【五年高考三年模拟】2014届高考物理一轮复习讲义配套课件全国课标 专题七 静电场
2024年高考物理一轮复习(全国版)第7章 专题强化11 动量守恒在子弹打木块模型和板块模型中的应用
3.求解方法 (1)求速度:根据动量守恒定律求解,研究对象为一个系统; (2)求时间:根据动量定理求解,研究对象为一个物体; (3)求系统产生的内能或相对位移:根据能量守恒定律Q=FfΔx或Q=E初 -E末,研究对象为一个系统.
例4 如图所示,质量m1=0.3 kg的小车静止在光滑的水平面上,车长L =1.5 m,现有质量m2=0.2 kg可视为质点的物块,以水平向右的速度v0 从左端滑上小车,最后在车面上某处与小车保持相对静止.物块与车面间 的动摩擦因数μ=0.5,取g=10 m/s2,则 A.物块滑上小车后,系统动量守恒、机械能守恒 B.增大物块与车面间的动摩擦因数,摩擦生热变大 C.若v0=2.5 m/s,则物块在车面上滑行的时间为0.24 s
123456789
水平方向上,子弹所受合外力与木块受到的合 外力为作用力与反作用力,它们大小相等、方 向相反、作用时间t相等,根据I=Ft,可知子弹对木块的冲量与木块 对子弹的冲量大小相等、方向相反,故A错误,B正确; 子弹与木块组成的系统所受合外力为零,系统动量守恒,由动量守 恒定律可知,子弹动量变化量大小等于木块动量变化量大小,由于 子弹与木块的质量不一定相同,子弹速度的减小量不一定等于木块 速度的增加量,故C、D错误.
两次打穿木块过程中,子弹受到的阻力相等,阻力对子弹做的功等
于子弹损失的动能,即ΔEk损=Ffx,由于x2>x1,所以ΔEk2损>ΔEk1损,
故B正确.
两次打穿木块过程中,子弹受到的平均阻力相等,系统摩擦产生的 热量Q=Ffd,其中Ff为阻力,d为子弹相对于木块的位移大小,由于 两次子弹相对于木块的位移大小都是木块的长度,所以系统机械能 的损失相等,即E2损=E1损,故C错误. p1小于子弹的初动量,第二次子弹穿透木块的过程,系统的动量守 恒,则p2等于子弹的初动量,所以p2>p1,故D正确.
2014年高考物理专题七_热学(学生)
热学总复习第Ⅰ卷(选择题共20分)一、选择题1.(2013·南京模拟)下列说法中正确的是( )A.布朗运动是指在显微镜下观察到的液体分子的无规则运动B.叶面上的小露珠呈球形是由于液体表面张力的作用C.不具有规则几何形状的物体一定不是晶体D.氢气和氮气的温度相同时,它们分子的平均速率相同2.下列说法正确的是( )A.晶体和非晶体都有确定的熔点B.浸润和不浸润现象都是分子力作用的表现C.影响蒸发快慢以及人们对干爽与潮湿感受的因素是空气的绝对湿度D.液晶是一种特殊物质,它既具有液体的流动性,又像某些晶体那样有光学各向异性3.(2013·潍坊模拟)下列说法中正确的是( )A.温度越高,每个分子的速率一定越大B.雨水没有透过布雨伞是因为液体表面存在张力C.布朗运动是指在显微镜下观察到的液体分子的无规则运动D.单晶体的某些物理性质是各向异性的,多晶体的物理性质是各向同性的4.下列说法正确的是( )A.布朗运动是液体分子的无规则运动B.分子间距离增大时,分子间的引力、斥力都减小C.气体的状态变化时,若温度升高,则每个气体分子的平均动能都增加D.外界对物体做功时,物体的内能一定增加5.(2013·东北三省四市模拟)下列说法正确的是( )A.已知某物质的摩尔质量为M,密度为ρ,阿伏加德罗常数为N A。
则该种物质的分子体积为V0=M ρN AB.布朗运动是在显微镜下看到的液体分子的无规则运动C.分子质量不同的两种气体温度相同,它们分子的平均动能一定相同D.两个分子间距增大的过程中,分子间的作用力一定减小第Ⅱ卷(非选择题共80分)二、非选择题(共10小题,每小题8分,共80分)6.如图所示,在开口向上的竖直放置圆筒形容器内用质量为m的活塞密封一部分气体,活塞与容器壁间能无摩擦滑动,大气压恒为p0,容器的横截面积为S,密封气体的压强是________,当气体从外界吸收热量Q后,活塞缓慢上升d后再次平衡,在此过程中密闭气体的内能______(填“增加”或“减少”)了________。
通用版高考物理一轮复习专题七恒定电流小专题5测量电阻的其他5种方法除伏安法课件
(续表)
测量 对象
两种测量电路
半偏 法近 似测 量电 压表 内阻
操作步骤
①滑动变阻器的滑片滑至最右端, 电阻箱的阻值调到最大
②闭合S1、S2,调节R0,使 表示 数指到满偏刻度 ③断开 S2,保持 R0 不变,调节 R, 使 表指针指到满刻度的一半 ④由上得 RV=R
答案:(1)R1 (2)R2-R3 (3)甲的设计 毫安表超量程
突破 4 半偏法测电表内阻
测量 对象
两种测量电路
操作步骤
半偏 法近 似测 量电 流表 内阻
①将电阻箱 R 的电阻调到零
②闭合 S,调节 R0,使电流表 达 到满偏 I0 ③保持 R0 不变,调节 R,使电流表
示数为 I0 2
④由上得 RA=R
甲
乙
图 Z5-6 ①按电路图连好电路,闭合开关 S1,记下毫安表的读数. ②断开 S1,闭合开关 S2,调节电阻箱 R 的阻值,使毫安表 的读数和①中相同,记下此时电阻箱的示数 R1. 假设该同学的设计合理,则待测电阻 Rx=________.
(2)另一位同学根据实验目的和提供的实验器材设计出如 图乙所示的实验电路,设计的操作步骤如下:
(3)将这种方法测出的电压表内阻记为 RV′,与电压表内阻 的真实值 RV 相比,RV′________(填“>”“=”或“<”)RV, 主要理由是___________________________________________.
