【创新方案】2015高考数学(理)一轮突破热点题型:第2章 第8节 函数与方程]
【创新方案】高考数学一轮复习(知识回扣+热点突破+能力提升)函数与方程 理 北师大版
第八节函数与方程【考纲下载】1.结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.2.根据具体函数的图象,能够用二分法求相应方程的近似解.1.函数的零点与方程的实数解(1)函数的零点:函数y=f(x)的图像与横轴的交点的横坐标称为这个函数的零点.(2)利用函数性质判定函数零点:若函数y=f(x)在闭区间[a,b]上的图像是连续曲线,并且在区间端点的函数值符号相反,即f(a)·f(b)<0,则在区间(a,b)内,函数y=f(x)至少有一个零点,即相应方程f(x)=0在区间(a,b)内至少有一个实数解.2.二分法每次取区间的中点,将区间一分为二,再经比较,按需要留下其中一个小区间的方法称为二分法.1.函数的零点是函数y=f(x)与x轴的交点吗?是否任意函数都有零点?提示:函数的零点不是函数y=f(x)与x轴的交点,而是y=f(x)与x轴交点的横坐标,也就是说函数的零点不是一个点,而是一个实数;并非任意函数都有零点,只有f(x)=0有根的函数y=f(x)才有零点.2.若函数y=f(x)在区间(a,b)内有零点,一定有f(a)·f(b)<0吗?提示:不一定,如图所示,f(a)·f(b)>0.3.若函数y=f(x)在区间(a,b)内,有f(a)·f(b)<0成立,那么y=f(x)在(a,b)内存在唯一的零点吗?提示:不一定,可能有多个.1.(教材习题改编)下列函数图象与x轴均有交点,其中不能用二分法求图中函数零点的是( )A B C D解析:选C 由图象可知,选项C 所对应零点左右两侧的函数值的符号是相同的,故不能用二分法求解.2.(教材习题改编)用二分法求函数y =f (x )在区间(2,4)上的近似解,验证f (2)·f (4)<0,给定精确度ε=0.01,取区间(2,4)的中点x 1=2+42=3,计算得f (2)·f (x 1)<0,则此时零点x 0所在的区间为( )A .(2,4)B .(3,4)C .(2,3)D .(2.5,3)解析:选C ∵f (2)·f (4)<0,f (2)·f (3)<0,∴f (3)·f (4)>0, ∴零点x 0所在的区间为(2,3).3.函数f (x )=log 2x +x -4的零点所在的区间是( )A.⎝ ⎛⎭⎪⎫12,1 B .(1,2) C .(2,3) D .(3,4) 解析:选C 因为f (2)=log 22+2-4=-1<0,f (3)=log 23-1>0,所以f (2)·f (3)<0,故零点所在的一个区间为(2,3).4.函数f (x )=e x+3x 的零点个数是( )A .0B .1C .2D .3解析:选B 函数f (x )=e x+3x 零点的个数,即为函数y =e x与y =-3x 图象交点的个数.在同一坐标系下画出y =e x 与y =-3x 的图象如图.故函数f (x )=e x+3x 只有一个零点.5.函数y =⎝ ⎛⎭⎪⎫12|x |-m 有两个零点,则m 的取值范围是________.解析:在同一直角坐标系内,画出y 1=⎝ ⎛⎭⎪⎫12|x |和y 2=m 的图象,如图所示,由于函数有两个零点,故0<m <1.答案:(0,1)[例1] (1)(2014·西安模拟)函数f (x )=2x +ln 1x -1的零点所在的大致区间是( )A .(1,2)B .(2,3)C .(3,4)D .(1,2)与(2,3)(2)(2013·重庆高考)若a <b <c ,则函数f (x )=(x -a )·(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( )A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内[自主解答] (1)f (x )=2x +ln 1x -1=2x -ln(x -1).当1<x <2时,ln(x -1)<0,2x >0,所以f (x )>0,故函数f (x )在(1,2)上没有零点.f (2)=1-ln 1=1,f (3)=23-ln 2=2-3ln 23=2-ln 83, ∵8=22≈2.828>e,∴8>e 2,即ln 8>2,即f (3)<0,又f (4)=12-ln 3<0,∴f (x )在(2,3)内存在一个零点.(2)易知f (a )=(a -b )(a -c ),f (b )=(b -c )(b -a ),f (c )=(c -a )(c -b ).又a <b <c ,则f (a )>0,f (b )<0,f (c )>0,又该函数是二次函数,且开口向上,可知两根分别在(a ,b )和(b ,c )内.[答案] (1)B (2)A【方法规律】判断函数零点所在区间的方法判断函数在某个区间上是否存在零点,要根据具体题目灵活处理,当能直接求出零点时,就直接求出进行判断;当不能直接求出时,可根据零点存在性定理判断;当用零点存在性定理也无法判断时可画出图象判断.1.方程log 3x +x =3的根所在的区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)解析:选C 法一:方程log 3x +x =3的根即是函数f (x )=log 3x +x -3的零点,由于f (2)=log 32+2-3=log 32-1<0,f (3)=log 33+3-3=1>0且函数f (x )在(0,+∞)上为单调增函数.∴函数f (x )的零点即方程log 3x +x =3的根所在区间为(2,3).法二:方程log 3x +x =3的根所在区间即是函数y 1=log 3x 与y 2=3-x 交点横坐标所在区间,两函数图象如图所示.由图知方程log 3x +x =3的根所在区间为(2,3).2.在下列区间中,函数f (x )=e -x-4x -3的零点所在的区间为( ) A.⎝ ⎛⎭⎪⎫-34,-12 B.⎝ ⎛⎭⎪⎫-12,-14C.⎝ ⎛⎭⎪⎫-14,0D.⎝ ⎛⎭⎪⎫0,14解析:选B 易知函数f (x )在R 上是单调减函数.对于A ,注意到f ⎝ ⎛⎭⎪⎫-34=e 34-4×⎝ ⎛⎭⎪⎫-34-3=e 34>0,f ⎝ ⎛⎭⎪⎫-12=e 12-4×⎝ ⎛⎭⎪⎫-12-3=e 12-1>0,因此函数f (x )=e -x-4x -3的零点不在区间⎝ ⎛⎭⎪⎫-34,-12上;对于B ,注意到f ⎝ ⎛⎭⎪⎫-12>0,f ⎝ ⎛⎭⎪⎫-14=e 14-4×⎝ ⎛⎭⎪⎫-14-3=e 14-2<414-2<0,因此在区间⎝ ⎛⎭⎪⎫-12,-14上函数f (x )=e -x-4x -3一定存在零点;对于C ,注意到f ⎝ ⎛⎭⎪⎫-14<0,f (0)=-2<0,因此函数f (x )=e -x-4x -3的零点不在区间⎝ ⎛⎭⎪⎫-14,0上;对于D ,注意到f (0)=-2<0,f ⎝ ⎛⎭⎪⎫14=e -14-4×14-3=e -14-4<0,因此函数f (x )=e -x-4x -3的零点不在区间⎝ ⎛⎭⎪⎫0,14上.[例2] (1)(2014·郑州模拟)函数f (x )=x 2-2x在x ∈R 上的零点的个数是( )A .0B .1C .2D .3(2)已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,log 2x ,x >0,则函数y =f (f (x ))+1的零点个数是( )A .4B .3C .2D .1[自主解答] (1)注意到f (-1)×f (0)=12×(-1)<0,因此函数f (x )在(-1,0)上必有零点.又f (2)=f (4)=0,因此函数f (x )的零点个数是3.(2)由f (f (x ))+1=0可得f (f (x ))=-1.又由f (-2)=f ⎝ ⎛⎭⎪⎫12=-1, 可得f (x )=-2或f (x )=12.若f (x )=-2,则x =-3或x =14;若f (x )=12,则x =-12或x =2,综上可得函数y =f (f (x ))+1有4个零点. [答案] (1)D (2)A 【互动探究】若将本例(1)中的函数改为“f (x )=x 12-⎝ ⎛⎭⎪⎫12x”,该如何选择?解析:选B 因为y =x 12在x ∈[0,+∞)上单调递增,y =⎝ ⎛⎭⎪⎫12x在x ∈R 上单调递减,所以f (x )=x 12-⎝ ⎛⎭⎪⎫12x 在x ∈[0,+∞)上单调递增.又f (0)=-1<0,f (1)=12>0,所以f (x )=x 12-⎝ ⎛⎭⎪⎫12x 在定义域内有唯一零点,故应选B.【方法规律】判断函数零点个数的方法(1)解方程法:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理法:利用定理不仅要求函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点或零点值所具有的性质.(3)数形结合法:转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.1.(2013·天津高考)函数f (x )=2x|log 0.5x |-1的零点个数为( ) A .1 B .2 C .3 D .4解析:选B 易知函数f (x )=2x|log 0.5x |-1的零点个数⇔方程|log 0.5x |=12x =⎝ ⎛⎭⎪⎫12x 的根的个数⇔函数y 1=|log 0.5x |与y 2=⎝ ⎛⎭⎪⎫12x的图象的交点个数.作出两个函数的图象如图所示,由图可知两个函数图象有两个交点.2.已知符号函数sgn(x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,则函数f (x )=sgn(x -1)-ln x 的零点个数为( )A .1B .2C .3D .4解析:选C 依题意得,当x -1>0,即x >1时,f (x )=1-ln x ,令f (x )=0得x =e>1;当x -1=0,即x =1时,f (x )=0-ln 1=0;当x -1<0,即x <1时,f (x )=-1-ln x ,令f (x )=0得x =1e<1.因此,函数f (x )的零点个数为3.1.高考对函数零点的考查多以选择题或填空题的形式出现,求函数零点问题,难度较易;利用零点的存在性求相关参数的值,难度较大.2.高考对函数零点的考查主要有以下几个命题角度: (1)已知函数的零点或方程的根所在的区间,求参数; (2)已知函数的零点或方程的根的个数,求参数; (3)利用函数的零点比较大小.[例3] (1)(2013·天津高考)设函数f (x )=e x+x -2,g (x )=ln x +x 2-3.若实数a ,b 满足f (a )=0,g (b )=0,则 ( )A .g (a )<0<f (b )B .f (b )<0<g (a )C .0<g (a )<f (b )D .f (b )<g (a )<0(2)(2011·山东高考)已知函数f (x )=log a x +x -b (a >0,且a ≠1).当2<a <3<b <4时,函数f (x )的零点x 0∈(n ,n +1),n ∈N *,则n =________.(3)(2011·北京高考)已知函数f (x )=⎩⎪⎨⎪⎧2x, x ≥2,x -3,x <2.若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是________.[自主解答] (1)∵f (x )在R 上为增函数,且f (0)=e 0-2<0,f (1)=e -1>0, 又f (a )=0,∴0<a <1.∵g (x )=ln x +x 2-3,∴g (x )在(0,+∞)上为增函数, 又g (1)=ln 1-2=-2<0,g (2)=ln 2+1>0,且g (b )=0,∴1<b <2,即a <b ,∴⎩⎪⎨⎪⎧fb f a =0,gag b =0.(2)∵2<a <3<b <4,∴f (x )=log a x +x -b 在(0,+∞)上为增函数. 当x =2时,f (2)=log a 2+2-b <0;当x =3时,f (3)=log a 3+3-b >0,∴f (x )的零点x 0在区间(2,3)内,∴n =2. (3)在同一坐标系中作出f (x )=⎩⎪⎨⎪⎧2x,x ≥2,x -3,x <2及y =k 的图象,如图.可知,当0<k <1时,y =k 与y =f (x )的图象有两个交点,即方程f (x )=k 有两个不同的实根.[答案] (1)A (2)2 (3)(0,1)函数零点应用问题的常见类型及解题策略(1)已知函数零点求参数.根据函数零点或方程的根所在的区间求解参数应分三步:①判断函数的单调性;②利用零点存在性定理,得到参数所满足的不等式;③解不等式,即得参数的取值范围.(2)已知函数零点的个数求参数.常利用数形结合法.(3)借助函数零点比较大小.要比较f (a )与f (b )的大小,通常先比较f (a )、f (b )与0的大小.1.函数f (x )=2x-2x-a 的一个零点在区间(1,2)内,则实数a 的取值范围是( )A .(1,3)B .(1,2)C .(0,3)D .(0,2)解析:选C 由条件可知f (1)f (2)<0,即(2-2-a )(4-1-a )<0,即a (a -3)<0,解得0<a <3.2.若函数f (x )=x ln x -a 有两个零点,则实数a 的取值范围为( )A.⎣⎢⎡⎦⎥⎤0,1eB.⎝ ⎛⎭⎪⎫0,1eC.⎝ ⎛⎦⎥⎤0,1eD.⎝ ⎛⎭⎪⎫-1e ,0解析:选D 令g (x )=x ln x ,h (x )=a ,则问题可转化成函数g (x )与h (x )的图象有两个交点.由g ′(x )=ln x +1,令g ′(x )<0,即ln x <-1,可解得0<x <1e;令g ′(x )>0,即lnx >-1,可解得x >1e ,所以,当0<x <1e 时,函数g (x )单调递减;当x >1e时,函数g (x )单调递增,由此可知,当x =1e 时,g (x )min =-1e .作出函数g (x )和h (x )的简图,据图可得-1e<a <0.3.已知f (x )=x 3-6x 2+9x -abc ,a <b <c ,且f (a )=f (b )=f (c )=0.现给出如下结论: ①f (0)f (1)>0;②f (0)f (1)<0;③f (0)f (3)>0;④f (0)·f (3)<0. 其中正确结论的序号是( )A .①③B .①④C .②③D .②④解析:选C 由题设知f (x )=0有3个不同零点.设g (x )=x 3-6x 2+9x ,∴g (x )=x (x 2-6x +9)=x (x -3)2,令g (x )=0,得x =0或x =3,g ′(x )=3x 2-12x +9,令g ′(x )>0,得x <1或x >3;令g ′(x )<0,得1<x <3,所以g (x )在(-∞,1),(3,+∞)上是单调递增的;在(1,3)上是单调递减的.g (1)=4,作出g (x )的图象,如图所示.∴f (x )=g (x )-abc ,f (x )有3个零点,需将g (x )的图象向下平移至如图所示位置.由图象观察可知,f (0)f (1)<0且f (0)f (3)>0.————————————[课堂归纳——通法领悟]————————————————个口诀——用二分法求函数零点的方法用二分法求零点近似值的口诀为:定区间,找中点,中值计算两边看;同号去,异号算,零点落在异号间;周而复始怎么办?精确度上来判断.个防范——函数零点的两个易错点(1)函数的零点不是点,是方程f (x )=0的实根.(2)函数零点的存在性定理只能判断函数在某个区间上的变号零点,而不能判断函数的不变号零点,而且连续函数在一个区间的端点处函数值异号是这个函数在这个区间上存在零点的充分不必要条件.种方法——判断函数零点个数的方法 (1)直接求零点; (2)零点的存在性定理;(3)利用图象交点的个数(内容见例2的[方法规律]).个结论——有关函数零点的结论(1)若连续不断的函数f (x )在定义域上是单调函数,则f (x )至多有一个零点. (2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号. (3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.数学思想(四)利用数形结合解决方程根的问题在解决与方程的根或函数零点有关的问题时,如果按照传统方法很难奏效时,常通过数形结合将问题转化为函数图象的交点的坐标问题来解决.[典例] (2012·福建高考)对于实数a和b ,定义运算“*”:a *b =⎩⎪⎨⎪⎧a 2-ab ,a ≤b ,b 2-ab ,a >b .设f (x )=(2x -1)*(x -1),且关于x 的方程f (x )=m (m ∈R )恰有三个互不相等的实数根x 1,x 2,x 3,则x 1x 2x 3的取值范围是________.[解题指导] 方程f (x )=m 恰有三个互不相等的实数根,即函数f (x )的图象与直线y =m 恰有三个不同的交点,可借助图形确定x 1,x 2,x 3的范围,进而求出x 1x 2x 3的范围.[解析]由定义可知,f (x )=(2x -1)*(x -1)=⎩⎪⎨⎪⎧x -2-x -x -,x ≤0,x -2-x -x -,x >0,即f (x )=⎩⎪⎨⎪⎧2x 2-x ,x ≤0,-x 2+x ,x >0.作出函数f (x )的图象,如图所示,关于x 的方程f (x )=m 恰有三个互不相等的实根x 1,x 2,x 3,即函数f (x )的图象与直线y =m 有三个不同的交点,则0<m <14.不妨设从左到右交点的横坐标分别为x 1,x 2,x 3.当x >0时,-x 2+x =m ,即x 2-x +m =0,∴x 2+x 3=1,∴0<x 2x 3<⎝⎛⎭⎪⎫x 2+x 322,即0<x 2x 3<14;当x <0时,由⎩⎪⎨⎪⎧2x 2-x =14,x <0,得x =1-34,∴1-34<x 1<0,即0<-x 1<3-14.∴0<-x 1x 2x 3<3-116,故1-316<x 1x 2x 3<0. [答案] ⎝⎛⎭⎪⎫1-316,0[题后悟道] 1.解决本题的关键有以下三点:(1)根据新定义正确求出函数f (x )的解析式,并准确画出其图象; (2)利用一元二次方程根与系数的关系及基本不等式确定x 2x 3的范围; (3)正确确定x 1的取值范围.2.函数y =f (x )有零点⇔方程f (x )=0有实根⇔函数y =f (x )的图象与x 轴有交点.在解决函数与方程的问题时,要注意这三者之间的关系,在解题中充分利用这个关系与实际问题的转化.若定义在R 上的函数f (x )满足f (x +2)=f (x ),且x ∈[-1,1]时,f (x )=1-x 2,函数g (x )=⎩⎪⎨⎪⎧lg x ,x >0,0,x =0,-1x ,x <0,则方程f (x )-g (x )=0在区间[-5,5]上的解的个数为( )A .5B .7C .8D .10 解析:选C 依题意得,函数f (x )是以2为周期的函数,在同一坐标系下画出函数y =f (x )与函数y =g (x )的图象,结合图象得,当x ∈[-5,5]时,它们的图象的公共点共有8个,即方程f (x )-g (x )=0在区间[-5,5]上的解的个数为8.[全盘巩固]1.函数f (x )=ln(x +1)-2x的一个零点所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)解析:选B 由题意知,函数f (x )=ln(x +1)-2x的定义域为(-1,0)∪(0,+∞),结合四个选项可知,f (x )在(0,+∞)上单调递增,又f (1)<0,f (2)>0,所以函数f (x )=ln(x +1)-2x的一个零点所在的区间是(1,2).2.若x 0是方程⎝ ⎛⎭⎪⎫12x =x 13的解,则x 0属于区间( )A.⎝ ⎛⎭⎪⎫23,1B.⎝ ⎛⎭⎪⎫12,23C.⎝ ⎛⎭⎪⎫13,12D.⎝ ⎛⎭⎪⎫0,13解析:选C 构造函数f (x )=⎝ ⎛⎭⎪⎫12x -x 13,则函数f (x )的图象是连续不断的一条曲线,又f ⎝ ⎛⎭⎪⎫13=⎝ ⎛⎭⎪⎫1213-⎝ ⎛⎭⎪⎫1313>0,f ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫1212-⎝ ⎛⎭⎪⎫1213<0,所以f ⎝ ⎛⎭⎪⎫13·f ⎝ ⎛⎭⎪⎫12<0,故函数的零点所在区间为⎝ ⎛⎭⎪⎫13,12,即方程⎝ ⎛⎭⎪⎫12x =x 13的解x 0属于区间⎝ ⎛⎭⎪⎫13,12. 3.若函数f (x )=(m -2)x 2+mx +(2m +1)的两个零点分别在区间(-1,0)和区间(1,2)内,则m 的取值范围是( )A.⎝ ⎛⎭⎪⎫-12,14B.⎝ ⎛⎭⎪⎫-14,12C.⎝ ⎛⎭⎪⎫14,12D.⎣⎢⎡⎦⎥⎤14,12解析:选C 依题意,结合函数f (x )的图象分析可知m 需满足⎩⎪⎨⎪⎧m ≠2,f -f,f f ,即⎩⎪⎨⎪⎧m ≠2,[m -2-m +m +m +,[m -2+m +m +m -+2m +m +,解得14<m <12.4.(2014·渭南模拟)设函数f 1(x )=log 2x -⎝ ⎛⎭⎪⎫12x,f 2(x )=log 12x -⎝ ⎛⎭⎪⎫12x 的零点分别为x 1,x 2,则( )A .0<x 1x 2<1B .x 1x 2=1C .1<x 1x 2<2D .x 1x 2≥2解析:选A 依题意知x 1>x 2>0,且log 2x 1-⎝ ⎛⎭⎪⎫12x 1=0,log 12x 2-⎝ ⎛⎭⎪⎫12x 2=0,则log 2x 1-⎝ ⎛⎭⎪⎫12x 1=log 12x 2-⎝ ⎛⎭⎪⎫12x 2=-log 2x 2-⎝ ⎛⎭⎪⎫12x 2,所以log 2x 1+log 2x 2=log 2x 1x 2=⎝ ⎛⎭⎪⎫12x 1-⎝ ⎛⎭⎪⎫12x 2<0=log 21,所以0<x 1x 2<1.5.已知函数f (x )=a x+x -b 的零点x 0∈(n ,n +1)(n ∈Z ),其中常数a ,b 满足2a=3,3b=2,则n 的值为( )A .-1B .-2C .1D .2解析:选A a =log 23>1,b =log 32<1,令f (x )=0,得a x=-x +b .在同一平面直角坐标系中画出函数y =a x和y =-x +b 的图象,由图可知,两函数的图象在区间(-1,0)内有交点,所以函数f (x )在区间(-1,0)内有零点,所以n =-1.6.(2014·开封模拟)偶函数f (x )满足f (x -1)=f (x +1),且当x ∈[0,1]时,f (x )=-x +1,则关于x 的方程f (x )=lg(x +1)在x ∈[0,9]上解的个数是( )A .7B .8C .9D .10解析:选C 依题意得f (x +2)=f (x ),所以函数f (x )是以2为周期的函数.在平面直角坐标系中画出函数y =f (x )的图象与y =lg(x +1)的图象(如图所示),观察图象可知,这两个函数的图像在区间[0,9]上的公共点共有9个,因此,当x ∈[0,9]时,方程f (x )=lg(x +1)的解的个数是9.7.函数f (x )=⎩⎪⎨⎪⎧x 2+2x -3,x ≤0,-2+ln x ,x >0的零点个数为________.解析:法一:令f (x )=0,得⎩⎪⎨⎪⎧x ≤0,x 2+2x -3=0或⎩⎪⎨⎪⎧x >0,ln x =2,解得x =-3或x =e 2,所以函数f (x )有两个零点.法二:画出函数f (x )的图象(图略)可得,图象与x 轴有两个交点,则函数f (x )有两个零点.答案:28.已知函数f (x )=e x-2x +a 有零点,则a 的取值范围是________.解析:函数f (x )=e x-2x +a 有零点,则方程e x-2x +a =0,即a =2x -e x有解.令函数g (x )=2x -e x ,则g ′(x )=2-e x ,令g ′(x )=0,得x =ln 2,所以g (x )在(-∞,ln 2)上是增函数,在(ln 2,+∞)上是减函数,所以g (x )的最大值为g (ln 2)=2ln 2-2.因为a 的取值范围就是函数g (x )的值域,所以a ∈(-∞,2ln 2-2].答案:(-∞,2ln 2-2]9.(2014·南宁模拟)已知函数f (x )=ln x +3x -8的零点x 0∈[a ,b ],且b -a =1,a ,b ∈N *,则a +b =________.解析:∵f (2)=ln 2+6-8=ln 2-2<0,f (3)=ln 3+9-8=ln 3+1>0, 且函数f (x )=ln x +3x -8在(0,+∞)上为增函数,∴x 0∈[2,3],即a =2,b =3. ∴a +b =5. 答案:510.设函数f (x )=ax 2+bx +b -1(a ≠0). (1)当a =1,b =-2时,求函数f (x )的零点;(2)若对任意b ∈R ,函数f (x )恒有两个不同零点,求实数a 的取值范围. 解:(1)当a =1,b =-2时,f (x )=x 2-2x -3,令f (x )=0,得x =3或x =-1. ∴函数f (x )的零点为3或-1.(2)依题意,f (x )=ax 2+bx +b -1=0有两个不同实根,∴b 2-4a (b -1)>0恒成立, 即对于任意b ∈R ,b 2-4ab +4a >0恒成立,所以有(-4a )2-4×(4a )<0⇒a 2-a <0,解得0<a <1,因此实数a 的取值范围是(0,1).11.已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e2x(x >0).(1)若g (x )=m 有实数根,求m 的取值范围;(2)确定m 的取值范围,使得g (x )-f (x )=0有两个相异实根.解:(1)法一:∵g (x )=x +e2x≥2e 2=2e ,等号成立的条件是x =e ,故g (x )的值域是[2e ,+∞),因此,只需m ≥2e,g (x )=m 就有实数根.法二:作出g (x )=x +e2x(x >0)的大致图象如图:可知若使g (x )=m 有实数根,则只需m ≥2e.(2)若g (x )-f (x )=0有两个相异的实根,即g (x )与f (x )的图象有两个不同的交点,作出g (x )=x +e 2x(x >0)的大致图象.∵f (x )=-x 2+2e x +m -1=-(x -e)2+m -1+e 2,∴f (x )的图象的对称轴为x =e ,开口向下,最大值为m -1+e 2.故当m -1+e 2>2e ,即m >-e 2+2e +1时,g (x )与f (x )有两个交点,即g (x )-f (x )=0有两个相异实根.∴m 的取值范围是(-e 2+2e +1,+∞).12.是否存在这样的实数a ,使函数f (x )=x 2+(3a -2)x +a -1在区间[-1,3]上与x 轴有且只有一个交点.若存在,求出a 的范围;若不存在,说明理由.解:∵Δ=(3a -2)2-4(a -1)=9⎝ ⎛⎭⎪⎫a -892+89>0,∴若存在实数a 满足条件,则只需f (-1)·f (3)≤0即可.f (-1)·f (3)=(1-3a +2+a -1)·(9+9a -6+a -1)=4(1-a )(5a +1)≤0,所以a ≤-15或a ≥1.检验:①当f (-1)=0时,a =1.所以f (x )=x2+x .令f (x )=0,即x 2+x =0,得x =0或x =-1.方程在[-1,3]上有两根,不合题意,故a ≠1.②当f (3)=0时,a =-15,此时f (x )=x 2-135x -65.令f (x )=0,即x 2-135x -65=0,解得x =-25或x =3.方程在[-1,3]上有两根,不合题意,故a ≠-15.综上所述,a 的取值范围是⎝ ⎛⎭⎪⎫-∞,-15∪(1,+∞).[冲击名校]1.已知函数f (x )满足f (x )+1=1f x +,当x ∈[0,1]时,f (x )=x ,若在区间(-1,1]内,函数g (x )=f (x )-mx -m 有两个零点,则实数m 的取值范围是( )A.⎣⎢⎡⎭⎪⎫0,12B.⎣⎢⎡⎭⎪⎫12,+∞C.⎣⎢⎡⎭⎪⎫0,13D.⎝ ⎛⎦⎥⎤0,12 解析:选D 当x ∈(-1,0]时,x +1∈(0,1].因为函数f (x )+1=1f x +,所以f (x )=1f x +-1=1x +1-1=-xx +1.即f (x )=⎩⎪⎨⎪⎧-xx +1,x ∈-1,0],x ,x ∈,1].函数g (x )=f (x )-mx -m 在区间(-1,1]内有两个零点等价于方程f (x )=m (x +1)在区间(-1,1]内有两个根,令y =m (x +1),在同一坐标系中画出函数y =f (x )和y =m (x +1)的部分图象(图略),可知当m ∈⎝ ⎛⎦⎥⎤0,12时,函数g (x )=f (x )-mx -m 有两个零点.2.已知函数f (x )=⎩⎪⎨⎪⎧kx +1,x ≤0,ln x ,x >0,则下列关于函数y =f (f (x ))+1的零点个数的判断正确的是( )A .当k >0时,有3个零点;当k <0时,有2个零点B .当k >0时,有4个零点;当k <0时,有1个零点C .无论k 为何值,均有2个零点D .无论k 为何值,均有4个零点解析:选B 当k >0时,f (f (x ))=-1,结合图(1)分析,则f (x )=t 1∈⎝ ⎛⎭⎪⎫-∞,-1k 或f (x )=t 2∈(0,1).对于f (x )=t 1,存在两个零点x 1,x 2;对于f (x )=t 2,存在两个零点x 3,x 4.此时共计存在4个零点.当k <0时,f (f (x ))=-1,结合图(2)分析,则f (x )=t ∈(0,1),此时仅有1个零点x 0.[高频滚动] 1.若函数f (x )=a2x -4,g (x )=log a |x |(a >0,a ≠1),且f (2)·g (-2)<0,则函数f (x )、g (x )在同一坐标系内的大致图象是( )A B C D解析:选B f (2)·g (-2)=a 0log a 2<0,得0<a <1,所以f (x )=a2x -4在R 上为减函数,g(x)=log a|x|在(0,+∞)上为减函数,在(-∞,0)上为增函数.2.已知函数y=f(x)的定义域是R,若对于任意的正数a,函数g(x)=f(x+a)-f(x)是其定义域上的增函数,则函数y=f(x)的图象可能是( )A B C D解析:选A 设x1<x2,由g(x)为其定义域上的增函数,得f(x1+a)-f(x1)<f(x2+a)-f(x2),即f(x1+a)-f(x2+a)<f(x1)-f(x2),所以f x 1+a-f x2+ax 1+a-x2+a >f x1-f x2x1-x2,即曲线y=f(x)的割线的斜率单调递增.结合函数图象可知,选项A正确.。
2015年高考数学新一轮总复习考点突破课件:2.8函数与方程
对点演练 若函数 f(x)=x2-ax-b 的两个零点是 2 和 3,则函数 g(x)=bx2- ax-1 的零点是________. 解析:由2322--23aa--bb==00 ,得ab= =5-6 . ∴g(x)=-6x2-5x-1 的零点为-12,-13. 答案:-12,-13
第十页,编辑于星期五:十一点 四十二分。
的根落在区间________. • 答案:(1.25,1.5)
第十四页,编辑于星期五:十一点 四十二分。
• 1.函数的零点不是点,是方程f(x)=0的根. • 2.函数零点的存在性定理只能判断函数在某个
区间上的变号零点,而不能判断函数的不变号 零点,而且连续函数在一个区间的端点处函数 值异号是这个函数在这个区间上存在零点的充 分条件,而不是必要条件.
