Versatile Approach to Synthesis of 2-D Hexagonal Ultra-Large-Pore PMOs
共沉淀法 英语
共沉淀法英语Coprecipitation: A Versatile Technique in Chemical Analysis and SeparationCoprecipitation is a widely used technique in various fields of chemistry, from analytical chemistry to materials science. This process involves the simultaneous precipitation of two or more compounds from a solution, where one compound (the carrier) serves to carry the other compound(s) (the coprecipitate) out of the solution. The coprecipitate is typically a substance that is difficult to precipitate on its own but can be effectively removed from the solution by being incorporated into the carrier's precipitate.The principle behind coprecipitation is the ability of the carrier to interact with the coprecipitate, either through physical adsorption, chemical interaction, or the formation of a mixed crystal structure. The choice of the carrier compound is crucial, as it must be able to efficiently trap the coprecipitate and ensure its complete removal from the solution.One of the primary applications of coprecipitation is in analytical chemistry, where it is used for the separation and preconcentrationof trace elements. In this context, the coprecipitate is often a metalor a metal complex that needs to be separated from the matrix for accurate analysis. The carrier compound, such as a hydroxide or a phosphate, can effectively remove the trace element from the solution, allowing for its subsequent determination by techniques like atomic absorption spectroscopy or inductively coupled plasma mass spectrometry.Another important application of coprecipitation is in the synthesisof materials, particularly in the field of nanomaterials. By carefully selecting the carrier and coprecipitate compounds, researchers can produce a wide range of nanostructured materials with unique properties. For example, the coprecipitation of metal ions with organic ligands can lead to the formation of metal-organic frameworks (MOFs), which have applications in areas like gas storage, catalysis, and drug delivery.Coprecipitation is also used in water treatment processes, where it is employed to remove heavy metals, radionuclides, and other contaminants from wastewater. In this case, the carrier compound, such as a metal hydroxide or a ferric hydroxide, can effectively trap the target pollutants and facilitate their removal from the water.The success of coprecipitation in various applications relies on several factors, including the solubility of the carrier andcoprecipitate compounds, the pH of the solution, the presence of competing ions, and the kinetics of the precipitation process. Careful optimization of these parameters is crucial to ensure the efficient and selective removal of the target species.In addition to the practical applications, coprecipitation also plays a significant role in the study of chemical equilibria and the thermodynamics of precipitation reactions. By understanding the factors that govern the coprecipitation process, researchers can gain insights into the underlying mechanisms and develop more accurate models for predicting the behavior of complex chemical systems.In conclusion, coprecipitation is a versatile and powerful technique that finds numerous applications in various fields of chemistry. Its ability to selectively remove and concentrate target compounds from complex matrices makes it an indispensable tool in analytical chemistry, materials science, and environmental remediation. As research in this area continues to evolve, we can expect to see further advancements in the understanding and utilization of coprecipitation for the development of innovative solutions to complex chemical problems.。
电化学原位生长英文
电化学原位生长英文Electrochemical In Situ Growth.Electrochemical in situ growth is a powerful technique for the synthesis of functional materials with controlled morphology, composition, and properties. It involves the electrochemical deposition of a material onto a substrate in the presence of a suitable electrolyte. The process can be used to synthesize a wide variety of materials, including metals, semiconductors, and polymers.The main advantage of electrochemical in situ growth over other deposition techniques is that it allows for the precise control of the deposition process. By controlling the electrochemical parameters, such as the electrode potential, current density, and electrolyte composition, the morphology, composition, and properties of the deposited material can be tailored to meet specific requirements.Electrochemical in situ growth has been used to synthesize a wide variety of functional materials, including:Metals: Metals such as copper, gold, and silver can be deposited electrochemically in situ to form thin films, nanostructures, and other complex structures.Semiconductors: Semiconductors such as silicon and gallium arsenide can be deposited electrochemically in situ to form thin films, nanocrystals, and other nanostructures.Polymers: Polymers such as polypyrrole and polyaniline can be deposited electrochemically in situ to form thin films, nanofibers, and other nanostructures.Electrochemical in situ growth is a versatile technique that can be used to synthesize a wide variety of functional materials with controlled morphology, composition, and properties. It is a powerful tool for the development of advanced materials for applications in electronics, energy storage, catalysis, and other fields.电化学原位生长。
多方法制备乙酰苯胺_培养学生的创新力_蒋玉湘
第13卷第1期2015年2月实验科学与技术Experiment Science and Technology Vol.13No.1Feb.2015多方法制备乙酰苯胺,培养学生的创新力蒋玉湘(青岛科技大学化学与分子工程学院,山东青岛266042)摘要:开放实验对于提高学生的实验技能,培养学生的创新能力具有重要作用。
对文献中的乙酰苯胺合成方法进行分析和比较,设计并实践了五种合成乙酰苯胺的实验方案,探讨了五种方案的实施及效果。
结果表明,回流-干燥法和微波法具有操作简便、绿色,且反应时间短、产率高等优点,是较佳的乙酰苯胺实验室制备方法。
关键词:乙酰苯胺;回流法;微波辐射法;回流-干燥法;分馏法;除水剂法中图分类号:G642.0;TQ245.3文献标志码:Adoi :10.3969/j.issn.1672-4550.2015.01.051收稿日期:2014-02-28;修改日期:2014-04-01作者简介:蒋玉湘(1972-),女,硕士,在读博士,实验师,主要从事有机化学实验教学工作。
Syntheses of Acetanilide by Versatile Experimental Means Cultivate Students ’Innovation Abilitiy to CultivateJIANG Yuxiang(College of Chemistry and Molecular Engineering ,Qingdao University of Science and Technology ,Qingdao 266042,China )Abstract :Open experiments play an important role in integrating student ’s experimental skills ,and in promoting student ’s innovation ability.After analysis and comparison of reported synthesis methods of acetanilide ,five experimental methods are designed and real-ized ,practice and results are discussed.The results indicate that the reflux-drying method and microwave method are better for labora-tory synthesis acetanilide because their advantages in simplifying and greening procedure ,shorting reaction time and improving yield.Key words :acetanilide ;reflux distillation ;microwave irradiation ;reflux -dry distillation ;fractional distillation ;dehydrating agent method1开放性实验—多种实验手段制备乙酰苯胺为了建立适应21世纪高素质创新型人才培养要求的实验教学机制,开拓实验教学新局面,构建有机化学实验教学新体系,提高有机化学实验教学的质量显得尤为重要。
2-乙酰基-6-三甲基硅基苯基三氟甲磺酸酯的合成
2-乙酰基-6-三甲基硅基苯基三氟甲磺酸酯的合成孙银蕾;刘波【摘要】以2-三甲基硅基苯酚为原料,经甲酰化、酯化、亲核加成和氧化反应首次合成了3-乙酰基苯炔的前体——2-乙酰基-6-三甲基硅基苯基三氟甲磺酸酯,总收率35%,其结构经1H NMR和13C NMR确证.【期刊名称】《合成化学》【年(卷),期】2014(022)003【总页数】4页(P395-397,400)【关键词】2-三甲基硅基苯酚;2-乙酰基-6-三甲基硅基苯基三氟甲磺酸酯;3-乙酰基苯炔前体;密旋霉素;合成【作者】孙银蕾;刘波【作者单位】中国科学院新疆理化技术研究所,新疆乌鲁木齐830011;中国科学院大学,北京100049;中国科学院新疆理化技术研究所,新疆乌鲁木齐830011【正文语种】中文【中图分类】O621.3密旋霉素(1)是土壤中链霉菌属微生物的次级代谢产物,于1961年由Upjohn公司首次从Streptomyces pactum var.pactum的发酵液中分离得到。
1具有抗癌、抗革兰阴性菌和革兰阳性菌的作用,已被用作蛋白质合成的阻断剂[1]。
由于其多手性中心的特殊结构和生物活性,近年来1的合成受到了化学家的关注[1-7]。
1 具有间取代氨基苯乙酮结构。
构建该结构可从烷烃C-N键及Ar-N键的形成考虑。
在Hanessian等[2]于2011年报道的1的全合成中,是以3-(2-丙烯基)苯胺对环氧乙烷亲核加成的策略构建C-N键。
此外,间取代氨基苯乙酮结构的构建还可以通过Ar-N键的形成:(1)在Cu[8]和Pd[9]的催化下间卤代苯乙酮和胺偶联而成;(2)通过苯炔与胺反应形成[10-11](Chart 1)。
相较于卤代苯与胺反应,苯炔与胺的反应具有更广的底物适用范围,尤其是对具有较大位阻的胺基化合物的芳基化转化。
该方法中3-乙酰基苯炔的逆合成分析可得其前体为2-乙酰基-6-三甲基硅基苯基三氟甲磺酸酯(2)。
到目前为止,2的合成方法还未见报道,因此,对其合成进行研究具有重要意义。
介孔二氧化硅制备 综述英文
