相交线与平行线典型例题及拔高训练

合集下载

相交与平行线经典例题

相交与平行线经典例题

相交与平行线经典例题
1. 有一条直线L和一条平行于L的线段AB,AB的长度为
5cm。

现在在L上选取一点C,再选取一个点D,并且D是
AC的中点。

求CD的长度。

解法:由题意可知,CD平行于AB,且AC=2CD。

根据比例
关系,我们可以得到:AC/CD = AB/BD。

由于AC=2CD,
AB=5cm,所以2CD/CD = 5/BD,简化得到2=5/BD。

解方程
得到BD=5/2=2.5cm。

所以CD=AC/2=2.5/2=1.25cm。

2. 在平面上有两条直线L1和L2,L1与L2的交点为A。

由A
分别向两条直线做垂线,分别与两条直线交于B和C。

已知
AB=6cm,AC=8cm。

求BC的长度。

解法:由题意可知,AB垂直于L1,AC垂直于L2。

所以
ABC是直角三角形。

根据勾股定理,得到BC的长度:BC^2
= AB^2 + AC^2 = 6^2 + 8^2 = 36 + 64 = 100。

所以BC = 10cm。

3. 平面上有两条平行线L1和L2,L1上有一点P,分别向L1
和L2做两条垂线PA和PB,交于A和B。

已知AP=5cm,
PB=8cm。

求AB的长度。

解法:由题意可知,PA垂直于L1,PB垂直于L2。

所以PAB
是直角三角形。

根据勾股定理,得到AB的长度:AB^2 =
AP^2 + PB^2 = 5^2 + 8^2 = 25 + 64 = 89。

所以AB = √89 cm。

完整版)相交线和平行线提高题与常考题型和培优题(含解析)

完整版)相交线和平行线提高题与常考题型和培优题(含解析)

完整版)相交线和平行线提高题与常考题型和培优题(含解析)相交线和平行线是初中数学中重要的几何概念,涉及到很多考试题型,包括提高题和常考题,也是培优题的内容。

以下是一些选择题和填空题。

1.在图中,已知AB∥CD,CD⊥EF,且∠1=124°,则∠2=()A.56°B.66°C.24°D.34°2.如图,是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为()A.80°B.90°C.100°D.102°3.在图中,直线a∥b,若∠2=55°,∠3=100°,则∠1的度数为()A.35°B.45°C.50°D.55°4.在图中,△ABC的面积为2,将△ABC沿AC方向平移至△DFE,且AC=CD,则四边形AEFB的面积为()A.6B.8C.10D.125.在图中,点D、E、F分别在AB,BC,AC上,且EF∥AB,要使DF∥BC,只需再有条件()A.∠1=∠2B.∠1=∠DFEC.∠1=∠AFDD.∠2=∠AFD6.在图中,与∠1是同旁内角的是()A.∠2B.∠3C.∠4D.∠57.在图中,以下条件不能判定直线a与b平行的是()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°8.在图中,直线a、b被直线c所截,下列条件能使a∥b 的是()A.∠1=∠6 B.∠2=∠6 C.∠1=∠3 D.∠5=∠79.在图中,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO的度数为()A.85°B.70°C.75°D.60°10.在图中,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65°B.115°C.125°D.130°11.在图中,AB∥CD,DA⊥AC,垂足为A,若∠ADC=35°,则∠1的度数为()A.65°B.55°C.45°D.35°12.在图中,直线a∥b,∠1=85°,∠2=35°,则∠3=()A.85°B.60°C.50°D.35°13.在图中,已知BD∥AC,∠1=65°,∠A=40°,则∠2的大小是_______。

初一数学相交线与平行线28道典型题(含 答案和解析)

初一数学相交线与平行线28道典型题(含 答案和解析)

初一数学相交线与平行线28道典型题(含答案和解析及考点)1、若直线AB,CD相交于O,∠AOC与∠BOD的和为200°,则∠AOD的度数为.答案:80°.解析:∵∠AOC=∠BOD,∠AOC与∠BOD的和为200°.∴∠AOC=100°.∵∠AOD与∠AOC互补.∴∠AOD=80°.考点:几何初步——相交线与平行线——对顶角、邻补角.2、已知OA⊥OB,∠AOC∶∠AOB=2∶3,则∠BOC= .答案:30°或150°.解析:当OC在∠AOB内部时,∠BOC=30°;当OC在∠AOB外部时,∠BOC=150°.考点:几何初步——相交线与平行线——对顶角、邻补角——垂线.3、若直线a与直线b相交于点A,则直线b上到直线a距离等于2cm的点的个数是().A.0B.1C.2D.3答案:C.解析: 直线b的交点两侧各有一点到直线a的距离等于2cm.考点:几何初步——相交线与平行线——点到直线的距离.4、如图所示,在平面内,两条直线l1、l2相交于点O,对于平面内任意一点M,若p、q分别是点M到直线l1、l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有个.答案:4.解析:因为两条直线相交有四个角,因此每一个角内就有一个到直线l1、l2的距离分别是2、1,的点,即距离坐标是(2,1)的点,因而共有4个.考点:几何初步——相交线与平行线——点到直线的距离.5、若∠1和∠2是同旁内角,若∠1=50°,则∠2的度数为( ). A.45° B.135° C.45°或135° D. 不能确定 答案:D.解析:若∠1和∠2是同旁内角,若∠1=50°,则∠2的度数为不能确定. 考点:几何初步——相交线与平行线——三线八角.6、平面上n 条直线最少能将平面分为__________部分,最多能将平面分为__________部分. A. 最少能将平面分成n+1部分;最多分为n2+n+22.B. 最少能将平面分成n+2部分;最多分为n2+n−22.C. 最少能将平面分成n+1部分;最多分为n2+n−22. D. 最少能将平面分成n+2部分;最多分为n2−n+22.答案:A.解析:1条直线将平面分成2部分.2条直线最少将平面分成3部分,最多将平面分成4部分,其中4=1+1+2. 3条直线最少将平面分成4部分,最多将平面分成7部分,其中7=1+1+2+3. 4条直线最少将平面分成5部分,最多将平面分成11部分,其中11=1+1+2+3+4. ……n 条直线最少将平面分成n+1部分,最多将平面分成n2+n+22部分,其中n2+n+22=1+1+2+3+…+n .综上,n 条直线最少能将平面分成n+1部分,对多能将平面分成n2+n+22部分.考点:几何初步——相交线与平行线——相交线.7、如图,已知∠1=∠2,要使∠3=∠4,则需( ).A. ∠1=∠2B. ∠2=∠4C. ∠1=∠4D. AB ∥CD答案:D.解析:假设∠3=∠4,即∠BEF=∠CFE.由内错角相等,两直线平行,可得AB∥CD.故已知∠1=∠2,要使∠3=∠4,只要AB∥CD.考点:几何初步——相交线与平行线——平行线公理及推论.8、如图①是长方形纸带,将纸带沿EF折叠成图②,再沿BF折叠成图③.(1)若图①中的∠DEF=20°,则图②中的∠CFE度数是.(2)若图①中的∠DEF=α,则图③中的∠CFE度数是.(用含有α的式子表示)答案:(1)160°.(2)180°-3α.解析:(1)在图①中:∵AD∥BC.∴∠BFE=∠DEF=20°.∴∠CFE=160°.在图②中,根据折叠性质,∠CFE大小不变.∴∠CFE=160°.(2)在图①中,∠CFE=180°-∠BFE=180°-α.在图②中,∠CFB=∠CFE-∠BFE=180°-α.根据折叠性质,图③中∠CFB与图②中∠CFB相等.在图③中,∠CFE=∠CFB-∠BFE=180°-3α.∴图③中的∠CFE度数是180°-3α.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的性质.几何变换——图形的对称——翻折变换(折叠问题)——轴对称基础——轴对称的性质.9、已知:如图,∠D=110°,∠EFD=70°,∠1=∠2.求证:∠3=∠B.证明:∵∠D=110°,∠EFD=70°,(已知).∴∠D+∠EFD=180°.∴_____∥ _____.().又∵∠1=∠2,(已知).∴_____∥ _____.().∴_____∥ _____.().∴∠3=∠B.().答案:答案见解析.解析:∵∠D=110°,∠EFD=70°,(已知).∴∠D+∠EFD=180°.∴AD∥EF.(同旁内角互补,两直线平行).又∵∠1=∠2,(已知).∴AD∥BC.(内错角相等,两直线平行).∴EF∥BC.(平行于同一直线的两直线平行).∴∠3=∠B.(两直线平行,同位角相等).考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.10、车库的电动门栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD的大小是().A.150°B.180°C.270°D.360°答案:C.解析:过B作CD的平行线BF,则CD∥BF∥AE.∴∠DCB+∠CBF=180°,∠ABF=90°.∴∠ABC+∠BCD=∠DCB+∠CBD+∠ABF=180°+90°=270°.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的性质.11、如图,一条公路修到湖边时,需拐弯绕湖而过;如果第一次拐角∠A是120°,第二次拐角∠B是150°,第三次拐角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是.答案:150°.解析:如图,作BE∥AD.∴∠1=∠A=120°.∴∠2=∠ABC=∠1=150°-120°=30°.∵AD∥CF.∴BE∥CF.∴∠C+∠2=180°.∴∠C=180°-30°=150°.考点:几何初步——相交线与平行线——平行线公理及推论——平行线的性质.12、如图所示,若AB∥CD,则角α,β,γ的关系为().A.α+β+γ=360°B.α-β+γ=180°C.α+β+γ=180°D.α+β-γ=180°答案:D.解析:过β角的顶点为E,作EF∥AB,α+β-γ=180°.考点:几何初步——相交线与平行线平行线的判定——平行线的性质——平行有关的几何模型.13、如图AB∥CD∥EF,CG平分∠ACE,∠A=140°,∠E=110°,则∠DCG=().A.13°B.14°C.15°D.16°答案:C.解析:∵EF∥CD,∴∠ECD=180°-∠E=70°.同理∠ACD=40°.∴∠ACE=110°.∵CG平分∠ACE.∴∠ECG=55°.∴∠DCG=∠ECD-∠ECG=70°-55°=15°.考点:几何初步——相交线与平行线——平行线——平行线的性质——平行有关的几何模型.14、如图,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,求∠GEF的度数.A.15°B.20°C.25°D.30°答案:D.解析:由AB∥EF∥CD,可知∠BED=∠B+∠D.已知∠B+∠BED+∠D=192°.∴2∠B+2∠D=192°,∠B+∠D=96°.又∠B-∠D=24°,于是可得关于∠B、∠D的方程组:{∠B+∠D=96°∠B−∠D=24°.解得∠B=60°.由AB∥EF知∠BEF=∠B=60°.因为EG平分∠BEF,所以∠GEF=12∠BEF=30°.考点:几何初步——相交线与平行线——平行线——平行有关的几何模型.15、把命题“在同一平面内,垂直于同一直线的两直线互相平行”改写成“如果……,那么……”的形式:.答案:“在同一平面内,如果两条直线都垂直于同一直线,那么这两直线互相平行”.解析:略.考点:命题与证明——命题与定理.16、下列命题中,假命题是().A. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行.B. 两条直线被第三条直线所截,同旁内角互补.C. 两直线平行,内错角相等.D. 在同一平面内,过一点有且只有一条直线与已知直线垂直.答案:B.解析:两条直线被第三条直线所截,同旁内角不一定互补,只有两直线平行时,同旁内角互补.考点:命题与证明——命题与定理.17、已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD.(2)求∠C的度数.答案:(1)证明见解析.(2)∠C=25°.解析:(1)∵AE⊥BC,FG⊥BC.∴AE∥FG.∴∠2=∠A.∵∠1=∠2.∴∠1=∠A.∴AB∥CD.(2)∵AB∥CD.∴∠C=∠3.∵∠D=∠3+60°,∠CBD=70°,∠C+∠D+∠CBD=180°.∴∠C+∠C+60°+70°=180°.∴∠C=25°.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.18、已知:如图,在△ABC中,BD⊥AC于点D,E为BC上一点,过E点作EF⊥AC,垂足为F,过点D作DH∥BC交AB于点H.(1)请你补全图形.(2)求证:∠BDH=∠CEF.答案:(1)画图见解析.(2)证明见解析.解析:(1)补全图形.(2)∵BD⊥AC,EF⊥AC.∴BD∥EF.∴∠CEF=∠CBD.∵DH∥BC.∴∠BDH=∠CBD.∴∠BDH=∠CEF.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.尺规作图——过一点作已知直线的垂线——过一点作已知直线的平行线.19、已知,如图,AB∥CD,∠1=∠B,∠2=∠D.求证:BE⊥DE.答案:证明见解析.解析:过E点作EF∥AB,则∠B=∠3.又∵∠1=∠B.∴∠1=∠3.∵AB∥EF,AD∥CD.∴EF∥CD.∴∠A=∠D.又∵∠2=∠D.∴∠2=∠4.∵∠1+∠2+∠3+∠4=180°.∴∠3+∠4=90°,即∠BED=90°.∴BE⊥ED.考点:几何初步——角——角的计算与证明.相交线与平行线——平行线的判定——平行线的性质.20、如图,已知CD∥EF,∠1+∠2=∠ABC.求证:AB∥GF.答案:证明见解析.解析:延长CD、GF交于点H,∠1=∠H.故∠2+∠H=∠ABC.易得AB∥GF.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.21、如图,已知点A,E,B在同一条直线上,设∠CED=x,∠C+∠D=y.(1)若AB∥CD,试用含x的式子表示y,并写出x的取值范围.(2)若x=90°,且∠AEC与∠D互余,求证:AB∥CD.答案:(1)y=180°-x,其中x的取值范围是(0<x<180).(2)证明见解析.解析:(1)∵AB∥CD.∴∠AEC=∠C,∠BED=∠D.∵∠C+∠D=y.∴∠AEC+∠BED=y.∵∠CED=x,∠AEC+∠CED+∠BED=180°.∴x+y=180°.∴y=180°-x,其中x的取值范围是(0<x<180).(2)∵x=90°,即∠CED=90°.∴∠AEC+∠BED=90°.∵∠AEC与∠D互余.∴∠AEC+∠D=90°.∴∠BED=∠D.∴AB∥CD.考点:函数——函数基础知识——函数自变量的取值范围.几何初步——角——余角和补角——角的计算与证明.相交线与平行线——平行线的判定——平行线的性质.22、阅读材料:材料1:如图(a)所示,科学实验证明:平面镜反射光线的规律是:射到平面镜上的光线和反射出的光线与平面镜所夹的角相等.即∠1=∠2.材料2:如图(b)所示,已知△ABC,过点A作AD∥BC,则∠DAC=∠C,又∵AD∥BC,∴∠DAC+∠BAC+∠B=180°,∴∠BAC+∠B+∠C=180°.即三角形内角和为180°.根据上述结论,解决下列问题:(1)如图(c)所示,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b镜反射,若b反射出的光线n平行于m,且∠1=50°,则∠2= ,∠3= .(2)在(1)中,若∠1=40°,则∠3= ,若∠1=55°,则∠3= .(3)由(1)(2)请你猜想:当∠3= 时,任何射到平面镜a上的光线m经过平面镜a和b的两次反射后,入射光线m与反射光线n总是平行,请说明理由.答案:(1)1.100°.2.90°.(2)1.90°.2.90°.(3)90°.解析:(1)∵∠1=50°.∴∠4=∠1=50°.∴∠6=180°-50°-50°=80°.∵m∥n.∴∠2+∠6=180°.∴∠2=100°.∴∠5=∠7=40°.∴∠3=180°-50°-40°=90°.故答案为:100°,90°.(2)∵∠1=40°.∴∠4=∠1=40°.∴∠6=180°-40°-40°=100°.∵m∥n.∴∠2+∠6=180°.∴∠2=80°.∴∠5=∠7=50°.∴∠3=180°-50°-40°=90°.∵∠1=55°.∴∠4=∠1=55°.∴∠6=180°-55°-55°=70°.∵m∥n.∴∠2+∠6=180°.∴∠2=110°.∴∠5=∠7=35°.∴∠3=180°-55°-35°=90°.(3)当∠3=90°时,m∥n.理由是:∵∠3=90°.∴∠4+∠5=180°-90°=90°.∵∠4=∠1,∠7=∠5.∴∠1+∠7+∠4+∠5=2×90°=180°.∴∠2+∠6=180°-(∠1+∠4)+180°-(∠5+∠7)=180°.∴m∥n.故答案为:90°.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质.23、如图,直线AC∥BD,连接AB,直线AC,BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角)(1)如图1,当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD.,(2)如图2,当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(请画出图形并直接回答成立或不成立)(3)如图3,当动点P落在第③部分时,探究∠PAC,∠APB,∠PBD之间的关系,请画出图形并直接写出相应的结论.答案:(1)证明见解析.(2)不成立.(3)证明见解析.解析:(1)过点P作直线AC的平行线,易知∠1=∠PAC,∠2=∠PBD.又∵∠APB=∠1+∠2,∴∠APB=∠PAC+∠PBD.(2)不成立.(3)①当动点P在射线BA的右侧时(如图4).结论是∠PBD =∠PAC+∠APB.②当动点P在射线BA上(如图5).结论是∠PBD =∠PAC+∠APB或∠PAC =∠PBD +∠APB或∠APB=0°,∠PAC=∠PBD.③当动点P在射线BA的左侧时(如图6).结论是∠PAC =∠PBD +∠APB.考点:几何初步——相交线与平行线——平行线的判定——平行线的性质——平行有关的几何模型.24、如图所示,在下列条件中:①∠1=∠2;②∠BAD=∠BCD;③∠3=∠4且∠ABC=∠ADC;④∠BAD+∠ABC=180°;⑤∠ABD=∠ACD;⑥∠ABC+∠BCD=180°.能判定AB∥CD的共有()个.A.2B.3C.4D.5答案:A.解析:由平行的判定知③⑥可以判定AB∥CD.考点:几何初步——相交线与平行线——平行线的判定.25、有下列四个命题:①如果两条直线都与第三条直线平行,那么这两条直线也互相平行.②两条直线被第三条直线所截,同旁内角互补.③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相垂直.④在同一平面内,过一点有且只有一条直线与已知直线垂直.其中所有正确的命题是().A. ①②B. ①④C. ②③D. ③④答案:B.解析:①④正确;②两条直线被第三条直线所截,同旁内角不一定互补,需要两条直线平行;③在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行. 考点:几何初步——相交线与平行线——平行线公理及推论——平行线的判定——平行线的性质.26、如图,DB ∥FG ∥EC ,∠ABD=60°,∠ACE=30°,AP 平分∠BAC ,求∠PAG 的度数.A.11°B.12°C.13°D.14°答案:B.解析:由DB ∥FG ∥EC.可得∠BAC=∠BAG+∠CAG=∠DBA+∠ACE=60°+36°=96°.由AP 平分∠BAC 得∠CAP=12∠BAC=12×96°=48°. 由FG ∥EC 得∠GAC=∠ACE=36°.∴∠PAG=48°-36°=12°.考点:几何初步——相交线与平行线——平行线——平行有关的几何模型.27、如图,AB ∥CD ,且∠BAP=60°-α,∠APC=45°+α,∠PCD=30°-α,则α=( ).A.10°B.15°C.20°D.30°答案:B.解析:得∠APC=∠BAP+∠DCP .∴45°+α=60°-α+30°-α.解得:α=15°.考点:几何初步——相交线与平行线——平行线的性质.28、已知,如图,AB∥CD,直线α交AB、CD分别于点E、F,点M在线段EF点上,P是直线CD 上的一个动点,(点P不与F重合).(1)当点P在射线FC上移动时,∠FMP、∠FPM和∠AEF之间的数量关系是:.(2)当点P在射线FD上移动时,∠FMP、∠FPM和∠AEF之间的数量关系是:. 答案:(1)∠FMP+∠FPM=∠AEF.(2)∠FMP+∠FPM+∠AEF=180°.解析:(1)当点P在射线FC上移动时.∵AB∥CD.∴∠AEF+∠CFE=180°.又∵∠FMP+∠FPM+∠CFE=180°.∴∠FMP+∠FPM=∠AEF.(2)当点P在射线FD上移动时.∵AB∥CD.∴∠AEF=∠MFD.又∵∠FMP+∠FPM+∠CFE=180°.∴∠FMP+∠FPM+∠AEF=180°.考点:几何初步——相交线与平行线——平行线的性质.。

