二氧化碳气提法生产尿素工艺流程知识交流

合集下载

二氧化碳气提法生产尿素工艺流程

二氧化碳气提法生产尿素工艺流程

二氧化碳气提法生产尿素工艺流程1.1二氧化碳气体的压缩从上道工序送来的CO2气体将所含液滴分离后进入CO2压缩机。

在压缩机各进出口设有若干温度、压力监测点,以便于监视压缩机的运行状况,压缩机的负荷是通过改变压缩机转速来控制的,经压缩后的气体(压力约为14.3MPa,温度为110℃左右)送去脱氢系统。

1.2氨气的加压合成氨装置送来的液氨经流量计量后引入高压氨泵,液氨在泵内加压至16.0MPa(A)左右。

液氨的流量根据系统的负荷,通过控制氨泵的转速来调节。

加压后的液氨经高压喷射器与来自高压洗涤器中的甲铵液,一起由顶部进入高压甲铵冷凝器。

1.3液氨的加压高压合成与CO2气提回收合成塔、气提塔、高压冷凝器和高压洗涤器这四个设备组成高压圈,这是二氧化碳气提法的核心部分,这四个设备的操作条件是统一考虑的,以达到尿素的最大产率和热量的最大回收。

从高压冷凝器底部导出的液体甲铵和少量的未冷凝的氨和二氧化碳,分别用两条管线送入合成塔底,合成塔内设有筛板,形成类似几个串联的反应器,塔板的作用是防止物料在塔内返混。

尿素合成反应液从塔内上升到正常液位,经过溢流管从塔下出口排出,经过液位控制阀进入气提塔上部,再经塔内液体分配器均匀地分配到每根气提管中。

液体沿管壁成液膜下降,分配器液位高低起着自动调节各管内流量的作用。

由塔下部导入的二氧化碳气体,在管内与合成反应液逆流相遇。

管间以蒸汽加热,合成反应液中过剩氨及未转化的甲铵将被蒸出和分解,从塔顶排出,尿液及少量未分解的甲铵从塔底排出。

从气提塔顶排出的高温气体,与新鲜氨及高压洗涤器来的甲铵液在约高压下一起进入高压甲铵冷凝器顶部。

高压甲铵冷凝器是一个管壳式换热器,物料走管内,管间走水用以副产低压蒸汽。

为了使进入高压甲铵冷凝器上部的气相和液相得到更好的混合,增加其接触时间,在高压甲铵冷凝器上部设有一个液体分布器。

在分布器上维持一定的液位,就可以保证气-液的良好分布。

合成塔顶排出的气体进入高压洗涤器,在这里将气体中的氨和二氧化碳用加压后的低压吸收段的甲铵液冷凝吸收,然后经高压甲铵冷凝器再返回合成塔。

CO_2气提法尿素生产应注意的几个问题

CO_2气提法尿素生产应注意的几个问题

8
膜而造成腐蚀 ,在正常生产中一定要严格控制原 料气中硫含量在 10 mg /m3 以下 。当氯离子进入 甲铵液或蒸汽及蒸汽冷凝液系统或冷却水系统 时 ,聚积在合成塔衬里与塔板 、气提塔液体分布 器 、高压洗涤器管箱焊缝处 ,高压甲铵冷凝器上 、 下管板堆焊层 , CO2 压缩机二段冷却器及高 压 CO2 冷却器的列管与管板之间堆焊处等部位 ,而 大量氯离子在这些部位的聚积 ,大大提高了应力 腐蚀破裂的敏感性 。在一定条件下会引起不锈钢 的应力腐蚀或孔蚀 ,这种腐蚀一般镍含量上升不 明显 ,但对不锈钢的腐蚀作用很大 ,因此 ,尿素生 产应严格禁止氯离子进入设备 ,严格控制蒸汽及 蒸汽冷凝液中氯离子含量 ≤0. 5 ×10 - 6 ,冷却水中 氯离子 ≤150 ×10 - 6。同时对高压甲铵冷凝器等 设备壳侧设置的激排装置一定要按时激排 。 1. 4 尿素装置开 、停车频繁或封塔时间过长对系 统造成腐蚀
(3) 生产负荷 。为了保证有良好的气提效 率 ,正常生产时一般将生产负荷控制在 70% ~ 110%。如果负荷控制过高 ,会使管壁液膜增厚 , 传热效率降低 ,液体在塔内停留时间相对增长 ,副 反应增加 ,不但影响产品的质量还会使气提效率 下降 。负荷过低 ,会使合成液在气提塔上花板的 液位很低或形不成液位 ,而使合成液在气提管分 布不均 ,气提管局部过热 ,加剧腐蚀 。
(1) 操作压力的调节与控制 。水溶液全循环 法尿素生产的高压系统选取的操作压力高于合成 尿素的平衡 压力 , 是 P操 > P平 条 件下 的憋 压操 作 ,而 CO2 气提法尿素生产的高压系统选取的操 作压力等于合成尿素的平衡压力 ,是 P操 = P平 条 件下的等压操作 。高压圈内冷凝 、气提 、合成处于 同一压力下操作时 ,三者必须有效兼顾 ,使其达到 最佳状态 。根据操作经验 ,适当地将 NH3 /CO2 提 高至 3. 1~3. 3,将 H2O /CO2 降至 0. 5 以下 ,系统 压力略高于平衡压力 ,进行稳定操作 ,可以有效地 提高合成系统的转化率 。