介孔二氧化硅制备综述英文Introduction to Mesoporous Silica Synthesis: A Comprehensive ReviewAbstract: Mesoporous silica materials have attracted significant attention due to their unique structural properties and versatile applications in various fields. The synthesis of mesoporous silica involves the controlled formation of ordered nanopores within the silica matrix, allowing for tunable pore sizes and surface functionalities. This comprehensive review provides an overview of the diverse methods employed in the preparation of mesoporous silica, highlighting key advancements, challenges, and emerging trends in the field.Key Synthesis Strategies: The review covers the major synthesis strategies for mesoporous silica, including the widely used sol-gel process, template-assisted methods, and surfactant-templating techniques. Each method's principles, advantages, and limitations are discussed to provide a comparative analysis.Template-Assisted Methods: Template-assisted methods involve the use of sacrificial templates to create mesopores in the silica structure. The review delves into hard templating methods, such as nanocasting and replica methods, as well as soft templating methods, including surfactant and polymer templating.The advantages and challenges associated with each approach are thoroughly examined.Sol-Gel Process: The sol-gel process is a versatile and widely employed technique for mesoporous silica synthesis. The review explores the fundamental steps involved in sol-gel processing, such as precursor selection, hydrolysis, condensation, and aging. Various parameters influencing the mesoporous structure, such as pH, temperature, and solvent choice, are discussed in detail.Surfactant-Templating Techniques: Surfactant-templating methods, particularly the use of cationic, anionic, and non-ionic surfactants, are pivotal in tailoring mesoporous silica properties. The review elucidates the mechanisms of surfactant self-assembly and their impact on pore structure, emphasizing recent developments and innovations.Advancements and Emerging Trends: Recent advancements in mesoporous silica synthesis, such as green synthesis routes and novel templating agents, are presented. Additionally, emerging trends in the field, including post-synthetic modifications, functionalization strategies, and applications in drug delivery and catalysis, are explored. Challenges and Future Directions: The review concludes by addressing current challenges in mesoporous silica synthesis, such as scalability, reproducibility, and sustainability. Potential future directions and areasfor further research are outlined to guide the continued development of mesoporous silica materials.In summary, this comprehensive review provides a thorough examination of the various methods employed in mesoporous silica synthesis, offering valuable insights for researchers, scientists, and practitioners engaged in the design and application of these versatile materials.。
dynamic kinetic resolution
dynamic kinetic resolutionDynamic kinetic resolution (DKR) is an innovative process developed to achieve asymmetric synthesis in complex molecules. It is a type of chemical reaction which helps to obtain a target product with enhanced asymmetric selectivity by using a dynamic kinetic process. It is an environmentally friendly process which is cost-effective and offers shorter reaction timelines as compared to conventional methods.Dynamic kinetic resolution (DKR) consists of two parts, i.e., a kinetic resolution part and a dynamic resolution part. During the kinetic resolution part, a catalyst is used to promote a reaction between two similar molecules. The dynamicresolution part, on the other hand, involves a complex set of reactions in which two different components of a mixture are separated into two different fractions. The reaction is carried out at a temperature and pressure over a certain period of time such that the components are rearranged in accordance with the desired target product.The main advantage of dynamic kinetic resolution (DKR) is that it allows for the production of a target product with high chiral selectivity. This feature is essential for the production of enhanced enantioselective products. It also offers other advantages such as shorter reaction times, cost savings, and reduction of the use of hazardous chemicals. Moreover, it is a selective and targeted process which avoids the use of toxic and hazardous solvents and catalysts. Moreover, itis capable of producing chiral compounds in yields that exceed 50%.Dynamic kinetic resolution (DKR) is most commonly employed in the synthesis of chiral compounds such as natural products, pharmaceuticals, fine chemicals, and agrochemicals. This process is also used in the development of new drugs, fragrances, and optical brighteners. It is also used for the production of complex compounds and the separation of optically active compounds from racemic mixtures. DKR is a versatile and powerful method which provides high yields of the desired product with excellent selectivity.In conclusion, dynamic kinetic resolution (DKR) is a powerful and selective process which offers a number of advantages. It has many applications in the production of chiral compounds and the separation of optically active compoundsfrom racemic mixtures. It is also cost-effective, environmentally friendly and offers shorter reaction times as compared to conventional methods. Thus, DKR is an important tool for the production of complex molecules in organic chemistry.。
双(二环己基膦基)烷烃双(四氟硼酸盐)的合成
双(二环己基膦基)烷烃双(四氟硼酸盐)的合成陈辉;张银龙;杨振强;孙敏青;屈凤波;杨瑞娜【摘要】以溴代环己烷和亚磷酸二乙酯为原料制得二环己基氧化膦(2),用四氢铝锂还原得二环己基膦氢,经锂化后依次与二氯烷烃和四氟硼酸反应合成了对空气稳定的1,3-双(二环己基膦基)丙烷双(四氟硼酸盐)(4a)和1,4-双(二环己基膦基)丁烷双(四氟硼酸盐)(4b),收率分别为62%和65%,其结构经1H NMR,13C NMR,31 P NMR和元素分析表征.并对关键反应条件进行了优化.【期刊名称】《合成化学》【年(卷),期】2018(026)009【总页数】4页(P684-686,690)【关键词】1,3-双(二环己基膦基)丙烷;1,4-双(二环己基膦基)丁烷;四氟硼酸盐;合成【作者】陈辉;张银龙;杨振强;孙敏青;屈凤波;杨瑞娜【作者单位】河南省科学院化学研究所有限公司,河南郑州 450002;河南省科学院化学研究所有限公司,河南郑州 450002;河南省科学院化学研究所有限公司,河南郑州 450002;河南省科学院化学研究所有限公司,河南郑州 450002;河南省科学院化学研究所有限公司,河南郑州 450002;河南省科学院化学研究所有限公司,河南郑州450002【正文语种】中文【中图分类】O627.51目前,有机双膦配体参与的过渡金属催化偶联反应在有机合成领域有着广泛的用途[1-4]。
这些配体的催化反应活性与它们的结构密切相关,比如双膦配体与过渡金属螯合的角度、磷上取代基的电子和空间位阻效应、以及螯合骨架的刚性等均会对催化剂的活性产生影响[2]。
在诸多广泛研究的双膦配体中,双(二环己基膦基)烷烃作为催化剂配体在加氢反应、乙烯和一氧化碳的共聚以及共轭二烯的氢甲酰化反应中应用广泛[5-8]。
然而,迄今为止文献中关于双(二环己基膦基)烷烃的合成并未给出详细的报道[9-11],并且该类配体对空气敏感,极易被氧化,严重阻碍了此类配体进一步的应用。
反溶剂沉淀法制备纳米材料原理
反溶剂沉淀法制备纳米材料原理The principle of anti-solvent precipitation method for the preparation of nanomaterials involves the addition of an anti-solvent to a solution containing the solute material, resulting in the precipitation of the solute as nanoscale particles. This method is widely used for the synthesis of various nanomaterials, including metal oxides, metal sulfides, and organic nanoparticles.反溶剂沉淀法制备纳米材料的原理涉及将反溶剂加入含有溶质材料的溶液中,导致溶质沉淀为纳米级颗粒。
这种方法被广泛用于合成各种纳米材料,包括金属氧化物、金属硫化物和有机纳米颗粒。
One of the key factors in the anti-solvent precipitation method is the choice of the anti-solvent. The anti-solvent should be immiscible or poorly miscible with the solvent, and it should have a high solubility for the solute material. Common anti-solvents used in this method include water, alcohols, and hydrocarbons.反溶剂沉淀法的一个关键因素是选择反溶剂。
乳液聚合胶束成核机理谁提出来的对应的英文文章
乳液聚合胶束成核机理谁提出来的对应的英文文章乳液聚合胶束成核机理是由法国物理学家Jean-Pierre Chapel提出的。
该理论在1971年由他在《Journal of Colloid and Interface Science》发表的一篇名为"Polymerization of Micelles: A Phenomenological Approach"的英文文章中详细阐述。
后附译文Introduction:Emulsion polymerization is a widely used technique for the synthesis of various polymers. The process involves the formation of polymer particles in a water-insoluble monomer phase dispersed in water through the use of surfactants and emulsifiers. The understanding of the nucleation mechanism in this process is crucial for optimizing the synthesis and controlling the particle size and morphology. In this regard, the groundbreaking work of Jean-Pierre Chapel on the mechanism of micelle nucleation in emulsion polymerization provides valuable insights and has been of significant interest to researchers.Brief Background:Emulsion polymerization involves the formation of micelles, which are colloidal aggregates of surfactant molecules, to stabilize the monomer droplets in water. These micelles act as the nucleation sites for the polymerization reaction. Jean-Pierre Chapel proposed a phenomenological approach to explain the micelle nucleation process in emulsion polymerization. His work focused on understandingthe role of surfactants and their interactions with the monomer molecules in the nucleation process.Chapel's Phenomenological Approach:Chapel's approach involved the use of classical thermodynamics to model the micelle nucleation mechanism in emulsion polymerization. He considered the system as a two-phase mixture of monomer droplets dispersed in water and the impact of surfactant molecules on the nucleation process. Chapel formulated his theory based on well-established thermodynamic principles and made a few key assumptions.Assumptions:1. The surfactant molecules are assumed to spontaneously adsorb at the monomer-water interface due to the hydrophobicity of the monomers.2. The adsorption of surfactant at the monomer-water interface leads to the formation of a monolayer around the monomer droplet, stabilizing it against coalescence.3. Polymerization occurs within the surfactant-stabilized monomer droplets.Theoretical Explanation:Chapel's phenomenological approach involved the use of