实验一(电容式传感器的位移特性实验)
位移传感器实验报告
![位移传感器实验报告](https://img.taocdn.com/s3/m/e9e0fd58a9114431b90d6c85ec3a87c241288a7e.png)
位移传感器实验报告位移传感器实验报告引言:位移传感器是一种能够测量物体位移的装置。
它在工业自动化、机器人技术、医疗设备等领域有着广泛的应用。
本实验旨在通过对位移传感器的实验研究,探索其工作原理和性能特点。
一、实验目的本实验的目的是研究位移传感器的工作原理和性能特点,了解其在实际应用中的优缺点,为后续的工程设计和应用提供参考。
二、实验装置和方法实验所用的位移传感器是一种电容式位移传感器,其工作原理是通过测量电容的变化来实现对位移的测量。
实验装置包括位移传感器、信号调理电路、数据采集系统等。
在实验过程中,首先将位移传感器固定在待测物体上,然后通过调整传感器的位置和角度,使其与被测物体保持良好的接触。
接下来,将信号调理电路与传感器连接,并将其输出与数据采集系统相连。
最后,通过改变被测物体的位移,观察位移传感器的输出信号变化,并记录相应的数据。
三、实验结果与分析在实验过程中,我们通过改变被测物体的位移,观察位移传感器的输出信号变化,并记录了相应的数据。
实验结果显示,位移传感器的输出信号随着被测物体位移的增加而线性增加,且具有较高的精度和稳定性。
进一步分析发现,位移传感器的灵敏度与传感器的工作原理和结构有关。
电容式位移传感器通过测量电容的变化来实现对位移的测量,其灵敏度受到电容变化量的影响。
因此,在实际应用中,我们需要根据具体的需求选择合适的位移传感器,以确保测量结果的准确性和可靠性。
此外,位移传感器还具有一定的温度特性。
在实验过程中,我们发现位移传感器的输出信号受到环境温度的影响。
当环境温度发生变化时,位移传感器的输出信号也会发生相应的变化。
因此,在实际应用中,我们需要对位移传感器进行温度补偿,以提高测量的精度和稳定性。
四、实验总结通过本次实验,我们深入了解了位移传感器的工作原理和性能特点。
位移传感器是一种能够测量物体位移的重要装置,在工业自动化、机器人技术、医疗设备等领域有着广泛的应用。
在实际应用中,我们需要根据具体的需求选择合适的位移传感器,并进行相应的温度补偿,以确保测量结果的准确性和可靠性。
传感器与检测技术实验报告
![传感器与检测技术实验报告](https://img.taocdn.com/s3/m/067587a403d276a20029bd64783e0912a2167c3d.png)
传感器与检测技术实验报告前言:位移传感器又称为线性传感器,是一种属于金属感应的线性器件,传感器的作用是把各种被测物理量转换为电量。
在生产过程中,位移的测量一般分为测量实物尺寸和机械位移两种。
按被测变量变换的形式不同,位移传感器可分为模拟式和数字式两种。
模拟式又可分为物性型和结构型两种。
常用位移传感器以模拟式结构型居多,包括电位器式位移传感器、电感式位移传感器、自整角机、电容式位移传感器、电涡流式位移传感器、霍尔式位移传感器等。
数字式位移传感器的一个重要优点是便于将信号直接送入计算机系统。
这种传感器发展迅速,应用日益广泛。
一、电容式传感器1、传感器照片(luoshida-m30)2、应用场景管件材质:ABS塑料安装方式:齐平/非齐平检测距离:2-20mm/2-30mm可调节工作电压:10-40VDC输出方式:NPN/PNP NO/NC/NO+NC连接方式:2M PVC线缆3、测量原理这种开关的测量通常是构成电容器的一个极板,而另一个极板是开关的外壳。
这个外壳在测量过程中通常是接地或与设备的机壳相连接。
当有物体移向接近开关时,不论它是否为导体,由於它的接近,总要使电容的介电常数发生变化,从而使电容量发生变化,使得和测量头相连的电路状态也随之发生变化,由此便可控制开关的接通或断开。
这种接近开关检测的物件,不限於导体,可以绝缘的液体或粉状物等。
4、比较优点:温度稳定性好,结构简单,适应性强,动态响应好,可以实现非接触测量,具有平均效应:缺点:输出阻抗高,负载能力差,寄生电容影响大,输出特性非线性二、霍尔式位移传感器1、传感器照片(MIRAN-WOA-C-R角度位移)2、应用场景供电电压24V DC,输出信号有4-20MA、0-5V、0-10V等3、测量原理如果马达角度传感器构造运转,而齿轮不转,说明你的机器已经被障碍物给挡住了。
此技术使用起来非常简单,而且非常有效;唯一要求就是运动的轮子不能在地板上打滑(或者说打滑次数太多),否则你将无法检测到障碍物。
7 电容式传感器位移特性实验
![7 电容式传感器位移特性实验](https://img.taocdn.com/s3/m/3ca387ccb14e852458fb578f.png)
二、圆柱形差动结构的电容式传感器
设圆筒的半径为r1,圆柱的半径为r2,圆柱的 长为x,则电容: 2πεx 2 c c x ln r1 r2 lnr1 r2
本实验电容器由两个圆筒和一个圆柱组成的。
2 2x C1、C2差动连接时 c ln r1 r2
C ∝x,配上测量电路,建立U∝ x,就能测量位移。 电容传感器的电容值非常微小,必须借助于测量电路, 将其转换成电压、电流、频率信号等电量来表示电容值的 大小。
电容式传感器的位移特性实验
实验目的
了解电容式传感器的结构及其特点。 了解电容式传感器测位移的原理
非电量 敏感元件
电参数 转换电路
