七年级下册数学一二章检测试卷

合集下载

_湘教版七年级数学下册第1章《二元一次方程组》达标测试卷(含解析)

_湘教版七年级数学下册第1章《二元一次方程组》达标测试卷(含解析)

第1章达标测试卷一、选择题(每题3分,共24分)1.下列各方程组中,是二元一次方程组的是( )A .⎩⎪⎨⎪⎧a +13b =1,a =b 2B .⎩⎨⎧3x -2y =5,2y -z =10C .⎩⎪⎨⎪⎧x 3+y 2=1,xy =1D .⎩⎨⎧x -y =27,x +1.1y =4052.用加减法解方程组⎩⎨⎧3x -2y =10,①4x -y =15②时,较简便的方法是( )A .①×4-②×3,消去xB .①×4+②×3,消去xC .②×2+①,消去yD .②×2-①,消去y3.方程组⎩⎨⎧2x +y =m ,x +y =3的解为⎩⎨⎧x =2,y =n ,则m ,n 的值分别为( )A .1,2B .1,3C .5,1D .2,44.如果关于x ,y 的方程组⎩⎨⎧x =4,by +ax =5与⎩⎨⎧y =3,bx +ay =2的解相同,那么a +b 的值为( )A .-1B .1C .2D .05.已知方程组⎩⎨⎧2x +3y =1,3x +2y =2的解满足x -y =m -1,则m 的值为( )A .-1B .-2C .1D .26.已知⎩⎨⎧x =19,y =17是方程组⎩⎨⎧ax +by =5,bx +ay =-1的解,则9-3a +3b 的值是( ) A .3 B .263 C .0 D .67.小明到商店购买“五四青年”活动奖品,购买20支铅笔和10本笔记本共需110元,但购买30支铅笔和5本笔记本只需85元.设每支铅笔x 元,每本笔记本y 元,则可列方程组为( )A .⎩⎨⎧20x +30y =110,10x +5y =85B .⎩⎨⎧20x +10y =110,30x +5y =85C .⎩⎨⎧20x +5y =110,30x +10y =85D .⎩⎨⎧5x +20y =110,10x +30y =858.《九章算术》是我国古代第一部数学专著,其中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几步及之?”意思是:走路快的人走100步的时候,走路慢的人才走了60步,走路慢的人先走100步,然后走路快的人去追赶,走路快的人要走多少步才能追上?若设走路快的人要走x 步才能追上,此时走路慢的人又走了y 步,根据题意可列方程组为( )A .⎩⎪⎨⎪⎧x 100=y 60,x -y =100B .⎩⎪⎨⎪⎧x 60=y 100,x -y =100C .⎩⎪⎨⎪⎧x 100=y 60,x +y =100D .⎩⎪⎨⎪⎧x 60=y 100,x +y =100 二、填空题(每题4分,共32分)9.若5x m -1+5y n -3=-1是关于x ,y 的二元一次方程,则m +n =________. 10.方程组⎩⎨⎧x -y =4,2x +y =-1的解是________.11.若-7x a y 3与x 2y a +b 是同类项,则b =________.12.已知关于x ,y 的二元一次方程组⎩⎨⎧2x -y =k +1,x -2y =-k +2,则x -y 的值是__________.13.若⎩⎨⎧x =1,y =2与⎩⎨⎧x =2,y =3都是方程ax -by =3的解,则a =________,b =________.14.已知关于x ,y 的二元一次方程组⎩⎨⎧mx -3y =16,3x -ny =0的解为⎩⎨⎧x =5,y =3,则关于a ,b 的二元一次方程组⎩⎨⎧m (a +b )-3(a -b )=16,3(a +b )-n (a -b )=0的解是________.15.有大、小两种货车,2辆大货车与1辆小货车一次可以运货7吨,1辆大货车与2辆小货车一次可以运货5吨,则1辆大货车与1辆小货车一次可以运货________吨.16.为确保信息安全,信息需要加密传输,发送方由明文对应密文(加密),接收方由密文对应明文(解密).已知加密规则:明文x ,y ,z 对应密文2x +3y ,3x +4y ,3z .例如:明文1,2,3对应密文8,11,9.当接收方收到密文12,17,27时,解密得到的明文为____________.三、解答题(第17题16分,第18、19题每题6分,其余每题8分,共44分) 17.解下列方程组: (1)⎩⎨⎧x +y =10,2x +y =16;(2)⎩⎨⎧2x +y =2,3x -2y =10;(3)⎩⎪⎨⎪⎧x 2=y 3,4x -3y =3;(4)⎩⎨⎧3(x -1)=y +5,5(y -1)=3(x +5).18.已知关于x ,y 的方程组⎩⎨⎧4x -y =5,3x +y =9和⎩⎨⎧ax +by =-1,3x +4by =18有相同的解.(1)求出它们的相同解; (2)求(2a +3b )2 022的值.19.某景点的门票价格如下表:某校七年级一、二两班计划去游览该景点,其中一班人数少于50人,二班人数多于50人且少于100人.如果两班都以班为单位单独购票,则一共支付1 118元;如果两班联合起来作为一个团体购票,则只需花费816元.(1)求七年级一班、二班的学生人数;(2)团体购票与单独购票相比较,两个班各节省了多少钱?20.某厂共有104名生产工人,每名工人每天可生产螺栓20个或螺母25个,一个螺栓与两个螺母配成一套.(1)每天安排多少名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配套?(2)若每套利润20元,求每天的利润.21.