classical nucleation theory and the Gibbs free energy change associated with micelle formation. He derived equations that describe the change in free energy due to the adsorption of surfactant molecules at the monomer-water interface, the deformation of the surfactant monolayer, and the formation of micelles. Chapel recognized that the monomer-water interfaceequilibrium must be considered in the calculations. His model allowed for the prediction of the critical micelle concentration (CMC) and the rate of polymerization based on the thermodynamic parameters of the system.Significance of Chapel's Work:Chapel's model provided a deeper understanding of the nucleation process in emulsion polymerization. His approach allowed for the prediction and control of the CMC, which is a critical parameter in determining the stability of the emulsion and the particle size distribution. Chapel's work also highlighted the importance of surfactant properties, such as hydrophobicity and molecule structure, in the nucleation and stabilization processes. This knowledge has been invaluable for the design and synthesis of emulsion polymerization systems with desired properties.Further Research and Applications:Since Chapel's seminal work, researchers have built upon his model and expanded the understanding of emulsion polymerization mechanisms. The development of more efficient and versatile surfactants, advancements in experimental techniques, and computational modeling have further enhanced the understanding of the nucleation process. This knowledge has led to the development of new emulsion polymerization techniques and the synthesis of polymers with tailored properties for a wide range of applications, including coatings, adhesives, and biomaterials.Conclusion:Jean-Pierre Chapel's phenomenological approach to understanding the micelle nucleation mechanism in emulsion polymerization has provided valuable insights into the roleof surfactants in this process. His work has laid the foundation for further research in the field and has contributed significantly to the design and synthesis of polymer particles with controlled properties. The understanding of the nucleation mechanism is crucial for optimizing emulsion polymerization processes and enables the production of polymers for diverse applications.乳液聚合胶束成核机理是由法国物理学家Jean-Pierre Chapel提出的.该理论在1971年由他在《胶体和界面科学杂志》发表的一篇名为“胶束聚合:现象学方法”的英文文章中详细阐述。
催化不对称合成法在手性药物合成中的应用
Asymmetric Catalysis in Synthesis of Chiral Drugs
WANG Jun, XU Ka-i jun* , WANG L-i chen
( Department of Basic Science, China Pharmaceutical University , Nanjing 210038, China)
2 2 氧化反应 酶催化的氧化反应可以使分子内非活泼的碳氢
键立体选择性氧化, 产生特定构型 的羟基化合物。 卡托普利属于血管紧张素转化酶抑制剂类药物, 用
于治疗高血压。采用化学- 酶合成法, 用皱落假丝 酵母将异丁酸立体选择性氧化为( R)- - 甲基- - 羟基 丙酸, 后者 与 L- 脯氨 酸 缩合, 再 经巯 基化 可 得到 ( S)- 卡托普利, 合成路线如下[ 18] :
2 4 转移与裂合反应 转移裂合酶可以立体选择性地催化 C- C 键的形
成或断裂, 在手性合成中有很好的应用前景。利巴
韦林是一种抗病毒核苷类似物, 运用嘌呤核苷磷酸 化酶和嘧啶核苷磷酸化酶可实现利巴韦林的酶不对 称催化合成, 合成路线如下[ 20] :
综述与专论
110 2005, Vol . 29, No. 3
催化氧化法 英文
催化氧化法英文Catalytic Oxidation ProcessIntroductionCatalytic oxidation is a chemical process that involves the use of a catalyst to initiate the oxidation of a substance. It is widely used in various industrial processes to convert harmful pollutants into less harmful or inert substances. In this article, we will explore the principles, applications, and advantages of catalytic oxidation, as well as the different types of catalysts used in this process.Principles of Catalytic OxidationCatalytic oxidation involves the use of a catalyst, which is a substance that increases the rate of a chemical reaction without being consumed in the process. The catalyst works by lowering the activation energy required for the reaction to occur, thereby increasing the reaction rate. In the case ofoxidation reactions, the catalyst facilitates the transfer of electrons from the substance being oxidized to the oxidizing agent, promoting the formation of products.In the context of environmental pollution control, catalytic oxidation is used to convert volatile organic compounds (VOCs) and other hazardous pollutants into harmless substances such as carbon dioxide and water. The process typically involves the use of a catalyst to promote the oxidation of the pollutants at relatively low temperatures, reducing energy consumption and minimizing the formation of harmful by-products.Applications of Catalytic OxidationCatalytic oxidation has a wide range of applications in various industries, including:1. Air Pollution Control: Catalytic oxidation is commonly used in the treatment of industrial emissions and exhaust gases to remove VOCs, carbon monoxide, and other pollutants.It is an effective method for controlling air pollution in facilities such as chemical plants, refineries, and automotive manufacturing plants.2. Wastewater Treatment: The process is also utilized in the treatment of wastewater to remove organic contaminants and odor-causing compounds. Catalytic oxidation can help to improve the quality of treated water before it is discharged into natural water bodies or reused for industrial purposes.3. Chemical Synthesis: Catalytic oxidation is an important tool in the synthesis of various organic compounds, such as alcohols, ketones, and carboxylic acids. It is used to facilitate the conversion of primary alcohols to aldehydes and carboxylic acids, as well as the oxidation of aromatic compounds to produce valuable intermediates for the pharmaceutical and fine chemicals industries.Types of CatalystsSeveral types of catalysts are used in catalyticoxidation processes, each with its own specific propertiesand applications. Some of the most common catalysts include:1. Metal Catalysts: Transition metals such as platinum, palladium, and rhodium are widely used as catalysts for the oxidation of organic compounds. These metals exhibit high catalytic activity and selectivity, making them suitable fora variety of oxidation reactions.2. Metal Oxide Catalysts: Metal oxide catalysts, such as manganese dioxide and vanadium pentoxide, are effective forthe oxidation of inorganic compounds and certain organic pollutants. These catalysts are often used in combinationwith metal catalysts to enhance their performance.3. Heterogeneous Catalysts: Heterogeneous catalysts are solid materials that are used in the form of a powder, pellet, or structured catalyst bed. Examples of heterogeneouscatalysts include supported metal catalysts, zeolites, and metal oxides supported on inert substrates.Advantages of Catalytic OxidationCatalytic oxidation offers several advantages over other methods of pollutant abatement, including:1. Energy Efficiency: Catalytic oxidation can be carried out at relatively low temperatures compared to thermal oxidation, reducing energy consumption and operating costs.2. Selectivity: Catalysts can be designed to selectively promote the oxidation of specific pollutants while minimizing the formation of unwanted by-products.3. Environmental Compatibility: The use of catalysts allows for the conversion of harmful pollutants into less harmful or inert substances, reducing the overall environmental impact of the process.4. Process Intensification: Catalytic oxidation can be easily integrated into existing industrial processes, making it a cost-effective and efficient pollution control solution.ConclusionCatalytic oxidation is a versatile and effective process for the treatment of air and water pollutants, as well as the synthesis of valuable chemical products. By harnessing the power of catalysts, this technology offers significant benefits in terms of energy efficiency, selectivity, and environmental compatibility. As the demand for sustainable solutions to environmental challenges continues to grow, catalytic oxidation is expected to play an increasingly important role in pollution control and chemical synthesis.。
呋喃类衍生物在有机合成中的应用进展