co2气提尿素工艺

co2气提尿素工艺

• 2.1.4循环系统 • 来自气提塔底部的尿素——甲铵溶液,经过气提塔的液位控 制阀减压到0.25—0.35MPa,溶液中41.5%的二氧化碳和69%的 氨得到闪蒸,并使溶液温度从170℃降到107 ℃,气液混合物进 入精馏塔顶,精馏塔上部为填料塔,起着气体精馏作用,下部为 分离器,经过填料段下落的尿素——甲铵流入循环加,用 0.4MPa蒸汽加热,温度升高到141℃,甲铵进一步分解,而后进 入精馏塔下部的分离器分离,尿液经控制阀流入闪蒸槽,气体上 升到精馏塔填料段与顶部溶液逆流传质传热后的气体导出精馏塔, 送到低压甲铵冷凝器,与解吸、水解的回流液、并流向上进行吸 收,吸收时产生的热量,被低压甲铵冷凝器中的低调水带走,此 低调水经低压甲铵冷凝器循环水泵送低压甲铵冷凝器循环冷却器 冷却,汽液混合物从浸没式低压甲铵冷凝器上部溢流到液位槽底 部导出,经高压甲铵泵升压到14.1MPa以上,送入高压洗涤器顶 部,高压甲铵泵为往复泵,采用变频调速调节甲铵流量,液位槽 分离出的气体,经减压阀减压与回流槽尾气去常压吸收塔进一步 回收气相中的氨。吸收液用常压吸收循环泵加压部分循环,部分 经排气筒去氨水槽。
3#4号尿素工艺介绍
然后经过高压冷凝器再返回合成塔,不冷凝的 惰性气体和一定数量的氨气,自高压洗涤器, 减压后排出系统,进入低压吸收塔吸收后直接 放空,甲铵吸收冷凝的热量被管间调温水冷却 水带走,调温水冷却器调节到110-120℃,经 高压洗涤器循环水泵循环使用。 从合成塔至高压洗涤器管道,除设由安全 阀外,还装有分析取样阀,通过对气相的分析, 测得气相中氨、二氧化碳和惰性气体含量,从 而可以判断合成塔操作是否正常。
3#4号尿素工艺介绍
• 塔底液位控制在80%左右去低压系统,以防止二氧化 碳气体随液体流入低压分解工段造成低压设备超压, 从气提塔顶排出的180—185 ℃的气体,与新鲜氨及 高压洗涤器来的甲铵在14.1MPa下混合一起,一起进 入高压冷凝器上部,高压冷凝器是一个管壳式换热器, 物料走管内,管间走水,用于副产蒸汽,根据付产蒸 汽压力的高低,可以调节氨和二氧化碳的冷凝程度, 但要保留一部分气体在合成塔内冷凝,以便补偿在合 成塔内甲铵转化为尿素所需热量,以达到自热平衡, 从合成塔顶排出的气体,温度183℃左右进入高压洗 涤器,在这里将气体中的氨和二氧化碳用加压后的低 压吸收段合成塔 高压冷凝器 • 操作压力13.8-14.4MPa 操作压力13.814.5Mpa • 操作温度(顶)180-183℃ 操作温度167 ℃ • 出口氨碳比 3.0-3.5 水碳比0.4~0.6 • 付产蒸汽压力 0.35-0.55Mpa(绝) • 塔内液相氨碳比 2.9-3.5 • CO2转化率 55-59% • 防腐空气(v﹪)0.5—0.8﹪(体积)

二氧化碳气提法尿素工艺学习笔记

二氧化碳气提法尿素工艺学习笔记

二氧化碳气提法尿素工艺学习笔记第一章概述一、尿素的情况:尿素的化学名称:碳酰二胺,分子式:CO(NH2)2 分子量60.056 易溶于水和液氨,熔点132.7是无色或白色的针状结晶,含氮量46.65%,高温高压下生成缩二脲,缩三脲,三聚氰酸,三聚氰胺。

生成尿素的反应方程式:2NH3+CO2=CO(NH2)2+H2O吨耗理论值为NH3566kg CO2733kg实际吨耗值为NH3580kg CO2770kg二、生产方法:辽化:CO2汽提全循环法锦西:NH3汽提全循环法三、工厂情况:引进荷兰大陆公司日产1620吨,年产48万吨的尿素生产装置,现有设备157台,静设备82台,动设备75台。

第二章二氧化碳汽提法尿素工艺一、常用的仪表符号1、第一个字母一般表示参数T:温度P:压力F:流量L:液面H:手动A:分析S:速度D:密度V:粘度Z:定位C:电导X:信号2、后面的字母A:报警C:控制I:指示R:记录X:信号H:高限L:低限T:变送E:元件G:视镜S:开关Q:累计Y:转换V:阀O:节流小孔例:TRC-207:温度记录控制FI-303:流量指示ZRC-201:位置记录控制3、工序号及设备的类型工序号:100号:压缩200号:合成及汽提300:号循环400:号蒸发600号:造粒700号:冷凝解吸900号:公用工程设备类别:A:基础类指造粒塔C:换热设备D:反应设备E:传质设备F:槽和罐J:泵和压缩机JS:备用泵)V:机械JT:透平L:特殊设备(喷头、喷射器)例:102JT:二氧化碳压缩机(透平)601A:造粒塔201D:合成塔301E:精馏塔401F:蒸发分离器601L:喷头701F:氨水槽902F:蒸汽饱和器二、工艺说明:1、尿素的生成是由CO2和氨在一定温度和压力条件下反应而得到的,具体反应分为两步:第一步:CO2与氨反应生成氨基甲酸铵(甲铵)故称为甲铵生成反应:2NH3(液)+CO2(气)=NH4COONH2(液)+119.2KJ/mol第二步:甲铵脱水反应得到尿素:NH4COONH2(液) CO(NH2)(液)+H2O(液)-15.5KJ/mol2、生产方法:CO2汽提法(1967年荷兰斯达米卡帮公司)(1)反应温度:181℃~189℃; (2)反应压力:13.5 MPa~15MPa;(3)反应时间:45~60分钟 (4)有效反应容积:177m3 ;(5)NH3/CO2=2.89(设计值) 3.0~3.3(实际值);(6)H2O/CO2=0.37(设计值) 0.5左右(实际值)(7)转化率:58%(设计值)61%~62%(实际值);(8)汽提效率:83%(设计值) 78%~83%(实际值)3、尿液浓度变化:(1)尿素合成后的尿液:34.43%(2)汽提后的尿液:57.89%(3)精馏后的尿液:69.313%(4)闪蒸后的尿液:72%(5)一段蒸发后的尿液:95%(6)二段蒸发后的尿液:99.7%4、尿素工艺流程方框图:三、流程分解1 氨的输送:氨和CO2是尿素生产的两大原料,保证供给十分重要。

最新二氧化碳气提法生产尿素工艺流程

最新二氧化碳气提法生产尿素工艺流程

二氧化碳气提法生产尿素工艺流程11.1二氧化碳气体的压缩23从上道工序送来的CO2气体将所含液滴分离后进入CO2压缩机。

在压缩机各4进出口设有若干温度、压力监测点,以便于监视压缩机的运行状况,压缩机的5负荷是通过改变压缩机转速来控制的,经压缩后的气体(压力约为14.3MPa,温6度为110℃左右)送去脱氢系统。

71.2氨气的加压8合成氨装置送来的液氨经流量计量后引入高压氨泵,液氨在泵内加压至916.0MPa(A)左右。

液氨的流量根据系统的负荷,通过控制氨泵的转速来调节。

10加压后的液氨经高压喷射器与来自高压洗涤器中的甲铵液,一起由顶部进入高11压甲铵冷凝器。

121.3液氨的加压高压合成与CO2气提回收13合成塔、气提塔、高压冷凝器和高压洗涤器这四个设备组成高压圈,这14是二氧化碳气提法的核心部分,这四个设备的操作条件是统一考虑的,以达到15尿素的最大产率和热量的最大回收。