单调性、奇偶性、周期性、对称性)才能确定函 数有多少个零点. • (3)数形结合法:转化为两个函数的图象的交点 个数问题,先画出两个函数的图象,看其交点的 个数,其中交点的个数,就是函数零点的个数.
第二十七页,编辑于星期五:十一点 四十二分。
针对训练 2.(1)(2014·北京海淀二模)已知函数 f(x)=2x2x--3aa,x+x≤a,0,x>0 有
B.当 k>0 时,有 4 个零点;当 k<0 时,有 1 个零点
C.当 k>0 时,有 3 个零点
D.当 k>0 时,有 4 个零点
第二十四页,编辑于星期五:十一点 四十二分。
• 【解析】 (1)由条件可知函数f(x)是周期为4的 偶函数,g(x)的零点为方程4f(x)-x=0,即 4f(x)=x的根,即函数y=4f(x)的图象与直线y= x的交点的横坐标.作出y=4f(x )与y=x的图象, 观察可知,两图象共有5个交点,故g(x)的零 点个数为5.
2015高考数学(理)一轮复习考点突破课件:2.3函数的奇偶性与周期性
1-x (3)定义域要求 ≥0 且 x≠-1, 1+x ∴-1<x≤1,∴f(x)的定义域不关于原点对称, ∴f(x)不存在奇偶性,故 f(x)为非奇非偶函数. (4)f(x)的定义域为 R,关于原点对称, 当 x>0 时,f(-x)=-(-x)2-2=-(x2+2)=-f(x); 当 x<0 时,f(-x)=(-x)2+2=-(-x2-2)=-f(x); 当 x=0 时,f(0)=0,也满足 f(-x)=-f(x). 故该函数为奇函数.
解析:①f(x)=x3-x 的定义域为 R, 又 f(-x)=(-x)3-(-x)=-(x3-x)=-f(x), 则 f(x)=x3-x 是奇函数;
②由 x+ x2+1>x+|x|≥0 知 f(x)=ln(x+ x2+1)的定义域为 R, 1 又 f(-x)=ln(-x+ -x +1)=ln x+ x2+1
【解】 (1)证明:∵f(x+2)=-f(x), ∴f(x+4)=-f(x+2)=f(x). ∴f(x)是周期为 4 的周期函数. (2)∵x∈[2,4],∴-x∈[-4,-2], ∴4-x∈[0,2], ∴f(4-x)=2(4-x)-(4-x)2=-x2+6x-8, 又 f(4-x)=f(-x)=-f(x), ∴-f(x)=-x2+6x-8, 即 f(x)=x2-6x+8,x∈[2,4].
第3课时
函数的奇偶性与周期性
• • • • •
(一)考纲点击 1.结合具体函数,了解函数奇偶性的含义. 2.会运用函数图象理解和研究函数的奇偶性. 3.了解函数周期性、最小正周期的含义,会判断、应用简 单函数的周期性.
• • •
(二)命题趋势 1 .本节内容是高考的热点之一,考查时,常将奇偶性、周期性 与单调性综合在一起.周期与三角函数结合比较明显,也常出现 在抽象函数中,多为求值问题. 2 .题型多以客观题为主,一般为容易题,但有时难度也会很 大.
第2章 函数概念与基本初等函数Ⅰ 第8节 函数与方程
索引
3.(2019·全国Ⅲ卷)函数f(x)=2sin x-sin 2x在[0,2π]的零点个数为( B )
A.2
B.3
C.4
D.5
解析 由2sin x-sin 2x=0,得sin x=0或cos x=1. 又x∈[0,2π],由sin x=0, 得x=0,π,2π. 由cos x=1,得x=0,2π. ∴f(x)=0有三个实根0,π,2π, 即f(x)在[0,2π]上有三个零点.
索引
2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系
Δ=b2-4ac
Δ>0
Δ=0
二次函数 y=ax2+bx+c (a>0)的图象
与x轴的交点 _(_x_1,__0_)_,__(_x_2_,__0_) _ ___(_x_1_,__0_)___
零点个数Biblioteka 21Δ<0
无交点 0
索引
常用结论
1.若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.函数的 零点不是一个“点”,而是方程f(x)=0的实根.
解析 (1)f(x)=lg x的零点是1,故(1)错误. (2)f(a)·f(b)<0是连续函数y=f(x)在(a,b)内有零点的充分不必要条件,故(2) 错误.
索引
2.函数f(x)=x+ln x-3的零点所在的区间为( C )
A.(0,1)
B.(1,2)
C.(2,3)
D.(3,4)
解析 ∵f(x)在(0,+∞)上单调递增, 且f(2)=ln 2-1<0,f(3)=ln 3>0, 故f(x)在(2,3)上有唯一零点,故选C.
索引
5.( 易 错 题 ) 设 函 数
2015年高考数学一轮总复习精品课件:第二章+函数 2.9 函数与方程(共26张PPT)
(3)利用图象交点的个数:画出两个函数的图象,看其交点的个数,其中
交点的横坐标有几个不同的值,就有几个不同的零点.
注意:函数的零点不是函数 y=f(x)与 x 轴的交点,而是 y=f(x)与 x 轴交点
的横坐标,也就是说函数的零点不是一个点,而是一个实数;并非任意函数都
有零点,只有 f(x)=0 有根的函数 y=f(x)才有零点.
考点一
考点二
考点三
第十三页,编辑于星期五:十一点 十一分。
14
探究突破
2.函数零点个数的判断方法:
(1)直接求零点:令 f(x)=0,如果能求出解,则有几个解就有几个零点;
(2)零点存在性定理:利用定理不仅要求函数在区间[a,b]上是连续不断
的曲线,且 f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)
1
2
g(2)=ln 2- >0,所以函数 g(x)=f(x)-f'(x)的零点所在的区间为(1,2).故选 B.
B
解析
考点一
考点二
考点三
关闭
答案
第十五页,编辑于星期五:十一点 十一分。
16
探究突破
考点二
二分法的应用
【例 2】在用二分法求方程 x3-2x-1=0 的一个近似解时,现在已经将根
锁定在区间(1,2)内,则下一步可断定该根所在的区间为_________.
(x1,0)
(x2,0)
2
,
(x1,0)
1
无交点
0
第五页,编辑于星期五:十一点 十一分。
6
梳理自测
3.二分法
(1)二分法的定义
对于在区间[a,b]上连续不断且
【创新方案】2015高考数学一轮复习(知识回扣+热点突破+能力提升)函数及其表示 理 北师大版
第一节 函数及其表示【考纲下载】1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念. 2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析式法)表示函数.3.了解简单的分段函数,并能简单应用.1.函数与映射的概念2.函数的构成要素函数由定义域、对应关系、值域三个要素构成,对函数y =f (x ),x ∈A ,其中, (1)定义域:自变量x 的取值的集合A . (2)值域:函数值的集合{f (x )|x ∈A }. 3.函数的表示方法表示函数的常用方法有:解析法、列表法和图像法. 4.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.1.函数概念中的“集合A 、B ”与映射概念中的“集合A 、B ”有什么区别?提示:函数概念中的A 、B 是两个非空数集,而映射中的集合A 、B 是两个非空的集合即可.2.函数是一种特殊的映射,映射一定是函数吗? 提示:不一定.3.已知函数f (x )与g (x ).(1)若它们的定义域和值域分别相同,则f (x )=g (x )成立吗?(2)若它们的定义域和对应关系分别相同,则f (x )=g (x )成立吗? 提示:(1)不成立;(2)成立.1.下列各图形中是函数图象的是( )解析:选D 由函数的定义可知选项D 正确. 2.下列各组函数中,表示同一函数的是( ) A .f (x )=|x |,g (x )=x 2B .f (x )=x 2,g (x )=(x )2C .f (x )=x 2-1x -1,g (x )=x +1D .f (x )=x +1²x -1,g (x )=x 2-1解析:选A 对于A ,g (x )=x 2=|x |,且定义域相同,所以A 项表示同一函数;对于B 、C 、D ,函数定义域都不相同.3.(2013²江西高考)函数y =x ln(1-x )的定义域为( ) A .(0,1) B .[0,1) C .(0,1] D .[0,1]解析:选B 要使函数y =x ln(1-x )有意义,需⎩⎪⎨⎪⎧x ≥0,1-x >0,即0≤x <1.4.(2014²青岛模拟)设函数f (x )=⎩⎪⎨⎪⎧1-x 2,x ≤1,x 2+x -2,x >1,则f ⎝⎛⎭⎪⎫1f的值为________. 解析:由题易知,f (2)=4,1f=14,故f ⎝ ⎛⎭⎪⎫1f =f ⎝ ⎛⎭⎪⎫14=1-⎝ ⎛⎭⎪⎫142=1516.答案:15165.(教材习题改编)A ={x |x 是锐角},B =(0,1),从A 到B 的映射是“求余弦”,与A 中元素60°相对应的B 中的元素是________;与B 中元素32相对应的A 中的元素是________. 解析:当x =60°时,y =cos 60°=12;当x ∈(0°,90°),cos x =32时,x =30°.答案:1230°[例1] A. 12x x ⎧⎫≠-⎨⎬⎩⎭ B. 12x x ⎧⎫>-⎨⎬⎩⎭C. 112x x x ⎧⎫≠-≠⎨⎬⎩⎭且D. 112x x x ⎧⎫>-≠⎨⎬⎩⎭且 (2)已知函数f (x 2-1)的定义域为[0,3],则函数y =f (x )的定义域为________.[自主解答] (1)由题意得⎩⎪⎨⎪⎧2x +1≥0,2x 2-x -1≠0,解得x >-12且x ≠1.(2)因为函数f (x 2-1)的定义域为[0,3],所以-1≤x 2-1≤8,故函数y =f (x )的定义域为[-1,8].[答案] (1)D (2)[-1,8] 【互动探究】本例(2)改为:f (x )的定义域为[0,3],求y =f (x 2-1)的定义域.解:因为f (x )的定义域为[0,3],所以0≤x 2-1≤3,即1≤x 2≤4,解得1≤x ≤2或-2≤x ≤-1,故函数y =f (x 2-1)的定义域为[-2,-1]∪[1,2].【方法规律】1.简单函数定义域的求法求函数的定义域,其实质就是以函数解析式所含运算有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.2.抽象函数的定义域(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出.(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.1.(2014²咸阳模拟)如果函数f (x )=ln(-2x +a )的定义域为(-∞,1),则实数a 的值为( )A .-2B .-1C .1D .2解析:选D ∵-2x +a >0,∴x <a 2,∴a2=1,∴a =2.2.已知f (x )的定义域是[0,4],则f (x +1)+f (x -1)的定义域是________.解析:由f (x )的定义域为[0,4],得⎩⎪⎨⎪⎧0≤x +1≤4,0≤x -1≤4,解得1≤x ≤3,即函数f (x +1)+f (x -1)的定义域为[1,3].答案:[1,3][例2] (1)已知f (2x +1)=4x 2+2x +1,求f (x )的解析式;(2)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x )的解析式;(3)已知f (x )满足2f (x )+f ⎝ ⎛⎭⎪⎫1x=3x ,求f (x )的解析式.[自主解答] (1)令t =2x +1,则x =12(t -1),所以,f (t )=4⎣⎢⎡⎦⎥⎤12t -2+2³12(t -1)+1=(t -1)2+(t -1)+1=t 2-t +1.即f (x )=x 2-x +1.(2)设f (x )=ax 2+bx +c (a ≠0).由f (0)=0,知c =0,f (x )=ax 2+bx . 又f (x +1)=f (x )+x +1,所以a (x +1)2+b (x +1)=ax 2+bx +x +1,即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1.所以⎩⎪⎨⎪⎧a ≠0,2a +b =b +1,a +b =1,所以a =b =12.因此f (x )=12x 2+12x .(3)由2f (x )+f ⎝ ⎛⎭⎪⎫1x =3x ,得2f ⎝ ⎛⎭⎪⎫1x +f (x )=3x .由⎩⎪⎨⎪⎧2f x +f ⎝ ⎛⎭⎪⎫1x =3x ,2f ⎝ ⎛⎭⎪⎫1x +f x =3x ,得f (x )=2x -1x(x ≠0).【方法规律】求函数解析式的常用方法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式.(2)待定系数法:若已知函数的类型(如一次函数、二次函数),则可用待定系数法. (3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围.(4)解方程组法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).求下列两个函数的解析式: (1)f (x +1)=x +2x ;(2)定义在(-1,1)内,且函数f (x )满足2f (x )-f (-x )=lg(x +1). 解:(1)法一:设t =x +1,则x =(t -1)2(t ≥1).代入原式,有f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1. ∴f (x )=x 2-1(x ≥1).法二:∵x +2x =(x )2+2x +1-1=(x +1)2-1,∴f (x +1)=(x +1)2-1(x +1≥1),即f (x )=x 2-1(x ≥1). (2)当x ∈(-1,1)时,有2f (x )-f (-x )=lg(x +1),① 以-x 代替x 得,2f (-x )-f (x )=lg(-x +1).②由①②消去f (-x ),得f (x )=23lg(x +1)+13lg(1-x ),x ∈(-1,1).1.分段函数是一类重要的函数,是高考的命题热点,多以选择题或填空题的形式呈现,试题难度不大,多为容易题或中档题.2.高考对分段函数的考查主要有以下几个命题角度: (1)已知分段函数解析式,求函数值(或最值); (2)已知分段函数解析式与方程,求参数的值; (3)已知分段函数解析式,求解不等式; (4)已知分段函数解析式,判断函数的奇偶性; (5)新定义运算,分段函数与方程的交汇问题.[例3] (1)(2012²江西高考)函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,lg x ,x >1,则f (f (10))=( )A .lg 101B .2C .1D .0(2)(2014²上饶模拟)设函数f (x )=⎩⎪⎨⎪⎧21-x,x ≤1,1-log 2x ,x >1,则满足f (x )≤2的x 的取值范围是( )A .[-1,2]B .[0,2]C .[1,+∞) D.[0,+∞)(3)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为________.[自主解答] (1)f (10)=lg 10=1,f (f (10))=f (1)=12+1=2. (2)当x ≤1时,21-x≤2,解得x ≥0,又因为x ≤1,所以0≤x ≤1;当x >1时,1-log 2x ≤2,解得x ≥12,又因为x >1,所以x >1.故x 的取值范围是[0,+∞).(3)①当1-a <1,即a >0时,1+a >1,由f (1-a )=f (1+a ),得2(1-a )+a =-(1+a )-2a ,解得a =-32(舍去);②当1-a >1,即a <0时,1+a <1,由f (1-a )=f (1+a ), 得2(1+a )+a =-(1-a )-2a ,解得a =-34,符合题意.综上所述,a =-34.[答案] (1)B (2)D (3)-34分段函数问题的常见类型及解题策略(1)求函数值.弄清自变量所在区间,然后代入对应的解析式,求“层层套”的函数值,要从最内层逐层往外计算.(2)求函数最值.分别求出每个区间上的最值,然后比较大小.(3)解不等式.根据分段函数中自变量取值范围的界定,代入相应的解析式求解,但要注意取值范围的大前提.(4)求参数.“分段处理”,采用代入法列出各区间上的方程. (5)奇偶性.利用奇函数(偶函数)的定义判断.1.(2014²南平模拟)定义a b =⎩⎪⎨⎪⎧a ³b ,a ³b ≥0,ab,a ³b <0.设函数f (x )=ln x x ,则f (2)+f ⎝ ⎛⎭⎪⎫12=( ) A .4ln 2 B .-4ln 2 C .2 D .0解析:选D 由题意可得f (x )=⎩⎪⎨⎪⎧x ln x ,x ≥1,ln xx,0<x <1,所以f (2)+f ⎝ ⎛⎭⎪⎫12=2ln 2+2ln 12=0.2.(2014²永州模拟)设Q 为有理数集,函数f (x )=⎩⎪⎨⎪⎧1,x ∈Q ,-1,x ∈∁R Q ,g (x )=e x-1e x +1,则函数h (x )=f (x )²g (x )( )A .是奇函数但不是偶函数B .是偶函数但不是奇函数C .既是奇函数也是偶函数D .既不是偶函数也不是奇函数解析:选A 当x ∈Q 时,-x ∈Q ,∴f (-x )=f (x )=1;当x ∈∁R Q 时,-x ∈∁R Q ,∴f (-x )=f (x )=-1.综上,对∀x ∈R ,都有f (-x )=f (x ),故函数f (x )为偶函数.∵g (-x )=e -x-1e -x +1=1-e x 1+e x =-e x-11+e x =-g (x ),∴函数g (x )为奇函数,∴h (-x )=f (-x )²g (-x )=f (x )²(-g (x ))=-f (x )g (x )=-h (x ), ∴函数h (x )=f (x )²g (x )是奇函数.又因为h (1)=f (1)²g (1)=e -1e +1,h (-1)=f (-1)²g (-1)=1³e -1-1e -1+1=1-e1+e ,∴h (-1)≠h (1),∴函数h (x )不是偶函数.综上可知,h (x )是奇函数但不是偶函数.3.(2014²日照模拟)已知函数f (x )=2x-12x ,且g (x )=⎩⎪⎨⎪⎧f x ,x ≥0,f -x ,x <0,则函数g (x )的最小值是________.解析:因为g (x )=⎩⎪⎨⎪⎧2x-12x,x ≥0,2-x-12-x,x <0,所以函数g (x )在(0,+∞)上单调递增,在(-∞,0)上单调递减,故函数g (x )的最小值为g (0)=20-120=0.答案:0———————————[课堂归纳——通法领悟]———————————个准则——函数表达式有意义的准则函数表达式有意义的准则一般有:(1)分式中的分母不为0;(2)偶次根式的被开方数非负;(3)y =x 0要求x ≠0;(4)对数式中的真数大于0,底数大于0且不等于1.种方法——函数解析式的求法求函数解析式常用的方法有:(1)配凑法;(2)待定系数法;(3)换元法;(4)解方程组法.具体内容见例2[方法规律].个注意点——求函数定义域应注意的问题(1)如果没有特别说明,函数的定义域就是能使解析式有意义的所有实数x 的集合. (2)不要对解析式进行化简变形,以免定义域发生变化.(3)当一个函数由两个或两个以上代数式的和、差、积、商的形式构成时,定义域是使得各式子都有意义的公共部分的集合.(4)定义域是一个集合,要用集合或区间表示,若用区间表示数集,不能用“或”连接,而应该用并集符号“∪”连接.数学思想(一)分类讨论在分段函数中的应用由于分段函数在不同定义区间上具有不同的解析式,在处理分段函数问题时应对不同的区间进行分类求解,然后整合,这恰好是分类讨论的一种体现.[典例] (2014²西城模拟)设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c x,x ,若f (-2)=f (0),f (-1)=-3,则方程f (x )=x 的解集为________.[解题指导] 本题可由条件f (-2)=f (0)及f (-1)=-3求出f (x )的解析式,但在解方程f (x )=x 时应分x ≤0和x >0两种情况讨论.[解析] 当x ≤0时,f (x )=x 2+bx +c ,因为f (-2)=f (0),f (-1)=-3,则⎩⎪⎨⎪⎧-2-2b +c =c ,-2-b +c =-3,解得⎩⎪⎨⎪⎧b =2,c =-2,故f (x )=⎩⎪⎨⎪⎧x 2+2x -x ,x当x ≤0时,由f (x )=x ,得x 2+2x -2=x ,解得x =-2或x =1(1>0,舍去). 当x >0时,由f (x )=x ,得x =2.所以方程f (x )=x 的解集为{-2,2}. [答案] {-2,2}[题后悟道] 解决分段函数问题的关键是“对号入座”,即根据自变量取值的范围,准确确定相应的对应法则,代入相应的函数解析式,转化为一般的函数在指定区间上的问题,解完之后应注意检验自变量取值范围的应用.总之,解决分段函数的策略就是“分段函数,分段解决”,亦即应用分类讨论思想解决.设函数f (x )=⎩⎨⎧x ,x ≥0,-x ,x <0,若f (a )+f (-1)=2,则a = ( )A .-3B .±3C .-1D .±1 解析:选D 因为f (-1)=--=1,所以f (a )=1,当a ≥0时,a =1,所以a=1;当a <0时,-a =1,所以a =-1.故a =±1.[全盘巩固] 1.函数y =xx --lg 1x的定义域为( )A .{x |x >0}B .{x |x ≥1}C .{x |x ≥1或x <0}D .{x |0<x ≤1} 解析:选B 要使函数y =xx --lg 1x有意义,需⎩⎪⎨⎪⎧x x -,x >0,解得x ≥1.2.设函数f (x )=2x +3,g (x +2)=f (x ),则g (x )的解析式是 ( ) A .2x +1 B .2x -1 C .2x -3 D .2x +7解析:选B 因为g (x +2)=f (x )=2x +3=2(x +2)-1,所以g (x )=2x -1. 3.下列各组函数表示相同函数的是( ) A .f (x )=x 2,g (x )=(x )2B .f (x )=1,g (x )=x 2C .f (x )=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0,g (t )=|t | D .f (x )=x +1,g (x )=x 2-1x -1解析:选C g (t )=|t |=⎩⎪⎨⎪⎧t ,t ≥0,-t ,t <0.4.已知函数f (x )=⎩⎪⎨⎪⎧2x+1,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a 等于( )A.12B.45C .2D .9 解析:选C f (0)=20+1=2,f (f (0))=f (2)=4+2a ,所以4+2a =4a ,即a =2.5.(2014²南昌模拟)具有性质:f ⎝ ⎛⎭⎪⎫1x=-f (x )的函数,我们称为满足“倒负”变换的函数.下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( )A .①②B .①③C .②③D .①解析:选B 对于①,f (x )=x -1x,f ⎝ ⎛⎭⎪⎫1x =1x -x =-f (x ),满足题意;对于②,f ⎝ ⎛⎭⎪⎫1x =1x+11x =f (x )≠-f (x ),不满足题意;对于③,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1.故f ⎝ ⎛⎭⎪⎫1x =-f (x ),满足题意.6.(2014²安康模拟)定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 2-x ,x ≤0,f x --f x -,x >0,则f (3)的值为( )A .1B .2C .-2D .-3解析:选D f (3)=f (2)-f (1)=f (1)-f (0)-f (1)=-f (0)=-log 28=-3.7.函数y =f (x )的定义域为[-2,4],则函数g (x )=f (x )+f (-x )的定义域为________.解析:由题意知⎩⎪⎨⎪⎧-2≤x ≤4,-2≤-x ≤4,解得-2≤x ≤2.答案:[-2,2]8.设f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则f (g (π))的值为________.解析:∵π是无理数,∴g (π)=0,∴f (g (π))=f (0)=0. 答案:09.已知函数f (x )=⎩⎪⎨⎪⎧-|x +1|,x ≤0,x 2-1,x >0,则不等式f (x )<0的解集为________.解析:画出此分段函数的图象,可知当函数图象处在x 轴下方时f (x )<0,此时x 的取值范围是{x |x <1且x ≠-1}.答案:{x |x <1且x ≠-1}10.二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1.求f (x )的解析式. 解:设二次函数的解析式为f (x )=ax 2+bx +c (a ≠0).∵f (0)=1,∴c =1.把f (x )的表达式代入f (x +1)-f (x )=2x ,有a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x , ∴2ax +a +b =2x .∴a =1,b =-1.∴f (x )=x 2-x +1.11.已知f (x )=x 2-1,g (x )=⎩⎪⎨⎪⎧x -1,x >0,2-x ,x <0.(1)求f (g (2))和g (f (2))的值; (2)求f (g (x ))和g (f (x ))的解析式.解:(1)由已知,g (2)=1,f (2)=3,因此f (g (2))=f (1)=0,g (f (2))=g (3)=2. (2)当x >0时,g (x )=x -1,故f (g (x ))=(x -1)2-1=x 2-2x ; 当x <0时,g (x )=2-x ,故f (g (x ))=(2-x )2-1=x 2-4x +3.所以f (g (x ))=⎩⎪⎨⎪⎧x 2-2x ,x >0,x 2-4x +3,x <0.当x >1或x <-1时,f (x )>0,故g (f (x ))=f (x )-1=x 2-2; 当-1<x <1时,f (x )<0,故g (f (x ))=2-f (x )=3-x 2.所以g (f (x ))=⎩⎪⎨⎪⎧x 2-2,x >1或x <-1,3-x 2,-1<x <1.12.已知函数f (x )=⎩⎪⎨⎪⎧cx +x <c ,2-xc2+c ≤x满足f (c 2)=98,其中0<c <1.(1)求常数c 的值;(2)解不等式f (x )>28+1. 解:(1)∵0<c <1,∴0<c 2<c ,由f (c 2)=98,得c 3+1=98,解得c =12.(2)由(1)得f (x )=⎩⎪⎨⎪⎧12x +1⎝ ⎛⎭⎪⎫0<x <12,2-4x+1⎝ ⎛⎭⎪⎫12≤x <1.由f (x )>28+1,知 当0<x <12时,有12x +1>28+1,解得24<x <12;当12≤x <1时,有2-4x+1>28+1,解得12≤x <58. 所以f (x )>28+1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x 24<x <58. [冲击名校]1.设S ,T 是R 的两个非空子集,如果存在一个从S 到T 的函数y =f (x )满足:(ⅰ)T ={f (x )|x ∈S };(ⅱ)对任意x 1,x 2∈S ,当x 1<x 2时,恒有f (x 1)<f (x 2),那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是( )A .A =N *,B =NB .A ={x |-1≤x ≤3},B ={x |x =-8或0<x ≤10}C .A ={x |0<x <1},B =RD .A =Z ,B =Q解析:选D 对选项A ,取f (x )=x -1,x ∈N *,所以A =N *,B =N 是“保序同构”的,应排除A ;对选项B ,取f (x )=⎩⎪⎨⎪⎧-8,x =-1,x +1,-1<x ≤0,x 2+1,0<x ≤3,所以A ={x |-1≤x ≤3},B ={x |x =-8或0<x ≤10}是“保序同构”的,应排除B ;对选项C ,取f (x )=tan ⎝⎛⎭⎪⎫πx -π2(0<x <1),所以A ={x |0<x <1},B =R 是“保序同构”的,应排除C.2.规定[t ]为不超过t 的最大整数,例如[12.6]=12,[-3.5]=-4.对任意实数x ,令f 1(x )=[4x ],g (x )=4x -[4x ],进一步令f 2(x )=f 1[g (x )].(1)若x =716,则f 1(x )=________,f 2(x )=________;(2)若f 1(x )=1,f 2(x )=3同时满足,则x 的取值范围为________. 解析:(1)∵x =716时,4x =74,∴f 1(x )=⎣⎢⎡⎦⎥⎤74=1. ∵g (x )=74-⎣⎢⎡⎦⎥⎤74=34,∴f 2(x )=f 1[g (x )]=f 1⎝ ⎛⎭⎪⎫34=[3]=3.(2)∵f 1(x )=[4x ]=1,g (x )=4x -1,∴f 2(x )=f 1(4x -1)=[16x -4]=3.∴⎩⎪⎨⎪⎧1≤4x <2,3≤16x -4<4,∴716≤x <12. 答案:(1)1 3 (2)⎣⎢⎡⎭⎪⎫716,12。
2015高考数学一轮课件:热点专题突破系列(一)
所以m=1 时,t取得3最4 小值4 19 此时x=94,所以税率t的最小值1为92
,
19
.
192
第三十三页,编辑于星期五:十三点 三十二分。
【规律方法】 1.确定与应用函数零点个数的常用方法 (1)解方程法——构建可解的方程求解. (2)数形结合法——转化为两个熟悉的函数图象的交点问题求解.
第三十四页,编辑于星期五:十三点 三十二分。
第四页,编辑于星期五:十三点 三十二分。
【互动探究】若本例题(2)中条件不变,而已知f(a)= , 1 4
则a的值如何?
【解析】当a>0时,f(a)=log3a=
,1得a= 4
1
34 ,
当a≤0时,f(a)=2a= =12-2,得a=-2,
4 综上可知a=-2或 . 1
34
第五页,编辑于星期五:十三点 三十二分。
第二十页,编辑于星期五:十三点 三十二分。
【规律方法】
1.知式选图的思路域判断图象的上、下位置.
(3)从奇偶性,判断图象的对称性.
(4)从单调性,判断图象的变化趋势. (5)从周期性,判断图象的循环往复. 提醒:当选项无法排除时,代特殊值或从某些量上寻找突破口.
因为g(x)=
x2 a 1 x a ,
第十二页,编辑于星期五:十三点 三十二分。
所以定义域B={x|-x2+(a-1)x+a≥0},
由-x2+(a-1)x+a≥0得 x2-(a-1)x-a≤0,
即(x-a)(x+1)≤0,
因为A⊆B,所以B=[-1,a],且a≥1, 所以实数a的取值范围是{a|a≥1}.