呋喃类衍生物在有机合成中的应用进展文坤【摘要】基于富电子的呋喃杂环基团作为Mannich bases在化学反应中的研究,本文初步总结了含呋喃基团化合物的胺甲基化反应的进行以及Mannich bases在反应中的应用.【期刊名称】《凯里学院学报》【年(卷),期】2014(032)006【总页数】4页(P32-35)【关键词】胺甲基化反应;Mannich base;呋喃;药物设计【作者】文坤【作者单位】贵州省凯里市第一中学,贵州凯里556011【正文语种】中文呋喃是含氧五元杂环有机小分子,是一种重要的合成呋喃类药物的中间体.呋喃类药物主要是一类化学合成药,在20世纪40年代初就作为化疗药物用于临床治疗.其主要的作用机制是含呋喃类衍生的药物可以作用于细菌的酶系统,干扰细菌的糖代谢而有抑菌作用.除了具有广谱的生物活性外,在有机合成中作为一种重要的中间体有着广泛的应用.下面主要综述了基于呋喃基类衍生物在有机合成中的应用进展.较早的关于呋喃衍生物的Mannich合成研究表明,通过仲胺、伯胺和甲醛胺基盐酸化直接合成2 - 甲基呋喃的氨基甲基化反应能够在2 - 甲基呋喃的对应位置5 -也可以得到较好的收率,使用胺基乙酸盐法代替胺基盐酸化的方法合成2 - 二甲胺基 - 5 - 甲基呋喃和5 - 甲基 - 2 - (吡啶基 - 1 - 亚甲基) - 5 - 甲基呋喃能够明显地提高收率[1].在相同反应条件下,呋喃本身并不能够发生胺甲基化反应,但仍有部分呋喃衍生物如2,5 - 二(二甲基胺)呋喃能够从2 - (二甲胺基)呋喃的Mannich base中分离,从而得到胺甲基化反应产物,其他的如烷基呋喃[2]、糠醇衍生物[3]、2 - 芳基呋喃和2 - (2 - 呋喃基)咪唑并[1,2 - a]哌啶[4]都表现出很好的反应活性.较高活性的氨基甲基化试剂的使用能够克服呋喃类Mannich base活性差的现象,并能在温和的反应条件下取得很好的收率.呋喃取代了二乙氧基磷酰基甲基部分并在温和的条件下反应得到了N, N - 二甲基甲亚胺的氯化物[5].这些半理论半经验计算结果表明,使用亚胺盐的呋喃氨基甲基化反应比相较于传统的Mannich反应更容易发生[6].此外,从乙醛酸乙酯、仲胺和苯并三唑原位生成的亚胺盐也可作为呋喃在单氨基甲基化反应区域选择性的优良试剂[7].简单呋喃缩胺类化合物1或氨基醚类化合物2(图1)原位激活氯衍生物或二氧化硫的反应,也使得相应的Mannich 反应产物获得良好的产率.掺杂了金属三甲基氯硅烷的三氟甲磺酸催化氨甲基呋喃的体系为各种非周期性N, O - 缩醛提供非天然的方便[8].甲醛的环化N, O - 缩醛,如1,3 - 噁唑烷类化合物3[9]、咪唑啉衍生物4[10]和3,8 - 二甲基 - 1,3 - 苯并噁嗪5[11]对于呋喃而言,作为胺甲基化试剂效果都很显著.在大量酸性溶剂存在条件下,N, N - 双(甲氧基甲基) - 2 - 甲基丙烷 - 2 - 胺6(图1)生成相应的亚胺盐,而这种亚胺盐可以与2 - 甲基呋喃发生类似多米洛反应生成二级和三级胺的混合物,而与甲醛反应时,O - 苄基 - N - 苯乙基羟胺在原位活化,并能够与2 - 甲基呋喃在温和条件下进行胺甲基化反应[12].在路易斯酸参与条件下,使用苯并三氮唑的N - Mannich base发生转氨作用是另1个间接生成呋喃的2级和3级Mannich base的方法[13].近年来,2 - 三烷基硅氧基呋喃类化合物7因能与甲硅氧基丁二烯一样,发生区域立体选择的Mannich base,从而吸引了很多科学家的关注.1999年,Rassu[14]报道了其化学性质、制备、杂环甲硅氧基丁二烯的一般的反应性,以及制备手性试剂的一些应用.在模拟反应中,取代的2 - 三烷基硅氧基呋喃亚胺离子的亲核产物,能够得到异构的苏 - 8和赤 - 8加合物的混合物,且前者通常占主导地位[15].醛亚胺或环胺类毒素如异喹啉或二氢咔啉[16]也与2 - 三烷基硅氧基呋喃在各种条件下反应,生成具有较好立体选择性的对应的5 - 氨基烷基丁烯羟酸内酯.插稀Mannich反应加合物被用于合成多取代吡咯烷、哌啶和中氮茚[17] (图2).通过2 - 三烷基硅氧基呋喃作为底物的插稀Mannich反应通常是设计合成一些结构比较复杂的生物碱的常用方法[18].尽管有证明其成功制备麦角生物碱鲁古罗瓦辛和毛麦角碱[19]、金刚大碱[20]、两栖毒素前体[21]和叶底珠生物碱[22],但是插稀Mannich反应在甲硅氧基二烯烃衍生物上的应用因其立体选择性的不可控制性而受到质疑.1997年,Martin[23]曾报道多种因素对分子内插稀Mannich反应合成化合物9立体化学选择的重要性,初步研究确定了合适的底物,并探讨了温度、溶剂、路易斯酸作为催化剂对其影响.温度和溶剂对产物10和11的非对映体过量值影响不是很大,在所有测试的溶剂中,乙腈是最好的溶剂.一些路易斯酸,如ZnCl2、BF3醚合物,和Et2AlCl对反应结果也有较大影响,后者效果优于其他.此外,LiClO4可使插稀Mannich反应获得较高的立体选择性,但收率较其他低.另外,必须强调的是分子内插稀Mannich反应与分子间反应是不同的,这也导致了其加成产物有2种不同的立体结构(图 3).呋喃衍生物因具有潜在的医学价值而在Mannich base中得到广泛应用.雷尼替丁,又名呋喃硝胺,为强效组胺H2受体拮抗剂.能有效地抑制组胺、五肽胃泌素和氨甲酰胆碱刺激后引起的胃酸分泌,降低胃酸和胃酶活性,主要用于胃酸过多、烧心的治疗.含有1个5 - 氨甲基二烃基 - 2 - 呋喃,一半是典型的呋喃Mannich base.雷尼替丁最初合成是以5 - 二甲基氨甲基呋喃和乙醇作为起始物料,并保留二甲基氨甲基的完整性,采用多不合成法合成.然而,相应的底物的胺甲基化反应也可以作为合成雷尼替丁类似物的最后一步[24].在类似的方法中,一系列与雷尼替丁结构类似的化合物12 (图4)被合成.奥舒替丁,也被称为t - 593,(12, R=4 -OHC6H4),因其具有更高效的组胺H2受体拮抗作用、控制胃酸分泌和保护胃粘膜抗溃疡作用而逐步替代雷尼替丁[25].1996年,Amagase[26]将呋喃的胺甲基化反应已经被用于制备与雷尼替丁有关的2个新颖组胺受体拮抗剂中间体,并取得较好的效果.为了获得毒副作用较小的乙酰胆碱酯酶受体抑制剂,通过Mannich反应合成了一系列二甲基氨甲基呋喃类似物,其中一些化合物被发现拥有较为有效的乙酰胆碱酯酶抑制作用和较低的毒性[27].本系列的化合物13除了具有乙酰胆碱酯酶抑制作用,更表现出对M2受体有较强的抑制作用,因而它比较适合老年痴呆症的治疗[28].化合物13对啮齿动物的空间学习、抑制性回避和工作记忆具有较好的改善作用,同时对啮齿动物的信息识别和认知功能以及非人类灵长类动物都具有一定的效用[29] (图5).在以2 - 甲基呋喃为原料合成Mannich base 14 (R=H, CH3)的胺甲基化反应中,14 - 羟基7,8 - 二氢降吗啡酮作为一个重要的甲基化试剂参与反应,而化合物14可以用作麻醉抑制剂[30].Mannich base 15的合成是通过对应的呋喃 - 2 - 甲基内酰胺和1 - 芳基哌嗪反应得到,2 - 三烷基甲硅氧基呋喃的插稀Mannich反应在药物化学方面同样应用广泛[31].综上所述,多数呋喃衍生物表现出良好的生理活性,如抗病毒、抗肿瘤、抗菌、抗自由基、抗氧化作用等.因此,呋喃类化合物合成方法一直是药物合成化学家追逐的热点之一,随着对其合成研究的不断深入,多学科的交叉融合,相信以呋喃基团作为底物Mannich反应在药物合成化学领域将迎来新的春天.【相关文献】[1] HOLDREN R F, HIXON R M. The reaction of 2 - methylfuran with formaldehyde and substituted ammonium chlorides [J]. J. Am. Chem.Soc., 1946(68): 1198 - 1200.[2] MEISTER C, SCHARF H D. Synthese von 3(2H) - Furanonen und 3 - Methoxyfuranen [J]. Synthesis, 1981(9): 737 - 739.[3] VERESHCHAGIN L I, KIRILLOVA L P, RECHKINA A V, KUIMOVA N M. Unsaturated carbonyl - containing compounds. II. Acetylenic γ - ketoalcohol ethers [J]. Zh. Org. Khim., 1971(7): 907 - 912.[4] SALDABOL N O, ZELIGMAN L L, GILLER S A. Aminomethylation of 2 - (2 -furyl)imidazol[1,2 - a]pyridine [J]. Chem. Heterocycl. Compd., 1971(7): 763 - 766.[5] PEVZNER L M. Synthesis of functionalyzed 3 - (diethoxyphosphorylmethyl) - 4,5,6,7 - tetrahy - drobenzo[c]furans [J]. Russ. J. Gen.Chem., 2009(79): 2383 - 2392.[6] LI Y M, XIAO H M. Studies on the mechanism of Mannich reaction involving iminium salt as potential Mannich reagent. III. Furan as pseudo acid component [J]. Int. J. Quantum Chem., 1995(54): 293 - 297.[7] GRUMBACH H J, MERLA B, RISCH N. Efficient synthesis of racemic α - aryl - α - amino acid esters via aminoalkylation with in situ generated glycine cation equivalents [J]. Synthesis, 1999(6):1027 - 1033.[8] EYLEY S C, HEANEY H, PAPAGEORGIOU G, WILKINS R F. Mannich reactions of π - excessive heterocycles using bis - (dialkylamino)methanes and alkoxydialkylaminomethanes activated with acetyl chloride or sulphur dioxide [J]. Tetrahedron Lett., 1988(29): 2997 - 3000.[9] FAIRHURST R A, HEANEY H, PAPAGEORGIOU G, WILKINS R F, EYLEY S C. Mannich reactions of oxazolidines [J]. Tetrahedron Lett., 1989( 30): 1433 - 1436.[10]HEANEY H, PAPAGEORGIOU G, WILKINS R F. The functionalization of electron rich aromatic compounds with 1,3 - oxazolidines and 1,3 - dimethylimidazolidine [J]. Tetrahedron, 1997(53): 14381 - 14396.[11]AHN J S, HAHM D G, HEANEY H, WILKINS R F. Condensation of halophenols with primary amines and formaldehyde in aprotic solvent [J]. Bull. Korean Chem. Soc., 1994(15): 329 - 330.[12]GRIGG R, RANKOVIC Z, THOROUGHOOD M. Acyclic oxyiminium ions. Mannich reactions and addition of Grignard reagents [J]. Tetrahedron, 2000(56): 8025 - 8032. [13]KATRITZKY A R, YANG Z, LAM J N. Aminoalkylbenzotriazoles: reagents for theaminoalkylation of electron rich heterocycles [J]. Tetrahedron, 1992(48): 4971 - 4978. [14]RASSU G, ZANARDI F, BATTISTINI L, CASIRAGHI G. The vinylogous aldol addition of heterocyclic silyloxy dienes: Application in synthesis [J]. Synletters, 1999(9):1333 - 1350.[15]CASIRAGHI G, BATTISTINI L, CURTI C, RASSU G, ZANARDI F. The vinylogous aldol and related addition reactions [J]. Chem. Rev., 2011(111): 3076 - 3154.[16]MIRABAL - GALLARDO Y, SORIANO M D P C, CABALLERO J, ALZATE - MORALES J, SIMIRGIOTIS M J, SANTOS L S. Synthesis of the indolo[2,3 - a]quinolizidine ring through the addition of 2 - siloxyfurans to imines and intrinsic reaction coordinate calculations [J]. Synthesis, 2012(1):144 - 150.[17]RUAN S T, LUO J M, DU Y, HUANG P Q. Asymmetric vinylogous Mannich reactions: A versatile approach to functionalized heterocycles [J]. Org. Lett., 2011(13): 4938 - 4941. [18]MARTIN S F. Evolution of the vinylogous Mannich reaction as a key construction for alkaloid synthesis [J]. Acc. Chem. Res., 2002(35): 895 - 904.[19]LIRAS S, LYNCH C L, FRYER A M, VU BT, MARTIN S F. Applications of vnylogous Mannich reactions. Total syntheses of the Ergot alkaloids rugulvasines A and B and setoclavine [J]. J. Am. Chem. Soc., 2001(123): 5918 - 5924.[20]MARTIN S F, BARR K J, SMITH D W, BUR S K. Applications of vinylogous Mannich reactions. Concise enantiospecific total syntheses of (+) - croomine [J]. J. Am. Chem. Soc., 1999(121): 6990 - 6997.[21]MARTIN S F, BUR S K. Vinylogous Mannich reactions. Stereoselective formal synthesis of pumiliotoxin 251D [J]. Tetrahedron, 1999(55): 8905 - 8914.[22]GONZLEZ - GLYEZ D, GARCA - GARCA E, ALIBÉS R, et al. Ena ntioselective approach to securinega alkaloids [J]. J. Org. Chem., 2009(74): 6199 - 6211.[23]MARTIN S F, BUR S K. The stereochemical course of intramolecular vinylogous Mannich reactions [J]. Tetrahedron Lett., 1997(38): 7641 - 7644.[24]PRICE B J, CLITHEROW J W, BRADSHAW J. Furan derivatives having selective action on histamine receptors: U.S.,4 255 440[P].1981 - 03 - 10.[25]OOMURA O, SHINDO M. Production of amine derivative (in Japanese): Japanese, 11 035 567[P].1999 - 02 - 09.[26]AMAGASE K, KATO S, YAMAMOTO H, OKABE S. Effects of the novel histamine H2 - receptor antagonist guanidine on gastric secretion and gastroduodenal ulcers in rats [J]. Arzneim. Forsch., 1996(46):177 - 184.[27]SOWELL S JW, TANG Y, VALLI MJ, et al. Synthesis and cholinergic properties ofbis[[(dimethylamino)methyl]furanyl] analogs of ranitidine [J]. J. Med. Chem.,1992(35):1102 - 1108.[28]QUIRION R. Cholinergic markers in Alzheimer’s disease and the autoregulation of acetylcholine release [J]. J. Psychiatr. Neurosci., 1993(18):226 - 234.[29]TERRY JR A V, BUCCAFUSCO J J, HERMAN E J, et al. Prototypical ranitidine analog JWSUSC - 75 - IX improves information processing and cognitive function in animal models [J]. J. Pharmacol. Exp. Ther., 2011(336):751 - 766.[30]MERZ H, LANGBEIN A, WALTHER G, et al. Pharmaceutical compositions containing an N - (furyl - or thienyl - methyl) - 14 - oxy - 7,8 - dihydro - normorphinone or norcodeinone and method of use: U.S., 3 923 987[P].1975 - 12 - 02.[31]SCOTT M K, BAXTER E W, BENNETT D J, et al. Piperazinylalkyl heterocycles as potential antipsychotic agents [J]. J. Med. Chem., 1995(38):4198 - 4210.。
缩合试剂介导酰胺合成最新研究进展
[14] Hu,L.; Xu,S.L .; Zhao,Z.G,etc. Ynamides as racemizationfree coupling reagents for amide and peptide synthesis.J. Am. Chem. Soc. 2016, 138, 40, 1313513140.
合成酰胺的传统方法是先对羧酸活化,在碱和缩 合试剂条件下,自由胺发生加成消除获得酰胺类化合 物,反应通式如图 2 所示 [3]。缩合试剂介导的酰胺合 成具有操作简单、反应条件温和、成本较低等优势而 被广泛使用。常见的缩合试剂有酸酐类、二亚胺类、 酰氯及氯三嗪试剂,磷酸盐和胍盐等类似物。
图 2 传统酰胺合成方法
酰胺键是在活性药物中常见的化学结构 [1],其合 成受到的广泛关注和研究。Dean G.Brown 等人 [2] 于 2016 年统计并分析了 1984 年 -2014 年药物化学各种 化学反应中酰胺键合成应用频率最高,如图表 1 所示。
图 1 1984vs2014 最常用的 20 个化学反应类型统计
[6] Grzyb, J. A.; Shen, M.; Yoshina-Ishii, C.etc. Batey, R. A. Carbamoylimidazolium and thiocarbamoylimidazolium salts: novel reagents for the synthesis of ureas, thioureas, carbamates, thiocarbamates and amides. Tetrahedron ,2005, 61(30):7153-7175.
