2019-2020学年高中数学 第三章《概率》《3.1随机事件的概率(第3课时)》教案 新人教A版必修3.doc

合集下载

【精品推荐】2019-2020学年高中数学北师大版必修3 第三章 1 随机事件的概率 课件(42张)

【精品推荐】2019-2020学年高中数学北师大版必修3 第三章 1 随机事件的概率 课件(42张)

【解】 (1)计算 m 即得男婴出生的频率依次约为0.520 0,0.517 3, n
0.517 3,0.517 3. (2)由于这些频率非常接近0.517 3,因此这一地区男婴出生的概率 约为0.517 3.
◆频率与概率的区别与联系 1.区别 频率是一个试验值,具有随机性,它反映的是某一随机事件出现的频 繁程度,反映了随机事件出现的可能性大小,近似地反映了概率的大 小. 概率是[0,1]上的一个确定值,不随试验结果的改变而改变. 概率从数量上反映了随机事件发生的可能性大小,它是对大量重复试 验来说存在的一种统计规律性. 2.联系 进行大量重复试验,可以用这个事件发生的频率近似地作为它的概 率,概率不是一个近似值,而是一个客观常数.
三、概率
1.随机事件的概率 在相同的条件下,大量重复进行同一试验时,随机事件 A 发生的频率会 在某个常数附近摆动,即随机事件 A 发生的频率具有稳定性 .这时,我们把 这个常数叫作 随机事件A的概率 ,记作P(A) .我们有 0≤P(A)≤1.
2.频率与概率的关系 频率反映了一个随机事件出现的频繁程度,但频率是 随机的,而概率是 一个确定的值,因此,人们用概率来反映 随机事件发生的可能性的大小.
三 生活中的概率 1.生活中的公平性问题 例4 有一个转盘游戏,转盘被平均分成10份.如图,转动转盘,当转盘停止
后,指针指向的数字即为转出的数字.游戏规则如下:两个人参加,先 确定猜数方案,甲转动转盘,乙猜,若猜出的结果与转盘转出的数字 所表示的特征相符,则乙获胜;否则甲获胜.猜数方案从以下三种方案 中选一种:
【提示】 在进行事件的判断时,应注意:(1)条件的变化将影响事件的发生 与否及其结果,要注意从问题的背景中体会条件的特点;(2)必然 事件具有确定性,它在一定条件下肯定发生.对随机事件可作以下解 释:在相同的条件下观察试验,每一次的试验结果不一定相同,且无 法预测下一次试验的结果是什么.

2019_2020学年高中数学第三章概率3.1.1随机事件的概率课件新人教A版必修3

2019_2020学年高中数学第三章概率3.1.1随机事件的概率课件新人教A版必修3
第三章 概率
3.1 随机事件的概率
3.1.1 随机事件的概率
第三章 概率
考点
学习目标
核心素养
在具体情境中,了解随机事
件发生的不确定性和频率的
频率与概率
数学抽象、数学运算
稳定性,了解概率的意义以
及频率与概率的区别
问题导学 (1)什么叫做必然事件、不可能事件、确定事件、随机事件? (2)什么叫做概率? (3)什么叫做频数、频率? (4)频率与概率的区别与联系是什么?
解析:根据频率与概率的关系,(1)正确;必然事件的概率是 1,不 可能事件的概率是 0,(2)不正确;当 P(A)→0,事件 A 发生的可能 性很小,(3)不正确. 答案:(1)√ (2)× (3)×
下列事件是确定事件的是( ) A.2020 年奥运会期间不下雨 B.没有水,种子发芽 C.对任意 x∈R,有 x+1>2x D.抛掷一枚硬币,正面朝上 答案:B
■名师点拨 (1)对事件分类的两个关键点 ①条件:在条件 S 下事件发生与否是与条件相对而言的,没有条件, 就无法判断事件是否发生. ②结果发生与否:有时结果较复杂,要准确理解结果包含的各种情 况. (2)随机试验的特点 ①可以在相同条件下重复进行. ②试验的所有结果是明确可知的,但不止一个. ③每次试验总是出现这些结果中的一个,但在一次试验之前不能确 定该试验出现哪个结果.
不重不漏地列举试验的所有可能结果的方法 (1)结果是相对于条件而言的,要弄清试验的结果,必须首先明确 试验中的条件. (2)根据日常生活经验,按照一定的顺序列举出所有可能的结果, 可应用画树状图、列表等方法解决.
在下列随机试验中,一次试验各指什么?它们各 有几次试验?试验的可能结果有哪几种? (1)观察从北京站开往合肥站的 3 趟列车中正点到达的列车数; (2)某人射击两次,观察中靶的次数.