相交线与平行线典型例题分析和提高类型题(学生版)

相交线与平行线典型例题分析和提高类型题(学生版)

相交线与平行线典型例题分析和提高类型题【苏老师实体、网课内部专用,请勿外传其他群】做这一块题目的方法:【变复杂到简单】也即是将复杂的平面图形分解成若干个基本图形是解决问题的关键所在!典例1:如图,平行直线AB、CD与相交直线EF,GH相交,则图中同旁内角共有()A、4对B、8对C、12对D、16对分析:从原图形中的四条直线中任意取出一条,得到两类基本图形:一类为三线中两线平行,有两对同旁内角;另一类三线两两相交,有六对同旁内角。

解:(1)取出EF,得到基本图形如图(1),有2对同旁内角;(2)取出GH,得到基本图形如图(2),有2对同旁内角;(3)取出AB,得到基本图形如图(3),有6对同旁内角;(4)取出CD,得到基本图形如图(4),有6对同旁内角;故共有2+2+6+6=16对同旁内角对应的习题演练:1、如图:按各组角的位置,判断错误的是()A、∠1与∠A是同旁内角B、∠3与∠4是内错角C、∠5与∠6是同旁内角D、∠2与∠5是同位角【习题演练答案:1.C】总结:解决此类应用性问题基本步骤:(1)正确地将实际问题转化为基本定理或基本模型,转化来源于对已知条件的综合分析、归纳与抽象,并与熟知的模型相比较,以确定模型种类;(2)运用所学知识进行合理设计并确定最佳解题方案;(3)用所获得的结果去解释实际问题,即是对实际问题进行总结和作答。

典例2:如图(1),一辆汽车在公路上由A向B行驶,M,N分别为位于AB两侧的学校,(1)汽车在公路上行驶时会对学校的教学造成影响,当汽车行驶在何处时对学校影响最大?在图上标出来;(2)当汽车从A向B行驶时,哪一段上对两个学校的影响越来越大?哪一段上对M学校的影响逐渐减小,而对N学校的影响逐渐增大?分析:对学校影响的大小与汽车到学校的距离的远近有直接关系。

汽车行驶在直线AB上,用点到直线的距离中垂线段最短可得到实际问题的解决途径。

解:(1)如图(2),作M C⊥AB交AB于点C,ND⊥AB交AB于D.根据垂线段最短,知在点C 处对M学校的影响最大,在点D处对N学校的影响最大。

相交线和平行线典型例题及强化训练(通用)

相交线和平行线典型例题及强化训练(通用)

4.2 相交线和平行线典型例题及强化训练课标要求① 了解对顶角,知道对项角相等。

② 了解垂线、垂线段等概念,了解垂线段最短的性质,体会点到直线距离的意 义。

③ 知道过一点有且仅有一条直线垂直干已知直线,会用三角尺或量角器过一点 画一条直线的垂线。

④ 知道两直线平行同位角相等,进一步探索平行线的性质⑤ 知道过直线外一点有且仅有一条直线平行于已知直线,会用角尺和直尺过已 知直线外一点画这条直线的平行线。

⑥ 体会两条平行线之间距离的意义,会度量两条平行线之间的距离 典型例题1. 判定与性质 例1判断题: 1) 不相交的两条直线叫做平行线。

( ) 2) 过一点有且只有一条直线与已知直线平行。

( ) 3) 两直线平行,同旁内角相等。

( ) 4)两条直线被第三条直线所截,同位角相等。

( )答案:(1)错,应为“在同一平面内,不相交的两条直线叫做平行线” (2) 错,应为“过直线外一点,有且只有一条直线与已知直线平行”。

(3) 错,应为“两直线平行,同旁内角互补 ”。

(4)错,应为“两条平行线被第三条直线所截,同位角相等” 例2已知:如图,AB// CD 求证:/ B+Z D=Z BED 分析:可以考虑把/ BED^成两个角的 如图5,过E 点引一条直线EF// AB 则有Z B= 1,再设法证明Z D=Z 2,需证EF// CD 这可通过已知 AB// CD 和EF// AB 到。

证明:过点E 作EF// AB 则Z B=Z 1 (两 线平行,内错角相等)••• AB// CD (已知),又••• EF// AB (已作),••• EF// CD (平行于同一直线的两条直线互相平行) •••Z D=Z 2 (两直线平行,内错角相等)。

和Z得 直o平<536oo o oF 尸B o Ao o FEA BC oAB FG H ECD(圍9)o又 o又 直线平•••/ FED / D=180 (两直线平行,同旁内角互为此 辅助 B- / Do小发生 --------- D (等式的性平C° 又 v/ BED / 1+/ 2,•••/ BED / B+/ D (等量代换)。

(完整版)平行线与相交线提高训练

(完整版)平行线与相交线提高训练

平行线与相交线提高训练1如图,直线a // b,那么/ x的度数是________________ .2.如图,AB// CD,/ DCE的角平分线CG的反向延长线和/ ABE的角平分线BF交于点F,/ E -/ F =3.如图,已知/ 1 + / 2= 180°,/ 3=/ B,求证: DE // BC.C/ 3 =/ 4,/ 5=/ 6.求证:ED // FB.5.已知:如图,B、C、E三点在同一直线上,A、F、E三点在同一直线上, / 1 = / 2 = / E, / 3=/ 4.求证:AB // CD .6.已知,如图, AE // BD ,/ 1 = 3/ 2,/ 2 = 26°,求一(3)如图3,若Z A = m ,依次作出Z AOP 的角平分线 OB , Z BOP 的角平分线 OB 1 ,Z B 1OP 的角平分 线OB 2,Z B n - 1OP 的角平分线 OB n ,其中点 B , B 1, B 2,…,B n -1, B n 都在射线AE 上,试求Z AB n O 的度数.,求/ 1 + / 2的度数(提示:要作辅助线哟!/ AOP 的角平分线交射线 AE 与点B ,若/ BOP = 58°,求/ A 的度数.(2)如图 2, 若点C 在射线AE 上,OB 平分/ AOC 交AE 于点B , OD 平分/ COP 交AE 于点D ,/ADO = 39° ,求/ ABO -Z AOB 的度数./ B = 105 (1)如图 1,9. 数学思考:(1)如图1,已知AB // CD ,探究下面图形中/ APC 和/ PAB 、/ PCD 的关系,并证明你的 结论推广延伸:(2)①如图2,已知AA i / BA 1,请你猜想/ A 1,/ B 1,/ B 2,/ A 2、/ A 3的关系,并证明你的猜想;②如图3,已知AA 1 / BA n ,直接写出/ A 1,/ B 1,/ B 2,/ A 2、…/ B n -1、/ A n 的关系拓展应用:(3)①如图4所示,若AB // EF ,用含a, 3, 丫的式子表示X ,应为 _________________A.180° + a + 3- YB.180 °_ a _ Y +3 C .供丫― a D . a + 3+ 丫②如图 5, AB / CD ,且/ AFE = 40°,/ FGH = 90°,/ HMN = 30°,/ CNP = 50°,请你根据上述结论直接写出/ GHM 的度数是(2) 如图2,点P 在直线AB 、CD 之间,/ BAP 与/ DCP 的角平分线相交于点之间的数量关系,并说明理由.(3) 如图3,点P 落在CD 夕卜,/ BAP 与/ DCP 的角平分线相交于点 K , / AKC 与/ APC 有何数量关 系?并说明理由.10. 已知,直线 AB / DC ,点P 为平面上一点,连接 AP 与 CP .(1) 如图1,点P 在直线AB 、CD 之间,当/BAP = 60°,/ DCP = 20° 时,求/ APC .K ,写出/ AKC 与/ APC11. 如图,已知 AM II BN ,/ A = 80。

《相交线与平行线》常考题型训练(试题与答案)

《相交线与平行线》常考题型训练(试题与答案)