某商场计划用9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为甲型号每台1 500元,乙型号每台2 100元,丙型号每台2 500元.(1)若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲型号电视机可获利150元,销售一台乙型号电视机可获利200元,销售一台丙型号电视机可获利250元,在同时购进两种不同型号电视机的方案中,选择哪一种进货方案,获得的利润最大?答案一、1.D 2.D3.C 点拨:根据题意,得2+n =3,解得n =1,所以2x +y =4+1=5. 所以m =5. 4.B5.D 点拨:⎩⎨⎧2x +3y =1,①3x +2y =2,②②-①,得x -y =1,因为方程组⎩⎨⎧2x +3y =1,3x +2y =2的解满足x -y =m -1,所以m -1=1,解得m =2.6.C 点拨:把⎩⎨⎧x =19,y =17代入方程组得⎩⎨⎧19a +17b =5,①17a +19b =-1,②①-②,得2(a -b )=6,即a -b =3, 则原式=9-3(a -b )=9-9=0. 7.B 8.A 二、9.6 10.⎩⎨⎧x =1,y =-3 11.112.1 点拨:⎩⎨⎧2x -y =k +1,①x -2y =-k +2,②①-②×2,得3y =3k -3, 解得y =k -1, 把y =k -1代入②,得x -2(k -1)=-k +2,解得x =k , 故x -y =k -(k -1)=1.13.-3;-3 点拨:根据题意得⎩⎨⎧a -2b =3,2a -3b =3,所以⎩⎨⎧a =-3,b =-3.14.⎩⎨⎧a =4,b =1 点拨:因为关于x ,y 的二元一次方程组⎩⎨⎧mx -3y =16,3x -ny =0的解为⎩⎨⎧x =5,y =3,所以由关于a ,b 的二元一次方程组⎩⎨⎧m (a +b )-3(a -b )=16,3(a +b )-n (a -b )=0可得⎩⎨⎧a +b =5,a -b =3,解得⎩⎨⎧a =4,b =1.15.4 点拨:设1辆大货车一次可以运货x 吨,1辆小货车一次可以运货y 吨,根据题意得⎩⎨⎧2x +y =7,①x +2y =5,②(①+②)÷3,得x +y =4. 16.3,2,9三、17.解:(1)⎩⎨⎧x +y =10,①2x +y =16,②由①得,y =10-x ,③把③代入②,得2x +10-x =16, 解得x =6.把x =6代入③,得y =4, 则原方程组的解为⎩⎨⎧x =6,y =4.(2)⎩⎨⎧2x +y =2,①3x -2y =10,②①×2,得4x +2y =4,③ ②+③,得7x =14,解得x =2. 把x =2代入①,得4+y =2, 解得y =-2.则原方程组的解为⎩⎨⎧x =2,y =-2.(3)把原方程组整理,得⎩⎪⎨⎪⎧x =23y ,①4x -3y =3,②把①代入②,得83y -3y =3, 解得y =-9.把y =-9代入①,得x =-6. 则原方程组的解为⎩⎨⎧x =-6,y =-9.(4)把原方程组整理,得⎩⎨⎧3x -y =8,①3x -5y =-20,②①-②,得4y =28, 解得y =7.把y =7代入①,得x =5. 则原方程组的解为⎩⎨⎧x =5,y =7.18.解:(1)解方程组⎩⎨⎧4x -y =5,3x +y =9得⎩⎨⎧x =2,y =3.所以它们的相同解是⎩⎨⎧x =2,y =3.(2)把⎩⎨⎧x =2,y =3代入⎩⎨⎧ax +by =-1,3x +4by =18,得⎩⎨⎧2a +3b =-1,6+12b =18.解得⎩⎨⎧a =-2,b =1. 所以(2a +3b )2 022=[2×(-2)+3×1]2 022=(-1)2 022=1.19.解:(1)设两个班的人数之和为w 人.由题意知w >50.当50<w ≤100时,10w =816,解得w =81.6.因为81.6不是整数,所以不合题意.当w >100时,设七年级一班有x 人,七年级二班有y 人,由题意, 得⎩⎨⎧12x +10y =1 118,8(x +y )=816,解得⎩⎨⎧x =49,y =53. 答:七年级一班有49人,七年级二班有53人. (2)七年级一班节省的费用为(12-8)×49=196(元),七年级二班节省的费用为(10-8)×53=106(元).20.解:(1)设每天安排x 名工人生产螺栓,y 名工人生产螺母,才能使每天生产出来的产品配套,根据题意,得⎩⎨⎧x +y =104,2×20x =25y ,解得⎩⎨⎧x =40,y =64.答:每天安排40名工人生产螺栓,64名工人生产螺母,才能使每天生产出来的产品配套. (2)40×20×20=16 000(元).答:每天的利润为16 000元.21.解:(1)①设购进甲型号电视机x 台,乙型号电视机y 台,则⎩⎨⎧x +y =50,1 500x +2 100y =90 000,解得⎩⎨⎧x =25,y =25.②设购进甲型号电视机m 台,丙型号电视机z 台, 则⎩⎨⎧m +z =50,1 500m +2 500z =90 000,解得⎩⎨⎧m =35,z =15. ③设购进乙型号电视机n 台,丙型号电视机k 台,则⎩⎨⎧n +k =50,2 100n +2 500k =90 000,解得⎩⎨⎧n =87.5,k =-37.5(不合题意,舍去). 综上,商场的进货方案有两种:①购进25台甲型号电视机和25台乙型号电视机;②购进35台甲型号电视机和15台丙型号电视机. (2)25×150+25×200=8 750(元),35×150+15×250=9 000(元). 因为8 750<9 000,所以购进甲型号电视机35台,丙型号电视机15台,获得的利润最大.。