16从高压冷凝器底部导出的液体甲铵和少量的未冷凝的氨和二氧化碳,分17别用两条管线送入合成塔底,合成塔内设有筛板,形成类似几个串联的反应器,18塔板的作用是防止物料在塔内返混。

尿素合成反应液从塔内上升到正常液位,19经过溢流管从塔下出口排出,经过液位控制阀进入气提塔上部,再经塔内液体20分配器均匀地分配到每根气提管中。

液体沿管壁成液膜下降,分配器液位高低21起着自动调节各管内流量的作用。

由塔下部导入的二氧化碳气体,在管内与合22成反应液逆流相遇。

管间以蒸汽加热,合成反应液中过剩氨及未转化的甲铵将23被蒸出和分解,从塔顶排出,尿液及少量未分解的甲铵从塔底排出。

24从气提塔顶排出的高温气体,与新鲜氨及高压洗涤器来的甲铵液在约高25压下一起进入高压甲铵冷凝器顶部。

高压甲铵冷凝器是一个管壳式换热器,物26料走管内,管间走水用以副产低压蒸汽。

为了使进入高压甲铵冷凝器上部的气27相和液相得到更好的混合,增加其接触时间,在高压甲铵冷凝器上部设有一个28液体分布器。

尿素工艺流程培训

尿素工艺流程培训

低压分解吸收原理
1.精馏塔的精馏过程 • 高压圈合成的合成液,经气提塔气提后,由气提塔出料调节 阀压力由14.6MPa减压至0.25~0.3MPa,使气提液中的部分 甲铵分解成为氨和二氧化碳气体。未分解的气提液进入精馏 塔顶部填料层的精馏段,不断往下流动,,进入下部加热器 底部,由高调水供热后,进入中间加热器和顶部加热器,由 0.5MPa蒸汽进行加热,使气提塔中未分解的甲铵进一步分解 ,分离器出来的气体经过升气帽由填料层的精馏段不断上升 ,进行传热与传质,气相中的沸点较高的水蒸汽不断地被塔 顶流下来的溶液所冷凝,尿液中未分解的甲铵被气体加热后 ,不断分解和气化成氨和二氧化碳,所以塔顶气体主要是高 浓度的氨和二氧化碳,进入低压循环系统吸收,顶部加热器 排出的主要是尿素的水溶液,进入闪蒸槽进一步提浓。
• 加热蒸汽压力由高压蒸汽饱和器的压力调节器进行控制,使出气提塔的 液体含约6~8%(WT)NH3。气提塔壳侧蒸汽冷凝液从三个不同标高的管口 排到高压蒸汽饱和器(902F),再经高压蒸汽饱和器出液调节阀(LIC901)进 入中压蒸汽饱和器(903F),从气提塔出来的液体经气提塔出液调节阀 (LV203)排至循环工序。 • 以气提塔顶出来的气体进入高压甲铵冷凝器(202C)顶部,液氨边送到该设 备的顶部,其重要调节到使合成塔出口气体中的NH3/CO2分子比为3~3.5 ,以得到生成尿素的最佳条件。在高压甲铵冷凝器(202C)顶部上述两物料 混合并分配到冷凝管内,管内是甲铵液,壳侧为蒸汽冷凝液和蒸汽,管 内氨和CO2发生冷凝时所释放的热量用于壳侧产生低压蒸汽,所需冷凝液 由冷凝液泵送入低压汽包(201F),汽包压力由低压汽包压力调节阀PIC213 控制。
55-5ቤተ መጻሕፍቲ ባይዱ%。
使甲铵液处于液相状态的条件:

二氧化碳气提法生产尿素工艺流程教学文案

二氧化碳气提法生产尿素工艺流程教学文案

二氧化碳气提法生产尿素工艺流程1.1二氧化碳气体的压缩从上道工序送来的CO2气体将所含液滴分离后进入CO2压缩机。

在压缩机各进出口设有若干温度、压力监测点,以便于监视压缩机的运行状况,压缩机的负荷是通过改变压缩机转速来控制的,经压缩后的气体(压力约为14.3MPa,温度为110℃左右)送去脱氢系统。

1.2氨气的加压合成氨装置送来的液氨经流量计量后引入高压氨泵,液氨在泵内加压至16.0MPa(A)左右。

液氨的流量根据系统的负荷,通过控制氨泵的转速来调节。

加压后的液氨经高压喷射器与来自高压洗涤器中的甲铵液,一起由顶部进入高压甲铵冷凝器。

1.3液氨的加压高压合成与CO2气提回收合成塔、气提塔、高压冷凝器和高压洗涤器这四个设备组成高压圈,这是二氧化碳气提法的核心部分,这四个设备的操作条件是统一考虑的,以达到尿素的最大产率和热量的最大回收。

从高压冷凝器底部导出的液体甲铵和少量的未冷凝的氨和二氧化碳,分别用两条管线送入合成塔底,合成塔内设有筛板,形成类似几个串联的反应器,塔板的作用是防止物料在塔内返混。

尿素合成反应液从塔内上升到正常液位,经过溢流管从塔下出口排出,经过液位控制阀进入气提塔上部,再经塔内液体分配器均匀地分配到每根气提管中。

液体沿管壁成液膜下降,分配器液位高低起着自动调节各管内流量的作用。

由塔下部导入的二氧化碳气体,在管内与合成反应液逆流相遇。

管间以蒸汽加热,合成反应液中过剩氨及未转化的甲铵将被蒸出和分解,从塔顶排出,尿液及少量未分解的甲铵从塔底排出。

从气提塔顶排出的高温气体,与新鲜氨及高压洗涤器来的甲铵液在约高压下一起进入高压甲铵冷凝器顶部。

高压甲铵冷凝器是一个管壳式换热器,物料走管内,管间走水用以副产低压蒸汽。

为了使进入高压甲铵冷凝器上部的气相和液相得到更好的混合,增加其接触时间,在高压甲铵冷凝器上部设有一个液体分布器。

在分布器上维持一定的液位,就可以保证气-液的良好分布。

合成塔顶排出的气体进入高压洗涤器,在这里将气体中的氨和二氧化碳用加压后的低压吸收段的甲铵液冷凝吸收,然后经高压甲铵冷凝器再返回合成塔。

氧化碳气提法生产尿素工艺流程

氧化碳气提法生产尿素工艺流程

二氧化碳气提法生产尿素工艺流程二氧化碳气体的压缩从上道工序送来的CO2气体将所含液滴分离后进入CO2压缩机。

在压缩机各进出口设有若干温度、压力监测点,以便于监视压缩机的运行状况,压缩机的负荷是通过改变压缩机转速来控制的,经压缩后的气体(压力约为,温度为110℃左右)送去脱氢系统。