电压或电流
实验原理
一、电容式传感器 1、定义 以电容为敏感原件,将机械位移量转换为电容量 变化的传感器称为电容式传感器。 2、分类 利用电容C=εs/d,通常将电容式传感器分为变 面积型、变介质型和变间隙型三种。 变面积型电容传感器中,平板结构对极距特别敏 感,测量精度受到影响,而圆柱形结构受极板径向变 化的影响很小,且理论上具有很好的线性关系,因而 成为实际中最常用的电容式传感器。
反方向每转动测微头1圈(△x=0.5mm) 读1次电压表读 数,记录10组数据),将数据填入表1并作出V—x曲线。 表1 电容传感器位置与输出电压值 X(mm) V(mV) 4、计算电容式传感器的系统灵敏度S和非线性误差δ。
电容式传感器测位移实验
![电容式传感器测位移实验](https://img.taocdn.com/s3/m/26a982e2856a561252d36f9c.png)
一、实验目的
理解差动电容式传感器的工作原理,掌握差动电容 式传感器电路的组成并会计算其精度,了解电容传感器 在位移测量中的使用。
二、实验内容
利用电容式传感器测位移
三、实验仪器
• 传感器检测技术综合实验台、电容传感器实验模块、 电容传感器、振动源实验模块、示波器、导线。
六、实验报告要求 • 1. 实验数据真实,准确,填入表格 • 2. 对数据进行处理,进行误差分析,求出 线性度,灵敏度,做出输入-输出特性曲线
七、注意事项
• 1.不要带电操作,请仔细检查电路及仪器连 接后打开电源;
• 2.传感器内外筒上导线较细,请大家轻拿轻 放,并注意在改变位移时小幅度增加,避 免拉断导线; • 3.实验完成后注意整理好仪器再离开。
四、实验原理
S 0 r S C d d
• 差动圆筒式 两个外筒不动 等电势 内筒可动
差动电容式传感器结构图
二极管环形充放电电路
cx1
a
c
cx2
五、实验步骤
1.连接电路
2. 螺旋测微仪安装示意图
2.调节脉冲调制单元的电位器W1,使其输出 方波 3. RW1调节到中间位置,旋动测微头推进电 容传感器移动至极板中间位置,使电压数显 表显示为最小值 4.旋动测微头,每间隔0.5mm记下位移X与输 出电压值,填入表
传感器测试实验报告
![传感器测试实验报告](https://img.taocdn.com/s3/m/2b8328283069a45177232f60ddccda38376be18e.png)
传感器测试实验报告实验一直流激励时霍尔传感器位移特性实验一、实验目得:了解霍尔式传感器原理与应用。
二、基本原理:金属或半导体薄片置于磁场中,当有电流流过时,在垂直于磁场与电流得方向上将产生电动势,这种物理现象称为霍尔效应.具有这种效应得元件成为霍尔元件,根据霍尔效应,霍尔电势UH=KHIB,当保持霍尔元件得控制电流恒定,而使霍尔元件在一个均匀梯度得磁场中沿水平方向移动,则输出得霍尔电动势为,式中k—位移传感器得灵敏度。
这样它就可以用来测量位移.霍尔电动势得极性表示了元件得方向.磁场梯度越大,灵敏度越高;磁场梯度越均匀,输出线性度就越好。
三、需用器件与单元:霍尔传感器实验模板、霍尔传感器、±15V直流电源、测微头、数显单元.四、实验步骤:1、将霍尔传感器安装在霍尔传感器实验模块上,将传感器引线插头插入实验模板得插座中,实验板得连接线按图9—1进行。
1、3为电源±5V,2、4为输出。
2、开启电源,调节测微头使霍尔片大致在磁铁中间位置,再调节Rw1使数显表指示为零。
图9-1直流激励时霍尔传感器位移实验接线图3、测微头往轴向方向推进,每转动0、2mm记下一个读数,直到读数近似不变,将读数填入表9-1。
表9-1X(mm)V(mv)作出V—X曲线,计算不同线性范围时得灵敏度与非线性误差。
五、实验注意事项:1、对传感器要轻拿轻放,绝不可掉到地上。
2、不要将霍尔传感器得激励电压错接成±15V,否则将可能烧毁霍尔元件。
六、思考题:本实验中霍尔元件位移得线性度实际上反映得时什么量得变化?七、实验报告要求:1、整理实验数据,根据所得得实验数据做出传感器得特性曲线.2、归纳总结霍尔元件得误差主要有哪几种,各自得产生原因就是什么,应怎样进行补偿。
实验二集成温度传感器得特性一、实验目得:了解常用得集成温度传感器基本原理、性能与应用。
二、基本原理:集成温度传器将温敏晶体管与相应得辅助电路集成在同一芯片上,它能直接给出正比于绝对温度得理想线性输出,一般用于-50℃-+150℃之间测量,温敏晶体管就是利用管子得集电极电流恒定时,晶体管得基极—发射极电压与温度成线性关系。
传感器实验指导书
![传感器实验指导书](https://img.taocdn.com/s3/m/18af145a195f312b3069a545.png)
传感器与检测技术实验指导教师:陈劲松实验一金属箔式应变片——单臂电桥性能实验错误!未指定书签。
实验二金属箔式应变片-全桥性能实验及电子秤实验错误!未指定书签。
实验三电容式传感器的位移特性实验 ..... 错误!未指定书签。
实验四Pt100热电阻测温实验.................. 错误!未指定书签。
实验一金属箔式应变片——单臂电桥性能实验一、 实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。
二、 基本原理:金属丝在外力作用下发生机械形变时,其电阻值会发生变化,这就是金属的电阻应变效应。