答案:(1)如图 D74 所示
图 D74
(2)移动滑动变阻器的滑片到最右端,使通电后电压表所在 支路分压最小;闭合开关 S1、S2,调节 R1,使电压表的指针满 偏;保持滑动变阻器滑片的位置不变,断开 S2,调节电阻箱 R0, 使电压表的指针半偏;读取电阻箱所示的电阻值,此即为测得 的电压表内阻
2014高考备考 物理讲座课件
2014高考物理研讨会——高三物理二轮、三轮复习策略第一部分:瞄准考点抓住重点——近七年山东高考考点对比分析一、选择题七年考点汇总二、实验题七年高考汇总三、计算题七年考点汇总四、选考题七年高考汇总第二部分:以点带面、科学高效————立体式复习模式物理专题复习专题设置专题一力物体的平衡专题二直线运动专题三牛顿运动定律专题四物理图像专题五曲线运动与万有引力定律专题六机械能专题七电场专题八磁场专题九电磁感应与电路专题十物理实验专题十一力学综合计算题专题十二电学综合计算题专题十三选考专题第三部分关注热点整合信息山东高考考试说明解读一、己有成就:1、模型情景典型、2、考点布局合理、3、思考点设置恰当、思维量充足、4、数学运算量充足,5、解答时长、书写时长恰当。
己形成山东省特色的命题规律与试卷结构。
也深得其它各省的认可、好评。
二、突出问题:1、模板过于固定、2、弹性不足,3、渐近“僵化”。
◆处于调整期——调整期——全面改革期前4年(2007~2010年)基本稳定,后3年(2011年~2013)有所微调。
2014山东全面改革三、2014年高考考试说明精细解读•考卷预测二轮复习要求及建议一、二轮复习的三大任务1.优化知识结构:通过比较、归纳、联系将教材中不同地方出现的知识点进行有机整合,形成科学的知识网络,带领学生将书读薄,提高综合运用能力。
2.提升能力层次:根据高考特点和学生实际,通过针对重点、难点的强化训练和针对题型、能力的专项训练,加强对审题能力、分析推理能力、归纳总结能力和表述能力的培养,努力实现对重要考点的有效突破,提高对中低档题的把握能力,真正做到又好又快。
3.强化应试指导:通过必要的定时训练和模拟演练,加强审题、解题指导,纠正不良解题习惯,进行规范答题训练,确保会做的题不丢分(完整做对);充分利用试卷讲评课进行应试策略指导,合理分配时间和精力,提高得分能力。
二、二轮复习应该坚持的四项基本原则1、强化性原则:坚持“集中优势兵力打歼灭战”的原则,采用专题突破方式对高考重点、难点进行强化训练,切忌面面俱到,简单重复——突出主流习题、突出重要得分点。
备考2024届高考物理一轮复习讲义第七章动量守恒定律专题十一动量守恒中的四类典型模型题型3滑块 斜曲
题型3 滑块+斜(曲)面模型模型图示水平地面光滑、曲面光滑模型特点(1)最高点:m 与M 具有共同水平速度v 共,m 不会从此处或提前偏离轨道,系统水平方向动量守恒,mv 0=(M +m )v 共;系统机械能守恒,12m v 02=12(M +m )v 共2+mgh ,其中h 为滑块上升的最大高度,不一定等于圆弧轨道的高度(完全非弹性碰撞拓展模型);(2)最低点:m 与M 分离点,系统水平方向动量守恒,mv 0=mv 1+Mv 2;系统机械能守恒,12m v 02=12m v 12+12M v 22(弹性碰撞拓展模型)研透高考 明确方向5.[滑块脱离曲面]如图所示,在光滑的水平地面上,静置一质量为m 的四分之一光滑圆弧滑块,圆弧半径为R ,一质量也为m 的小球,以水平速度v 0自滑块的左端A 处滑上滑块,当二者共速时,小球刚好到达圆弧上端B .若将小球的初速度增大为2v 0,不计空气阻力,则小球能达到距B 点的最大高度为( C )A.RB.1.5RC.3RD.4R解析 若小球以水平速度v 0滑上滑块,小球上升到圆弧的上端时,小球与滑块速度 相同,设为v 1,以小球的初速度v 0的方向为正方向,在水平方向上,由动量守恒定律得mv 0=2mv 1,由机械能守恒定律得12m v 02=12×2m v 12+mgR ,代入数据解得v 0=2√gR ,若小球以水平速度2v 0冲上滑块,小球上升到圆弧的上端时,小球与滑块水 平方向上速度相同,设为v 2,以小球的初速度方向为正方向,在水平方向上,由动量守恒定律得2mv 0=2mv 2,由能量守恒定律得12m ×(2v 0)2=12×2m v 22+mgR +12m v y 2,解得v y =√6gR ,小球离开圆弧后做斜抛运动,竖直方向做匀减速运动,则h =v y22g=3R ,故距B 点的最大高度为3R ,故选C. 命题拓展情境不变,一题多设问以水平速度v 0自滑块的左端A 处滑上滑块,小球与滑块分离时的速度是多少?答案 0解析 从小球滑上滑块至小球离开滑块的过程中,根据能量守恒定律得12m v 02=12m v 球2+12m v 块2,小球和滑块系统水平方向动量守恒,有mv 0=mv 球+mv 块,解得v 球=0. 6.[滑块不脱离曲面/2024广东广州部分学校联考]如图所示,质量m 0=5g 的小球用长l =1m 的轻绳悬挂在固定点O ,质量m 1=10g 的物块静止在质量m 2=30g 的14光滑圆弧轨道的最低点,圆弧轨道静止在光滑水平面上,悬点O 在物块m 1的正上方,将小球拉至轻绳与竖直方向成37°角后,由静止释放小球,小球下摆至最低点时与物块发生弹性正碰,碰后物块恰能到达圆弧轨道的最上端.若小球、物块可视为质点,不计空气阻力,重力加速度g 取10m/s 2,sin37°=0.6,cos37°=0.8.求:(1)小球与物块碰撞前瞬间小球的速度v 0;(2)小球与物块碰撞后瞬间物块的速度v 1; (3)圆弧轨道的半径R .答案 (1)v 0=2m/s (2)v 1=43m/s (3)R =115m解析 (1)小球下摆至最低点,满足机械能守恒定律,有m 0gl (1-cos37°)=12m 0v 02解得v 0=√2gl (1-cos37°)=2m/s(2)小球与物块碰撞,满足动量守恒定律、机械能守恒定律,有m 0v 0=m 0v 01+m 1v 112m 0v 02=12m 0v 012+12m 1v 12解得v 1=43m/s(3)物块滑到圆弧轨道最高点的过程,满足动量守恒定律、机械能守恒定律,则有m 1v 1=(m 1+m 2)v 212m 1v 12=12(m 1+m 2)v 22+m 1gR解得R =115m.7.[滑块与斜面结合]如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3m/s 的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h =0.3m (h 小于斜面体的高度).已知小孩与滑板的总质量为m 1=30kg ,冰块的质量为m 2=10kg ,小孩与滑板始终无相对运动.取重力加速度的大小g =10m/s 2.(1)求斜面体的质量;(2)通过计算判断,冰块与斜面体分离后能否追上小孩?答案 (1)20kg (2)不能,理由见解析解析 (1)规定向左为正方向.冰块在斜面体上上升到最大高度时两者达到共同速度,设此共同速度为v ,斜面体的质量为m 3.对冰块与斜面体,由水平方向动量守恒和机械能守恒定律得m 2v 0=(m 2+m 3)v ①12m 2v 02=12(m 2+m 3)v 2+m 2gh ②式中v 0=3m/s 为冰块推出时的速度,联立①②式并代入题给数据得v =1m/s ,m 3=20kg ③.(2)设小孩推出冰块后的速度为v 1,对小孩与冰块,由动量守恒定律有m 1v 1+m 2v 0=0 ④代入数据得v 1=-1m/s ⑤设冰块与斜面体分离后的速度分别为v 2和v 3,对冰块与斜面体,由动量守恒定律和机械能守恒定律有m 2v 0=m 2v 2+m 3v 3 ⑥12m 2v 02=12m 2v 22+12m 3v 32 ⑦联立③⑥⑦式并代入数据得v 2=-1m/s ⑧由于冰块与斜面体分离后的速度与小孩推出冰块后的速度相同且冰块处在小孩后方,故冰块不能追上小孩.。
《步步高》2014高考物理大一轮复习讲义【配套word版文档】第3课时光的折射全反射资料