2023年北师大七年级数学下册第二章《相交线与平行线》综合测评卷附答案解析

2023年北师大七年级数学下册第二章《相交线与平行线》综合测评卷附答案解析

2023年七年级数学下册第二章《相交线与平行线》综合测评卷(试卷满分100分)一、选择题(本大题共10小题,每小题3分,共30分)1. 在数学课上,老师让同学们画对顶角∠1与∠2,下列画法正确的是()A B C D2. 如图1,三条直线交于点O,若∠1=30°,∠2=60°,则直线AB与CD的位置关系是()A. 平行B. 垂直C. 重合D. 以上均有可能图1 图2 图33. 如图2,已知a∠b,直线a,b被直线c所截,若∠1=∠60°,则∠2的度数为()A. 130°B. 120°C. 110°D. 100°4. 一副三角尺按图3所示放置,点C在FD的延长线上,若AB∠CF,则∠DBC的度数为()A. 10°B. 15°C. 30°D. 45°5. 如图4,在三角形ABC中,AB∠AC,AD∠BC,垂足分别为点A,D,则点B到直线AD的距离为()A. 线段AB的长B. 线段BD的长C. 线段AC的长D. 线段DC的长图4 图5 图6 图7 图86. 如图5,与∠α构成同位角的角有()A. 1个B. 2个C. 3个D. 4个7. 有下列说法:∠两条直线被第三条直线所截,内错角相等;∠互补的两个角就是平角;∠过一点有且只有一条直线与已知直线平行;∠平行于同一条直线的两直线平行;∠在同一平面内,垂直于同一条直线的两条直线平行. 其中正确的有()A. 0个B. 1个C. 2个D. 3个8.如图6,∠AOB与∠AOC互余,∠AOD与∠AOC互补,OC平分∠BOD,则∠AOB的度数是()A.20°B.22.5°C.25°D.30°9.如图7,∠AOB的一边OA为平面镜,∠AOB=37°,在OB上有一点E,从E点射出一束光线经OA上一点D反射,∠ODE=∠ADC.若反射光DC恰好与OB平行,则∠DEB的度数是()A. 74°B. 63°C. 64°D. 73°10. 如图8,已知AF平分∠BAC,D在AB上,DE平分∠BDF,∠1=∠2,有下列结论:∠DF∠AC;∠DE∠AF;∠∠1=∠DF A;∠∠C+∠DEC=180°.其中成立的有()A. ∠∠∠B. ∠∠∠C. ∠∠∠D. ∠∠∠二、填空题(本大题共6小题,每小题3分,共18分)11. 图9是苗苗同学在体育课上跳远后留下的脚印,她的跳远成绩是线段(选填“AM”“BN”或“CN”)的长度,这样测量的依据是.图9 图10 图1112. 如图10,已知直线AB与CD相交于E点,FE∠AB,垂足为点E,若∠1=120°,则∠2=°.13. 如图11,已知DE∠BF,AC平分∠BAE,∠DAB=70°,那么∠ACF=°.14. 如图12,点E是AD延长线上一点,∠B=30°,∠C=120°,如果添加一个条件,使BC∠AD,则可添加的条件为.(只填一个即可)图12 图13 图1415. 如图13,把一张长方形纸片沿AB折叠,已知∠1=75°,则∠2的度数为________°.16. 如图14,已知DH∠EG∠BC,DC∠EF,DC与EG交于点M,那么在图中与∠EFB相等的角(不包括∠EFB)有.(填上所有符合条件的角)三、解答题(本大题共6小题,共52分)17.(6分)如图15,已知∠α,∠β,求作∠AOB,使∠AOB=2∠α-∠β.(要求:尺规作图,不写作法,保留作图痕迹)图1518.(7分)如图16,直线AB与CD相交于点O,EO⊥CD于点O,OF平分∠AOD,且∠BOE=50°,求∠COF的度数.图1619.(8分)如图17,已知∠1+∠2=180°,∠3=∠B,直线AB与DE是否平行?并说明理由.图1720.(9分)如图18,已知∠ADE+∠BCF=180°,BE平分∠ABC,∠ABC=2∠E.(1)AD与BC平行吗?请说明理由.(2)AB与EF的位置关系如何?请说明理由.图1821.(10分)如图19,已知直线AB,CD相交于点O,OF平分∠AOE,∠COF=∠DOF=90°.(1)写出图中所有与∠AOD互补的角.(2)若∠AOE=120°,求∠BOD的度数.图1922.(12分)如图20,已知BC∠EG,AF∠DE,∠1=50°.(1)求∠AFG的度数;(2)若AQ平分∠F AC,交BC于点Q,且∠Q=15°,求∠ACB的度数.图20附加题(共20分,不计入总分)1.(6分)如图1,已知点D是射线AB上一动点,连接CD,过点D作DE∠BC交直线AC于点E.若∠ABC=84°,∠CDE=20°,则∠ADC的度数为()A. 104°B. 64°C. 104°或64°D. 104°或76°2.(14分)如图2,已知直线l1∠l2,直线l3与l1,l2分别交于点C,D,在C,D之间有一点P,当P点在C,D之间运动时,∠P AC,∠APB,∠PBD之间的数量关系是否发生变化?若点P在C,D两点的外侧运动时(与点C,D不重合),试探索∠P AC,∠APB,∠PBD之间的数量关系.图2参考答案一、1. C 2. B 3. B 4. B 5. B 6. C 7. C 8. B 9. A 10. A二、11. BN垂线段最短12. 30 13. 125 14. 答案不唯一,如∠1=30°15. 30 16. ∠DCB,∠GMC,∠DME,∠HDC,∠FEG三、17. 解:如图1所示,∠AOB即为所求.图118.∠COF=110°.19.解:AB∥DE.理由如下:因为∠1+∠ADC=180°,∠1+∠2=180°,所以∠ADC=∠2.根据“同位角相等,两直线平行”,可得EF∥DC.根据“两直线平行,内错角相等”,可得∠3=∠EDC.因为∠3=∠B,所以∠EDC=∠B.根据“同位角相等,两直线平行”,可得AB∥DE.20. 解:(1)AD∠BC.理由如下:因为∠ADE+∠BCF=180°,∠ADE+∠ADF=180°,所以∠ADF=∠BCF.根据“同位角相等,两直线平行”,可得AD∠BC.(2)AB∠EF.理由如下:因为BE平分∠ABC,所以∠ABC=2∠ABE.因为∠ABC=2∠E,所以∠ABE=∠E.根据“内错角相等,两直线平行”,可得AB∠EF.21. 解:(1)因为直线AB,CD相交于点O,所以∠AOC,∠BOD分别与∠AOD互补.因为OF平分∠AOE,所以∠AOF=∠EOF.因为∠COF=∠AOF+∠AOC,∠DOF=∠EOF +∠EOD,且∠COF=∠DOF=90°,所以∠DOE=∠AOC,所以∠DOE也是∠AOD的补角.所以与∠AOD互补的角有∠AOC,∠BOD和∠DOE.(2)因为OF平分∠AOE,所以∠EOF=12∠AOE=12×120°=60°.因为∠DOF=90°,所以∠DOE=∠DOF-∠EOF=90°-60°=30°.因为∠DOE与∠BOD都是∠AOD的补角,所以∠BOD=∠DOE=30°.22. 解:(1)因为BC∠EG,所以∠E=∠1=50°.因为AF∠DE,所以∠AFG=∠E=50°.(2)如图2,过点A作AM∠BC.因为BC∠EG,所以AM∠EG,所以∠F AM=∠AFG=50°.因为AM∠BC,所以∠QAM=∠Q=15°. 所以∠F AQ=∠F AM+∠QAM=50°+15°=65°.因为AQ平分∠F AC,所以∠CAQ=∠F AQ=65°.所以∠MAC=∠CAQ+∠QAM=65°+15°=80°. 图2因为AM∠BC,所以∠ACB=∠MAC=80°.附加题1. C 提示:分两种情况讨论:∠点D在线段AB上;∠点D在线段AB的延长线上.2. 解:不变化,当P点在C,D之间运动时,∠APB=∠PAC+∠PBD. 理由如下:如图1,过点P作PE∠l1,则∠APE=∠PAC.因为l1∠l2,所以PE∠l2,所以∠BPE=∠PBD,所以∠APE+∠BPE=∠PAC+∠PBD,即∠APB=∠PAC+∠PBD.图1 图2 图3若点P在C,D两点的外侧运动时(与点C,D不重合),有两种情况:∠如图2,当点P在点C的上方时,∠APB=∠PBD-∠PAC. 理由如下:过点P作PE∠l1,则∠APE=∠PAC.因为l 1∠l2,所以PE∠l2,所以∠BPE=∠PBD,所以∠APB=∠BPE-∠APE =∠PBD-∠PAC.∠如图3,当点P在点D的下方时,∠APB=∠PAC-∠PBD. 理由如下:过点P作PE∠l2,则∠BPE=∠PBD.因为l1∠l2,所以PE∠l1,所以∠APE=∠PAC,所以∠APB=∠APE-∠BPE =∠PAC-∠PBD.。

北师大版七年级数学下册 第二章相交线与平行线 达标检测卷 (1)

北师大版七年级数学下册 第二章相交线与平行线 达标检测卷  (1)