金属的电阻表达式为:SlR ρ=(1)当金属电阻丝受到轴向拉力F 作用时,将伸长l ∆,横截面积相应减小S ∆,电阻率因晶格变化等因素的影响而改变ρ∆,故引起电阻值变化R ∆。
对式(1)全微分,并用相对变化量来表示,则有:ρρ∆+∆-∆=∆S S l l R R (2)式中的l l ∆为电阻丝的轴向应变,用ε表示,常用单位με(1με=1×mm mm 610-)。
若径向应变为rr ∆,电阻丝的纵向伸长和横向收缩的关系用泊松比μ表示为)(l l r r ∆-=∆μ,因为S S ∆=2(rr ∆),则(2)式可以写成: llk l l l l l l R R ∆=∆∆∆++=∆++∆=∆02121)()(ρρμρρμ(3) 式(3)为“应变效应”的表达式。
0k 称金属电阻的灵敏系数,从式(3)可见,0k 受两个因素影响,一个是(1+μ2),它是材料的几何尺寸变化引起的,另一个是)(ρερ∆,是材料的电阻率ρ随应变引起的(称“压阻效应”)。
对于金属材料而言,以前者为主,则μ210+≈k ,对半导体,0k 值主要是由电阻率相对变化所决定。
实验也表明,在金属丝拉伸比例极限内,电阻相对变化与轴向应变成比例。
通常金属丝的灵敏系数0k =2左右。
用应变片测量受力时,将应变片粘贴于被测对象表面上。
传感器技术实验指导书
![传感器技术实验指导书](https://img.taocdn.com/s3/m/90666b86e53a580216fcfe86.png)
《传感器技术》实验指导书权义萍南京工业大学自动化学院目录实验一金属箔式应变片单臂、半桥、全桥性能比较实验 (3)实验二直流全桥的应用――电子秤实验 (7)实验三电容式传感器的位移特性实验 (9)实验四压电式传感器振动实验 (11)实验五直流激励时霍尔式传感器位移特性实验 (13)实验六电涡流传感器综合实验 (15)实验七光纤传感器的位移特性实验 (18)实验一金属箔式应变片单臂、半桥性能比较实验一、实验目的:了解金属箔式应变片的应变效应,电桥工作原理和性能。
二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。
,对单臂电桥输出电压U o1= EKε/4。
不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。
当应变片阻值和应变量相同时,其桥路输出电压U O2=EKε/2。
三、需用器件与单元:应变式传感器实验模板、应变式传感器-电子秤、砝码、数显表、±15V电源、±4V电源、万用表(自备)。
四、实验步骤:1、根据图(1-1)应变式传感器(电子秤)已装于应变传感器模板上。
传感器中各应变片已接入模板的左上方的R1、R2、R3、R4。
可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值为50Ω左右图1-1 应变式传感器安装示意图2、接入模板电源±15V(从主控台引入),检查无误后,合上主控台电源开关,将实验模板调节增益电位器R W3顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正负输入端与地短接,输出端与主控台面板上数显表输入端V i相连,调节实验模板上调零电位器R W4,使数显表显示为零(数显表的切换开关打到2V档)。
电容式传感器的位移特性实验报告资料
![电容式传感器的位移特性实验报告资料](https://img.taocdn.com/s3/m/3efe4e3002d8ce2f0066f5335a8102d276a261f8.png)
电容式传感器的位移特性实验报告资料一、实验内容:1、使用电容式传感器进行位移测量;2、采用锁相放大器,对位移测量进行信号检测,输出交流(AC)信号幅度和相位;3、掌握电容式传感器的阻抗和信号特性。
二、实验原理:1、电容式传感器:是将测量物体与一个接地电极分离,形成一个独立的电容二极管。
当测量物体发生位移时,该二极管电容Cc变化,即Cc=f(d),d是测量位移。
在保持传感器静态工作点C0不变的情况下,当Cc发生变化时,不受测物位移的干扰。
因此,电容式传感器可以实现高精度、无接触、无磨损位移测量。
2、锁相放大器:是一种适用于相位、频率、振幅等参数检测的精密电子测量仪器。
它可以对微弱的交流信号检测并输出信号幅度和相位。
三、实验器材:2、锁相放大器;3、信号调理器;4、多路开关;5、示波器。
四、实验过程:1、在传感器静态工作点时,接触传感器,调整微调电容,使电压稳定在一个固定值;2、调整开关,将传感器所测量的位移信号输入信号调理器内,进行信号调理,可以得到一个幅度为1V、频率为10kHz左右、带有微弱噪声的交流信号;3、将调理后的信号连接至锁相放大器的输入端,将锁相放大器的参考输入端连接至信号调理器输出端,调节锁相放大器的参考信号相位,使锁相放大器输出的交流信号幅度和参考信号相位一致;4、通过示波器连接至锁相放大器输出端,调节示波器测量参数,可以得到锁相放大器输出信号的AC幅度和相位值;5、通过多路开关改变传感器输入的位移值,重复以上步骤,得到传感器的位移特性曲线。
五、实验结果:在不同的测量点进行测量,在锁相放大器中得到具有不同幅度和相位的AC信号,通过信号处理以及调制,最终得到有关电容式传感器位移特性曲线,从中发现电容性传感器在不同测量点上具有不同的灵敏度,以及对于位移值的反应截然不同,这也是电容式传感器的特点,需要在实际应用中进行合理的选择和设计。