第 3 课时光的折射全反射考纲解读 1.理解折射率的观点,掌握光的折射定律 .2.掌握全反射的条件,会进行有关简单的计算.1. [ 折射定律的应用]察看者看见太阳从地平线升起时,对于太阳地点的以下表达中正确的是() A.太阳位于地平线之上B.太阳位于地平线之下C.太阳恰位于地平线D.大气密度不知,没法判断答案 B分析太阳光由地球大气层外的真空射入大气层时要发生折射,依据折射定律,折射角小于入射角,折射光芒进入察看者的眼睛,察看者以为光芒来自它的反向延伸线.这样使得太阳的实质地点比察看者看见的太阳地点偏低.2. [折射定律与折射率的理解和应用] 如图 1 所示,光芒以入射角θ1从空气射向折射率n=2的玻璃表面.(1)当入射角θ1= 45°时,求反射光芒与折射光芒间的夹角θ.(2) 当入射角θ1为什么值时,反射光芒与折射光芒间的夹角θ= 90°?图 1答案(1)105 ° (2)arctan 2分析(1)设折射角为θ,由折射定律sin θ1θ=sin θ1sin 45°1= n 得 sin==,所以,θ=2sin θ22n222 30°.因为θ′=θ= 45°,所以θ= 180°- 45°- 30°=105°.111′+θ2=90°,所以,sinθ2=sin (90-°θ1′)=cosθ1′=cosθ1(2) 因为θ由折射定律得tan θ=1 2,θ=1 arctan 2.3. [ 全反射问题剖析]好多公园的水池底都装有彩灯,当一细束由红、蓝两色构成的灯光从水中斜射向空气时,对于光在水面可能发生的反射和折射现象,以下光路图中正确的选项是()答案C分析红光、蓝光都要发生反射,红光的折射率较小,所以蓝光发生全反射的临界角较红光小,蓝光发生全反射时,红光不必定发生,故只有 C 正确.4. [光的色散现象剖析](2011大·纲全国·16)雨后太阳光入射到水滴中发生色散而形成彩虹.设水滴是球形的,图 2 中的圆代表水滴过球心的截面,入射光芒在过此截面的平面内,a、b、c、d 代表四条不一样颜色的出射光芒,则它们可能挨次是()A .紫光、黄光、蓝光和红光图2B .紫光、蓝光、黄光和红光C.红光、蓝光、黄光和紫光D .红光、黄光、蓝光和紫光答案B分析由可见光的折射率知,红、橙、黄、绿、蓝、靛、紫七种色光的折射率挨次增大,由题图知a→ d 折射率挨次减小,故 A 、 C、 D 错, B 对.考点梳理1.折射现象光从一种介质斜射进入另一种介质时流传方向改变的现象.2.折射定律(1)内容:如图 3 所示,折射光芒与入射光芒、法线处在同一平面内,折射光芒与入射光芒分别位于法线的双侧;入射角的正弦与折射角的正弦成正比.sin θ1=n.(2) 表达式:sinθ2(3) 在光的折射现象中,光路是可逆的.图 3 3.折射率(1)折射率是一个反应介质的光学性质的物理量.(2)sin θ1定义式: n= 2 .sinθ(3)c,因为 v<c,所以任何介质的折射率都大于1.计算公式: n=v(4)当光从真空 (或空气 )射入某种介质时,入射角大于折射角;当光由介质射入真空(或空气 )时,入射角小于折射角.4.全反射现象(1)条件:①光从光密介质射入光疏介质.②入射角大于或等于临界角.(2)现象:折射光完整消逝,只剩下反射光.5.临界角:折射角等于90°时的入射角,用 C 表示,1 sin C= n.6.光的色散(1)光的色散现象:含有多种颜色的光被分解为单色光的现象.(2)光谱:含有多种颜色的光被分解后,各样色光按其波长的有序摆列.(3)光的色散现象说明:①白光为复色光;②同一介质对不一样色光的折射率不一样,频次越大的色光折射率越大;③不一样色光在同一介质中的流传速度不一样,波长越短,波速越慢.(4)棱镜①含义:截面是三角形的玻璃仪器,能够使光发生色散,白光的色散表示各色光在同一介质中的折射率不一样.②三棱镜对光芒的作用:改变光的流传方向,使复色光发生色散.5. [光流传路径确实定方法]如图 4 所示是一种折射率 n= 1.5 的棱镜,现有一束光芒沿 MN 的方向射到棱镜的 AB 界面上,入射角的正弦值为 sin i= 0.75.求:(1)光在棱镜中流传的速率;(2) 经过计算说明此束光芒射出棱镜后的方向并画出光路图(不考图 4虑返回到 AB 面上的光芒 ).答案看法析分析(1)由 n=c得 v=c=2× 108 m/sv nsin i=n,得 sin r=sin i= 0.5,r= 30°,光芒射到(2) 设光芒进入棱镜后的折射角为r,由sin r nBC 界面时的入射角i 1= 90°- 45°= 45°1因为 sin 45 >°,所以光芒在BC 边发生全反射,光芒沿 DE 方向射出棱镜后的方向与 AC n 边垂直,光路图如下图.方法提炼确立光芒的方法1.先确立光芒在界面上的入射点,而后再找光芒经过的此外一个点,经过两点确立光芒.2.依据折射定律计算折射角,确立折射光芒.当光由光密介质射向光疏介质时,应注意能否发生全反射.考点一折射定律的理解与应用解决光的折射问题的一般方法:(1)依据题意画出正确的光路图.(2)利用几何关系确立光路中的边、角关系,确立入射角和折射角.(3)利用折射定律成立方程进行求解.例 1如图5所示,ABCD为向来角梯形棱镜的截面,∠C= 60°, P 为垂直于直线 BC 的光屏,现用一宽度等于AB 边的单色平行光束垂直射向AB 面,经棱镜折射后在屏P 上形2成宽度等于AB 的一条光带,求棱镜的折射率.图 5分析光路图如下图,依据题意有= θ= 30°, FC = 2θ123 AB1则EF =3AB 依据几何关系有3DE = CE tan 30=° AB tan 30 =° 3 AB在 △ DEF 中, tan θ=3EF3,解得 θ=3 30°=DE3由折射定律可得+ θn =sin θ23,解得 n = 3sin θ1答案 3打破训练 1 如图 6 所示,在座标系的第一象限内有一横截面为四分之一圆周的柱状玻璃体 OPQ ,OP = OQ = R ,一束单色光垂直 OP 面射入玻璃体, 在 OP 面上的入射点为 A ,OA= R,此单色光经过玻璃体后沿BD 方向射出,且与 x 轴交2于 D 点,OD = 3R ,求该玻璃的折射率.图 6答案 3分析作光路图如下图.在PQ 面上的入射角sin θ=OA =1, θ= 30°11OB 2由几何关系可得θ= 60°2sin θ2折射率 n == 3考点二全反射现象的理解与应用1. 在光的反射和全反射现象中,均按照光的反射定律;光路均是可逆的.2.当光射到两种介质的界面上时,常常同时发生光的折射和反射现象,但在全反射现象中,只发生反射,不发生折射.当折射角等于90°时,实质上就已经没有折射光了.3.全反射现象能够从能量的角度去理解:当光由光密介质射向光疏介质时,在入射角渐渐增大的过程中,反射光的能量渐渐加强,折射光的能量渐渐减弱,当入射角等于临界角时, 折射光的能量已经减弱为零, 这时就发生了全反射.例 2如图 7 所示为用某种透明资料制成的一块柱形棱镜的截面图,圆弧 CD 为半径为 R 的四分之一的圆周,圆心为O ,光芒从 AB 面上的某点入射,入射角 θ=45°,它进入棱镜后恰巧以图 71临界角射在 BC 面上的 O 点.(1) 画出光芒由 AB 面进入棱镜且从 CD 弧面射出的光路图;(2) 求该棱镜的折射率 n ;(3) 求光芒在该棱镜中流传的速度大小v(已知光在空气中的流传速度c = 3.0×108 m/s).分析 (1)光路图如下图.(2) 光芒在 BC 面上恰巧发生全反射,入射角等于临界角 C1, cos C = n2-1sin C = n n.光芒在 AB 界面上发生折射,折射角θ= 90°- C ,由几何关系得 sin θ=cos C ,22由折射定律得n = sin θ1sin θ2由以上几式联立解得n = 62(3) 光速 v = c= 6× 108 m/sn答案(1)看法析图(2) 6 (3) 6× 108m/s2打破训练 2 为丈量一块等腰直角三棱镜 ABD 的折射率,用一束激光沿平行于 BD 边的方向射向直角边 AB 边,如图 8 所示.激光束进入棱镜后射到另向来角边 AD 边时,恰巧能发生全反射.该棱镜的折射率为多少? 图 8答案62分析 作出法线如下图sin 45 °1 ,C + r = 90°n =sin r , n =sin Csin 45 ° 1 即 cos C =sin C6 6解得 tan C = 2,sin C = 3 , n = 2 .考点三光路控制问题剖析1. 玻璃砖对光路的控制两平面平行的玻璃砖,出射光芒和入射光芒平行,且光芒发生了侧移,如图9 所示.图92.三棱镜对光路的控制(1) 光密三棱镜:光芒两次折射均向底面偏折,偏折角为δ,如图10所示.(2) 光疏三棱镜:光芒两次折射均向顶角偏折.图10(3)全反射棱镜 (等腰直角棱镜 ),如图 11 所示.