氨气的加压合成氨装置送来的液氨经流量计量后引入高压氨泵,液氨在泵内加压至(A)左右。

液氨的流量根据系统的负荷,通过控制氨泵的转速来调节。

加压后的液氨经高压喷射器与来自高压洗涤器中的甲铵液,一起由顶部进入高压甲铵冷凝器。

液氨的加压高压合成与CO2气提回收合成塔、气提塔、高压冷凝器和高压洗涤器这四个设备组成高压圈,这是二氧化碳气提法的核心部分,这四个设备的操作条件是统一考虑的,以达到尿素的最大产率和热量的最大回收。

从高压冷凝器底部导出的液体甲铵和少量的未冷凝的氨和二氧化碳,分别用两条管线送入合成塔底,合成塔内设有筛板,形成类似几个串联的反应器,塔板的作用是防止物料在塔内返混。

尿素合成反应液从塔内上升到正常液位,经过溢流管从塔下出口排出,经过液位控制阀进入气提塔上部,再经塔内液体分配器均匀地分配到每根气提管中。

液体沿管壁成液膜下降,分配器液位高低起着自动调节各管内流量的作用。

由塔下部导入的二氧化碳气体,在管内与合成反应液逆流相遇。

管间以蒸汽加热,合成反应液中过剩氨及未转化的甲铵将被蒸出和分解,从塔顶排出,尿液及少量未分解的甲铵从塔底排出。

从气提塔顶排出的高温气体,与新鲜氨及高压洗涤器来的甲铵液在约高压下一起进入高压甲铵冷凝器顶部。

高压甲铵冷凝器是一个管壳式换热器,物料走管内,管间走水用以副产低压蒸汽。

为了使进入高压甲铵冷凝器上部的气相和液相得到更好的混合,增加其接触时间,在高压甲铵冷凝器上部设有一个液体分布器。

在分布器上维持一定的液位,就可以保证气-液的良好分布。

合成塔顶排出的气体进入高压洗涤器,在这里将气体中的氨和二氧化碳用加压后的低压吸收段的甲铵液冷凝吸收,然后经高压甲铵冷凝器再返回合成塔。

二氧化碳气提法生产尿素工艺流程

二氧化碳气提法生产尿素工艺流程

二氧化碳气提法生产尿素工艺流程1.1二氧化碳气体的压缩从上道工序送来的CO2气体将所含液滴分离后进入CO2压缩机。

在压缩机各进出口设有若干温度、压力监测点,以便于监视压缩机的运行状况,压缩机的负荷是通过改变压缩机转速来控制的,经压缩后的气体(压力约为14.3MPa,温度为110℃左右)送去脱氢系统。

1.2氨气的加压合成氨装置送来的液氨经流量计量后引入高压氨泵,液氨在泵内加压至16.0MPa(A)左右。

液氨的流量根据系统的负荷,通过控制氨泵的转速来调节。

加压后的液氨经高压喷射器与来自高压洗涤器中的甲铵液,一起由顶部进入高压甲铵冷凝器。

1.3液氨的加压高压合成与CO2气提回收合成塔、气提塔、高压冷凝器和高压洗涤器这四个设备组成高压圈,这是二氧化碳气提法的核心部分,这四个设备的操作条件是统一考虑的,以达到尿素的最大产率和热量的最大回收。

从高压冷凝器底部导出的液体甲铵和少量的未冷凝的氨和二氧化碳,分别用两条管线送入合成塔底,合成塔内设有筛板,形成类似几个串联的反应器,塔板的作用是防止物料在塔内返混。

尿素合成反应液从塔内上升到正常液位,经过溢流管从塔下出口排出,经过液位控制阀进入气提塔上部,再经塔内液体分配器均匀地分配到每根气提管中。

液体沿管壁成液膜下降,分配器液位高低起着自动调节各管内流量的作用。

由塔下部导入的二氧化碳气体,在管内与合成反应液逆流相遇。

管间以蒸汽加热,合成反应液中过剩氨及未转化的甲铵将被蒸出和分解,从塔顶排出,尿液及少量未分解的甲铵从塔底排出。

从气提塔顶排出的高温气体,与新鲜氨及高压洗涤器来的甲铵液在约高压下一起进入高压甲铵冷凝器顶部。

高压甲铵冷凝器是一个管壳式换热器,物料走管内,管间走水用以副产低压蒸汽。

为了使进入高压甲铵冷凝器上部的气相和液相得到更好的混合,增加其接触时间,在高压甲铵冷凝器上部设有一个液体分布器。

在分布器上维持一定的液位,就可以保证气-液的良好分布。

合成塔顶排出的气体进入高压洗涤器,在这里将气体中的氨和二氧化碳用加压后的低压吸收段的甲铵液冷凝吸收,然后经高压甲铵冷凝器再返回合成塔。

尿素工艺流程和结论

尿素工艺流程和结论

化肥厂尿素生产工艺流程(co2汽提法)•第一步由氨与二氧化碳生成中间产物甲铵,其反应式为:2NH3(液)+CO2(气) NH2COONH4(液)+ 119.2KJ/molA•第二步由甲铵脱水生成尿素,其反应式为(合成尿素过程中的控制反应):NH2COONH4(液) CO(NH2)2(液)+H2O(液)- 15.5KJ/mol B•总的反应方程式:•2NH3(液)+CO2(气) CO(NH2)2(液)+H2O(液)+103.7KJ/mol•从气提塔201C底部出来的液体经减压进入精馏塔顶部,均匀地喷洒在精馏塔的填料层上,然后自上而下和上升的135℃分解气逆流接触,温度上升至120℃左右,尿液从301E底部送到底部和中部、顶部循环加热器,在此分别用高调水和0.6MPa蒸汽将其温度提高到约140℃,使甲铵再次发生分解。

•用精馏塔出口调节阀TIC301来调节进入顶部循环加热器的蒸汽压力,在循环分离段中气液相发生分离,气体通过精馏塔填料段进行热质交换后,从精馏塔301E塔顶出口管进入低甲冷,冷凝吸收。

•离开精馏塔分离段的尿液位液位调节阀LV301送至闪蒸槽,闪蒸槽301F真空度由HV701控制,闪蒸使尿液中部分氨、CO2、H2O挥发,尿液由135℃降至90~95℃,浓度增加到约72~74%,流入尿液小槽,闪蒸气相去闪蒸冷凝器冷凝。

