高二数学月考试卷.doc

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学月考试卷

一、选择题:

1、已知直线l1:3x-4y+3=0,l2:2x+ay+1=0,且l1⊥l2,则a的值

A、3

2

B、23

C、32

D、23

2、已知a>b,则下列命题中是真命题的是

A、11ab

B、lg a>lg b

C、2a > 2b

D、|a|>|b|

3、已知圆的方程为x2

+y2

-2x-2y=11,将圆在坐标平面内沿

a=(-1,2)平移后,方程为

A、x2+(y-3)2=9

B、x2+(y+1)2=9

C、(x-2)2+(y+1)2=9

D、(x-2)2+(y-3)2=9

4、下列命题中是真命题的是

A、两个半平面拼成一个平面

B、平面的斜线与平面所成角的取值范围是(0,

2

C、空中三个平面将空中分成4或6或7个部分

D、与两条异面直线既垂直又相交的直线有无数条

5、Rt△ABC在平面α内,平面外一点P到直角顶点C的距离为24,到两直角边的

距离均为PC与它在α内的射影所成的角是

A、30°

B、45°

C、60°

D、90°

6、a、b是空中两异面直线且成40°角,过空中一点作直线l,与a、b均成30°角,则l可作

A、1条

B、2条

C、3条

D、4条

7、二面角M―l―N的平面角是60°,直线a、c平面M,a与棱l 所成角30°,则a与N所成角的余弦值是

A

B

C

12

8、已知ABCD为矩形,P为平面ABCD外一点,且PA⊥平面ABCD,G为△PCD

的重心,若AGxAByADzAP

,则

A、x

13,y13,z23 B、x

123,y3,z1

3 C、x1,y2 D、x

23,z13

3

3,y13,z13

9、在直二面角α-l-β中,直线aα,bβ,a、b与l斜交,则

A、a和b不垂直,但可平行

B、a和b可垂直,也可平行

C、a 和b不垂直,也不平行

D、a和b不平行,但可能垂直

10、正方形ABCD的边长为6cm,点E在AD上,且AE=13

AD,点F在BC上,

但BF=1

2

BC,把正方形沿对角线BD折成直二面角A-BD-C后,EF=

B

、C

D、6 cm

二、填空题:

11、已知非零向量e

ABe1,e2不共线,若1e2,AC2e18e2,AD3e13e2,

则A、B、C、D_______________。(共面或不共面)

12、△ABC所在平面外一点P到A、B、C三点距离相等,则P 在平面ABC内射影为△ABC的_______________。

13、与A(-1, 2, 3)、B(0, 0, 5)两点距离相等的点的坐标(x, y, z)满足______________。14、直线l与平面α所成角为

3

,直线a在平面α内,且与直线l异面,则直线l与直线a所成角的取值范围是_______________。

15、正四面体ABCD的棱长都为1,平面α过棱AB,且CD‖α,则四面体上所有

点在α内的射影所成图形面积是_______________。高二数学月考试题

一、选择题:

二、填空题:

11、_______________ 12、_______________ 13、_______________

14、_______________ 15、_______________

三、解答题:

16、已知空间四边形ABCD中,G为△BCD重心,E、F、H分别为CD、AD和BC的中点,化简下列各式:

11(1)AGBECA

32111

(3)ABACAD

333

1

(2)ABACAD

2

17、△ABC所在平面外有一点P,PA=PB,BC⊥平面PAB,M 为PC的中点,N为AB上的一点,且AN

=3BN,求证:AB⊥MN。

‖1

18、在五面体ABCDEF中,点O是矩形ABCD对角线的交点,面CDE是等边三角形,棱EF=BC,证明:

2

FO∥平面CDE。

19、已知线段AB⊥平面α,BCα,CD⊥BC,DF⊥平面α,且∠DCF=30°,D与A在α的同侧,若AB

=BC=CD=2,求AD长。

20、在底面为平行四边形的五面体P-ABCD中,AB⊥AC,PA ⊥面ABCD,且PA=AB,点E是PD的中

点。

(1)求证:AC⊥PB;(2)求证:PB∥平面AEC。

21、在四面体A-BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共斜边,且AD

BD=CD=1,另一个侧面是正三角形。(1)求证:AD⊥BC;

(2)求二面角B-AC-D的大小;

(3)在线段AC上是否存在点E,使ED与面BCD成30°角,若存在,确定点E的位置;若不存在,说明理由。

相关文档
最新文档