polonovski反应在有机合成中实例的应用
polonovski反应在有机合成中实例的应用Polonovski reaction, named after French chemist AndréPolonovski, is a powerful tool in organic synthesis. It involves the transformation of pyrrole derivatives into functionalized ketones or aldehydes through a series of chemical reactions. The versatility and efficiency of this reaction have made it widely utilized in various synthetic applications.我的问题是:在有机合成中,polonovski反应的实例应用。
The Polonovski reaction has found significant utility in the synthesis of heterocyclic compounds. For example, polonovski reaction has been employed in the preparation of 2-pyrrolylketones, which are important building blocks for pharmaceuticals and natural products. These compounds often possess unique biological activities due to theirstructural resemblance to natural molecules.Polonovski反应在杂环化合物的合成中发挥了重要作用。
亚氨基二乙酸合成工艺
亚氨基二乙酸合成工艺英文回答:Synthesis of Ethylenediaminetetraacetic Acid (EDTA)。
EDTA, also known as ethylenediaminetetraacetic acid, is a versatile compound widely used in various industries such as pharmaceuticals, food, and water treatment. Its synthesis involves several steps and can be achieved through different methods. In this response, I will discuss one common process for synthesizing EDTA.The synthesis of EDTA typically starts with ethylenediamine, which is reacted with chloroacetic acid to form the intermediate compound, N-(2-carboxyethyl)ethylenediamine (CEDA). This reaction is carried out in the presence of a strong base, such as sodium hydroxide, to facilitate the formation of the desired product. The reaction can be represented by the following equation:Ethylenediamine + Chloroacetic Acid → N-(2-carboxyethyl)ethylenediamine + Hydrochloric Acid.After the formation of CEDA, it is further reacted with formaldehyde to produce the final product, EDTA. This reaction is known as the Mannich reaction and is typically carried out under acidic conditions. The formaldehyde reacts with the primary amine group of CEDA, forming a Schiff base intermediate. This intermediate is then hydrolyzed to yield EDTA. The reaction can be represented as follows:N-(2-carboxyethyl)ethylenediamine + Formaldehyde → EDTA.The synthesis of EDTA requires careful control of reaction conditions, such as temperature, pH, and reaction time, to ensure optimal yield and purity of the final product. Additionally, purification steps, such as filtration, crystallization, and drying, may be necessary to obtain EDTA in its pure form.中文回答:亚氨基二乙酸(EDTA)的合成工艺。
一价铑催化的碳氢活化环化
一价铑催化的碳氢活化环化英文回答:Rhodium(I)-Catalyzed C-H Activation and Cyclization.Rhodium(I) complexes have emerged as powerful catalysts for C-H activation and cyclization reactions, enabling the construction of various cyclic compounds with high efficiency and selectivity. This catalytic system offers a versatile approach for the synthesis of complex molecules, including natural products, pharmaceuticals, and functional materials.The mechanism of rhodium(I)-catalyzed C-H activation typically involves the following steps:Oxidative addition: The rhodium(I) complex undergoes oxidative addition with a C-H bond, forming a rhodium(III) intermediate.Migratory insertion: The alkyl or aryl group from theC-H bond migrates to a ligand on the rhodium(III) center, forming a new C-C bond.Reductive elimination: The rhodium(III) intermediate undergoes reductive elimination, releasing the cyclic product and regenerating the rhodium(I) catalyst.The regioand stereoselectivity of rhodium(I)-catalyzedC-H activation and cyclization reactions are influenced by various factors, including the nature of the substrate, the ligand environment of the rhodium complex, and the reaction conditions.Rhodium(I)-catalyzed C-H activation and cyclization reactions have been widely applied in the synthesis of natural products, pharmaceuticals, and functional materials. Some notable examples include:Synthesis of indoles: Rhodium(I) catalysts have been used to synthesize indoles from various aniline derivatives through intramolecular C-H activation and cyclization.Synthesis of isoquinolines: Rhodium(I) catalysts have been employed in the synthesis of isoquinolines from ortho-substituted anilines via C-H activation and cyclization with alkynes.Synthesis of carbocycles: Rhodium(I) catalysts have been utilized to construct carbocycles from alkenes and alkynes through C-H activation and cyclization reactions.The development of novel rhodium(I) catalysts and reaction strategies is an active area of research, aiming to expand the scope and applications of rhodium(I)-catalyzed C-H activation and cyclization reactions.中文回答:一价铑催化的碳氢活化环化。
动态共价键在表面活性剂中的应用研究
动态共价键在表面活性剂中的应用研究陆娉娉 郭 爽 张永民*(江南大学化学与材料工程学院,江苏无锡, 214122)装得到各种聚集体(例如胶束和囊泡等)。
其中胶束在食品检测、医疗医学等方面有突出的应用,而囊泡因为与生物细胞的相似性,受到研究者们的广泛关注。
表面活性剂的自组装给智能材料的研究带来了无限的可能,通过给予一些环境刺激来调控表面活性剂的自组装,触发两亲化合物的开/关,使它们可以自组装成具有可控特性的囊泡、胶束和凝胶[1]。
外部刺激导致化合物的分子结构发生改变,分子结构的变化是调控两亲化合物自组装的关键。
如果分子结构的变化是可逆的,则可以实现宏观性质和微观聚集行为的可逆转变。
动态共价键的可逆性和动态性是构建自适应和可逆系统的有力工具[2],并且可以形成各种超分子聚集体,如凝胶、纳米棒和胶束等。
动态共价键在超分子科学领域受到广泛关注,它结合了经典共价键的稳定性和非共价键的可逆性,是一种具有动态特征、相对稳定的共价键。
由于动态共价键具有可逆性质,自组装聚集体的结构和形态可以更容易的进行可逆调节[3]。
因此,动态共价键是构建智能材料的理想工具。
目前,研究者们已经利用动态共价键研发出了一系列的智能材料,在化学、医疗等方面做出了独特的贡献。
近年来, 也出现了很多基于动态共价键的表面活性剂,它们可以自组装成各种智能材料,这种材料不仅具有可逆性,还具有稳定性。
本文将结合各种不同动态共价键的特点,介绍其应用,并展望其发展前景。
1 动态共价化学动态共价化学的出现和超分子化学有着密切的联系,动态共价化学的核心部位是动态共价键,近几年,动态共价键的发展壮大在超分子科学领域引起了人们的广泛关注。
由于超分子实体中的分子组分是靠非共价键连接的,非共价键的不稳定性使得超分子化学在本质上是一种动态化学,因此,超分子物质可以可逆地解离和缔合[4]。
后来有学者认识到分子化学也可以具有相似的动态特征,只要分子中含有可以可逆地断裂和形成的共价键,就可以通过重组和构建单元的交换使结构发生连续的变化。
合成nad的新途径
合成NAD的新途径烟酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide,NAD)是有机体必不可少的多功能小分子,主要作为氧化还原酶(oxidoreductase)的重要辅酶和核糖二磷酸腺甙(ADPribosyl)的来源。
正是利用了这种重要性,以tiazofurin 和benzamide riboside为代表的抗癌药物通过转变成毒性的NAD类似物而发挥效用。
最近还发现,在实验系统中许多能够延长生命的蛋白都是NAD依赖性的。
NAD的合成前体一直认为只有烟酸(nicotinic acid)和烟碱(nicotinamide)。
然而最近,一条新的代谢途径被发现;并且,这个途径还可能有重要的作用。
在最近一期的《细胞》杂志上发表了Dartmouth Medical School的Pawel Bieganowski 和Charles Brenner的研究结果,揭示了在酵母系统中,烟碱核糖甙(nicotinamide riboside)可以作为NAD的新前体,而且,人和酵母的烟碱核糖甙激酶(nicotinamide riboside kinases)都可以在这条代谢途径中发挥重要作用。
一直依赖都认为,NAD合成酶(NAD+ Synthetase)是NAD合成所必需的,然而实验表明,烟碱核糖甙可以形成NAD合成酶非依赖性的酵母生长。
随后,研究者又找到了对这一途径起重要最用的烟碱核糖甙激酶;而且发现,和烟碱核糖甙类似的tiazofurin 和benzamide riboside似乎也是通过这个途径转变成毒性的NAD类似物。
在奶清中烟碱核糖甙的发现,也提示烟碱核糖甙可能也有助于人体中NAD水平的上升。
另一方面,通过对烟碱核糖甙激酶的检测,也许可以揭示tiazofurin 和benzamide riboside 类的药物,对癌症病人的效果为什么大相径庭。
Novel Vitamin Discovery Offers Clues For Cancer Chemotherapy And Lipid DisordersScienceDaily (May 14, 2004)— HANOVER, NH - Dartmouth Medical School cancer researchers, in a fusion of biochemistry and genetics, have discovered a new vitamin in a molecular pathway central to such vital processes as gene regulation, metabolism and aging. And, they found that milk contains this nutrientThe work, published in the May 14 issue of Cell, defines another metabolic route to a compound called NAD and suggests that therapeutic approaches for cancer or heart disease may depend on the enzymes discovered.NAD (nicotinamide adenine dinucleotide) is one of the most well-known small molecules in the cell, said Dr. Charles Brenner, associate professor of genetics and of biochemistry, author of the study with Dr. Pawel Bieganowski, a postdoctoral fellow. It is essential for life in allorganisms, from bacteria to humans, and very versatile, working both as a partner that helps enzymes and as an ingredient that other enzymes consume.NAD is a co-enzyme for hundreds of cellular enzymes. Niacin, or vitamin B3, a mixture of the NAD precursors nicotinic acid and nicotinamide, which were discovered in 1938, prevents pellagra and can help control cholesterol. A class of anti-cancer drugs including tiazofurin and benzamide riboside is converted to toxic NAD analogs. And, more recently, proteins dependent on NAD have been shown to prolong life in experimental systems.Brenner's laboratory at the Norris Cotton Cancer Center at Dartmouth-Hitchcock Medical Center was studying an enzyme involved in NAD synthesis that was similar to an enzyme implicated in cancer development. Their explorations revealed a novel twist. In yeast without the enzyme, every known NAD biosynthetic pathway was shut down, so in theory, the cells should die; no vitamins or supplements were known to keep the cells alive. However, the researchers discovered that another NAD precursor, nicotinamide riboside, thought to be a vitamin form of NAD only in certain bacteria, served as a vitamin in yeast and could prevent death. The researchers discovered the genes and enzymes in yeast and humans responsible for this vitamin conversion pathway and then they found the vitamin in milk.Their findings upend some assumptions underlying biosynthetic schemes for NAD that have been in textbooks for decades and refocus the cancer pharmacology of tiazofurin and benzamide riboside. "Cancer drugs that look like nicotinamide riboside are converted to toxic NAD analogs through a pathway that is likely to be the same as our vitamin activation pathway," Brenner said.The researchers considered nicotinamide riboside as a nutrient through its role in a bizarre bacterium, Haemophilus influenza, that lives in blood. When they determined that the compound also supported the growth of yeast cells, they began a search for the yeast equivalent of the bacterial kinase enzyme that is required to begin turning it into NAD.They used what Brenner termed a "biochemical genomics approach," taking advantage of shortcuts developed since the entire the yeast gen ome was sequenced. The team analyzed large yeast gene pools for the enzyme activity and quickly zeroed in on the gene for their novel kinase. Yeast has similarities to mammalian cells, and a gene or enzyme in yeast is likely to have an equivalent in humans."We cloned the yeast nicotinamide riboside kinase, and validated it genetically by knocking it out and seeing that the vitamin no longer supported growth," said Brenner. "We then identified two human nicotinamide riboside kinases and showed that all three have the biochemical specificity for nutrient and prodrug [precursor] activation and that all three work in vivo."To reinforce the vitamin premise, the scientists sought the compound in a food. Testing for it nonfat milk, they separated out the curds from the whey and found it in the whey.Brenner thinks that nicotinamide riboside may be a useful nutrient for certain metabolic disorders and that kinase screening may benefit certain cancer patients. Niacin, for example, can help lower cholesterol, but it has uncomfortable flushing effects in patients, so nicotinamide riboside supplementation may offer an alternative.And, while tiazofurin-related drugs have potential against cancer, they are unpredictable. "Certain tumors respond, while others don’t, so i f we can select the right patients we will have a more effective treatment strategy," he said. "In the future, testing for nicotinamide ribosidekinase expression might be used to identify the patients that are likely to respond to this class of drugs."文- 汉语汉字编辑词条文,wen,从玄从爻。