《相交线与平行线》常考题型训练平行线+角平分1.如图,直线AB∥CD,CE平分∠ACD,交AB于点E,∠ACE=20°,点F在AC的延长线上,则∠BAF的度数为()A.20°B.30°C.40°D.50°2.如图,AF是∠BAC的平分线,DF∥AC,若∠1=36°,则∠BDF的度数为()A.18°B.36°C.54°D.72°3.如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()A.20°B.35°C.55°D.70°4.如图,AB∥ED,AG平分∠BAC,∠ECF=70°,则∠BAG的度数是()A.35°B.45°C.55°D.65°5.如图,AB∥CD,∠B=60°,EF平分∠BED,则∠FED的度数是()A.20°B.30°C.40°D.60°6.如图,在△ABC中,BE、CE分别是∠ABC和∠ACB的平分线,过点E作DF∥BC交AB于D,交AC于F,若AB=5,AC=4,则△ADF周长为()A.7 B.8 C.9 D.107.如图,已知,AB∥CD,∠1=∠2,EP⊥FP,则以下结论错误的是()A.∠1=∠3 B.∠2+∠4=90°C.∠1+∠3=90°D.∠3=∠4两直线平行求角的度数(直尺、三角板)8.如图所示,AB∥CD,DB⊥BC于点B,若∠2=50°,则∠1=()A.40°B.50°C.45°D.60°9.如图,直线a∥b,∠1=32°,∠2=45°,则∠3的度数是()A.77°B.97°C.103°D.113°10.如图,一把直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADB=62°,则∠CBF的度数是()A.128°B.118°C.108°D.62°11.将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2,(2)∠1=∠3,(3)∠2+∠4=90°,(4)∠4+∠5=180°.其中正确的个数是()A.1 B.2 C.3 D.412.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=16°,那么∠2的度数是()A.16°B.44°C.45°D.60°13.如图,将一块三角尺的直角顶点放在直线a上,a∥b,∠1=50°,则∠2=()A.80°B.70°C.60°D.50°14.如图,已知a∥b,直角三角板的直角顶点在直线b上,若∠1=58°,则下列结论正确的是()A.∠3=42°B.∠4=138°C.∠5=42°D.∠2=58°两直线平行与折叠综合求角的度数15.如图是一张长条形纸片,其中AB∥CD,将纸片沿EF折叠,A、D两点分别与A′、D'对应,若∠1=∠2,则∠D′FC的度数为()A.72°B.36°C.60°D.65°16.如图,将长方形ABCD沿BE折叠,若∠CBA′=40°,则∠BEA′的度数为()A.45°B.65°C.50°D.25°17.如图,将一个长方形纸条折成如图的形状,若已知∠1=126°,则∠2的度数为()A.54°B.63°C.72°D.45°18.如图,将一条两边沿互相平行的纸带按图折叠,则∠1的度数等于()A.65°B.70°C.75°D.80°19.如图,将矩形ABCD沿EF折叠,点C落在点H处,点D落在AB边上的点G处,若∠AEG=30°,则∠EFC等于()A.115°B.75°C.105°D.150°两直线平行与拐角综合求角的度数20.如图,已知a∥b,∠1=50°,∠2=120°,则∠3等于()A.100°B.110°C.120°D.130°21.如图,∠BCD=90°,AB∥DE,则∠α与∠β满足()A.∠α+∠β=180°B.∠β=3∠αC.∠α+∠β=90°D.∠β﹣∠α=90°22.如图,∠BCD=95°,AB∥DE,则∠α与∠β满足()A.∠α+∠β=95°B.∠β﹣∠α=95°C.∠α+∠β=85°D.∠β﹣∠α=85°23.如图,已知AB∥CD,∠AEG=40°,∠CFG=60°,则∠G等于()A.20°B.40°C.60°D.100°24.如图所示,直线a∥b,∠1=38°,∠2=90°,则∠3的度数为()A.125°B.138°C.148°D.128°25.如图,AB∥CD,∠BAP=60°﹣α,∠APC=50°+2α,∠PCD=30°﹣α.则α为()A.10°B.15°C.20°D.30°26.如图,直线m∥n,∠1=60°,∠2=25°,则∠A等于()A.30°B.35°C.40°D.50°27.如图所示,直线AB∥CD,∠A=100°,∠C=75°,则∠E的度数是()A.25°B.20°C.30°D.35°28.如图,已知AB∥CD.写出图形中∠P和∠A,∠C的关系()A.∠C=∠P﹣∠A B.∠P=∠C﹣∠A C.∠P=∠A+∠C D.∠C=∠A﹣∠P29.如图,a∥b,则∠A的度数是()度.A.28 B.31 C.39 D.40两直线平行填空题30.如图,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,求证:a∥c.在下列解答中,填空(理由或数学式);解:∵∠1=∠2(已知),∴().∵(已知),∴b∥c(),∴(如果两条直线都和第三条直线平行,那么这两条直线也互相平行).31.已知:如图,∠DAE=∠E,∠B=∠D.直线AD与BE平行吗?直线AB与DC平行吗?说明理由(请在下面的解答过程的空格内填空或在括号内填写理由).解:直线AD与BE平行,直线AB与DC.理由如下:∵∠DAE=∠E,(已知)∴∥,(内错角相等,两条直线平行)∴∠D=∠DCE.(两条直线平行,内错角相等)又∵∠B=∠D,(已知)∴∠B=,(等量代换)∴∥.(同位角相等,两条直线平行)两直线平行的性质与判定综合证明题32.已知:如图,AC⊥BC,CD∥FG,∠1=∠2.求证:DE⊥AC.33.如图,在△ABC中,点E、H在BC上,EF⊥AB,HD⊥AB,垂足分别是F、D,点G在AC上,∠AGD=∠ACB,试说明∠1+∠2=180°.34.如图,∠1=∠ACB,∠2=∠3,FH⊥AB于H.问CD与AB有什么关系?并说明理由.两直线平行拐点探究题35.(1)【感知】如图①,AB∥CD,点E在直线AB与CD之间,连接AE、CE,试说明∠AEC=∠A+∠DCE.下面给出了这道题的解题过程,请完成下面的解题过程(填恰当的理由).证明:如图①过点E作EF∥AB.∴∠A=∠1 ()∵AB∥CD(已知)EF∥AB(辅助线作法)∴CD∥EF()∴∠2=∠DCE()∵∠AEC=∠1+∠2∴∠AEC=∠A+∠DCE()(2)【探究】当点E在如图②的位置时,其他条件不变,试说明∠A+∠AEC+∠C=360°(3)【应用】如图③,延长线段AE交直线CD于点M,已知∠A=130°,∠DCE=120°,则∠MEC的度数为.(请直接写出答案)36.感知与填空:如图①,直线AB∥CD.求证:∠B+∠D=∠BED.阅读下面的解答过程,井填上适当的理由.解:过点E作直线EF∥CD∴∠2=∠D()∵AB∥CD(已知),EF∥CD,∴AB∥EF()∴∠B=∠1()∵∠1+∠2=∠BED,∴∠B+∠D=∠BED()应用与拓展:如图②,直线AB∥CD.若∠B=22°,∠G=35°,∠D=25°,则∠E+∠F=度.方法与实践:如图③,直线AB∥CD.若∠E=∠B=60°,∠F=80°,则∠D=度.《相交线与平行线》常考题型训练参考答案与试题解析一.选择题(共31小题)1.如图,直线AB∥CD,CE平分∠ACD,交AB于点E,∠ACE=20°,点F在AC的延长线上,则∠BAF的度数为()A.20°B.30°C.40°D.50°【分析】根据角平分线的性质和平行线的性质,可以求得∠BAF的值,本题得以解决.【解答】解:∵∠ACE=20°,CE平分∠ACD,∴∠ACD=2∠ACE=40°,∵AB∥CD,∴∠BAF=∠ACD,∴∠BAF=40°,故选:C.【点评】本题考查平行线的性质,解答本题的关键是明确题意,利用平行线的性质解答.2.如图,AF是∠BAC的平分线,DF∥AC,若∠1=36°,则∠BDF的度数为()A.18°B.36°C.54°D.72°【分析】根据两直线平行,同位角相等,可得∠F AC=∠1,再根据角平分线的定义可得∠BAF=∠F AC.【解答】解:∵DF∥AC,∴∠F AC=∠1=35°,∵AF是∠BAC的平分线,∴∠BAF=∠F AC=36°,∴∠BAC=72°,∵DF∥AC,∴∠BDF=∠BAC=72°故选:D.【点评】本题考查了平行线的性质,角平分线的定义,熟记平行线的性质是解题的关键.3.如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()A.20°B.35°C.55°D.70°【分析】根据平行线的性质可得∠1=∠ABC=70°,再根据角平分线的定义可得答案.【解答】解:∵DE∥BC,∴∠1=∠ABC=70°,∵BE平分∠ABC,∴∠CBE=∠ABC=35°,故选:B.【点评】此题主要考查了平行线的性质,以及角平分线的定义,关键是掌握两直线平行,内错角相等.4.如图,AB∥ED,AG平分∠BAC,∠ECF=70°,则∠BAG的度数是()A.35°B.45°C.55°D.65°【分析】首先,由平行线的性质得到∠BAC=∠ECF=70°;然后利用角平分线的定义来求∠BAG的度数.【解答】解:∵AB∥ED,∠ECF=70°,∴∠BAC=∠ECF=70°,又∵AG平分∠BAC,∴∠BAG=∠BAC=35°,故选:A.【点评】本题考查了平行线的性质.根据“两直线平行,内错角相等”求得∠BAC的度数是解题的难点.5.如图,AB∥CD,∠B=60°,EF平分∠BED,则∠FED的度数是()A.20°B.30°C.40°D.60°【分析】利用平行线的性质以及角平分线的定义即可解决问题.【解答】解:∵AB∥CD,∴∠B=∠BED=60°∵EF平分∠BED,∴∠FED=∠BED=30°,故选:B.【点评】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.如图,在△ABC中,BE、CE分别是∠ABC和∠ACB的平分线,过点E作DF∥BC交AB于D,交AC于F,若AB=5,AC=4,则△ADF周长为()A.7B.8C.9D.10【分析】根据平行线的性质和角平分线的定义得出BD=DE,EF=FC,进而解答即可.【解答】解:∵DF∥BC,∴∠DEB=∠EBC,∠FEC=∠ECB,∵BE、CE分别是∠ABC和∠ACB的平分线,∴∠DBE=∠EBC,∠FCE=∠ECB,∴∠DBE=∠DEB,∠FEC=∠FCE,∴BD=DE,EF=FC,∴△ADF周长=AD+DF+AF=AD+AF+DE+EF=AD+AF+BD+FC=AB+AC=5+4=9,故选:C.【点评】本题考查等腰三角形的性质、平行线的性质以及角平分线的性质;有效的进行线段的等量代换是正确解答本题的关键.7.如图,已知,AB∥CD,∠1=∠2,EP⊥FP,则以下结论错误的是()A.∠1=∠3B.∠2+∠4=90°C.∠1+∠3=90°D.∠3=∠4【分析】过点P作PH∥AB,再根据平行线的性质及直角三角形的性质对各选项进行逐一判断即可.【解答】解:过点P作PH∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠1=∠EPH,∠3=∠HPF,∵EP⊥FP,∴∠2+∠4=90°,∠HPF+∠EPH=90°,∴∠3=∠4,故B,D正确;∵∠1=∠2,∠3=∠4,∠2+∠4=90°,∴∠1+∠3=90°,故C正确,故选:A.【点评】本题考查平行线的性质和判定,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.如图所示,AB∥CD,DB⊥BC于点B,若∠2=50°,则∠1=()A.40°B.50°C.45°D.60°【分析】直接利用平行线的性质结合三角形内角和定理得出答案.【解答】解:∵DB⊥BC,∴∠CBD=90°,∴∠BCD=90°﹣∠2=90°﹣50°=40°,∵AB∥CD,∴∠1=∠BCD=40°.故选:A.【点评】此题主要考查了平行线的性质和三角形内角和定理,正确掌握平行线的性质是解题关键.9.如图,直线a∥b,∠1=32°,∠2=45°,则∠3的度数是()A.77°B.97°C.103°D.113°【分析】由直线a∥b,利用“两直线平行,内错角相等”可得出∠4的度数,结合对顶角相等可得出∠5的度数,再利用三角形内角和定理可求出∠3的度数.【解答】解:给图中各角标上序号,如图所示.∵直线a∥b,∴∠4=∠2=45°,∴∠5=45°.∵∠1+∠3+∠5=180°,∴∠3=180°﹣32°﹣45°=103°.故选:C.【点评】本题考查了平行线的性质以及三角形内角和定理,牢记“两直线平行,内错角相等”是解题的关键.10.如图,一把直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADB=62°,则∠CBF的度数是()A.128°B.118°C.108°D.62°【分析】利用平行线的性质可得∠DBC=∠ADB,再由邻补角的定义,可求得∠CBF,可求得答案.【解答】解:∵AD∥BC,∴∠DBC=∠ADB=62°,∵∠CBF+∠DBC=180°,∴∠CBF=180°﹣62°=118°.故选:B.【点评】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.11.将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2,(2)∠1=∠3,(3)∠2+∠4=90°,(4)∠4+∠5=180°.其中正确的个数是()A.1B.2C.3D.4【分析】根据两直线平行,同位角相等、同旁内角互补可判断(1)、(2)、(4),根据平角的定义可判断∠2与∠4的关系.【解答】解:(1)因为∠1和∠2是两平行线间的同位角,所以根据两直线平行,同位角相等可得∠1=∠2;(2)∠1和∠3不属于平行线间的同位角或内错角,所以∠1和∠3不一定相等;(3)∠2、∠4和直角三角板的直角组成一个平角180°,所以∠2+∠4=90°;(4)∠4和∠5是两平行线间的同旁内角,根据两直线平行,同旁内角互补,可得∠4+∠5=180°.所以正确的个数是3个.故选:C.【点评】本题主要考查了平行线的性质,平行线的性质是体现角之间关系的重要依据.12.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=16°,那么∠2的度数是()A.16°B.44°C.45°D.60°【分析】根据BE∥CD得到∠EBC=16°,依据∠ABC=60°,∠EBC=16°,由角的和差关系可求∠2=44°.【解答】解:如图,∵BE∥CD,∴∠EBC=∠1=16°,∵∠ABC=60°,∴∠2=44°.故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.13.如图,将一块三角尺的直角顶点放在直线a上,a∥b,∠1=50°,则∠2=()A.80°B.70°C.60°D.50°【分析】先根据三角形内角和定理求出∠4的度数,由对顶角相等求出∠5的度数,根据平行线的性质即可得出结论.【解答】解:由已知知:∠3=60°∵1=50°,∠3=60°,∴∠4=180°﹣∠1﹣∠3=180°﹣50°﹣60°=70°,∴∠5=∠4=70°,∵a∥b,∴∠2=∠5=70°故选:B.【点评】本题考查的是平行线的性质,三角形的内角和定理,掌握两直线平行,同位角相等是解决问题的前提.14.如图,已知a∥b,直角三角板的直角顶点在直线b上,若∠1=58°,则下列结论正确的是()A.∠3=42°B.∠4=138°C.∠5=42°D.∠2=58°【分析】利用平行线的性质、直角的定义即可解决问题.【解答】解:∵a∥b,∠1=58°,∴∠3=∠1=58°,∠2=∠1=58°,∠4=180°﹣∠3=180°﹣58°=122°,∵三角板为直角三角板,∴∠5=90°﹣∠3=90°﹣58°=32°.∴选项D正确,故选:D.【点评】本题考查了平行线的性质,解答本题的关键是掌握平行线的性质:两直线平行,同位角相等.15.如图是一张长条形纸片,其中AB∥CD,将纸片沿EF折叠,A、D两点分别与A′、D'对应,若∠1=∠2,则∠D′FC的度数为()A.72°B.36°C.60°D.65°【分析】依据平行线的性质以及折叠的的性质,即可得到∠A'EF=60°,∠1=60°,再根据平行线的性质,即可得到∠D′FC的度数.【解答】解:∵AB∥CD,∴∠1=∠AEF,由折叠可得∠A'EF=∠AEF,又∵∠1=∠2,∴∠AEF=∠A'EF=∠2,∵∠AEB=180°,∴∠A'EF=60°,∠1=60°,∵A'E∥D'F,∴∠A'EF+∠D'FE=180°,∴∠D'FC=180°﹣60°﹣60°=60°,故选:C.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.16.如图,将长方形ABCD沿BE折叠,若∠CBA′=40°,则∠BEA′的度数为()A.45°B.65°C.50°D.25°【分析】由折叠的性质知,折叠后形成的图形全等,找出对应的边角关系即可.【解答】解:根据题意,∠A′=∠A=90°,∠ABE=∠A′BE,∵∠CBA′=40°,∴∠EBA'′=(180°﹣90°﹣40°)=25°,∴∠BEA'=90°﹣25°=65°,故选:B.【点评】本题考查折叠的性质.解题关键是找出由轴对称所得的相等的边或者相等的角.17.如图,将一个长方形纸条折成如图的形状,若已知∠1=126°,则∠2的度数为()A.54°B.63°C.72°D.45°【分析】由CD∥EF,利用“两直线平行,同旁内角互补”可求出∠DCF的度数,再利用折叠的性质及邻补角互补,可求出∠2的度数.【解答】解:在图中标上各字母,如图所示.∵CD∥EF,∴∠1+∠DCF=180°,∴∠DCF=180°﹣126°=54°.∵2∠2+∠DCF=180°,∴∠2==63°.故选:B.【点评】本题考查了平行线的性质以及折叠的性质,牢记“两直线平行,同旁内角互补”是解题的关键.18.如图,将一条两边沿互相平行的纸带按图折叠,则∠1的度数等于()A.65°B.70°C.75°D.80°【分析】根据翻折不变性以及平行线的性质解决问题即可【解答】解:如图,∵AB∥CD,∴∠BAC+∠ACD=180°,∵∠ACD=40°,∴∠BAC=140°,∵∠1=∠2,∴∠1=∠BAC=70°,故选:B.【点评】本题主要考查了平行线的性质的运用,翻折变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.19.如图,将矩形ABCD沿EF折叠,点C落在点H处,点D落在AB边上的点G处,若∠AEG=30°,则∠EFC等于()A.115°B.75°C.105°D.150°【分析】利用翻折变换的性质求出∠DEF,再利用平行线的性质解决问题即可.【解答】解:∵∠AEG=30°,∴∠DEG=150°,由翻折的性质可知:∠DEF=∠FEG=∠DEG=75°,∵AD∥BC,∴∠DEF+∠EFC=180°,∴∠EFC=105°,故选:C.【点评】本题考查平行线的性质,翻折变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.如图,已知a∥b,∠1=50°,∠2=120°,则∠3等于()A.100°B.110°C.120°D.130°【分析】利用平行线的性质以及三角形的外角的性质解决问题即可.【解答】解:如图,∵a∥b,∴∠2+∠4=180°,∵∠2=120°,∴∠4=60°,∵∠3=∠1+∠4,∠1=50°,∴∠3=50°+60°=110°,故选:B.【点评】本题考查平行线的性质,三角形的外角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.如图,∠BCD=90°,AB∥DE,则∠α与∠β满足()A.∠α+∠β=180°B.∠β=3∠αC.∠α+∠β=90°D.∠β﹣∠α=90°【分析】延长BC交DE于F,如图,利用平行线的性质得到∠BFD=∠ABF=∠α,然后根据三角形外角性质可得到∠β=∠α+90°.【解答】解:延长BC交DE于F,如图,∵AB∥DE,∴∠BFD=∠ABF=∠α,∴∠CDE=∠CDF+∠DCF,即∠β=∠α+90°.故选:D.【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.22.如图,∠BCD=95°,AB∥DE,则∠α与∠β满足()A.∠α+∠β=95°B.∠β﹣∠α=95°C.∠α+∠β=85°D.∠β﹣∠α=85°【分析】过C作CF∥AB,根据平行线的性质得到∠1=∠α,∠2=180°﹣∠β,于是得到结论.【解答】解:过C作CF∥AB,∵AB∥DE,∴AB∥CF∥DE,∴∠1=∠α,∠2=180°﹣∠β,∵∠BCD=95°,∴∠1+∠2=∠α+180°﹣∠β=95°,∴∠β﹣∠α=85°.故选:D.【点评】本题考查了平行线的性质,熟记平行线的性质是解题的关键.23.如图,已知AB∥CD,∠AEG=40°,∠CFG=60°,则∠G等于()A.20°B.40°C.60°D.100°【分析】过点G作GH∥AB,得出∠EGH=∠AEG,证出GH∥CD,则∠FGH=∠CFG,得出∠EGF=∠AEG+∠CFG,即可得出结果.【解答】解:过点G作GH∥AB,如图所示:∴∠EGH=∠AEG,∵AB∥CD,∴GH∥CD,∴∠FGH=∠CFG,∴∠EGH+∠FGH=∠AEG+∠CFG.即:∠EGF=∠AEG+∠CFG=40°+60°=100°,故选:D.【点评】本题考查了平行线的判定与性质,熟练掌握平行线的性质是解题的关键.24.如图所示,直线a∥b,∠1=38°,∠2=90°,则∠3的度数为()A.125°B.138°C.148°D.128°【分析】反向延长∠2的边与a交于一点,由三角形外角性质可得∠4=∠2﹣∠1=55°,再根据邻补角以及平行线的性质,即可得到∠3的度数.【解答】解:如图,反向延长∠2的边与a交于一点,由三角形外角性质,可得∠4=∠2﹣∠1=52°,∴∠5=180°﹣∠4=128°,∵a∥b,∴∠3=∠5=128°.故选:D.【点评】考查了平行线的性质、三角形内角和定理,邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题.25.如图,AB∥CD,∠BAP=60°﹣α,∠APC=50°+2α,∠PCD=30°﹣α.则α为()A.10°B.15°C.20°D.30°【分析】过点P作一条直线平行于AB,根据两直线平行内错角相等得:∠APC=∠BAP+∠PCD,得到关于α的方程,解即可.【解答】解:过点P作PM∥AB,∴AB∥PM∥CD,∴∠BAP=∠APM,∠DCP=∠MPC,∴∠APC=∠APM+∠CPM=∠BAP+∠DCP,∴50°+2α=60°﹣α+30°﹣α,解得α=10°.故选:A.【点评】本题考查了平行线的性质,注意此类题要常作的辅助线,充分运用平行线的性质探求角之间的关系26.如图,直线m∥n,∠1=60°,∠2=25°,则∠A等于()A.30°B.35°C.40°D.50°【分析】首先根据平行线的性质求出∠3的度数,然后根据三角形的外角的知识求出∠A的度数.【解答】解:如图,∵直线m∥n,∴∠1=∠3,∵∠1=60°,∴∠3=60°,∵∠3=∠2+∠A,∠2=25°,∴∠A=35°.故选:B.【点评】本题考查了平行线的性质和三角形的外角性质,关键是求出∠3的度数,此题难度不大.27.如图所示,直线AB∥CD,∠A=100°,∠C=75°,则∠E的度数是()A.25°B.20°C.30°D.35°【分析】先根据平行线的性质求出∠EFD的度数,再由三角形外角的性质得出结论即可.【解答】解:∵直线AB∥CD,∠A=100°,∴∠EFD=∠A=100°,∵∠EFD是△CEF的外角,∴∠E=∠EFD﹣∠C=100°﹣75°=25°.故选:A.【点评】本题考查的是平行线的性质,解题时注意:两直线平行,同位角相等.28.如图,已知AB∥CD.写出图形中∠P和∠A,∠C的关系()A.∠C=∠P﹣∠A B.∠P=∠C﹣∠A C.∠P=∠A+∠C D.∠C=∠A﹣∠P【分析】过P作PE∥AB,依据AB∥CD,即可得出PE∥CD,根据平行线的性质,即可得到∠APC=∠CPE ﹣∠APE=∠C﹣∠A,【解答】解:如图所示,过P作PE∥AB,∵AB∥CD,∴PE∥CD,∴∠C=∠CPE,∠A=∠APE,∴∠APC=∠CPE﹣∠APE=∠C﹣∠A,故选:B.【点评】此题考查了平行线的性质.解题时注意:两直线平行,内错角相等.29.如图,a∥b,则∠A的度数是()度.A.28B.31C.39D.40【分析】利用平行线的性质以及三角形的外角的性质即可解决问题.【解答】解:∵a∥b,∴∠ABE=∠ACF=70°,∵∠ABE=∠A+∠ADB,∴∠A=70°﹣31°=39°,故选:C.【点评】本题考查平行线的性质,三角形的外角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.30.如图,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,求证:a∥c.在下列解答中,填空(理由或数学式);解:∵∠1=∠2(已知),∴a∥b(内错角相等,两直线平行).∵∠3+∠4=180°(已知),∴b∥c(同旁内角互补,两直线平行),∴a∥c(如果两条直线都和第三条直线平行,那么这两条直线也互相平行).【点评】此题考查平行线的判定和性质,关键是根据平行线的判定解答.31.已知:如图,∠DAE=∠E,∠B=∠D.直线AD与BE平行吗?直线AB与DC平行吗?说明理由(请在下面的解答过程的空格内填空或在括号内填写理由).解:直线AD与BE平行,直线AB与DC平行.理由如下:∵∠DAE=∠E,(已知)∴AD∥BE,(内错角相等,两条直线平行)∴∠D=∠DCE.(两条直线平行,内错角相等)又∵∠B=∠D,(已知)∴∠B=∠DCE,(等量代换)∴AB∥DC.(同位角相等,两条直线平行)【分析】因为∠DAE=∠E,所以根据内错角相等,两条直线平行,可以证明AD∥BE;根据平行线的性质,可得∠D=∠DCE,结合已知条件,运用等量代换,可得∠B=∠DCE,可证明AB∥DC.32.已知:如图,AC⊥BC,CD∥FG,∠1=∠2.求证:DE⊥AC.【分析】由平行线的性质得∠2=∠DCB,等量代换得∠DCB=∠1,由平行线的判定定理可得DE∥BC,利用平行线的性质得出结论.【解答】证明:∵CD∥FG,∴∠2=∠DCB,∵∠1=∠2,∴∠1=∠DCB,∴DE∥BC,∵AC⊥BC,∴DE⊥AC.【点评】本题主要考查平行线的性质及判定定理,综合运用平行线的性质和判定定理是解答此题的关键.33.如图,在△ABC中,点E、H在BC上,EF⊥AB,HD⊥AB,垂足分别是F、D,点G在AC上,∠AGD =∠ACB,试说明∠1+∠2=180°.【分析】由垂直的定义可得∠BFE=∠BDC,再根据平行线的判定可证明EF∥HD,根据平行线的性质得出∠2+∠DHB=180°;由∠AGD=∠ACB可证明DG∥BC,得出∠1=∠DHB,等量代换即可证明∠1+∠2=180°.【解答】证明:∵EF⊥AB,HD⊥AB,垂足分别是F、D,∴∠BFE=∠BDH=90°,∴EF∥HD;∴∠2+∠DHB=180°,∵∠AGD=∠ACB,∴DG∥BC,∴∠1=∠DHB,∴∠1+∠2=180°.【点评】本题主要考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.反之也成立.34.如图,∠1=∠ACB,∠2=∠3,FH⊥AB于H.问CD与AB有什么关系?并说明理由.【分析】根据同位角相等,两直线平行可得DE∥BC,再根据两直线平行,内错角相等可得∠2=∠4,然后求出∠3=∠4,再根据同位角相等,两直线平行判断出CD∥FH,然后求解即可.【解答】解:∵∠1=∠ACB,∴DE∥BC,∴∠2=∠4,∵∠2=∠3,∴∠3=∠4,∴CD∥FH,∵FH⊥AB,∴CD⊥AB.【点评】本题考查了平行线的判定与性质,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.35.【分析】(1)过点E作EF∥AB,由平行线的性质得出∠A=∠1,证出CD∥EF,由平行线的性质得出∠2=∠DCE,即可得出结论;(2)过点E作EF∥AB,则EF∥CD,由平行线的性质得出∠A+∠AEF=180°,∠C+∠CEF=180°,即可得出结论;(3)同(2)得∠A+∠AEC+∠DCE=360°,得出∠AEC=110°,即可得出答案.【解答】(1)证明:如图①,过点E作EF∥AB,∴∠A=∠1(两直线平行,内错角相等),∵AB∥CD(已知),∵EF∥AB(辅助线作法),∴CD∥EF(平行于同一直线的两条直线平行),∴∠2=∠DCE(两直线平行,内错角相等),∵∠AEC=∠1+∠2,∴∠AEC=∠A+∠DCE(等量代换),故答案为:两直线平行,内错角相等;平行于同一直线的两条直线平行;两直线平行,内错角相等;等量代换;(2)证明:过点E作EF∥AB,如图②所示:∵AB∥CD,∴EF∥CD,∴∠A+∠AEF=180°,∠C+∠CEF=180°,∴∠A+∠AEC+∠C=∠A+∠AEF+∠C+∠CEF=180°+180°=360°;(3)解:同(2)得:∠A+∠AEC+∠DCE=360°,∴∠AEC=360°﹣∠A﹣∠DCE=360°﹣130°﹣120°=110°,∴∠MEC=180°﹣∠AEC=180°﹣110°=70°,故答案为:70°.36.【分析】感知与填空:过点E作直线EF∥CD,由两直线平行,内错角相等得出∠2=∠D,由两直线都和第三条直线平行,那么这两条直线也互相平行得出AB∥EF,由两直线平行,内错角相等得出∠B=∠1,由∠1+∠2=∠BED,等量代换得出∠B+∠D=∠BED.应用与拓展:过点G作GN∥AB,则GN∥CD,由感知与填空得∠E=∠B+∠EGN,∠F=∠D+∠FGN,即可得出结果.方法与实践:设AB交EF于M,∠AME=∠FMB=180°﹣∠F﹣∠B=40°,由感知与填空得∠E=∠D+∠AME,即可得出结果.【解答】解:感知与填空:过点E作直线EF∥CD,∴∠2=∠D(两直线平行,内错角相等),·∵AB∥CD(已知),EF∥CD,∴AB∥EF(两直线都和第三条直线平行,那么这两条直线也互相平行),∴∠B=∠1(两直线平行,内错角相等),∵∠1+∠2=∠BED,∴∠B+∠D=∠BED(等量代换),故答案为:两直线平行,内错角相等;两直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;等量代换.应用与拓展:过点G作GN∥AB,则GN∥CD,如图②所示:由感知与填空得:∠E=∠B+∠EGN,∠F=∠D+∠FGN,∴∠E+∠F=∠B+∠EGN+∠D+∠FGN=∠B+∠D+∠EGF=22°+25°+35°=82°,故答案为:82.方法与实践:设AB交EF于M,如图③所示:∠AME=∠FMB=180°﹣∠F﹣∠B=180°﹣80°﹣60°=40°,由感知与填空得:∠E=∠D+∠AME,∴∠D=∠E﹣∠AME=60°﹣40°=20°,故答案为:20.【点评】本题考查了平行线的判定与性质、三角形内角和定理等知识;熟练掌握平行线的性质是解题的关键.。