六、实验分析:通过实验,我们发现电容式传感器的测量值和测量量并非简单的线性关系,仅仅是对于位移变化而产生的电容变化,同时也受到感应现象、环境噪声的影响。
电容式传感器的位移特性实验
![电容式传感器的位移特性实验](https://img.taocdn.com/s3/m/02dea417590216fc700abb68a98271fe910eafdc.png)
电容式传感器的位移特性实验电容式位移传感器实验是一种重要的引导应用考核技术,它要求用户在复杂的实验环境中结合理论知识和实际操作,使用电容式位移传感器来测量和检验其变化。
电容式位移传感器具有灵敏度高、稳定性好、良好的鲁棒性等优点,在工业控制领域中得到广泛应用。
实验 content一、研究内容1、电容式位移传感器介绍:介绍电容式位移传感器的原理工作原理、接线结构以及精度要求等。
2、等效电路仿真:使用电路仿真软件,仿真输入电压的变化对电容式位移传感器的影响。
3、实验素材:利用工业电容式位移传感器,测量传感器的位移特性,探查其非线性特性以及如何改善精度。
4、仪器设备:利用函数发生器、数字万用表、模拟量信号示波器等常用仪器设备,分别检测典型电容器位移传感器的精度。
5、结论性评价:评价:分析电容式位移传感器的特性,对它的优缺点进行总结,指出如何提高其精度,进一步建立相关的计算模型。
二、实验原理1、电容式位移传感器由两个电容构成,其原理是由于特定环境改变时,电容之间的介质改变,会在电容上形成电容电势差而发生变化,从而使电容式位移传感器的内部电路受到影响,最终通过电容变化改变其输出电压。
2、实验中利用函数发生器产生跨越输入电压,观察输出电压的变化,研究电容式位移传感器的补偿特性和灵敏度。
3、设置正反向斜率的步进电压,控制正反向补偿电压间隔,观察其非线性特性,探究其实际特性。
4、模拟量信号示波器给出电容式位移传感器的不同输出电压,观察实际精度,辅助分析结果。
三、实验结果1、经过仿真计算,确定电容式位移传感器补偿特性曲线,补偿范围较大,灵敏度及时响应速度较快,补偿特性良好。
2、观察实验电路中电容式位移传感器的输出电压,发现其在正反向补偿斜率步进电压下,相应的响应有非线性变化,合理,可靠。
3、通过模拟量信号示波器的输出,可分析典型电容式位移传感器的精度,表明电容式位移传感器的精度较高,可以满足应用要求。
四、结论1、电容式位移传感器具有灵敏度高、稳定性优、较好的精度等特点,在工业控制领域具有广泛应用。
电容式传感器测位移特性实验
![电容式传感器测位移特性实验](https://img.taocdn.com/s3/m/f590c56a68eae009581b6bd97f1922791688be9b.png)
电容式传感器测位移特性实验电容式传感器是一种常用的位移传感器,采用电容式将小的位移量变化,转变成模拟电压来发送,以实现检测和测量的目的,其具有快速响应、高精度和反应稳定的特点,被广泛应用到航空、航天、工业控制仪表等领域。
本实验将通过实验设备进行测量电容式传感器的位移特性,以更加深入的了解电容式传感器的工作特性。
实验装置是一台专业的电容测试仪,此外还配有一个线性位移模拟器、一个电容式传感器、一些实验电缆和接口线等辅助设备。
实验可分为三个步骤:绘制拟合曲线前的实验前准备工作、将电容式传感器的位移信号变为模拟电压的转换过程以及拟合测得的曲线。
1、实验前准备工作:首先,将位移模拟器接线连接到实验装置;随后,将电容式传感器接入实验装置,并将电容传感器安装在位移模拟器上;最后,调节电容测试仪偏置电路,矫正偏置电压,以设定有效位移信号范围。
2、将电容式传感器的位移信号变为模拟电压的转换过程:在实验中,将位移模拟器的调置电位从最小值(0mm)调至最大值(50mm),从而控制位移模拟器产生不同的位移量。
每次顺序调节时,实验装置将其位移量所产生的信号作为输入,经过转换后将电容式传感器的位移信号变成一定失真程度的模拟电压信号,从而可进行数据获取。
3、拟合测得的曲线:由于电容式传感器的反应特性的确定,在本实验中选择了一种标准的二次曲线进行拟合,以便更好地了解其工作原理。
在拟合曲线以及拟合曲线的过程中,采用的是软件的拟合算法,计算出最佳的参数并绘制拟合曲线。
实验结果表明,本次实验证明了电容式传感器位移特性测试实验使用电容式传感器和实验装置进行测量均具有可行性和准确性,为此类传感器的应用提供了足够的参考。
此外,本次实验也体现了软件算法拟合准确性以及实验数据在绘制曲线过程中的重要性等。
06电容式传感器的位移特性实验
![06电容式传感器的位移特性实验](https://img.taocdn.com/s3/m/e3ccaee5f242336c1fb95e7e.png)
中南大学
仪器与自动检测实验报告
冶金科学与工程院系冶金专业10级试验班级
姓名陈晓晨学号0505100102 同组者席昭等
实验日期2013 年4 月08 日指导教师
实验名称:电容式传感器的位移特性实验
一、实验目的:
了解电容传感器的结构及特点
二、实验仪器:
电容传感器、电容传感器模块、测微头、数显直流电压表、直流稳压电源
三、实验原理:
电容式传感器是指能将被测物理量的变化转换为电容量变化的一种传感器它实质上是具有一个可变参数的电容器。
利用平板电容器原理:
式中,S为极板面积,d为极板间距离,真空介电常数,介质相对介电常数,由此
可以看出当被测物理量使或发生变化时,电容量随之发生改变,如果保持其中两个参数不变而仅改变另一参数,就可以将该参数的变化单值地转换为电容量的变化。