北师大版七年级数学下册第二章达标检测卷(考试时间:120分钟满分:120分)班级:________ 姓名:________ 分数:________第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.若∠A与∠B互为补角,∠A=40°,则∠B=( )A.50° B.40° C.140° D.60°2.(芝罘区期末)如图所示,某同学的家在P处,他想尽快赶到附近公路边搭顺风车,他选择P→C路线,下列用几何知识解释其道理中正确的是( ) A.两点确定一条直线B.垂线段最短C.两点之间线段最短D.经过一点有无数条直线第2题图第3题图3.(安化县期末)如图所示,直线a,b被直线c所截,则∠1与∠2是( ) A.对顶角 B.同位角 C.内错角 D.同旁内角4.如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠2=80°,则∠1等于( )A.120° B.110° C.100° D.80°5.下列作图是∠α余角的作图是( )6.如图,AB,CD,EF三条直线交于点O,且OE⊥AB,∠COE=20°,OG平分∠BOD,则∠DOG的度数是( )A.20° B.30° C.35° D.40°第6题图第7题图7.如图,下列条件中,不能判断直线a∥b的是( )A.∠1=∠3 B.∠2+∠4=180°C.∠4=∠5 D.∠2=∠38.★如图,把长方形ABCD沿EF折叠,若∠1=50°,则∠AEF等于( ) A.150° B.80° C.100° D.115°第8题图第9题图9.(淄博中考)如图,AB⊥AC,AD⊥BC,垂足分别为A,D,则图中能表示点到直线距离的线段共有( )A.2条 B.3条 C.4条 D.5条10.如图,AB∥CD,用含∠1,∠2,∠3的式子表示∠4,则∠4的大小为( )A.∠1+∠2-∠3B.∠1+∠3-∠2C.180°+∠3-∠1-∠2D.∠2+∠3-∠1-180°第Ⅱ卷(非选择题共90分)二、填空题(每小题3分,共24分)11.已知∠1的对顶角为123°,则∠1的度数为 .12.(曲阜期末)如图,若满足条件,则有AB∥CD.(要求:不再添加辅助线,只需填一个答案即可)第12题图13.在同一平面内的三条直线l1,l2,l3,若l1⊥l2,l2⊥l3,则l1与l3的位置关系是 .14.如图,A,B之间是一座山,一条铁路要通过A,B两点,为此需要在A,B之间建一条笔直的隧道,在A地测得铁路走向是北偏东63°,那么B地按南偏西度的方向施工,才能使铁路在山腰中准确接通.第14题图15.如图,直线AB,CD相交于点O,OB平分∠EOD,∠COE=100°,则∠AOC = .第15题图第16题图16.如图所示,OB∥CE,OA∥CF,则图中与∠C相等的角一共有 .个.17.如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C= .18.★(南岗区校级期中)已知∠AOB和∠BOC互为邻补角,且∠AOB<∠BOC,OD 平分∠BOC,射线OE在∠AOB内部,且4∠BOE+∠BOC=180°,∠DOE=70°,OM⊥OB,则∠MOE= .三、解答题(共66分)19.(6分)(1)一个角的余角比这个角少20°,则这个角的补角为多少度;(2)如图,已知∠1=∠2,∠D=60°,求∠B的度数.20.(8分)如图,已知△ABC,点D为AB的中点,动手操作,解决下列问题:(1)过点D作DE∥BC,交AC于点E,并说明作图的依据;(2)度量DE,BC的长度,发现DE,BC之间有何数量关系?21.(8分)已知:如图,∠ABE+∠DEB=180°,∠1=∠2,则∠F与∠G的大小关系如何?请说明理由.22.(8分)如图,在三角形ABC中,CE⊥AB于E,DF⊥AB于F,AC∥ED,CE是∠ACB的平分线,试比较∠EDF与∠BDF的大小,并说明理由.23.(10分)已知:如图,BC∥AD,BE∥AF.(1)试说明:∠A=∠B;(2)若∠DOB=135°,求∠A的度数.24.(12分)如图,直线AB与CD相交于点O,OE⊥CD.(1)若∠BOD=28°,求∠AOE的度数.(2)若OF平分∠AOC,小明经探究发现,当∠BOD为锐角时,∠EOF的度数始终都是∠BOC度数的一半,请判断他的发现是否正确,并说明理由.25.(14分)如图,已知直线AC∥BD,直线AB,CD不平行,点P在直线AB上,且和点A,B不重合.(1)如图①,当点P在线段AB上时,若∠PCA=20°,∠PDB=30°,求∠CPD的度数;(2)当点P在A,B两点之间运动时,∠PCA,∠PDB,∠CPD 之间满足什么样的等量关系?(直接写出答案)(3)如图②,当点P在线段AB延长线上运动时,∠PCA,∠PDB,∠CPD 之间满足什么样的等量关系?并说明理由.(4)如图③,④当点P在线段BA延长线上运动时,∠PCA,∠PDB,∠CPD 之间满足什么样的等量关系?(直接写出答案)参考答案一、选择题(每小题3分,共30分)1.若∠A与∠B互为补角,∠A=40°,则∠B=( C)A.50° B.40° C.140° D.60°2.(芝罘区期末)如图所示,某同学的家在P处,他想尽快赶到附近公路边搭顺风车,他选择P→C路线,下列用几何知识解释其道理中正确的是( B)A.两点确定一条直线B.垂线段最短C.两点之间线段最短D.经过一点有无数条直线第2题图第3题图3.(安化县期末)如图所示,直线a,b被直线c所截,则∠1与∠2是( C)A.对顶角 B.同位角 C.内错角 D.同旁内角4.如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠2=80°,则∠1等于( C)A.120° B.110° C.100° D.80°5.下列作图是∠α余角的作图是 ( A)6.如图,AB,CD,EF三条直线交于点O,且OE⊥AB,∠COE=20°,OG平分∠BOD,则∠DOG的度数是 ( C)A.20° B.30° C.35° D.40°第6题图第7题图7.