图 11① 当光芒从向来角边垂直射入时,在斜边发生全反射,从另向来角边垂直射出(如图 11甲 ).②当光芒垂直于斜边射入时,在两直角边发生全反射后又垂直于斜边射出(如图 11 乙 ),入射光芒和出射光芒相互平行.特别提示不一样颜色的光的频次不一样,在同一种介质中的折射率、光速也不一样,发生全反射现象的临界角也不一样.例 3如图12所示,MNPQ是一块截面为正方形的玻璃砖,正方形的边长为 30 cm,有一束很强的细光束AB 射到玻璃砖的 MQ 面上,入射点为 B,该光束从 B 点进入玻璃砖后再经QP 面反射沿 DC 方向射出.此中 B 为 MQ 的中点,∠ABM = 30°,PD = 7.5 cm,∠ CDN= 30°.试在原图上正确画出该光束在玻璃砖内的光路图,并求出该图 12玻璃砖的折射率.分析找出 B 点对于界面 QP 的对称点 E,连结 ED 交 QP 于 F点,即光束在 F 点发生反射,所以其光路图如下图.由几何关系得DE =302+ 15+7.5 2 cm= 37.5 cmsin θ2=DP+QE= 0.6 DEsin θ1由折射定律得n==1.44.答案看法析图1.44打破训练3如图13 是透明圆柱介质的横截面,C 、 D为圆上两点.一束单色光沿BC方向入射,从D 点射出.已知∠ COD = 90°,∠ BCO= 120°.(1) 求介质的折射率;图 13(2) 改变∠ BCO 的大小,可否在介质的内表面发生全反射?答案 (1) 26(2) 不可以分析(1)作出光路图如图,由几何关系知α= 60°,β= 45°;折射率 n =sin α6=2.sin β (2) 由光路可逆可知,光不行能在介质内表面发生全反射.54. 平行板玻璃砖模型的剖析 例4如图14 所示,两块同样的玻璃等腰三棱镜ABC置于空气中,二者的AC 面相互平行搁置, 由红光和蓝光构成的细光束 平行于BC面从P 点射入,经过两棱镜后,变成从a 、b 两点射出的单色光,对于这两束单色光()A .红光在玻璃中流传速度比蓝光大图 14B .从 a 点射出的为红光,从b 点射出的为蓝光C .从 a 、 b 两点射出的单色光不平行D .从a 、b 两点射出的单色光仍平行,且平行于BC分析由玻璃对蓝光的折射率较大,可知A 选项正确. 由偏折程度可知B 选项正确. 对于 C 、D 二选项,我们应第一理解,除了题设给出的两个三棱镜外,二者之间又形成一个物理模型 —— 平行玻璃砖 (不改变光的方向, 只使光芒发生侧移 ).中间平行部分不过使光发生了侧移.略去侧移要素,整体来看, 还是一块平行玻璃板,AB ∥ BA.所以出射光芒仍平行. 作出光路图如下图,可知光芒Pc在 P 点的折射角与光芒ea 在a 点的入射角相等,据光路可逆,则过a 点的出射光芒与过P 点的入射光芒平行.由此,D 选项正确.答案ABD平常遇到的两面平行的玻璃砖常常是清清楚楚画出来的,是“有形” 的,其折射率大于四周介质的折射率,这光阴线的侧移方向也是我们熟习的.而该题中,未知介质形成的两面平行的“玻璃砖”并未勾画出来,倒是其双侧的介质(三棱镜 )被清楚地勾画出来了,并且前者的折射率未必大于后者.这就在必定程度上掩饰了两面平行的“ 玻璃砖” 的特点.所以我们不单要熟习光学元件的光学特点,并且要会灵巧地运用,将新的情况转变成我们熟知的模型.打破训练 4频次不一样的两束单色光1 和 2 以同样的入射角从同一点射入一厚玻璃板后,其光路如图15 所示,以下说法正确的选项是()A .单色光 1 的波长小于单色光 2 的波长B .在玻璃中单色光 1 的流传速度大于单色光 2 的流传速度图15C.单色光 1 垂直经过玻璃板所需的时间小于单色光 2 垂直经过玻璃板所需的时间D .单色光 1 从玻璃到空气的全反射临界角小于单色光 2 从玻璃到空气的全反射临界角答案AD分析色光此题考察光的色散、全反射现象、光速和折射率之间的关系等知识点.由图知单1 在界面折射时的偏折程度大,则单色光 1 的折射率大,所以单色光 1 的频次大于单色光 2 的频次,那么单色光 1 的波长就小于单色光 2 的波长,A 项对;由n= cv知,折射率大的单色光1 在玻璃中流传速度小,当单色光1、2 垂直射入玻璃时,二者经过玻璃板的行程相等,此时单色光 1 经过玻璃板所需的时间大于单色光 2 的, B 、C 项都错;由 sin C= 1n及单色光1 的折射率大知, D 项对.高考题组1.(2012 ·津理综天·6)半圆形玻璃砖横截面如图16 所示, AB 为直径, O点为圆心.在该截面内有a、b 两束单色可见光从空气垂直于AB 射入玻璃砖,两入射点到 O 的距离相等.两束光在半圆界限上反射和折射的状况如下图,则a、b 两束光()图 16A .在同种平均介质中流传, a 光的流传速度较大B .以同样的入射角从空气斜射入水中, b 光的折射角大C.若 a 光照耀某金属表面能发生光电效应,则 b 光也必定能D .分别经过同一双缝干预装置, a 光的相邻亮条纹间距大答案ACD分析由题图可知, b 光发生了全反射, a 光没有发生全反射,即a 光发生全反射的临界角 C a大于 b 光发生全反射的临界角 C b,依据 sin C=1,知 a 光的折射率较小,即 n a<n b, n依据 n=c,知 v,选项 A 正确;依据 n=sinθ1,当θ相等时,θ,选项 B 错误;v a>v b sinθ212a>θ2b光的折射率越大,频次越高,波长越小,即ν,λ,所以 a 光照耀金属表面时能发a<νba>λb生光电效应,则 b 光也必定能,选项 C 正确;依据条纹间距公式x=lλ知,经过同一d双缝干预装置时 a 光的相邻亮条纹间距较大,选项 D 正确.2. (2011 福·建理综·14)如图 17 所示,半圆形玻璃砖置于光屏PQ 的左下方.一束白光沿半径方向从 A 点射入玻璃砖,在O 点发生反射和折射,折射光在光屏上体现七色光带.若入射点由 A 向B 迟缓挪动,并保持白光沿半径方向入射到O 点,察看到各色光在光屏上陆续消逝.在光带未完整消逝以前,反射光的强度变化以及光屏上最初消逝的光分别是()图 17A .减弱,紫光B .减弱,红光C.加强,紫光 D .加强,红光答案C分析因 n 红 <n 紫,再由临界角公式 sin C=1可得, C 红 >C 紫,所以当增大入射角时,紫n光先发生全反射,紫光先消逝,且当入射光的入射角渐渐增大时,折射光强度会渐渐减弱,反射光强度会渐渐加强,故应选 C.3. (2009 浙·江理综·18)如图 18 所示,有一束平行于等边三棱镜截面ABC 的单色光从空气射向 E 点,并偏折到 F 点.已知入射方向与边AB 的夹角为θ= 30°, E、F分别为边 AB、 BC 的中点,则()A .该棱镜的折射率为3B .光在 F 点发生全反射图 18C.光从空气进入棱镜,波长变小D .从 F 点出射的光束与入射到E 点的光束平行答案AC分析由几何关系可得入射角θ= 60°,折射角θ= 30°,由 n=sinθ1=3,A 对;由 sin122sin θ1,临界角 C>30°,故在 F 点不发生全反射, B 错;由 n=c=λ0知光进入棱镜波长变C=n vλ小, C 对; F 点出射的光束与BC 边的夹角为 30°,与入射光芒不平行, D 错;应选 A、C.模拟试题组4.高速公路上的标牌常用“回光返照膜”制成,夜间行车时,它能将车灯照耀出去的光逆向返回,标记牌上的字特别醒目,这类“回光返照膜”是用球体反射原件制成的.如图19 所示,返照膜内平均散布着直径为10 μm的细玻璃珠,所用玻璃的折射率为3,为使入射的车灯光芒经玻璃的折射、反射、再折射后恰巧和入射光芒平行,那么第一次入射的图 19入射角是()A . 60°B . 45° C. 30° D. 15°答案A分析设入射角为 i,折射角为θ,作出光路图如下图,因为出射光线恰巧和入射光芒平行,所以 i =2θ,依据折射定律, n=sin i=sin 2 θ=sin θsin θ3,所以θ= 30°, i =2θ= 60°,选项 A 正确.5. 如图 20 所示,扇形 AOB 为透明柱状介质的横截面,圆心角∠AOB= 60°.一束平行于角均分线 OM 的单色光由 OA 射入介质,经 OA折射的光芒恰平行于OB,以下对介质的折射率值及折射光芒中恰巧射到 M 点的光芒能不可以发生全反射的说法正确的选项是()A. 3,不可以发生全反射图 20B.3,能发生全反射C.233,不可以发生全反射D.233,能发生全反射答案A分析画出光路图,并依据几何关系标出角度,如下图.