4
1 x
1
2a
【高考解码】(新课标)2015届高考数学二轮复习 攻略一 函数与方程思想,数形结合思想
【高考解码】(新课标)2015届高考数学二轮复习 攻略一 函数与方程思想,数形结合思想一、函数与方程思想函数与方程思想是中学数学的基本思想,是历年高考的重点和热点,主要依据题意,构造恰当的函数,或建立相应的方程来解决问题,它涉及三大题型.高、中、低档试题都有出现.近几年来代数压轴题多为考查应用函数思想解题的能力.函数与方程思想的应用主要体现在以下几方面:(1)函数与不等式的相互转化,对函数y =f(x),当y>0时,就化为不等式f(x)>0,借助于函数的图象和性质可解决有关问题,而研究函数的性质也离不开不等式.(2)数列的通项与前n 项和是自变量为正整数的函数,用函数的观点去处理数列问题十分重要.(3)解析几何中的许多问题.需要通过解二元方程组才能解决.这都涉及二次方程与二次函数的有关理论.(4)立体几何中有关线段、角、面积、体积的计算,经常需要运用列方程或建立函数表达式的方法加以解决,建立空间直角坐标系后,立体几何与函数的关系更加密切.1.运用函数与方程思想解决函数、方程、不等式问题此类问题是多元问题中的常见题型,通常有两种处理思路:一是分离变量构造函数,将方程有解转化为求函数的值域;二是换元,将问题转化为二次方程,进而构造函数加以解决.【例1】 (2014·福建高考)已知函数f(x)=e x-ax(a 为常数)的图象与y 轴交于点A ,曲线y =f(x)在点A 处的切线斜率为-1.(1)求a 的值及函数f(x)的极值;(2)证明:当x >0时,x 2<e x;(3)证明:对任意给定的正数c ,总存在x 0,使得当x∈(x 0,+∞)时,恒有x <c e x.【解】 (1)由f(x)=e x -ax ,得f′(x)=e x-a. 又f′(0)=1-a =-1,得a =2.所以f(x)=e x -2x ,f′(x)=e x-2. 令f′(x)=0,得x =ln 2.当x <ln 2时,f′(x)<0,f(x)单调递减; 当x >ln 2时,f′(x)>0,f(x)单调递增. 所以当x =ln 2时,f(x)有极小值,且极小值为f(ln 2)=e ln 2-2ln 2=2-ln 4, f(x)无极大值.(2)令g(x)=e x -x 2,则g′(x)=e x-2x.由(1)得,g′(x)=f(x)≥f(ln 2)=2-ln 4>0, 即g′(x)>0.所以g(x)在R 上单调递增,又g (0)=1>0,所以当x >0时,g (x )>g (0)>0,即x 2<e x.(3)对任意给定的正数c ,取x 0=1c,由(2)知,当x >0时,x 2<e x.所以当x >x 0时,e x >x 2>1cx ,即x <c e x.因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x <c e x.2.运用函数与方程思想解决数列问题数列问题函数(方程)化法与形式结构函数(方程)化法类似,但要注意数列问题中n 的取值范围为正整数,涉及的函数具有离散性特点,其一般解题步骤是:第一步:分析数列式子的结构特征.第二步:根据结构特征构造“特征”函数(方程),转化问题形式.第三步:研究函数性质,结合解决问题的需要研究函数(方程)的相关性质,主要涉及函数单调性与最值、值域问题的研究.第四步:回归问题.结合对函数(方程)相关性质的研究,回归问题.【例2】 已知S n =1+12+13+…+14(n ∈N *),设f (n )=S 2n +1-S n +1,试确定实数m 的取值范围,使得对于一切大于1的正整数n ,不等式f (n )>[log m (m -1)]2-1120·[log (m -1)m ]2恒成立.【解】 由f (n )=S 2n +1-S n +1,得f (n )=1n +2+1n +3+…+12n +1,∴f (n +1)=1n +3+1n +4+…+12n +3.∴f (n +1)-f (n )=12n +2+12n +3-1n +2=⎝ ⎛⎭⎪⎫12n +2-12n +4+⎝ ⎛⎭⎪⎫12n +3-12n +4>0. ∴f (n )>f (n -1)>…>f (3)>f (2)(n ∈N *,n ≥2).∴f (n )min =f (2)=12+2+12+3=920.要使对于一切大于1的正整数n ,原不等式恒成立,只需不等式920>[log m (m -1)]2-1120[log (m-1)m ]2成立.设y =[log m (m -1)]2,则y >0.于是⎩⎪⎨⎪⎧920>y -1120y ,y >0,解得0<y <1.从而⎩⎪⎨⎪⎧0<[log mm -2<1,m >0,m ≠1,m -1≠1,m -1>0,解得m >1+52且m ≠2.∴实数m 的取值范围为⎝⎛⎭⎪⎫1+52,2∪(2,+∞).3.运用函数与方程思想解决几何问题在立体几何和解析几何中有许多问题需要运用到方程或建立函数表达式的方法加以解决.特别是在解析几何中涉及到范围或最值问题时可用如下思路去完成:第一步:联立方程. 第二步:求解判别式Δ.第三步:代换.利用题设条件和圆锥曲线的几何性质,得到所求目标参数和判别式不等式中的参数的一个等量关系,将其代换.第四步:下结论.将上述等量代换式代入Δ>0或Δ≥0中,即可求出目标参数的取值范围.第五步:回顾反思.在研究直线与圆锥曲线的位置关系问题时,无论题目中有没有涉及求参数的取值范围,都不能忽视了判别式对某些量的制约,这是求解这类问题的关键环节.【例3】 (2014·四川高考)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设F 为椭圆C 的左焦点,T 为直线x =-3上任意一点,过F 作TF 的垂线交椭圆C 于点P ,Q .(ⅰ)证明:OT 平分线段PQ (其中O 为坐标原点);(ⅱ)当|TF ||PQ |最小时,求点T 的坐标.(Ⅰ)【解】 由已知可得⎩⎨⎧a 2+b 2=2b ,2c =2a 2-b 2=4,解得a 2=6,b 2=2,所以椭圆C 的标准方程是x 26+y 22=1.(Ⅱ)(ⅰ)【证明】 由(Ⅰ)可得,F 的坐标是(-2,0),设T 点的坐标为(-3,m ),则直线TF 的斜率k TF =m -0-3--=-m .当m ≠0时,直线PQ 的斜率k PQ =1m,直线PQ 的方程是x =my -2.当m =0时,直线PQ 的方程是x =-2,也符合x =my -2的形式. 设P (x 1,y 1),Q (x 2,y 2),将直线PQ 的方程与椭圆C 的方程联立,得⎩⎪⎨⎪⎧x =my -2,x 26+y22=1,消去x ,得(m 2+3)y 2-4my -2=0,其判别式Δ=16m 2+8(m 2+3)>0.所以y 1+y 2=4m m 2+3,y 1y 2=-2m 2+3,x 1+x 2=m (y 1+y 2)-4=-12m 2+3.所以PQ 的中点M 的坐标为⎝ ⎛⎭⎪⎫-6m 2+3,2m m 2+3,所以直线OM 的斜率k OM =-m3.又直线OT 的斜率k OT =-m3,所以点M 在直线OT 上,因此OT 平分线段PQ .(ⅱ)【解】 由(ⅰ)可得,|TF |=m 2+1, |PQ |=x 1-x 22+y 1-y 22 =m 2+y 1+y 22-4y 1y 2]=m 2+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫4m m 2+32-4·-2m 2+3=24m 2+m 2+3所以|TF ||PQ |=124·m 2+2m 2+1=124·⎝⎛⎭⎪⎫m 2+1+4m 2+1+4≥124+=33.当且仅当m 2+1=4m 2+1,即m =±1时,等号成立,此时|TF ||PQ |取得最小值. 所以当|TF ||PQ |最小时,T 点的坐标是(-3,1)或(-3,-1).二、数形结合思想数形结合的思想在每年的高考中都有所体现,它常用来:研究方程根的情况,讨论函数的值域(最值)及求变量的取值范围等.对这类内容的选择题、填空题,数形结合特别有效.从今年的高考题来看,数形结合的重点是研究“以形助数”,但“以数定形”在今后的高考中将会有所加强,应引起重视,复习中应提高用数形结合思想解题的意识,画图不能太草,要善于用特殊数或特殊点来精确确定图形间的位置关系.1.应用数形结合的思想应注意以下数与形的转化 (1)集合的运算及韦恩图; (2)函数及其图象;(3)数列通项及求和公式的函数特征及函数图象; (4)方程(多指二元方程)及方程的曲线;(5)对于研究距离、角或面积的问题,直接从几何图形入手进行求解即可;(6)对于研究函数、方程或不等式(最值)的问题,可通过函数的图象求解(函数的零点、顶点是关键点),做好知识的迁移与综合运用.2.运用数形结合思想解决讨论方程内解或图象的交点问题用函数的图象讨论方程(特别是含参数的指数、对数、根式、三角函数等复杂方程)的解的个数是一种重要的思想方法,其基本思想是先把方程两边的代数式看作是两个熟悉函数的表达式(不熟悉时,需要作适当变形转化为两个熟悉的函数),然后在同一坐标系中作出两个函数的图象,图象的交点个数即为方程解的个数.【例4】 (2014·天津高考)已知函数f (x )=|x 2+3x |,x ∈R .若方程f (x )-a |x -1|=0恰有4个互异的实数根,则实数a 的取值范围为________.【解】 原问题等价于方程f (x )=a |x -1|恰有4个互异的实数根 解法一:分别画出函数y =f (x )与y =a |x -1|的图象(1)由x 2+3x =a (x -1)得, x 2+(3-a )x +a =0,Δ=(3-a )2-4a ,由Δ=0得a =9或a =1(舍), 此时a >9,(2)由-x 2-3x =a (1-x ),得x 2+(3-a )x +a =0,由Δ=0得a =1或a =9(舍), 结合图象知0<a <1,由(1)(2)知0<a <1或a >9,∴a ∈(0,1)∪(9,+∞). 解法二:分离参数法a =⎪⎪⎪⎪⎪⎪x 2+3x x -1 =⎪⎪⎪⎪⎪⎪x -+4x -+5, 由平移和对称知 画出函数y =⎪⎪⎪⎪⎪⎪x -1+4x -1+5的图象, 由图知a ∈(0,1)∪(9,+∞). 【答案】 (0,1)∪(9,+∞)3.运用数形结合思想解决有关最后问题“形”可以使某些抽象问题具体化,而‘数”可以使思维精确化,应用数形结合在某些求最值问题中,可以收到意想不到的效果.(1)把代数式进行几何转化,转化为具有直观几何意义构图形,例如①y 2-y 1x 2-x 1看作直线的斜率,转化为平面直角坐标系内两点(x 1,y 1)和(x 2,y 2)的连线的斜率,特别适用于一个定点和一个动点(动点在一个区域内)的形式:②a -m 2+b -n 2或(a -m )2+(b -n )2:看作是两点(a ,b )和(m ,n )间的距离或距离的平方.(2)其他具有几何意义的概念都可以利用相关的几何图形直观进行分析判断,例如:①向量的问题,可以考虑用向量的图形大小与方向及向量运算的几何意义构造图形直观解题;②复数与复平面内的点的一一对应关系,可以把复数的有关运算转化为图形.【例5】 (1)已知实数x ,y 满足不等式组⎩⎪⎨⎪⎧x 2+y 2≤4,x ≥0,①求函数z =y +3x +1的值域; ②求w =x +2+y +2的最值.(2)用min{a ,b ,c }表示a ,b ,c 三个数中的最小值.设f (x )=min{2x,x +2,10-x }(x ≥0),则f (x )的最大值为( )A .4B .5C .6D .7【解析】 (1)①由解析几何知识可知,所给的不等式组表示圆x 2+y 2=4的右半圆域(含边界),z =y +3x +1可改写为y +3=z (x +1),把z 看作参数,则此方程表示过定点P (-1,-3),斜率为z 的直线系.所求问题的几何意义是:求过半圆域x 2+y 2≤4(x ≥0)内或边界上任一点与点P (-1,-3)的直线斜率的最大、最小值.由图显见,过点P 和点A (0,2)的直线斜率最大,z max =2--0--=5.过点P 向半圆作切线,切线的斜率最小.设切点为B (a ,b ),则过B 点的切线方程为ax +by =4.又B 在半圆周上,P 在切线上,则有⎩⎪⎨⎪⎧a 2+b 2=4,-a -3b =4.又a >0,解得⎩⎪⎨⎪⎧a =-2+365,b =-6-65,因此z min =26-33.综上可知函数的值域为⎣⎢⎡⎦⎥⎤26-33,5.②所求问题的几何意义是:求半圆域x 2+y 2≤4(x ≥0)内或边界上任一点到P (-1,-3)的距离的最大值与最小值,由数形结合可知w max =|PO |+r =10+2,w min =|PC |=12+-2+2=2,即最大值为10+2,最小值为 2.(2)f (x )=min{2x,x +2,10-x }(x ≥0)的图象如图.令x +2=10-x ,解得x =4.当x =4时,f (x )取最大值,f (4)=4+2=6.故选C.【答案】 C4.运用数形结合思想解决解析几何中的问题在数形结合时,既要进行几何直观的分析,又要进行代数抽象的探索,两方面相辅相成,仅对代数问题进行几何分析(或仅对几何问题进行代数分析)在许多时候是很难行得通的.例如,在解析几何中,我们主要是运用代数的方法来研究几何问题,但是在许多时候,若能充分地挖掘利用图形的几何特征,将会使得复杂的问题简单化.【例6】 已知P 是直线3x +4y +8=0上的动点,PA ,PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A ,B 是切点,C 是圆心,求四边形PACB 面积的最小值.【解】 根据题意,画出图形如下图,当动点P 沿直线3x +4y +8=0向左上方或向右下方无穷远处运动时,Rt △PAC 的面积S Rt △PAC =12|PA |·|AC |=12|PA |越来越大,从而S 四边形PACB 也越来越大;当点P 从左上、右下两个方向向中间运动时,S 四边形PACB 变小,显然,当点P 到达一个最特殊的位置,即CP 垂直于直线3x +4y +8=0时,S 四边形PACB 应有唯一的最小值,此时|PC |=|3×1+4×1+8|32+42=3, 从而|PA |=|PC |2-|AC |2=2 2.∴(S 四边形PACB )min =2×12×|PA |×|AC |=2 2.。
2015届高考数学一轮总复习 专题突破 函数与导数问题的求解策略课件 理
高三一轮总复习理科数学 · (安徽专用)
k+1 1 (2)当 k>0 时,因为 f(k+1)=e k > , e 1 所以不会有∀x∈(0,+∞),f(x)≤ . e 当 k<0 时,由(1)知 f(x)在(0,+∞)上的最大值是 f(- 4 k2 k)= . e 1 4k2 1 所以∀x∈(0,+∞),f(x)≤ 等价于 f(-k)= ≤ , e e e 1 解得- ≤k<0. 2
【解】 (1)f(x)的定义域为(-∞,1)∪(1,+∞), ax2+2-a -ax f′(x)= . 2 e 1-x (2)①当 0<a≤2 时, f′(x)≥0, 所以 f(x)在(-∞, 1),(1,+∞)上为增函数;
高三一轮总复习理科数学 · (安徽专用)
②当 a>2 时,由 f′(x)>0 得 ax2+2-a>0,x> a-2 a 或 x<- a-2 a ,
1 因此 m≥ . 8 即实数 m
1 的取值范围是8,+∞.
高三一轮总复习理科数学 · (安徽专用)
【反思启迪】
1.本题(2)中把直线 AB 的斜率恒大于 1
转化为函数 g(x)=f(x)-x 在(0,+∞)上是增函数是解题的关 键. 2. 判断函数的单调性, 求函数的单调区间、 极值等问题, 最终归结到判断 f′(x)的符号问题上,而 f′(x)>0 或 f′(x) <0,最终可转化为一个一元一次或一元二次不等式问题.
高三一轮总复习理科数学 · (安徽专用)
2mx2-x+1 1 所以 g′(x)=x+2mx-1= ≥0 对 x∈(0,+ x ∞)恒成立, 所以 2mx2-x+1≥0 对 x∈(0,+∞)恒成立,
1 1 1 1 1 2 即 2m≥- 2+x=- x-2 + 对 x∈(0,+∞)恒成立, x 4
【创新方案】2015高考数学一轮复习(知识回扣+热点突破+能力提升)数列的综合问题 理 北师大版
第五节 数列的综合问题【考纲下载】能在具体的问题情境中识别数列的等差关系或等比关系,并能用相关知识 解决相应的问题.1.数列综合应用题的解题步骤(1)审题——弄清题意,分析涉及哪些数学内容,在每个数学内容中,各是什么问题. (2)分解——把整个大题分解成几个小题或几个“步骤”,每个小题或每个“步骤”分别是数列问题、函数问题、解析几何问题、不等式问题等.(3)求解——分别求解这些小题或这些“步骤”,从而得到整个问题的解答. 2.常见的数列模型(1)等差数列模型:通过读题分析,由题意抽象出等差数列,利用等差数列有关知识解决问题.(2)等比数列模型:通过读题分析,由题意抽象出等比数列,利用等比数列有关知识解决问题.(3)递推公式模型:通过读题分析,由题意把所给条件用数列递推式表达出来,然后通过分析递推关系式求解.1.设本金为a ,每期利率为r ,存期为n ,若按单利计算,本利和是多少?此模型是等差数列模型还是等比数列模型?提示:本利和为a (1+rn ),属等差数列模型.2.设本金为a ,每期利率为r ,存期为n ,若按复利计算,本利和是多少?此模型是等差数列模型还是等比数列模型?提示:本利和为a (1+r )n,属等比数列模型.1.设{a n }是公差不为0的等差数列,a 1=2且a 1,a 3,a 6成等比数列,则{a n }的前n 项和S n =( )A.n 24+7n 4B.n 23+5n 3C.n 22+3n 4D .n 2+n 解析:选A 设等差数列{a n }的公差为d .∵a 1,a 3,a 6成等比数列, ∴a 23=a 1·a 6,即(a 1+2d )2=a 1(a 1+5d ).又a 1=2,∴(2+2d )2=2×(2+5d ),解之得d =12或d =0(舍).∴S n =na 1+n n -1 2d =2n +n n -1 4=n 24+7n4.2.已知x >0,y >0,x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,则 a +b2cd的最小值是( )A .0B .1C .2D .4解析:选D ∵x ,a ,b ,y 成等差数列,∴a +b =x +y ,又x ,c ,d ,y 成等比数列,∴cd =xy .∴ a +b 2cd = x +y 2xy =2+x 2+y 2xy ≥2+2xyxy=4.当且仅当x =y 时取等号,所以a +b2cd的最小值是4.3.在如图所示的表格中,如果每格填上一个数后,每一行成等差数列,每一列成等比数列,那么x +y +z 的值为( )A .1B .2C .3D .4解析:选C 由题意知,第三列各数成等比数列,故x =1;第一行第五个数为6,第二行第五个数为3,故z =34;第一行第四个数为5,第二行第四个数为52,故y =54,从而x +y +z=3.4.已知正项等差数列{a n }满足:a n +1+a n -1=a 2n (n ≥2),等比数列{b n }满足:b n +1b n -1=2b n (n ≥2),则log 2(a 2+b 2)=________.解析:由题意可知a n +1+a n -1=2a n =a 2n ,解得a n =2(n ≥2)(由于数列{a n }每项都是正数,故a n =0舍去),又b n +1b n -1=b 2n =2b n (n ≥2),所以b n =2(n ≥2),所以log 2(a 2+b 2)=log 24=2.答案:25.已知数列{a n }的前n 项和为S n ,对任意n ∈N *都有S n = 23a n -13,若1<S k <9(k ∈N *),则k 的值为________. 解析:由S n =23a n -13,得当n =1时,S 1=a 1=23a 1-13,则a 1=-1.当n ≥2时,S n =23(S n -S n -1)-13,即S n =-2S n -1-1.令S n +p =-2(S n -1+p ),得S n =-2S n -1-3p ,可知p =13.故数列⎩⎨⎧⎭⎬⎫S n +13是以-23为首项,-2为公比的等比数列.则S n +13=-23×(-2)n -1,即S n =-23×(-2)n -1-13.由1<-23×(-2)k -1-13<9,k ∈N *,得k =4.答案:4考点一等差、等比数列的综合问题[例1] 在数列{a n }中,a 1=1,a 2=2,且a n +1=(1+q )a n -qa n -1(n ≥2,q ≠0).(1)设b n =a n +1-a n (n ∈N *),证明:{b n }是等比数列; (2)求数列{a n }的通项公式;(3)若a 3是a 6与a 9的等差中项,求q 的值,并证明:此时对任意的n ∈N *,a n 是a n +3与a n+6的等差中项.[自主解答] (1)证明:由题设a n +1=(1+q )a n -qa n -1(n ≥2),得a n +1-a n =q (a n -a n -1),即b n =qb n -1,n ≥2.又b 1=a 2-a 1=1,q ≠0,所以{b n }是首项为1,公比为q 的等比数列.(2)由(1),得a 2-a 1=1,a 3-a 2=q ,…,a n -a n -1=q n -2(n ≥2).将以上各式相加,得a n -a 1=1+q +q 2+…+q n -2(n ≥2).所以当n ≥2时,有a n =⎩⎪⎨⎪⎧n ,q =1,1+1-q n -11-q ,q ≠1.上式对n =1也成立,所以数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧n ,q =1,1+1-q n -11-q ,q ≠1.(3)由(2),得当q =1时,显然a 3不是a 6与a 9的等差中项,故q ≠1.由a 3是a 6与a 9的等差中项,即2a 3=a 6+a 9,可得2q 2=q 5+q 8,由q ≠0,得q 6+q 3-2=0,整理,得(q 3)2+q 3-2=0,解得q 3=-2或q 3=1(舍去).于是q =-32.而a n =1+1-q n -11-q ,a n +3=1+1-q n +21-q ,a n +6=1+1-qn +51-q,所以a n +3+a n +6=⎝ ⎛⎭⎪⎫1+1-q n +21-q +⎝ ⎛⎭⎪⎫1+1-q n +51-q =2+2-q n +2-q n +51-q =2+2-q 3×q n -1-q 6×q n -11-q =2+2- -2 q n -1- -2 2q n -11-q =2+2-2q n -11-q =2⎝⎛⎭⎪⎫1+1-q n -11-q =2a n . 所以对任意的n ∈N *,a n 是a n +3与a n +6的等差中项.【方法规律】解决等差、等比数列的综合问题的方法对于等差、等比数列的综合问题,应重点分析等差、等比数列的通项,前n 项和以及等差、等比数列项之间的关系,往往用到转化与化归的思想方法.已知等差数列{a n }的首项a 1=1,公差d >0,且第2项、第5项、第14项分别是等比数列{b n }的第2项、第3项、第4项.(1)求数列{a n }与{b n }的通项公式;(2)设数列{c n }对n ∈N *均有c 1b 1+c 2b 2+…+c n b n=a n +1成立,求c 1+c 2+c 3+…+c 2 013.解:(1)由已知有a 2=1+d ,a 5=1+4d ,a 14=1+13d ,∴(1+4d )2=(1+d )(1+13d ),解得d =2(∵d >0).∴a n =1+(n -1)·2=2n -1.又b 2=a 2=3,b 3=a 5=9,∴数列{b n }的公比为3,∴b n =3·3n -2=3n -1.(2)由c 1b 1+c 2b 2+…+c n b n =a n +1,得当n ≥2时,c 1b 1+c 2b 2+…+c n -1b n -1=a n .两式相减得:n ≥2时,c n b n=a n +1-a n =2.∴c n =2b n =2·3n -1(n ≥2).又当n =1时,c 1b 1=a 2,∴c 1=3.∴c n =⎩⎪⎨⎪⎧3,n =1,2·3n -1,n ≥2.∴c 1+c 2+c 3+…+c 2 013=3+6-2×32 0131-3=3+(-3+32 013)=32 013.[例2] 某工业城市按照“十二五”(2011年至2015年)期间本地区主要污染物排放总量控制要求,进行减排治污.现以降低SO 2的年排放量为例,原计划“十二五”期间每年的排放量都比上一年减少0.3万吨,已知该城市2011年SO 2的年排放量约为9.3万吨.(1)按原计划,“十二五”期间该城市共排放SO 2约多少万吨?(2)该城市为响应“十八大”提出的建设“美丽中国”的号召,决定加大减排力度.在2012年刚好按原计划完成减排任务的条件下,自2013年起,SO 2的年排放量每年比上一年减少的百分率为p ,为使2020年这一年SO 2的年排放量控制在6万吨以内,求p 的取值范围.⎝ ⎛⎭⎪⎫参考数据: 823≈0.950 5, 923≈0.955 9[自主解答] (1)设“十二五”期间,该城市共排放SO 2约y 万吨,依题意,2011年至2015年SO 2的年排放量构成首项为9.3,公差为-0.3的等差数列,所以y =5×9.3+5× 5-12×(-0.3)=43.5(万吨).所以按原计划“十二五”期间该城市共排放SO 2约43.5万吨. (2)由已知得, 2012年的SO 2年排放量为9.3-0.3=9(万吨),所以2012年至2020年SO 2的年排放量构成首项为9,公比为1-p 的等比数列. 由题意得9×(1-p )8<6,由于0<p <1,所以1-p < 823,所以1-p <0.950 5,解得p >4.95%.所以SO 2的年排放量每年减少的百分率p 的取值范围为(4.95%,1).【方法规律】解决数列应用题应注意的问题解决数列应用问题,要明确问题属于哪一种类型,即明确是等差数列问题还是等比数列问题,是求a n 还是S n ,特别是要弄清项数.某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2 000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年资金年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d 万元,并将剩余资金全部投入下一年生产.设第n 年年底企业上缴资金后的剩余资金为a n 万元.(1)用d 表示a 1,a 2,并写出a n +1与a n 的关系式;(2)若公司希望经过m (m ≥3)年使企业的剩余资金为4 000万元,试确定企业每年上缴资金d 的值(用m 表示).解:(1)由题意得a 1=2 000(1+50%)-d =3 000-d ,a 2=a 1(1+50%)-d =32a 1-d =4 500-52d .a n +1=a n (1+50%)-d =32a n -d .(2)由(1)得a n =32a n -1-d(3)=32⎝ ⎛⎭⎪⎫32a n -2-d -d =⎝ ⎛⎭⎪⎫322a n -2-32d -d…=⎝ ⎛⎭⎪⎫32n -1a 1-d ⎣⎢⎡⎦⎥⎤1+32+⎝ ⎛⎭⎪⎫322+…+⎝ ⎛⎭⎪⎫32n -2.整理得a n =⎝ ⎛⎭⎪⎫32n -1(3 000-d )-2d ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32n -1-1=⎝ ⎛⎭⎪⎫32n -1(3 000-3d )+2d .由题意,a m =4 000,即⎝ ⎛⎭⎪⎫32m -1(3 000-3d )+2d =4 000.解得d =⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32m -2×1 000⎝ ⎛⎭⎪⎫32m -1=1 000 3m -2m +13m -2m. 故该企业每年上缴资金d 的值为1 000 3m -2m +13m -2m时,经过m (m ≥3)年企业的剩余资金为4 000万元.1.数列与函数、 不等式的综合问题是每年高考的重点,多为解答题,难度偏大,属中高档题.2.高考对数列与函数、不等式的综合问题的考查常有以下两个命题角度: (1)以数列为载体,考查不等式的恒成立问题; (2)考查与数列问题有关的不等式的证明问题.[例3] (2013·江西高考)正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0.(1)求数列{a n }的通项公式a n ;(2)令b n =n +1 n +2 2a 2n ,数列{b n }的前n 项和为T n .证明:对于任意的n ∈N *,都有T n <564. [自主解答] (1)由S 2n -(n 2+n -1)S n -(n 2+n )=0,得[S n -(n 2+n )](S n +1)=0.由于{a n }是正项数列,所以S n >0,S n =n 2+n .于是a 1=S 1=2, n ≥2时,a n =S n -S n -1=n 2+n -(n -1)2-(n -1)=2n . 综上,数列{a n }的通项公式为a n =2n .(2)证明:由于a n =2n ,故b n =n +1 n +2 2a 2n =n +14n 2 n +2 2=116⎣⎢⎡⎦⎥⎤1n 2-1 n +2 2. T n =1161-132+122-142+132-152+…+1 n -1 2-1 n +1 2+1n 2-1 n +22=116⎣⎢⎡⎦⎥⎤1+122-1 n +1 2-1 n +2 2<116⎝ ⎛⎭⎪⎫1+122=564.数列与函数、不等式的综合问题的常见类型及解题策略(1)数列与不等式的恒成立问题.此类问题常构造函数,通过函数的单调性、极值等解决问题.(2)与数列有关的不等式证明问题.解决此类问题要灵活选择不等式的证明方法,如比较法、综合法、分析法、放缩法等.1.已知函数f (x )=ln x -x ,数列{a n }满足a 1=12,a n +1=12-a n.(1)求证:f (x )≤-1;(2)证明数列⎩⎨⎧⎭⎬⎫1a n -1为等差数列,并求数列{a n }的通项公式; (3)求证不等式a 1+a 2+…+a n <n +ln 2-ln(n +2).证明:(1)令g (x )=f (x )+1=ln x -x +1,g ′(x )=1x -1=1-xx,当0<x <1时,g ′(x )>0,当x >1时g ′(x )<0,故g (x )在x =1处取得极大值,也是最大值,所以g (x )≤g (1)=0,故f (x )≤-1.