对甲基苯磺酸二芳基碘(Ⅲ)盐的合成
对甲基苯磺酸二芳基碘(Ⅲ)盐的合成苏策;许素花;谢益明【摘要】以芳烃和碘为起始原料,过硫酸钾为氧化剂,制得二乙酰氧基碘代芳烃,与对甲基苯磺酸反应得到Koser,s试剂,在六氟异丙醇中直接与芳烃反应制得对甲基苯磺酸二芳基碘盐.建立一种简便的二芳基碘盐的制备方法.该方法反应条件温和,每一步产物分离纯化无需柱层析,二芳基碘盐的收率可达69%~94%.【期刊名称】《兰州理工大学学报》【年(卷),期】2014(040)006【总页数】3页(P80-82)【关键词】二芳基碘盐;二乙酰氧基碘代芳烃;Koser's试剂;芳烃;制备【作者】苏策;许素花;谢益明【作者单位】兰州理工大学石油化工学院,甘肃兰州730050;兰州理工大学石油化工学院,甘肃兰州730050;兰州理工大学石油化工学院,甘肃兰州730050【正文语种】中文【中图分类】O625.5261886年德国化学家Willgerodt[1]首次报道了第一个有机高价碘化合物PhICl2之后,1894年Hartmann[2]又报道了二芳基碘盐此后多种类型的高价碘化合物相继问世[3-7].在常温下,二芳基碘盐稳定性比较好,与氧气、水等也不发生反应,但是二芳基碘盐对光敏感,在长期光照下容易分解[8].二芳基碘盐的结构如图1所示.图1 二芳基碘盐Fig.1 diaryliodonium salt二芳基碘盐近年来在有机合成中广泛应用于:直接与亲核底物进行反应并对底物实现芳基化[9]、过渡金属催化的芳基化反应[10] 、二芳基碘盐产生苯炔类中间体的反应[11].本文以芳烃和碘为起始原料,过硫酸钾为氧化剂,二乙酰氧基碘代芳烃((Diacetoxyiodo)arenes).对甲基苯磺酸(TsOH),得到相应的Ko ser’s试剂.Koser’s试剂与芳烃在六氟异丙醇(HFIP)中反应,制得对甲基苯磺酸二芳基碘盐.制备方法见图2.图2 对甲基苯磺酸二芳基碘盐的制备Fig.2 Preparation of diaryliodonium(Ⅲ) tosylates1 实验部分1.1 实验仪器与试剂苯、甲苯、1,3,5-三甲基苯、氯苯、溴苯、苯甲醚、过硫酸钾、碘、对甲基苯磺酸、浓硫酸、乙腈、冰乙酸、1,2-二氯乙烷(DCE)、六氟异丙醇(HFIP)、乙醚,以上均为市售分析纯试剂;薄层层析硅胶板(烟台江友硅胶开发有限公司).Mercury-400bb型核磁共振仪(美国);X-4型显微熔点仪,温度计未校正.1.2 二乙酰氧基碘代芳烃的制备向乙酸(60 mL)和1,2-二氯乙烷(60 mL)的混合溶剂中,依次加入芳烃(40 mmol),浓硫酸(6.76 mL,120 mmol)和碘(3.815 g,15 mmol),升温至40 ℃,搅拌15 min后,分批加入过硫酸钾(40.752 g,150 mmol),20 min内加毕,继续搅拌30 h左右,直至TLC显示反应完毕为止.然后向体系中加入蒸馏水(60 mL),抽滤,二氯甲烷洗涤滤饼(3×20 mL),得到的滤液用二氯甲烷萃取(3×50 mL),然后水洗(50 mL),无水硫酸钠干燥,2 h后过滤,浓缩滤液,敞口使其慢慢挥干,析出白色晶体1.1.3 Koser’s试剂((Hydroxytosyloxyiodo)arenes,HTIAs)的制备在100 mL的圆底烧瓶中加入乙腈(60 mL),然后分别加入二乙酰氧基碘代芳烃(15 mmo1)和等当量的对甲苯磺酸(15 mmo1),立即有大量白色固体生成,室温搅拌约l5 h,反应完毕.直接过滤,滤饼先用乙醚(2×10 mL)洗涤以除去乙酸,再用乙腈洗涤(2×10 mL)除去未反应的对甲基苯磺酸,真空干燥,得到白色固体2.1.4 二芳基碘盐(Diaryliodonium(Ⅲ) salts)的制备向六氟异丙醇(2 mL)中加入PhI(OH)OTs (392 mg,1 mmo1),搅拌使其溶解,然后加入芳烃(0.089 mL,1 mmo1),室温下搅拌过夜(反应12 h).TLC检测反应完毕后,减压蒸除六氟异丙醇,加入少量甲醇溶解,然后在搅拌下加入无水乙醚,有大量固体析出,过滤,乙醚洗涤,真空干燥后,得淡黄色固体3a,3b,3c,3d.在此方法的基础上将Koser’s试剂换成氯、溴取代基,得到淡黄色固体3e,3f.2 结果与讨论2.1 实验结果以二乙酰氧基碘代芳烃为原料,加入对甲基苯磺酸(TsOH),在乙腈溶剂下,室温搅拌即可得到所需的Koser’s试剂,这是制备Koser’s试剂的经典方法[12].本文尝试制备带取代基Cl、Br的Koser’s试剂,得到了所期望的产物.制备二芳基碘盐的反应大部分在酸性条件下进行,氟代醇是合成二芳基碘盐的稳定溶剂 [13-14].本文以六氟异丙醇为氟代醇溶剂,得到了较理想的结果.实验结果见表1.表1 二芳基碘盐的合成Tab.1 Synthesis of diaryliodonium(Ⅲ) salts序列R1R2反应时间/h产物产率/%1HH123a922HMe23b863HOMe23c894H1,3,5-trimethyl83d945HCl24—n.r.6HBr24—n.r.7HI24—n.r.8Cl1,3,5-trimethyl243e789Br1,3,5-trimethyl243f69由表1可知,芳环取代基影响产物收率,采用Koser’s 试剂法制备二芳基碘盐时,选取连有供电基的芳香化合物 (entries 2,3 and 4,table 1),可以得到较高的收率,并且反应时间也较短.用苯作底物时(entry 1,table 1),反应时间稍长,但也能得到较高的收率.而以带有吸电子基团的芳香化合物作为底物(entries 5,6 and 7,table 1),24 h 反应仍不进行.反应的可能机理[8,14]见图3,亲电子的芳烃4进攻Koser’s 试剂芳香环上的Ⅰ(Ⅲ)中心形成二芳基碘盐的σ中间体,阳离子稳定试剂氟代醇溶剂进一步加速了这一中间体的形成,接着除去一分子水,最后形成二芳基碘盐,因此可以说明带供电子的芳烃4,有利于该反应.反之带有吸电子基团的芳香化合物作为底物不利于该反应,甚至不反应.图3 可能的反应机理Fig.3 Possible reaction mechanism2.2.1 Koser’s试剂2a:(R1=H)白色固体; m.p.120~121 ℃;1H NMR(400 MHz,D2O,TMS) δ7.96 (d,J=7.20,2H),7.51(t,J=7.60Hz,1H),7.45(dd,J=25.6 Hz,2H),7.35(t,J=15.6 Hz,2H),7.10(m,2H),2.11(s,3H);13C NMR(100MHz,D2O)142.6,139.6,135.0,133.8,131.9,129.6,125.5,123.2,20.6.2b: (R1=4-Cl)白色固体; m.p.124~125 ℃(lit.159~161 ℃[15]).2c: (R1=4-Br)白色固体; m.p.144~146 ℃(lit.144~145 ℃[15]).2.2.2 二芳基碘盐3a:淡黄色固体;m.p.178~179 ℃(1it.179~180 ℃[7]);1H NMR (400MHz,CDCl3,TMS) δ7.95(d,J=8 Hz,4H),7.47(t,2H),7.40(d,J=8.4Hz,2H),7.34(t,4H),6.98(d,J=7.6 Hz,2H),2.3(s,3H);13C NMR(100 MHz,CDCl3) δ142.5,139.2,135.2,131.4,131.3,128.4,125.8,115.6,21.2.3b:淡黄色固体;m.p.149~150 ℃.3c:淡黄色固体;m.p.145~147 ℃(1it.143~146 ℃[7]);1H NMR(400MHz,CDCl3,TMS) δ 7.90(m,4H),7.47(m,3H),7.3l(t,J=15.6 Hz,2H),7.00(d,J=8.0 Hz,2H),6.81(t,J=9.2 Hz,2H),3.8(s,3H),2.3(s,3H);13C NMR(100MHz,CDCl3)δ162.2,142.7,139.2,137.4,134.6,131.4,131.3,128.4,126.0,117.4,11 6.0,109.7,103.9,55.5,21.2.3d:淡黄色固体;m.p.154~157 ℃(1it.153~157 ℃[7]).3e:淡黄色固体;m.p.165~167 ℃;1H NMR (400 MHz,CDCl3) δ 7.63 (dd,J=7.3,1.4 Hz,2H),7.42 (d,J=8.1 Hz,2H),7.31-7.16 (m,2H),7.07-6.90 (m,4H),2.54 (d,J=20.6 Hz,6H),2.31 (s,6H);13C NMR(100 MHz,CDCl3)δ 143.2,142.3,142.0,139.1,137.4,134.5,131.4,129.6,128.2,125.7,122.7,111.1,26.9 ,21.2,21.0.3f:淡黄色固体;m.p.159~161 ℃;1H NMR (400 MHz,CDCl3) δ 7.56 (d,J=8.7 Hz,2H),7.36(dd,J=8.2,2.2 Hz,4H),6.98 (dd,J=12.4,4.5 Hz,4H),2.63-2.49 (m,6H),2.37-2.23 (m,6H).13C NMR(100 MHz,CDCl3)δ143.2,142.3,142.1,139.2,135.7,134.7,134.3,129.6,128.3,125.8,125.7,122.6,112. 0,26.9,21.2,21.0.3 结论以简单的芳香化合物为原料,经过二乙酰氧基碘代芳烃、Koser’s试剂合成几种对甲基苯磺酸二芳基碘盐,并对其中的一些方法进行适当的改进研究.该方法反应条件温和,操作简单,安全,无需柱层析,收率高,为合成此类化合物找到一条便捷的途径. 致谢:本文得到“兰州理工大学优秀青年教师计划项目(Q200912)”的资助,在此表示感谢.参考文献:[1] WILLGERODT C.Ueber einige aromatische jodidchloride [J].J Prakt Chem,1886,33(1):154-160.[2] HARTMANN C,MEYER V.Ueber eine neue klassejodhaltiger,stickstofffreier organischer basen [J].Chem Ber,1894,27(1):426-432.[3] KRYKA A,SKULSKI L.One-pot preparations of diaryliodonium bromides from iodoarenes and arenes,with sodium perborate as the oxidant [J].Molecules,2001,6:875-880.[4] HOSSAIN M D,KITAMURA T.Direct,easy,and scalable preparation of (diacetoxyiodo)arenas from arenes using potassium peroxodisulfate as the oxidant [J].Tetrahedron Lett,2006,47:7889-7891.[5] KOSER G F,WETTACH R H.Hypervalent organoiodine.Crystal structure of phenylhydroxytosyloxyiodine[J].J Org Chem,1976,41(22):3609-3611. [6] KOSER G F,WETTACH R H.Reactions of silver arylsulfonates with iodosobenzene dichloride [J].J Org Chem,1977,42(8):1476-1478.[7] KOSER G F,WETTACH R H,SMITH C S.[Hydroxy(tosyloxy)iodo]benzene,a versatile reagent for the mild oxidation of aryl iodides at the iodine atom by ligand transfer [J].J Org Chem,1980,45(8):1542-1543.[8] DOHI T,ITO M,KITA Y,et al.Versatile direct dehydrative approach for diaryliodonium(Ⅲ) salts in fluoroalcohol media [J].ChemCommun,2007,11:4152-4154.[9] OZANNE B,QUIDEAU S.Regioselective hypervalent-iodine(Ⅲ)-mediated dearomatizing phenylation of phenols through direct ligand coupling [J].Angew Chem Int Ed,2005,44(43):7065-7069.[10] RADHAKRISHANAN U,STANG P J.Palladium-catalyzed arylation of enynes and electron-deficient alkynes using diaryliodonium salts [J].Org Lett,2001,3(6):859-860.[11] KITAMURA T,YAMANE M.(Phenyl)[o-(trimethylsilyl)phenyl]iodoniumPriflate.a new and efficient precursor of benzyne [J].J Chem Soc,Chem Commun,1995(9):983-984.[12] KOSER G F,WETTACH R H.Hypervalent organoiodine.Reactions of silver arylsulfonates with iodosobenzene dichloride [J].J OrgChem,1977,42(8):1476-1478.[13] MERRITT E A,OLOFSSON B.Diaryliodonium salts:a journey from obscurity to fame [J].Angew Chem Int Ed,2009,48:9052-9070.[14] DOHI T,YAMAOKA N,KITA Y.Fluoroalcohols:versatile solvents in hypervalent iodine che mistry and syntheses of diaryliodonium(Ⅲ) salts [J].Tetrahedron,2010,66:5775- 5785.[15] MERRITT E A,CARNEIRO VM T,OLOFSSON B,et al.Facile synthesis of Koser’s reagent and derivatives from iodine or aryl Iodides [J].J Org Chem,2010,75 (21):7416-7419.。
DC590+ 集成器系列2数字DC驱动器说明书
DC590+ Integrator Series 2 DC Drives 3 HP - 2000 HP (15A - 2400A)DC590+ DC Drive Integrator Series 2Digital DC Drives - 3 to 2000 HP (15A – 2400A)As part of the full DC drives product range, the DC590+ further confirms Parker SSD Drives’ position as the market leader in DC drive technology.The DC590+ Integrator Series 2 sees the next step in the development of DC drivetechnology, derived from over 30 years experience in designing DC drives. With its innovative 32-bit control architecture, the DC590+ has the flexibility and functionality to more than meet the requirementsof all applications, from basic motor installations through to the most demanding multi-motor systems.The DC590+ is also available as a “ready to install” drive package called the DRV. This is a single integrated module that includes all the associated power componentswithin the package. This innovative approach radically reduces design time, panel space, wiring time and cost. The DRV concept is unique and comes from the experiencegained from thousands of successful applications across a diverse range of industries.Product OverviewProduct Overview ChartBenefitting from the improved performance of a 32-bit RISC processor, the DC590+ Integrator Series 2 delivers enhanced functionality and increased flexibility, making it suitable for use in a wider range of more complex applications.