中学 王晓燕

课题:初一数学“比较线段的长短”(第一课时)

课前探究

情景1:教师不小心把课本掉在教室门口,请同学帮我捡一下,并解释你为什么选择这条路线?

情景2:《课本》P89,如图,小狗和小猫为什么都选择直的路

线?“难道它们也懂数学?”

师:小组先合作,讨论一下。

(学生纷纷讨论,兴致极高)

(几分钟后)

师:那位同学能把你们组讨论的结果告诉大家。

(学生们争先恐后地举手)

师:请4组的5 号同学回答。

生1:我会走最直的路线去捡这本书。(该生说着并沿直线走了过去,快速把书捡了起来)

师:同学们,他为什么选择这样的路线?而不选择别的路线?

生2:这样好走。

生3:这样走最省时间。

生4:这样走简单。

…… ……

生6:这样走最近。

师:为什么这样走最近?

生5:因为这样走时直的。

生6:直的最近。

师:(赞许)这位同学回答得非常好!因为是直线,所以这条路线最短。

师:现在请大家思考一下,如果把小狗用一个点A表示,把猎物用另一个点B表示,那么小狗走的路线就是线段AB,把它作为第①路线;从A走到点B,除了线段AB,还可以有无数条路线,如第②路线,第③路线……(老师在黑板上画出图形。)

从图中,大家可以看出在这些线中,哪条最短?

生:(异口同声)①最短。

师:(板书)

1.在两点之间的所有连线中,线段最短。简称“两点之间线段最短”。

2.两点间线段的长度,叫做两点之间的距离,

师:关于这两个知识点,请大家注意以下几点

① 两点之间线段最短,不是直线最短。

② 两点间线段的长度,叫两点间距离。注意是线段的长度。

师:请大家理解一下这两个知识点。

(设计意图:①问题情境的创设从“老师的书掉到地上寻求帮助”、“小猫和小狗为了抢食物而奔跑”这样学生比较熟悉的生活背景出发,提出了“难道它们也懂数学?”的疑问,这样的引入,贴近学生的生活实际,让学生体会到数学就在我们身边,让学生认识到数学来源于生活,又服务于生活,从而激发学生的求知欲。使课堂的一开始就充满灵动的神韵。②把小狗、猎物表示为一个点,把小狗的行走路线表示为一条直线,这样把实际问题抽象成数学问题并板书于黑板,教师辅助以语言讲解,让学生充分直观地体会“到两点之间线段最短”,明确两点之间距离的含义,并初步了解数形结合的数学思想。③根据课堂教学的需要以及学生的思路适时调整提问方式,环环相扣的提出问题,启而不发的引导学生使他们的思路向主题靠拢;并从学生的回答中,不失时机的挖掘“闪光点”,加以引申引导,以达到本节课的授课目的。)

2 米山中学袁吉玲

圆与圆的位置关系

师出示幻灯片

你认识上面的几何图形吗?他们由哪些图形组成?

生答:多个圆

师指出:这节课我们来探究圆与圆的位置关系。(标课题)

圆与圆有几种位置关系?

师指导探究一:

我们研究直线与圆的位置关系时以公共点的个数来区分的,圆与圆的位置关系我们也从公共点的个数来区分的话有几种位置关系?

(1)自己动手在两张透明纸上画两个大小不同的圆,固定其中一个

移动另一个,观察两圆有几种不同位置关系.

(2)观看两圆位置关系演示,试着把它们画出来.

生动手,师巡视后请学生到黑板板演

两个圆没公共点如图:(1)(2)(3)

一个公共点如

图(4)(5)

两圆有2个

公共点如图(6)

师问:两圆有没有三个公共点?

生答:没有。

师问:为什么?

生A答:不在同一直线上的三点确定一个圆,如果有三个公共点,那么这两个圆就重合为一个圆。

师问:看图1、2、都没有公共点,两圆的位置关系有没有不同的点?

生答:有不同点

师问:不同点是?

生丁答1中一个圆的所有点在另个圆的外部,2中其中一个圆的所有点在另个圆的内部。

师指出图一位置关系我们称外图二位置关系称内涵,图三的位置关系是内含的特例:同心圆

师问那么图4和5有没有异同点,如果有是什么?

生答;有,一个圆的所有点都在另一个圆的内部,一个圆的所有点在另一个的外部

师质疑:公共点T是在圆的外部还是在内部?

生更正:一个圆的所有点除公共点外都在另一个圆的内部,一个圆的所有点初公共点外在另一个的外部

师指出图4的位置关系是外切,图5的位置关系是内切,可以统称为相切。图6的位置关系我们称相交。

师问:两个不等圆有几种位置关系,他们是什么?

生答:5种,外离,外切,相交,内切,内含

师问:如果两圆没有公共点那么两圆的位置关系是?如果两圆有一个公共点那么两圆的位置关系是?

生答:外离、内含,外切、内切。

师问:两个不等圆有5种位置关系,那么两个相等的圆有几种位置关系。

生答:三种。外离、外切、相交。

师:两不等圆的这5种位置关系是不是轴对称图形?如果是,对称轴是什么?

在学生讨论的过程中,教师适当引导:我们知道圆是轴对称图形,任何过圆心的直线都是它的对称轴,那么两圆在各种位置关系中的组合图形还是轴对称图形吗?对称轴是什么?学生争先恐后地回答:是,对称轴是过两圆心的直线。师:过两圆心的直线我们叫连心线。

大家再观察(4)(5)图形,还能发现什么?在这里学生容易观察出切点在对称轴上,但说明切点在连心线上有一定困难,特给予一定的时间讨论,教师给予清楚地分析。

师:我们在研究直线与圆的位置关系的时候,除了从定性的角度(公共点的个数)还从定量的角度来分析他们的位置关系,下面我们也从定量的角度来分析两圆的位置关系。

师问:两圆的位置关系与哪些量有关?有怎样的关系?

师课件展示:两圆半径不动,移动位置改变两圆的位置关系;两圆的位置不动,改变圆的大小从而改变两圆的位置关系

学生回答:两圆的位置关系由两圆的圆心距和两圆的半径有关,

师再问:有什么关系?

师指导探究二、要求学生先独立思考后小组合作交流,再生生交流释疑

在这个过程中教师巡视指导后由生到黑板板演关系

外离 d>r1+r2

外切 d=r1+r2

相交 r1-r2<d<r1+r2

内切d=r1-r2

内含0<=d<r1-r2

师问:下面的同学是否同意上面的观点?

生B答:内切内含要说明r1要大于r2

并且内含要有等于0的情况。

相关文档
最新文档