•精馏气回流泵来回流液及工艺液在低甲冷进行浸没式冷凝吸收,为了移走冷凝热,低甲冷用低调水进行冷却,现低调水是由化水送来的脱盐水与系统换热后热脱盐水混合后温度控制在50~55℃,一部分热脱盐水送至电厂,出301C的汽液混合物进入低压液位槽进行气液分离,气相及回流冷气相同时进入鼓泡塔,经吸收塔给料泵打来的解吸液吸收后再进入常压吸收塔,液相返回氨水槽,气体至放空总管,循环气相管前设有吹扫蒸汽,以防此管线结晶。

循环系统甲铵液经甲铵泵加压至15MPa送至高压洗涤器作吸收剂。

.精馏塔的精馏过程•高压圈合成的合成液,经气提塔气提后,由气提塔出料调节阀压力由14.6MPa减压至0.25~0.3MPa,使气提液中的部分甲铵分解成为氨和二氧化碳气体。

谈尿素生产的原理及工艺流程

谈尿素生产的原理及工艺流程

谈尿素生产的原理及工艺流程摘要:在尿素的生产过程中应该尽量避免造成设备的腐蚀,防止发生安全事故,节约成本,实现企业生产长期稳定的进行,促进企业更好地发展。

关键词:尿素;生产;原理;工艺流程1尿素生产的基本原理1.1尿素合成的反应机理。

由氨和二氧化碳合成尿素的总反应式为:2NH3(l)+CO2(g)=CO(NH2)2(l)+H2O(l)(1)式(1)是一个可逆的放热反映,因受化学平衡的限制,NH3 和CO2 合成只能部分转化为尿素。

关于合成尿素的反应机理有多重说法,但一般认为反应是在液相中分两步进行的。

第一步,液氨与二氧化碳反应生成液态氨基甲酸铵,故称为甲胺生成反应:2NH3(l)+CO2(g)=NH4COONH2(l)+119.2kJ·mol-1 (2)式(2)是一个快速、强放热的可逆反应,如果具有足够的冷却条件,不断地将反应热取走,并保持反应进行过程的温度低到足以使甲胺冷凝为液体,这个反应容易达到化学平衡,而且平衡条件下转化为甲胺的程度很高。

压力对甲胺的生成速率有很大影响,加压有利于提高反应速率。

第二步,甲胺脱水反应,生产尿素: NH4COONH2(l)=CO(NH2)2(l)+H2O (l)-15.5kJ·mol-1 (3)式(3)是一个吸热的可逆反应,甲胺在固相中脱水速率极慢,只是在熔融的液相中才有较快的速率。

因此甲胺脱水主要是在液相中进行的,并且是尿素合成中的控制步骤。

脱水反应达到平衡时,甲胺的转化率只有 50%~70%,有相当数量的反应物未能反应生成尿素。

1.2尿素合成反应速率。

尿素合成反应过程是一个复杂的气液两相过程,在液相中进行着化学反应。

体系中既有传质过程,也有化学反应。

传质过程包括:气相中的氨与二氧化碳转入液相和水由液相转入气相。

液相的化学反应包括:氯与二氧化碳化合生成甲铵及甲铵转化为尿素和水。

当反应物系建立平衡时,气液和相间存在着平衡,同时液相内存在着化学平衡。

生产尿素的几种工艺及方法

生产尿素的几种工艺及方法
来自气提塔顶部的气体和中压吸收塔并经高压碳铵泵增压的回收液,送往高压甲铵冷凝器,全部混合物在此冷凝并经喷射泵返回合成塔。
2.中压分解与回收
从气提塔底部出来的含有低残留量二氧化碳的溶液减压至1.765兆帕,进人中压分解分离器顶部,减压释放出的气体和溶液在此进行分离。溶液中残留的甲铵在底部分解器分离。
在合成塔顶部出气中除氨、二氧化碳外,还有氧、氮、氢、惰性气体等,送人高压洗涤器。高压洗涤器下部是直立管壳式浸没冷凝器,器内充满液体,气体鼓泡向上通过,上部为鼓泡段。液体出鼓泡段,一部分从内溢流管返回浸没冷凝段底部,一部分外流出去进入喷射泵的吸入口。出口甲铵液的温度保持在160℃,为了防止冷却过度,管外用热水冷却,热水在一个封闭的加压系统中用循环水泵循环。从高压洗涤器顶部出来还含氨、二氧化碳气的惰性气进入吸收塔,被冷凝液吸收后放空。送入吸收塔的冷凝液是从氨水贮槽分别用解吸塔给料泵及升压泵经过顶部加料冷却器送人吸收塔的上段填料层,用闪蒸槽冷凝液泵将闪蒸槽冷凝液送人下段填料层,在塔底所得的稀甲铵液,部分返回下段填料层循环吸收,部分送人低压洗涤器中吸收从低压甲铵冷凝器出来的氨和二氧化碳。最终甲铵液从低压洗涤器或吸收器液位槽底部进入高压甲铵泵,升压后经高压洗涤器返回甲铵冷凝器。
回流氨送入顶部塔板,除去出塔气体中的微量二氧化碳和水。
回流液氨经氨升压泵从液氨贮槽抽出送往中压吸收塔顶部。中压吸收塔出塔的溶液经高压碳铵液泵再经高压碳铵预热器预热后,返回到合成回收。
含有惰性气体的氨气离开中压吸收塔顶部在氨冷凝器中冷凝,冷凝的液氨和含有氨的惰气进人液氨贮槽,由氨回收塔出来的氨和惰性气体则送往中压氨洗涤吸收塔,与逆流冷凝液进行接触洗涤,将气氨回收。从中压氨洗涤吸收塔底部出来的氨水溶液经离心泵返回到中压吸收塔。

二氧化碳气提法生产尿素工艺研究

二氧化碳气提法生产尿素工艺研究

二氧化碳气提法生产尿素工艺研究二氧化碳气提法尿素生产工艺由荷兰斯塔米卡邦公司于1964年开始中试试验,1967年建成第一套工业装置,在20世纪70年代初期得到迅速发展,现在已成为世界上建厂最多、生产装备能力最大的尿素生产工艺。

一、二氧化碳气提法尿素生产工艺流程1、原料的压缩、合成与气提从低温甲醇洗工序来的CO2气体,经液滴分离器分离后,在一段入口与一定量的空气混合(空气量为CO2体积的4%)进入CO2压缩机,经过一~三段压缩进入脱硫槽,脱去CO2气体中硫等杂质后,进入四段气缸压缩;经四、五段压缩后,首先进入高压CO2加热器,将CO2温度提高到150℃。