(典型题)初中数学专项练习《相交线与平行线》100道解答题包含答案(专项练习)

(典型题)初中数学专项练习《相交线与平行线》100道解答题包含答案(专项练习)

初中数学专项练习《相交线与平行线》100道解答题包含答案(专项练习)一、解答题(共100题)1、如图,五边形 ABCDE中,AE∥CD,∠A=107°,∠B=121°,求∠C的度数。

2、如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.3、补全解答过程:已知:如图,直线,直线与直线,分别交于点G,H;平分,.求的度数.解:与交于点H,(已知).(▲),(已知).(▲),与,交于点G,H,(已知)(▲)▲平分,(已知)▲.(角平分线的定义)4、如图所示,直线AB∥CD,∠1=75°,求∠2的度数。

5、如图,AB与CD相交于O,OE平分∠AOC,OF⊥AB于O,OG⊥OE于O,若∠BOD=40°,求∠AOE和∠FOG的度数.6、如图,已知点B,E,C,F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.7、如图,已知,,,.AB 与DE平行吗?为什么?8、已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE⊥AC于E,BE与CD 相交于点F.求证:BF=AC.9、把下面的说理过程补充完整:已知:如图,BC//EF,BC=EF,AF=DC线段AB和线段DE平行吗?请说明理由.答:AB//DE理由:∵AF=DC(已知)∴AF+FC=DC+ ▲∴AC=DF(▲)(填推理的依据)∵BC//EF(已知)∴∠BCA=∠▲(两直线平行,内错角相等)又∵BC=EF(已知)∴ (▲)(填推理的依据)∴∠A=∠▲(全等三角形的对应角相等)∴AB//▲(内错角相等,两直线平行)10、小明在踢足球时把一块梯形ABCD的玻璃的下半部分打碎了,若量得上半部分∠A=123 ,∠D=105 ,你能知道下半部分的两个角∠B和∠C的度数吗?请说明理由.11、如图,BE∥CG,∠1=∠2,求证:BD∥CF12、如图,EF∥BC,AC平分∠BAF,∠B=80°.求∠C的度数.13、如图,已知AB∥CD,∠B=40°,CN是∠BCE的平分线,CM⊥CN,求∠BCM 的度数.14、如图,有两堵围墙,有人想测量地面上两堵围墙内所形成的∠AOB的度数,但人又不能进入围墙,只能站在墙外,请问该如何测量?15、已知:如图,∠1=∠2,∠3=∠E,求证:∠A=∠CBE.16、如图,在直角△ABC 中,∠ACB=90°,CD 是高,∠1=35°,求∠2,∠B 与∠A 的度数.17、在平行四边形ABCD中, ∠A+∠C=160°,求∠A,∠C,∠B,∠D的度数.18、已知:如图,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF,若∠EFD=72°,则∠EGC等于多少度?19、如图,AF=BE,AC∥BD,CE∥DF,则(1)AC=_____,CE=______,(2)证明(1)中的结论。