2019-2020学年高中数学 第三章 概率 3.1 随机事件的概率教案 北师大版必修3.doc

2019-2020学年高中数学 第三章 概率 3.1 随机事件的概率教案 北师大版必修3.doc

2019-2020学年高中数学 第三章 概率 3.1 随机事件的概率教案北师大版必修3本节教材分析一、三维目标 1、知识与技能了解随机事件、必然事件、不可能事件的概念;正确理解事件A 出现的频率的意义,明确事件A 发生的频率fn(A)与事件A 发生的概率P(A)的区别与联系2、过程与方法 发现法教学,通过在抛硬币、抛骰子的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高。

3、情感态度与价值观通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;培养学生的辩证唯物主义观点,增强学生的科学意识.二、教学重点 事件的分类;概率的定义以及和频率的区别与联系; 三、教学难点 随机事件发生存在的统计规律性.四、教学建议 在现实世界中,随机现象是广泛存在的,而随机现象中存在着数量规律性,从而使我们可以运用数学方法来定量地研究随机现象;本节课正是引导学生从数量这一侧面研究随机现象的规律性。

随机事件的概率在实际生活中有着广泛的应用,诸如自动控制、通讯技术、军事、气象、水文、地质、经济等领域的应用非常普遍;通过对这一知识点的学习运用,使学生了解偶然性寓于必然之中的辩证唯物主义思想,学习和体会数学的奇异美和应用美. 新课导入设计 导入一情景导入、展示目标日常生活中,有些问题是能够准确回答的.例如,明天太阳一定从东方升起吗?明天上午第一节课一定是八点钟上课吗?等等,这些事情的发生都是必然的.同时也有许多问题是很难给予准确回答的.例如,你明天什么时间来到学校?明天中午12:10有多少人在学校食堂用餐?你购买的本期福利彩票是否能中奖?等等,这些问题的结果都具有偶然性和不确定性 导入二1.案例分析:为了研究这个问题,2003年北京市某学校高一(5)班的学生做了如下试验:在相同条件下大量重复掷一枚图钉,观察“钉尖朝上”出现频率的变化情况。

(1)每人手捏一枚图钉的钉尖、钉帽在下,从1.2米的高度让图钉自由下落。

2019-2020人教A版数学必修3第3章 3.1 3.1.1 随机事件的概率课件PPT

2019-2020人教A版数学必修3第3章 3.1  3.1.1 随机事件的概率课件PPT
栏目导航
[解] (1)一次试验是指“抛掷两枚质地均匀的硬币一次”,试验 的可能结果有 4 个:(正,反),(正,正),(反,反),(反,正).
(2)一次试验是指“从集合 A 中一次选取 3 个元素组成集合 A 的 一个子集”,试验的结果共有 4 个:{a,b,c},{a,b,d},{a,c, d},{b,c,d}.
栏目导航
[解] (1)(2)中的事件可能发生,也可能不发生,所以是随机事件; (3)中的事件一定会发生,所以是必然事件; (4)中小红书包里没有漫画书,所以是不可能事件.
栏目导航
判断事件类型的思路 判断一个事件是随机事件、必然事件还是不可能事件,首先一定 要看条件,其次是看在该条件下所研究的事件是一定发生(必然事 件)、不一定发生(随机事件),还是一定不会发生(不可能事件).
栏目导航
1.给出下列四个命题:①“三个球全部放入两个盒子,其中必 有一个盒子有一个以上的球”是必然事件;②当“x 为某一实数时可 使 x2<0”是不可能事件;③“每年的国庆节都是晴天”是必然事件; ④“从 100 个灯泡(有 10 个是次品)中取出 5 个,5 个都是次品”是随 机事件.其中正确命题的个数是( )
A.4 B.3 C.2 D.1
栏目导航
B [③“每年的国庆节都是晴天”是随机事件,故错误;①②④ 的判断均正确.]
栏目导航
试验结果的列举 【例 2】 设集合 M={1,2,3,4},a∈M,b∈M,(a,b)是 一个基本事件. (1)“a+b=5”这一事件包含哪几个基本事件? (2)“a=b”这一事件包含哪几个基本事件? (3)“直线 ax+by=0 的斜率 k>-1”这一事件包含哪几个基本事 件?
栏目导航
事件类型的判断 【例 1】 指出下列事件是必然事件、不可能事件,还是随机事 件: (1)中国体操运动员将在下一届奥运会上获得全能冠军; (2)出租车司机小李驾车通过 4 个十字路口都将遇到绿灯; (3)若 x∈R,则 x2+1≥1; (4)小红书包里只有数学书、语文书、地理书、政治书,她随意 拿出一本,是漫画书.