(2)因为a n +1=12-a n ,∴a n +1-1=12-a n -1=a n -12-a n,∴1a n +1-1=1a n -1-1,即数列⎩⎨⎧⎭⎬⎫1a n -1是首项为1a 1-1=-2,公差d =-1的等差数列,∴1a n -1=-n -1,∴a n =n n +1. (3)∵a n =1-1n +1,∴a 1+a 2+…+a n =1-12+1-13+…+1-1n +1=n -⎝ ⎛⎭⎪⎫12+13+…+1n +1.由(1)知当x >1时,f (x )+1<0,即ln x <x -1,令x =n +2n +1=1n +1+1,得ln n +2n +1<1n +1+1-1=1n +1,∴ln 32+ln 43+…+ln n +2n +1<12+13+…+1n +1,∴ln(n +2)-ln 2<12+13+…+1n +1,∴n -⎝ ⎛⎭⎪⎫12+13+…+1n +1<n +ln 2-ln(n +2),∴a 1+a 2+…+a n <n +ln 2-ln(n +2).2.已知数列{a n }为等比数列,其前n 项和为S n ,已知a 1+a 4=-716,且对于任意的n ∈N *,有S n ,S n +2,S n +1成等差数列.(1)求数列{a n }的通项公式;(2)已知b n =n (n ∈N *),记T n =⎪⎪⎪⎪⎪⎪b 1a 1+⎪⎪⎪⎪⎪⎪b 2a 2+⎪⎪⎪⎪⎪⎪b 3a 3+…+⎪⎪⎪⎪⎪⎪b n a n ,若(n -1)2≤m (T n -n -1)对于n ≥2恒成立,求实数m 的取值范围.解:(1)设数列{a n }的公比为q .∵S 1,S 3,S 2成等差数列,∴2S 3=S 1+S 2,∴2a 1(1+q +q 2)=a 1(2+q ),解得q =-12,又a 1+a 4=a 1(1+q 3)=-716,∴a 1=-12,∴a n =a 1q n -1=⎝ ⎛⎭⎪⎫-12n .(2)∵b n =n ,a n =⎝ ⎛⎭⎪⎫-12n ,∴⎪⎪⎪⎪⎪⎪b n a n =n ·2n,∴T n =1·2+2·22+3·23+…+n ·2n,①2T n =1·22+2·23+3·24+…+(n -1)·2n +n ·2n +1,②①-②,得-T n =2+22+23+…+2n -n ·2n +1,∴T n =-⎝ ⎛⎭⎪⎫2-2n +11-2-n ·2n +1=(n -1)·2n +1+2. 若(n -1)2≤m (T n -n -1)对于n ≥2恒成立,则(n -1)2≤m [(n -1)·2n +1+2-n -1],(n -1)2≤m (n -1)·(2n +1-1),∴m ≥n -12n +1-1,令f (x )=x -12x +1-1,可判断f (x )在x ∈[2,+∞)上是减函数.则f (n )=n -12n +1-1的最大值为f (2)=17,∴m ≥17.故实数m 的取值范围为⎣⎢⎡⎭⎪⎫17,+∞.——————————[课堂归纳——通法领悟]————————————————2种思想——函数思想与转化化归思想(1)数列与函数方程相结合时主要考查函数的思想及函数的性质(多为单调性).(2)转化化归思想,a n与S n转化,一般数列与特殊数列的转化等.3个注意点——数列与函数、不等式、解析几何相结合应注意的问题(1)数列与解析几何结合时注意递推.(2)数列与不等式相结合时注意对不等式进行放缩.(3)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化.前沿热点(八)数列中的三类探索性问题1.条件探索性问题此类问题的基本特征是:针对一个结论,条件未知需探求,或条件增删需确定,或条件正误需判定;解决此类问题的基本策略是:执果索因,先寻找结论成立的必要条件,再通过检验或认证找到结论成立的充分条件,在“执果索因”的过程中,常常会犯的一个错误是不考虑推理过程的可逆与否,误将必要条件当作充分条件,应引起注意.[典例1] 已知数列{a n}中,a1=2,a2=3,其前n项和S n满足S n+2+S n=2S n+1+1(n∈N*);数列{b n}中,b1=a1,b n+1=4b n+6(n∈N*).(1)求数列{a n},{b n}的通项公式;(2)设c n=b n+2+(-1)n-1λ·2a n(λ为非零整数,n∈N*),试确定λ的值,使得对任意n∈N*,都有c n+1>c n成立.[解题指导] 处理第(2)问中的c n+1>c n恒成立问题,可通过构造函数将问题转化为函数的最值问题,再来研究所构造的函数的最值.[解] (1)由已知得S n+2-S n+1-(S n+1-S n)=1,所以a n+2-a n+1=1(n≥1).又a2-a1=1,所以数列{a n}是以a1=2为首项,1为公差的等差数列.所以a n=n+1.因为b n+1=4b n+6,即b n+1+2=4(b n+2),又b1+2=a1+2=4,所以数列{b2+2}是以4为首项,4为公比的等比数列.所以b n=4n-2.(2)因为a n=n+1,b n=4n-2,所以c n=4n+(-1)n-1λ·2n+1.要使c n+1>c n成立,需c n+1-c n=4n+1-4n+(-1)nλ·2n+2-(-1)n-1λ·2n+1>0恒成立,化简得3·4n-3λ(-1)n-12n+1>0恒成立,即(-1)n-1λ<2n-1恒成立,①当n为奇数时,即λ<2n-1恒成立,当且仅当n=1时,2n-1有最小值1,所以λ<1;②当n为偶数时,即λ>-2n-1恒成立,当且仅当n=2时,-2n-1有最大值-2,所以λ>-2,即-2<λ<1.又λ为非零整数,则λ=-1.综上所述,存在λ=-1,使得对任意n∈N*,都有c n+1>c n成立.[名师点评] 对于数列问题,一般要先求出数列的通项,不是等差数列和等比数列的要转化为等差数列或等比数列.遇到S n要注意利用S n与a n的关系将其转化为a n,再研究其具体性质.遇到(-1)n型的问题要注意分n为奇数与偶数两种情况进行讨论,本题易忘掉对n的奇偶性的讨论而致误.2.结论探索性问题此类问题的基本特征是:有条件而无结论或结论的正确与否需要确定;解决此类问题的策略是:先探索结论而后去论证结论,在探索过程中常可先从特殊情形入手,通过观察、分析、归纳、判断来猜测,得出结论,再就一般情形去认证结论.[典例2] 已知各项均为正数的数列{a n}满足:a2n+1=2a2n+a n a n+1,且a2+a4=2a3+4,其中n∈N*.(1)求数列{a n}的通项公式;(2)设数列{b n }满足:b n =na n2n +1 2n ,是否存在正整数m ,n (1<m <n ),使得b 1,b m ,b n成等比数列?若存在,求出所有的m ,n 的值,若不存在,请说明理由.[解题指导] 处理第(2)问中的是否存在问题,可先假设存在正整数m ,n ,把m ,n 转化为一个变量求出这个变量的范围,根据正整数求其值,若在所求范围内能够得到适合题目的值,则存在,否则就不存在.[解] (1)因为a 2n +1=2a 2n +a n a n +1,即(a n +a n +1)(2a n -a n +1)=0.又a n >0,所以2a n -a n +1=0,即2a n =a n +1.所以数列{a n }是公比为2的等比数列. 由a 2+a 4=2a 3+4,得2a 1+8a 1=8a 1+4,解得a 1=2.故数列{a n }的通项公式为a n =2n (n ∈N *).(2)因为b n =na n 2n +1 2n =n 2n +1,所以b 1=13,b m =m 2m +1,b n =n2n +1. 若b 1,b m ,b n 成等比数列,则⎝ ⎛⎭⎪⎫m 2m +12=13⎝ ⎛⎭⎪⎫n 2n +1,即m 24m 2+4m +1=n 6n +3. 由m 24m 2+4m +1=n 6n +3,可得3n =-2m 2+4m +1m 2,所以-2m 2+4m +1>0,从而1-62<m <1+62.又n ∈N *,且m >1,所以m =2,此时n =12.故当且仅当m =2,n =12时,b 1,b m ,b n 成等比数列.[名师点评] 对于结论探索性问题,需要先得出一个结论,再进行证明.注意含有两个变量的问题,变量归一是常用的解题思想,一般把其中的一个变量转化为另一个变量,根据题目条件,确定变量的值.遇到数列中的比较大小问题可以采用构造函数,根据函数的单调性进行证明,这是解决复杂问题常用的方法.3.存在探索性问题此类问题的基本特征是:要判断在某些确定条件下的某一数学对象(数值、图形、函数等)是否存在或某一结论是否成立;解决此类问题的一般方法是:假定题中的数学对象存在或结论成立或暂且认可其中的一部分结论,然后在这个前提下进行逻辑推理,若由此导出矛盾,则否定假设,否则,给出肯定结论,其中反证法在解题中起着重要的作用.[典例3] 已知数列{a n }的首项a 1=35,a n +1=3a n 2a n +1,n ∈N *.(1)求证:数列⎩⎨⎧⎭⎬⎫1a n-1为等比数列;(2)是否存在互不相等的正整数m ,s ,n ,使m ,s ,n 成等差数列,且a m -1,a s -1,a n-1成等比数列?如果存在,请给以证明;如果不存在,请说明理由.[解题指导] 第(1)问中a n +1与a n 的关系以分式形式给出,可以通过取倒数处理,目的仍然是变为等差数列或等比数列;第(2)问可先假设所探求问题存在再去求解,注意应用重要不等式进行判断.[解] (1)证明:因为1a n +1=23+13a n ,所以1a n +1-1=13⎝ ⎛⎭⎪⎫1a n -1. 又因为1a 1-1≠0,所以1a n-1≠0(n ∈N *).所以数列⎩⎨⎧⎭⎬⎫1a n-1为等比数列.(2)假设存在,则m +n =2s ,(a m -1)(a n -1)=(a s -1)2,由(1)知1a n -1=(a 1-1)⎝ ⎛⎭⎪⎫13n -1=23n ,则a n =3n3n +2,所以⎝ ⎛⎭⎪⎫3n 3n +2-1⎝ ⎛⎭⎪⎫3m 3m +2-1=⎝ ⎛⎭⎪⎫3s3s +2-12,化简得3m +3n =2×3s.因为3m+3n≥2×3m +n=2×3s,当且仅当m =n 时等号成立,又m ,s ,n 互不相等,所以不存在.[名师点评] 数列问题是以分式形式给出条件的,一般采用取倒数,再转化为等差数列或等比数列,通过等差数列与等比数列的桥梁作用求出通项.遇到多个变量的存在性问题,一般假设存在,求出满足的关系,再寻找满足的条件,一般可以利用重要不等式、值域或范围等判断是否存在.[全盘巩固]1.已知各项均不为0的等差数列{a n },满足2a 3-a 27+2a 11=0,数列{b n }是等比数列,且b 7=a 7,则b 6b 8=( )A .2B .4C .8D .16解析:选D 因为{a n }为等差数列,所以a 3+a 11=2a 7,所以已知等式可化为4a 7-a 27=0,解得a 7=4或a 7=0(舍去),又{b n }为等比数列,所以b 6b 8=b 27=a 27=16.2.已知等比数列{a n }中的各项都是正数,且5a 1,12a 3,4a 2成等差数列,则a 2n +1+a 2n +2a 1+a 2=( )A .-1B .1C .52nD .52n -1解析:选C 设等比数列{a n }的公比为q (q >0),则依题意有a 3=5a 1+4a 2,即a 1q 2=5a 1+4a 1q ,q 2-4q -5=0,解得q =-1或q =5.又q >0,因此q =5,所以a 2n +1+a 2n +2a 1+a 2=a 1q 2n +a 2q 2n a 1+a 2=q 2n =52n .3.在直角坐标系中,O 是坐标原点,P 1(x 1,y 1),P 2(x 2,y 2)是第一象限的两个点,若1,x 1,x 2,4依次成等差数列,而1,y 1,y 2,8依次成等比数列,则△OP 1P 2的面积是( )A .1B .2C .3D .4解析:选A 根据等差、等比数列的性质,可知x 1=2,x 2=3,y 1=2,y 2=4.∴P 1(2,2),P 2(3,4).∴S △OP 1P 2=1.4.已知函数y =log a (x -1)+3(a >0,a ≠1)所过定点的横、纵坐标分别是等差数列{a n }的第二项与第三项,若b n =1a n a n +1,数列{b n }的前n 项和为T n ,则T 10等于( )A.911 B.1011 C.811 D.1211解析:选B 由y =log a (x -1)+3恒过定点(2,3),即a 2=2,a 3=3,又{a n }为等差数列,∴a n =n ,n ∈N *.∴b n =1n n +1 ,∴T 10=11-12+12-13+…+110-111=1-111=1011.5.已知数列{a n }满足a 1=23,且对任意的正整数m ,n ,都有a m +n =a m ·a n ,若数列{a n }的前n 项和为S n ,则S n 等于( )A .2-⎝ ⎛⎭⎪⎫23n -1B .2-⎝ ⎛⎭⎪⎫23nC .2-2n 3n +1D .2-2n +13n解析:选D 令m =1,得a n +1=a 1·a n ,即a n +1a n =a 1=23,可知数列{a n }是首项为a 1=23,公比为q =23的等比数列,于是S n =a 1 1-q n 1-q =23×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫23n 1-23=2×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫23n =2-2n +13n .6.已知数列{a n }满足a 1=1,a 2=2,a n +2=⎝⎛⎭⎪⎫1+cos 2n π2a n +sin 2n π2,则该数列的前18项之和为( )A .2 101B .1 067C .1 012D .2 012解析:选B 当n 为正奇数时,a n +2=(1+0)a n +1=a n +1;当n 为正偶数时,a n +2=(1+1)a n +0=2a n .∴a n 是奇数项为等差数列,偶数项为等比数列的一个数列.∴{a n }的前18项和为9× 1+9 2+2× 1-291-2=1 067.7.(2013·江西高考)某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n (n ∈N *)等于________.解析:由题意知第n 天植树2n 棵,则前n 天共植树2+22+…+2n =(2n +1-2)棵,令2n +1-2≥100,则2n +1≥102,又25+1=26=64,26+1=27=128,∴n ≥6.∴n 的最小值为6.答案:68.数列{a n }是公差不为0的等差数列,且a 1,a 3,a 7为等比数列{b n }的连续三项,则数列{b n }的公比为________.解析:由题意知a 23=a 1·a 7,即(a 1+2d )2=a 1·(a 1+6d ),∴a 1=2d ,∴等比数列{b n }的公比q =a 3a 1=a 1+2d a 1=2.答案:29.函数y =x 2(x >0)的图象在点(a k ,a 2k )处的切线与x 轴交点的横坐标为a k +1,k 为正整数,a 1=16,则a 1+a 3+a 5=________.解析:依题意得,函数y =x 2(x >0)的图象在点(a k ,a 2k )处的切线方程是y -a 2k =2a k (x -a k ).令y =0,得x =12a k ,即a k +1=12a k ,因此数列{a k }是以16为首项,12为公比的等比数列,所以a k=16·⎝ ⎛⎭⎪⎫12k -1=25-k,a 1+a 3+a 5=16+4+1=21.答案:2110.已知等差数列{a n }的前n 项和为S n 且满足a 2=3,S 6=36. (1)求数列{a n }的通项公式;(2)若数列{b n }是等比数列且满足b 1+b 2=3,b 4+b 5=24.设数列{a n ·b n }的前n 项和为T n ,求T n .解:(1)∵数列{a n }是等差数列,∴S 6=3(a 1+a 6)=3(a 2+a 5)=36,则a 2+a 5=12, 由于a 2=3,所以a 5=9,从而d =2,a 1=a 2-d =1,∴a n =2n -1.(2)设数列{b n }的公比为q .∵b 1+b 2=3,b 4+b 5=24,∴b 4+b 5b 1+b 2=q 3=8,则q =2.从而b 1+b 2=b 1(1+q )=3b 1=3,∴b 1=1,b n =2n -1,∴a n ·b n =(2n -1)·2n -1.∴T n =1×1+3×2+5×22+…+(2n -3)·2n -2+(2n -1)·2n -1,则2T n =1×2+3×22+5×23+…+(2n -3)·2n -1+(2n -1)·2n,两式相减,得(1-2)T n =1×1+2×2+2×22+…+2·2n -2+2·2n -1-(2n -1)·2n,即-T n =1+2(21+22+…+2n -1)-(2n -1)·2n=1+2(2n -2)-(2n -1)·2n =(3-2n )·2n -3.∴T n =(2n -3)·2n+3.11.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足:a 2·a 4=65,a 1+a 5=18. (1)若1<i <21,a 1,a i ,a 21是某等比数列的连续三项,求i 的值; (2)设b n =n2n +1 S n,是否存在一个最小的常数m 使得b 1+b 2+…+b n <m 对于任意的正整数n 均成立?若存在,求出常数m ;若不存在,请说明理由.解:(1)∵{a n }为等差数列,∴a 1+a 5=a 2+a 4=18,又a 2·a 4=65,∴a 2,a 4是方程x 2-18x +65=0的两个根,又数列{a n }的公差d >0,∴a 2<a 4,∴a 2=5,a 4=13.∴⎩⎪⎨⎪⎧a 1+d =5,a 1+3d =13,∴a 1=1,d =4,∴a n =4n -3.∵1<i <21,a 1,a i ,a 21是某等比数列的连续三项,∴a 1·a 21=a 2i ,即1×81=(4i -3)2,解得i =3.(2)由(1)知,S n =n ·1+n n -1 2·4=2n 2-n ,∴b n =1 2n -1 2n +1 =12⎝ ⎛⎭⎪⎫12n -1-12n +1,b 1+b 2+…+b n =12⎝⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1=n 2n +1. ∵n 2n +1=12-12 2n +1 <12, ∴存在m =12使b 1+b 2+…+b n <m 对于任意的正整数n 均成立.12.已知数列{a n }的前n 项和为S n ,对一切正整数n ,点P n (n ,S n )都在函数f (x )=x 2+2x 的图象上,且过点P n (n ,S n )的切线的斜率为k n .(1)求数列{a n }的通项公式;(2)若b n =2k n a n ,求数列{b n }的前n 项和T n ;(3)设Q ={x |x =k n ,n ∈N *},R ={x |x =2a n ,n ∈N *},等差数列{c n }的任一项c n ∈Q ∩R ,其中c 1是Q ∩R 中的最小数,110<c 10<115,求{c n }的通项公式.解:(1)∵点P n (n ,S n )都在函数f (x )=x 2+2x 的图象上,∴S n =n 2+2n (n ∈N *). 当n ≥2时,a n =S n -S n -1=2n +1,当n =1时,a 1=S 1=3满足上式,所以数列{a n }的通项公式为a n =2n +1.(2)由f (x )=x 2+2x 求导可得f ′(x )=2x +2.∵过点P n (n ,S n )的切线的斜率为k n ,∴k n =2n +2.∴b n =2k n a n =4·(2n +1)·4n.∴T n =4×3×41+4×5×42+4×7×43+…+4×(2n +1)×4n.①4T n =4×3×42+4×5×43+4×7×44+…+4×(2n +1)×4n +1.② ①-②,得-3T n =4[3×4+2×(42+43+…+4n )-(2n +1)×4n +1]=4⎣⎢⎡⎦⎥⎤3×4+2×42 1-4n -1 1-4-()2n +1×4n +1,∴T n =6n +19·4n +2-169. (3)∵Q ={x |x =2n +2,n ∈N *},R ={x |x =4n +2,n ∈N *},∴Q ∩R =R . 又∵c n ∈Q ∩R ,其中c 1是Q ∩R 中的最小数,∴c 1=6.∵{c n }的公差是4的倍数,∴c 10=4m +6(m ∈N *).又∵110<c 10<115, ∴⎩⎪⎨⎪⎧110<4m +6<115,m ∈N *,解得m =27.∴c 10=114. 设等差数列的公差为d ,则d =c 10-c 110-1=114-69=12,∴c n =6+(n -1)×12=12n -6.∴{c n }的通项公式为c n =12n -6. [冲击名校]设函数f (x )=x 2,过点C 1(1,0)作x 轴的垂线l 1交函数f (x )图象于点A 1,以A 1为切点作函数f (x )图象的切线交x 轴于点C 2,再过C 2作x 轴的垂线l 2交函数f (x )图象于点A 2,…,以此类推得点A n ,记A n 的横坐标为a n ,n ∈N *.(1)证明:数列{a n }为等比数列并求出通项公式;(2)设直线l n 与函数g (x )=log 12x 的图象相交于点B n ,记b n =OA n ·OB n (其中O 为坐标原点),求数列{b n }的前n 项和S n .解:(1)证明:以点A n -1(a n -1,a 2n -1)(n ≥2)为切点的切线方程为y -a 2n -1=2a n -1(x -a n -1).当y =0时,得x =12a n -1,即a n =12a n -1.又∵a 1=1,∴数列{a n }是以1为首项,12为公比的等比数列.∴通项公式为a n =⎝ ⎛⎭⎪⎫12n -1.(2)据题意,得B n ⎝ ⎛⎭⎪⎫⎝ ⎛⎭⎪⎫12n -1,n -1. ∴b n =n ·n =⎝ ⎛⎭⎪⎫14n -1+⎝ ⎛⎭⎪⎫14n -1·(n -1)=n ⎝ ⎛⎭⎪⎫14n -1.∵S n =1×⎝ ⎛⎭⎪⎫140+2×⎝ ⎛⎭⎪⎫141+…+n ×⎝ ⎛⎭⎪⎫14n -1,14S n =1×⎝ ⎛⎭⎪⎫141+2×⎝ ⎛⎭⎪⎫142+…+n ×⎝ ⎛⎭⎪⎫14n,两式相减,得34S n =1×⎝ ⎛⎭⎪⎫140+1×⎝ ⎛⎭⎪⎫141+…+1×⎝ ⎛⎭⎪⎫14n -1-n ×⎝ ⎛⎭⎪⎫14n =1-⎝ ⎛⎭⎪⎫14n 1-14-n ×⎝ ⎛⎭⎪⎫14n.化简,得S n =169-⎝ ⎛⎭⎪⎫4n 3+169×⎝ ⎛⎭⎪⎫14n =169-3n +49×4n -1. [高频滚动]已知数列{a n }的前n 项和为S n ,且满足S n +n =2a n (n ∈N *). (1)证明:数列{a n +1}为等比数列,并求数列{a n }的通项公式; (2)若b n =(2n +1)a n +2n +1,求数列{b n }的前n 项和为T n .解:(1)证明:因为S n +n =2a n ,即S n =2a n -n ,所以S n -1=2a n -1-(n -1)(n ≥2,n ∈N *).两式相减化简,得a n =2a n -1+1.所以a n +1=2(a n -1+1)(n ≥2,n ∈N *). 所以数列{a n +1}为等比数列.因为S n +n =2a n ,令n =1,得a 1=1.a 1+1=2,所以a n +1=2n ,即a n =2n-1.(2)因为b n =(2n +1)a n +2n +1,所以b n =(2n +1)·2n.所以T n =3×2+5×22+7×23+…+(2n -1)·2n -1+(2n +1)·2n,①2T n =3×22+5×23+…+(2n -1)·2n +(2n +1)·2n +1,②①-②,得-T n =3×2+2(22+23+…+2n )-(2n +1)·2n +1=6+2×22-2n +11-2-(2n +1)·2n +1=-2+2n +2-(2n +1)·2n +1=-2-(2n -1)·2n +1.所以T n =2+(2n -1)·2n +1.。
【金榜方案】2015高考数学(理)一轮突破热点题型:第2章 第7节 函数的图象
第七节 函数的图象[例1] 作出下列函数的图象:(1)y =⎝⎛⎭⎫12|x |; (2)y =|log 2(x +1)|; (3)y =2x -1x -1; (4)y =x 2-2|x |-1.[自主解答] (1)作出y =⎝⎛⎭⎫12x的图象,保留y =⎝⎛⎭⎫12x 图象中x ≥0的部分,加上y =⎝⎛⎭⎫12x 的图象中x >0部分关于y 轴的对称部分,即得y =⎝⎛⎭⎫12|x |的图象,如图实线部分.(2)将函数y =log 2x 的图象向左平移1个单位,再将x 轴下方的部分沿x 轴翻折上去,即可得到函数y =|log 2(x +1)|的图象,如图.(3)∵y =2x -1x -1=2+1x -1,故函数图象可由y =1x的图象向右平移1个单位,再向上平移2个单位而得,如图.(4)∵y =⎩⎪⎨⎪⎧x 2-2x -1,x ≥0,x 2+2x -1,x <0且函数为偶函数,先用描点法作出[0,+∞)上的图象,再根据对称性作出(-∞,0)上的图象,即得函数图象如图.【方法规律】函数图象的画法(1)直接法:当函数表达式是基本函数或函数图象是解析几何中熟悉的曲线(如圆、椭圆、双曲线、抛物线的一部分)时,就可根据这些函数或曲线的特征直接作出.(2)图象变换法:若函数图象可由某个基本函数的图象经过平移、翻折、对称变换得到,可利用图象变换作出.分别画出下列函数的图象:(1)y =|lg x |; (2)y =2x +2;(3)y =x +2x +3; (4)y =|log 2x -1|.解:(1)∵y =|lg x |=⎩⎪⎨⎪⎧lg x ,x ≥1,-lg x ,0<x <1.∴函数y =|lg x |的图象如图(1).图(1) 图(2)(2)将函数y =2x 的图象向左平移2个单位即可得到函数y =2x +2的图象,如图(2).(3)∵y =x +2x +3=1-1x +3,可见原函数图象可由y =-1x 图象向左平移3个单位,再向上平移1个单位得到,如图(3).图(3)图(4)(4)先作出y =log 2x 的图象,再将其图象向下平移1个单位,保留x 轴上方的部分,将x 轴下方的图象翻折到x 轴上方,即得y =|log 2x -1|的图象,如图(4).1.高考对函数图象的考查主要有识图和辨图两个方面,其中识图是每年高考的热点内容,题型多为选择题,难度适中.2.高考对识图问题的考查主要有以下几个命题角度:(1)借助实际情景探究函数图象;(2)已知解析式确定函数图象;(3)已知函数解析式(或图象)确定相关函数的图象;(4)借助动点探究函数图象.[例2](1)(2013·湖北高考)小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶.与以上事件吻合得最好的图象是()(2)(2013·山东高考)函数y=x cos x+sin x的图象大致为()A B C D(3)(2012·湖北高考)已知定义在区间[0,2]上的函数y=f(x)的图象如图所示,则y=-f(2-x)的图象为()A BC D(4)(2013·江西高考)如图,已知l 1⊥l 2,圆心在l 1上、半径为1 m 的圆O 在t =0时与l 2相切于点A ,圆O 沿l 1以1 m/s 的速度匀速向上移动,圆被直线l 2所截上方圆弧长记为x ,令y =cos x ,则y 与时间t (0≤t ≤1,单位:s)的函数y =f (t )的图象大致为( )A B C D[自主解答] (1)小明匀速运动时,所得图象为一条直线,且距离学校越来越近,故排除A.因交通堵塞停留了一段时间,与学校的距离不变,故排除D.后来为了赶时间加快速度行驶,故排除B.(2)先判断函数y =x cos x +sin x 是奇函数,所以排除B ;再判断其零点,令y =x cos x +sin x =0,得tan x =-x ,画图知其在(0,π)上有且仅有一个零点,故排除A 、C.(3)法一:由y =f (x )的图象知f (x )=⎩⎨⎧x (0≤x ≤1),1(1<x ≤2).当x ∈[0,2]时,2-x ∈[0,2],所以f (2-x )=⎩⎪⎨⎪⎧ 1(0≤x ≤1),2-x (1<x ≤2),故y =-f (2-x )=⎩⎪⎨⎪⎧-1(0≤x ≤1),x -2(1<x ≤2).故其对应的图象应为B. 法二:当x =0时,-f (2-x )=-f (2)=-1;当x =1时,-f (2-x )=-f (1)=-1.观察各选项,可知应选B.(4)如图,设∠MON =α,由弧长公式知x =α,在Rt △AOM 中,|AO |=1-t ,cos x 2=|OA ||OM |=1-t ,∴y =cos x =2cos 2x2-1=2(t -1)2-1(0≤t ≤1).故其对应的图象应为B.[答案] (1)C (2)D (3)B (4)B识图问题的常见类型及解题策略(1)由实际情景探究函数图象.关键是将生活问题转化为我们熟悉的数学问题求解,要注意实际问题中的定义域问题.(2)由解析式确定函数图象.此类问题往往化简函数解析式,利用函数的性质(单调性、奇偶性、过定点等)判断,常用排除法.(3)已知函数图象确定相关函数的图象.此类问题主要考查函数图象的变换(如平移变换、对称变换等),要注意函数y =f (x )与y =f (-x )、y =-f (x )、y =-f (-x )、y =f (|x |)、y =|f (x )|等的相互关系.(4)借助动点探究函数图象.解决此类问题可以根据已知条件求出函数解析式后再判断函数的图象;也可采用“以静观动”,即将动点处于某些特殊的位置处考察图象的变化特征,从而作出选择.1.如图,下面的四个容器高度都相同,将水从容器顶部一个孔中以相同的速度注入其中,注满为止.用下面对应的图象表示该容器中水面的高度h 和时间t 之间的关系,其中不.正确的个数为( )A .1B .2C .3D .4解析:选A 将水从容器顶部一个孔中以相同的速度注入其中,容器中水面的高度h 和时间t 之间的关系可以从高度随时间的变化率上反映出来;图①应该是匀速的,故下面的图象不正确;②中的变化率应该是越来越慢的,正确;③中的变化规律是先快后慢再快,正确;④中的变化规律是先慢后快再慢,也正确,故只有①是错误的.2.(2014·宁波模拟)若log a 2<0(a >0,且a ≠1),则函数f (x )=log a (x +1)的图象大致是( )解析:选B 由log a 2<0,得0<a <1,故函数f (x )=log a (x +1)为减函数,故排除选项A 、D.由图象平移可知f (x )=log a (x +1)的图象可由y =log a x 的图象向左平移1个单位得到,故选B.3.