如图,下列条件中,不能判断直线a∥b的是 (D) A.∠1=∠3 B.∠2+∠4=180°C.∠4=∠5 D.∠2=∠38.★如图,把长方形ABCD沿EF折叠,若∠1=50°,则∠AEF等于( D) A.150° B.80° C.100° D.115°第8题图第9题图9.(淄博中考)如图,AB⊥AC,AD⊥BC,垂足分别为A,D,则图中能表示点到直线距离的线段共有 ( D)A.2条 B.3条 C.4条 D.5条10.如图,AB∥CD,用含∠1,∠2,∠3的式子表示∠4,则∠4的大小为( D)A.∠1+∠2-∠3B.∠1+∠3-∠2C.180°+∠3-∠1-∠2D.∠2+∠3-∠1-180°第Ⅱ卷(非选择题共90分)二、填空题(每小题3分,共24分)11.已知∠1的对顶角为123°,则∠1的度数为__123°__.12.(曲阜期末)如图,若满足条件__∠A=∠3(答案不唯一)__,则有AB∥CD.(要求:不再添加辅助线,只需填一个答案即可)第12题图13.在同一平面内的三条直线l1,l2,l3,若l1⊥l2,l2⊥l3,则l1与l3的位置关系是__相互平行__.14.如图,A,B之间是一座山,一条铁路要通过A,B两点,为此需要在A,B 之间建一条笔直的隧道,在A地测得铁路走向是北偏东63°,那么B地按南偏西__63__度的方向施工,才能使铁路在山腰中准确接通.第14题图15.如图,直线AB,CD相交于点O,OB平分∠EOD,∠COE=100°,则∠AOC=__40°__.第15题图第16题图16.如图所示,OB∥CE,OA∥CF,则图中与∠C相等的角一共有__3__个.17.如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C=__120°.18.★(南岗区校级期中)已知∠AOB和∠BOC互为邻补角,且∠AOB<∠BOC,OD 平分∠BOC,射线OE在∠AOB内部,且4∠BOE+∠BOC=180°,∠DOE=70°,OM⊥OB,则∠MOE=__110°或70°__.三、解答题(共66分)19.(6分)(1)一个角的余角比这个角少20°,则这个角的补角为多少度;解:设这个角的度数为x度,则x-(90-x)=20,解得x=55,即这个角的度数为55°,所以这个角的补角为180°-55°=125°.(2)如图,已知∠1=∠2,∠D=60°,求∠B的度数.解:设∠2的对顶角为∠3,∵∠1=∠2,∠2=∠3,∴∠1=∠3,∴AB∥CD,∴∠D+∠B=180°.∵∠D=60°,∴∠B=120°.20.(8分)如图,已知△ABC,点D为AB的中点,动手操作,解决下列问题:(1)过点D作DE∥BC,交AC于点E,并说明作图的依据;(2)度量DE,BC的长度,发现DE,BC之间有何数量关系?解:(1)同位角相等,两直线平行.(2)DE =12BC.21.(8分)已知:如图,∠ABE +∠DEB =180°,∠1=∠2,则∠F 与∠G 的大小关系如何?请说明理由.解:∠F =∠G.理由:∵∠ABE +∠DEB =180°,∴AC ∥ED ,∴∠CBE =∠DEB.∵∠1=∠2,∴∠CBE -∠1=∠DEB -∠2,即∠FBE =∠GEB ,∴BF ∥EG ,∴∠F =∠G.22.(8分)如图,在三角形ABC 中,CE ⊥AB 于E ,DF ⊥AB 于F ,AC ∥ED ,CE 是∠ACB 的平分线,试比较∠EDF 与∠BDF 的大小,并说明理由.解:∠EDF=∠BDF.理由:∵AC∥ED,∴∠ACE=∠DEC.∵CE⊥AB,DF⊥AB,∴∠AEC=∠AFD=90°,∴DF∥CE,∴∠BDF=∠BCE,∠EDF=∠DEC,∴∠EDF=∠ACE.∵CE平分∠ACB,∴∠BCE=∠ACE,∴∠EDF=∠BDF.23.(10分)已知:如图,BC∥AD,BE∥AF.(1)试说明:∠A=∠B;(2)若∠DOB=135°,求∠A的度数.解:(1)∵BC∥AD,∴∠B=∠DOE.又BE∥AF,∴∠DOE=∠A,∴∠A=∠B.(2)∵∠DOB=∠EOA,由BE∥AF得∠EOA+∠A=180°.又∠DOB=135°,∴∠A=45°.24.(12分)如图,直线AB与CD相交于点O,OE⊥CD.(1)若∠BOD=28°,求∠AOE的度数.(2)若OF平分∠AOC,小明经探究发现,当∠BOD为锐角时,∠EOF的度数始终都是∠BOC度数的一半,请判断他的发现是否正确,并说明理由.解:(1)∵∠BOD=28°,∴∠AOC=∠BOD=28°.∵OE⊥CD,∴∠EOC=90°,∴∠AOE=∠EOC-∠AOC=62°.(2)正确,设∠BOD=x,则∠AOC=∠BOD=x,∠BOC=180°-x.∵OF 平分∠AOC ,∴∠FOC =12x , ∴∠EOF =90°-∠FOC =90°-12x , ∴∠EOF =12∠BOC.25.(14分)如图,已知直线AC ∥BD ,直线AB ,CD 不平行,点P 在直线AB 上,且和点A ,B 不重合.(1)如图①,当点P 在线段AB 上时,若∠PCA =20°,∠PDB =30°,求∠CPD 的度数;(2)当点P 在A ,B 两点之间运动时,∠PCA ,∠PDB ,∠CPD 之间满足什么样的等量关系?(直接写出答案)(3)如图②,当点P 在线段AB 延长线上运动时,∠PCA ,∠PDB ,∠CPD 之间满足什么样的等量关系?并说明理由.(4)如图③,④当点P 在线段BA 延长线上运动时,∠PCA ,∠PDB ,∠CPD 之间满足什么样的等量关系?(直接写出答案)解:(1)如图①,过点P 作PE ∥AC 交CD 于点E ,∵AC ∥BD ,∴PE ∥BD ,∴∠CPE =∠PCA =20°,∠DPE =∠PDB =30°,∴∠CPD=∠CPE+∠DPE=50°.(2)∠CPD=∠PCA+∠PDB.(3)∠CPD=∠PCA-∠PDB.理由:如图②,过点P作PE∥BD交CD于点E,∵AC∥BD,∴PE∥AC,∴∠CPE=∠PCA,∠DPE=∠PDB,∴∠CPD=∠CPE-∠DPE=∠PCA-∠PDB. (4)∠CPD=∠PDB-∠PCA;∠CPD=∠PCA-∠PDB.。