完整版相交线和平行线提高题与常考题型和培优题含解析

完整版相交线和平行线提高题与常考题型和培优题含解析

相交线与平行线提高题与常考题和培优题(含解析)2.如图是婴儿车的平面示意图,其中 AB//CD,/ 1=120° / 3=40°那么/ 2的度数为() / 3=100°则/ 1的度数为( )如图,△ ABC 的面积为2,将^ ABC 沿AC 方向平移至△ DFE 且AC=CD 则四边形AEFB 的面积为C. 10 D . 125.如图,点D 、 E 、F 分别在AB, BC, AC 上,且 EF / AB ,要使DF / BC,只需再有条件()•选择题(共12小题)则/2=( )1024. A . 6 B. 8A. / 仁/ 2B./ 仁/ DFE C ./ 仁/ AFD D./ 2=/ AFD6.如图,与/ 1是同旁内角的是(/ 3+/ 4=180°7•如图,在下列条件中,不能判定直线 a 与b 平行的是()/ 5A ./ 仁/ 2 B./ 2=/ 3 C. / 3=/ 5 D.A ./ 仁/ 6 B./ 2=/ 6 C. / 仁/3 D./ 5=/ 7a //b 的是(ACD DEO 的度数为( )O9.如图,将一副三角板叠放在一起,使直角的顶点重合于点0, AB//0C, DC与0B交于点E,贝U// 1=65°, / A=40°,则/ 2 的大小是14.如图,将长方形ABCD 沿 AE 折叠,使点D 落在BC 边上的点F ,若/BFA=34°,则/ DAE — 度.£>F C15.如图,m // n ,直角三角板ABC 的直角顶点C 在两直线之间,两直角边与两直线相交所形成的锐 角分别为a 、B,则a+ 3 =AB// CD, DA 丄AC,垂足为A ,若/ ADC=35,贝U/ 1的度数为() A . 65° A. 85° B. 70° C. 75° D.115°C. 125° D.11.如图, 35/ 2=35°,则/ 3=( ).填空题(共 12小E16.如图,四边形ABCD 中,/ BAD=/ADC=90, AB=AD 瓠勺,CD=#E ,点P 是四边形ABCD 四条边 上的一个动点,若P 到BD 的距离为寻,则满足条件的点P 有17.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含 30 °角的直角三角板的斜边与纸条一边重合,含 45 °角的三角板的一个顶点在纸条的另一边上,则/1个.BC平分/ ABD,若/ 1=54° 则/2=22.如图,AB// CD,直线EF 分别交AB CD 于M , N 两点,将一个含有45°角的直角三角尺按如图所 示的方式摆放,若/ EMB=75,则/ PNM 等于 _____________ 度.23.如图,△ ABC 中,BC=5cm 将^ ABC 沿BC 方向平移至△ A B'的对应位置时,A 恰好经过 AC 的中点0,则^ABC 平移的距离为 _______________ cm .24.如图,是赛车跑道的一段示意图,其中AB / DE,测得/ B=140\ / D=120°,则/ C 的度数为 _______ 度. .4 a直线c 与直线a 、b 分别相交于A 、B 两点,若/ 1=60°则/2=c£ D三.解答题(共16小题)25.如图,一个由4条线段构成的鱼”形图案,其中/ 1=50° / 2=50° / 3=130°找出图中的平行线,并说明理由.27.如图,已知 AB// CD,若/ C=40, / E=20°求/ A 的度数.28.如图,在△ ABC 中,/ B+/ C=110°, AD 平分/ BAC,交 BC 于点 D , DE// AB,交 AC 于点 E,求/ ADE 的度数.BC 平分/ ABD, DEXBC,若/ 1=70° 求/ 2 的度数.30 .如图,E 为 AC 上一点,EF// AB 交 AF 于点 F ,且 AE=EF 求证:/ BAC=2/ 1./ A=65°,求:/ EDF 的度数.C(2)若射线0F 丄0E,请在图中画出0F,并求/ C0F 的度数. 34. 如图,四边形 ABCD 中,/ A=/ C=90°, BE 平分/ ABC CD 相交于点 0, 0E 平分/ B0D,/ A0C=76, / D0F=90,求/ E0F 的度数.直线AB , CD 相交于0点,0M 丄AB 于0.(1) 若/ 仁/2,求/ N0D;(2) 若/ B0C=4/ 1,求/ A0C 与/ M0D.33.如图,两直线 AB 、CD 相交于点0, 0E 平分/ B0D,/ A0C: / A0D=7: 11. BE 与DF 有何位置关系?试说明理由.32.如图,35•将一副三角板中的两块直角三角尺的直角顶点C 按如图方式叠放在一起(其中,/A=60°,/D=30°;/ E=/ B=45 °:(1)①若/ DCE=45,则/ACB 的度数为②若/ ACB=140,求/ DCE 的度数; (2) 由(1)猜想/ ACB 与/ DCE 的数量关系,并说明理由.(3) 当/ACM 180°且点E 在直线AC 的上方时,这两块三角尺是否存在一组边互相平行?若存在, ACE 角度所有可能的值(不必说明理由);若不存在,请说明理由./ C=/ 1 , / 2 和/D 互余,BE1FD 于点 G .求证:AB// CD.37.已知:如图所示,/ ABD 和/BDC 的平分线交于E, BE 交CD 于点F ,/ 1+/ 2=90°.(1) 求证:AB// CD;(2) 试探究/ 2与/ 3的数量关系.请直接写出/ A荃冃s36.已知:如图,38 .如图,/ 1 + / 2=180° / A=/ C, DA平分/ BDF.(1) AE与FC会平行吗?说明理由;(2) AD与BC的位置关系如何?为什么?(3) BC平分/ DBE吗?为什么.39.如图,一条直线分别与直线BE、直线CE直线BF、直线CF相交于点A,G,H,D且/ 1 = / 2, 说说它们之间为什么是平行的;(2)证明:/ A=/ D.40 .将△ABC纸片沿DE折叠,其中/ B=/ C.(1)如图1,点C落在BC边上的点F处,AB与DF是否平行?请说明理由;(2)如图2,点C落在四边形ABCD内部的点G处,探索/ B与/ 1 + / 2之间的数量关系,并说明理相交线与平行线提高题与常考题和培优题(含解析)参考答案与试题解析•选择题(共12小题)1. (2017?新城区校级模拟)如图,AB// CD, CD丄EF,若/ 1=124° 则/2=()【分析】先根据平行线的性质,得出/ CEH=124,再根据CD丄EF,即可得出/ 2的度数. 【解答】解:••• AB//CD,/ 1=124°•••/ CEH=124,•••/ CEG=56,又••• CD 丄EF,•••/ 2=90° -/ CEG=34.故选:D.34A图2【点评】本题主要考查了平行线的性质与垂线的定义,解题时注意:两直线平行,同位角相等.2. (2017?禹州市一模)如图是婴儿车的平面示意图,其中AB// CD, / 1=120° / 3=40°那么/ 2 的度数为()102°【分析】根据平行线性质求出/ A ,根据三角形外角性质得出/ 2=/ 1-/A ,代入求出即可.【解答】解:••• AB//CD, •••/ A=/ 3=40°, •••/ 1=120°,• / 2=/ 1 -/ A=80°,故选A .【点评】本题考查了平行线性质和三角形外角性质的应用,关键是求出/A 的度数和得出/ 2=/ 1-/ A. 3. (2017?莒县模拟)如图,直线 a / b ,若/ 2=55° / 3=100°则/ 1的度数为( )【分析】根据两直线平行,同位角相等可得/ 4=/ 2,再根据三角形的一个外角等于与它不相邻的两 个内角的和列式计算即可得解.【解答】解:如图,•••直线a / b ,• / 4=/ 2=55°,• / 1=/ 3-/ 4=100° - 55°=45°.【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质, 熟记ahC. 50° D . ab【解答】解:要使DF// BC,只需再有条件/仁/ DFE 理由如下:性质并准确识图是解题的关键.4. (2017?莒县模拟)如图,△ ABC 的面积为2,将^ ABC 沿AC 方向平移至△ DFE 且AC=CD 则四 边形AEFB 的面积为( )【分析】直接利用平移的性质结合三角形面积求法得出答案.【解答】解:•••将△ ABC 沿AC 方向平移至△ DFE 且AC=CD ••• A 点移动的距离是2AC,则BF=AD, 连接FC, 贝U S ^BFC F 2S ^ABC , S X ABC F S X FDC F S X FDE =2,•••四边形AEFB 的面积为:10.故选:C.【点评】此题主要考查了平移的性质以及三角形面积求法, 正确得出三角形之间面积关系是解题关键. 5. (2017春?杭州月考)如图,点 D 、E 、F 分别在AB, BC, AC 上,且EF// AB,要使DF // BC,只需 【分析】由平行线的性质得出/仁/2,再由/仁/DFE 得出/ 2=/DFE 由内错角相等,两直线平行即可得出DF// BC.10 D . 12C ./ 仁/ AFD D./ 2=/ AFD••• EF// AB,V/ 仁/ DFE •••/ 2=/ DFE ••• DF// BC;故选:B.【点评】本题考查了平行线的判定与性质; 熟练掌握平行线的判定与性质,并能进行推理论证是解决 问题的关键.B 、/ 1和/3是同位角,不是同旁内角,故本选项错误;C 、/ 1和/4是内错角,不是同旁内角,故本选项错误;D 、/ 1和/ 5是同旁内角,故本选项正确;故选D .【点评】本题考查了同位角、内错角、同旁内角、对顶角的定义的应用,能熟记同位角、内错角、同 旁内角、对顶角的定义是解此题的关键,注意:数形结合思想的应用.7. (2016?来宾)如图,在下列条件中,不能判定直线 a 与b 平行的是() CA . / 仁/ 2 B./ 2=/ 3 C. / 3=/ 5 D./ 3+/ 4=180°第13页(共37页)ah【解答】解:A 、/ 1和/2是对顶角,不是同旁内角,故本选项错误;【分析】直接用平行线的判定直接判断.【解答】解:A、;/ 1 与/2是直线a, b被c所截的一组同位角,•丄仁/ 2,可以得到a// b,二不符合题意,B、;/ 2与/ 3是直线a, b被c所截的一组内错角,二/ 2=/3,可以得到a / b,;不符合题意,C、;/ 3与/ 5既不是直线a, b被任何一条直线所截的一组同位角,内错角,•••/ 3=/ 5,不能得到a/ b,二符合题意,D、;/ 3与/4是直线a, b被c所截的一组同旁内角,•••/ 3+/ 4=180°可以得到a / b,二不符合题意, 故选C【点评】此题是平行线的判定,解本题的关键是熟练掌握平行线的判定定理.直线a、b被直线c所截,下列条件能使a / b的是()A./ 仁/ 6B./ 2=/ 6C. / 仁/3D./ 5=/ 7【分析】禾用平行线的判定方法判断即可.【解答】解:•••/ 2=/ 6 (已知),••• a/ b (同位角相等,两直线平行), 则能使a/ b的条件是/ 2=/6,故选B【点评】此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.9. (2016?营口)如图,将一副三角板叠放在一起,使直角的顶点重合于点0, AB/OC, DC与OB交A. 85°B. 70°C. 75°D. 60°【分析】由平行线的性质求出/ AOC=120,再求出/ BOC=30,然后根据三角形的外角性质即可得出结论.【解答】解:••• AB// OC,/ A=60 ,•••/ A+/ AOC=180, •••/ AOC=120, •••/ BOC=120- 90°=30°, •••/ DEO=/ C+/BOC=45+30°=75°; 故选:C.【点评】本题主要考查了平行线的性质、 三角形的外角性质;熟练掌握平行线的性质和三角形的外角 性质是解决问题的关键.10. (2016?陕西)如图,AB// CD, AE 平分/ CAB 交 CD 于点 E,若/ C=50°,则/ AED=() J L ____________________ sC E MA . 65° B. 115°C. 125° D. 130°【分析】根据平行线性质求出/ CAB 的度数,根据角平分线求出/ EAB 的度数,根据平行线性质求出 / AED 的度数即可.【解答】解:••• AB//CD, •••/ C+/ CAB=180,V/ C=50, •••/ CAB=180 - 50°=130°,V AE 平分/ CAB, •••/ EAB=65,V AB// CD, •••/ EABh/AED=180,•••/ AED=180 - 65°=115°,故选B .【点评】本题考查了角平分线定义和平行线性质的应用,注意:平行线的性质有:①两条平行线被第 三条直线所截,同位角相等,②两条平行线被第三条直线所截,内错角相等,③两条平行线被第三条 直线所截,同旁内角互补.11. (2016?威海)如图,AB// CD, DA 丄AC,垂足为A ,若/ ADC=35 ,则/ 1的度数为( ) 【分析】利用已知条件易求/ ACD 的度数,再根据两线平行同位角相等即可求出/ 1的度数.D .【解答】解:V DAX AC,垂足为A, •••/ CAD=90,V/ ADC=35, •••/ ACD=55,V AB// CD,•••/ 仁/ ACD=55,故选B.【点评】本题主要考查了平行线的性质,垂直的定义等知识点,熟记平行线的性质定理是解题关键.12. (2016?毕节市)如图,直线a / b, / 1=85°, / 2=35°,则/3=( ).//A. 85°B. 60°C. 50°D. 35°【分析】先利用三角形的外角定理求出/ 4的度数,再利用平行线的性质得/ 3=/4=50。

(完整版)相交线与平行线典型例题

(完整版)相交线与平行线典型例题

第五章 相交线与平行线专题复习考点一:对相关概念的理解 对顶角的性质,垂直的定义,垂线的性质,点到直线的距离,垂线性质与平行公理的区别等 例1:判断下列说法的正误。

对顶角相等; 相等的角是对顶角; 邻补角互补; 互补的角是邻补; 同位角相等; 内错角相等;同旁内角互补; 直线外一点到直线的垂线段的长度叫做点到直线的距离; 过一点有且只有一条直线与已知直线垂直; 过一点有且只有一条直线与已知直线平行; 两直线不相交就平行; 互为邻补角的两个角的平分线互相垂直。

考点二:相关推理(识记)(1)∵a ∥c ,b ∥c (已知) ∴______ ∥______( )(2)∵∠1=∠2,∠2=∠3(已知) ∴______ =______( )(3)∵∠1+∠2=180°,∠2=30°(已知) ∴∠1=______( )(4)∵∠1+∠2=90°,∠2=22°(已知) ∴∠1=______( )(5)如图(1),∵∠AOC=55°(已知) ∴∠BOD=______( )(6)如图(1),∵∠AOC=55°(已知) ∴∠BOC=______( )(7)如图(1),∵∠AOC=21∠AOD ,∠AOC+∠AOD=180°(已知) ∴∠BOC=______( )(1) (2) (3) (4)(8)如图(2),∵a ⊥b (已知) ∴∠1=______( )(9)如图(2),∵∠1=______(已知) ∴a ⊥b ( )(10)如图(3),∵点C 为线段AB 的中点 ∴AC=______( )(11) 如图(3),∵ AC=BC ∴点C 为线段AB 的中点( )(12)如图(4),∵a ∥b (已知) ∴∠1=∠2( )(13)如图(4),∵a ∥b (已知) ∴∠1=∠3( )(14)如图(4),∵a ∥b (已知) ∴∠1+∠4= ( )(15)如图(4),∵∠1=∠2(已知) ∴a ∥b ( )(16)如图(4),∵∠1=∠3(已知) ∴a ∥b ( )(17)如图(4),∵∠1+∠4= (已知) ∴a ∥b ( )考点三:对顶角、邻补角的判断、相关计算例题1:如图5-1,直线AB 、CD 相交于点O ,对顶角有_________对,它们分别是_________,∠AOD 的邻补角是_________。