已知函数y =f (x )与y =g (x )的图象如图所示,则函数y =f (x )·g (x )的图象可能是( )解析:选A 观察图象可知,y =f (x )有两个零点x 1=-π2,x 2=π2,且y =g (x )在x =0时,函数值不存在,所以函数y =f (x )·g (x )在x =0时,函数值也不存在,故可以排除选项C ,D ;当x ∈⎝⎛⎭⎫0,π2时,y =f (x )·g (x )的函数值为负,故排除选项B.4.已知有四个平面图形,分别是三角形、平行四边形、直角梯形、圆.垂直于x 轴的直线l :x =t (0≤t ≤a )经过原点O 向右平行移动,l 在移动过程中扫过平面图形的面积为y (选项中阴影部分),若函数y =f (t )的大致图象如图所示,那么平面图形的形状不可能是( )解析:选C 观察函数图象可得函数y =f (t )在[0,a ]上是增函数,即说明随着直线l 的右移,扫过图形的面积不断增大,从这个角度讲,四个图象都适合.再对图象作进一步分析,图象首先是向下凸的,说明此时扫过图形的面积增加得越来越快,然后是由上凸的,说明此时扫过图形的面积增加得越来越慢.根据这一点很容易判定C 项不适合.这是因为在C 项中直线l 扫到矩形部分时,面积会呈直线上升.[例3] 已知函数f (x )=x |m -x |(x ∈R ),且f (4)=0. (1)求实数m 的值;(2)作出函数f (x )的图象并判断其零点个数; (3)根据图象指出f (x )的单调递减区间; (4)根据图象写出不等式f (x )>0的解集;(5)求集合M ={m |使方程f (x )=m 有三个不相等的实根}. [自主解答] (1)∵f (4)=0,∴4|m -4|=0,即m =4.(2)∵f (x )=x |m -x |=x |4-x |=⎩⎪⎨⎪⎧x (x -4),x ≥4,-x (x -4),x <4.∴函数f (x )的图象如图:由图象知f (x )有两个零点.(3)从图象上观察可知:f (x )的单调递减区间为[2,4].(4)从图象上观察可知:不等式f (x )>0的解集为{x |0<x <4或x >4}.(5)由图象可知若y =f (x )与y =m 的图象有三个不同的交点,则0<m <4,故集合M ={m |0<m <4}.【互动探究】保持本例条件不变,求函数f (x )在[1,5]上的值域.解:f (1)=3,f (5)=5,借助函数图象可知,函数f (x )在[1,5]上的值域为[0,5]. 【方法规律】1.利用函数的图象研究方程根的个数当方程与基本函数有关时,可以通过函数图象来研究方程的根,方程f (x )=0的根就是函数f (x )图象与x 轴交点的横坐标,方程f (x )=g (x )的根就是函数f (x )与g (x )图象交点的横坐标.2.利用函数的图象研究不等式当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数图象的上、下关系问题,从而利用数形结合求解.1.(2013·湖南高考)函数f (x )=2ln x 的图象与函数g (x )=x 2-4x +5的图象的交点个数为( ) A .3 B .2 C .1 D .0解析:选B 在同一直角坐标系下画出函数f (x )=2ln x 与函数g (x )=x 2-4x +5=(x -2)2+1的图象,如图所示.∵f (2)=2ln 2>g (2)=1,∴f (x )与g (x )的图象的交点个数为2,故选B. 2.已知函数y =|x 2-1|x -1的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是________.解析:先去掉绝对值符号,在同一直角坐标系中作出函数的图象,利用数形结合求解. 根据绝对值的意义,y =|x 2-1|x -1=⎩⎪⎨⎪⎧x +1(x >1或x <-1),-x -1(-1≤x <1).在直角坐标系中作出该函数的图象,如图中实线所示.根据图象可知,当0<k <1或1<k <4时有两个交点.答案:(0,1)∪(1,4)————————————[课堂归纳——通法领悟]————————————————1个注意点——图象变换中的易错点在解决函数图象的变换问题时,要遵循“只能对函数关系式中的x ,y 变换”的原则,写出每一次的变换所得图象对应的解析式,这样才能避免出错.2个区别——函数图象的对称问题(1)一个函数的图象关于原点对称与两个函数的图象关于原点对称不同,前者是自身对称,且为奇函数,后者是两个不同的函数图象对称.(2)一个函数的图象关于y轴对称与两个函数的图象关于y轴对称也不同,前者也是自身对称,且为偶函数,后者也是两个不同函数图象的对称关系.3个关键点——正确作出函数图象的三个关键点(1)正确求出函数的定义域;(2)熟练掌握几种基本函数的图象,如二次函数、反比例函数、指数函数、对数函数、幂函数、形如y=x+1的函数;x(3)掌握平移变换、伸缩变换、对称变换、翻折变换、周期变换等常用的方法技巧,来帮助我们简化作图过程.。
【创新方案】(浙江专版)2015届高考数学一轮复习 第二章 第八节 函数与方程突破热点题型 文
第八节 函数与方程[例1] (1)(2014·西安模拟)函数f (x )=2x +ln 1x -1的零点所在的大致区间是( )A .(1,2)B .(2,3)C .(3,4)D .(1,2)与(2,3)(2)(2013·重庆高考)若a <b <c ,则函数f (x )=(x -a )·(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( )A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内 [自主解答] (1)f (x )=2x +ln 1x -1=2x-ln(x -1).当1<x <2时,ln(x -1)<0,2x>0,所以f (x )>0,故函数f (x )在(1,2)上没有零点.f (2)=1-ln 1=1,f (3)=23-ln 2=2-3ln 23=2-ln 83, ∵8=22≈2.828>e,∴8>e 2,即ln 8>2,即f (3)<0, 又f (4)=12-ln 3<0,∴f (x )在(2,3)内存在一个零点.(2)易知f (a )=(a -b )(a -c ),f (b )=(b -c )(b -a ),f (c )=(c -a )(c -b ).又a <b <c ,则f (a )>0,f (b )<0,f (c )>0,又该函数是二次函数,且开口向上,可知两根分别在(a ,b )和(b ,c )内.[答案] (1)B (2)A 【方法规律】判断函数零点所在区间的方法判断函数在某个区间上是否存在零点,要根据具体题目灵活处理,当能直接求出零点时,就直接求出进行判断;当不能直接求出时,可根据零点存在性定理判断;当用零点存在性定理也无法判断时可画出图象判断.1.(2014·嘉兴模拟)方程log 3x +x =3的根所在的区间为( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)解析:选C 法一:方程log 3x +x =3的根即是函数f (x )=log 3x +x -3的零点,由于f (2)=log 32+2-3=log 32-1<0,f (3)=log 33+3-3=1>0且函数f (x )在(0,+∞)上为单调增函数.∴函数f (x )的零点即方程log 3x +x =3的根所在区间为(2,3).法二:方程log 3x +x =3的根所在区间即是函数y 1=log 3x 与y 2=3-x 交点横坐标所在区间,两函数图象如图所示.由图知方程log 3x +x =3的根所在区间为(2,3).2.在下列区间中,函数f (x )=e -x-4x -3的零点所在的区间为( ) A.⎝ ⎛⎭⎪⎫-34,-12 B.⎝ ⎛⎭⎪⎫-12,-14 C.⎝ ⎛⎭⎪⎫-14,0 D.⎝ ⎛⎭⎪⎫0,14 解析:选B 易知函数f (x )在R 上是单调减函数.对于A ,注意到f ⎝ ⎛⎭⎪⎫-34=e 34-4×⎝ ⎛⎭⎪⎫-34-3=e 34>0,f ⎝ ⎛⎭⎪⎫-12=e 12-4×⎝ ⎛⎭⎪⎫-12-3=e 12-1>0,因此函数f (x )=e -x-4x -3的零点不在区间⎝ ⎛⎭⎪⎫-34,-12上;对于B ,注意到f ⎝ ⎛⎭⎪⎫-12>0,f ⎝ ⎛⎭⎪⎫-14=e 14-4×⎝ ⎛⎭⎪⎫-14-3=e 14-2<414-2<0,因此在区间⎝ ⎛⎭⎪⎫-12,-14上函数f (x )=e -x-4x -3一定存在零点;对于C ,注意到f ⎝ ⎛⎭⎪⎫-14<0,f (0)=-2<0,因此函数f (x )=e -x-4x -3的零点不在区间⎝⎛⎭⎪⎫-14,0上;对于D ,注意到f (0)=-2<0,f ⎝ ⎛⎭⎪⎫14=e -14-4×14-3=e -14-4<0,因此函数f (x )=e -x-4x -3的零点不在区间⎝ ⎛⎭⎪⎫0,14上.[例2] (1)(2014·郑州模拟)函数f (x )=x 2-2x在x ∈R 上的零点的个数是( ) A .0 B .1 C .2 D .3(2)已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,log 2x ,x >0,则函数y =f (f (x ))+1的零点个数是( )A .4B .3C .2D .1[自主解答] (1)注意到f (-1)×f (0)=12×(-1)<0,因此函数f (x )在(-1,0)上必有零点.又f (2)=f (4)=0,因此函数f (x )的零点个数是3.(2)由f (f (x ))+1=0可得f (f (x ))=-1. 又由f (-2)=f ⎝ ⎛⎭⎪⎫12=-1, 可得f (x )=-2或f (x )=12.若f (x )=-2,则x =-3或x =14;若f (x )=12,则x =-12或x =2,综上可得函数y =f (f (x ))+1有4个零点. [答案] (1)D (2)A 【互动探究】若将本例(1)中的函数改为“f (x )=x 12-⎝ ⎛⎭⎪⎫12x”,该如何选择?解析:选B 因为y =x 12在x ∈[0,+∞)上单调递增,y =⎝ ⎛⎭⎪⎫12x在x ∈R 上单调递减,所以f (x )=x 12-⎝ ⎛⎭⎪⎫12x 在x ∈[0,+∞)上单调递增.又f (0)=-1<0,f (1)=12>0,所以f (x )=x 12-⎝ ⎛⎭⎪⎫12x 在定义域内有唯一零点,故应选B. 【方法规律】判断函数零点个数的方法(1)解方程法:令f (x )=0,如果能求出解,则有几个解就有几个零点;(2)零点存在性定理法:利用定理不仅要求函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点或零点值所具有的性质;(3)数形结合法:转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.1.(2013·天津高考)函数f (x )=2x|log 0.5x |-1的零点个数为( )A .1B .2C .3D .4解析:选B 易知函数f (x )=2x|log 0.5x |-1的零点个数⇔方程|log 0.5x |=12x =⎝ ⎛⎭⎪⎫12x 的根的个数⇔函数y 1=|log 0.5x |与y 2=⎝ ⎛⎭⎪⎫12x的图象的交点个数.作出两个函数的图象如图所示,由图可知两个函数图象有两个交点.2.已知符号函数sgn(x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,则函数f (x )=sgn(x -1)-ln x 的零点个数为( )A .1B .2C .3D .4解析:选C 依题意得,当x -1>0,即x >1时,f (x )=1-ln x ,令f (x )=0得x =e>1;当x -1=0,即x =1时,f (x )=0-ln 1=0;当x -1<0,即x <1时,f (x )=-1-ln x ,令f (x )=0得x =1e<1.因此,函数f (x )的零点个数为3.1.高考对函数零点的考查多以选择题或填空题的形式出现,求函数零点问题,难度较易;利用零点的存在性求相关参数的值,难度较大.2.高考对函数零点的考查主要有以下几个命题角度: (1)已知函数的零点或方程的根所在的区间,求参数; (2)已知函数的零点或方程的根的个数,求参数; (3)利用函数的零点比较大小.[例3] (1)(2013·天津高考)设函数f (x )=e x+x -2,g (x )=ln x +x 2-3.若实数a ,b 满足f (a )=0,g (b )=0,则 ( )A .g (a )<0<f (b )B .f (b )<0<g (a )C .0<g (a )<f (b )D .f (b )<g (a )<0(2)(2011·山东高考)已知函数f (x )=lo g a x +x -b (a >0,且a ≠1).当2<a <3<b <4时,函数f (x )的零点x 0∈(n ,n +1),n ∈N *,则n =________.(3)(2011·北京高考)已知函数f (x )=⎩⎪⎨⎪⎧2x, x ≥2,x -3,x <2.若关于x 的方程f (x )=k有两个不同的实根,则实数k 的取值范围是________.[自主解答] (1)∵f (x )在R 上为增函数, 且f (0)=e 0-2<0,f (1)=e -1>0, 又f (a )=0,∴0<a <1. ∵g (x )=ln x +x 2-3,∴g (x )在(0,+∞)上为增函数, 又g (1)=ln 1-2=-2<0,g (2)=ln 2+1>0,且g (b )=0,∴1<b <2,即a <b ,∴⎩⎪⎨⎪⎧fb f a =0,gag b =0.(2)∵2<a <3<b <4,∴f (x )=log a x +x -b 在(0,+∞)上为增函数. 当x =2时,f (2)=log a 2+2-b <0;当x =3时,f (3)=log a 3+3-b >0,∴f (x )的零点x 0在区间(2,3)内,∴n =2. (3)在同一坐标系中作出f (x )=⎩⎪⎨⎪⎧2x,x ≥2,x -3,x <2及y =k 的图象,如图.可知,当0<k <1时,y =k 与y =f (x )的图象有两个交点,即方程f (x )=k 有两个不同的实根.[答案] (1)A (2)2 (3)(0,1)函数零点应用问题的常见类型及解题策略(1)已知函数零点求参数.根据函数零点或方程的根求解参数应分三步:①判断函数的单调性;②利用零点存在性定理,得到参数所满足的不等式;③解不等式,即得参数的取值范围.(2)已知函数零点的个数求参数.常利用数形结合法.(3)借助函数零点比较大小.要比较f (a )与f (b )的大小,通常先比较f (a )、f (b )与0的大小.1.函数f (x )=2x-2x-a 的一个零点在区间(1,2)内,则实数a 的取值范围是( )A .(1,3)B .(1,2)C .(0,3)D .(0,2)解析:选C 由条件可知f (1)f (2)<0,即(2-2-a )(4-1-a )<0,即a (a -3)<0,解得0<a <3.2.若函数f (x )=a x-x -a (a >0,且a ≠1)有两个零点,则实数a 的取值范围是( ) A .(1,+∞) B .[1,+∞) C .(-1,+∞) D .[-1,+∞)解析:选A 令g (x )=a x(a >0,且a ≠1),h (x )=x +a ,分0<a <1,a >1两种情况,在同一坐标系中画出两个函数的图象,如图,若函数f (x )=a x-x -a 有两个不同的零点,则函数g (x ),h (x )的图象有两个不同的交点,根据画出的图象只有当a >1时符合题目要求.——————————[课堂归纳——通法领悟]————————————————个口诀——用二分法求函数零点的方法用二分法求零点近似值的口诀为:定区间,找中点,中值计算两边看;同号去,异号算,零点落在异号间;周而复始怎么办?精确度上来判断.个防范——函数零点的两个易错点(1)函数的零点不是点,是方程f (x )=0的实根.(2)函数零点的存在性定理只能判断函数在某个区间上的变号零点,而不能判断函数的不变号零点,而且连续函数在一个区间的端点处函数值异号是这个函数在这个区间上存在零点的充分不必要条件.种方法——判断函数零点个数的方法 (1)直接求零点; (2)零点的存在性定理;(3)利用图象交点的个数(内容见例2的[方法规律]).个结论——有关函数零点的结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.。
2015高考数学一轮配套课件:2-8函数与方程
诊断·基础知识
突破·高频考第点七页,编辑于星培期养五:·十解四点题二能分。力
解析 (1)f14=1-14log214=1+12=32>0, f12=1-12log212=1+12=32>0, f(1)=1-0=1>0,f(2)=1-2 log22=-1<0, 由f(1)f(2)<0知③正确.
诊断·基础知识
诊断·基础知识
突破·高频考第点十三页,编辑于培星养期五·:解十四题点能二分力。
法二 作出g(x)=x+ex2(x>0)的大致图象如图: 可知若使y=g(x)-m有零点,则只需m≥2e. ∴m的取值范围是[2e,+∞).
诊断·基础知识
突破·高频考第点十四页,编辑于培星养期五·:解十四题点能二分力。
(2)若 g(x)-f(x)=0 有两个相异的实根,即 g(x)与 f(x)的图象有两 个不同的交点, 作出 g(x)=x+ex2(x>0)的大致图象. ∵f(x)=-x2+2ex+m-1= -(x-e)2+m-1+e2, ∴其图象的对称轴为 x=e,开口向下,最大值为 m-1+e2.故当 m-1+e2>2e,即 m>-e2+2e+1 时,g(x)与 f(x)有两个交点,即 g(x)-f(x)=0 有两个相异实根. ∴m 的取值范围是(-e2+2e+1,+∞).
诊断·基础知识
突破·高频考第点十七页,编辑于培星养期五·:解十四题点能二分力。
• 考点三 与二次函数有关的零点分布
• 【例3】 是否存在这样的实数a,使函数f(x)=x2 +(3a-2)x+a-1在区间[-1,3]上恒有一个零 点,且只有一个零点?若存在,求出a的取值范 围;若不存在,说明理由.
• 审题路线 由f(x)在[-1,3]上只有一个零点
【创新方案】2015高考数学一轮复习(知识回扣+热点突破+能力提升)函数模型及其应用 理 北师大版
第九节 函数模型及其应用【考纲下载】1.了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义.2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.1.三种函数模型性质比较2.几种常见的函数模型(1)一次函数模型:y =ax +b ,(a ≠0); (2)反比例函数模型:y =k x(k ≠0); (3)二次函数模型:y =ax 2+bx +c (a ≠0);(4)指数函数模型:y =N (1+p )x(x >0,p ≠0)(增长率问题); (5)对数函数模型y =b log a x (x >0,a >0且a ≠1); (6)幂函数模型y =ax n+b (a ,b 为常数,a ≠0); (7)y =x +a x型(x ≠0); (8)分段函数型.1.直线上升、指数增长、对数增长的增长特点是什么?提示:直线上升:匀速增长,其增长量固定不变;指数增长:先慢后快,其增长量成倍增加,常用“指数爆炸”来形容;对数增长:先快后慢,其增长速度缓慢.2.函数y1=1100e x,y2=100ln x,y3=x100,y4=100×2x中,随x的增大而增大速度最快的函数是哪一个?提示:y1=1100e x.1.下表是函数值y随自变量x变化的一组数据,它最可能的函数模型是( )A.一次函数模型 B.幂函数模型C.指数函数模型 D.对数函数模型解析:选A 根据已知数据可知,自变量每增加1,函数值增加2,因此函数值的增量是均匀的,故为一次函数模型.2.某种细菌在培养过程中,每15分钟分裂一次(由一个分裂成两个),这种细菌由1个繁殖成4 096个需经过( )A.12小时 B.4小时C.3小时 D.2小时解析:选C 由题意知24t=4 096,即16t=4 096,解得t=3.3.据调查,苹果园地铁的自行车存车处在某星期日的存车量为4 000辆次,其中变速车存车费是每辆一次0.3元,普通车存车费是每辆一次0.2元,若普通车存车数为x辆次,存车费总收入为y元,则y关于x的函数关系是( )A.y=0.1x+800(0≤x≤4 000)B.y=0.1x+1 200(0≤x≤4 000)C.y=-0.1x+800(0≤x≤4 000)D.y=-0.1x+1 200(0≤x≤4 000)解析:选D y=0.2x+(4 000-x)×0.3=-0.1x+1 200.4.(2014·渭南模拟)某类产品按工艺共分10个档次,最低档次产品每件利润为8元.每提高一个档次,每件利润增加2元.用同样工时,可以生产最低档产品60件,每提高一个档次将少生产3件产品.则获得利润最大时生产产品的档次是________.解析:由题意,第k档次时,每天可获利润为:y=[8+2(k-1)][60-3(k-1)]=-6k2+108k+378(1≤k≤10),配方可得y=-6(k-9)2+864,∴k=9时,获得利润最大.答案:95.某种商品进价为每件100元,按进价增加25%出售,后因库存积压降价,按九折出售,每件还获利________元.解析:九折出售时价格为100×(1+25%)×90%=112.5元,此时每件还获利112.5-100=12.5元.答案:12.51.由于受到新课标中概率模块的冲击,实际应用题被概率问题占据了位置,逐步退出命题的热点,但以二次函数为模型的应用题还是常出现在高考试题中,既有选择题、填空题,也有解答题,难度适中,属中档题.2.高考对一次函数、二次函数模型的考查主要有以下两个命题角度:(1)单一考查一次函数或二次函数模型的建立及最值问题;(2)以分段函数的形式考查一次函数和二次函数.[例1] (1)(2013·陕西高考)在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分), 则其边长x为________m.(2)(2011·湖北高考)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/时)是车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/时.研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.①当0≤x≤200时,求函数v(x)的表达式;②当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/时)f(x)=x·v(x)可以达到最大,并求出最大值.(精确到1辆/时)[自主解答] (1)设内接矩形另一边长为y ,则由相似三角形性质可得x 40=40-y40,解得y=40-x ,所以面积S =x (40-x )=-x 2+40x =-(x -20)2+400(0<x <40),当x =20时,S max =400.(2)①由题意,当0≤x ≤20时,v (x )=60;当20≤x ≤200时,设v (x )=ax +b ,再由已知得⎩⎪⎨⎪⎧200a +b =0,20a +b =60,解得⎩⎪⎨⎪⎧a =-13,b =2003.故函数v (x )的表达式为v (x )=⎩⎪⎨⎪⎧60,0≤x ≤20,13200-x ,20≤x ≤200.②依题意并由(1)可得f (x )=⎩⎪⎨⎪⎧60x ,0≤x ≤20,13x 200-x ,20≤x ≤200.当0≤x ≤20时,f (x )为增函数,故当x =20时,其最大值为60×20=1 200;当20≤x ≤200时,f (x )=13x (200-x )≤13⎣⎢⎡⎦⎥⎤x + 200-x 22=10 0003,当且仅当x =200-x ,即x =100时,等号成立.所以当x =100时,f (x )在区间[20,200]上取得最大值10 0003.综上,当x =100时,f (x )在区间[0,200]上取得最大值10 0003≈3 333, 即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3 333辆/时. [答案] (1)20一次函数、二次函数模型问题的常见类型及解题策略(1)直接考查一次函数、二次函数模型.解决此类问题应注意三点:①二次函数的最值一般利用配方法与函数的单调性解决,但一定要密切注意函数的定义域,否则极易出错;②确定一次函数模型时,一般是借助两个点来确定,常用待定系数法;③解决函数应用问题时,最后要还原到实际问题.(2)以分段函数的形式考查.解决此类问题应关注以下三点:①实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同的关系式构成,如出租车票价与路程之间的关系,应构建分段函数模型求解;②构造分段函数时,要力求准确、简洁,做到分段合理、不重不漏;③分段函数的最值是各段的最大(或最小)者的最大者(最小者).1.(2013·上海高考)甲厂以x 千克/小时的速度匀速生产某种产品(生产条件要求1≤x ≤10),每一小时可获得的利润是100⎝ ⎛⎭⎪⎫5x +1-3x 元.(1)求证:生产a 千克该产品所获得的利润为100a ·⎝⎛⎭⎪⎫5+1x -3x 2元;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润.解:(1)证明:生产a 千克该产品所用的时间是ax小时,∵每一小时可获得的利润是100⎝ ⎛⎭⎪⎫5x +1-3x 元,∴获得的利润为100⎝ ⎛⎭⎪⎫5x +1-3x ×a x元.因此生产a 千克该产品所获得的利润为100 a ⎝⎛⎭⎪⎫5+1x -3x 2元.(2)生产900千克该产品获得的利润为90 000·⎝⎛⎭⎪⎫5+1x -3x 2元,1≤x ≤10.设f (x )=-3x 2+1x +5,1≤x ≤10.则f (x )=-3⎝ ⎛⎭⎪⎫1x -162+112+5,当且仅当x =6取得最大值.故获得最大利润为90 000×6112=457 500元.因此甲厂应以6千克/小时的速度生产,可获得最大利润457 500元.2.据气象中心观察和预测:发生于M 地的沙尘暴一直向正南方向移动,其移动速度v (km/h)与时间t (h)的函数图象如图所示,过线段OC 上一点T (t,0)作横轴的垂线l ,梯形OABC 在直线l 左侧部分的面积即为t (h)内沙尘暴所经过的路程s (km).(1)当t =4时,求s 的值;(2)将s 随t 变化的规律用数学关系式表示出来;(3)若N 城位于M 地正南方向,且距M 地650 km ,试判断这场沙尘暴是否会侵袭到N 城,如果会,在沙尘暴发生后多长时间它将侵袭到N 城?如果不会,请说明理由.解:(1)由图象可知:当t =4时,v =3×4=12,∴s =12×4×12=24.(2)当0≤t ≤10时,s =12·t ·3t =32t 2;当10<t ≤20时,s =12×10×30+30(t -10)=30t -150;当20<t ≤35时,s =12×10×30+10×30+(t -20)×30-12×(t -20)×2(t -20)=-t2+70t -550.综上,可知s =⎩⎪⎨⎪⎧32t 2,t ∈[0,10],30t -150,t ∈ 10,20],-t 2+70t -550,t ∈ 20,35].(3)沙尘暴会侵袭到N 城.∵t ∈[0,10]时,s max =32×102=150<650,t ∈(10,20]时,s max=30×20-150=450<650,∴当t ∈(20,35]时,令-t 2+70t -550=650.解得t 1=30,t 2=40.∵20<t ≤35,∴t =30.∴沙尘暴发生30 h 后将侵袭到N 城.[例2] 为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系C (x )=k 3x +5(0≤x ≤10),若不建隔热层,每年能源消耗费用为8万元,设f (x )为隔热层建造费用与20年的能源消耗费用之和.(1)求k 的值及f (x )的表达式;(2)隔热层修建多厚时,总费用f (x )达到最小,并求最小值.[自主解答] (1)由已知条件得C (0)=8,则k =40,因此f (x )=6x +20C (x )=6x +8003x +5(0≤x ≤10).(2)f (x )=6x +10+8003x +5-10≥26x +10 8003x +5-10=70(万元),当且仅当6x +10=8003x +5,即x =5时等号成立.所以当隔热层厚度为5 cm 时,总费用f (x )达到最小值,最小值为70万元.【方法规律】把实际问题数学化、建立数学模型一定要过好的三关(1)事理关:通过阅读、理解,明确问题讲的是什么,熟悉实际背景,为解题找出突破口;(2)文理关:将实际问题的文字语言转化为数学符号语言,用数学式子表达数学关系; (3)数理关:在构建数学模型的过程中,对已知数学知识进行检索,从而认定或构建相应的数学模型.某村计划建造一个室内面积为800 m 2的矩形蔬菜温室,在温室内,沿左、右两侧与后侧内墙各保留1 m 宽的通道,沿前侧内墙保留3 m 宽的空地,当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大面积是多少?解:设温室的左侧边长为x m ,则后侧边长为800xm.∴蔬菜种植面积y =(x -4)⎝ ⎛⎭⎪⎫800x -2=808-2⎝ ⎛⎭⎪⎫x +1 600x (4<x <400).∵x +1 600x≥2x ·1 600x=80,∴y ≤808-2×80=648.当且仅当x =1 600x,即x =40时取等号,此时800x=20,y 最大值=648(m 2).即当矩形温室的边长各为40 m 、20 m 时,蔬菜的种植面积最大,最大面积是648 m 2.[例3] 已知某物体的温度θ(单位:摄氏度)随时间t (单位:分钟)的变化规律是θ=m ·2t +21-t (t ≥0,并且m >0).(1)如果m =2,求经过多长时间,物体的温度为5摄氏度; (2)若物体的温度总不低于2摄氏度,求m 的取值范围. [自主解答] (1)若m =2,则θ=2·2t+21-t=2⎝⎛⎭⎪⎫2t +12t ,当θ=5时,2t +12t =52,令2t =x (x ≥1),则x +1x =52,即2x 2-5x +2=0,解得x =2或x =12(舍去),此时t =1.所以经过1分钟,物体的温度为5摄氏度.(2)物体的温度总不低于2摄氏度,即θ≥2恒成立,亦m ·2t+22t ≥2恒成立.亦即m ≥2⎝ ⎛⎭⎪⎫12t -122t 恒成立.令12t =y ,则0<y ≤1,∴m ≥2(y -y 2)恒成立,由于y -y 2≤14,∴m ≥12.因此,当物体的温度总不低于2摄氏度时,m 的取值范围是⎣⎢⎡⎭⎪⎫12,+∞.