由图可知,介质的折射率n=sin 60°3;因为 sin 30 =°1<31 sin 30=2=n °3=sin C,所以折射光芒中恰巧射到M 点的光芒不可以发生全反射,选项 A 正确.(限时: 30 分钟 )?题组 1 光的折射现象与光的色散1. (2011 安·徽 ·15)实验表示,可见光经过三棱镜时各色光的折射率n 随波长 λ的变化切合科西经验公式: B Cn = A + 2 4λ+λ,此中 A 、B 、C 是正的常量.太阳光进入三棱镜后发生色散的情况如图 1 所示,则()图1A .屏上c 处是紫光B .屏上d 处是红光 C .屏上b 处是紫光D .屏上a 处是红光答案D分析可见光中红光波长最长,折射率最小,折射程度最小,所以射率最大,所以d 为紫光.2. 红光与紫光对比a 为红光,而紫光折()A .在真空中流传时,紫光的速度比较大B .在玻璃中流传时,红光的速度比较大D .从玻璃到空气的界面上,红光的临界角较紫光的大答案 BD分析 因为各样色光在真空中的流传速度均为 3×108 m/s ,所以 A 错误.因为玻璃对红 光的折射率较玻璃对紫光的折射率小,依据v = c得红光在玻璃中的流传速度比紫光大,n1所以 B 正确, C 错误.依据公式sin C = n 得红光的临界角比紫光的大, D 正确.3. 已知介质对某单色光的临界角为θ,则()A .该介质对此单色光的折射率等于1sin θB .此单色光在该介质中的流传速度等于 c ·sin θ(c 为真空中的光速 )C .此单色光在该介质中的波长是在真空中波长的 sin θ倍D .此单色光在该介质中的频次是真空中的1sin θ答案 ABC分析介质对该单色光的临界角为θ,它的折射率 n =1,A 项正确; 此单色光在介质sin θ中的流传速度和波长分别为cv = c ·sin θv = = csin θ, B 正确; λ== λ θ,所以 λ∶λ0n ν 0sinc/ λ0= sin θ∶ 1,故 C 项正确;而光的频次是由光源决定的,与介质没关,故D 项错误.4. 如图 2 所示,红色细光束 a 射到折射率为2的透明球表面, 入射角为 45°,在球的内壁经过一次反射后, 从球面射出的光芒为b ,则入射光芒 a 与出射光芒 b 之间的夹角 α为()A .30° `B .45°C . 60°D . 75°答案A图 25. 一束光从空气射入折射率n = 2的某种玻璃的表面,则()A .当入射角大于 45°时,会发生全反射现象B .不论入射角多大,折射角都不会超出 45°C .欲使折射角等于D .当入射角等于30°,应以 45°角入射arctan2时,反射光芒恰巧跟折射光芒垂直答案BCD分析角为对 B 项能够从光的可逆性考虑, 即光芒从介质射向空气, 入射45°时,折射角为 90°,反之, 折射角不会超出 45°,所以 B 正确;由 sin θ=2sin θ1,当 θ=2 30°,n = 2时,θ=1 45°,C 正确;如下图,n∠ 1= arctan 2,若反射光芒与折射光芒垂直,则 ∠3= ∠ 4= 90°- ∠ 2,sin ∠ 3=sin ∠ 1n= 3,sin ∠ 3=cos ∠2= cos ∠ 1=3,与已知条件符合,故 D 正确.因为光芒从光疏33介质射入向光密介质,不行能发生全反射现象,故A 错误.?题组 2 光的全反射6. 公园里灯光喷泉的水池中有处于同一深度的若干彩灯,在夜晚察看不一样颜色彩灯的深度和水面上被照亮的面积,以下说法正确的选项是()A .红灯看起来较浅,红灯照亮的水面面积较小B .红灯看起来较深,红灯照亮的水面面积较小C .红灯看起来较浅,红灯照亮的水面面积较大D.红灯看起来较深,红灯照亮的水面面积较大答案 D分析光从水里射入空气发生折射,入射角同样时,折射率越大,折射角越大,从水面上看光源越浅,红灯发出的红光的折射率最小,看起来最深;设光源的深度为d,光的临界角为 C,则光能够照亮的水面面积大小为 S=π(dtan C)2,可见,临界角越大,照亮的面积越大,各样色光中,红光的折射率最小,临界角最大,所以红灯照亮的水面面积较大,选项 D 正确.7.如图 3 所示, MN 是位于竖直平面内的光屏,放在水平面上的半圆柱`形玻璃砖的平面部分 ab 与屏平行.由光源 S 发出的一束白光从半圆沿半径射入玻璃砖,经过圆心 O 再射到屏上.在水平面内以O 点为圆心沿逆时针方向慢慢转动玻璃砖,在光屏上出现了彩色光带.当玻图 3璃砖转动角度大于某一值时,屏上彩色光带中的某种颜色的色光第一消逝.有关彩色的摆列次序和最初消逝的色光是()A .左紫右红,紫光B .左红右紫,紫光C.左紫右红,红光D.左红右紫,红光答案B分析如下图,因为紫光的折射率大,故在光屏MN 上是左红右紫,并且是紫光最初发生全反射,应选项 B 正确.8.某物理兴趣小组用实验研究光的色散规律,他们将半圆形玻璃砖放在竖直面内,在其左方竖直搁置一个很大的光屏P,让一复色光束SA 射向玻璃砖的圆心 O 后,有两束单色光 a 和 b 射向光屏 P,如图 4 所示.他们依据实验现象提出了以下四个猜想,你以为正确的选项是()A .单色光 a 的波长小于单色光 b 的波长图 4B .在玻璃中单色光 a 的流传速度大于单色光 b 的流传速度C.单色光 a 经过玻璃砖所需的时间大于单色光 b 经过玻璃砖所需的时间D .当光束 SA 绕圆心 O 逆时针转动过程中,在光屏P 上最早消逝的是 a 光答案B分析此题考察光学的有关知识.依据光的折射定律可知 a 光的折射率小于 b 光的折射率,则 a 光的频次小于 b 光的频次,由λ=c可知, A 错误;由 v=c可知, B 正确;因为f n复色光在玻璃砖中流传距离同样,依据t=R可知, C 错误;由 sin C=1可知, D 错误.v n9.为了表演“隐形的大头针”节目,某同学在半径为r 的圆形软木片中心垂直插入一枚大头针,并将其放入盛有水的碗中,如图5 所示.已知水的折射率为4,为了保证表演成功(在水面上看不到大头针),大头针尾端3离水面的最大距离 h 为()74337A. 3 rB.3rC.4rD. 7 r图 5答案A分析只需从大头针尾端发出的光芒射到圆形软木片边沿界面处能够发生全反射,从水面上就看不到大头针,如下图,依据图中几何关系有sin C=r=1=3,所以 hr2+ h2 n 4=73 r,选项 A 对.?题组 3光的折射与光的全反射的综合问题10.如图 6 所示,直角三角形 ABC 为一三棱镜的横截面,∠A= 30°.一束单色光从空气射向BC 上的 E 点,并偏折到AB上的 F点,光芒 EF 平行于底边 AC .已知入射光与BC 边的夹角为θ= 30°.试经过计算判断光在 F 点可否发生全反射.图 6答案能分析由几何关系知,光芒在BC 界面的入射角θ=160°,折射角θ=230°依据折射定律得 n=sin θ1sin 60°=sin 30= 3 sin θ2°由几何关系知,光芒在AB 界面的入射角为θ=360°而棱镜对空气的临界角 C 的正弦值 sin C=1=3,则光芒在AB 界面的入射角n3 <sin θ3θ3>C,所以光芒在 F 点能发生全反射.11. 如图 7 所示,AOB是由某种透明物质制成的1/4 圆柱体的横截面 (O 为圆心 ),其折射率为 2.今有一束平行光以 45度的入射角射向柱体的OA 平面,这些光芒中有一部分不可以从柱体的AB 面上射出.设凡射到OB 面的光芒所有被汲取,也不考虑OA 面的反射,求圆柱AB 面上能射出光芒的部分占 AB 表面的几分之几?答案1图 7 2分析如下图,从 O 点射入的光芒,折射角为r,sin 45°依据折射定律有: n=sin r解得 r= 30°设从某地点 P 点入射的光芒,折射到AB 弧面上 Q 点时,入射角恰等于临界角 C,有:1sin C=n代入数据得: C=45°所以能射出光芒的地区对应的圆心角β=C= 45°45° 1故能射出光芒的部分占AB 表面的比率为:=.90° 2。
2025版高考数学全程一轮复习第七章立体几何与空间向量专题培优课几何法求线面角二面角与距离课件
B.直线BC1与CA1所成的角为90°
C.直线BC1与平面BB1D1D所成的角为45°
D.直线BC1与平面ABCD所成的角为45°
答案:ABD
)
4.如图,在四棱锥P-ABCD中,底面ABCD是矩形,侧面PAD是正三
角形,平面PAD⊥平面ABCD,AB=1,AD=2,则二面角P-BC-D的
的距离为3.故选D.