2020—2021学年湘教版七年级数学下册 第2章达标检测卷【含答案】

2020—2021学年湘教版七年级数学下册 第2章达标检测卷【含答案】

第2章达标检测卷一、选择题(每题3分,共30分)1.计算x2·x3的结果是( )A.x B.x5C.x6D.x92.下列运算正确的是( )A.x2+x2=x4 B.(a-b)2=a2-b2 C.(-a2)3=-a6 D.3a2·2a3=6a63.已知a+b=3,ab=2,则a2+b2的值为( )A.3 B.4 C.5 D.64.在下列多项式的乘法中,可以用平方差公式计算的是( )A.(x+2)(2+x) B.C.(-m+n)(m-n) D.(x2-y)(x+y2)5.下列计算中,正确的是( )A.(x+2)(x-3)=x2-6B.(-4x)(2x2+3x-1)=-8x3-12x2-4xC.(x-2y)2=x2-2xy+4y2D.(-4a-1)(4a-1)=1-16a26.如果x+m与x+3的乘积中不含x的一次项,那么m的值为( ) A.-3 B.3 C.0 D.17.若(-a2)·(-a)2·(-a)m>0,则( )A.m为奇数B.m为偶数C.a>0,m为奇数D.a>0,m为偶数8.将9.52变形正确的是( )A.9.52=92+0.52B.9.52=(10+0.5)(10-0.5)C.9.52=102-2×10×0.5+0.52D.9.52=92+9×0.5+0.529.一个正方形的边长增加了4 cm,面积相应增加了64 cm2,则原正方形的边长为( )A.6 cm B.5 cm C.8 cm D.7 cm10.若A=(2+1)(22+1)(24+1)(28+1)+1,则A的末位数字是( ) A.2 B.4 C.6 D.8二、填空题(每题3分,共24分)11.计算:(-a 2)3·a 2=________.12.已知a +b =3,ab =1,计算(a -2)(b -2)的结果是________.13.计算:32 022×=________.2 02114.已知4m =a ,4n =b ,则42m +n +1=________.(用含a ,b 的代数式表示)15.已知m +n =mn ,则(m -1)(n -1)=________.16.已知x 2-x -1=0,则代数式-x 3+2x 2+2 022的值为__________.17.如果=63,那么a +b 的值为________.18.用如图所示的正方形和长方形卡片若干张,拼成一个长为(3a +b ),宽为(a +b )的长方形(要求:所拼图形中,卡片之间不能重叠,不能有空隙),则需要A 类卡片、B 类卡片、C 类卡片的张数分别为________.三、解答题(20~23题每题8分,24题10分,其余每题12分,共66分)19.计算:(1)0.×(2100)3; (2)-2(-a 2bc )2·a (bc )3;12(3)(-2y 2-3x )(3x -2y 2); (4)(a -2b -3c )(a -2b +3c ).20.先化简,再求值:(1)(a+b)(a-b)-b(a-b),其中a=-1,b=5;(2)(x-1)(3x+1)-(x+2)2-4,其中x2-3x=1.21.(1) 已知a+b=7,ab=12.求下列各式的值:①a2-ab+b2;②(a-b)2.(2)已知a=275,b=450,c=826,d=1615,比较a,b,c,d的大小.22.已知M=x2+3x-a,N=-x,P=x3+3x2+5,且M·N+P的值与x的取值无关,求a的值.23.如图,某校一块边长为2a m的正方形空地是七年级四个班的清洁区,其中分给七年级(1)班的清洁区是一块边长为(a-2b)m的正方形.(0<2b<a)(1)分别求出七年级(2)班、七年级(3)班的清洁区的面积.(2)七年级(4)班的清洁区的面积比七年级(1)班的清洁区的面积多多少?24.已知M(2)=(-2)×(-2),M(3)=(-2)×(-2)×(-2),…,M(n)=(n为正整数).(1)计算:M(5)+M(6);(2)求2M(2 022)+M(2 023)的值;(3)试说明2M(n)与M(n+1)互为相反数.25.(1)观察下列各式的规律:(a-b)(a+b)=a2-b2;(a-b)(a2+ab+b2)=a3-b3;(a-b)(a3+a2b+ab2+b3)=a4-b4;…可得到(a-b)(a2 022+a2 021b+…+ab2 021+b2 022)=________.(2)猜想:(a-b)(a n-1+a n-2b+…+ab n-2+b n-1)=________(其中n为正整数,且n≥2).(3)利用(2)猜想的结论计算:29-28+27-…+23-22+2.答案一、1.BA.xA.x:A.x2+x2=2x2,错误;B.(a-b)2=a2-2ab+b2,错误;C.(-a2)3=-a6,正确;D.3a2·2a3=6a5,错误.故选C.3.C 4.B 5.D6.A 点拨:(x+m)(x+3)=x2 +(3+m)x+3m,因为乘积中不含x的一次项,所以3+m=0.所以m=-3.故选A.7.C 8.C 9.A10.C 点拨:(2+1)(22+1)(24+1)·(28+1)+1=(2-1)(2+1)(22+1)(24+1)·(28+1)+1=(22-1)(22+1)(24+1)(28+1)+1=(24-1)(24+1)(28+1)+1=(28-1)(28+1)+1=216-1+1=216.因为216的末位数字是6,所以A的末位数字是6.二、11.-a8 12.-12 021 2 021 2 02113.-3 点拨:32 022×=-32 022×=-×3=-3. 14.4a2b 点拨:本题运用整体思想.42m+n+1=42m·4n·4=(4m)2·4n·4=4a2b. 15.1 点拨:(m-1)(n-1)=mn-m-n+1=m+n-m-n+1=1.16. 2 023 点拨:由已知得x2-x=1,所以-x3+2x2+2 022=-x(x2-x)+x2+2 022=-x+x2+2 022=2 023.217.±4 点拨:因为(2a+2b+1)·=-1=63,所以2a+2b=±8.所以a+b=±4.18.3,4,1 点拨:由(3a+b)(a+b)=3a2+4ab+b2可知,需A类卡片3张、B类卡片4张、C类卡片1张.三、19.解:(1)0.×(2100)3=0.×(23)100=(0.125×8)100=1100=1.(2)-2(-a 2bc )2·a (bc )3=-2a 4b 2c 2·ab 3c 3=-a 5b 5c 5.1212(3)(-2y 2-3x )(3x -2y 2)=(2y 2+3x )(2y 2-3x )=4y 4-9x 2.(4)(a -2b -3c )(a -2b +3c )=[(a -2b )-3c ][(a -2b )+3c ]=(a -2b )2-(3c )2=a 2-4ab +4b 2-9c 2.20.解:(1)原式=a 2-b 2-ab +b 2=a 2-ab ,当a =-1,b =5时,原式=(-1)2-(-1)×5=6.(2)原式=3x 2+x -3x -1-x 2-4x -4-4=2x 2-6x -9,当x 2-3x =1时,原式=2(x 2-3x )-9=2×1-9=-7.21.解:(1) ①a 2-ab +b 2=a 2+b 2-ab =(a +b )2-3ab =72-3×12=13.②(a -b )2=(a +b )2-4ab =72-4×12=1.点拨:完全平方公式常见的变形:①(a +b )2-(a -b )2=4ab ;②a 2+b 2=(a +b )2-2ab =(a -b )2+2ab .解答本题的关键是不求出a ,b 的值,主要是利用完全平方公式的整体变换求式子的值.(2)因为a =275,b =450=(22)50=2100,c =826=(23)26=278,d =1615=(24)15=260,且100>78>75>60,所以2100>278>275>260,即b >c >a >d .22.解:M ·N +P =(x 2+3x -a )·(-x )+x 3+3x 2+5=-x 3-3x 2+ax +x 3+3x 2+5=ax +5.因为M ·N +P 的值与x 的取值无关,所以a =0.23.解:(1)因为2a -(a -2b )=(a +2b )m ,所以七年级(2)班、七年级(3)班的清洁区的面积均为(a +2b )(a -2b )=(a 2-4b 2)(m 2).(2)因为(a +2b )2-(a -2b )2=a 2+4ab +4b 2-(a 2-4ab +4b 2)=8ab (m 2),所以七年级(4)班的清洁区的面积比七年级(1)班的清洁区的面积多8ab m 2.24.解:(1)M (5)+M (6)=(-2)5+(-2)6=-32+64=32.(2)2M (2 022)+M (2 023)=2×(-2)2 022+(-2)2 023=-(-2)×(-2)2 022+(-2)2 023=-(-2)2 023+(-2)2 023=0.(3)2M (n )+M (n +1)=-(-2)×(-2)n +(-2)n +1=-(-2)n +1+(-2)n +1=0,故2M (n )与M (n +1)互为相反数.25.解:(1)a 2 023-b 2 023(2)a n -b n(3)29-28+27-…+23-22+2=[2-(-1)][29+28×(-1)+27×(-1)132+…+21×(-1)8+(-1)9+1]=[2-(-1)][29+28×(-1)+27×(-1)132+…+21×(-1)8+(-1)9]+1=(210-1)+1=342.13。