相交线与平行线专项训练及解析答案

相交线与平行线专项训练及解析答案

相交线与平行线专项训练及解析答案一、选择题1.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中真命题的个数是( )A.1个B.2个C.3个D.4个【答案】B【解析】解:①符合对顶角的性质,故本小题正确;②两直线平行,内错角相等,故本小题错误;③符合平行线的判定定理,故本小题正确;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故本小题错误.故选B.2.如图,若AB∥CD,则∠α、∠β、∠γ之间关系是()A.∠α+∠β+∠γ=180°B.∠α+∠β﹣∠γ=360°C.∠α﹣∠β+∠γ=180°D.∠α+∠β﹣∠γ=180°【答案】D【解析】试题解析:如图,作EF∥AB,∵AB∥CD,∴EF∥CD,∵EF∥AB,∴∠α+∠AEF=180°,∵EF∥CD,∴∠γ=∠DEF,而∠AEF+∠DEF=∠β,∴∠α+∠β=180°+∠γ,即∠α+∠β-∠γ=180°.故选:D .3.如图,已知ABC ∆,若AC BC ⊥,CD AB ⊥,12∠=∠,下列结论:①//AC DE ;②3A ∠=∠;③3EDB ∠=∠;④2∠与3∠互补;⑤1B ∠=∠,其中正确的有( )A .2个B .3个C .4个D .5个【答案】C【解析】【分析】 根据平行线的判定得出AC ∥DE ,根据垂直定义得出∠ACB=∠CDB=∠CDA=90°,再根据三角形内角和定理求出即可.【详解】∵∠1=∠2,∴AC ∥DE ,故①正确;∵AC ⊥BC ,CD ⊥AB ,∴∠ACB=∠CDB=90°,∴∠A+∠B=90°,∠3+∠B=90°,∴∠A=∠3,故②正确;∵AC ∥DE ,AC ⊥BC ,∴DE ⊥BC ,∴∠DEC=∠CDB=90°,∴∠3+∠2=90°(∠2和∠3互余),∠2+∠EDB=90°,∴∠3=∠EDB ,故③正确,④错误;∵AC ⊥BC ,CD ⊥AB ,∴∠ACB=∠CDA=90°,∴∠A+∠B=90°,∠1+∠A=90°,∴∠1=∠B ,故⑤正确;即正确的个数是4个,故选:C .【点睛】此题考查平行线的判定和性质,三角形内角和定理,垂直定义,能综合运用知识点进行推理是解题的关键.4.如图,已知正五边形ABCDE ,AF ∥CD ,交DB 的延长线于点F ,则∠DFA 的度数是( )A .28°B .30°C .38°D .36°【答案】D【解析】【分析】根据两直线平行,内错角相等,得到∠DFA=∠CDB ,根据三角形的内角和求出∠CDB 的度数从而得到∠DFA 的度数.【详解】 解:∠C=(52)1801085︒-⨯=,且CD=CB , ∴∠CDB=∠CBD ∵由三角形的内角和∠C+∠CDB+∠CBD=180°∴∠CDB+∠CBD=180°-∠C =180°-108°=72°∴∠CDB==∠CBD=72362︒︒= 又∵AF ∥CD∴∠DFA=∠CDB=36°(两直线平行,内错角相等)故选D【点睛】本题主要考查多边形的基本概念和三角形的基本概念,正n 边形的内角读数为(2)180n n-⨯.5.下列结论中:①若a=b a b ;②在同一平面内,若a ⊥b ,b//c ,则a ⊥c ;③直线外一点到直线的垂线段叫点到直线的距离;33( ) A .1个B .2个C .3个D .4个【答案】B【解析】【分析】【详解】解:①若a=b 0≥a b②在同一平面内,若a ⊥b,b//c ,则a ⊥c ,正确③直线外一点到直线的垂线段的长度叫点到直线的距离 33正确的个数有②④两个6.如图,下列推理错误的是( )A.因为∠1=∠2,所以c∥d B.因为∠3=∠4,所以c∥dC.因为∠1=∠3,所以a∥b D.因为∠1=∠4,所以a∥b【答案】C【解析】分析:由平行线的判定方法得出A、B、C正确,D错误;即可得出结论.详解:根据内错角相等,两直线平行,可知因为∠1=∠2,所以c∥d,故正确;根据同位角相等,两直线平行,可知因为∠3=∠4,所以c∥d,故正确;因为∠1和∠3的位置不符合平行线的判定,故不正确;根据内错角相等,两直线平行,可知因为∠1=∠4,所以a∥b,故正确.故选:C.点睛:本题考查了平行线的判定方法;熟练掌握平行线的判定方法,并能进行推理论证是解决问题的关键.7.如图所示,b∥c,a⊥b,∠1=130°,则∠2=().A.30°B.40°C.50°D.60°【答案】B【解析】【分析】证明∠3=90°,利用三角形的外角的性质求出∠4即可解决问题.【详解】如图,反向延长射线a交c于点M,∵b∥c,a⊥b,∴∠3=90°,∵∠1=90°+∠4,∴130°=90°+∠4,∴∠4=40°,∴∠2=∠4=40°,故选B.【点睛】本题考查平行线的性质,垂线的性质,三角形的外角的性质等知识,解题的关键是熟练掌握基本知识8.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是()A.2个B.3个C.4个D.5个【答案】B【解析】【分析】根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数,进行判断即可.【详解】①正确;②在两直线平行的条件下,内错角相等,②错误;③正确;④反例:两个无理数π和-π,和是0,④错误;⑤坐标平面内的点与有序数对是一一对应的,正确;故选:B.【点睛】本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.9.下列命题是真命题的是()A.同位角相等B.对顶角互补C.如果两个角的两边互相平行,那么这两个角相等D .如果点P 的横坐标和纵坐标互为相反数,那么点P 在直线y x =-的图像上.【答案】D【解析】【分析】根据平行线的性质定理对A 、C 进行判断;利用对顶角的性质对B 进行判断;根据直角坐标系下点坐标特点对D 进行判断.【详解】A .两直线平行,同位角相等,故A 是假命题;B .对顶角相等,故B 是假命题;C .如果两个角的两边互相平行,那么这两个角相等或互补,故C 是假命题;D .如果点的横坐标和纵坐标互为相反数,那么点P 在直线y x =-的图像上,故D 是真命题故选:D【点睛】本题考查了真命题与假命题,正确的命题称为真命题,错误的命题称为假命题.利用了平行线性质、对顶角性质、直角坐标系中点坐标特点等知识点.10.如图,11,,33AB EF ABP ABC EFP EFC ∠=∠∠=∠∥,已知60FCD ∠=︒,则P ∠的度数为( )A .60︒B .80︒C .90︒D .100︒【答案】B【解析】【分析】 延长BC 、EF 交于点G ,根据平行线的性质得180ABG BGE +=︒∠∠,再根据三角形外角的性质和平角的性质得60180120EFC FCD BGE BGE BCF FCD =+=︒+=︒-=︒∠∠∠∠,∠∠,最后根据四边形内角和定理求解即可.【详解】延长BC 、EF 交于点G∵//AB EF∴180ABG BGE +=︒∠∠∵60FCD ∠=︒∴60180120EFC FCD BGE BGE BCF FCD =+=︒+=︒-=︒∠∠∠∠,∠∠∵11,33ABP ABC EFP EFC ∠=∠∠=∠ ∴360P PBC BCF PFC =︒---∠∠∠∠2236012033ABG EFC =︒---︒∠∠ ()223606012033ABG BGE =︒--︒+-︒∠∠ 223604012033ABG BGE =︒--︒--︒∠∠ ()22003ABG BGE =︒-+∠∠ 22001803=︒-⨯︒ 80=︒故答案为:B .【点睛】本题考查了平行线的角度问题,掌握平行线的性质、三角形外角的性质、平角的性质、四边形内角和定理是解题的关键.11.下列图形中线段PQ 的长度表示点P 到直线a 的距离的是( )A .B .C .D .【答案】C【解析】【分析】 根据点到直线的距离的定义,可得答案.【详解】由题意得PQ ⊥a ,P 到a 的距离是PQ 垂线段的长,故选C .【点睛】本题考查了点到直线的距离,点到直线的距离是解题关键.12.如图,在△ABC中,AB=AC,∠A=36°,D、E两点分别在边AC、BC上,BD平分∠ABC,DE∥AB.图中的等腰三角形共有()A.3个B.4个C.5个D.6个【答案】C【解析】【分析】已知条件,根据三角形内角和等于180,角的平分线的性质求得各个角的度数,然后利用等腰三角形的判定进行判断即可.【详解】解:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠BDC=180°﹣36°﹣72°=72°,∵DE∥AB,∴∠EDB=∠ABD=36°,∴∠EDC=72°﹣36°=36°,∴∠DEC=180°﹣72°﹣36°=72°,∴∠A=∠ABD,∠DBE=∠BDE,∠DEC=∠C,∠BDC=∠C,∠ABC=∠C,∴△ABC、△ABD、△DEB、△BDC、△DEC都是等腰三角形,共5个,故选C.【点睛】本题考查了等腰三角形判定和性质、角平分线的性质、平行线的性质,由已知条件利用相关的性质求得各个角相等是解题的关键.13.如图,∠BCD =95°,AB ∥DE ,则∠α与∠β满足( )A .∠α+∠β=95°B .∠β﹣∠α=95°C .∠α+∠β=85°D .∠β﹣∠α=85°【答案】D【解析】【分析】 过点C 作CF ∥AB ,然后利用两直线平行,内错角相等;两直线平行,同旁内角互补进行推理证明即可.【详解】解:过点C 作CF ∥AB∵AB ∥DE ,CF ∥AB∴AB ∥DE ∥CF∴∠BCF=∠α∠DCF+∠β=180°∴∠BCD =∠BCF +∠DCF∴∠α+180°-∠β=95°∴∠β﹣∠α=85°故选:D【点睛】本题考查平行线的性质,熟练掌握平行线的性质进行推理证明是本题的解题关键.14.如图,直线//a b ,将一块含45︒角的直角三角尺(90︒∠=C )按所示摆放.若180︒∠=,则2∠的大小是( )A .80︒B .75︒C .55︒D .35︒【答案】C【解析】【分析】 先根据//a b 得到31∠=∠,再通过对顶角的性质得到34,25∠=∠∠=∠,最后利用三角形的内角和即可求出答案.【详解】解:给图中各角标上序号,如图所示:∵//a b∴3180︒∠=∠=(两直线平行,同位角相等),又∵34,25∠=∠∠=∠(对顶角相等),∴251804180804555A ∠=∠=︒-∠-∠=︒-︒-︒=︒.故C 为答案.【点睛】本题主要考查了直线平行的性质(两直线平行,同位角相等)、对顶角的性质(对顶角相等),熟练掌握直线平行的性质是解题的关键.15.如图,1B ∠=∠,2C ∠=∠,则下列结论正确的个数有( )①//AD BC ;②B D ∠=∠;③//AB CD ;④2180B ∠+∠=︒A .4个B .3个C .2个D .1个 【答案】A【解析】【分析】根据∠1=∠B可判断AD∥BC,再结合∠2=∠C可判断AB∥CD,其余选项也可判断.【详解】∵∠1=∠B∴AD∥BC,①正确;∴∠2+∠B=180°,④正确;∵∠2=∠C∴∠C+∠B=180°∴AB∥CD,③正确∴∠1=∠D,∴∠D=∠B,②正确故选:A【点睛】本题考查平行的证明和性质,解题关键是利用AD∥BC推导出∠B+∠2=180°,为证AB∥DC 作准备.16.如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()A.20°B.35°C.55°D.70°【答案】B【解析】【分析】根据平行线的性质可得∠1=∠ABC=70°,再根据角平分线的定义可得答案.【详解】∵DE∥BC,∴∠1=∠ABC=70°,∵BE平分∠ABC,∴1352CBE ABC∠=∠=︒,故选:B.【点睛】此题主要考查了平行线的性质,以及角平分线的定义,解题的关键是掌握两直线平行,内错角相等.17.下列说法中错误的个数是( )(1)过一点有且只有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)不相交的两条直线叫做平行线;(4)有公共顶点且有一条公共边的两个互补的角互为邻补角.A.1个B.2个C.3个D.4个【答案】C【解析】(1)应强调过直线外一点,故错误;(2)正确;(3)不相交的两条直线叫做平行线,没有说明是否是在同一平面内,所以错误;(4)有公共顶点且有一条公共边的两个角不一定互为邻补角,角平分线的两个角也满足,但可以不是,故错误.错误的有3个,故选C.18.如图,小慧从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C 处,此时需要将方向调整到与出发时一致,则方向的调整应为()A.左转80°B.右转80°C.左转100°D.右转100°【答案】B【解析】【分析】如图,延长AB到D,过C作CE//AD,由题意可得∠A=60°,∠1=20°,根据平行线的性质可得∠A=∠2,∠3=∠1+∠2,进而可得答案.【详解】如图,延长AB到D,过C作CE//AD,∵此时需要将方向调整到与出发时一致,∴此时沿CE方向行走,∵从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,∴∠A=60°,∠1=20°,AM∥BN,CE∥AB,∴∠A=∠2=60°,∠1+∠2=∠3∴∠3=∠1+∠2=20°+60°=80°,∴应右转80°.故选B.【点睛】本题考查了方向角有关的知识及平行线的性质,解答时要注意以北方为参照方向,进行角度调整.19.如图a 是长方形纸带,∠DEF=20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是( )A .110°B .120°C .140°D .150° 【答案】B【解析】【详解】解:∵AD ∥BC ,∴∠DEF=∠EFB=20°, 图b 中∠GFC=180°-2∠EFG=140°,在图c 中∠CFE=∠GFC-∠EFG=120°,故选B .20.如图,在矩形ABCD 中,6AB =,8BC =,若P 是BD 上的一个动点,则PB PC PD ++的最小值是( )A .16B .15.2C .15D .14.8【答案】D【解析】【分析】 根据题意,当PC ⊥BD 时,PB PC PD ++有最小值,由勾股定理求出BD 的长度,由三角形的面积公式求出PC 的长度,即可求出最小值.【详解】解:如图,当PC ⊥BD 时,PB PC PD BD PC ++=+有最小值,在矩形ABCD 中,∠A=∠BCD=90°,AB=CD=6,AD=BC=8,由勾股定理,得226810BD +=,∴=10PB PD BD +=,在△BCD 中,由三角形的面积公式,得11=22BD PC BC CD ••, 即1110=8622PC ⨯⨯⨯⨯, 解得: 4.8PC =, ∴PB PC PD ++的最小值是:10 4.814.8PB PC PD BD PC ++=+=+=; 故选:D.【点睛】本题考查了勾股定理解直角三角形,最短路径问题,垂线段最短,以及三角形的面积公式,解题的关键是熟练掌握勾股定理,正确确定点P 的位置,得到PC 最短.。

七年级下册相交线与平行线练习题及答案

七年级下册相交线与平行线练习题及答案

A第五章 相交线与平行线一、典型例题例1.如图(1),直线a 与b 平行,∠1=(3x+70)°,∠2=(5x+22)°,求∠3的度数。

图(1)例2.已知:如图(2), AB ∥EF ∥CD ,EG 平分∠BEF ,∠B+∠BED+∠D =192°,图(2)例3.如图(3),已知AB ∥CD ,且∠B=40°,∠D=70°,求∠DEB 的度数。

图(3)例4.平面上n 条直线两两相交且无3条或3条以上直线共点,有多少个不同交点?例5.6个不同的点,其中只有3点在同一条直线上,2点确定一条直线,问能确定多少条直线?G例6.10条直线两两相交,最多将平面分成多少块不同的区域?例7.两条直线相交于一点,所形成的的角中有2对对顶角,4对邻补角,那么,三条直线相交于一点时,有多少对对顶角,多少对邻补角?四条直线相交于一点时,有多少对对顶角,多少对邻补角?n 条直线相交于一点时,有多少对对顶角,多少对邻补角?二、巩固练习1.平面上有5个点,其中仅有3点在同一直线上,过每2点作一条直线,一共可以作直线( )条 A .6 B . 7 C .8 D .92.平面上三条直线相互间的交点个数是 ( )A .3B .1或3C .1或2或3D .不一定是1,2,33.平面上6条直线两两相交,其中仅有3条直线过一点,则截得不重叠线段共有( ) A .36条 B .33条 C .24条 D .21条4.已知平面中有n 个点C B A ,,三个点在一条直线上,E F D A ,,,四个点也在一条直线上,除些之外,再没有三点共线或四点共线,以这n 个点作一条直线,那么一共可以画出38条不同的直线,这时n 等于( ) (A )9 (B )10 (C )11 (D )125.若平行直线AB 、CD 与相交直线EF 、GH 相交成如图示的图形,则共得同旁内角( ) A .4对 B .8对 C .12对 D .16对6.如图,已知FD ∥BE ,则∠1+∠2-∠3=( ) A .90° B .135° C .150° D .180°F第 5 题第 6 题7.如图,已知AB ∥CD ,∠1=∠2,则∠E 与∠F 的大小关系 ; 8.平面上有5个点,每两点都连一条直线,问除了原有的5点之外这些直线最多还 有 交点9.平面上3条直线最多可分平面为 个部分。

相交线与平行线练习题(带解析)

相交线与平行线练习题(带解析)

第二章 相交线与平行线练习题(带解析)1、如图,直线a 、b 、c 、d ,已知c ⊥a ,c ⊥b ,直线b 、c 、d 交于一点,若∠1=500,则∠2等于【???】(1) (2)(5)(6)(7)2、如图,AB ⊥BC ,BC ⊥CD ,∠EBC =∠BCF ,那么,∠ABE 与∠DCF 的位置与大小关系是?????????(??)?3、如果两个角的一边在同一直线上,另一边互相平行,那么这两个角只能(????)A .相等B .互补C .相等或互补D .相等且互补4、下列说法中,为平行线特征的是(??????)①两条直线平行,同旁内角互补; ②同位角相等, 两条直线平行;③内错角相等, 两条直线平行; ④垂直于同一条直线的两条直线平行.A .①B .②③C .④D .②和④5、如图,AB ∥CD ∥EF ,若∠ABC =50°,∠CEF =150°,则∠BCE =(????)A .60°B .50°C .30°D .20°6、如图,如果AB ∥CD ,则角α、β、γ之间的关系为(???)A .α+β+γ=360°B .α-β+γ=180°C .α+β-γ=180°D .α+β+γ=180°7、如图,由A 到B 的方向是(???)8、如图,由AC ∥ED ,可知相等的角有(?????)(8) (9)A .6对B .5对C .4对D .3对9、如图,直线AB 、CD 交于O ,EO ⊥AB 于O ,∠1与∠2的关系是( )A .600B .500C .400D .300A .是同位角且相等B .不是同位角但相等;C .是同位角但不等D .不是同位角也不等 A .南偏东30° B .南偏东60° C .北偏西30° D .北偏西60°A.互余????????????B.对顶角???????????????C.互补????????????D.相等?10、若∠1和∠2互余,∠1与∠3互补,∠3=120°,则∠1与∠2的度数分别为( ) A.50°、40°B.60°、30°C.50°、130°D.60°、120°11、下列语句正确的是( )A.一个角小于它的补角B.相等的角是对顶角C.同位角互补,两直线平行D.同旁内角互补,两直线平行)12、图中与∠1是内错角的角的个数是(A.2个B.3个C.4个D.5个13、如图,直线AB和CD相交于点O,∠AOD和∠BOC的和为202°,那么∠AOC的度数为()A.89°B.101°C.79°D.110°14、如图,∠1和∠2是对顶角的图形的个数有( )A.1个B.2个C.3个D.0个15、如图,直线a、b被直线c所截,现给出下列四个条件:①∠1=∠5,②∠1=∠7,)③∠2+∠3=180°,④∠4=∠7,其中能判定a∥b的条件的序号是(A.①②B.①③C.①④D.③④分卷II分卷II 注释评卷人得分二、填空题(注释)16、如图,∠ACD=∠BCD,DE∥BC交AC于E,若∠ACB=60°,∠B=74°,则∠EDC =___°,∠CDB=____°。