2.[2023·全国乙卷]已知△ABC为等腰直角三角形,AB为斜边,
△ABD为等边三角形,若二面角C-AB-D为150°,则直线CD与平面
ABC所成角的正切值为(
)
1
A.
5
C.
3
5
答案:C
2
B.
5
2
D.
5
3.(多选)[2022·新高考Ⅰ卷]已知正方体ABCD - A1B1C1D1,则(
2
题型三 几何法求距离
例3 已知四边形ABCD为正方形,P为平面ABCD外一点,PD⊥AD,
PD=AD=2,二面角P-AD-C的大小为60°,则点A到平面PBD的距离
是(
)
2 21
A.
7
6
C.
2
答案:A
B. 3
D.1
题后师说
求点到平面的距离的常用方法
(1)直接法:过点P作平面α的垂线,垂足为Q,把PQ放在某个三角形
π
为[0, ].
2
【问题2】
范围.
请你在图中作出平面α与平面β所成的角,并指出它的
提示:在平面α与平面β的交线l上任取一点O,作
OA⊥l(OA⊂α),OB⊥l(OB⊂β),则∠AOB为二面角α-lβ的平面角,其范围为[0,π].
2014高考历史一轮复习配套课件:必修1 专题7 第1讲 中华人民共和国成立和民主政治制度的建设
四、民族区域自治制度
1.历史背景:
(1)我国是由56个民族组成的统一的多民族国家。 (2)旧中国由于历史条件、地理环境及政府实行民族 压迫、民族歧视政策,少数民族地区的社会经济比 较落后。
(3)新中国成立后,党和人民政府实行民族平等、民 族团结和各民族共同繁荣的原则。
2.基本内容:在中央人民政府的统一领导下,实现 全国各民族一律平等和各民族大团结,在一些少数 民族聚居的地方实行区域自治,建立自治机构,行 使自治权。
5.历史作用: (1)人民政协在国家政治和社会生活及对外友好活动 中,对于国家在物质和精神文明、民主法制建设和 改革开放等方面的重要方针政策以及群众生活的重 大问题,都起了很大作用。
(2)中国共产党领导的多党合作和政治协商制度有利 于党和国家的集中统一及全国人民的团结;有利于 发扬社会主义民主,充分调动各民主党派建设社会 主义的积极性;有利于党和政府兼听各种意见,做 出科学的决策;有利于发扬中国共产党的优良传统 和作风,克服官僚主义;有利于形成对中国共产党 的监督机制和党风廉政建设。
2.形成和发展: (1)1949年中国人民政治协商会议的召开标志着初步 确立。 (2)1954年《中华人民共和国宪法》以国家根本大法 的形式宣布了多党合作制度的确立。
(3)1956年社会主义改造完成后, 中国共产党提出 与民主党派实行“长期共存,互相监督”的方针, 标志着中国共产党领导的多党合作和政治协商制度 发展到一个新阶段。
A.领导中国人民走向新民主主义革命胜利,引发中 国社会巨变
B.领导中国人民取得抗日战争的伟大胜利,中华民 族由衰落走向振兴
C.开创中国特色革命道路,揭开了无产阶级革命新 时代 D.提出“和平共处五项原则”,中国以新的形象出 现在世界舞台
2023届高考物理一轮复习简明精要的考点归纳与方法指导:专题七 动量守恒定律
2023年高考物理一轮复习--简明精要的考点归纳与方法指导专题七动量守恒定律(七大考点)考点一冲量和动量的理解1.动量、动能、动量变化量的比较项目动量动能动量变化量定义物体的质量和速度的乘积物体由于运动而具有的能量物体末动量与初动量的矢量差定义式p=mv E k=12mv2Δp=p'-p 矢标性矢量标量矢量特点状态量状态量过程量关联方程E k=p 22m ,E k=12pv,p=√2mE k,p=2.冲量的四种计算方法公式法利用定义式I=Ft计算冲量,此方法仅适用于求恒力的冲量,无需考虑物体的运动状态图像法利用F-t图像计算,F-t图像围成的面积表示冲量,此法既可以计算恒力的冲量,也可以计算变力的冲量平均值法若力的方向不变,大小随时间均匀变化,即力为时间的一次函数,则力F在某段时间t内的冲量I=F1+F22t,F1、F2为该段时间内初、末两时刻力的大小动量定理法如果物体受到大小或方向变化的力的作用,则不能直接用I=Ft求变力的冲量,可以求出该力作用下物体动量的变化量,由I=Δp求变力的冲量考点二动量定理的理解及应用1.动量定理的理解(1)动量定理表明冲量是使物体动量发生变化的原因,冲量是物体动量变化的量度。
这里所说的冲量必须是物体所受的合外力的冲量(或者说是物体所受各外力冲量的矢量和)。
(2)动量定理给出了冲量和动量变化间的相互关系。
(3)现代物理学把力定义为物体动量的变化率:F=ΔpΔt(牛顿第二定律的动量形式)。
(4)动量定理的表达式F·Δt=Δp是矢量式,在一维的情况下,各个矢量必须以同一个规定的方向为正方向。
运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F是物体或系统所受的合力。
(5)动量定理不仅适用于恒定的力,也适用于随时间变化的力。
这种情况下,动量定理中的力F应理解为变力在作用时间内的平均值。
2.应用动量定理解释的两类物理现象(1)当物体的动量变化量一定时,力的作用时间Δt越短,力F就越大,力的作用时间Δt越长,力F就越小,如玻璃杯掉在水泥地上易碎,而掉在沙地上不易碎。
2025人教版高考物理一轮复习讲义-第七章 第3课时 专题强化:碰撞模型及拓展
考点二 碰撞模型拓展
规定向左为正方向。冰块在斜面体上上升到最大高度时两者达到共同
速度,设此共同速度为v,斜面体的质量为m3。对冰块与斜面体分析, 由水平方向动量守恒和机械能守恒得
m2v0=(m2+m3)v
①
12m2v02=12(m2+m3)v2+m2gh
②
式中v0=3 m/s为冰块推出时的速度,联立①②式并代入数据得v=
考点二 碰撞模型拓展
从小球滚上小车到滚下并离开小车的过程,系统 在水平方向上动量守恒,由于无摩擦力做功,机 械能守恒,此过程类似于弹性碰撞,作用后两者 交换速度,即小球返回小车左端时速度变为零, 开始做自由落体运动,小车速度变为 v0,动能为12Mv02,即此过程小球 对小车做的功为12Mv02,故 B、C 正确,A 错误。
49 D. 9 h
考点一 碰撞模型
设小球 P、Q 的质量分别为 m、2m,落地前的瞬间二者速度 均为 v,由动能定理可得 3mgh=12×3mv2,解得 v= 2gh, Q 与地面碰撞后速度等大反向,然后与 P 碰撞,P、Q 碰撞 过程满足动量守恒、机械能守恒,规定向上为正方向,则有 2mv-mv=mvP+2mvQ,12×3mv2=12mvP2+12×2mvQ2,解得 vP=53 2gh, 碰后小球 P 机械能守恒,则有 mgh′=12mvP2,解得 h′=295h,故选 B。
考点一 碰撞模型
例3 (2023·天津卷·12)已知A、B两物体mA=2 kg,mB=1 kg,A物体从h =1.2 m处自由下落,且同时B物体从地面竖直上抛,经过t=0.2 s相遇碰 撞后,两物体立刻粘在一起运动,已知重力加速度g=10 m/s2,求: (1)碰撞时离地高度x; 答案 1 m
对物体 A,根据运动学公式可得 x=h-21gt2=1.2 m-12×10×0.22 m=1 m
2024版新教材高考物理全程一轮总复习第七章碰撞与动量守恒专题强化七碰撞模型的拓展课件
1
1
等于系统损失的动能,即ΔE= m0 v02 - (m+m0)v2 ,而木块获得的动能Ek木 =
1
mv2=6
2
2
2
E
m+m0
J,两式相除得
=
>1,即ΔE>6
E
m0
木
k
J,A项正确.