2019年人教版高中数学必修三3.1随机事件的概率(3课时)优质课教案

2019年人教版高中数学必修三3.1随机事件的概率(3课时)优质课教案

第一课时 3.1.1 随机事件的概率教学要求:了解随机事件、必然事件、不可能事件的概念;正确理解事件A 出现的频率的意义;正确理解概率的概念,明确事件A 发生的频率f n (A)与事件A 发生的概率P (A )的区别与联系;利用概率知识正确理解现实生活中的实际问题.教学重点:事件的分类;概率的定义以及概率和频率的区别与联系. 教学难点:随机事件及其概率,概率与频率的区别和联系.教学过程:1. 讨论:①抛一枚硬币,它将正面朝上还是反面朝上? ②购买本期福利彩票是否能中奖?2. 提问:日常生活中,有些问题是很难给予准确无误的回答的,但当我们把某些事件放在一起时,会表现出令人惊奇的规律性.这其中蕴涵什么意思?二、讲授新课:1. 教学基本概念:① 实例:①明天会下雨 ②母鸡会下蛋 ③木材能导电② 必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件;③ 不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件;④ 确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件; 随机事件:……⑤ 频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数;称事件A 出现的比例f n (A)=nn A 为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率;⑥ 频率与概率的区别与联系:随机事件的频率,指此事件发生的次数n A 与试验总次数n 的比值nn A ,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。

我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。

频率在大量重复试验的前提下可以近似地作为这个事件的概率.2. 教学例题:① 出示例1:指出下列事件是必然事件、不可能事件还是随机事件?(1)如果,a b 都是实数,a b b a +=+;(2)没有水分,种子发芽;(3)从分别标有1,2,3,4,5,6的6张号签中任取一张,得到4号签.② 出示例2 某射手在同一条件下进行射击,结果如下表所示:的概率约是什么?(教法:先依次填入表中的数据,在找出频率稳定在常数,即为击中靶心的概率)③ 练习:某人进行打靶练习,共射击10次,其中有2次中10环,有3次环中9环,有4次中8环,有1次未中靶,试计算此人中靶的频率,假设此人射击1次,试问中靶的频率约为多大?中10环的概率约为多大?3. 小结:随机事件、必然事件、不可能事件的概念;事件A出现的频率的意义,概率的概念三、巩固练习:1. 练习:1. 教材 P105 1、22. 作业 2、3第二课时 3.1.2 概率的意义教学要求:正确理解概率的意义, 并能利用概率知识正确解释现实生活中的实际问题.教学重点:概率意义的理解和应用.教学难点:用概率知识解决现实生活中的具体问题.教学过程:一、复习准备:1. 讨论:有人说,既然抛一枚硬币出现正面的概率是0.5,那么连续两次抛一枚质地均匀的硬币,一定是“一次正面朝上,一次反面朝上”,你认为这种想法正确吗?2. 提问:如果某种彩票的中奖概率是1,那么买1000张这种彩票1000一定能中奖吗?二、讲授新课:1. 教学基本概念:①概率的正确理解:概率是描述随机事件发生的可能性大小的度量,事件A的概率P(A)越大,其发生的可能性就越大;概率P(A)越小,事件A发生的可能性就越小.②概率的实际应用(知道随机事件的概率的大小,有利我们做出正确的决策,还可以判断某些决策或规则的正确性与公平性.)③游戏的公平性:应使参与游戏的各方的机会为等可能的,即各方的概率相等,根据这一教学要求确定游戏规则才是公平的④决策中的概率思想:以使得样本出现的可能性最大为决策的准则⑤天气预报的概率解释:降水的概率是指降水的这个随机事件出现的可能,而不是指某些区域有降水或能不能降水.⑥遗传机理中的统计规律:2. 教学例题:①出示例1:有人说,既然抛一枚硬币出现正面向上的概率为0.5,那么连续抛一枚硬币两次,一定是一次正面朝上,一次反面朝上,你认为这种想法正确吗?,那么买1000张这种彩票②练习:如果某种彩票的中奖概率是11000一定能中奖吗?请用概率的意义解释.(分析:买1000张彩票,相当于1000次试验,因为每次试验的结果都是随机的,所以做1000次试验的结果也是随机的,也就是说,买1000张彩票有可能没有一张中奖。