所以电容传感器可以分为三种类型:改变极间距离的变间隙式,改变极板面积的变面积式和改变介质电常数的变介电常数式。
这里采用变面积式,如图11-1两只平板电容器共享一个下极板,当下极板随被测物体移动时,两只电容器上下极板的有效面积一只增大,一只减小,将三个极板用导线引出,形成差动电容输出。
图11-1
四、实验内容与步骤
1.按图11-2将电容传感器安装在电容传感器模块上,将传感器引线插入实验模块插座中。
电容式传感器实训报告
![电容式传感器实训报告](https://img.taocdn.com/s3/m/fc4705d3cd22bcd126fff705cc17552706225e58.png)
一、实训目的电容式传感器实训旨在使学生了解电容式传感器的基本原理、结构、工作特性以及在实际应用中的重要性。
通过本次实训,学生应掌握电容式传感器的安装、调试、测试方法,并能够根据实际需求设计和应用电容式传感器。
二、实训内容1. 理论部分- 电容式传感器的基本原理:电容式传感器是利用电容变化来检测物理量的传感器。
其基本原理是通过测量电容的变化来检测被测量的物理量,如位移、振动、压力等。
- 电容式传感器的结构:电容式传感器主要由敏感元件、测量电路和信号处理电路组成。
- 电容式传感器的工作特性:电容式传感器具有高灵敏度、高精度、抗干扰能力强等特点。
2. 实践部分- 安装与调试1. 根据实验要求,将电容式传感器安装到相应的测试平台上。
2. 调整传感器与测试平台的距离,确保传感器能够正确地检测到被测量的物理量。
3. 调整传感器的灵敏度,使其在检测范围内达到最佳性能。
- 测试与数据分析1. 利用实验设备对电容式传感器进行测试,记录测试数据。
2. 分析测试数据,评估传感器的性能,如灵敏度、线性度、重复性等。
3. 根据测试结果,对传感器进行调整和优化。
3. 应用设计- 根据实验要求,设计一个应用实例,如位移测量、振动检测等。
- 分析应用实例中电容式传感器的需求,选择合适的传感器型号和参数。
- 设计电路,实现电容式传感器的信号采集、处理和输出。
三、实训结果与分析1. 测试结果通过实验,我们得到了以下测试结果:- 传感器的灵敏度为0.1mm/V,线性度为0.5%,重复性为0.3%。
- 在测试范围内,传感器能够稳定地检测到被测量的物理量。
2. 数据分析根据测试结果,我们可以得出以下结论:- 电容式传感器具有较高的灵敏度和线性度,能够满足实际应用的需求。
- 传感器的重复性好,稳定性高,适用于长时间连续工作。
3. 应用设计根据实验结果,我们设计了一个位移测量系统。
该系统采用电容式传感器作为测量元件,通过信号采集、处理和输出,实现了对位移的精确测量。
电容传感器测量位移电路仿真设计及原理
![电容传感器测量位移电路仿真设计及原理](https://img.taocdn.com/s3/m/2613803810661ed9ad51f349.png)
摘要传感器是能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。
电容式传感器就是把被测的机械量,如位移、压力等转换为电容量变化的传感器。
它的敏感部分就是具有可变参数的电容器。
其最常用的形式是由两个平行电极组成、极间以空气为介质的电容器。
本文设计介绍了一种电容式传感器测量位移的设计结构及其工作原理。
关键字:电容式传感器,平行电极,位移目录摘要。
1 引言。
3 传感器转换电路仿真调试及原理分析。
3 1.同相比例放大电路2.二阶低通滤波器电路电容式传感器测量电路设计及分析。
5 误差分析。
8 学习心得。
8参考文献资料。
9引言传感器是科学仪器、自动控制系统中信息获取的首要环节和关键技术,是先进国家优先发展的重要基础性技术。
传感器与通信技术和计算机技术构成了信息技术的三大支柱。
传感器是能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。
随着现代科学技术的迅猛发展,非电物理量的测量与控制技术已越来越广泛地应用于航天、交通运输、机械制造、自动检测与计量等技术领域,而且也正在逐步引入人们的日常生活中。
70年代末以来,随着集成电路技术的发展,出现了与微型测量仪表封装在一起的电容式传感器。
这种新型的传感器能使分布电容的影响大为减小,使其固有的缺点得到克服。
电容式传感器是一种用途极广,很有发展潜力的传感器。
典型的电容式传感器由上下电极、绝缘体和衬底构成。
当薄膜受压力作用时,薄膜会发生一定的变形,因此,上下电极之间的距离发生一定的变化,从而使电容发生变化。
但电容式压力传感器的电容与上下电极之间的距离的关系是非线性关系,因此,要用具有补偿功能的测量电路对输出电容进行非线性补偿。
传感器转换电路仿真调试及原理分析1.同相比例放大电路同相输入放大电路如图1所示,信号电压通过电阻RS加到运放的同相输入端,输出电压vo通过电阻R1和Rf反馈到运放的反相输入端,构成电压串联负反馈放大电路。
根据虚短、虚断的概念有vN=vP=vS,i1=if于是求得所以该电路实现同相比例运算。
电容式传感器的位移特性实验 电容式传感器论文
![电容式传感器的位移特性实验 电容式传感器论文](https://img.taocdn.com/s3/m/98c50202fc4ffe473368abc9.png)