七年级数学阶段检测卷 (第一、二章)

七年级数学阶段检测卷 (第一、二章)

七年级数学阶段检测卷 (第一、二章)满分:130分 时间:90分钟一、选择题 (每题3分,共30分)1.如果水位升高6 m 时水位变化记作+6 m ,那么水位下降6 m 时水位变化记作 ( )A .-3 mB .3 mC .6 mD .-6 m2.一张正方形纸片经过两次对折,并在如图所示的位置上剪去一个小正方形,打开后的图形是 ( )3.在-3 ,3.1415,0,-0.333…,- 227,-0.15 ,2.010010001 (相邻两个1之间依次多一个0) …中,有理数的个数是 ( )A .2B .3C .4D .5 4.若某地某天的最高气温是8℃,最低气温是-2℃,则该地这一天的温差是 ( ) A .-10℃ B .-6℃ C .6℃ D .10℃ 5.若a ,b 是有理数,则下列结论一定正确的是 ( ) A .若a <b ,则a <b B .若a >b ,则a >b C .若a =b ,则a =b D .若a ≠b ,则a ≠b6.“中国共产党第十九大”于2017年10月18日在北京胜利召开,在百度上搜索关键词“中共十九大”,显示的搜索结果约为96500000条.将96500000用科学记数法表示应为 ( )A .96.5×107B .9.65×107C .9.65×108D .0.965×1097.如图,一只蚂蚁从“1”处爬到“4”处 (只能向上、向右爬行),爬行路线共有 ( ) A .3条 B .4条C .5条D .6条8.在某校七年级新生的军训活动中,共有393名学生参加.如果 将这393名学生排成一列,按1,2,3,4,3,2,1,2,3,4,3,2,1,…的规律报数,那么最后一名学生所报的数是 ( )A .1B .2C .3D .49.如图,数轴上有一个质点从原点出发,沿数轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动,质点落在表示数3的点上(允许重复过此点),则质点的不同运动方案共有()A.2种B.3种C.4种D.5种10.观察下列图形中点的个数,若按其规律再画下去,可以得到第5个图形中所有点的个数为( )A.16个B.25个C.36个D.49个二、填空题(每题3分,共30分)11.李老师的身份证号码是××××××196807124917[其中前六位数字为此人所属的省(市、自治区)、市、县(市、区)的编码],根据这个身份证号,可以看出李老师在年出生.12.若用16 m长的篱笆围成长方形的生物园来饲养动物,则生物园的最大面积为.13.35的相反数与-25的绝对值的和是14.数轴上,若A,B表示互为相反数的两个数且A在B的右侧,并且这两点的距离为10,则点B表示的数是.15.已知有理数-1,-8,+11,-2,请你通过有理数加减混合运算,使运算结果最大,则列式为16.国家森林城市的创建极大地促进了森林资源的增长,美化了城市环境,提升了市民的生活质量.截至2014年,全国已有21个省、自治区、直辖市的75个城市获得了“国家森林城市”称号.永州市也正在积极创建“国家森林城市”,据统计近两年全市投入“创森”资金约为365000000元.365000000用科学记数法表示为.17.若x=4,y2=4且y<0,则x + y=18.一跳蚤在一直线上从O点开始,第1次向右跳1个单位长度,紧接着第2次向左跳2个单位长度,第3次向右跳3个单位长度,第4次向左跳4个单位长度,…,依此规律跳下去,当它跳第100次落下时,落点处离O点的距离是个单位长度.19.定义:a是不为1的有理数,我们把11a-称为a的差倒数,如:2的差倒数是112-=-1,-1的差倒数是11(1)--=12.已知a1=-12,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,以此类推,则a2016= .20.将正方形图1作如下操作:第1次:分别连接各边中点如图2,得到5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,根据以上操作,若要得到2017个正方形,则需要操作次数.三、解答题(共76分)21.(本题8分) 按要求把下列各数填入相应的括号里:2.5,-0.5252252225…(每两个5之间依次增加一个2),-102,-5,0,13,3.6,-23-(-10),2π-6.(1) 非负数集合:{ …};(2) 非负整数集合:{ …};(3) 有理数集合:{ …};(4) 无理数集合:{ …}.22.(本题16分)计算下列各题:(1) 12+(-23)-(-13)+(+14);(2) 45-+(-71)+5-+(-9);(3) -989×81;(4) (-2)3×8-8×(12)3+8÷18;(5) -15+(-2)2×(16-13)-12÷3;(6)113⨯+135⨯+…+120112013⨯+120132015⨯(7) (12-13)÷(-16)+(-2)2×(-14);(8)[32×(-13)2-0.8]÷(-525).23.(本题5分) 把下列各数及它们的相反数在数轴上表示出来,并用“<”号把它们连接起来.-3,-(-4),0, 2.5 ,-112.24.(本题8分) 写出符合下列条件的数: (1) 大于-3且小于2的所有整数;(2) 绝对值大于2且小于5的所有负整数,(3)在数轴上,与表示-1的点的距离为2的所有数;(4)不超过(-53)3的最大整数.25.(本题5分) 已知a =3,b =2,且a <b ,求a +b 的值.26.(本题6分) 检查5个篮球的质量,把超过标准质量的克数记为正数,不足标准质量的克数记为负数,检查的结果如下表:(1) 最接近标准质量的是几号篮球?(2) 质量最大的篮球比质量最小的篮球重多少克?27.(本题6分) 现有10盒火柴,以每盒100根为标准,超过的根数记作正数,不足的根数记作负数.每盒数据记录如下:+3,-2,-1,0,+2,-1,+4,-2,-3,+1.回答下列问题:(1) 这10盒火柴中火柴根数最多的有 根,最少的有 根; (2) 这10盒火柴一共有多少根?28.(本题8分) 一只蚂蚁从原点出发来回爬行,爬行的各段路程依次为:×5,-3,+10,-8,-9,+12,-10,请在数轴上画出爬行过程.回答下列问题:(1) 蚂蚁最后是否回到出发点?(2) 在爬行过程中,若每爬一个单位长度奖励2粒芝麻,则蚂蚁一共得到多少粒芝麻?29.(本题8分) 某工艺品厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况 (超产记为正,减产记为负):(1) 写出该厂星期一生产工艺品的数量.(2) 本周产量最多的一天比最少的一天多生产多少个工艺品? (3) 请求出该工艺品厂在本周实际生产工艺品的数量.(4) 已知该厂实行每周计件工资制,每生产一个工艺品可得60元,若超额完成任务,则超过部分每个可得50元,少生产一个扣80元.试求该工艺厂在这一周应付出的工资总额.30.(本题8分)探索性问题:已知点A 、B 在数轴上分别表示m 、n .(1) 填写下表:(2) 若A 、B 两点的距离为d ,则d 与m 、n 有何数量关系. (3) 在数轴上标出所有符合条件的整数点...P ,使它到3和-3的距离之和为6,并求出所 有这些整数的和.(4) 若点C 表示的数为x ,当C 在什么位置时,2x ++3x -取得值最小,最小值是多少?参考答案一、选择题1.D 2.D 3.D 4.D 5.C 6.B 7.A 8.C(提示:由题意可找出规律,以“1,2,3,4,3,2”6个数为一个循环,所以最后一名学生报的数是3) 9.D 10.C 二、填空题11.1968 12.16 m 2 13.-1514.-5 15.+11-[(-1)+(-8)+(-2)]16.3.65×108 17.2或-6 18.50 19.3(提示:由题意可找出规律,a 1=-12,a 2=23,a 3=3,a 4=-12,a 5=23,a 6=3,…3个为一个循环,所以a 2016=3) 20.504 三、解答题21.(1) 非负数集合:{2.5,0,13,3.6,-23-(-10),2π-6,…} (2) 非负整数集合:{0,-23-(-10),…} (3) 有理数集合:(2.5,-102,-5,0,13,3.6,-23-(-10),…) (4) 无理数集合:{-0.5252252225…(每两个5之间依次增加一个2),2π-6,…)22.(1) 原式=512(2) 原式=-30 (3) 原式=-801 (4) 原式=-l (5) 原式=-116 (6) 原式=10072015 (7) 原式=-57 (8) 原式=1323.在数轴上表示略,-4<-3<- 2.5-<-112<0<-(-112)< 2.5-<-(-3)<-(-4)24.(1) -2,-1,0,1 (2) -3,-4 (3) 1或-3 (4) -525.由题意可以得到a =3或-3,b =2或-2,又因为a <b ,所以a =-3,b =2或a =-3,b =-2,所以a +b 的值为-1或-526.(1) 3号篮球最接近标准质量 (2) 质量最大的篮球比质量最小的篮球重17 g 27.(1) 104 97 (2) 3-2-1+0+2-1+4-2-3+1=1(根),100×10+1=1001(根).答:这10盒火柴一共有1001根28.画图略 (1) 不回到出发点,因为0+5-3+10-8-9+12-10=-3(2) (5++3- +10++8-+9-+12++10-)×2=114(粒)29.(1) 星期一的产量为300+5=305(个) (2) 由表格可知:星期六产量最高,为300+(+16)=316(个),星期五产量最低,为300+(-10)=290(个),则产量最多的一天比产量最少的一天多生产316-290=26(个) (3) 根据题意得一周生产的工艺品数量为300×7+[(+5)+(-2)+(-5)+(+15)+(-10)+(+16)+(-9)]=2100+10=2110(套) (4) (+5)+(-2)+(-5)+(+15)+(-10)+(+16)+(-9)=10(个),根据题意得该厂工人一周的工资总额为2110×60+50×10=127100(元) 30.(1) 2;5;10;2;12 (2) d m n =- (3) 数轴略 所有这些整数的和为0 (4) 2x ++3x - 数轴上表示-2到3的距离和所以,当-2≤x ≤3时,2x ++3x -的值最小,最小值为5。

浙教版七年级数学下册第二章一元二次方程测试卷(Word版含答案)

浙教版七年级数学下册第二章一元二次方程测试卷(Word版含答案)