• Faster drive response • Greater control capabilities • Increased math and logic function blocks• Enhanced diagnostic andprogramming functionality • Common programming tools with other SSD Drives modelsAdvanced Control ArchitectureThe DC590+ is easily integrated into new or existing systems, offering improved levels ofperformance and productivity.SpecificationFrame 1-4 have integral cooling fan assemblies where required. Optional ducting kit for cubicle roof external ventilation available for frame 4. Frame Size H has fan cooling assembly that can be cubicle roof mounted or drive mounted. Add 5.9” (150mm) to overall height for drive mounted option.FRAME 3FRAME 4DW HDWHFRAME HDWHRatings Power ConfigurationDC590+ Four Quadrant Regenerative;2 Fully Controlled Three Phase Thyristor Bridges DC591+ Two Quadrant Non-Regenerative; 1 Fully Controlled Three Phase Thyristor Bridge Thyristor Controlled Variable Field Supply Field Current (Amps DC)4A Frame 110A Frame 2 and 330A Frame 460A Frame 6 and H Field Voltage (VDC)AC Input x 0.9 maximumArmature Current Ratings (Amps DC)See table below for ratings.Overload 200% for 10 secs, 150% for 30 secs Higher ratings with reduced overloads availablePlease refer to manualArmature Voltage (VDC)AC Input x 1.2 maximumAC Supply Voltage (VAC)110 - 220V (±10%) All Sizes 220 - 500V (±10%) All Sizes500 - 600V (±10%) Frame 4, 6, and H 600 - 690V (±10%) Frame 6 and H 50/60Hz Three PhaseEnvironmentAmbient Operating Temperature 0°-45°C (32°-113°F) Frame 1 and 20°-40°C (32°-104°F) Frame 3, 4, 6 and HDerate 1% per °C above ambient to 55°C (131°F) maxOperating AltitudeUp to 1640 ft (500m) above sea levelDerate 1% per 656 ft (200m) above 1640 ft (500m) to maximum of 16,400 ft (5000m)Protection High Energy MOV’sHeatsink Overtemperature Instantaneous Overcurrent Thyristor Trigger Failure Inverse Time Overcurrent Interline Snubber Network Field FailureZero Speed Detection Speed Feedback Failure Standstill LogicMotor OvertemperatureInputs/OutputsAnalog Inputs (5 Total - 12 bit plus sign)1 – Speed Demand Setpoint (-10/0/+10V)4 – ConfigurableAnalog Outputs (3 Total - 11 bit plus sign)1 – Armature Current Output (-10/0/+10V or 0 - 10V)2 – ConfigurableDigital Inputs (9 Total - 24VDC max)1 – Program Stop 1 – Coast Stop 1 – External Trip 1 – Start/Run 5 – Configurable Thermistor Input 1 – IsolatedDigital Outputs (3 Total - 24V(max 30V) 100mA)Short circuit protected 3 – Configurable Reference Supplies 1 – +10VDC 1 – -10VDC 1 – +24VDCOptional Equipment6911 Operator/Programming Controller Feedback Boards • Tach generator • Encoder• Optical Fiber Microtach Encoder Communication Technology Box • LINK• Profibus DP • Devicenet • Controlnet • Ethernet • Canopen • Modbus +• EI Bisynch/Modbus/RS422/RS485Standards• The DC590+ series meets the following standards when installed in accordance with the relevant product manual:• CE Marked to EN50178 (Safety, Low Voltage Directive)• CE Marked to EN61800-3 (EMC Directive)• UL listed to safety standard UL508C through 500 HP • cUL listed to Canadian standard C22.2 #14 through 500 HPBlack product code indicates DRV package. Blue product code indicates chassis (controller only * First dimension is for non-regen, second is for regenFRAME 6FRAME 1FRAME 2DWHDWHValid at time of printDWHGray panels represent footprint ofDRV units for frames 3, 4, 6, and H.Note: Dimension table includes only the 230/460 volt ratings. Drives for a wide range of input voltages are available. For product codes, current ratings, and dimensional data on 110-220 volt, 575 volt, and 690 volt units, please consult factory. Drives of higher power ratings can also be provided upon request.Whatever the complexity of your control scheme, the DC590+ has the interface to suit. As standard there’s enough analog anddigital I/O for the most complex applications. Alternatively, add the relevant ‘technology box’ for immediate access to serial communications and Fieldbus networks. The DC590+ has been designed to fit seamlessly, and without compromise, into any control environment.Analog/Digital Control• 5 Analog Inputs (12 bit + sign) • 3 Analog Outputs• 9 Digital Inputs (5 configurable) • 3 Digital OutputsSerial Communications and Fieldbus Options• Profibus-DP • Ei Bisynch • Canopen • LINK• Modbus RTU • Devicenet • RS422/RS485 • Modbus+ • Controlnet• EthernetNext Generation TechnologyBuilding upon the highly successful DC590+ drive used in thousands of applications world-wide, the DC590+ Integrator Series 2 drive takes DC motor control to the next level. With its state-of-the-art advanced 32-bit control architecture, the DC590+ drive delivers highly functional and flexible control suited to a whole host of industrial applications.Providing control for some of the most demanding motorcontrol applications, Parker’s DC experience and technologies are some of the most advanced in the industrial marketplace. With drives from 1 Amp through to 2700 Amps, Parker can provide the optimum solution to suit any application.Typical Applications• Converting machinery • Plastics and rubber processing machinery • Wire and cable • Material handling • AutomotiveFunction Block ProgrammingFunction Block Programming is a tremendously flexible control structure that allows an almost infinite combination of userfunctions to be realized with ease. Each control function (an input, output, process PID for example) is represented as a software block that can be freely interconnected to all other blocks to provide any desired action.The drive is shipped with the function blocks pre-configured as a standard DC drive so you can operate it straight from the box without further adjustments. Alternatively you can create your own control strategy with DSE Lite software, often eliminating the need for an external PLC and its associated complexity and cost.Feedback OptionsThe DC590+ has a range of options which are compatible with the most common feedback devices enabling simple motor control through to the most sophisticated multi-motor system. Armature voltage feedback is standard without the need for any interface option.• Analog tach generator - AC or DC • Encoder - 5, 12, 15, or 24V • Optical fiber microtach encoderInterface OptionsDesigned with connectivity in mind, the DC590+ has a number of communications and I/Ooptions that allow the drive to take control of the application, or be integrated into a larger system. When combined with function programming, custom functions and control can be easily created offering the user a highly flexible and versatile platform for DC motor control.Programming/ Operator ControlsFeaturing an intuitive menu structure, the ergonomically designed operator panel allows quick and easy access to all parameters and functions of the drive via a bright, easy to read backlit display and tactile keypad. Additionally, it provides local control of start/stop, speed demand and rotation direction to greatly assist with machine commissioning.• Multi-Language alpha-numeric display• Customized parameter values and legends• On drive or remote mounting • Local control of start/stop, speed and direction • Quick set-up menuConnectivityStandard 6901 MMI/Programming Key-pad is easy to use, and may be remote mounted. It is compatible with other SSD Drives modelsAll DC590+ units are available as non-regenerative or full 4-Quadrant line regenerativemodelsProduct web page: /ssdusa/dc590plusDRV - PackagedDC Drive TechnologyThe DC590+ is available in either module, or alternatively ‘DRV’ format.The DRV version is a self-contained packaged drive that includes all the peripheral power components associated with a DC drive system, integrally fitted within the footprint area ofthe drive.DRV version includes:• AC line or DC armature contactor • AC line fuses• DC fuse(regenerative version)• Control/field fuses• Provision for optional motorblower starter• Provision for optional auxiliary control transformerSaving You:• Design time• Panel space• Component mounting and wiring • Component sourcing• Complexity• Time and cost DC590+ Designed for SystemsThe DC590+ Integrator Seriesis the ultimate system drive,designed to meet the exactingdemands of the most complexand sophisticated multi-driveapplications across a diverserange of industries. All thefollowing functions are availableas standard without the need forany additional hardware.• Function Block Programming• Software Configurable I/O• High Resolution (12 bit) AnalogInputs• Winder Control– Open loop with inertiacompensation– Closed loop speed or current– Load cell/dancer process PID• Math Functions• Logic Functions• Controlled Field Supply• ‘S’ Ramp and Digital RampDC590+ Designed ForA World MarketThe DC590+ is available with fullapplication and service supportin over fifty countries worldwide.So wherever you are, you canbe confident of full backup andsupport.• Support in over 50 countries• Multi-language menus• Input voltage ranges from 220-690V(Special voltages available)• CE marked• UL and cUL listed through 500 HP•50/60HzTraditional DC Drive Section DC590+ DRVequivalent, illustratingpanel space savingand simplification ofpanel wiringAC LineFusesDC FuseMotor BlowerStarterAC Line ContactorControl/Field FuseDC590+ DRV versionParker Hannifin Corporation SSD Drives Division9225 Forsyth Park Dr. Charlotte, NC 28273 USATel: (704) 588-3246 Fax: (704) 588-3249 **********************/ssdusaHA466595U001 Iss73/2013 ©2013 Parker Hannifin CorporationAE – UAE, DubaiTel: +971 4 8127100********************AR – Argentina, Buenos Aires Tel: +54 3327 44 4129AT – Austria, Wiener Neustadt Tel: +43 (0)2622 23501-0*************************AT – Eastern Europe,Wiener NeustadtTel: +43 (0)2622 23501 900**************************** AU – Australia, Castle Hill Tel: +61 (0)2-9634 7777AZ – Azerbaijan, BakuTel: +994 50 2233 458**************************** BE/LU – Belgium, Nivelles Tel: +32 (0)67 280 900*************************BR – Brazil, Cachoeirinha RS Tel: +55 51 3470 9144BY – Belarus, MinskTel: +375 17 209 9399*************************CA – Canada, Milton, Ontario Tel: +1 905 693 3000CH – Switzerland, EtoyTel: +41 (0)21 821 87 00***************************** CL – Chile, SantiagoTel: +56 2 623 1216CN – China, ShanghaiTel: +86 21 2899 5000CZ – Czech Republic, Klecany Tel: +420 284 083 111******************************* DE – Germany, KaarstTel: +49 (0)2131 4016 0*************************DK – Denmark, BallerupTel: +45 43 56 04 00*************************ES – Spain, MadridTel: +34 902 330 001***********************FI – Finland, VantaaTel: +358 (0)20 753 2500*************************FR – France, Contamine s/ArveTel: +33 (0)4 50 25 80 25************************GR – Greece, AthensTel: +30 210 933 6450************************HK – Hong KongTel: +852 2428 8008HU – Hungary, BudapestTel: +36 1 220 4155*************************IE – Ireland, DublinTel: +353 (0)1 466 6370*************************IN – India, MumbaiTel: +91 22 6513 7081-85IT – Italy, Corsico (MI)Tel: +39 02 45 19 21***********************JP – Japan, TokyoTel: +81 (0)3 6408 3901KR – South Korea, SeoulTel: +82 2 559 0400KZ – Kazakhstan, AlmatyTel: +7 7272 505 800****************************LV – Latvia, RigaTel: +371 6 745 2601************************MX – Mexico, ApodacaTel: +52 81 8156 6000MY – Malaysia, Shah AlamTel: +60 3 7849 0800NL – The Netherlands,OldenzaalTel: +31 (0)541 585 000********************NO – Norway, SkiTel: +47 64 91 10 00************************NZ – New Zealand, Mt WellingtonTel: +64 9 574 1744PL – Poland, WarsawTel: +48 (0)22 573 24 00************************PT – Portugal, Leca da PalmeiraTel: +351 22 999 7360**************************RO – Romania, BucharestTel: +40 21 252 1382*************************RU – Russia, MoscowTel: +7 495 645-2156************************SE – Sweden, SpångaTel: +46 (0)8 59 79 50 00************************SG – SingaporeTel: +65 6887 6300SK – Slovakia, Banská BystricaTel: +421 484 162 252**************************SL – Slovenia, Novo MestoTel: +386 7 337 6650**************************TH – Thailand, BangkokTel: +662 717 8140TR – Turkey, IstanbulTel: +90 216 4997081************************TW – Taiwan, TaipeiTel: +886 2 2298 8987UA – Ukraine, KievTel +380 44 494 2731*************************UK – United Kingdom,WarwickTel: +44 (0)1926 317 878********************US – USA, ClevelandTel: +1 216 896 3000VE – Venezuela, CaracasTel: +58 212 238 5422ZA – South Africa,Kempton ParkTel: +27 (0)11 961 0700*****************************Parker Worldwide。