智能仪器课程设计报告书课程名称:智能仪器设计题目:电容式传感器的位移特性实验学院:电气学院专业:测控技术与仪器班级:BG0XX组员:XXX XXXXXX XXX摘要仪器仪表式获取信息的工具,式认识世界的手段。
它是一个具体的系统或装置。
它最基本的作用是延伸、扩展、补充或代替人的听觉、视觉、触觉等器官的功能。
随着科学技术的不断发展,人类社会已经步入信息时代,对仪器仪表的依赖性更强,要求也更高。
现代仪器仪表以数字化、自动化、智能化等共性技术为特征获得了快速发展。
关键词:智能仪器、微型计算机AbstractInstrument information access tool, a means of understanding the world style. It is a specific system or device. It is the most basic role is to extend, expand, complement or replace human auditory, visual, tactile and other organ functions. With the continuous development of science and technology, mankind has entered the information age, more dependent on the instrument, demanding more. Modern instrumentation to digital, automatic and intelligent features such as access to common technologies for the rapid development.Keywords:Intelligent instruments, micro-computer目录摘要 (I)ABSTRACT (III)第1章电容式传感器 (1)1.1电容式传感器工作原理 (1)1.2电容式传感器的结构类型 (2)1.3电容式传感器的优缺点 (2)第2章电容式传感器的位移特性实验 (4)2.1实验目的 (4)2.2基本原理 (4)2.3需用器件与单元 (4)2.4实验步骤 (5)2.5 A/D转换 (6)课程设计小结 (7)参考文献 (8)第1章 电容式传感器1.1 电容式传感器的工作原理两块极板之间的间隙变化,或是表面积变化,将使电容量改变,根据这一原理制成的传感器称为电容式传感器。
传感器与检测技术技术实验报告
![传感器与检测技术技术实验报告](https://img.taocdn.com/s3/m/714c7a69e2bd960590c677e1.png)
天津广播电视大学武清分校《传感器与测试技术》实验报告姓名:学号:班级: 13春机械本实验一:电涡流式传感器实验一、实验目的1、了解电涡流传感器的实际应用。
2、了解电涡流传感器在静态测量中的应用。
3、了解电涡流传感器的结构、原理、工作特性。
4、通过实验掌握用电涡流传感器测量振幅的原理和方法。
5、通过实验说明不同的涡流感应材料对电涡流传感器特性的影响。
二、实验电路图及原理:图(1)电涡流式传感器由平面线圈和金属涡流片组成,当线圈中通以高频交变电流后,与其平行的金属片上感应产生电涡流,电涡流的大小影响线圈的阻抗Z,而涡流的大小与金属涡流片的电阻率、导磁率、厚度、温度以及与线圈的距离X有关。
当平面线圈、被测体(涡流片)、激励源已确定,并保持环境温度不变,阻抗Z只与X距离有关。
将阻抗变化经涡流变换器变换成电压V输出,则输出电压是距离X的单值函数。
三、实验所需部件:测微头、示波器、电压表、电涡流线圈、金属涡流片、电涡流变换器、三种金属涡流片。
四、实验步骤:1.按图连线,差动放大器调零,将电涡流传感器对准金属圆盘。
2.旋转测微器旋钮移动振动台,使电涡流传感器与金属片接触,此时涡流变换器的输出电压为零,由此开始向上旋转测微器旋钮,每隔0.5mm用电压表读取变换器的输出电压,将数据填入表1。
3.分别将铜片和铝片代替铁片,重复2的实验结果分别填入表2和表3。
4.将电涡流传感器连支架移到金属转盘上方,调整到其端面距盘面~1.0mm处,注意保持其端面与盘面的平行,不可碰擦。
5.涡流变换器的输出端与数字频率表相连,开启电机,调节转速,则电机转速可由下式得到:电机转速=频率表显示值/金属转盘等分值×2 (本实验中等分值为4)五、实验数据及分析:表1 电涡流传感器对铁片的输出特性表3 电涡流传感器对铝片的输出特性实验二:电阻应变式传感器实验一.实验目的1、熟悉电阻应变式传感器在位移测量中的应用。
2、比较半导体应变式传感器和金属电阻应变式传感器的灵敏度。
《传感器原理及应用》实验指导书
![《传感器原理及应用》实验指导书](https://img.taocdn.com/s3/m/65d266c0cc7931b764ce1579.png)
实验二 压阻式压力传感器的压力测量实验
一、实验目的:了解扩散硅压阻式压力传感器测量压力的原理和方法。
二、基本原理:扩散硅压阻式压力传感器在单晶硅的基片上扩散出P型或N型电阻条,接成电桥。在压力作用下, 根据半导体的压阻效应, 基片产生应力,电阻条的电阻率产生很大变化,引起电阻的变化,我 们把这一变化引入测量电路,则其输出电压的变化反映了所受到的压 力变化。
五、思考题:
试设计利用£的变化测谷物湿度的传感器原理及结构?能否叙述一下 在设计中应考虑哪些因素?