相交线与平行线(专项拔高卷)学生版

相交线与平行线(专项拔高卷)学生版

2023-2024学年苏科版数学七年级上册同步专题热点难点专项练习专题6.3 相交线与平行线(专项拔高卷)考试时间:90分钟试卷满分:100分难度:0.57姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022秋•亭湖区期末)如图,把一个圆剪去一部分,所得涂色部分的图形周长比原来圆的周长小,能正确解释这一现象的数学知识是()A.垂线段最短B.两点确定一条直线C.两点之间,线段最短D.经过一点有无数条直线2.(2分)(2019秋•宿城区校级期末)一副三角板按如图所示的方式摆放,且∠1的度数是∠2的3倍,则∠2的度数为()A.20°B.22.5°C.25°D.67.5°3.(2分)(2016秋•太仓市校级期末)如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣90°;③(∠α+∠β);④(∠α﹣∠β).正确的有()A.4个B.3个C.2个D.1个4.(2分)(2022秋•泗阳县期末)已知∠α=52°,则∠α的余角的度数为()A.38°B.48°C.52°D.128°5.(2分)(2018秋•沭阳县期末)下列说法正确的是()A.过一点有且只有一条直线与已知直线平行B.不相交的两条直线叫做平行线C.两点确定一条直线D.两点间的距离是指连接两点间的线段6.(2分)(2016秋•锡山区期末)下列叙述,其中不正确的是()A.两点确定一条直线B.同角(或等角)的余角相等C.过一点有且只有一条直线与已知直线平行D.两点之间的所有连线中,线段最短7.(2分)(2022秋•玄武区校级期末)如图,直线AB,CD相交于点O,OE⊥AB,垂足为O,OF平分∠BOD,若∠AOC+∠DOF=39°,则∠EOF的度数为()A.77°B.74°C.67°D.64°8.(2分)(2018秋•江宁区校级期末)如图,河道l的一侧有A、B两个村庄,现要铺设一条引水管道把河水引向A、B两村,下列四种方案中最节省材料的是()A.B.C.D.9.(2分)(2021秋•仪征市期末)如图,若将三个含45°的直角三角板的直角顶点重合放置,若∠2=25°,∠3=35°,则∠1的度数为()A.25°B.30°C.35°D.40°10.(2分)(2019秋•扬州期末)下列生活实例中,数学原理解释错误的一项是()A.从一条河向一个村庄引一条最短的水渠,其中数学原理是:在同一平面内,过一点有且只有一条直线垂直于已知直线B.两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短C.把一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线D.从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连接直线外一点与直线上各点的所有线段中,垂线段最短评卷人得分二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2021秋•泗阳县期末)如图,OE⊥AB于点O,OC为∠AOE内的一条射线,点D在CO的延长线上,OF平分∠AOD,在图中的所有角中,当与∠COE互补的角有且只有两个时,则∠COF的度数为.12.(2分)(2022秋•建邺区校级期末)如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE.若∠AOC的度数为2α.则∠EOF=.(用含α的代数式表示)13.(2分)(2022秋•镇江期末)如图,将一副三角板(三角板AMB和三角板CND)叠在一起,使两个直角顶点M、N重合,若∠AMD=120°,则∠BMC=.14.(2分)(2022秋•鼓楼区校级期末)如图,已知点A是射线BE上一点,过A作AC⊥BF,垂足为C,CD ⊥BE,垂足为D.给出下列结论:①∠1是∠ACD的余角;②图中互余的角共有3对;③∠1的补角只有∠DCF;④与∠ADC互补的角共有3个.其中正确结论有.15.(2分)(2022秋•仪征市期末)如图,点O在直线AB上,OC⊥OD,若∠COB=60°,则∠AOD的大小为°.16.(2分)(2022秋•溧水区期末)如图,OA⊥OB,垂足为O,射线OC在∠AOB的内部,∠AOC<30°,若∠BOD=∠AOC,OE平分∠AOD,设∠EOD=m°,则∠COB=°(用含m的代数式表示).17.(2分)(2020秋•苏州期末)已知直线AB与直线CD相交于点O,EO⊥CD,垂足为O.若∠AOC=25°12′,则∠BOE的度数为°.(单位用度表示)18.(2分)(2022秋•海门市期末)一个角的余角比它的补角的大15°,则这个角的度数是°.19.(2分)(2016秋•建湖县期末)下列四种说法:①过一点有且只有一条直线与已知直线平行;②在同一平面内,两条不相交的线段是平行线段;③相等的角是对顶角;④在同一平面内,若直线AB∥CD,直线AB与EF相交,则CD与EF相交.其中,错误的是(填序号).20.(2分)(2021秋•新吴区期末)如图,将一副三角板的直角顶点O叠放在一起,∠BOC=∠AOD,则∠BOD=°.评卷人得分三.解答题(共8小题,满分60分)21.(6分)(2022秋•南通期末)如图,∠AOC与∠BOC互为补角,∠BOC与∠BOD互为余角,且∠BOC=4∠BOD.(1)求∠BOC的度数;(2)若OE平分∠AOC,求∠BOE的度数.22.(6分)(2023春•临清市期中)如图,直线AB,CD相交于点O,OE是∠COB的平分线,FO⊥OE,已知∠AOD=70°.(1)求∠BOE的度数;(2)OF平分∠AOC吗?为什么?23.(8分)(2020秋•淮阴区期末)如图,O为直线AB上一点,DO⊥OE,OC平分∠AOD,∠AOC=24°,求∠BOE的度数.24.(8分)(2022秋•建邺区校级期末)如图.(1)∠AOB的余角为∠AOC,射线OM平分∠AOB,当∠AOB=40°,求∠MOC的度数;(2)若∠AOB的补角为∠BOD,射线ON平分∠BOD,试用含α的代数式表示∠AON的度数.(画出图形,并直接写出结果)25.(8分)(2022秋•高邮市期末)如图,已知直线AB与CD相交于点O,OE⊥CD于点O、OD是∠BOF的平分线.(1)若∠BOE=112°,求∠EOF的度数;(2)∠AOC的补角是,∠AOC的余角是.26.(8分)(2016秋•江阴市期末)如图,直线AB、CD相交于O,∠2﹣∠1=15°,∠3=130°.(1)求∠2的度数;(2)试说明OE平分∠COB.27.(8分)(2022秋•海门市期末)已知∠AOB=120°,∠COD在∠AOB内部,∠COD=60°.(1)如图1,若∠BOD=30°,求∠AOC的度数;(2)如图2,若OE平分∠BOC,请说明:∠AOC=2∠DOE;(3)如图3,若在∠AOB的外部分别作∠AOC,∠BOD的余角∠AOP,∠BOQ,试探究∠AOP,∠BOQ,∠COD 三者之间的数量关系,并说明理由.28.(8分)(2021秋•苏州期末)如图1,直线DE上有一点O,过点O在直线DE上方作射线OC,将一直角三角板AOB(其中∠OAB=30°)的直角顶点放在点O处,一条直角边OA在射线OD上,另一边OB在直线DE上方,将直角三角板绕着点O按每秒10°的速度逆时针旋转一周,设旋转时间为t秒.(1)当直角三角板旋转到如图2的位置时,OA恰好平分∠COD,此时,∠BOC与∠BOE之间数量关系为;(2)若射线OC的位置保持不变,且∠COE=130°.①在旋转的过程中,是否存在某个时刻,使得射线OA,OC,OD中的某一条射线是另两条射线所夹角的角平分线?若存在,请求出所有满足题意t的值,若不存在,请说明理由;②如图3,在旋转的过程中,边AB与射线OE相交,请直接写出∠AOC﹣∠BOE的值.。

第五章相交线与平行线典型例题及拔高训练(含答案)

第五章相交线与平行线典型例题及拔高训练(含答案)

第五章相交线与平⾏线典型例题及拔⾼训练(含答案)第五章相交线和平⾏线典型例题及强化训练课标要求①了解对顶⾓,知道对项⾓相等。

②了解垂线、垂线段等概念,了解垂线段最短的性质,体会点到直线距离的意义。

③知道过⼀点有且仅有⼀条直线垂直⼲已知直线,会⽤三⾓尺或量⾓器过⼀点画⼀条直线的垂线。

④知道两直线平⾏同位⾓相等,进⼀步探索平⾏线的性质⑤知道过直线外⼀点有且仅有⼀条直线平⾏于已知直线,会⽤⾓尺和直尺过已知直线外⼀点画这条直线的平⾏线。

⑥体会两条平⾏线之间距离的意义,会度量两条平⾏线之间的距离。

典型例题1.判定与性质例1 判断题:1)不相交的两条直线叫做平⾏线。

()2)过⼀点有且只有⼀条直线与已知直线平⾏。

()3)两直线平⾏,同旁内⾓相等。

()4)两条直线被第三条直线所截,同位⾓相等。

()例2 已知:如图,AB∥CD,求证:∠B+∠D=∠BED。

变式1已知:如图,AB∥CD,求证:∠BED=360°-(∠B+∠D)。

变式2已知:如图,AB∥CD,求证:∠BED=∠D-∠B。

变式3已知:如图,AB∥CD,求证:∠BED=∠B-∠D。

例3 已知:如图9,AB∥CD,∠ABF=∠DCE。

求证:∠BFE=∠FEC。

例4、如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.⼀.填空1.完成下列推理过程①∵∠3= ∠4(已知),__∥___()②∵∠5= ∠DAB(已知),∴____∥______()③∵∠CDA + =180°(已知),∴AD∥BC()2. 如图,已知DE∥BC,BD是∠ABC的平分线,∠EDC=109°,∠ABC=50°则∠A度,∠BDC=度。

3. 如图,AB∥CD,BE,CE分别平分∠ABC,∠BCD,则∠AEB+∠CED= 。

4、将点P(-3,y)向下平移3个单位,向左平移2个单位后得到点Q(x,-1),则xy=___________ 。

相交线与平行线:经典专题训练及答案

相交线与平行线:经典专题训练及答案

专题训练:相交线与平行线一、选择题(每小题4分,共48分)1.如果两个角的一边在同一直线上,另一边互相平行,那么这两个角的关系是()。

A.相等B.互补C.相等或互补D.相等且互补2.已知∠AOB=30°,又自∠AOB的顶点O引射线OC,若∠AOC : ∠AOB=4 : 3 ,那么∠BOC 等于()。

A.10°B. 40°C.70°D. 10°或70°3.一个角等于它的补角的5倍,那么这个角的补角的余角是()。

A.30°B.60°C.45°D.以上答案都不对4.用一副三角板可以作出大于0°而小于180°的角的个数()。

A. 5个 B.10个 C. 11个D.以上都不对5.在平面上画出四条直线,交点的个数最多应该是()A.4个 B. 5个 C. 6个 D. 8个6.已知三条直线a,b,c,下列命题中错误的是()A.如果a∥b,b∥c,那么a∥c B.如果a⊥b,b⊥c,那么a⊥cC.如果a⊥b,b⊥c,那么a∥c D.如果a⊥b,a∥c,那么b⊥c7.如果两条平行线被第三条直线所截得的8个角中,有一个角的度数已知,则()。

A.只能求出其余3个角的度数 B.能求出其余5个角的度数C.只能求出其余6个角的度数 D. 能求出其余7个角的度数8.若两条平行线被第三条直线所截,则下列说法错误的是()。

A.一对同位角的平分线互相平行 B.一对内错角的平分线互相平行C.一对同旁内角的平分线互相垂直 D.一对同旁内角的平分线互相平行9.在同一平面内互不重合的三条直线,它们的交点个数是()。

A.可能是0个,1个,2个 B.可能是0个,2个,3个C.可能是0个,1个,2个或3个 D.可能是1个或3个10.下列说法,其中正确的是()。

A.两条直线被第三条直线所截,内错角相等;B.不相交的两条直线就是平行线;C.点到直线的垂线段,叫做点到直线的距离;D.同位角相等,两直线平行。

第五章 相交线与平行线典型例题及拔高训练

第五章 相交线与平行线典型例题及拔高训练

第五章订交线和平行线典范例题及强化练习课标请求①懂得对顶角,知道对项角相等.②懂得垂线.垂线段等概念,懂得垂线段最短的性质,领会点到直线距离的意义.③知道过一点有且仅有一条直线垂直干已知直线,会用三角尺或量角器过一点画一条直线的垂线.④知道两直线平行同位角相等,进一步摸索平行线的性质⑤知道过直线外一点有且仅有一条直线平行于已知直线,会用角尺和直尺过已知直线外一点画这条直线的平行线.⑥领会两条平行线之间距离的意义,会器量两条平行线之间的距离.典范例题1.剖断与性质例1 断定题:1)不订交的两条直线叫做平行线. ( )2)过一点有且只有一条直线与已知直线平行. ( )3)两直线平行,同旁内角相等. ( )4)两条直线被第三条直线所截,同位角相等. ( )答案:(1)错,应为“在统一平面内,不订交的两条直线叫做平行线”.(2)错,应为“过直线外一点,有且只有一条直线与已知直线平行”.(3)错,应为“两直线平行,同旁内角互补”.(4)错,应为“两条平行线被第三条直线所截,同位角相等”.例2 已知:如图,AB ∥CD ,求证:∠B +∠D =∠BED . 剖析:可以斟酌把∠BED 变成两个角的和.如图5,过E 点引一条直线EF ∥AB ,则有∠B =∠1,再设法证实∠D =∠2,需证EF ∥CD ,这可经由过程已知AB ∥CD 和EF ∥AB 得到.证实:过点E 作EF ∥AB ,则∠B =∠1(两直线平行,内错角相等). ∵AB ∥CD (已知), 又∵EF ∥AB (已作),∴EF ∥CD (平行于统一向线的两条直线互相平行). ∴∠D =∠2(两直线平行,内错角相等). 又∵∠BED =∠1+∠2,∴∠BED =∠B +∠D (等量代换).变式1已知:如图6,AB ∥CD ,求证:∠BED =360°-(∠B +∠D ). 剖析:此题与例1的差别在于E 点的地位及结论.我们平日所说的∠BED 都是指小于平角的角,假如把∠BED 算作是大于平角的角,可以以为此题的结论与例1的结论是一致的.是以,我们模拟例1作帮助线,不难解决此题.证实:过点E 作EF ∥AB ,则∠B +∠1=180°(两直线平行,同旁内角互补).∵AB ∥CD (已知), 又∵EF ∥AB (已作),∴EF ∥CD (平行于统一向线的两条直线互相平行). ∴∠D +∠2=180°(两直线平行,同旁内角互补).ABEDF∴∠B+∠1+∠D+∠2=180°+180°(等式的性质).又∵∠BED=∠1+∠2,∴∠B+∠D+∠BED=360°(等量代换).∴∠BED==360°-(∠B+∠D)(等式的性质).变式2已知:如图7,AB∥CD,求证:∠BED=∠D-∠B.剖析:此题与例1的差别在于E点的地位不合,从而结论也不合.模拟例1与变式1作帮助线的办法,可以解决此题.证实:过点E作EF∥AB,则∠FEB=∠B(两直线平行,内错角相等).∵AB∥CD(已知),又∵EF∥AB(已作),∴EF∥CD(平行于统一向线的两条直线互相平行).∴∠FED=∠D(两直线平行,内错角相等).∵∠BED=∠FED-∠FEB,∴∠BED=∠D-∠B(等量代换).变式3已知:如图8,AB∥CD,求证:∠BED=∠B-∠D.剖析:此题与变式2相似,只是∠B.∠D的大小产生了变更.证实:过点E作EF∥AB,则∠1+∠B=180°(两直线平行,同旁内角互补).∵AB∥CD(已知),又∵EF∥AB(已作),∴EF∥CD(平行于统一向线的两条直线互相平行).∴∠FED+∠D=180°(两直线平行,同旁内角互补).∴∠1+∠2+∠D=180°.∴∠1+∠2+∠D-(∠1+∠B)=180°-180°(等式的性质).∴∠2=∠B-∠D(等式的性质).即∠BED=∠B-∠D.例3 已知:如图9,AB∥CD,∠ABF=∠DCE.求证:∠BFE=∠FEC.证法一:过F点作FG∥AB ,则∠ABF=∠1(两直线平行,内错角相等).过E点作EH∥CD ,则∠DCE=∠4(两直线平行,内错角相等).∵FG∥AB(已作),AB∥CD(已知),∴FG∥CD(平行于统一向线的两条直线互相平行).又∵EH∥CD(已知),∴FG∥EH(平行于统一向线的两条直线互相平行).∴∠2=∠3(两直线平行,内错角相等).∴∠1+∠2=∠3+∠4(等式的性质)即∠BFE=∠FEC.证法二:如图10,延伸BF.DC订交于G点.∵AB∥CD(已知),∴∠1=∠ABF(两直线平行,内错角相等).又∵∠ABF =∠DCE (已知), ∴∠1=∠DCE (等量代换).∴BG ∥EC (同位角相等,两直线平行). ∴∠BFE =∠FEC (两直线平行,内错角相等).假如延伸CE .AB 订交于H 点(如图11),也可用同样的办法证实(进程略).证法三:(如图12)贯穿连接BC . ∵AB ∥CD (已知),∴∠ABC =∠BCD (两直线平行,内错角相等). 又∵∠ABF =∠DCE (已知),∴∠ABC -∠ABF =∠BCD -∠DCE (等式的性质). 即∠FBC =∠BCE .∴BF ∥EC (内错角相等,两直线平行). ∴∠BFE =∠FEC (两直线平行,内错角相等).强化练习一.填空1.完成下列推理进程 ①∵∠3= ∠4(已知),__∥___( )②∵∠5= ∠DAB (已知),∴____∥______( ) ③∵∠CDA + =180°( 已知 ),543CD A∴AD ∥BC ( ) 2. 如图,已知DE ∥BC ,BD 是∠ABC 的等分线,∠EDC =109°,∠ABC =50°则∠A 度,∠BDC = 度. 3. 如图,AB ∥CD ,BE ,CE 分离等分∠ABC ,∠BCD , 则∠AEB +∠CED = .4.将点P (-3,y )向下平移3个单位,向左平移2个单位后得到点Q (x ,-1),则xy =___________ .5.已知:如图,直线AB 和CD 订交于O ,OE 等分∠BOC , 且∠AOC =68°,则∠BOE = 二.选择题1.在海上,灯塔位于一艘船的北偏东40度偏向,那么这艘船位于这个灯塔的( )A 南偏西50度偏向;B 南偏西40度偏向 ;C 北偏东50度偏向 ;D 北偏东40度偏向 2.如图,AB ∥EF ∥DC ,EG ∥BD , 则图中与∠1相等的角共有( )个A 6个B .5个C .4个 D.2个 3.统一平面内的四条直线若知足a ⊥b ,b ⊥c ,c ⊥d ,则下列式子成立的是( )A. a ∥d B .b ⊥d C.a ⊥d D.b ∥c 4.如图,∠1和∠2互补,∠3=130°,那么∠4的度数是( )ABC DEFGH1ABEDCCABEDA . 50°B . 60°C .70°D .80° 5.已知:AB ∥CD ,且∠ABC =20°,∠CFE =30°, 则∠BCF 的度数是 ( )A. 160° B .150° C .70° D .50° 6断定题已知,如图,下列前提中不克不及断定直线l 1∥l 2的是( )(A )∠1=∠3 (B )∠2=∠3(C )∠4=∠5 (D )∠2+∠4=180° 7.如图,直线c 与直线a .b 订交,且a //b ,则下列结论:(1)21∠=∠;(2)31∠=∠;(3)23∠=∠中准确的个数为( ) A. 0B. 1C. 2D. 38.下列命题准确的是( )A.两直线与第三条直线订交,同位角相等;B.两线与第三线订交,内错角相等;C.两直线平行,内错角相等;D.两直线平行,同旁内角相等.9.如图,AB ∥CD ,AC ⊥BC ,图中与∠CAB 互余的角有……( ) A.1个 B.2个 C.3个 D.4个10.如图,已知直线AB ∥CD ,当点E 直线AB 与CD 之间时,有∠BED =∠ABE +∠CDE 成立;而当点E 在直线AB 与CD 之外时,下列关系式成立的是 ( ) A.∠BED =∠ABE +∠CDE 或∠BED =∠ABE -∠CDE ; B.∠BED =∠ABE -∠CDEC.∠BED =∠CDE -∠ABE 或∠BED =∠ABE -∠CDE ;D.∠BED =∠CDE -∠ABE三.解下列各题:1.如图,已知OA ⊥OC ,OB ⊥OD ,∠3=26°,求∠1.∠2的度数.2.已知AD ∥BC ,∠A = ∠C ,求证:AB ∥CD .3.如图,AB ∥CD ,求∠BAE +∠AEF +∠EFC +∠FCD 的度数.4.已知,如图AC ⊥BC ,HF ⊥AB ,CD ⊥AB , ∠EDC 与∠CHF 互补, 求证:DE ⊥AC .5.如图,已知AB ∥ED ,∠ABC =135°,∠BCD =80°,求∠CDE 的度数.6.已知:如图,AD ⊥BC 于D ,EG ⊥BC 于G ,AE =AF .求证:AD 等分∠BAC .四.如图A .B 是两块麦地,P库中的水引到A .B 两地浇灌小麦,你以为如何修沟渠省时省料经济合算?请说出你的设计计划,并解释来由.参考答案2.1略;121°,84°;3. 90°;4.-10;5.56°二.三.1.解:∵OA ⊥OC ,OB ⊥OD ∴∠1+∠2 =90°,∠3+∠2 =90°D GD∴∠1=∠3=26°∴∠2=64°2证实:∵AD∥BC,∴∠A+∠B=180°∵∠A= ∠C,∴∠C+∠B=180°∴AB∥CD.2.解:贯穿连接AC.∵AB∥DC∴∠CAB+∠ACD=180°∵∠CAE+∠ACF+∠E+∠F=360°∴∠CAB+∠ACD=180°∴∠BAE+∠AEF+∠EFC+∠FCD=540°4. 证实:∵HF⊥AB,AB⊥CD∴CD∥HF,∴∠CHF+∠HCD=180°∵∠EDC与∠CHF互补,∴∠EDC = ∠HCD,∴ED∥CB∴∠AED=∠ACB∵∠ACB=90°∴∠AED=90°∴DE⊥AC.EC5.解:延伸BC交DE于F.由∠ABC=135°易得∠BFD=45°,又∠BCD=80°,得∠CDE=35°6.证实:∵AD⊥BC于D,EG⊥BC于G ∴AD∥EG,∴∠2=∠3, ∠1=∠E,∵AE =AF∴∠E = ∠3,∴∠1 = ∠2,∴AD等分∠BAC.四.略B。