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2010Supporting Information “Versatile Approach to Synthesis of 2-D Hexagonal Ultra-Large-Pore Periodic Mesoporous Organosilicas” Manik Mandal and Michal Kruk Center for Engineered Polymeric Materials, Department of Chemistry, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, New York 10314, and Graduate Center, City University of New York, 365 Fifth Avenue, New York, New York 10016S1Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2010Supporting Table S1. The interplanar spacing and other physicochemical properties of PMOs. Bridging group, initial temperature, d100 amount of precursor Methylene, 15°C, x=0.2 Methylene, 15°C, x=0.3, H 100°C a Methylene, 15°C, x=0.3, H 130°C Methylene, 15°C, x=0.3, H 150°C Methylene, 15°C, x=0.4 Ethylene, 15°C, x=0.4, BTME Ethylene, 15°C, x=0.4, BTEE Ethylene, 12°C, x=0.4, BTEE Ethylene, 11°C, x=0.4, BTEE Ethylene, 15°C, x=0.7, BTME Ethylene, 15°C, x=1.0, BTME b Ethylene, 15°C, x=1.5, BTME Ethenylene, 15°C, x=0.7 Phenylene, 17°C c,d Phenylene, 16°C b,d Phenylene, 15.5°Cc,dSBET (m2/g) 1197 1230 1007 837 1204 429 542 258 82 534 690 581 139 642 514 620 553Vt (cm3/g) 1.28 1.61 1.75 1.66 1.10 0.65 0.67 0.40 0.15 0.56 0.51 0.41 0.27 0.56 0.49 0.50 0.52Vmic (cm3/g) 0.26 0.28 0.11 (-0.01)f 0.35 0.08 0.10 0.05 0.02 0.16 0.25 0.22 0.00 0.22 0.16 0.23 0.19wBJH (nm) 12.0 22.2 25.1 23.6 12.6 13.7 11.6 15.8 18.8 13.8 13.4 14.6 11.1 12.7 14.8 16.4 21.1(nm) 17.8 20.8 22.7 21.8 17.2 16.1 15.8 18.2 20.8 16.8 16.7 18.0 14.0 15.9 18.2 19.6 22.7ePhenylene, 15°C b,dNotation: d100, (100) interplanar spacing for either calcined or extracted sample. SBET, BET specific surface area; wBJH, BJH pore diameter; Vt, total pore volume, Vmic, micropore volume, Vmes, mesopore volume.a b c d eRepeated synthesis. Data for other sample listed in Table 1. Sample was calcined at 300 °C under nitrogen. Sample was extracted with ethanol and calcined at 250 °C under air. Synthesized using 0.6 mL TIPB per 0.6 g of P123. Calculated assuming that the first peak is (100) reflection of 2-D hexagonal structure, which is Indicates that the micropore volume is negligible.consistent with TEM observation.fS2Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2010S Supporting Figure S1 1. TEM im mage of cal lcined meth hylene-bridg ged PMO s synthesized using a h hydrotherma al treatment at a 150 °C for two days.S3Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2010100100110200Amount Adsorbed/cm STP g-11500 1200 300oC Air 900 600 300 0 0.0 300oC N2log(intensity)300300oC Air100110200300110300 C N2200o3Extra acted300Extr racted 0.4 0.8 1.2 1.6 2.0 2.40.2 2 0.4 0.6 6 0.8 1.02θ/ θ degree0.10-1Relative Pres ssurePore Size Distributions/cm g nm-10.08 0.06 0.04 0.02 0.00Extract ted o 300 C N2 300oC Air31020304050Pore Dia ameter/nmS Supporting Figure S2. SAXS patt terns (top left), nitrogen n adsorption isotherms (top ( right), pore p size d distributions s (bottom lef ft) for methy ylene-bridged d PMOs. Iso otherms for samples s calcined at 300 °C under N2 and unde er air were offset o vertic cally by 250 0 and 550 cm m3 STP g-1 for clarity. c calcined at 300 3 °C under r air (scale in n ppm).29Si CP MA AS NMR( (bottom righ ht) for methy ylene-bridge ed PMOs a) as synthesiz zed, b) calcin ned at 300 oC under nitr rogen, c)S4Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2010Supporting Figure S3. 29Si CP MAS NMR for a methylene-bridged PMO hydrothermally treated at 150 °C for two days (scale in ppm).S5Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2010100100log(intensity)200 210 100 110 200x=0.4300x=0.3200x=0.2 0.4 0.8 1.2 1.6 2.0 2.42θ/degreeAmount Adsorbed/cm STP g-11200 1000 800 600 400 200 0 0.0 x=0.4 x=0.3 x=0.2-1Pore Size Distributions/cm g nm0.10 0.08 0.06 0.04 0.02 0.00x=0.2 x=0.3 x=0.433-10.20.40.60.81.05 10 15 20 25 30 35 40 45 Pore Diameter/nmRelative PressureSupporting Figure S4. (top) SAXS patterns, (bottom left) nitrogen adsorption isotherms and (bottom right) pore size distributions of calcined methylene-bridged PMO synthesized with different amount of precursor in the presence of cyclohexane as a micelle expander. The isotherms are offset vertically by 200, and 400 cm3 STP g-1 for x=0.3, and x=0.4 respectively.S6Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2010100Amount adsorbed/cm STP g-1 3Initial synthesis temperature:2002500 Initial synthesis temperature:o 2000 17 C100log(intensity)100110200 30017oC 15 C 14oC 13oC 12oCoo 1500 15 C(100)110200 300o 1000 14 C13oC 500 12oC0.3 0.6 0.9 1.2 1.5 1.8 2θ/degree-10 0.00.20.40.60.81.0Relative PressurePore Size Distributions/cm g nm-10.08 0.06 0.04 0.02 0.00 10 20xC1d + 100C2d x= 12oC 13oC 14oC 15oC 17oC3304050Pore Diameter/nmSupporting Figure S5. (top left) SAXS patterns, (top right) nitrogen adsorption isotherms and (bottom left) pore size distributions for calcined methylene-bridged PMOs synthesized at different initial temperature using cyclohexane as micelle expander. The isotherms were offset vertically by 260, 600, 1090 and 1640 cm3 STP g-1 for samples synthesized at initial synthesis temperature of 13, 14, 15 and 17oC respectively.S7Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2010100Amount adsorbed/cm STP g1000 x= 800 600 400 200 0 0.0 0.4 0.6 0.7 1.0 1.5100 110 200x=210 220 310 220 310 220 310 220 310 220 310log(intensity)100 110 200 1000.4 0.6 0.7 1.0 1.5210 110 200 100 110 200 210 110 200 210 2100.40.81.21.62.02.43-10.20.40.60.81.02θ/degreeRelative PressurePore Size Distributions/cm g nm0.08 0.06 0.04 0.02 0.00 9 12 15 18x=1.5 x=1.0 x=0.7 x=0.6 x=0.43-1-12124Pore Diameter/nmSupporting Figure S6. (top left) SAXS patterns, (top right) nitrogen adsorption isotherms and (bottom left) pore size distributions of extracted ethylene-bridged PMOs with different amounts of precursors using cyclohexane as a micelle expander at initial temperature of 15 °C. Isotherms were offset vertically by 220, 220, 420, and 640 cm3 STP g-1 for samples synthesized with x= 1.0, 0.7, 0.6, and 0.4 respectively. (bottom right) 29Si CP MAS NMR for extracted ethylene-bridged PMOs.S8Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2010100Amount adsorbed/cm STP g-1100300 x=0.70 200log(intensity)110 200110x=0.70200 210 220 3103100x=0.40x=0.40 0.4 0.8 1.2 1.6 2.0 2.40 0.00.20.40.60.81.02θ/degree-1Relative Pressure x=0.40 x=0.70Pore Size Distributions/cm g nm0.063-10.040.020.00 6 8 10 12 14 16 18 20 22 Pore Diameter/nmSupporting Figure S7. (top left) SAXS patterns of extracted ethenylene-bridged PMOs with different amount of precursor using cyclohexane as a micelle expander. (top right) nitrogen adsorption isotherms and (bottom left) pore size distributions of extracted ethenylene-bridged PMOs with different amount of precursor using cyclohexane as a micelle expander. The isotherms are offset vertically by 180 cm3 STP g-1 for x=0.70. (bottom right)29Si CP MAS NMR for extracted ethenylene-bridged PMOs.S9Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2010Supporting Figure S8. TEM image of as-synthesized ethylene-bridged PMO synthesized at initial temperature of 10.5 °C.S10Supporting Figure S9. (top) SAXS patterns, (bottom left) nitrogen adsorption isotherms and (bottom right) pore size distributions for extracted ethylene-bridged PMOs synthesized at different initial synthesis temperature using bis(triethoxysilyl)ethane (BTEE) as precursor and cyclohexane as a micelle expander. The isotherms were offset vertically by 35, and 120 cm3 STP g-1 for samples synthesized at initial synthesis temperature of 12, and 15 °C, respectively.S tSupportingtemperature Figure S1of 11.00 °C 0. TEM im.mage of extr racted ethen nylene-bridg ged PMO sy y nthesizedaan initialSupporting Figure S11. (top left) SAXS patterns, (top right) nitrogen adsorption isotherms and (bottom) PSDs of extracted PMOs synthesized using -CH2C(=CH2)CH2-bridging group as precursor with different amount of precursor at an initial temperature 15 o C using cyclohexane as a micelle expander.Supporting Figure S12. (top left) SAXS patterns of calcined phenylene-bridged PMOs synthesized at different initial temperature using 0.6 mL TIPB expander per 0.6 g P123. (top right) nitrogen adsorption isotherms and (bottom left) pore size distributions fort he corresponding samples. Isotherms for samples synthesized at initial synthesis temperature of 15, 15.5, 16, 17, and 18 °C are offset vertically by 50, 180, 320, 430, and 530 cm 3 STP g-1 respectively. Note that the sapme prepared at 18 °C was prepared under the same conditions as the sample denoted 18 °C (a) in Figure 8, but it was from a different batch. (bottom right) 29Si CP MAS NMR for phenylene-bridged samples calcined at 300 °C under nitrogen (top spectrum) and calcined at 250 °C under air after extraction (bottom spectrum).。