实验六 转速的测量
(
一、实验目的:了解磁电式传感器测量转速的原理。
二、基本原理:基于电磁感应原理,N匝线圈所在磁场的磁通变化时,线 圈中感应电势e=-d©/dt发生变化,因此当转盘上嵌入N个磁棒时,每 转一周线圈感应电势产生N次的变化,通过放大、整形和计数的电路即可 以测量转速。
三、实验设备:震动台、压电传感器、检波、移相、低通滤波器模板、压电 式传感器实验模板、双线示波器。
四、实验方法和要求:
1、压电传感器已装在震动台面上。
2、将低频震荡器信号接入到台面三源板震动源的激励插孔。
3、将压电传感器输出两端插入到压电传感器实验模板两输入端, 与传 感器外壳相连的接线端接地,另一端接R1。将压电传感情实验模 板电路输出端Vol接R6。将压电传感器实验模板电路输出端V02接入低通滤波器输入端Vi,低通滤波器输出Vo与示波器相连。
2、开启电源, 调节测微头使霍尔片在磁钢中间位置并使数显表指示为 零。
3、测微头向轴向方向推进,每转动0.2mm记下一个输出电压读数, 直到读数近似不变。
位移实验_精品文档
![位移实验_精品文档](https://img.taocdn.com/s3/m/8e7a257230126edb6f1aff00bed5b9f3f90f72e3.png)
综合实验二位移实验(一)电容式传感器的位移实验一、实验目的了解电容式传感器结构及其特点。
二、基本原理利用电容C=εA/d和其它结构的关系式,通过相应的结构和测量电路可以选择ε、A、d三个参数中,保持二个参数不变,而只改变其中一个参数,则可以有测谷物干燥度(ε变)、测位移(d变)和测量液位(A变)等多种电容式传感器。
本实验采用的传感器为圆筒式变面积差动结构的电容式位移传感器,如图2-9所示:它是有二个圆筒和一个圆柱组成的。
设圆筒的半径为R;圆柱的半径为r;圆柱的长为x,则电容量为C=ε2 x/ln(R/r)。
图中C1、C2是差动连接,当图中的圆柱产生∆X位移时,电容量的变化量为∆C=C1-C2=ε2 2∆X/ln(R/r),式中ε2 、ln(R/r)为常数,说明∆C与位移∆X成正比,配上配套测量电路就能测量位移。
图2-9 圆筒式变面积差动结构电容式位移传感器三、需用器件与单元主机箱、电容传感器、电容传感器实验模板、测微头。
四、实验步骤1.测微头的使用和安装参阅实验九。
按图2-10将电容传感器装于电容传感接主机箱电压表的Vi器实验模板上,并按图示意接线(实验模板的输出VO1n)。
2.将实验模板上的Rw调节到中间位置(方法:逆时针转到底再顺时针转3圈)。
3.将主机箱上的电压表量程(显示选择)开关打到2v挡,合上主机箱电源开关,旋转测微头改变电容传感器的动极板位置使电压表显示0v,再转动测微头(同一个方向)5圈,记录此时的测微头读数和电压表显示值为实验起点值。
以后,反方向每转动测微头1圈,即△X=0.5mm位移,读取电压表读数(这样转10圈读取相应的电压表读数),将数据填入表6,出X—V实验曲线(这样单行程位移方向做实验可以消除测微头的回差)。
迟滞误差4.根据表6据计算电容传感器的系统灵敏度S、非线性误差δL 、δ。
H5.实验完毕,关闭电源。
图2-10 电容传感器位移实验安装、接线图表6 电容传感器位移与输出电压值。
电容式传感器的位移实验报告
![电容式传感器的位移实验报告](https://img.taocdn.com/s3/m/83fdcd2db94ae45c3b3567ec102de2bd9705de7d.png)
电容式传感器的位移实验报告电容式传感器的位移实验报告概述:电容式传感器是一种常见的传感器类型,它通过测量电容的变化来检测物体的位移。
在本次实验中,我们将使用电容式传感器来测量一个物体的位移,并分析实验结果。
实验装置:1. 电容式传感器:我们选择了一款高精度的电容式传感器,具有稳定的性能和较小的测量误差。
2. 信号采集器:为了获取传感器的输出信号,我们使用了一台信号采集器,并将其连接到电容式传感器。
3. 物体:我们选择了一个简单的金属块作为实验物体,通过移动该物体来模拟位移。
实验步骤:1. 连接:首先,我们将电容式传感器与信号采集器进行连接。
确保连接稳固可靠,并避免干扰信号的出现。
2. 校准:在进行实际测量之前,我们需要对电容式传感器进行校准。
校准的目的是确定传感器的输出与实际位移之间的关系。
3. 实验测量:将物体放置在传感器的测量范围内,并通过移动物体来模拟位移。
同时,记录传感器输出的变化,并与实际位移进行对比。
实验结果与分析:通过实验测量,我们得到了一系列传感器的输出值,并与实际位移进行了对比。
根据我们的实验数据,我们可以得出以下结论:1. 传感器输出与位移之间存在线性关系:通过绘制传感器输出与实际位移之间的散点图,我们发现它们之间存在明显的线性关系。