高中数学人教A版必修三 第三章《概率》 3.1.3 随机事件的概率 概率的基本性质

高中数学人教A版必修三 第三章《概率》 3.1.3 随机事件的概率 概率的基本性质

第三章 3.1 随机事件的概率3.1.3概率的基本性质1.了解事件间的相互关系.2.理解互斥事件、对立事件的概念.3.会用概率的加法公式求某些事件的概率.知识梳理自主学习题型探究重点突破当堂检测自查自纠知识梳理自主学习知识点一事件的关系与运算1.事件的包含关系定义一般地,对于事件A与事件B,如果事件A发生,则事件B,这时称事件B包含事件A(或称事件A包含于事件B)符号B⊇A(或A⊆B)图示注意事项①不可能事件记作∅,显然C⊇∅(C为任一事件);②事件A也包含于事件A,即A⊆A;③事件B包含事件A,其含义就是事件A发生,事件B一定发生,而事件B发生,事件A不一定发生一定发生2.事件的相等关系定义一般地,若B⊇A,且A⊇B,那么称事件A与事件B相等符号A=B图示注意事项①两个相等事件总是同时发生或同时不发生;②所谓A=B,就是A,B是同一事件;③在验证两个事件是否相等时,常用到事件相等的定义3.事件的并(或和)定义若某事件发生当且仅当事件A发生事件B发生,则称此事件为事件A与事件B的并事件(或和事件)符号A∪B(或A+B)图示注意事项①A∪B=B∪A;②例如,在掷骰子试验中,事件C2,C4分别表示出现2点,4点这两个事件,则C2∪C4={出现2点或4点}或4.事件的交(或积)定义若某事件发生当且仅当事件A发生事件B发生,则称此事件为事件A与事件B的交事件(或积事件)符号A∩B(或AB)图示注意事项①A∩B=B∩A;②例如,掷一枚骰子,事件{出现的点数为奇数}∩事件{出现的点数为偶数}=∅且互斥事件定义若A∩B为不可能事件,则称事件A与事件B互斥符号A∩B=∅图示注意事项例如,在掷骰子试验中,记C1={出现1点},C2={出现2点},则C1与C2互斥5.互斥事件和对立事件对立事件定义若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件符号A∩B=∅,A∪B=Ω图示注意事项A的对立事件一般记作思考(1)在掷骰子的试验中,事件A={出现的点数为1},事件B={出现的点数为奇数},事件A与事件B应有怎样的关系?答因为1为奇数,所以A⊆B.(2)判断两个事件是对立事件的条件是什么?答①看是不是互斥事件;②看两个事件是否必有一个发生.若满足这两个条件,则是对立事件;否则不是.知识点二 概率的几个基本性质 1.概率的取值范围(1)由于事件的频数总是小于或等于试验的次数,所以频率在0~1之间,从而任何事件的概率在0~1之间,即 . (2) 的概率为1.(3) 的概率为0. 2.互斥事件的概率加法公式当事件A 与事件B 互斥时,A ∪B 发生的频数等于A 发生的频数与B 发生的频数之和,从而A ∪B 的频率f n (A ∪B )=f n (A )+f n (B ),则概率的加法公式为P (A ∪B )=. 0≤P (A )≤1 必然事件 不可能事件 P (A )+P (B )3.对立事件的概率公式若事件A与事件B互为对立事件,则A∪B为必然事件,P(A∪B)=1.再由互斥事件的概率加法公式P(A∪B)=P(A)+P(B),得P(A)= .1-P(B)题型探究重点突破题型一事件关系的判断例1从40张扑克牌(红桃、黑桃、方块、梅花,点数从1~10各10张)中,任取一张.(1)“抽出红桃”与“抽出黑桃”;(2)“抽出红色牌”与“抽出黑色牌”;(3)“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”.判断上面给出的每对事件是否为互斥事件,是否为对立事件,并说明理由.跟踪训练1从装有5个红球和3个白球的口袋内任取3个球,那么下列各对事件中,互斥而不对立的是()A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.至少有一个红球与至少有一个白球D.恰有一个红球与恰有两个红球题型二事件的运算例2在掷骰子的试验中,可以定义许多事件.例如,事件C1={出现1点},事件C2={出现2点},事件C3={出现3点},事件C4={出现4点},事件C5={出现5点},事件C6={出现6点},事件D1={出现的点数不大于1},事件D2={出现的点数大于3},事件D3={出现的点数小于5},事件E={出现的点数小于7},事件F={出现的点数为偶数},事件G={出现的点数为奇数},请根据上述定义的事件,回答下列问题:(1)请举出符合包含关系、相等关系的事件;解 因为事件C 1,C 2,C 3,C 4发生,则事件D 3必发生, 所以C 1⊆D 3,C 2⊆D 3,C 3⊆D 3,C 4⊆D 3.