例5 [2022·河北卷]如图,光滑水平面上有两个等高的滑板A和B,质
典例 [2022·浙江6月]如图所示,在竖直面内,一质量为m的物块a静置于
悬点O正下方的A点,以速度v逆时针转动的传送带MN与直轨道AB、CD、
FG处于同一水平面上,AB、MN、CD的长度均为l.圆弧形细管道DE半径为
R,EF在竖直直径上,E点高度为H.开始时,与物块a相同的物块b悬挂于O
点,并向左拉开一定的高度h由静止下摆,细线始终张紧,摆到最低点时恰
(1)动量守恒:两个物体与弹簧相互作用的过程中,若系统所受外力
的矢量和为零,则系统动量守恒.
(2)机械能守恒:系统所受的外力为零或除弹簧弹力以外的内力不做
功,系统机械能守恒.
(3)弹簧处于最长(最短)状态时两物体速度相等,弹性势能最大,系
统动能通常最小(相当于完全非弹性碰撞,两物体减少的动能转化为
弹簧的弹性势能.)
量分别为1 kg和2 kg,A右端和B左端分别放置物块C、D,物块质量均
为1 kg,A和C以相同速度v0=10 m/s向右运动,B和D以相同速度kv0向
左运动,在某时刻发生碰撞,作用时间极短,碰撞后C与D粘在一起
形成一个新滑块,A与B粘在一起形成一个新滑板,物块与滑板之间的
备考2025届高考物理一轮复习分层练习第四章曲线运动专题七圆周运动临界问题的模型建构
专题七 圆周运动临界问题的模型建构1.[多选]如图所示,用一端固定在O 点且长为L 的细绳拴着质量为m 的小球在竖直平面内做圆周运动,则下列说法正确的是( CD )A.小球在圆周最高点时所受的向心力确定为重力B.小球在最高点时绳子的拉力不行能为零C.小球过最低点时绳子的拉力确定大于小球重力D.若小球刚好能在竖直平面内做圆周运动,则其在最高点的速率为√gL解析 在最高点时,若向心力完全由重力供应,即球和细绳之间没有相互作用力,此时有mg =m v 02L ,解得v 0=√gL ,此时小球刚好能在竖直平面内做圆周运动,若v >√gL ,则小球对细绳有拉力,若v <√gL ,则小球不能在竖直平面内做圆周运动,所以在最高点,充当向心力的不愿定是重力.在最低点时,细绳的拉力和重力的合力充当向心力,故有T -mg =m v 12L ,得T =m v 12L +mg ,则小球过最低点时细绳的拉力确定大于小球重力,故A 、B 错误,C 、D 正确.2.[2024山东临沂检测]无缝钢管的制作原理如图所示,竖直平面内,管状模型置于两个支承轮上,支承轮转动时通过摩擦力带动管状模型转动,铁水注入管状模型后,由于离心作用,紧紧地覆盖在模型的内壁上,冷却后就得到无缝钢管.已知管状模型内壁半径为R ,则下列说法正确的是( C )A.铁水是由于受到离心力的作用才覆盖在模型内壁上B.模型各个方向上受到的铁水的作用力相同C.若最上部的铁水恰好不离开模型内壁,此时仅重力供应向心力D.管状模型转动的角速度ω最大为√gR解析 铁水做圆周运动,重力与弹力的合力供应向心力,没有离心力,A 错误;模型最下部受到铁水的作用力最大,最上部受到铁水的作用力最小,B 错误;最上部的铁水假如恰好不离开模型内壁,则由重力供应向心力,有mg =mω2R ,可得ω=√gR,故管状模型转动的角速度ω至少为√gR,C 正确,D 错误.3.[2024湖北宜城一中质检/多选]一半径为r 的小球紧贴竖直放置的圆形管道内壁做圆周运动,如图甲所示.小球运动到最高点时管壁对小球的作用力大小为F N ,小球的速度大小为v ,其F N -v 2图像如图乙所示.已知重力加速度为g ,规定竖直向下为正方向,不计一切阻力.则下列说法正确的是( ABD )A.小球的质量为b gB.圆形管道内侧壁半径为c g-rC.当v 2=d 时,小球受到外侧壁竖直向上的作用力,大小为d bc-bD.小球在最低点的最小速度为2√c解析 设圆形管道内侧壁半径为R ,在最高点,当管壁对小球的作用力为零时,重力供应向心力,由牛顿其次定律得mg =mv 02R +r,解得v 0=√g(R +r),当0<v <√g(R +r)时,在最高点,小球受到管内壁向上的弹力,由牛顿其次定律得mg -F N =m v 2R +r,整理得F N =mg -mv 2R +r,结合题图乙可得mg =b ,m R +r=b c,解得m =b g,R =cg-r ,A 、B 正确;当v >√g(R +r)时,在最高点,小球受到管外壁向下的弹力,由牛顿其次定律得mg +F N =m v 2R +r,整理得F N =mv 2R +r-mg ,当v 2=d 时,有F N =bdc -b ,C 错误;依据能量守恒定律可知,当小球在最高点具有最小速度(为零)时,其在最低点的速度最小,即12m v min 2=2mg (R +r ),解得v min =2√c ,D 正确.4.[创新图像形式/2024湖南长沙雅礼中学校考/多选]如图所示,水平圆盘上放置一个质量为m 的小物块,物块通过长为L 的轻绳连接到竖直转轴上的定点O,此时轻绳恰好伸直,与转轴成37°角.现使整个装置绕转轴缓慢加速转动(轻绳不会绕到转轴上),角速度ω从零起先缓慢增加,直到物块刚好要脱离圆盘.已知物块与圆盘间动摩擦因数μ=0.5,最大静摩擦力等于滑动摩擦力,重力加速度为g,sin37°=0.6,cos37°=0.8.则轻绳的弹力大小F T和物块受到的摩擦力大小F f随ω2变更的图像正确的是(AD)解析ω较小时,绳子无弹力,静摩擦力供应向心力,有F f=mω2L sin 37°,当F f达到最大静摩擦力时有mω12L sin 37°=μmg,解得ω12=5g6L ,此时F T=0、F f=12mg,即绳子刚好起先产生弹力,接着增大角速度,轻绳弹力增大,静摩擦力减小,最终物块刚好要脱离圆盘,此时摩擦力为0,有F T cos 37°=mg、F T sin 37°=mω22L sin 37°,解得ω22=5g4L,此时F T=54mg、F f=0,A、D正确,B、C错误.5.[多选]如图所示,物体P用两根长度相等且不行伸长的细线系于竖直杆上,并随杆转动.若转动角速度为ω,则(ABC)A.ω只有超过某一值时,细线AP才有拉力B.细线BP的拉力随ω的增大而增大C.细线BP所受拉力确定大于细线AP所受拉力D.当ω增大到确定程度时,细线AP所受拉力大于BP所受拉力解析ω较小时,AP松弛,故A正确.AP绷紧前,对P受力分析,如图甲所示,水平方向有F BP sin θ=mω2L sin θ,得F BP=mω2L,可知BP的拉力随ω的增大而增大;AP绷紧后,对P受力分析,如图乙所示,竖直方向有F BP sin α-F AP sin α=mg,得F BP-F AP=mgsinα>0,水平方向有F BP cos α+F AP cos α=mω2L cos α,解得2F BP=mgsinα+mω2L,可知BP的拉力随ω的增大而增大,故B、C正确,D错误.6.[2024山东]无人配送小车某次性能测试路径如图所示,半径为3m 的半圆弧BC 与长8m 的直线路径AB 相切于B 点,与半径为4m 的半圆弧CD 相切于C 点.小车以最大速度从A 点驶入路径,到适当位置调整速率运动到B 点,然后保持速率不变依次经过BC 和CD .为保证平安,小车速率最大为4m/s .在ABC 段的加速度最大为2m/s 2,CD 段的加速度最大为1m/s 2.