进入脱氢反应器脱氢,H2被氧化为水,脱氢后二氧化碳含氢及其它可燃气体小于50ppm。

脱氢后气体经二氧化碳冷却器冷却至120℃后进入二氧化碳气提塔底部,对由尿素合成塔来的尿液进行气提,使尿液中的甲铵分解成氨和二氧化碳,溶解在尿液中的氨和二氧化碳也解吸出来。

解吸出来的气体与二氧化碳气体一道从气提塔顶部排出,进人高压甲铵冷凝器。

液氨来自液氨球罐,经液氨升压泵进入高压液氨泵的入口。

液氨经高压液氨泵加压后,送往高压喷射器作为喷射物料,将由高压洗涤器来的浓甲铵液带人高压甲铵冷凝器。

在高压甲铵冷凝器中,氨与二氧化碳反应生成甲铵,甲铵液和少量未冷凝的氨和CO2从高压甲铵冷凝器底部出来,分成两条管线送入合成塔的底部,在合成塔内甲铵发生脱水反应生成尿素和水。

合成塔内设有筛板,目的是为了防止物料在合成塔内返混,保证物料在塔内的停留时间约1h。

尿液经合成塔上部的溢流管从塔底出口出来,经过液位调节阀,进入气提塔的上部。

尿液经气提塔内液体分配器均匀地分配到每根气提管中,沿管壁成液膜状下降。

由气提塔下部通入的来自二氧化碳压缩机的CO2气体,在管内与尿液逆流接触,气提管外用蒸汽加热。

尿液中未转化的甲铵发生分解生成氨和二氧化碳,与未转化的氨和二氧化碳一同被二氧化碳气提出来。

气提气从气提塔顶排出,去高压甲铵冷凝器,气提后的尿液从气提塔底部排出。

二氧化碳汽提尿素培训

二氧化碳汽提尿素培训

二氧化碳汽提尿素培训二氧化碳汽提尿素培训将涉及到许多方面,包括技术原理、生产流程、设备运行、安全管理等内容。

通过培训,可以使生产人员深入了解二氧化碳汽提尿素技术,掌握其关键操作技能,提高生产效率,保障生产安全,实现可持续发展。

首先,培训将重点介绍二氧化碳汽提尿素技术的原理和特点。

二氧化碳汽提尿素技术是利用高压二氧化碳与氢气在催化剂的作用下与尿素反应生成甲醛,在高温下进行加氢反应生成羟甲脲,然后再进行脱水反应生成尿素。

这一技术具有反应速度快、产率高、原料利用率高等特点,在生产过程中可以减少CO2排放,节约能源,提高产品质量。

其次,培训还将涉及到尿素生产工艺的流程和设备的运行。

在生产过程中,根据二氧化碳汽提尿素技术的特点,生产工艺流程将有所不同,而设备的运行状态对于产品质量的稳定和生产效率的提高起着至关重要的作用。

通过系统的培训,可以帮助生产人员了解尿素生产流程的每一个环节,熟悉各类设备的运行原理和操作技巧,为实际生产提供强有力的技术支撑。

另外,培训还将强调安全管理和环保意识。

尿素生产是一个潜在的危险行业,要求生产人员要时刻保持高度的安全意识,遵守各项安全操作规程,做好各项安全措施和设备维护保养工作。

同时,二氧化碳汽提尿素技术的引入,可以减少CO2排放,降低环境污染,培训还将加强环保意识,推动生产人员转变观念,树立绿色生产理念。

总之,二氧化碳汽提尿素培训具有重要意义,它将有助于提高生产效率,降低生产成本,改善生产环境,增强企业竞争力。

因此,需要制定全面的培训计划和内容,配备专业的培训师资,提供完备的培训设施和设备,使培训能够真正起到实际作用,推动二氧化碳汽提尿素技术的广泛应用和推广。

此外,培训还应包括与二氧化碳汽提尿素技术相关的新兴领域知识,例如先进的控制系统和自动化技术。

这些技术的引入对于生产过程的自动化管理、数据采集和分析至关重要,可以帮助生产人员更好地把握生产过程的各个环节,提高生产效率和产品质量。

二氧化碳气提法生产尿素的工艺分析

二氧化碳气提法生产尿素的工艺分析

二氧化碳气提法生产尿素的工艺分析摘要:二氧化碳气提工艺生产尿素具有操作简单,压力便于控制,减少原料氨的损失,气提温度也很低,有利于防腐等特点。

文中从二氧化碳气提法尿素的生产过程与节能工艺、工艺特征、降低氨耗的途径等方面做了简要的分析。

关键词:二氧化碳气提法;生产过程;节能工艺;工艺特征;降低氨耗一、引言二氧化碳气提工艺生产尿素,主要是从压缩到气提原料,它主要包括四个系统即:高压系统、循环系统、蒸发系统、解析水解系统,二氧化碳气提法的工艺有着很多的特点。

二氧化碳溶解度小可以作为气提剂使用,氨回收比较容易,它在很多方面都优于传统的水溶解法。

尿素的合成首先氨和二氧化碳进行反应,反应的第二步尿素是在尿素合成塔内反应,这样不仅会减少物料量进入合成塔,更会提高利用率。

二、二氧化碳气提法尿素的生产过程与节能工艺2.1从压缩到气提原料二氧化碳气提首先是经过中低变工序后,CO和水蒸气生成CO2之后原料气进入脱碳工序,CO2在吸收塔被溶液吸收,溶液流到CO2再生塔后解析出CO2,解析出的CO2经过CO2冷凝器降温,再进入CO2分离器分离出气体里面的水分或者溶液,最后进入CO2压缩机入口分离器,从而进入CO2压缩机。

氨与二氧化碳在高压甲铵冷凝器中反应成甲铵,冷凝器底部分离出氨液和氨,然后,反应成水和尿素,这一过程中一定要防止物料的混合失误保持物料充足的混合时间。

尿素分配到气提管中在管壁慢慢下降,二氧化碳气体从气提塔下部进来,在管内接触尿素,最后加热汽提有些气体经高压仍未冷凝的会进入高压洗涤器回收后进入常压吸收塔再次回收。