同理可得,事件E 包含事件C 1,C 2,C 3,C 4,C 5,C 6; 事件D 2包含事件C 4,C 5,C 6;事件F 包含事件C 2,C 4,C 6; 事件G 包含事件C 1,C 3,C 5.且易知事件C 1与事件D 1相等,即C 1=D 1.(2)利用和事件的定义,判断上述哪些事件是和事件. 解 因为事件D 2={出现的点数大于3}={出现4点或出现5点或出现6点}, 所以D 2=C 4∪C 5∪C 6(或D 2=C 4+C 5+C 6).同理可得,D 3=C 1+C 2+C 3+C 4,E =C 1+C 2+C 3+C 4+C 5+C 6, F =C 2+C 4+C 6,G =C 1+C 3+C 5.跟踪训练2盒子里有6个红球,4个白球,现从中任取3个球,设事件A ={3个球中有一个红球,两个白球},事件B={3个球中有两个红球,一个白球},事件C={3个球中至少有一个红球},事件D={3个球中既有红球又有白球}.则:(1)事件D与事件A、B是什么样的运算关系?解对于事件D,可能的结果为1个红球2个白球或2个红球1个白球,故D=A∪B.(2)事件C与事件A的交事件是什么事件?解对于事件C,可能的结果为1个红球2个白球,2个红球1个白球或3个红球,故C∩A=A.题型三对立事件、互斥事件的概率例3同时抛掷两枚骰子,求至少有一个5点或6点的概率.跟踪训练3某射手在一次射击中,射中10环、9环、8环、7环的概率分别为0.21,0.23,0.25,0.28,计算这个射手一次射击中射中的环数低于7环的概率.解设“低于7环”为事件E,则事件为“射中7环或8环或9环或10环”,E而事件“射中7环”“射中8环”“射中9环”“射中10环”彼此互斥,故P( )=0.21+0.23+0.25+0.28=0.97,E从而P(E)=1-P( )=1-0.97=0.03.E所以射中的环数低于7环的概率为0.03.求复杂事件的概率一题多解例4玻璃盒里装有红球、黑球、白球、绿球共12个,从中任取1球,设事件A为“取出1个红球”,事件B为“取出1个黑球”,事件C为“取出1个白球”,事件D为“取出1个绿球”.已知P(A)=512,P(B)=1 3,P(C)=16,P(D)=112.(1)求“取出1个球为红球或黑球”的概率;(2)求“取出1个球为红球或黑球或白球”的概率.分析事件A,B,C,D为互斥事件,A∪B与C∪D为对立事件,A∪B∪C与D为对立事件,因此可用两种方法求解.当堂检测 1 2 3 4 51.给出以下结论:①互斥事件一定对立;②对立事件一定互斥;③互斥事件不一定对立;④事件A与B的和事件的概率一定大于事件A的概率;⑤事件A与B互斥,则有P(A)=1-P(B).其中正确命题的个数为()CA.0B.1C.2D.3解析对立必互斥,互斥不一定对立,∴②③正确,①错;又当A∪B=A时,P(A∪B)=P(A),∴④错;只有事件A与B为对立事件时,才有P(A)=1-P(B),∴⑤错.2.对同一事件来说,若事件A是必然事件,事件B是不可能事件,则事件A与事件B的关系是()CA.互斥不对立B.对立不互斥C.互斥且对立D.不互斥、不对立解析必然事件与不可能事件不可能同时发生,但必有一个发生,故事件A与事件B的关系是互斥且对立.3.对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设事件A={两弹都击中飞机},事件B={两弹都没击中飞机},事件C={恰有一弹击中飞机},事件D={至少有一弹击中飞机},下列关系不正确的是()D A.A⊆D B.B∩D=∅C.A∪C=DD.A∪B=B∪D解析“恰有一弹击中飞机”指第一枚击中第二枚没中或第一枚没中第二枚击中,“至少有一弹击中”包含两种情况:一种是恰有一弹击中,一种是两弹都击中,∴A∪B≠B∪D.4.从集合{a ,b ,c ,d ,e }的所有子集中任取一个,若这个子集不是集合{a ,b ,c }的子集的概率是 ,则该子集恰是集合{a ,b ,c }的子集的概率是( ) 34A.35B.25C.14D.18解析 该子集恰是{a ,b ,c }的子集的概率为P =1-34=14.C5.从几个数中任取实数x,若x∈(-∞,-1]的概率是0.3,x是负数的概率是0.5,则x∈(-1,0)的概率是________.0.2解析设“x∈(-∞,-1]”为事件A,“x是负数”为事件B,“x∈(-1,0)”为事件C,由题意知,A,C为互斥事件,B=A∪C,∴P(B)=P(A)+P(C),P(C)=P(B)-P(A)=0.5-0.3=0.2.课堂小结1.互斥事件和对立事件既有区别又有联系.互斥,未必对立;对立,一定互斥.2.互斥事件的概率加法公式是一个很基本的计算公式,解题时要在具体的情景中判断各事件间是否互斥,只有互斥事件才能用概率加法公式P(A∪B)=P(A)+P(B).3.求复杂事件的概率通常有两种方法:(1)将所求事件转化成彼此互斥事件的并事件;(2)先求其对立事件的概率,再求所求事件的概率.本课结束。