小车视为质点,小车从A 到D 所需最短时间t 及在AB 段做匀速直线运动的最长距离l 为( B )A.t =(2+7π4)s ,l =8m B.t =(94+7π2)s ,l =5mC.t =(2+5√612+7√6π6)s ,l =5.5m D.t =(2+5√612+4+√62π)s ,l =5.5m解析 在BC 段的最大加速度为a 1=2 m/s 2,由a 1=v 12r 1得小车在BC 段的最大速度为v 1 =√6 m/s ;在CD 段的最大加速度为a 2=1 m/s 2,由a 2=v 22r 2得小车在CD 段的最大速度为v 2=2 m/s <v 1;小车可在BCD 段运动的时间为t 3=π(r 1+r 2)v 2=7π2s ;在AB 段从最大速度v 1减速到v 2的时间t 1=v 1−v 2a 1=1 s ,位移x 2=v 12−v 222a 1=3 m ,则在AB 段匀速运动的最长距离为l =8 m -3 m =5 m ;匀速运动的时间t 2=l v 1=54s ,则小车从A 到D 所需最短 时间为t =t 1+t 2+t 3=(94+7π2) s ,B 正确.7.[多选]如图所示,在匀速转动的水平圆盘上,沿半径方向放着用轻绳相连的质量均为m 的两个物体A 和B ,它们分居圆心两侧,与圆心的距离分别为R A =r 、R B =2r ,与圆盘间的动摩擦因数μ相同,最大静摩擦力等于滑动摩擦力,当圆盘转速缓慢增大到两物体刚好还未发生滑动时,下列说法正确的是( ABC )A.此时绳子所受拉力为T =3μmgB.此时圆盘的角速度为ω=√2μg rC.此时A 所受摩擦力方向沿半径指向圆盘外D.此时烧断绳子,A 仍相对盘静止,B 将做离心运动解析 A 和B 随着圆盘转动时,合外力供应向心力,B 的运动半径比A 的大,所以B 所需向心力大,绳子拉力相等,当圆盘转速增大到两物体刚好还未发生滑动时,B 的静摩擦力方向沿半径指向圆心,A 的最大静摩擦力方向沿半径指向圆盘外,依据牛顿其次定律得T -μmg =mrω2,T +μmg =2mrω2,解得T =3μmg ,ω=√2μg r,A 、B 、C 正确;此时烧断绳子,A 、B 的最大静摩擦力都不足以供应向心力,A 、B 都将做离心运动,D 错误. 8.[2024四川绵阳南山中学校考]某水上滑梯的简化结构图如图所示.总质量为m 的滑船(包括游客),从图甲所示倾角θ=53°的光滑斜轨道上的A 点由静止起先下滑,到达B 点时,进入一段与斜轨道相切的半径R =12.5m 的光滑圆弧轨道BC ,C 点为与地面相切的圆弧轨道最低点,在C 点时对轨道的压力为1.8mg ,之后轨道扭曲(D 与BC 不在同一个竖直面内),滑船从D 点沿切线方向滑上如图乙所示的足够大光滑斜面abcd ,速度方向与斜面水平底边ad 成夹角θ=53°.已知斜面abcd 与水平面成β=37°角,最终滑船由斜面水平底边ad 上的E 点进入水平接收平台,已知DE 长L =8m ,g 取10m/s 2.求:(1)A 点距离地面高度H ;(2)滑船运动到D 点时的速度大小v D 及从D 点到E 点的运动时间t .答案 (1)5m (2)5√2m/s4√23s解析 (1)滑船从A 点滑到C 点时,由机械能守恒定律可知mgH =12m v C2在C 点时由牛顿其次定律可得F NC -mg =m v C2R解得H =0.4R =5m(2)滑船在斜面上做类平抛运动,在斜面上只受重力和斜面的支持力,则运动的加速度大小a =mgsinβm=6m/s 2沿边ab方向有v D sinθ=a·t2沿底边ad方向有L=v D cosθ·t联立并代入数据解得v D=5√2m/s,t=4√23s.9.[斜面上的圆周运动/2024山东潍坊统考]为解决洗衣服时弯腰放置衣物的问题,有人设计了一种斜式滚筒洗衣机,其简化图如图所示.该洗衣机在脱水过程中滚筒绕固定轴OO1以恒定的角速度转动,滚筒的半径为r,筒壁内有一可视为质点的衣物,衣物与滚筒间的动摩擦因数为μ(设最大静摩擦力等于滑动摩擦力),固定轴与水平面间的夹角为θ,重力加速度为g.要保持衣物在最高点时与滚筒相对静止,滚筒转动角速度的最小值为(B)A.√g(μsinθ+cosθ)μr B.√g(sinθ+μcosθ)μrC.√g(μsinθ-cosθ)μr D.√g(sinθ-μcosθ)μr解析。
2025版高考物理一轮总复习专题七电场热点专题系列四攻克电场类图像的应用pptx课件
变式1 (2022年重庆测试)反射式速调管是利用电子团在电场中的振荡来 产生微波的器件,其基本原理如下:静电场方向平行于x轴,其电势随x 的分布如图所示.在A点释放电子,其振荡周期为T,若在OA的中点释放 电子,则其振荡周期为( )
A.12T
B. 22T
C.T
ቤተ መጻሕፍቲ ባይዱ
【答案】B
D.2T
【解析】无论电阻在A点释放还是在OA的中点释放,在OA段的加速度完 全相同,同理在OB段的加速度前后两次也完全相同,在A点释放时,从
A.沿x轴正方向电势降低 B.A、B两板的电势差一定为2x0E0 C.将电子由O点静止释放,电势能增加 D.使电子沿x轴在板间移动,电势能不变 【答案】D
【解析】由题意可知,沿x轴方向电势不变,故A错误;x轴方向即为沿 板长方向,由于不知道板间距离,则无法确定两板间的电势差,故B错 误;将电子由O点静止释放,电场力做正功,电势能减小,故C错误;x 轴方向即为沿板长方向,则使电子沿x轴在板间移动,即在同一等势面 上移动,其电势能不变,故D正确.
A、B两点间的电势差的大小,则|UAB|=E0+23E0×0.06 V=30 V,E0= 2.5×102 V·m-1,D正确.
类型三 Ep-x图像 例3 (多选)空间中存在一静电场,一电子从x=0处以一定的初速度沿+ x轴方向射出,仅在电场力作用下在x轴上做直线运动,其电势能Ep随位 置x变化的关系图像如图所示.则下列判断正确的是( )
电子从x1向x3运动的过程中,在x3处的电势能最小,则动能最大,速度 最大,A错误;Ep-x图像的斜率绝对值表示电子受到的电场力大小,在 x2处图像的斜率为0,则电场力为0,故电子的加速度为0,B错误;电子 从x1向x3运动的过程中,x3处的图像斜率绝对值最大,则电场力最大, 电场强度最大,C正确;电子从x1向x3运动的过程中,电子在x2处电势能 最大,但由于电子带负电,故在x2处电势最低,D错误.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题七 静电场
5. 二十一世纪工作生存法则就是:建立个人品牌,把你的名字变成钱。 5. 你要爱的,不是想象中的白马王子,而是能陪着你走过风风雨雨的。 17 、无人理睬时,坚定执着。万人羡慕时,心如止水。 10 、当你再也没有什么可以失去的时候,就是你开始得到的时候。 18 、永不放弃是你梦想实现的唯一秘诀。 5 、无志者常立志,有志者立常志,咬定一个目标的人ቤተ መጻሕፍቲ ባይዱ容易成功。 6 、生活本是痛苦,是思想和哲理使其升。 1. 累了,难过了,就蹲下来,自己给自己一个拥抱。 16 、人生最大的失败就是知道的太多会做的太少! 8. 生活如水,人生似茶。没有不痛苦的人生,人生苦难重重,人生就是不断面临和克服一个个痛苦的过程,对这一事实,你必须心悦诚服, 不要试图做任何的抵赖和逃避,因为这对解决痛苦没有丝毫用处。
8. 生活如水,人生似茶。没有不痛苦的人生,人生苦难重重,人生就是不断面临和克服一个个痛苦的过程,对这一事实,你必须心悦诚服, 不要试图做任何的抵赖和逃避,因为这对解决痛苦没有丝毫用处。
14. 穷并不代表笨,亲人多并不代表朋友多,喝酒不是喝的数量,只有心里的质量,智慧的火花,才是久远的真情。 12 、复杂中带着简单的思考,是人和动物的分别。 15 、总有一个人他教会你成长,然后又独自离开。 3. 那些原本想要费尽心机忘掉的事情,原来真的就那么忘了。 8. 地球是运动的,一个人不会永远处在倒霉的位置。 14 、人生,最宝贵的莫过于光阴;人生,最璀璨的莫过于事业;人生,最快乐的莫过于奋斗。 5. 你要爱的,不是想象中的白马王子,而是能陪着你走过风风雨雨的。