【方法规律】应用指数函数模型应注意的问题(1)指数函数模型,常与增长率相结合进行考查,在实际问题中有人口增长、银行利率、细胞分裂等增长问题可以利用指数函数模型来解决;(2)应用指数函数模型时,关键是对模型的判断,先设定模型,再将已知有关数据代入验证,确定参数,从而确定函数模型;(3)y =a (1+x )n通常利用指数运算与对数函数的性质求解.一个人喝了少量酒后,血液中的酒精含量迅速上升到0.3 mg/mL ,在停止喝酒后,血液中的酒精含量以每小时25%的速度减少,为了保障交通安全,某地根据《道路交通安全法》规定:驾驶员血液中的酒精含量不得超过0.09 mg/mL ,那么,此人至少经过________小时才能开车.(精确到1小时)解析:设经过x 小时才能开车.由题意得0.3(1-25%)x≤0.09,∴0.75x≤0.3,x ≥log 0.750.3≈5.答案:5—————————————[课堂归纳——通法领悟]————————————————1个防范——实际问题的定义域要特别关注实际问题的自变量的取值范围,合理确定函数的定义域. 1个步骤——解决实际应用问题的一般步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型; (2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)求模:求解数学模型,得出数学结论; (4)还原:将数学问题还原为实际问题的意义. 以上过程用框图表示如下:实际问题答答题模板(一)函数建模在实际问题中的应用[典例] (2012·江苏高考)(12分)如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米,某炮位于坐标原点.已知炮弹发射后的轨迹在方程y =kx -120(1+k 2)x 2(k >0)表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.[快速规范审题] 第(1)问1.审结论,明解题方向观察所求结论:求炮的最大射程――→应求出射程的关系式问题转化为求函数图象与x 轴交点的横坐标的最大值.2.审条件,挖解题信息观察条件:炮弹发射后的轨迹方程y =kx -120(1+k 2)x 2(k >0)――→令y =0,可得图象与x 轴交点的横坐标,即射程x =20k 1+k2.3.建联系,找解题突破口令y =0,得x =20k 1+k 2――→利用基本不等式x =20k +1k≤10,从而可求炮的最大射程. 第(2)问1.审结论,明解题方向观察所求结论:横坐标a 不超过多少时,炮弹可击中目标――→考虑炮弹击中目标的条件炮弹击中目标,即点(a,3.2)满足炮弹发射后的轨迹方程.2.审条件,挖解题信息观察条件:y =kx -120(1+k 2)x 2(k >0).3.建联系,找解题突破口炮弹击中目标,即3.2=ka -120(1+k 2)a 2(k >0)有解――→即关于k 的方程有正根利用Δ≥0求得结论.[准确规范答题]此处易发生读不懂题意,不能建立x 与k 的关系而造成题目无法求解(1)令y =0,得kx -120(1+k 2)x 2=0,由实际意义和题设条件知x >0,k >0,⇨2分故x =20k 1+k 2=20k +1k≤202=10,当且仅当k =1时取等号.所以炮的最大射程为10千米. ⇨5分 此处易发生不能把炮弹击中目标转化为关于k 的一元二次方程有正根问题而致误 (2)因为a >0,所以炮弹可击中目标⇔存在k >0,使3.2=ka -120(1+k 2)a 2成立. ⇨8分即关于k 的方程a 2k 2-20ak +a 2+64=0有正根. ⇨10分 此处易发生不能根据判别式列出不等式求解而致误所以判别式Δ=(-20a )2-4a 2(a 2+64)≥0,解得a ≤6.所以当a 不超过6千米时,可击中目标. ⇨12分[答题模板速成]解决函数建模问题的一般步骤:[全盘巩固]1.(2014·日照模拟)物价上涨是当前的主要话题,特别是菜价,我国某部门为尽快稳定菜价,提出四种绿色运输方案.据预测,这四种方案均能在规定的时间T 内完成预测的运输任务Q 0,各种方案的运输总量Q 与时间t 的函数关系如图所示,在这四种方案中,运输效率(单位时间的运输量)逐步提高的是( )解析:选 B 由运输效率(单位时间的运输量)逐步提高得曲线上的点的切线斜率应该逐渐增大.2.客车从甲地以60 km/h 的速度匀速行驶1小时到达乙地,在乙地停留了半小时,然后以80 km/h 的速度匀速行驶1小时到达丙地.下列描述客车从甲地出发,经过乙地,最后到达丙地所经过的路程s 与时间t 之间的关系式正确的是 ( )A .s (t )=60t,0≤t ≤52 B .s (t )=⎩⎪⎨⎪⎧60t ,0≤t ≤1,80t -60,1<t ≤52C .s (t )=⎩⎪⎨⎪⎧60t ,0≤t ≤1,0,1<t ≤52 D .s (t )=⎩⎪⎨⎪⎧60t ,0≤t ≤1,60,1<t ≤32,80t -60,32<t ≤52解析:选D 由题意可得路程s 与时间t 之间的关系式为s (t )=⎩⎪⎨⎪⎧60t ,0≤t ≤1,60,1<t ≤32,80t -60,32<t ≤52.3.在一次数学试验中,采集到如下一组数据:则下列函数与 ) A .y =a +bx B .y =a +b xC .y =ax 2+b D .y =a +bx解析:选B 由数据可知x ,y 之间的函数关系近似为指数型.4.一个人以6 m/s 的速度去追停在交通灯前的汽车,当他离汽车25 m 时,交通灯由红变绿,汽车以1 m/s 2的加速度匀加速开走,那么( )A .人可在7 s 内追上汽车B .人可在10 s 内追上汽车C .人追不上汽车,其间距最少为5 mD .人追不上汽车,其间距最少为7 m解析:选D 设汽车经过t 秒行驶的路程为s 米,则s =12t 2,车与人的间距d =(s +25)-6t =12t 2-6t +25=12(t -6)2+7,当t =6时,d 取得最小值为7.5.图形M (如图所示)是由底为1,高为1的等腰三角形及高为2和3的两个矩形所构成,函数S =S (a )(a ≥0)是图形M 介于平行线y =0及y =a 之间的那一部分面积,则函数S (a )的图象大致是( )解析:选C 法一:依题意,当0≤a ≤1时,S (a )=a 2-a2+2a =-12a 2+3a ;当1<a ≤2时,S (a )=12+2a ;当2<a ≤3时,S (a )=12+2+a =a +52;当a >3时,S (a )=12+2+3=112,于是S (a )=⎩⎪⎪⎨⎪⎪⎧-12a 2+3a ,0≤a ≤1,2a +12,1<a ≤2,a +52,2<a ≤3,112,a >3.由解析式可知选C.法二:直线y =a 在[0,1]上平移时S (a )的变化量越来越小,故可排除选项A 、B.而直线y =a 在[1,2]上平移时S (a )的变化量比在[2,3]上的变化量大,故可排除选项D.6.(2014·汉中模拟)某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边成角为60°(如图),考虑到防洪堤坚固性及石块用料等因素,设计其横断面面积为9 3 m 2,且高度不低于 3 m .记防洪堤横断面的腰长为x m ,外周长(梯形的上底线段BC 与两腰长的和)为y m .要使防洪堤横断面的外周长不超过10.5 m ,则其腰长x 的取值范围为( )A .[2,4]B .[3,4]C .[2,5]D .[3,5]解析:选B 根据题意知,93=12(AD +BC )h ,其中AD =BC +2·x 2=BC +x ,h =32x ,∴93=12(2BC +x )32x ,得BC =18x -x2,由⎩⎪⎨⎪⎧h =32x ≥3,BC =18x -x2>0,得2≤x <6.由y =BC +2x =18x +3x2≤10.5,得3≤x ≤4.∵[3,4]⊆[2,6),∴腰长x 的范围是[3,4].7.一个容器装有细沙a cm 3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为y =a e-bt(cm 3),经过8 min 后发现容器内还有一半的沙子,则再经过________min ,容器中的沙子只有开始时的八分之一.解析:依题意有a ·e-b ×8=12a ,∴b =ln 28,∴y =a ·e- ln 28·t 若容器中只有开始时的八分之一,则有a ·e-ln 28·t =18a .解得t =24,所以再经过的时间为24-8=16 min. 答案:168.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L 1=5.06x -0.15x2和L 2=2x ,其中x 为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得的最大利润为________万元.解析:设该公司在甲地销售x 辆,则在乙地销售(15-x )辆,利润为L (x )=5.06x -0.15x 2+2(15-x )=-0.15x 2+3.06x +30=-0.15⎝⎛⎭⎪⎫x -153152+0.15×1532225+30,由于x 为整数,所以当x =10时,L (x )取最大值L (10)=45.6,即能获得的最大利润为45.6万元.答案:45.69.某商场宣传在节假日对顾客购物实行一定的优惠,商场规定: ①如一次购物不超过200元,不予以折扣;②如一次购物超过200元,但不超过500元,按标价予以九折优惠;③如一次购物超过500元的,其中500元给予九折优惠,超过500元的给予八五折优惠. 某人两次去购物,分别付款176元和432元,如果他只去一次购买同样的商品,则应付款________元.解析:由题意知付款432元,实际标价为432×109=480元,如果一次购买标价176+480=656元的商品应付款500×0.9+156×0.85=582.6元.答案:582.610.设某旅游景点每天的固定成本为500元,门票每张为30元,变动成本与购票进入旅游景点的人数的算术平方根成正比.一天购票人数为25时,该旅游景点收支平衡;一天购票人数超过100时,该旅游景点须另交保险费200元.设每天的购票人数为x ,盈利额为y 元.(1)求y 与x 之间的函数关系;(2)该旅游景点希望在人数达到20人时就不出现亏损,若用提高门票价格的措施,则每张门票至少要多少元(取整数)?(参考数据: 2≈1.41, 3≈1.73, 5≈2.24)解:(1)根据题意,当购票人数不多于100时,可设y 与x 之间的函数关系为y =30x -500-k x (k 为常数,k ∈R 且k ≠0).∵人数为25时,该旅游景点收支平衡,∴30×25-500-k 25=0,解得k =50.∴y =⎩⎨⎧30x -50x -500 x ∈N *,x ≤100 ,30x -50x -700 x ∈N *,x >100 .(2)设每张门票价格提高为m 元,根据题意,得m ×20-5020-500≥0, (3)∴m ≥25+55≈36.2,故每张门票最少要37元.11.为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =12x 2-200x +80 000,且每处理一吨二氧化碳得到可利用的化工产品的价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?解:(1)由题意可知,二氧化碳的每吨平均处理成本为y x =12x +80 000x -200≥2 12x ·80 000x -200=200,当且仅当12x =80 000x,即x =400时,上式取等号,即当每月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元.(2)设该单位每月获利为S ,则S =100x -y =100x -⎝ ⎛⎭⎪⎫12x 2-200x +80 000=-12x 2+300x-80 000=-12(x -300)2-35 000,因为400≤x ≤600,所以当x =400时,S 有最大值-40000.故该单位不获利,需要国家每月至少补贴40 000元,才能不亏损.12.某特许专营店销售西安世界园艺博览会纪念章,每枚进价为5元,同时每销售一枚这种纪念章还需向世博会管理处交特许经营管理费2元,预计这种纪念章以每枚20元的价格销售时该店一年可销售2 000枚,经过市场调研发现每枚纪念章的销售价格在每枚20元的基础上每减少一元则增加销售400枚,而每增加一元则减少销售100枚,现设每枚纪念章的销售价格为x (元).(1)写出该特许专营店一年内销售这种纪念章所获得的利润y (元)与每枚纪念章的销售价格x 的函数关系式(并写出这个函数的定义域);(2)当每枚纪念章销售价格x 为多少元时,该特许专营店一年内利润y (元)最大,并求出这个最大值.解:(1)依题意y =⎩⎪⎨⎪⎧[2 000+400 20-x ] x -7 ,0<x ≤20,[2 000-100 x -20 ] x -7 ,20<x <40,∴y =⎩⎪⎨⎪⎧400 25-x x -7 ,0<x ≤20,100 40-x x -7 ,20<x <40.此函数的定义域为(0,40).(2)y =⎩⎪⎨⎪⎧400[- x -16 2+81],0<x ≤20,100⎣⎢⎡⎦⎥⎤-⎝⎛⎭⎪⎫x -4722+1 0894,20<x <40.若0<x ≤20,则当x =16时,y max =32400(元).若20<x <40,则当x =472时,y max =27 225(元).综上可得当x =16时,该特许专营店获得的利润最大为32 400元.[冲击名校]1.某学校制定奖励条例,对在教育教学中取得优异成绩的教职工实行奖励,其中有一个奖励项目是针对学生高考成绩的高低对任课教师进行奖励的.奖励公式为f (n )=k (n )·(n -10),n >10(其中n 是任课教师所在班级学生参加高考该任课教师所任学科的平均成绩与该科省平均分之差,f (n )的单位为元),而k (n )=⎩⎪⎨⎪⎧0 n ≤10 ,100 10<n ≤15 ,200 15<n ≤20 ,300 20<n ≤25 ,400 n >25 .现有甲、乙两位数学任课教师,甲所教的学生高考数学平均分超出省平均分18分,而乙所教的学生高考数学平均分超出省平均分21分.则乙所得奖励比甲所得奖励多( )A .600元B .900元C .1 600元D .1 700元解析:选D k (18)=200,∴f (18)=200×(18-10)=1 600.又∵k (21)=300,∴f (21)=300×(21-10)=3 300,∴f (21)-f (18)=3 300-1 600=1 700.故乙所得奖励比甲所得奖励多1 700元.2.某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元,当用水超过4吨时,超过的部分为每吨3.00元.若甲、乙两户某月共交水费y 元,且甲、乙两户该月用水量分别为5x 吨、3x 吨,则y 关于x 的函数关系式为________.解析:依题意可知,当甲、乙两户用水量都不超过4吨,即0≤x ≤45时,y =1.8(5x +3x )=14.4x ;当甲户用水量超过4吨,乙户用水量不超过4吨,即45<x ≤43时,y =3(5x -4)+4×1.8+3x ×1.8=20.4x -4.8;当甲、乙两户用水量都超过4吨,即x >43时,y =3(5x -4+3x -4)+4×1.8×2=24x -9.6.故y =⎩⎪⎨⎪⎧14.4x ⎝⎛⎭⎪⎫0≤x ≤45,20.4x -4.8⎝ ⎛⎭⎪⎫45<x ≤43,24x -9.6⎝ ⎛⎭⎪⎫x >43.答案:y =⎩⎪⎨⎪⎧14.4x ⎝⎛⎭⎪⎫0≤x ≤45,20.4x -4.8⎝ ⎛⎭⎪⎫45<x ≤43,24x -9.6⎝ ⎛⎭⎪⎫x >43[高频滚动]1.定义域为R 的奇函数f (x )的图象关于直线x =1对称,当x ∈[0,1]时,f (x )=x ,方程f (x )=log 2 013x 的实数根的个数为( )A .1 006B .1 007C .2 012D .2 014解析:选A 因为f (x )在R 上是奇函数,其图象关于直线x =1对称,且当x ∈[0,1]时,f (x )=x ,所以f (x )在[-1,1]上单调递增,在[1,3]上单调递减,且f (x )为周期函数,周期T=4.令log 2 013x =1,得x =2 013,故f (x )=log 2 013x 的实根有2×503=1 006个.2.对实数a 和b ,定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x -1),x ∈R .若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( )A .(-1,1]∪(2,+∞)B .(-2,-1]∪(1,2]C .(-∞,-2)∪(1,2]D .[-2,-1]解析:选 B 由题设知f (x )=⎩⎪⎨⎪⎧x 2-2,-1≤x ≤2,x -1,x <-1或x >2,画出函数f (x )的图象,如图,A (2,1)、B (2,2)、C (-1,-1)、D (-1,-2).从图象中可以看出,直线y =c 与函数的图象有且只有两个公共点时,实数c 的取值范围是(-2,-1]∪(1,2].。
【创新方案】2015高考数学一轮复习(知识回扣+热点突破+能力提升)曲线与方程 理 北师大版
第八节曲线与方程【考纲下载】了解方程的曲线与曲线的方程的对应关系.1.曲线与方程一般地,在直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点.那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线.曲线可以看作是符合某条件的点的集合,也可看作是适合某种条件的点的轨迹,因此,此类问题也叫轨迹问题.2.求曲线方程的基本步骤1.若曲线与方程的对应关系中只满足(2)会怎样?提示:若只满足“以这个方程的解为坐标的点都是曲线上的点”,则以这个方程的解为坐标的点的集合形成的曲线可能是已知曲线的一部分,也可能是整条曲线.2.动点的轨迹方程和动点的轨迹有什么区别?提示:“求动点的轨迹方程”和“求动点的轨迹”是不同的,前者只需求出轨迹的方程,标出变量x,y的范围;后者除求出方程外,还应指出方程表示的曲线的图形,并说明图形的形状、位置、大小等有关数据.1.已知命题“曲线C上的点的坐标是方程f(x,y)=0的解”是正确的,则下列命题中正确的是( )A.满足方程f(x,y)=0的点都在曲线C上B.方程f(x,y)=0是曲线C的方程C.方程f(x,y)=0所表示的曲线不一定是曲线CD.以上说法都正确解析:选C 因为曲线C可能只是方程f(x,y)=0所表示的曲线上的某一小段,因此只有C 正确.2.已知曲线C 的方程为x 2-xy +y -5=0,则下列各点中,在曲线C 上的点是( ) A .(-1,2) B .(1,-2) C .(2,-3) D .(3,6)解析:选A 将四个点的坐标一一代入曲线C 的方程,只有A 选项成立,因此(-1,2)在曲线C 上.3.函数y =4x 的图象是( )A .抛物线B .圆的一部分C .抛物线的一部分D .以上都不是解析:选C 函数y =4x 的定义域是x ≥0,值域是y ≥0,则y =4x ,即y 2=4x (x ≥0),所以函数y =4x 的图象是顶点在原点,开口向右的抛物线位于x 轴上方的部分.4.已知M (-2,0),N (2,0),|PM |-|PN |=4,则动点P 的轨迹是( ) A .双曲线 B .双曲线左支 C .一条射线 D .双曲线右支解析:选C 根据双曲线的定义知动点P 的轨迹类似双曲线,但不满足2c >2a >0的条件,故动点P 的轨迹是一条射线.5.设定点F 1(0,-3),F 2(0,3),动点P 满足条件|PF 1|+|PF 2|=a +9a(a >0),则点P 的轨迹是( )A .椭圆B .线段C .不存在D .椭圆或线段解析:选D 当a =3时,点P 的轨迹是线段,当a ≠3时,点P 的轨迹是椭圆.[例1] (2014²新余模拟)已知A (-5,0),B (5,0),动点P 满足|PB |,12|PA|,8成等差数列.(1)求点P 的轨迹方程;(2)对于x 轴上的点M ,若满足|PA |²|PB |=PM 2,则称点M 为点P 对应的“比例点”.问:对任意一个确定的点P ,它总能对应几个“比例点”?[自主解答] (1)由已知得|PA |-|PB|=8,∴点P 的轨迹是以A ,B 为焦点的双曲线的右支,且a =4,b =3,c =5,∴点P 的轨迹方程为x 216-y 29=1(x ≥4)(2)设P (x 0,y 0)(x 0≥4),M (m,0).∵x 2016-y 209=1,∴y 20=9⎝ ⎛⎭⎪⎫x 2016-1;又PA =(-5-x 0,-y 0),PB =(5-x 0,-y 0), 则|PA ||PB |= -5-x 0 2+ -y 0 2² 5-x 0 2+ -y 0 2= ⎝ ⎛⎭⎪⎫2516x 20-162=2516x 20-16 又PM 2=|PM |2=(x 0-m )2+(y 0)2=2516x 20-2mx 0+m 2-9,由|PA ||PB |=PM 2得,m 2-2mx 0+7=0,(*).所以Δ=4x 20-28≥36>0,∴方程(*)恒有两个不等实根.∴对任意一个确定的点P ,它总能对应2个“比例点”. 【互动探究】若将本例中的条件“|PB |,12|PA |,8”改为“|PA |,12|PB|,8”,求点P 的轨迹方程.解:由已知得|PB |-|PA|=8,∴点P 的轨迹是以A ,B 为焦点的双曲线的左支,且a=4,b =3,∴点P 的轨迹方程为x 216-y 29=1(x ≤-4).【方法规律】定义法求轨迹方程及其注意点(1)在利用圆锥曲线的定义法求轨迹方程时,若所求的轨迹符合某种圆锥曲线的定义,则根据曲线的方程,写出所求的轨迹方程;(2)利用定义法求轨迹方程时,还要看轨迹是否是完整的圆、椭圆、双曲线、抛物线,如果不是完整的曲线,则应对其中的变量x 或y 进行限制.1.已知A (0,7),B (0,-7),C (12,2),以C 为一个焦点作过A ,B 的椭圆,则椭圆的另一个焦点F 的轨迹方程是什么?解:由题意知|AC |=13,|BC |=15,|AB |=14,又∵|AF |+|AC |=|BF |+|BC |,∴|AF |-|BF |=|BC |-|AC |=2, 故点F 的轨迹是以A ,B 为焦点,实轴长为2的双曲线的下支. 又c =7,a =1,可得b 2=48,故点F 的轨迹方程为y 2-x 248=1(y ≤-1).2.点P (-3,0)是圆C :x 2+y 2-6x -55=0内一定点,动圆M 与已知圆相内切且过点P ,求圆心M 的轨迹方程.解:已知圆为(x -3)2+y 2=64,其圆心C (3,0),半径为8,由于动圆M 过点P , 所以|MP |等于动圆的半径r ,即|MP |=r .又圆M 与已知圆C 相内切,所以圆心距等于半径之差,即|MC |=8-r . 从而有|MC |=8-|MP |,即|MC |+|MP |=8.根据椭圆的定义,动点M 到两定点C ,P 的距离之和为定值8>6=|CP |,所以动点M 的轨迹是椭圆,并且2a =8,a =4;2c =6,c =3;b 2=16-9=7,因此圆心M 的轨迹方程为x 216+y 27=1.[例2] (1)(2012²辽宁高考改编) 如图,椭圆C 0:x 2a 2+y 2b2=1(a >b >0,a ,b 为常数),动圆C 1:x 2+y 2=t 21,b <t 1<a .点A 1,A 2分别为C 0的左、右顶点,C 1与C 0相交于A ,B ,C ,D 四点,则直线AA 1与直线A 2B 的交点M 的轨迹方程为________________.(2)设F (1,0),点M 在x 轴上,点P 在y 轴上,且MN =2MP ,PM ⊥PF,当点P 在y 轴上运动时,求点N 的轨迹方程.[自主解答] (1)设A (x 1,y 1),B (x 1,-y 1),又知A 1(-a,0),A 2(a,0),则直线A 1A 的方程为y =y 1x 1+a (x +a ),① 直线A 2B 的方程为y =-y 1x 1-a (x -a ).②由①②得y 2=-y 21x 21-a 2(x 2-a 2).③由点A (x 1,y 1)在椭圆C 0上,故x 21a 2+y 21b 2=1.从而y 21=b 2⎝ ⎛⎭⎪⎫1-x 21a 2,代入③得x 2a 2-y 2b 2=1(x <-a ,y <0).(2)设M (x 0,0),P (0,y 0),N (x ,y ),∵OBAB ⊥PF ,PM =(x 0,-y 0),PF=(1,-y 0),∴(x 0,-y 0)²(1,-y 0)=0,∴x 0+y 20=0.由MN =2MP,得(x -x 0,y )=2(-x 0,y 0),∴⎩⎪⎨⎪⎧x -x 0=-2x 0,y =2y 0,即⎩⎪⎨⎪⎧x 0=-x ,y 0=12y .∴-x +y 24=0,即y 2=4x .故所求的点N 的轨迹方程是y 2=4x .[答案] (1)x 2a 2-y 2b2=1(x <-a ,y <0)【方法规律】代入法(相关点法)适用的轨迹类型及使用过程动点所满足的条件不易得出或转化为等式,但形成轨迹的动点P (x ,y )却随另一动点Q (x ′,y ′)的运动而有规律地运动,而且动点Q 的轨迹方程为给定的或容易求得的,则可先将x ′,y ′表示成关于x ,y 的式子,再代入Q 的轨迹方程,整理化简即得动点P 的轨迹方程.已知长为1+2的线段AB 的两个端点A 、B 分别在x 轴、y 轴上滑动,P 是AB 上一点,且AP =22PB,求点P 的轨迹C 的方程.解:设A (x 0,0),B (0,y 0),P (x ,y ),由题意知AP =22PB, 又AP =(x -x 0,y ),PB =(-x ,y 0-y ),所以x -x 0=-22x ,y =22(y 0-y ),得x 0=⎝ ⎛⎭⎪⎫1+22x ,y 0=(1+2)y . 因为|AB |=1+2,即x 20+y 20=(1+2)2,所以⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1+22x 2+[(1+2)y ]2=(1+2)2, 化简得x 2+y 2=1.1.直接法求点的轨迹方程是求轨迹方程的一种重要方法,也是高考考查的重要内容. 2.直接法求点的轨迹方程,在高考中有以下两个命题角度: (1)明确给出等式,求轨迹方程;(2)给出已知条件,寻找题设中的等量关系,求轨迹方程.[例3] 已知动点P (x ,y )与两定点M (-1,0),N (1,0)连线的斜率之积等于常数λ(λ≠0).(1)求动点P 的轨迹C 的方程;(2)试根据λ的取值情况讨论轨迹C 的形状.[自主解答] (1)由题设知直线PM 与PN 的斜率存在且均不为零,所以kPM ²kPN =y x +1²y x -1=λ,整理得x 2-y 2λ=1(λ≠0,x ≠±1). 即动点P 的轨迹C 的方程为x 2-y 2λ=1(λ≠0,x ≠±1).(2)①当λ>0时,轨迹C 为中心在原点、焦点在x 轴上的双曲线(除去顶点);②当-1<λ<0时,轨迹C 为中心在原点、焦点在x 轴上的椭圆(除去长轴的两个端点); ③当λ=-1时,轨迹C 为以原点为圆心、1为半径的圆(除去点(-1,0),(1,0)); ④当λ<-1时,轨迹C 为中心在原点、焦点在y 轴上的椭圆(除去短轴的两个端点).直接法求轨迹方程的常见类型及解题策略(1)题目给出等量关系,求轨迹方程.可直接代入即可得出方程.(2)题中未明确给出等量关系,求轨迹方程.可利用已知条件寻找等量关系,得出方程.在平面直角坐标系xOy 中,点B 与点A (-1,1)关于原点O 对称,P 是动点,且直线AP 与BP 的斜率之积等于-13.求动点P 的轨迹方程.解:因为点B 与点A (-1,1)关于原点O 对称,所以点B 的坐标为(1,-1). 设点P 的坐标为(x ,y ),由题设知直线AP 与BP 的斜率存在且均不为零, 则y -1x +1²y +1x -1=-13,化简得x 2+3y 2=4(x ≠±1). 故动点P 的轨迹方程为x 2+3y 2=4(x ≠±1).———————————[课堂归纳——通法领悟]———————————————— 1个主题——坐标法求轨迹方程通过坐标法,由已知条件求轨迹方程,通过对方程的研究,明确曲线的位置、形状以及性质是解析几何需要完成的两大任务,是解析几何的核心问题,也是高考的热点之一.3种方法——求轨迹方程的三种常用方法明确求轨迹方程的适用条件是求轨迹方程的关键.(1)定义法:求轨迹方程时,应尽量利用几何条件探求轨迹的类型,应用定义法,这样可以减少运算量,提高解题速度.(2)代入法(相关点法):当所求动点P (x ,y )是随着另一动点Q (x ′,y ′)(称之为相关点)而运动,且相关点Q 满足一曲线方程时,就可用代入法求轨迹方程.此时应注意:代入法求轨迹方程是将x ′,y ′表示成关于x ,y 的式子,同时要注意x ′,y ′的限制条件.(3)直接法:如果动点满足的几何条件本身是一些几何量(如距离与角等)的等量关系,或这些几何条件简单明了且易于表达,就可运用直接法求轨迹方程.在运用直接法求轨迹方程时要注意:化简方程的过程中有时破坏了方程的同解性,此时要补上遗漏点或删除多余的点,这是不可忽视的.方法博览(七)利用参数法求轨迹方程在求点的轨迹方程时,有时求动点应满足的几何条件不易求得,也无明显的相关点,但却较易发现(或经过分析可发现)这个动点的运动常常受到另一个或两个变量(如斜率、比值、截距或坐标等)的制约,即动点坐标(x ,y )中的x ,y 分别随另外变量的变化而变化,我们称这些变量为参数,建立轨迹的参数方程,这种方法叫参数法.[典例] (2013²福建高考)如图,在正方形OABC 中,O 为坐标原点,点A 的坐标为(10,0),点C 的坐标为(0,10).分别将线段OA 和AB 十等分,分点分别记为A 1,A 2,…,A 9和B 1,B 2,…,B 9,连接OB i ,过A i 作x 轴的垂线与OB i 交于点P i (i ∈N *,1≤i ≤9).(1)求证:点P i (i ∈N *,1≤i ≤9)都在同一条抛物线上,并求该抛物线E 的方程; (2)过点C 作直线l 与抛物线E 交于不同的两点M ,N ,若△OCM 与△OCN 的面积比为4∶1,求直线l 的方程.[解题指导] (1)设A i 的坐标为(i,0),则B i 的坐标为(10,i ),可用i 表示点P 的坐标,得出P 的参数方程.(2)设直线l 的斜率为k ,将直线l 的方程与抛物线的方程联立,寻找M ,N 两点坐标之间的关系,再由面积之比即可求出k 的值.[解] (1)法一:依题意,过A i (i ∈N *,1≤i ≤9)且与x 轴垂直的直线的方程为x =i ,B i 的坐标为(10,i ),所以直线OB i 的方程为y =i10x .