2.2系统的循环尿素—甲铵溶液减压后进入精馏塔的顶部,氨和二氧化碳闪蒸之后温度下降,尿素—甲铵溶液下落进入循环加热器,加热之后温度上升,并且甲铵进一步分解。

然后溶液被分离,尿素经闪蒸槽。

气体在精馏之后被送到低压甲铵的冷凝器之中,并吸收冷凝器并流的液体。

热量被冷却水带走,然后,将冷却水进行循环使用。

液体从底部排出之后经过升压之后送到高压洗涤器的顶部。

二氧化碳汽提法生产尿素工艺

二氧化碳汽提法生产尿素工艺

解吸水解系统
工艺冷凝液外送
造粒系统 粒料产品
二氧化碳汽提法生产尿素工艺简介
二氧化碳气提法的生产步骤可分为四个阶段:
1、原料二氧化碳的压缩和液氨的加压; 2、在合成塔中进行尿素的合成和在高压下用CO2气 提合成反应液,并将反应液中未反应的CO2与氨的 大部分气提出来,并返回尿素合成塔中重新利用; 3、将气提后溶液降低压力并加热,继续进下一步回 收未反应CO2与氨,并将冷凝吸收下来的回收液返 至尿素合成塔,此回收称为循环过程; 4、尿素溶液的蒸发和造粒。
二氧化碳汽提法生产尿素工艺简介
为处理未反应的氨和二氧化碳,可以将合成熔融 物加热分解,使成气体逸出。而用二氧化碳在合成压 力下将尿素熔融物气提,使其中的甲胺分解,返回 合成系统,就称为二氧化碳汽提法。
二氧化碳汽提法生产尿素工艺简介
液氨 加压
空气
合成系统 低压循环 蒸发系统
二氧化碳
甲铵液循 环
稀甲铵液循环
蒸发工序
蒸发工序主要是将尿液加工成固体尿素。将尿液 蒸浓到99.7%的熔体,造粒成型。此法称为蒸发 造粒法。(P339、P367)
后期安排
在5月初到5月底这段时间完成物料衡算、热量衡算、 设备的选型及流程图的绘制。 六月份开始论文的编写及改正,并准备PPT论文答 辩。
谢谢!
循环工序
循环系统包括分解和冷凝吸收两个工艺。分解 工艺主要有精馏塔、闪蒸槽、解析塔等设备; 冷凝吸收工艺有中、低压吸收塔和低压甲胺冷 凝器等设备。此外,还有尿素水解塔与循环加 热换热器以及高压甲胺泵等液体输送设备。 (P293)
蒸发工序
尿素溶液提浓是采用蒸发工艺去掉尿液中的水分 达到的。蒸发后尿液中含有水量应尽量降低,以 满足造粒后产品质量的要求,当成品尿素中含水 量要小于0.3%时,则蒸发后的熔融液进入塔前 必须浓缩到99.7%以上。按照尿素溶液蒸发特性 的要求,便采用了真空蒸发工艺和两段真空蒸发 工艺的理由。

二氧化碳汽提尿素培训教材

二氧化碳汽提尿素培训教材
⑵消耗定额(11万吨/年) ❖ ⑴液氨(以100%氨计):0.580t(正常消耗值) ❖ ⑵CO2(以100%CO2计)0.785t ❖ ⑶蒸汽(1.275Mpa干饱和蒸汽):1.7 t ❖ ⑷电:160KWh ❖ ⑸冷却水:(温升6℃):130 ~ 140m3
二)日本的ACES工艺
日本三井东压化学公司(Mitsui Toatsu Chemicals,MTC)是 1968年由原东洋高压工业公司和三井化学工业公司合并组成。

20KWh
二氧化碳(100%) 770kg
冷却水(温升按13℃) 88m3
3.8MPa(绝)蒸汽 1530kg
3)工艺指标
(1)二氧化碳压缩
操作压力
一段入口 0.165MPa(绝)
四段出口 13.8 ~ 14.1 MPa(绝)
原料CO2组成 CO2 >98.5%(体积)
CO <0.2% (体积)
催化剂层阻力: 正常<0.1 MPa
最大<0.2: 入口 2.3MPa(绝) 出口16 ~ 16.3MPa(绝)
操作温度: 入口 30 ~ 40℃
液氨组成: NH3 ≥99.5% (质量) H2O<0.5%(质量)
H2+N2 < 0.02 %(质量) 油 <10PPm
东洋工程公司(TOYO engineering corporation,TEC)创立于 1961年5月。
东洋工程-三井东压,最先于60年代开发了水溶液全循环A法,随 后又开发了B法、C法、改良C法、D法。
1983年开发的ACES工艺(及Advanced Cost Energy Saving Process的缩写,意思是“节约投资降低能耗”的工艺,实质是CO2 汽提尿素与水溶液全循环尿素的结合,也属于CO2汽提尿素的一种工 艺),该工艺的主要特点是高压系统采用了两个高压甲铵冷,一个高 压甲铵冷副产蒸汽,一个高压甲铵冷用于加热汽提塔出来的尿液,分 解回收部分采用中压、低压分解与回收,蒸发工艺采用预浓缩工艺。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二氧化碳气提法生产尿素工艺流程1.1二氧化碳气体的压缩
从上道工序送来的CO
2气体将所含液滴分离后进入CO
2
压缩机。

在压缩机各进
出口设有若干温度、压力监测点,以便于监视压缩机的运行状况,压缩机的负荷是通过改变压缩机转速来控制的,经压缩后的气体(压力约为14.3MPa,温度为110℃左右)送去脱氢系统。

1.2氨气的加压
合成氨装置送来的液氨经流量计量后引入高压氨泵,液氨在泵内加压至16.0MPa(A)左右。

液氨的流量根据系统的负荷,通过控制氨泵的转速来调节。

加压后的液氨经高压喷射器与来自高压洗涤器中的甲铵液,一起由顶部进入高压甲铵冷凝器。

1.3液氨的加压高压合成与CO
2
气提回收
合成塔、气提塔、高压冷凝器和高压洗涤器这四个设备组成高压圈,这是二氧化碳气提法的核心部分,这四个设备的操作条件是统一考虑的,以达到尿素的最大产率和热量的最大回收。

从高压冷凝器底部导出的液体甲铵和少量的未冷凝的氨和二氧化碳,分别用两条管线送入合成塔底,合成塔内设有筛板,形成类似几个串联的反应器,塔板的作用是防止物料在塔内返混。