七年级数学初一数学相交线与平行线基础题拔高题汇总(超经典超详细)

七年级数学初一数学相交线与平行线基础题拔高题汇总(超经典超详细)

相交线与平行线【A 卷】1. 如图,,8,6,10,BC AC CB cm AC cm AB cm ⊥===那么点A 到BC 的距离是_____,点B 到AC 的距离是_______,点A 、B 两点的距离是_____,点C 到AB 的距离是________.2. 设a 、b 、c 为平面上三条不同直线,若//,//a b b c ,则a 与c 的位置关系是_________;若,a b b c ⊥⊥,则a与c 的位置关系是_________;若//a b ,b c ⊥,则a 与c 的位置关系是________. 3. 如图,已知AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD =28°,求∠COE 、∠AOE 、∠AOG 的度数.4. 如图,AOC ∠与BOC ∠是邻补角,OD 、OE 分别是AOC ∠与BOC ∠的平分线,试判断OD 与OE 的位置关系,并说明理由.5. 已知DB ∥FG ∥EC ,A 是FG 上一点,∠ABD =60°,∠ACE =36°,AP 平分∠BAC ,求:⑴∠BAC 的大小;⑵∠PAG 的大小.6. 如图,已知ABC ∆,AD BC ⊥于D ,E 为AB 上一点,EF BC ⊥于F ,//DG BA 交CA 于G .求证12∠=∠.7. 已知:如图∠1=∠2,∠C =∠D ,问∠A 与∠F 相等吗?试说明理由.8、如图1-26所示.AE ∥BD ,∠1=3∠2,∠2=25°,求∠CP OFDB EACQ21A1BCDEFGH2 【B 卷】1、如图,∠1+∠2=∠BCD ,求证AB ∥DE 。

2、已知:∠B+∠D+∠F=360o.求证:AB ∥EF 。

3、如图把长方形纸片沿EF 折叠,使D ,C 分别落在D ',C '的位置,若65EFB =∠,则AED '∠等于( )A.50 B.55 C.60 D.654、如图,AB ∥CD ,那么∠A ,∠P ,∠C 的数量关系是( )A.∠A+∠P+∠C=90°B.∠A+∠P+∠C=180°C.∠A+∠P+∠C=360°D.∠P+∠C=∠A5、已知:如图,AB//CD ,则图中 、 、 三个角之间的数量关系为( ). A 、 + + =360 B 、 + + =180 C 、 + - =180 D 、 - - =906、如图,把三角形纸片沿DE 折叠,当点A 落在四边形BCED 内部时, 则∠A 与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个 规律,你发现的规律是( ).(A)∠A =∠1+∠2 (B)2∠A =∠1+∠2 (C)3∠A =2∠1+∠2 (D)3∠A=2(∠1十∠2) 7、如图:已知DEF ABC ∆∆与是一副三角板的拼图,在同一条线上D C E A ,,,. (1)、求证BC EF // ; (2)、求21∠∠与的度数8、如图,直线AB 、CD 被直线EF 所截,∠AEF +∠CFE =180°,∠1=∠2,则图中的∠H 与∠G 相等吗?说明你的理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相交线与平行线典型例题及拔高训练Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】第五章相交线和平行线典型例题及强化训练课标要求①了解对顶角,知道对项角相等。

②了解垂线、垂线段等概念,了解垂线段最短的性质,体会点到直线距离的意义。

③知道过一点有且仅有一条直线垂直干已知直线,会用三角尺或量角器过一点画一条直线的垂线。

④知道两直线平行同位角相等,进一步探索平行线的性质⑤知道过直线外一点有且仅有一条直线平行于已知直线,会用角尺和直尺过已知直线外一点画这条直线的平行线。

⑥体会两条平行线之间距离的意义,会度量两条平行线之间的距离。

典型例题1.判定与性质例1判断题:1)不相交的两条直线叫做平行线。

()2)过一点有且只有一条直线与已知直线平行。

()3)两直线平行,同旁内角相等。

()4)两条直线被第三条直线所截,同位角相等。

()答案:(1)错,应为“在同一平面内,不相交的两条直线叫做平行线”。

(2)错,应为“过直线外一点,有且只有一条直线与已知直线平行”。

(3)错,应为“两直线平行,同旁内角互补”。

(4)错,应为“两条平行线被第三条直线所截,同位角相等”。

例2已知:如图,AB∥CD,求证:∠B+∠D=∠BED。

分析:可以考虑把∠BED 变成两个角的和。

如图5,过E 点引一条直线EF ∥AB ,则有∠B =∠1,再设法证明∠D =∠2,需证EF ∥CD ,这可通过已知AB ∥CD 和EF ∥AB 得到。

证明:过点E 作EF ∥AB ,则∠B =∠1(两直线平行,内错角相等)。

∵AB ∥CD (已知), 又∵EF ∥AB (已作),∴EF ∥CD (平行于同一直线的两条直线互相平行)。

∴∠D =∠2(两直线平行,内错角相等)。

又∵∠BED =∠1+∠2,∴∠BED =∠B +∠D (等量代换)。

变式1已知:如图6,AB ∥CD ,求证:∠BED =360°-(∠B +∠D )。

分析:此题与例1的区别在于E 点的位置及结论。

我们通常所说的∠BED 都是指小于平角的角,如果把∠BED 看成是大于平角的角,可以认为此题的结论与例1的结论是一致的。

因此,我们模仿例1作辅助线,不难解决此题。

证明:过点E 作EF ∥AB ,则∠B +∠1=180°(两直线平行,同旁内角互补)。

∵AB ∥CD (已知), 又∵EF ∥AB (已作),∴EF ∥CD (平行于同一直线的两条直线互相平行)。

∴∠D +∠2=180°(两直线平行,同旁内角互补)。

∴∠B +∠1+∠D +∠2=180°+180°(等式的性质)。

又∵∠BED =∠1+∠2,A BEDF∴∠B+∠D+∠BED=360°(等量代换)。

∴∠BED==360°-(∠B+∠D)(等式的性质)。

变式2已知:如图7,AB∥CD,求证:∠BED=∠D-∠B。

分析:此题与例1的区别在于E点的位置不同,从而结论也不同。

模仿例1与变式1作辅助线的方法,可以解决此题。

证明:过点E作EF∥AB,则∠FEB=∠B(两直线平行,内错角相等)。

∵AB∥CD(已知),又∵EF∥AB(已作),∴EF∥CD(平行于同一直线的两条直线互相平行)。

∴∠FED=∠D(两直线平行,内错角相等)。

∵∠BED=∠FED-∠FEB,∴∠BED=∠D-∠B(等量代换)。

变式3已知:如图8,AB∥CD,求证:∠BED=∠B-∠D。

分析:此题与变式2类似,只是∠B、∠D的大小发生了变化。

证明:过点E作EF∥AB,则∠1+∠B=180°(两直线平行,同旁内角互补)。

∵AB∥CD(已知),又∵EF∥AB(已作),∴EF∥CD(平行于同一直线的两条直线互相平行)。

∴∠FED+∠D=180°(两直线平行,同旁内角互补)。

∴∠1+∠2+∠D=180°。

∴∠1+∠2+∠D-(∠1+∠B)=180°-180°(等式的性质)。

∴∠2=∠B-∠D(等式的性质)。

即∠BED=∠B-∠D。

例3已知:如图9,AB∥CD,∠ABF=∠DCE。

求证:∠BFE=∠FEC。

证法一:过F点作FG∥AB,则∠ABF=∠1(两直线平行,内错角相等)。

过E点作EH∥CD,则∠DCE=∠4(两直线平行,内错角相等)。

∵FG∥AB(已作),AB∥CD(已知),∴FG∥CD(平行于同一直线的两条直线互相平行)。

又∵EH∥CD(已知),∴FG∥EH(平行于同一直线的两条直线互相平行)。

∴∠2=∠3(两直线平行,内错角相等)。

∴∠1+∠2=∠3+∠4(等式的性质)即∠BFE=∠FEC。

证法二:如图10,延长BF、DC相交于G点。

∵AB∥CD(已知),∴∠1=∠ABF(两直线平行,内错角相等)。

又∵∠ABF=∠DCE(已知),∴∠1=∠DCE(等量代换)。

∴BG∥EC(同位角相等,两直线平行)。

∴∠BFE=∠FEC(两直线平行,内错角相等)。

如果延长CE、AB相交于H点(如图11),也可用同样的方法证明(过程略)。

证法三:(如图12)连结BC。

∵AB∥CD(已知),∴∠ABC =∠BCD (两直线平行,内错角相等)。

又∵∠ABF =∠DCE (已知),∴∠ABC -∠ABF =∠BCD -∠DCE (等式的性质)。

即∠FBC =∠BCE 。

∴BF ∥EC (内错角相等,两直线平行)。

∴∠BFE =∠FEC (两直线平行,内错角相等)。

强化训练一.填空1.完成下列推理过程 ①∵∠3=∠4(已知),__∥___()②∵∠5=∠DAB (已知), ∴____∥______() ③∵∠CDA +=180°(已知), ∴AD ∥BC ()2.如图,已知DE ∥BC ,BD 是∠ABC 的平分线,∠EDC =109°, ∠ABC =50°则∠A 度,∠BDC =度。

3.如图,AB ∥CD ,BE ,CE 分别平分∠ABC ,∠BCD , 则∠AEB +∠CED =。

4、将点P (-3,y )向下平移3个单位,向左平移2个单位后得到点Q (x ,-1),则xy =___________。

5、已知:如图,直线AB 和CD 相交于O ,OE 平分∠BOC , 且∠AOC =68°,则∠BOE =ABEDC543CD A二、选择题1.在海上,灯塔位于一艘船的北偏东40度方向,那么这艘船位于这个灯塔的()A 南偏西50度方向;B 南偏西40度方向;C 北偏东50度方向;D 北偏东40度方向2.如图,AB ∥EF ∥DC ,EG ∥BD ,则图中与∠1相等的角共有()个 A6个个个个3、同一平面内的四条直线若满足a ⊥b ,b ⊥c ,c ⊥d ,则下列式子成立的是()A 、a ∥dB 、b ⊥dC 、a ⊥dD 、b ∥c4、如图,∠1和∠2互补,∠3=130°,那么∠4的度数是() °°°°5.已知:AB ∥CD ,且∠ABC =20°,∠CFE =30°, 则∠BCF 的度数是()6判断题已知,如图,下列条件中不能判断直线l 1∥l 2的是()(A )∠1=∠3(B )∠2=∠3 (C )∠4=∠5(D )∠2+∠4=180° 7.如图,直线c 与直线a 、b 相交,且a 21∠=∠31∠=∠23∠=∠ 18.下列命题正确的是( )A 、两直线与第三条直线相交,同位角相等;B 、两线与第三线相交,内错角相等;C 、两直线平行,内错角相等;D 、两直线平行,同旁内角相等。

9.如图,AB ∥CD ,AC ⊥BC ,图中与∠CAB 互余的角有……()ABC DEFGH1C ABED 个个个个10.如图,已知直线AB ∥CD ,当点E 直线AB 与CD 之间时,有∠BED=∠ABE +∠CDE 成立;而当点E 在直线AB 与CD 之外时,下列关系式成立的是( )A 、∠BED =∠ABE +∠CDE 或∠BED =∠ABE -∠CDE ;B 、∠BED =∠ABE -∠CDEC 、∠BED =∠CDE -∠ABE 或∠BED =∠ABE -∠CDE ; D 、∠BED =∠CDE -∠ABE三、解下列各题:1.如图,已知OA ⊥OC ,OB ⊥OD ,∠3=26°,求∠1、∠2的度数。

2、已知AD ∥BC ,∠A =∠C ,求证:AB ∥CD 。

3.如图,AB ∥CD ,求∠BAE +∠AEF +∠EFC +∠FCD 的度数.4.已知,如图AC ⊥BC ,HF ⊥AB ,CD ⊥AB ,∠EDC 与∠CHF 互补,求证:DE ⊥AC .5.如图,已知AB ∥ED ,∠ABC =135°,∠BCD =80°,求∠CDE 的度数。

6.已知:如图,AD ⊥BC 于D ,EG ⊥BC 于G ,AE =AF .求证:AD 平分∠BAC 。

四、如图A 、B 是两块麦地,P 是一个水库,A 、B 之间有一条水渠,现在要将水库中的水引到A 、B 两地浇灌小麦,你认为怎样修水渠省时省料经济合算请说出你的设计方案,并说明理由。

32 1F D EAB C G 第6题参考答案2. 1略;121°,84°;°;4.-10;5。

56° 二.三.1.解:∵OA ⊥OC ,OB ⊥OD ∴∠1+∠2=90°,∠3+∠2=90° ∴∠1=∠3=26° ∴∠2=64°2证明:∵AD ∥BC , ∴∠A +∠B =180° ∵∠A =∠C , ∴∠C +∠B =180° ∴AB ∥CD . 2. 解:连结AC . ∵AB ∥DC∴∠CAB +∠ACD =180°∵∠CAE +∠ACF +∠E +∠F =360° ∴∠CAB +∠ACD=180°∴∠BAE +∠AEF +∠EFC +∠FCD =540° 4.证明:∵HF ⊥AB ,AB ⊥CD ∴CD ∥HF ,∴∠CHF +∠HCD =180° ∵∠EDC 与∠CHF 互补, ∴∠EDC =∠HCD ,∴ED ∥CBDE C∴∠AED=∠ACB∵∠ACB=90°∴∠AED=90°∴DE⊥AC.5.解:延长BC交DE于F.由∠ABC=135°易得∠BFD=45°,又∠BCD=80°,得∠CDE=35°6.证明:∵AD⊥BC于D,EG⊥BC于G ∴AD∥EG,∴∠2=∠3,∠1=∠E,∵AE=AF∴∠E=∠3,∴∠1=∠2,∴AD平分∠BAC。

相关文档
最新文档