这意味着电容式传感器在测量位移方面具有较高的准确性和可靠性。
2. 测量误差存在:尽管电容式传感器具有较高的精度,但在实际测量中仍存在一定的误差。
这些误差可能来自于传感器本身的不确定性,以及实验环境中的干扰因素。
因此,在实际应用中,我们需要对测量结果进行修正和校准。
3. 传感器响应速度:通过观察传感器输出的变化曲线,我们可以了解到电容式传感器的响应速度。
在实验中,我们发现传感器的响应速度相对较快,能够准确地跟踪物体的位移变化。
实验应用:电容式传感器在工业和科学研究领域有着广泛的应用。
以下是一些常见的应用领域:1. 位移测量:正如我们在实验中所展示的,电容式传感器可以用于测量物体的位移。
电容式位移传感器.ppt
![电容式位移传感器.ppt](https://img.taocdn.com/s3/m/fdd3b7bdd4d8d15abf234e0b.png)
当被测参数变化使得式(3-1)中的S,δ或ε发生 变化时, 电容量C也随之变化。如果保持其中两个参 数不变, 而仅改变其中一个参数, 就可把该参数的变 化转换为电容量的变化, 通过测量电路就可转换为 电量输出。
2.
以电容器为敏感元件,将机械位移量转换为电容量变 化的传感器称为电容式传感器。
电容式传感器
调频测量电路把电容式传感器作为振荡器谐振回路的一 部分。当输入量导致电容量发生变化时, 振荡器的振荡频率 就发生变化。
虽然可将频率作为测量系统的输出量, 用以判断被测非电 量的大小, 但此时系统是非线性的, 不易校正, 因此加入鉴频器, 将频率的变化转换为振幅的变化, 经过放大就可以用仪器指示 或记录仪记录下来。调频测量电路原理框图如图 10 所示。
K C 00r 2 S 1 02
( 37 )
差动式变间隙型电容传感器
初始位置时,
120C0 S 0
动极板上移:
1 0 ,2 0 图2 差动式变间隙型
C 1C 0 C 0 S C 0 1 0 1
器有一个固有频率f0,
1
f0= 2[(C1C2C0)L]12
(3 - 20)
当被测信号不为 0 时, ΔC≠0, 振荡器频率有相应变化, 此时频率为
f2[c (1c1 2c0)L]12f0f
(3 - 21)
调频电容传感器测量电路具有较高灵敏度, 可以测至 0.01 μm级位移变化量。频率输出易于用数字仪器测量和 与计算机通讯, 抗干扰能力强, 可以发送、接收以实现遥测 遥控。
CC 1C 2C 0 2 02 0 3.. .( .3 . .8 )
电容量的相对变化为 :
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电容式传感器的位移特性实验
一、实验目的:
了解电容式传感器结构及其特点。
二、基本原理:
利用平板电容C=εA/d和相应的结构及测量电路,在ε、A、d三个参数中,保持二个参数不变,而只改变其中一个参数,则可以有测谷物干燥度(ε变)、测微小位移(变d)和测量液位(变A)等多种电容传感器。
利用电容传感器的动态响应特性和可以非接触测量等特点,可进行动态位移测量。
电容传感器具有结构简单、灵敏度高、分辨力高(可达0.01mm甚至更高)、动态响应好、可进行非接触测量等特点,它可以测量线位移、角位移,高频振动振幅,与电感式比较,电感式是接触测量,只能测低频振幅,电容传感器在测量压力、差压、液位、料位成分含量(如油、粮食中的水份)、非金属涂层、油膜厚度等方面均有应用。
目前半导体电容式压力传感器已在国内外研制成功,正在走向工业化应用。
三、需用器件与单元:
电容传感器、电容传感器实验模板、测微头、相敏检波、滤波模板、数显单元、直流稳压源。
四、实验步骤:
1、按图2-1将电容传感器装于电容传感器实验模板上。
图2-1 电容传感器安装示意图
2、将电容传感器连线插入电容传感器实验模板,实验线路见图2-2。
图2-2 电容传感器位移实验接线图
3、将电容传感器实验模板的输出端V01与数显表单元V i相接(插入主控箱V i孔),R w调节到中间位置。
4、接入±15V电源,旋动测微头推进电容传感器动极板位置,每间隔
0.2mm记下位移X与输出电压值,填入表2-1。
X(mm)
V(mv)
5、根据表2-1数据计算电容传感器的系统灵敏度S和非线性误差δf。
五、思考题:
图2-3为同心圆筒式电容位移传感器结构图,D为屏蔽套筒。
若外圆筒半径R=8mm,内圆柱半径r=7.25mm,外圆筒与内圆柱覆盖部分长度L=16mm。
根据实验所提供的电容传感器尺寸,计算其电容量C O和移动0.5mm时的变化量。
图2-3 同心圆筒式电容位移传感器结构图
如有侵权请联系告知删除,感谢你们的配合!。