设P i 的坐标为(x ,y ),由⎩⎪⎨⎪⎧x =i ,y =i10x ,得y =110x 2,即x 2=10y .所以点P i (i ∈N *,1≤i ≤9)都在同一条抛物线上,且抛物线E 的方程为x 2=10y .法二:点P i (i ∈N *,1≤i ≤9)都在抛物线E :x 2=10y 上.证明如下:过A i (i ∈N *,1≤i ≤9)且与x 轴垂直的直线的方程为x =i ,B i 的坐标为(10,i ),所以直线OB i 的方程为y =i10x .由⎩⎪⎨⎪⎧x =i ,y =i 10x ,解得P i 的坐标为⎝ ⎛⎭⎪⎫i ,i 210.因为点P i 的坐标都满足方程x 2=10y ,所以点P i (i ∈N *,1≤i ≤9)都在同一条抛物线上,且抛物线E 的方程为x 2=10y . (2)依题意知,直线l 的斜率存在,设直线l 的方程为y =kx +10. 由⎩⎪⎨⎪⎧y =kx +10,x 2=10y ,得x 2-10kx -100=0, 此时Δ=100k 2+400>0,直线l 与抛物线E 恒有两个不同的交点M ,N . 设M (x 1,y 1),N (x 2,y 2), 则⎩⎪⎨⎪⎧ x 1+x 2=10k ,x 1x 2=-100.①②因为S △OCM =4S △OCN ,所以|x 1|=4|x 2|. 又x 1x 2<0,所以x 1=-4x 2,分别代入①和②,得⎩⎪⎨⎪⎧-3x 2=10k ,-4x 22=-100,解得k =±32.所以直线l 的方程为y =±32x +10,即3x -2y +20=0或3x +2y -20=0.[点评] 参数法求轨迹方程的步骤:(1)选取参数k ,用k 表示动点M 的坐标;(2)得出动点M 的参数方程为⎩⎪⎨⎪⎧x =f k ,y =g k ;(3)消去参数k ,得M 的轨迹方程; (4)由k 的范围确定x 、y 的范围.[全盘巩固]1.方程(x 2-y 2-1)x -y -1=0表示的曲线的大致形状是(图中实线部分)( )解析:选B 原方程等价于⎩⎪⎨⎪⎧x 2-y 2-1=0,x -y -1≥0或x -y -1=0,前者表示等轴双曲线x 2-y 2=1位于直线x -y -1=0下方的部分,后者为直线x -y -1=0,这两部分合起来即为所求.2.已知两定点A (-2,0),B (1,0),如果动点P 满足|PA |=2|PB |,则动点P 的轨迹是( )A .直线B .圆C .椭圆D .双曲线解析:选B 设P (x ,y ),则 x +2 2+y 2=2 x -1 2+y 2,整理得x 2+y 2-4x =0,又D 2+E 2-4F =16>0,所以动点P 的轨迹是圆.3.(2014²长春模拟)设圆(x +1)2+y 2=25的圆心为C ,A (1,0)是圆内一定点,Q 为圆周上任一点.线段AQ 的垂直平分线与CQ 的连线交于点M ,则M 的轨迹方程为( )A.4x 221-4y 225=1B.4x 221+4y225=1 C.4x 225-4y 221=1 D.4x 225+4y221=1 解析:选D ∵M 为AQ 垂直平分线上一点,则|AM |=|MQ |, ∴|MC |+|MA |=|MC |+|MQ |=|CQ |=5,故M 的轨迹为椭圆.∴a =52,c =1,则b 2=a 2-c 2=214,∴椭圆的标准方程为4x 225+4y221=1.4.已知点F ⎝ ⎛⎭⎪⎫14,0,直线l :x =-14,点B 是l 上的动点.若过B 作垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是( )A .双曲线B .椭圆C .圆D .抛物线解析:选D 由已知得|MF |=|MB |.由抛物线定义知,点M 的轨迹是以F 为焦点,l 为准线的抛物线.5.|y |-1=1- x -1 2表示的曲线是( ) A .抛物线 B .一个圆 C .两个圆 D .两个半圆解析:选D 原方程|y |-1=1- x -1 2等价于⎩⎪⎨⎪⎧|y |-1≥0,1- x -1 2≥0,|y |-1 2=1- x -1 2⇒⎩⎪⎨⎪⎧|y |-1≥0,x -1 2+ |y |-1 2=1⇒⎩⎪⎨⎪⎧y ≥1, x -1 2+ y -1 2=1或⎩⎪⎨⎪⎧y ≤-1, x -1 2+ y +1 2=1.6.(2014²洛阳模拟)设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点.若BP =2 PA ,且OQ ²AB=1,则点P 的轨迹方程是( )A.32x 2+3y 2=1(x >0,y >0) B.32x 2-3y 2=1(x >0,y >0) C .3x 2-32y 2=1(x >0,y >0)D .3x 2+32y 2=1(x >0,y >0)解析:选A 设A (a,0),B (0,b ),a >0,b >0.由BP =2PA,得(x ,y -b )=2(a -x ,-y ),即a =32x >0,b =3y >0.点Q (-x ,y ),故由OQ ²AB =1,得(-x ,y )²(-a ,b )=1,即ax +by =1.将a ,b 代入上式得所求的轨迹方程为32x 2+3y 2=1(x >0,y >0).7.设P 是圆x 2+y 2=100上的动点,点A (8,0),线段AP 的垂直平分线交半径OP 于M 点,则点M 的轨迹为________.解析:如图,设M (x ,y ),由于l 是AP 的垂直平分线,于是|AM |=|PM |,又由于10=|OP |=|OM |+|PM |=|OM |+|AM |,即|OM |+|AM |=10,也就是说,动点M 到O (0,0)及A (8,0)的距离之和是10,故动点M 的轨迹是以O (0,0),A (8,0)为焦点,中心在(4,0),长半轴长是5的椭圆.答案:椭圆8.直线x a +y2-a=1与x ,y 轴交点的中点的轨迹方程为________________.解析:设直线x a +y2-a=1与x ,y 轴交点为A (a,0),B (0,2-a ),A ,B 中点为M (x ,y ),则x =a 2,y =1-a2,消去a ,得x +y =1,∵a ≠0,a ≠2,∴x ≠0,x ≠1.答案:x +y =1(x ≠0,x ≠1)9.点P 是圆C :(x +2)2+y 2=4上的动点,定点F (2,0),线段PF 的垂直平分线与直线CP 的交点为Q ,则点Q 的轨迹方程是________________.解析:依题意有|QP |=|QF |,∴||QC |-|QF ||=|CP |=2,又|CF |=4>2,故点Q 的轨迹是以C 、F 为焦点的双曲线,a =1,c =2,∴b 2=3,所求轨迹方程为x 2-y 23=1.答案:x 2-y 23=110.(2014²北京模拟)在Rt △ABC 中,∠CAB =90°,AB =2,AC =22,一曲线E 过点C ,动点P 在曲线E 上运动,且保持|PA |+|PB |的值不变.(1)建立适当的坐标系,求曲线E 的方程;(2)直线l :y =x +t 与曲线E 交于M ,N 两点,求四边形MANB 的面积的最大值. 解:(1)以AB 为x 轴,以AB 中点为原点O 建立直角坐标系,∵|PA |+|PB |=|CA |+|CB |=22+ 22+⎝⎛⎭⎪⎫222=22, ∴动点P 的轨迹为椭圆,且a =2,c =1,从而b =1.∴曲线E 的方程为x 22+y 2=1.(2)将y =x +t 代入x 22+y 2=1,得3x 2+4tx +2t 2-2=0.设M (x 1,y 1),N (x 2,y 2),∴⎩⎪⎨⎪⎧Δ=16t 2-4³3³ 2t 2-2 >0, ①x 1+x 2=-4t 3, ②x 1x 2=2t 2-23, ③由①得0≤t 2<3,∴S 四边形MANB =12|AB ||y 1-y 2|=|y 1-y 2|=|x 1-x 2|=23 6-2t 2,故当t =0时,S 四边形MANB 取得最大值,最大值为263.11.设椭圆方程为x 2+y 24=1,过点M (0,1)的直线l 交椭圆于点A 、B ,O 是坐标原点,l上的动点P 满足OP =12(OA +OB ),点N 的坐标为⎝ ⎛⎭⎪⎫12,12.当l 绕点M 旋转时,求:(1)动点P 的轨迹方程;(2)|NP|的最小值与最大值.解:(1)直线l 过点M (0,1),当直线l 的斜率存在时,设其斜率为k ,则l 的方程为y =kx +1.设A (x 1,y 1),B (x 2,y 2),由题设可得点A 、B 的坐标(x 1,y 1)、(x 2,y 2)是方程组22114y kx y x =+⎧⎪⎨+=⎪⎩①②的解.将①代入②并化简得,(4+k 2)x 2+2kx -3=0,所以⎩⎪⎨⎪⎧x 1+x 2=-2k4+k 2,y 1+y 2=84+k2.于是OP =12(OA +OB )=⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22=⎝ ⎛⎭⎪⎫-k 4+k 2,44+k 2. 设点P 的坐标为(x ,y ),则⎩⎪⎨⎪⎧x =-k4+k 2,y =44+k 2.消去参数k 得4x 2+y 2-y =0.③当直线l 的斜率不存在时,AB 的中点坐标为原点(0,0),也满足方程③, 所以动点P 的轨迹方程为4x 2+y 2-y =0.(2)由点P 的轨迹方程得x 2=-y 2+y 4,知x 2≤116,即-14≤x ≤14.所以|NP |2=⎝ ⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y -122=⎝ ⎛⎭⎪⎫x -122+14-4x 2=-3⎝ ⎛⎭⎪⎫x +162+712.故当x =14时,|NP |取得最小值,最小值为14;当x =-16时,|NP |取得最大值,最大值为216.12.(2013²辽宁高考) 如图,抛物线C 1:x 2=4y ,C 2:x 2=-2py (p >0).点M (x 0,y 0)在抛物线C 2上,过M 作C 1的切线,切点为A ,B (M 为原点O 时,A ,B 重合于O ).当x 0=1-2时,切线MA 的斜率为-12.(1)求p 的值;(2)当M 在C 2上运动时,求线段AB 中点N 的轨迹方程(A ,B 重合于O 时,中点为O ). 解:(1)因为抛物线C 1:x 2=4y 上任意一点(x ,y )的切线斜率为y ′=x2,且切线MA 的斜率为-12,所以点A 坐标为⎝⎛⎭⎪⎫-1,14,故切线MA 的方程为y =-12(x +1)+14. 因为点M (1-2,y 0)在切线MA 及抛物线C 2上,于是y 0=-12(2-2)+14=-3-224,①y 0=- 1-2 22p =-3-222p.②由①②得p =2.(2)设N (x ,y ),A ⎝ ⎛⎭⎪⎫x 1,x 214,B ⎝ ⎛⎭⎪⎫x 2,x 224,x 1≠x 2,由N 为线段AB 的中点,知x =x 1+x 22,③ y =x 21+x 228.④切线MA ,MB 的方程为y =x 12(x -x 1)+x 214.⑤y =x 22(x -x 2)+x 224.⑥由⑤⑥得MA ,MB 的交点M (x 0,y 0)的坐标为x 0=x 1+x 22,y 0=x 1x 24.因为点M (x 0,y 0)在C 2上,即x 20=-4y 0,所以x 1x 2=-x 21+x 226.⑦由③④⑦得x 2=43y ,x ≠0.当x 1=x 2时,A ,B 重合于原点O ,AB 中点N 为O ,坐标满足x 2=43y .因此线段AB 中点N 的轨迹方程为x 2=43y .[冲击名校](2013²四川高考)已知椭圆C : x 2a 2+y2b2=1(a >b >0)的两个焦点分别为F 1(-1,0),F 2(1,0),且椭圆C 经过点P ⎝ ⎛⎭⎪⎫43,13.(1)求椭圆C 的离心率;(2)设过点A (0,2)的直线l 与椭圆C 交于M ,N 两点,点Q 是线段MN 上的点,且 2|AQ |2=1|AM |2+1|AN |2,求点Q 的轨迹方程.解:(1)由椭圆定义知,2a =|PF 1|+|PF 2|= ⎝ ⎛⎭⎪⎫43+12+⎝ ⎛⎭⎪⎫132+⎝ ⎛⎭⎪⎫43-12+⎝ ⎛⎭⎪⎫132=22, 所以a = 2.又由已知c =1,所以椭圆C 的离心率e =c a =12=22.(2)由(1)知,椭圆C 的方程为x 22+y 2=1.设点Q 的坐标为(x ,y ).①当直线l 与x 轴垂直时,直线l 与椭圆C 交于(0,1),(0,-1)两点,此时点Q 的坐标为⎝⎛⎭⎪⎫0,2-355.②当直线l 与x 轴不垂直时,设直线l 的方程为y =kx +2.因为M ,N 在直线l 上,可设点M ,N 的坐标分别为(x 1,kx 1+2),(x 2,kx 2+2),则|AM |2=(1+k 2)x 21,|AN |2=(1+k 2)x 22.又|AQ |2=x 2+(y -2)2=(1+k 2)x 2.由2|AQ |2=1|AM |2+1|AN |2,得2 1+k 2 x 2=1 1+k 2 x 21+1 1+k2 x 22,即2x 2=1x 21+1x 22= x 1+x 2 2-2x 1x 2x 21x 22.①将y =kx +2代入x 22+y 2=1中,得 (2k 2+1)x 2+8kx +6=0.②由Δ=(8k )2-4³(2k 2+1)³6>0,得k 2>32.由②可知,x 1+x 2=-8k 2k 2+1,x 1x 2=62k 2+1,代入①中并化简,得x 2=1810k 2-3.③因为点Q 在直线y =kx +2上,所以k =y -2x,代入③中并化简,得10(y -2)2-3x 2=18.由③及k 2>32,可知0<x 2<32,即x ∈⎝ ⎛⎭⎪⎫-62,0∪⎝⎛⎭⎪⎫0,62.又⎝ ⎛⎭⎪⎫0,2-355满足10(y -2)2-3x 2=18,故x ∈⎝ ⎛⎭⎪⎫-62,62.由题意,Q (x ,y )在椭圆C 内,所以-1≤y ≤1,又由10(y -2)2=18+3x 2,有(y -2)2∈⎣⎢⎡⎭⎪⎫95,94,且-1≤y ≤1,则y ∈⎝ ⎛⎦⎥⎤12,2-355.所以点Q 的轨迹方程为10(y -2)2-3x 2=18,其中x ∈⎝ ⎛⎭⎪⎫-62,62,y ∈⎝ ⎛⎦⎥⎤12,2-355. [高频滚动]已知圆C :(x -4)2+(y -m )2=16(m ∈N *),直线4x -3y -16=0过椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点,且被圆C 所截得的弦长为325,点A (3,1)在椭圆E 上.(1)求m 的值及椭圆E 的方程;(2)设Q 为椭圆E 上的一个动点,求AC ²AQ的取值范围.解:(1)因为直线4x -3y -16=0被圆C 所截得的弦长为325,所以圆心C (4,m )到直线4x -3y -16=0的距离为42-⎝ ⎛⎭⎪⎫1652=125,即|4³4-3³m -16|5=125,解得m =4或m =-4(舍去). 又直线4x -3y -16=0过椭圆E 的右焦点,所以椭圆E 的右焦点F 2的坐标为(4,0),则其左焦点F 1的坐标为(-4,0).因为椭圆E 过A 点,所以|AF 1|+|AF 2|=2a ,所以2a =52+2=62,所以a =32,a 2=18,b 2=2,故椭圆E 的方程为x 218+y 22=1.(2)由(1)知C (4,4),又A (3,1),所以AC=(1,3),设Q (x ,y ),则AQ=(x -3,y -1),则AC ²AQ =x +3y -6.令x +3y =n ,则⎩⎪⎨⎪⎧x 218+y 22=1,x +3y =n ,消去x 得18y 2-6ny +n 2-18=0.因为直线x +3y =n 与椭圆E 有公共点,所以Δ=(-6n )2-4³18³(n 2-18)≥0,解得-6≤n ≤6,故AC ²AQ=x +3y -6的取值范围为[-12,0].。
2015高考数学一轮课件:2-8函数与方程
第九页,编辑于星期五:十三点 十三分。
③如果函数 f(x)在区间[a,b]上的图象是连续不断的曲线, 那么当函数 f(x)在区间(a,b)内有零点时不一定有 f(a)·f(b)<0, 也可能有 f(a)·f(b)>0.例如函数 f(x)=x3-5x2+6x 在区间[1,4]上有 零点 2 和 3,却有 f(1)·f(4)>0.
第三十页,编辑于星期五:十三点 十三分。
[变式 2] (1)二次函数 y=ax2+bx+c(a≠0)中,ac<0,则函
数的零点个数是( )
A.1
B.2
C.0
D.无法确定
(2)方程 log2(x+4)=2x 根的情况是( )
A.仅有一根
B.有两正根
C.有一正编辑于星期五:十三点 十三分。
第二十一页,编辑于星期五:十三点 十三分。
解析:易知 f(a)=(a-b)(a-c)>0,f(b)=(b-c)(b-a)<0, f(c)=(c-a)(c-b)>0,所以 f(a)f(b)<0,f(b)f(c)<0,所以函数的 两个零点分别在(a,b)和(b,c)内.
答案:A
第二十二页,编辑于星期五:十三点 十三分。
[ 解 析 ] 函 数 f(x) =
的零点个数,即方程
=0 的根的个数,亦即函数 y= 的图象与函数 y= 1 (3)x 图象的交点个数,画出两者的图象(如图),可得交点的个数 为 1.
[答案] B
第二十九页,编辑于星期五:十三点 十三分。
[方法·规律] 判断函数零点个数的常见方法 (1)直接法:解方程 f(x)=0,方程有几个解,函数 f(x)就有几 个零点; (2)图象法:画出函数 f(x)的图象,函数 f(x)的图象与 x 轴的 交点个数即为函数 f(x)的零点个数; (3)将函数 f(x)拆成两个常见函数 h(x)和 g(x)的差,从而 f(x) =0⇔h(x)-g(x)=0⇔h(x)=g(x),则函数 f(x)的零点个数即为函数 y=h(x)与函数 y=g(x)的图象的交点个数; (4)二次函数的零点问题,通过相应的二次方程的判别式 Δ 与零的关系来判断.
2015高考数学一轮课件:热点专题突破系列(二)
(2)若y=f(x)的图象经过点(
,0),求函数f(x)在区间[0,
3
]上
的取值范围.
4
5
第二十页,编辑于星期五:十三点 三十二分。
【解析】(1)f(x)=a·b+λ=(cosωx-sinωx)·(-cosωx-sinωx)+
sinωxcosω2x+3λ
=-cos2ωx+ sin2ωx+λ
3
=2sin(2ωx- )+λ,
第二页,编辑于星期五:十三点 三十二分。
考点1 三角函数的求值与平面向量的综合
【典例1】(2014·中山模拟)已知向量a=(sinθ,-2)与b=(1,cosθ)互
相垂直,其中θ∈
(1)求cosθ,sinθ的值.
(0, ). 2
(2)若5cos(θ-φ)= cosφ,0<φ<
35
求, cosφ的值.
即 5cos 2 5sin 3 5cos , 所以sinφ=cosφ.
因为φ∈ (0, ),
2
所以 cos
2.
2
第六页,编辑于星期五:十三点 三十二分。
【规律方法】平面向量在三角函数求值中的应用步骤 (1)此类题目的特点是所给向量的坐标用关于某角的正、余弦给 出,把向量垂直或共线转化为关于该角的三角函数的等式. (2)利用三角恒等变换进行条件求值.
3
④B=45°.试从中再选择两个条件以确定△ABC,求出你所确定的
△ABC的面积.
第三十页,编辑于星期五:十三点 三十二分。
【解析】(1)因为m⊥n,
所以-cosBcosC+sinBsinC 3 0,
热点专题突破系列(二)
【创新方案】2015高考数学一轮复习(知识回扣+热点突破+能力提升)抛物线-理-北师大版
第六节抛物线【考纲下载】1.掌握抛物线的定义、几何图形、标准方程及简单性质(范围、对称性、顶点、离心率等).2.了解圆锥曲线的简单应用.了解抛物线的实际背景,了解抛物线在刻画现实世界和解决实际问题中的作用.3.理解数形结合思想.1.抛物线的定义满足以下三个条件的点的轨迹是抛物线:(1)在平面内;(2)动点到定点F的距离与到定直线l的距离相等;(3)定点不在定直线上.2.抛物线的标准方程和几何性质标准方程y2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)p的几何意义:焦点F到准线l的距离图形顶点O(0,0)对称轴y=0 x=0焦点F⎝⎛⎭⎪⎫p2,0F⎝⎛⎭⎪⎫-p2,0F⎝⎛⎭⎪⎫0,p2F⎝⎛⎭⎪⎫0,-p2离心率e=1准线方程x=-p2x=p2y=-p2y=p2范围x≥0,y∈Rx≤0,y∈Ry≥0,x∈Ry≤0,x∈R 开口方向向右向左向上向下焦半径(其中P(x0,y0))|PF|=x0+p2|PF|=-x0+p2|PF|=y0+p2|PF|=-y0+p21.当定点F在定直线l上时,动点的轨迹是什么图形?提示:当定点F在定直线l上时,动点的轨迹是过定点F且与直线l垂直的直线.2.抛物线y2=2px(p>0)上任意一点M(x0,y0)到焦点F的距离与点M的横坐标x0有何关系?若抛物线方程为x2=2py(p>0),结果如何?提示:由抛物线定义得|MF|=x0+p2;若抛物线方程为x2=2py(p>0),则|MF|=y0+p2.1.设抛物线的顶点在原点,准线方程为x =-2,则抛物线的方程是( )A .y 2=-8xB .y 2=-4xC .y 2=8xD .y 2=4x解析:选C 由抛物线准线方程为x =-2知p =4,且开口向右,故抛物线方程为y 2=8x .2.抛物线y 2=4x 的焦点F 到准线l 的距离为( ) A .1 B .2 C .3 D .4解析:选B 因为抛物线y 2=4x ,所以2p =4,而焦点F 到准线l 的距离为p =2.3.抛物线y =2x 2的焦点坐标为( ) A.⎝ ⎛⎭⎪⎫12,0 B .(1,0) C.⎝ ⎛⎭⎪⎫0,18 D.⎝ ⎛⎭⎪⎫0,14 解析:选C 将抛物线y =2x 2化成标准方程为x 2=12y ,所以2p =12,p 2=18,而抛物线x 2=12y的焦点在y 轴的非负半轴上,所以焦点坐标为⎝ ⎛⎭⎪⎫0,18. 4.抛物线的焦点为椭圆x 29+y 24=1的左焦点,顶点为椭圆中心,则抛物线方程为________________.解析:由c 2=9-4=5,得F (-5,0),则抛物线方程为y 2=-45x .答案:y 2=-45x5.设抛物线y 2=2px (p >0)的焦点为F ,点A (0,2).若线段FA 的中点B 在抛物线上,则B 到该抛物线准线的距离为________.解析:F ⎝ ⎛⎭⎪⎫p 2,0,则B ⎝ ⎛⎭⎪⎫p 4,1,∴2p ×p 4=1,解得p = 2.∴B ⎝ ⎛⎭⎪⎫24,1, 因此B 到该抛物线的准线的距离为24+22=324. 答案:324考点一抛物线的定义及应用[例1] 设P 是抛物线y 2=4x 上的一个动点.(1)求点P 到点A (-1,1)的距离与点P 到直线x =-1的距离之和的最小值; (2)若B (3,2),求|PB |+|PF |的最小值. [自主解答](1)如图,易知抛物线的焦点为F (1,0),准线是x =-1.由抛物线的定义知:点P 到直线x =-1的距离等于点P 到焦点F 的距离.于是,问题转化为:在曲线上求一点P ,使点P 到点A (-1,1)的距离与点P 到F (1,0)的距离之和最小.显然,连接AF 交曲线于点P ,则所求的最小值为|AF |,即为 5.(2)如图,过点B 作BQ 垂直准线于Q ,交抛物线于点P 1,则|P 1Q |=|P 1F |. 则有|PB |+|PF |≥|P 1B |+|P 1Q |=|BQ |=4.即|PB |+|PF |的最小值为4. 【互动探究】若将本例(2)中的B 点坐标改为(3,4),求|PB |+|PF |的最小值.解:由题意可知点(3,4)在抛物线的外部.∵|PB |+|PF |的最小值即为B ,F 两点间的距离.∴|PB |+|PF |≥|BF |=42+22=16+4=2 5.即|PB |+|PF |的最小值为2 5. 【方法规律】抛物线定义中的“转化”法利用抛物线的定义解决此类问题,应灵活地进行抛物线上的点到焦点的距离与到准线距离的等价转化.“看到准线想到焦点,看到焦点想到准线”,这是解决抛物线焦点弦有关问题的有效途径.1.(2014·吉安模拟)已知动圆过定点F ⎝ ⎛⎭⎪⎫p 2,0,且与直线x =-p2相切,其中p >0,则动圆圆心的轨迹E 的方程为____________.解析:依题意得,圆心到定点F ⎝ ⎛⎭⎪⎫p 2,0的距离与到直线x =-p2的距离相等,再依抛物线的定义知,动圆圆心的轨迹E 为抛物线,其方程为y 2=2px .答案:y 2=2px2.过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点,若|AF |=3,则|BF |=________.解析:因为抛物线y 2=4x 的焦点F (1,0).显然,当AB 垂直于x 轴时,|AF |≠3,所以AB 的斜率k 存在,设AB 的方程为y =k (x -1),与抛物线y 2=4x 联立,消去y 得k 2x 2-2k 2x -4x +k 2=0,即k 2x 2-(2k 2+4)x +k 2=0, 设A (x 1,y 1),B (x 2,y 2).由根与系数的关系得x 1+x 2=2k 2+4k 2=2+4k 2.又|AF |=3=x 1+p2=x 1+1,所以x 1=2,代入k 2x 2-2k 2x -4x +k 2=0,得k 2=8,所以x 1+x 2=52,x 2=12,故|BF |=x 2+1=12+1=32.答案:32考点二 抛物线的标准方程及性质[例2] (1)(2013·四川高考)抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是( )A.12B.32 C .1 D.3 (2)(2013·江西高考)抛物线x 2=2py (p >0)的焦点为F ,其准线与双曲线x 23-y 23=1相交于A ,B 两点,若△ABF 为等边三角形,则p =________.[自主解答] (1)由抛物线y 2=4x ,有2p =4,p =2.其焦点坐标为(1,0),双曲线x 2-y 23=1的渐近线方程为y =±3x .不妨取其中一条3x -yd =|3×1-0|3+1=32.(2)在等边三角形ABF 中,AB 边上的高为p ,AB 2=33p ,所以B ⎝⎛⎭⎪⎫33p ,-p 2.又因为点B 在双曲线上,故p 233-p 243=1,解得p =6.答案:(1)B (2)6【方法规律】1.求抛物线的标准方程的方法及流程(1)方法:求抛物线的标准方程常用待定系数法,因为未知数只有p ,所以只需一个条件确定p 值即可.(2)流程:因为抛物线方程有四种标准形式,因此求抛物线方程时,需先定位,再定量. 2.确定及应用抛物线性质的关键与技巧(1)关键:利用抛物线方程确定及应用其焦点、准线等性质时,关键是将抛物线方程化成标准方程.(2)技巧:要结合图形分析,灵活运用平面几何的性质以图助解.1.已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点M (2,y 0).若点M 到该抛物线焦点的距离为3,则|OM |=( )A .2 2B .2 3C .4D .2 5解析:选B 依题意,设抛物线方程是y 2=2px (p >0),则有2+p2=3,得p =2,故抛物线方程是y 2=4x ,点M 的坐标是(2,±22),|OM |=22+8=2 3.2.已知双曲线C 1:x 2a 2-y 2b2=1(a >0,bC 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为( )A .x 2=833y B .x 2=1633yC .x 2=8yD .x 2=16y解析:选D 双曲线的渐近线方程为y =±b a x ,由于ca =a 2+b 2a 2= 1+⎝ ⎛⎭⎪⎫b a2=2,所以b a=3,所以双曲线的渐近线方程为y =±3x .抛物线的焦点坐标为⎝ ⎛⎭⎪⎫0,p 2,所以p22=2,则p =8,所以抛物线方程为x 2=16y .高频考点 考点三 直线与抛物线的位置关系1.直线与抛物线的位置关系,是高考命题的热点,多以解答题的形式出现,试题难度较大,多为中、高档题.2.直线与抛物线的位置关系有以下几个命题角度: (1)已知抛物线方程及其他条件,求直线方程; (2)证明直线过定点;(3)求线段长度或线段之积(和)的最值; (4)求定值.[例3] (2012·福建高考)如图,等边三角形OAB 的边长为83,且其三个顶点均在抛物线E :x 2=2py (p >0)上.(1)求抛物线E 的方程;(2)设动直线l 与抛物线E 相切于点P ,与直线y =-1相交于点Q .证明以PQ 为直径的圆恒过y 轴上某定点.[自主解答] (1)依题意,|OB |=83,∠BOy =30°.设B (x ,y ),则x =|OB |sin 30°=43,y =|OB |cos 30°=12.因为点B (43,12)在x 2=2py 上,所以(43)2=2p ×12,解得pE 的方程为x 2=4y .(2)证明:由(1)知y =14x 2,y ′=12x .设P (x 0,y 0),则x 0≠0,y 0=14x 20,且l 的方程为y -y 0=12x 0(x -x 0),即y =12x 0x -14x 20.由⎩⎪⎨⎪⎧y =12x 0x -14x 20,y =-1,得⎩⎪⎨⎪⎧x =x 20-42x 0,y =-1.所以Q 为⎝ ⎛⎭⎪⎫x 20-42x 0,-1.设M (0,y 1),令MP ·MQ =0对满足y 0=14x 20(x 0≠0)的x 0,y 0恒成立.由于MP =(x 0,y 0-y 1),MQ =⎝ ⎛⎭⎪⎫x 20-42x 0,-1-y 1,由MP ·MQ =0,得x 20-42-y 0-y 0y 1+y 1+y 21=0,即(y 21+y 1-2)+(1-y 1)y 0=0.(*)由于(*)式对满足y 0=14x 20(x 0≠0)的y 0恒成立,所以⎩⎪⎨⎪⎧1-y 1=0,y 21+y 1-2=0,解得y 1PQ 为直径的圆恒过y 轴上的定点M (0,1).直线与抛物线的位置关系的常见类型及解题策略(1)求直线方程.先寻找确定直线的两个条件,若缺少一个可设出此量,利用题设条件寻找关于该量的方程,解方程即可.(2)证明直线过定点.可依题设条件寻找该直线的方程,可依据方程中的参数及其他条件确定该直线过那个定点.(3)求线段长度和线段之积(和)的最值.可依据直线与抛物线相交,依据弦长公式,求出弦长或弦长关于某个量的函数,然后利用基本不等式或利用函数的知识,求函数的最值;也可利用抛物线的定义转化为两点间的距离或点到直线的距离.(4)求定值.可借助于已知条件,将直线与抛物线联立,寻找待定式子的表达式,化简即可得到.(2014·汉中模拟)已知过点A (-4,0)的动直线l 与抛物线G :x 2=2py (p >0)相交于B ,C 两点.当直线l 的斜率是12时,AC =4AB .(1)求抛物线G 的方程;(2)设线段BC 的中垂线在y 轴上的截距为b ,求b 的取值范围.