2019-2020学年人教a版必修3 3.1.1随机事件的概率 课件(33张)

2019-2020学年人教a版必修3 3.1.1随机事件的概率 课件(33张)

频数 48
121
208
223
193
165
42
频率
• (1)将各组的频率填入表中; • (2)根据上述统计结果,估计灯管使用寿命不
解 : (1) 频 率 依 次 是 0.048,0.121,0.208,0.223 , 0.193 , 0.165,0.042.
(2)样本中使用寿命不足 1 500 小时的频数是 48+121+208 +223=600,
所以样本中使用寿命不足 1 500 小时的频率是1600000=0.6, 即灯管使用寿命不足 1 500 小时的概率约为 0.6.
频率与概率混淆
• 【示例】把一枚质地均匀的硬币连续抛掷1 000次,其中有498次正面朝上,502次反面朝 上,求掷一次硬币正面朝上的概率.
【错解】由题意,根据公式fn(A)=
• 3.在200件产品中,有192件一级品,8件二 级品,则下列事件:
• ①在这200件产品中任意选出9件,全部是一 级品;
• ②在这200件产品中任意选出9件,全部是二 级品;
• ③在这200件产品中任意选出9件,不全是一 级品;
• ④在这200件产品中任意选出9件,其中不是 一级品的件数小于9.
• (2)求法:由于事件A发生的频率随着试验次 数的增加稳定于________,因此可以用 ________来估计概率.
• 1.判断正误(在括号内打“√”或“×”) • (1)事件发生的频率与概率是相同的.( ) • (2)在大量重复试验中,概率是频率的稳定
值.( ) • 【答案】(1)× (2)√
• (2)射击一次,就是一次试验,共有2次试 验.试验的结果是“两次中靶”“第一次中 靶,第二次未中靶”“第一次未中靶,第二 次中靶”“两次都未中靶”各1种,共4种.

