相交线与平行线典型例题及拔高训练

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相交线与平行线典型例

题及拔高训练

Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

第五章相交线和平行线典型例题及强化训练课标要求

①了解对顶角,知道对项角相等。

②了解垂线、垂线段等概念,了解垂线段最短的性质,体会点到直线距离的意义。

③知道过一点有且仅有一条直线垂直干已知直线,会用三角尺或量角器过一点画一条直线的垂线。

④知道两直线平行同位角相等,进一步探索平行线的性质

⑤知道过直线外一点有且仅有一条直线平行于已知直线,会用角尺和直尺过已知直线外一点画这条直线的平行线。

⑥体会两条平行线之间距离的意义,会度量两条平行线之间的距离。

典型例题

1.判定与性质

例1判断题:

1)不相交的两条直线叫做平行线。()

2)过一点有且只有一条直线与已知直线平行。()

3)两直线平行,同旁内角相等。()

4)两条直线被第三条直线所截,同位角相等。()

答案:(1)错,应为“在同一平面内,不相交的两条直线叫做平行线”。

(2)错,应为“过直线外一点,有且只有一条直线与已知直线平行”。

(3)错,应为“两直线平行,同旁内角互补”。

(4)错,应为“两条平行线被第三条直线所截,同位角相等”。

例2已知:如图,AB∥CD,求证:∠B+∠D=∠BED。

分析:可以考虑把∠BED 变成两个角的和。如图5,过E 点引一条直线EF ∥AB ,则有∠B =∠1,再设法

证明∠D =∠2,需证

EF ∥CD ,这可通过已知AB ∥CD 和EF ∥AB 得到。

证明:过点E 作EF ∥AB ,则∠B =∠1(两直线平行,内错角相等)。 ∵AB ∥CD (已知), 又∵EF ∥AB (已作),

∴EF ∥CD (平行于同一直线的两条直线互相平行)。 ∴∠D =∠2(两直线平行,内错角相等)。 又∵∠BED =∠1+∠2,

∴∠BED =∠B +∠D (等量代换)。

变式1已知:如图6,AB ∥CD ,求证:∠BED =360°-(∠B +∠D )。 分析:此题与例1的区别在于E 点的位置及结论。我们通常所说的∠BED 都是指小于平角的角,如果把∠BED 看成是大于平角的角,可以认为此题的结论与例1的结论是一致的。因此,我们模仿例1作辅助线,不难解决此题。

证明:过点E 作EF ∥AB ,则∠B +∠1=180°(两直线平行,同旁内角互补)。 ∵AB ∥CD (已知), 又∵EF ∥AB (已作),

∴EF ∥CD (平行于同一直线的两条直线互相平行)。 ∴∠D +∠2=180°(两直线平行,同旁内角互补)。 ∴∠B +∠1+∠D +∠2=180°+180°(等式的性质)。 又∵∠BED =∠1+∠2,

A B

E

D

F

∴∠B+∠D+∠BED=360°(等量代换)。

∴∠BED==360°-(∠B+∠D)(等式的性质)。

变式2已知:如图7,AB∥CD,求证:∠BED=∠D-∠B。

分析:此题与例1的区别在于E点的位置不同,从而结论也不同。模仿例1与变式1作辅助线的方法,可以解决此题。

证明:过点E作EF∥AB,则∠FEB=∠B(两直线平行,内错角相等)。

∵AB∥CD(已知),

又∵EF∥AB(已作),

∴EF∥CD(平行于同一直线的两条直线互相平行)。

∴∠FED=∠D(两直线平行,内错角相等)。

∵∠BED=∠FED-∠FEB,

∴∠BED=∠D-∠B(等量代换)。

变式3已知:如图8,AB∥CD,求证:∠BED=∠B-∠D。

分析:此题与变式2类似,只是∠B、∠D的大小发生了变化。

证明:过点E作EF∥AB,则∠1+∠B=180°(两直线平行,同旁内角互补)。

∵AB∥CD(已知),

又∵EF∥AB(已作),

∴EF∥CD(平行于同一直线的两条直线互相平行)。

∴∠FED+∠D=180°(两直线平行,同旁内角互补)。

∴∠1+∠2+∠D=180°。

∴∠1+∠2+∠D-(∠1+∠B)=180°-180°(等式的性质)。

∴∠2=∠B-∠D(等式的性质)。

即∠BED=∠B-∠D。

例3已知:如图9,AB∥CD,∠ABF=∠DCE。求证:

∠BFE=∠FEC。

证法一:过F点作FG∥AB,则∠ABF=∠1(两直线平行,内错

角相等)。

过E点作EH∥CD,则∠DCE=∠4(两直线平行,内错角相等)。

∵FG∥AB(已作),AB∥CD(已知),

∴FG∥CD(平行于同一直线的两条直线互相平行)。

又∵EH∥CD(已知),

∴FG∥EH(平行于同一直线的两条直线互相平

行)。

∴∠2=∠3(两直线平行,内错角相等)。

∴∠1+∠2=∠3+∠4(等式的性质)

即∠BFE=∠FEC。

证法二:如图10,延长BF、DC相交于G点。

∵AB∥CD(已知),

∴∠1=∠ABF(两直线平行,内错角相等)。

又∵∠ABF=∠DCE(已知),

∴∠1=∠DCE(等量代换)。

∴BG∥EC(同位角相等,两直线平行)。

∴∠BFE=∠FEC(两直线平行,内错角相等)。

如果延长CE、AB相交于H点(如图11),也可用同样的方法证明(过程略)。

证法三:(如图12)连结BC。

∵AB∥CD(已知),

相关文档
最新文档