解:(1)设B (x 1,y 1),C (x 2,y 2),当直线l 的斜率是12时,l 的方程为y =12(x +4),即x =2y -4,联立⎩⎪⎨⎪⎧x 2=2py ,x =2y -4,消去x ,得2y 2-(8+p )y +8=0,y 1+y 2=8+p2,y 1y 2=4,由已知AC =4AB ,∴y 2=4y 1, 由韦达定理及p >0可得y 1=1,y 2=4,p =2,∴抛物线G 的方程为x 2=4y .(2)由题意知直线l 的斜率存在,且不为0,设l :y =k (x +4),BC 中点坐标为(x 0,y 0),由⎩⎪⎨⎪⎧x 2=4y ,y =k x +4,得x 2-4kx -16k =0,由Δ>0得k <-4或k >0,∴x 0=x B +x C2=2k ,y 0=k (x 0+4)=2k 2+4k ,BC 中垂线方程为y -2k2-4k =-1k(x -2k ),∴b =2(k +1)2,∴bb 的取值范围为(2,+∞).———————————[课堂归纳——通法领悟]———————————————— 4个结论——直线与抛物线相交的四个结论已知抛物线y 2=2px (p >0),过其焦点的直线交抛物线于A ,B 两点,设A (x 1,y 1),B (x 2,y 2),则有以下结论:(1)|AB |=x 1+x 2+p 或|AB |=2psin 2α(α为AB 所在直线的倾斜角);(2)x 1x 2=p 24;(3)y 1y 2=-p 2;(4)过抛物线焦点且与对称轴垂直的弦称为抛物线的通径,抛物线的通径长为2p . 3个注意点——抛物线问题的三个注意点(1)求抛物线的标准方程时一般要用待定系数法求p 的值,但首先要判断抛物线是否为标准方程,若是标准方程,则要由焦点位置(或开口方向)判断是哪一种标准方程.(2)注意应用抛物线定义中距离相等的转化来解决问题.(3)直线与抛物线有一个交点,并不表明直线与抛物线相切,因为当直线与对称轴平行(或重合)时,直线与抛物线也只有一个交点.前沿热点(十五)与抛物线有关的交汇问题1.抛物线是一种重要的圆锥曲线,在高考中,经常以抛物线为载体与直线、圆综合考查,主要考查抛物线的方程及几何性质,直线与抛物线的综合应用,点到直线的距离等.2.直线与抛物线的综合问题,经常是将直线方程与抛物线方程联立,消去x (或y ),利用方程的根与系数的关系求解,但一定要注意直线与抛物线相交的条件.[典例] (2013·湖南高考)过抛物线E :x 2=2py (p >0)的焦点F 作斜率分别为k 1,k 2的两条不同直线l 1,l 2,且k 1+k 2=2,l 1与E 相交于点A ,B ,l 2与E 相交于点C ,D ,以AB ,CD 为直径的圆M ,圆N (M ,N 为圆心)的公共弦所在直线记为l .(1)若k 1>0,k 2>0,证明:FM ·FN <2p 2;(2)若点M 到直线l 的距离的最小值为755,求抛物线E 的方程.[解题指导] (1)直线l 1的方程与抛物线方程联立,得出根与系数的关系,再由向量的坐标形式得出FM ·FN 的表达式,再证明不等式;(2)先求出点M 到直线l 的距离的表达式,再求最值,结合已知条件即可求p ,从而得出抛物线方程.[解] (1)证明:由题意,抛物线E 的焦点为F ⎝ ⎛⎭⎪⎫0,p 2,直线l 1的方程为y =k 1x +p2.由⎩⎪⎨⎪⎧y =k 1x +p 2,x 2=2py ,得x 2-2pk 1x -p 2A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则x 1,x 2是上述方程的两个实数根.从而x 1+x 2=2pk 1,y 1+y 2=k 1(x 1+x 2)+p =2pk 21+p . 所以点M 的坐标为⎝ ⎛⎭⎪⎫pk 1,pk 21+p 2,FM =(pk 1,pk 21).同理可得点N 的坐标为⎝⎛⎭⎪⎫pk 2,pk 22+p 2,FN =(pk 2,pk 22).于是FM ·FN =p 2(k 1k 2+k 21k 22).由题设,k 1+k 2=2,k 1>0,k 2>0,k 1≠k 2,所以0<k 1k 2<⎝ ⎛⎭⎪⎫k 1+k 222FM ·FN <p 2(1+12)=2p 2.(2)由抛物线的定义得|FA |=y 1+p 2,|FB |=y 2+p2,所以|AB |=y 1+y 2+p =2pk 21+2p ,从而圆M 的半径r 1=pk 21+p . 故圆M 的方程为(x -pk 1)2+⎝⎛⎭⎪⎫y -pk 21-p 22=(pk 21+p )2,化简得x 2+y 2-2pk 1x -p (2k 21+1)y -34p 2=0.同理可得圆N 的方程为x 2+y 2-2pk 2x -p (2k 22+1)y -34p 2=0.于是圆M ,圆N 的公共弦所在直线l 的方程为(k 2-k 1)x +(k 22-k 21)y =0. 又k 2-k 1≠0,k 1+k 2=2,则l 的方程为x +2y =0. 因为p >0,所以点M 到直线l 的距离d =|2pk 21+pk 1+p |5=p |2k 21+k 1+1|5=p ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫k 1+142+785.故当k 1=-14时,d 取最小值7p 85.由题设,7p 85=755,解得p =8.故所求的抛物线E 的方程为x 2=16y .[名师点评] 解答本题的关键有以下两点: (1)充分利用k 1>0,k 2>0,k 1≠k 2时,k 1·k 2<⎝⎛⎭⎪⎫k 1+k 222;(2)注意2k 21+k 1+1>0,即d =|2k 21+k 1+1|5=2k 21+k 1+15.(2013·广东高考)已知抛物线C 的顶点为原点,其焦点F (0,c )(c >0)到直线l :x -y -2=0的距离为322,设P 为直线l 上的点,过点P 作抛物线C 的两条切线PA ,PB ,其中A ,B 为切点.(1)求抛物线C 的方程;(2)当点P (x 0,y 0)为直线l 上的定点时,求直线AB 的方程; (3)当点P 在直线l 上移动时,求|AF |·|BF |的最小值.解:(1)依题意d =|0-c -2|2=c +22=322,解得c =1,∴抛物线C 的方程为x 2=4y .(2)设点A (x1,y 1),B (x 2,y 2),P (x 0,y 0),由x 2=4y ,即y =14x 2,得y ′=12x .∴抛物线C 在点A 处的切线PA 的方程为y -y 1=x 12(x -x 1),即y =x 12x +y 1-12x 21.∵y 1=14x 21,∴y =x 12x -y 1.∵点P (x 0,y 0)在直线PA 上,∴y 0=x 12x 0-y 1.①同理,y 0=x 22x 0-y 2.② 综合①②得,点A (x 1,y 1),B (x 2,y 2)的坐标都满足方程y 0=x2x 0-y ,∵经过A (x 1,y 1),B (x 2,y 2)两点的直线是唯一的, ∴直线AB 的方程为y 0=x2x 0-y ,即x 0x -2y -2y 0=0.(3)由抛物线定义可知|AF |=y 1+1,|BF |=y 2+1,所以|AF |·|BF |=(y 1+1)(y 2+1)=y 1y 2+(y 1+y 2)+1, 联立方程⎩⎪⎨⎪⎧x 0x -2y -2y 0=0,x 2=4y ,消去x 整理得y 2+(2y 0-x 20)y +y 20=0,∴y 1+y 2=x 20-2y 0,y 1y 2=y 20,∵x 0-y 0-2=0,∴|AF |·|BF |=y 20-2y 0+x 20+1=y 20-2y 0+(y 0+2)2+1=2y 20+2y 0+5=2⎝⎛⎭⎪⎫y 0+122+92,∴当y 0=-12时,|AF |·|BF |取得最小值为92.[全盘巩固]1.抛物线x 2=(2a -1)y 的准线方程是y =1,则实数a =( ) A.52 B.32 C .-12 D .-32解析:选D 把抛物线方程化为x 2=-2⎝ ⎛⎭⎪⎫12-a y ,则p =12-a ,故抛物线的准线方程是y =p 2=12-a 2,则12-a 2=1,解得a =-32. 2.直线4kx -4y -k =0与抛物线y 2=x 交于A ,B 两点,若|AB |=4,则弦AB 的中点到直线x +12=0的距离等于( ) A.74 B .2 C.94D .4 解析:选C 直线4kx -4y -k =0,即y =k ⎝ ⎛⎭⎪⎫x -14,即直线4kx -4y -k =0过抛物线y 2=x 的焦点⎝ ⎛⎭⎪⎫14,0.设A (x 1,y 1),B (x 2,y 2),则|AB |=x 1+x 2+12=4,故x 1+x 2=72,则弦AB 的中点的横坐标是74,所以弦AB 的中点到直线x +12=0的距离是74+12=94.3.(2013·江西高考)已知点A (2,0),抛物线C :x 2=4y 的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N ,则|FM |∶|MN |=( )A .2∶ 5B .1∶2C .1∶ 5D .1∶3解析:选C FA :y =-12x +1,与x 2=4y 联立,得x M =5-1,FA :y =-12x +1,与y =-1联立,得N (4,-1),由三角形相似知|FM ||MN |=x M 4-x M =15.4.设F 为抛物线y 2=4x 的焦点,A ,B ,C 为该抛物线上三点,若FA +FB +FC =0,则|FA |+|FB |+|FC |=( )A .9B .6C .4D .3解析:选B 设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),又F (1,0),由FA +FB +FC =0知,(x 1-1)+(x 2-1)+(x 3-1)=0,即x 1+x 2+x 3=3,|FA |+|FB |+|FC |=x 1+x 2+x 3+32p=6.5.已知点M (1,0),直线l :x =-1,点B 是l 上的动点,过点B 垂直于y 轴的直线与线段BM 的垂直平分线交于点P ,则点P 的轨迹是( )A .抛物线B .椭圆C .双曲线的一支D .直线解析:选A 由点P 在BM 的垂直平分线上,故|PB |=|PM |.又PB ⊥l ,因而点P 到直线l 的距离等于点P 到点M 的距离,所以点P 的轨迹是抛物线.6.(2013·新课标全国卷Ⅰ)O 为坐标原点,F 为抛物线C :y 2=42x 的焦点,P 为C 上一点,若|PF |=42,则△POF 的面积为( )A .2B .2 2C .2 3D .4解析:选C 设P (x 0,y 0),根据抛物线定义得|PF |=x 0+2,所以x 0=32,代入抛物线方程求得y 2=24,解得|y |=26,所以△POF 的面积等于12·|OF |·|y |=12×2×26=2 3.7.(2013·北京高考)若抛物线y 2=2px 的焦点坐标为(1,0),则p =________,准线方程为________.解析:∵抛物线y 2=2px 的焦点坐标为(1,0),∴p2=1,解得p =2,∴准线方程为x =-1.答案:2 x =-18.(2014·厦门模拟)已知动圆圆心在抛物线y 2=4x 上,且动圆恒与直线x =-1相切,则此动圆必过定点________.解析:因为动圆的圆心在抛物线y 2=4x 上,且x =-1是抛物线y 2=4x 的准线,所以由抛物线的定义知,动圆一定过抛物线的焦点(1,0).答案:(1,0)9.抛物线y =-x 2上的点到直线4x +3y -8=0距离的最小值是________. 解析:法一:如图,设与直线4x +3y -8=0平行且与抛物线y =-x 2相切的直线为4x +3y +b =0,切线方程与抛物线方程联立得⎩⎪⎨⎪⎧y =-x 2,4x +3y +b =0,消去y 整理得3x 2-4x -b =0,则Δ=16+12b =0,解得b =-43,所以切线方程为4x +3y -43=0,抛物线y =-x 2上的点到直线4x +3y -8=0距离的最小值是这两条平行线间的距离d =⎪⎪⎪⎪⎪⎪8-435=43.法二:对y =-x 2,有y ′=-2x .如图,设与直线4x +3y -8=0平行且与抛物线y =-x 2相切的直线与抛物线的切点是T (m ,-m 2),则切线斜率k =y ′|m =-2m =-43,所以m =23,即切点T ⎝ ⎛⎭⎪⎫23,-49,点T 到直线4x +3y -8=0的距离d =⎪⎪⎪⎪⎪⎪83-43-816+9=43,由图知抛物线y =-x 2上的点到直线4x +3y -8=0距离的最小值是d =43.答案:4310.已知以向量v =⎝ ⎛⎭⎪⎫1,12为方向向量的直线l 过点⎝ ⎛⎭⎪⎫0,54,抛物线C :y 2=2px (p >0)的顶点关于直线l 的对称点在该抛物线的准线上.(1)求抛物线C 的方程;(2)设A ,B 是抛物线C 上两个动点,过A 作平行于x 轴的直线m ,直线OB 与直线m 交于点N ,若OA ·OB +p 2=0(O 为原点,A ,B 异于原点),试求点N 的轨迹方程.解:(1)由题意可得直线l 的方程为y =12x +54,①过原点垂直于l 的直线方程为y =-2x .②解①②得x =-12.∵抛物线的顶点关于直线l 的对称点在该抛物线的准线上,∴-p 2=-12×2,p =2.∴抛物线C 的方程为y 2=4x .(2)设A (x 1,y 1),B (x 2,y 2),N (x 0,y 0),由题意知y 0=y 1.由OA ·OB +p 2=0,得x 1x 2+y 1y 2+4=0,又y 21=4x 1,y 22=4x 2,解得y 1y 2=-8,③直线ON :y =y 2x 2x ,即y 0=4y 2x 0.④由③④及y 0=y 1得点N 的轨迹方程为x =-2(y ≠0).11.已知定点A (1,0)和直线x =-1上的两个动点E ,F ,且AE ⊥AF ,动点P 满足EP ∥OA ,FO ∥OP (其中O 为坐标原点).(1)求动点P 的轨迹C 的方程;(2)过点B (0,2)的直线l 与(1)中的轨迹C 相交于两个不同的点M ,N ,若AM ·AN <0,求直线l 的斜率的取值范围.解:(1)设P (x ,y ),E (-1,y E ),F (-1,y F ),∵AE ·AF =(-2,y E )·(-2,y F )=y E ·y F+4=0,∴y E ·y F =-4,①又EP =(x +1,y -y E ),FO =(1,-y F ),且EP ∥OA ,FO ∥OP ,∴y -y E =0且x (-y F )-y =0,∴y E =y ,y F =-y x, 代入①得y 2=4x (x ≠0),∴动点P 的轨迹C 的方程为y 2=4x (x ≠0). (2)设l :y -2=kx (易知k 存在,且k ≠0),联立⎩⎪⎨⎪⎧y =kx +2,y 2=4x ,消去x ,得ky 2-4y +8=0,Δ=42-32k >0,即k <12.令M (x 1,y 1),N (x 2,y 2),则y 1+y 2=4k ,y 1·y 2=8k,AM ·AN =(x 1-1,y 1)·(x 2-1,y 2)=x 1x 2-(x 1+x 2)+1+y 1y 2=y 21·y 2216-y 21+y 224+1+y 1y 2=⎝ ⎛⎭⎪⎫y 1y 242-y 1+y 224+32y 1y 2+1 =12k+1<0,∴-12<k <0,故实数k 的取值范围为(-12,0).12.(2014·珠海模拟)在平面直角坐标系xOy 中,设点F ⎝ ⎛⎭⎪⎫12,0,直线l :x =-12,点P 在直线l 上移动,R 是线段PF 与y 轴的交点,RQ ⊥FP ,PQ ⊥l .(1)求动点Q 的轨迹C 的方程;(2)设圆M 过A (1,0),且圆心M 在曲线C 上,TS 是圆M 在y 轴上截得的弦,当M 运动时,弦长|TS |是否为定值?请说明理由.解:(1)依题意知,点R 是线段FP 的中点,且RQ ⊥FP ,∴RQ 是线段FP 的垂直平分线. ∵|PQ |是点Q 到直线l 的距离.点Q 在线段FP 的垂直平分线上,∴|PQ |=|QF |.故动点Q 的轨迹是以F 为焦点,l 为准线的抛物线,其方程为y 2=2x (x >0).(2)弦长|TS |为定值.理由如下:取曲线C 上点M (x 0,y 0),M 到y 轴的距离为d =|x 0|=x 0, 圆的半径r =|MA |=x 0-12+y 20,则|TS |=2r 2-d 2=2y 20-2x 0+1, 因为点M 在曲线C 上,所以x 0=y 202,所以|TS |=2y 20-y 20+1=2,是定值.[冲击名校]已知直线y =-2上有一个动点Q ,过点Q 作直线l 1垂直于x 轴,动点P 在l 1上,且满足OP ⊥OQ (O 为坐标原点),记点P 的轨迹为C .(1)求曲线C 的方程;(2)若直线l 2是曲线C 的一条切线,当点(0,2)到直线l 2的距离最短时,求直线l 2的方程. 解:(1)设点P 的坐标为(x ,y ),则点Q 的坐标为(x ,-2).∵OP ⊥OQ ,∴当x =0时,P ,O ,Q 三点共线,不符合题意,故x ≠0.当x ≠0时,得k OP ·k OQ =-1,即y x ·-2x=-1,化简得x 2=2y ,∴曲线C 的方程为x 2=2y (x ≠0).(2)∵直线l 2与曲线C 相切,∴直线l 2的斜率存在.设直线l 2的方程为y =kx +b ,由⎩⎪⎨⎪⎧y =kx +b ,x 2=2y ,得x 2-2kx -2b =0.∵直线l 2与曲线C 相切,∴Δ=4k 2+8b =0,即b =-k 22.点(0,2)到直线l 2的距离d =|-2+b |k 2+1=12·k 2+4k 2+1=12⎝ ⎛⎭⎪⎫k 2+1+3k 2+1≥12×2k 2+1·3k 2+1= 3.当且仅当k 2+1=3k 2+1,即k =±2时,等号成立.此时b =-1. ∴直线l 2的方程为2x -y -1=0或2x +y +1=0. [高频滚动]已知直线x +ky -3=0所经过的定点F 恰好是椭圆C 的一个焦点,且椭圆C 上的点到点F 的最大距离为8.(1)求椭圆C 的标准方程;(2)已知圆O :x 2+y 2=1,直线l :mx +ny =1,试证:当点P (m ,n )在椭圆C 上运动时,直线l 与圆O 恒相交,并求直线l 被圆O 所截得的弦长L 的取值范围.解:(1)直线x +ky -3=0经过定点F (3,0),即点F (3,0)是椭圆C 的一个焦点.设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),因为椭圆C 上的点到点F 的最大距离为8,所以a +3=8,即a =5.所以b 2=52-32C 的方程为x 225+y 216=1.(2)因为点P (m ,n )在椭圆C 上,所以m 225+n 216=1,即n 2=16-16m 225(0≤m 2≤25).所以原点到直线l :mx +ny =1的距离d =1m 2+n 2=1925m 2+16<1.所以直线l :mx +ny =1与圆O :x 2+y 2=1恒相交.L 2=4(r 2-d 2)=4⎝⎛⎭⎪⎪⎫1-1925m 2+16. 因为0≤m 2≤25,所以152≤L ≤465. 即直线l 被圆O 所截得的弦长L 的取值范围为⎣⎢⎡⎦⎥⎤152,465.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八节 函数与方程[例1] (1)(2014·西安模拟)函数f (x )=2x +ln 1x -1的零点所在的大致区间是( )A .(1,2)B .(2,3)C .(3,4)D .(1,2)与(2,3)(2)(2013·重庆高考)若a <b <c ,则函数f (x )=(x -a )·(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( )A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内[自主解答] (1)f (x )=2x +ln 1x -1=2x -ln(x -1).当1<x <2时,ln(x -1)<0,2x >0,所以f (x )>0,故函数f (x )在(1,2)上没有零点.f (2)=1-ln 1=1,f (3)=23-ln 2=2-3ln 23=2-ln 83,∵8=22≈2.828>e ,∴8>e 2,即ln 8>2,即f (3) <0,又f (4)=12-ln 3<0,∴f (x )在(2,3)内存在一个零点.(2)易知f (a )=(a -b )(a -c ),f (b )=(b -c )(b -a ),f (c )=(c -a )(c -b ).又a <b <c ,则f (a )>0,f (b )<0,f (c )>0,又该函数是二次函数,且开口向上,可知两根分别在(a ,b )和(b ,c )内.[答案] (1)B (2)A【方法规律】判断函数零点所在区间的方法判断函数在某个区间上是否存在零点,要根据具体题目灵活处理,当能直接求出零点时,就直接求出进行判断;当不能直接求出时,可根据零点存在性定理判断;当用零点存在性定理也无法判断时可画出图象判断.1.(2014·嘉兴模拟)方程log 3x +x =3的根所在的区间为( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)解析:选C 法一:方程log 3x +x =3的根即是函数f (x )=log 3x +x -3的零点,由于f (2)=log 32+2-3=log 32-1<0,f (3)=log 33+3-3=1>0且函数f (x )在(0,+∞)上为单调增函数.∴函数f (x )的零点即方程log 3x +x =3的根所在区间为(2,3).法二:方程log 3x +x =3的根所在区间即是函数y 1=log 3x 与y 2=3-x 交点横坐标所在区间,两函数图象如图所示.由图知方程log 3x +x =3的根所在区间为(2,3).2.在下列区间中,函数f (x )=e -x -4x -3的零点所在的区间为( )A.⎝⎛⎭⎫-34,-12B.⎝⎛⎭⎫-12,-14 C.⎝⎛⎭⎫-14,0 D.⎝⎛⎭⎫0,14 解析:选B 易知函数f (x )在R 上是单调减函数.对于A ,注意到f ⎝⎛⎭⎫-34=e 34-4×⎝⎛⎭⎫-34-3=e 34>0,f ⎝⎛⎭⎫-12=e 12-4×⎝⎛⎭⎫-12-3=e 12-1>0,因此函数f (x )=e -x -4x -3的零点不在区间⎝⎛⎭⎫-34,-12上;对于B ,注意到f ⎝⎛⎭⎫-12>0,f ⎝⎛⎭⎫-14=e 14-4×⎝⎛⎭⎫-14-3=e 14-2<414-2<0,因此在区间⎝⎛⎭⎫-12,-14上函数f (x )=e -x -4x -3一定存在零点;对于C ,注意到f ⎝⎛⎭⎫-14<0,f (0)=-2<0,因此函数f (x )=e -x -4x -3的零点不在区间⎝⎛⎭⎫-14,0上;对于D ,注意到f (0)=-2<0,f ⎝⎛⎭⎫14=e -14-4×14-3=e -14-4<0,因此函数f (x )=e -x-4x -3的零点不在区间⎝⎛⎭⎫0,14上.[例2] (1)(2014·郑州模拟)函数f (x )=x 2-2x 在x ∈R 上的零点的个数是( ) A .0 B .1 C .2 D .3(2)已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,log 2x ,x >0,则函数y =f (f (x ))+1的零点个数是( )A .4B .3C .2D .1[自主解答] (1)注意到f (-1)×f (0)=12×(-1)<0,因此函数f (x )在(-1,0)上必有零点.又f (2)=f (4)=0,因此函数f (x )的零点个数是3.(2)由f (f (x ))+1=0可得f (f (x ))=-1.又由f (-2)=f ⎝ ⎛⎭⎪⎫12=-1, 可得f (x )=-2或f (x )=12.若f (x )=-2,则x =-3或x =14;若f (x )=12,则x =-12或x =2,综上可得函数y =f (f (x ))+1有4个零点. [答案] (1)D (2)A 【互动探究】若将本例(1)中的函数改为“f (x )=x 12-⎝⎛⎭⎫12x”,该如何选择?解析:选B 因为y =x 12在x ∈[0,+∞)上单调递增,y =⎝⎛⎭⎫12x 在x ∈R 上单调递减,所以f (x )=x 12-⎝⎛⎭⎫12x 在x ∈[0,+∞)上单调递增.又f (0)=-1<0,f (1)=12>0,所以f (x )=x 12-⎝⎛⎭⎫12x在定义域内有唯一零点,故应选B.【方法规律】判断函数零点个数的方法(1)解方程法:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理法:利用定理不仅要求函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点或零点值所具有的性质.(3)数形结合法:转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.1.(2013·天津高考)函数f (x )=2x |log 0.5x |-1的零点个数为( ) A .1 B .2 C .3 D .4解析:选B 易知函数f (x )=2x |log 0.5x |-1的零点个数⇔方程|log 0.5x |=12x =⎝⎛⎭⎫12x 的根的个数⇔函数y 1=|log 0.5x |与y 2=⎝⎛⎭⎫12x的图象的交点个数.作出两个函数的图象如图所示,由图可知两个函数图象有两个交点.2.已知符号函数sgn(x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,则函数f (x )=sgn(x -1)-ln x 的零点个数为( )A .1B .2C .3D .4解析:选C 依题意得,当x -1>0,即x >1时,f (x )=1-ln x ,令f (x )=0得x =e>1;当x -1=0,即x =1时,f (x )=0-ln 1=0;当x -1<0,即x <1时,f (x )=-1-ln x ,令f (x )=0得x =1e<1.因此,函数f (x )的零点个数为3.1.高考对函数零点的考查多以选择题或填空题的形式出现,求函数零点问题,难度较易;利用零点的存在性求相关参数的值,难度较大.2.高考对函数零点的考查主要有以下几个命题角度: (1)已知函数的零点或方程的根所在的区间,求参数; (2)已知函数的零点或方程的根的个数,求参数; (3)利用函数的零点比较大小.[例3] (1)(2013·天津高考)设函数f (x )=e x +x -2,g (x )=ln x +x 2-3.若实数a ,b 满足f (a )=0,g (b )=0,则 ( )A .g (a )<0<f (b )B .f (b )<0<g (a )C .0<g (a )<f (b )D .f (b )<g (a )<0(2)(2011·山东高考)已知函数f (x )=log a x +x -b (a >0,且a ≠1).当2<a <3<b <4时,函数f (x )的零点x 0∈(n ,n +1),n ∈N *,则n =________.(3)(2011·北京高考)已知函数f (x )=⎩⎪⎨⎪⎧2x , x ≥2,(x -1)3,x <2.若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是________.[自主解答] (1)∵f (x )在R 上为增函数,且f (0)=e 0-2<0,f (1)=e -1>0, 又f (a )=0,∴0<a <1.∵g (x )=ln x +x 2-3,∴g (x )在(0,+∞)上为增函数, 又g (1)=ln 1-2=-2<0,g (2)=ln 2+1>0,且g (b )=0,∴1<b <2,即a <b ,∴⎩⎪⎨⎪⎧f (b )>f (a )=0,g (a )<g (b )=0. (2)∵2<a <3<b <4,∴f (x )=log a x +x -b 在(0,+∞)上为增函数. 当x =2时,f (2)=log a 2+2-b <0;当x =3时,f (3)=log a 3+3-b >0,∴f (x )的零点x 0在区间(2,3)内,∴n =2. (3)在同一坐标系中作出f (x )=⎩⎪⎨⎪⎧2x ,x ≥2,(x -1)3,x <2及y =k 的图象,如图.可知,当0<k <1时,y =k 与y =f (x )的图象有两个交点,即方程f (x )=k 有两个不同的实根.[答案] (1)A (2)2 (3)(0,1)函数零点应用问题的常见类型及解题策略(1)已知函数零点求参数.根据函数零点或方程的根所在的区间求解参数应分三步:①判断函数的单调性;②利用零点存在性定理,得到参数所满足的不等式;③解不等式,即得参数的取值范围.(2)已知函数零点的个数求参数.常利用数形结合法.(3)借助函数零点比较大小.要比较f (a )与f (b )的大小,通常先比较f (a )、f (b )与0的大小.1.函数f (x )=2x -2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是( )A .(1,3)B .(1,2)C .(0,3)D .(0,2)解析:选C 由条件可知f (1)f (2)<0,即(2-2-a )(4-1-a )<0,即a (a -3)<0,解得0<a <3. 2.若函数f (x )=a x -x -a (a >0,且a ≠1)有两个零点,则实数a 的取值范围是( ) A .(1,+∞) B .[1,+∞) C .(-1,+∞) D .[-1,+∞)解析:选A 令g (x )=a x (a >0,且a ≠1),h (x )=x +a ,分0<a <1,a >1两种情况,在同一坐标系中画出两个函数的图象,如图,若函数f (x )=a x -x -a 有两个不同的零点,则函数g (x ),h (x )的图象有两个不同的交点,根据画出的图象只有当a >1时符合题目要求.————————————[课堂归纳——通法领悟]————————————————1个口诀——用二分法求函数零点的方法用二分法求零点近似值的口诀为:定区间,找中点,中值计算两边看;同号去,异号算,零点落在异号间;周而复始怎么办?精确度上来判断.2个防范——函数零点的两个易错点(1)函数的零点不是点,是方程f(x)=0的实根.(2)函数零点的存在性定理只能判断函数在某个区间上的变号零点,而不能判断函数的不变号零点,而且连续函数在一个区间的端点处函数值异号是这个函数在这个区间上存在零点的充分不必要条件.3种方法——判断函数零点个数的方法(1)直接求零点;(2)零点的存在性定理;(3)利用图象交点的个数(内容见例2的[方法规律]).3个结论——有关函数零点的结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.。