尿素合成反应液从塔内上升到正常液位,经过溢流管从塔下出口排出,经过液位控制阀进入气提塔上部,再经塔内液体分配器均匀地分配到每根气提管中。

液体沿管壁成液膜下降,分配器液位高低起着自动调节各管内流量的作用。

由塔下部导入的二氧化碳气体,在管内与合成反应液逆流相遇。

管间以蒸汽加热,合成反应液中过剩氨及未转化的甲铵将被蒸出和分解,从塔顶排出,尿液及少量未分解的甲铵从塔底排出。

从气提塔顶排出的高温气体,与新鲜氨及高压洗涤器来的甲铵液在约高压下一起进入高压甲铵冷凝器顶部。

高压甲铵冷凝器是一个管壳式换热器,物料走管内,管间走水用以副产低压蒸汽。

为了使进入高压甲铵冷凝器上部的气相和液相得到更好的混合,增加其接触时间,在高压甲铵冷凝器上部设有一个液体分布器。

在分布器上维持一定的液位,就可以保证气-液的良好分布。

合成塔顶排出的气体进入高压洗涤器,在这里将气体中的氨和二氧化碳用加压后的低压吸收段的甲铵液冷凝吸收,然后经高压甲铵冷凝器再返回合成塔。

高压洗涤器分为三个部分:上部为防爆空腔,中部为鼓泡吸收段,下部为管式浸没式冷凝段。

从合成塔导入的气体先进入上部空腔,然后导入下部浸没式冷凝段,与从中心管流下的甲铵液在底部混合,在列管内并流上升并进行吸收。

采用并流上升的冷凝方式,是为了使塔底不会形成太浓的溶液而析出结晶。

1.4低压分解与循环回收
从气提塔出来的反应混合物经液位控制阀减压到约0.3MPa,减压膨胀,使溶液中甲铵分解气化,气-液混合物进入精馏塔顶部,喷洒到精馏塔鲍尔环填料上。

液体从底部流出,进行甲铵的分解和游离NH
3及CO
2
的解吸,离开循环加热器的
气液混合物在精馏塔分离段中气液相发生分离,分离后的尿液经液位调节阀进入闪蒸槽,分离出来的气体进入填料段与喷淋液逆流接触,进行传热传质,进一步
吸收NH
3及CO
2。

离开精馏塔顶部的气体以及解吸回流泵送来的解吸冷凝液分别
进入低压甲铵冷凝器冷凝。

来自低压甲铵冷凝器的气液混合物,进入低压甲铵冷凝器液位槽进行气液分离。

分离出来的气体在低压洗涤器的填料层与工艺冷凝液泵运送来的氨水逆流相遇洗涤,经低压洗涤器循环冷却器冷却后喷洒在低压洗涤器填料层上。

在低压洗涤器顶部出口管线上装有压力调节阀,用来控制压力,未冷凝吸收的气体通过此阀与解吸水解系统回流冷凝器中未冷凝的气体一起送入常压吸收塔底部,在吸收塔填料层与吸收塔给料泵送上来来的氨水逆流接触,气
体中少量的NH
3、CO
2
被进一步吸收,未吸收的气体从顶部通过排气筒排入大气,
吸收塔中的液体从塔底排至氨水槽。

1.5真空蒸发与造粒
进入闪蒸槽的尿素溶液在闪蒸槽内继续减压,使甲铵再一次得到分解,
NH
3、CO
2
及相当数量的水从尿液中分离出来。

分离所需的热量由溶液本身提供,
至此,气提塔出来的溶液经两次减压和循环加热处理,其中的NH
3和CO
2
已基本
被分离出来,尿液中尿素含量基本达到了成产要求送入尿液贮槽。

尿液槽中的尿液经尿液泵送到一段蒸发加热器,尿液流量由设置在管道上的调节阀控制。

一段蒸发加热器是直立管式加热器,尿液自下而上在管内流动,在真空抽吸下形成升膜式蒸发。

一段蒸发出来的尿液通过“U”型管进入二段蒸发加热器,它也是一
个直立管式换热器。

尿液在管内进行升膜式蒸发,离开二段蒸发分离器的熔融尿素经熔融尿素泵送到造粒塔顶部的造粒喷头进行造粒。

所造好的尿素颗粒由刮料机将输送至下料槽,由塔底皮带机直接输送到包装工序。

解吸与水解系统
解吸与水解系统用来处理冷凝液,其目的在于回收其中的NH
3和CO
2
使其返回
尿素合成系统做原料。

将来自真空浓缩系统的工艺冷凝液经水解塔给料泵加压后与水解塔底部出来的水解液换热后进入水解塔顶部塔板。

在水解塔内,液体自上而下流动,而加热蒸汽由塔底送入提供水解反应所需热量。

蒸汽量由流量调节阀阀位来控制。

溶液与蒸汽逆流相遇,进行水解与解吸,然后将回收的气体送入尿素合成系统继续反应,残余气体经排气筒排入大气。

所涉及到的所涉及到的单元操作和设备
单元操作典型设备及其应用
冷凝与蒸发式传热过程中的典型单元操作,其中所用到的设备本质上都是换热器的一种。

按照用途可以把换热器分为加热器、预热器、过热器、蒸发器、再沸器、冷却器、冷凝器。

加热器主要用来把流体加热到所需温度以满足下道工序的需要,蒸发器用于加热液体,使之蒸发汽化,冷却器用于冷却流体,使之达到所需的温度,冷凝器用来冷却凝结性饱和蒸汽,使之放出潜热而凝结液化。

板式换热器以其突出优点如传热效率高、节能、经济、结构紧凑、拆装、清洗、操作灵活方便等,广泛应用于化工、石油、冶金、电力、食品饮料、医药、等工业领域。

在无机化工有机化工化工方面用于各种无机酸、盐的加热、冷却、蒸发、冷凝、硫酸的冷却、各种浓度的液电解液的加热和冷却、脱盐工艺等。

闭路冷却水系统传热液体的加热、冷却、冷凝和再沸、吸收(洗涤)系统各种聚合物的加热、冷却在石油工业中用于各种油品的加热及冷却塔顶气体的冷却、冷凝工厂冷却水系统、工厂气体净化系统、工厂酸性水的处理、石油、天燃气输送系统中原油加热、气体脱水、海水冷却循环淡水或乙二醇、粗油冷却等。

在冶金工业中用于炼焦炉直接或间接一次冷却器、闭环冷却系统的冷却器、冷却炉子和各
种机器、电弧炉体、水冷盖板的冷却、铁合金炉的炉体、电板支座、变压器的冷却。

电度锡生产线电解液的冷却、炼铝厂、氧化铝厂、炼铜厂、闭路冷却系统、洗涤液冷却器、电解液的加热和冷却等。

在造纸工业中主要用于黑液的冷却、木浆的凝缩、水加热、热回收系统、用于回收喷放蒸气、排出气体、出口蒸汽在食品饮料工业中主要用于各种食品、饮料、果汁、啤酒等工艺过程中的加热、冷却、蒸发、结晶、杀菌、制糖等。

制药工业应用中主要用于各种药液、纯水的加热、冷却蒸发、冷凝及杀菌等。

相关文档
最新文档