2019-2020数学必修3人教A版课件:第三章 3.1 3.1.1 随机事件的概率

2019-2020数学必修3人教A版课件:第三章 3.1 3.1.1 随机事件的概率

2.在 25 件同类产品中,有 2 件次品,从中任取 3 件产 品,其中不可能事件为( )
A.3 件都是正品 B.至少有 1 件次品 C.3 件都是次品 D.至少有 1 件正品
解析 25 件产品中只有 2 件次品,所以不可能取出 3 件都是次品.
3.事件 A 发生的概率接近于 0,则( ) A.事件 A 不可能发生 B.事件 A 也可能发生 C.事件 A 一定发生 D.事件 A 发生的可能性很大 解析 不可能事件的概率为 0,但概率接近于 0 的事件 不一定是不可能事件.
□ ___0_9_0__≤__P_(_A_)_≤__1__.这是因为在 n 次试验中,事件 A 发生的
频数 m 满足 0≤m≤n,所以 0≤mn ≤1.当 A 是必然事件时,
□ P(A) = _____1_0_1_____ , 当 A 是 不 可 能 事 件 时 , P(A) = □ ____1_1_0______.
[解] (1)频率依次是: 0.048,0.121,0.208,0.223,0.193,0.165,0.042. (2)样本中寿命不足 1500 小时的频数是 48+121+208 +223=600, 所以样本中寿命不足 1500 小时的频率是1600000=0.6. 即灯管使用寿命不足 1500 小时的概率约为 0.6.
[解] (1)是必然事件. (2)(3)是随机事件. 对于(2),当 k>0 时是 R 上的增函数;当 k<0 时是 R 上 的减函数;当 k=0 时函数不具有单调性. 对于(3),当|a+b|=|a|+|b|时,有两种可能:一种可能 是 a,b 同号,即 ab>0;另一种可能是 a,b 中至少有一个 为 0,即 ab=0.
5.某商场设立了一个可以自由转动的转盘(如图所示), 并规定:顾客购物 10 元以上就能获得一次转动转盘的机会, 当转盘停止时,指针落在哪一区域就可以获得相应的奖品, 下表是活动进行中的一组统计数据.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年高中数学第三章《概率》《3.1随机事件的概率(第
3课时)》教案新人教A版必修3
一、教学目标:
1、知识与技能:(1)正确理解事件的包含、并事件、交事件、相等事件,以及互斥事件、对立事件的概念;
(2)概率的几个基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;2)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)
(3)正确理解和事件与积事件,以及互斥事件与对立事件的区别与联系.
四、教学过程:
1、创设情境:(1)集合有相等、包含关系,如{1,3}={3,1},{2,4}С{2,3,4,5}等;(2)在掷骰子试验中,可以定义许多事件如:C1={出现1点},C2={出现2点},C3={出现1点或2点},C4={出现的点数为偶数}……
师生共同讨论:观察上例,类比集合与集合的关系、运算,你能发现事件的关系与运算吗?
例1 一个射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件?
事件A:命中环数大于7环;事件B:命中环数为10环;
事件C:命中环数小于6环;事件D:命中环数为6、7、8、9、10环.
分析:要判断所给事件是对立还是互斥,首先将两个概念的联系与区别弄清楚,互斥事件是指不可能同时发生的两事件,而对立事件是建立在互斥事件的基础上,两个事件中一个不发生,另一个必发生。

解:A与C互斥(不可能同时发生),B与C互斥,C与D互斥,C与D是对立事件(至少一个发生).
例2 抛掷一骰子,观察掷出的点数,设事件A 为“出现奇数点”,B 为“出现偶数点”,已知P(A)=21,P(B)=2
1,求出“出现奇数点或偶数点”. 分析:抛掷骰子,事件“出现奇数点”和“出现偶数点”是彼此互斥的,可用运用概率的加法公式求解.
解:记“出现奇数点或偶数点”为事件C,则C=A ∪B,因为A 、B 是互斥事件,所以P(C)=P(A)+ P(B)=21+2
1=1 答:出现奇数点或偶数点的概率为1
例4 袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为31,得到黑球或黄球的概率是125,得到黄球或绿球的概率也是12
5,试求得到黑球、得到黄球、得到绿球的概率各是多少?
分析:利用方程的思想及互斥事件、对立事件的概率公式求解.
解:从袋中任取一球,记事件“摸到红球”、“摸到黑球”、“摸到黄球”、“摸到绿球”为A 、
B 、
C 、
D ,则有P(B ∪C)=P(B)+P(C)=
125;P(C ∪D)=P(C)+P(D)=12
5;P(B ∪C ∪D)=1-P(A)=1-31=32,解的P(B)=41,P(C)=61,P(D)=4
1 答:得到黑球、得到黄球、得到绿球的概率分别是41、61、41. 4、课堂小结:概率的基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;2)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);3)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);
3)互斥事件与对立事件的区别与联系,互斥事件是指事件A 与事件B 在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A 发生且事件B 不发生;(2)事件A 不发生且事件B 发生;(3)事件A 与事件B 同时不发生,而对立事件是指事件A 与事件B 有且仅有一个发生,其包括两种情形;(1)事件A 发生B 不发生;(2)事件B 发生事件A 不发生,对立事件互斥事件的特殊情形。

5、评价与课堂练习:
1.从一堆产品(其中正品与次品都多于2件)中任取2件,观察正品件数与次品件数,判断下列每件事件是不是互斥事件,如果是,再判断它们是不是对立事件。

(1)恰好有1件次品恰好有2件次品;
(2)至少有1件次品和全是次品;
(3)至少有1件正品和至少有1件次品;
(4)至少有1件次品和全是正品;
2.抛掷一粒骰子,观察掷出的点数,设事件A 为出现奇数,事件B 为出现2点,已知P (A )=21,P (B )=6
1,求出现奇数点或2点的概率之和。

3.某射手在一次射击训练中,射中10环、8环、7环的概率分别为0.21,0.23,0.25,0.28,计算该射手在一次射击中:
(1)射中10环或9环的概率;
(2)少于7环的概率。

4.已知盒子中有散落的棋子15粒,其中6粒是黑子,9粒是白子,已知从中取出2粒都是黑子的概率是71,从中取出2粒都是白子的概率是35
12,现从中任意取出2粒恰好是同一色的概率是多少?
6、答案:
1.解:依据互斥事件的定义,即事件A 与事件B 在一定试验中不会同时发生知:(1)恰好有1件次品和恰好有2件次品不可能同时发生,因此它们是互斥事件,又因为它们的并不是必然事件,所以它们不是对立事件,同理可以判断:(2)中的2个事件不是互斥事件,也不是对立事件。

(3)中的2个事件既是互斥事件也是对立事件。

2.解:“出现奇数点”的概率是事件A ,“出现2点”的概率是事件B ,“出现奇数点或2点”的概率之和为P (C )=P (A )+P (B )=21+61=3
2 3.解:(1)该射手射中10环与射中9环的概率是射中10环的概率与射中9环的概率的和,即为0.21+0.23=0.44。

(2)射中不少于7环的概率恰为射中10环、9环、8环、7环的概率的和,即为0.21+0.23+0.25+0.28=0.97,而射中少于7环的事件与射中不少于7环的事件为对立事件,所以射中少于7环的概率为1-0.97=0.03。

4.解:从盒子中任意取出2粒恰好是同一色的概率恰为取2粒白子的概率与2。

相关文档
最新文档