浙教版七下第二章 一元二次方程测试卷(含解析)一.选择题(共10小题,满分30分,每小题3分)1.(3分)方程236ax y x -=+是二元一次方程,a 必须满足( ) A .0a ≠B .3a ≠-C .3a ≠D .2a ≠2.(3分)关于二元一次方程48x y +=的解,下列说法正确的是( ) A .任意一对有理数都是它的解 B .有无数个解 C .只有一个解D .只有两个解3.(3分)下列方程组中属于二元一次方程组的有( )(1)211x y y z -=⎧⎨=+⎩(2)03x y =⎧⎨=⎩(3)0235x y x y -=⎧⎨+=⎩(4)212 1.x y x y ⎧+=⎨+=-⎩.A .1个B .2个C .3个D .4个4.(3分)解方程组①216511y x x y =+⎧⎨+=-⎩;②2310236x y x y +=⎧⎨-=-⎩比较简便的方法是( )A .均用代入法B .均用加减法C .①用代入法,②用加减法D .①用加减法,②用代入法5.(3分)若2x y m=-⎧⎨=⎩是方程64nx y +=的一个解,则代数式31m n -+的值是( )A .3B .2C .1D .1-6.(3分)由方程组43x m y m +=⎧⎨-=⎩可得出x 与y 的关系是( )A .1x y +=B .1x y +=-C .7x y +=D .7x y +=-7.(3分)已知278ax by cx y +=⎧⎨-=⎩的解为32x y =⎧⎨=-⎩,某同学由于看错了c 的值,得到的解为22x y =-⎧⎨=⎩,则a b c ++的值为( )A .7B .8C .9D .108.(3分)已知x ,y 满足方程组36x m y m +=⎧⎨-=⎩,则无论m 取何值,x ,y 恒有关系式是( )A .1x y +=B .1x y +=-C .9x y +=D .9x y +=-9.(3分)《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的23,那么乙也共有钱50.问:甲,乙两人各带了多少钱?设甲,乙两人持钱的数量分别为x ,y ,则可列方程组为()A.2502503x yx y+=⎧⎪⎨+=⎪⎩B.15022503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩C.15022503x yx y⎧-=⎪⎪⎨⎪-=⎪⎩D.2502503x yx y-=⎧⎪⎨-=⎪⎩10.(3分)文峰超市以同样的价格卖出同样的牙刷和牙膏,以下是4天的记录:第1天,卖出13支牙刷和7盒牙膏,收入132元;第2天,卖出26支牙刷和14盒牙膏,收入264元;第3天,卖出39支牙刷和21盒牙膏,收入393元;第4天,卖出52支牙刷和28盒牙膏,收入528元;其中记录有误的是()A.第1天B.第2天C.第3天D.第4天二.填空题(共8小题,满分24分,每小题3分)11.(3分)已知95xy=⎧⎨=⎩是关于x、y的方程23x ay-=的一个解,则a的值是.12.(3分)试写出一个关于x、y的的二元一次方程,使它的一个解为12xy=⎧⎨=⎩,这个方程为.13.(3分)已知x、y满足方程组52723x yx y+=⎧⎨-=⎩,则x y+的值为.14.(3分)若22(24)()|4|0x x y z y-+++-=,则x y z++等于.15.(3分)若21xy=⎧⎨=⎩是方程组75ax bybx cy+=⎧⎨+=⎩的解,则a与c的关系是.16.(3分)请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”若诗句中谈到的鸦为x只,树为y棵,则可列出方程组为.17.(3分)我国明代数学读本《算法统宗》有一道题,其题意为:客人一起分银子,若每人7两,还剩4两;若每人9两,则差8两.银子共有两.18.(3分)元旦期间,忠县永辉超市对三种风味的酸奶(原味、果粒味、大红枣味)进行A、B、C三种套餐的促销活动.已知A种套餐由3盒原味、4盒果粒味、5盒大红枣味搭配而成;B种套餐由2盒原味、8盒果粒味、8盒大红枣味搭配而成;C种套餐由5盒原味、4盒果粒味、6盒大红枣味搭配而成,每一种套餐的费用就是搭配该套餐的三种风味酸奶费用的总和.若一个A种套餐需35元,那么小明同学要买2个A种套餐、1个B种套餐和2个C种套餐共需费用元.三.解答题(共6小题,满分53分)19.(6分)已知方程1352x y+=,请你写出一个二元一次方程,使它与已知方程所组成的方程组的解为41xy=⎧⎨=⎩.20.(12分)解下列方程组:(1)124x yx y+=⎧⎨-=-⎩(2)1234()5()38x y x yx y x y+-⎧+=⎪⎨⎪+--=-⎩21.(7分)已知方程组27431x yx y+=⎧⎨-=-⎩的解也是关于x,y的二元一次方程3x y a=+的解,求(1)(1)7a a+-+的值.22.(8分)本地某快递公司规定:寄件不超过1千克的部分按起步价计费:寄件超过1千克的部分按千克计费.小文分别寄快递到上海和北京,收费标准及实际收费如表:收费标准:目的地起步价(元)超过1千克的部分(元/千克)上海7b北京104b+目的地质量(千克)费用(元)上海26a-北京37a+23.(10分)疫情期间为保护学生和教师的健康,某学校储备“抗疫物资”,用19000元购进甲、乙两种医用口罩共计900盒,甲、乙两种口罩的售价分别是20元/盒,25元/盒.(1)求甲、乙两种口罩各购进了多少盒?(2)现已知甲、乙两种口罩的数量分别是20个/盒,25个/盒,按照市教育局要求,学校必须储备足够使用10天的口罩,该校师生共计900人,每人每天2个口罩,问购买的口罩数量是否能满足市教育局的要求?24.(10分)为了提倡节约用水,某市制定了两种收费方式:当每户每月用水量不超过312m时,按一级单价收费;当每户每月用水量超过312m时,超过部分按二级单价收费.已知李阿姨家五月份用水量为310m,缴纳水费32元.七月份因孩子放假在家,用水量为314m,缴纳水费51.4元.(1)问该市一级水费,二级水费的单价分别是多少?(2)某户某月缴纳水费为64.4元时,用水量为多少?浙教版七下第二章一元二次方程测试卷(含解析)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)方程236ax y x-=+是二元一次方程,a必须满足() A.0a≠B.3a≠-C.3a≠D.2a≠【解答】解:方程236ax y x-=+变形为(3)260a x y---=,根据二元一次方程的定义,得30a-≠,解得3a≠.故选:C.2.(3分)关于二元一次方程48x y+=的解,下列说法正确的是() A.任意一对有理数都是它的解B.有无数个解C.只有一个解D.只有两个解【解答】解:对于二元一次方程48x y+=,有无数个解,故选:B.3.(3分)下列方程组中属于二元一次方程组的有()(1)211x yy z-=⎧⎨=+⎩(2)3xy=⎧⎨=⎩(3)235x yx y-=⎧⎨+=⎩(4)212 1.x yx y⎧+=⎨+=-⎩.A.1个B.2个C.3个D.4个【解答】解:(1)本方程组中含有3个未知数;故本选项错误;(2)有两个未知数,方程的次数是1次,所以是二元一次方程组;(3)有两个未知数,方程的次数是1次,所以是二元一次方程组;(4)第一个方程未知项2x的次数为2,故不是二元一次方程组.共2个属于二元一次方程组.故选:B.4.(3分)解方程组①216511y xx y=+⎧⎨+=-⎩;②2310236x yx y+=⎧⎨-=-⎩比较简便的方法是()A.均用代入法B.均用加减法C.①用代入法,②用加减法D.①用加减法,②用代入法【解答】解:解方程组①216511y xx y=+⎧⎨+=-⎩比较简便的方法为代入法;②2310236x yx y+=⎧⎨-=-⎩比较简便的方法加减法,故选:C.5.(3分)若2x y m=-⎧⎨=⎩是方程64nx y +=的一个解,则代数式31m n -+的值是( )A .3B .2C .1D .1-【解答】解:2x y m =-⎧⎨=⎩是方程64nx y +=的一个解, ∴代入得:264n m -+=,32m n ∴-=, 31213m n ∴-+=+=,故选:A .6.(3分)由方程组43x m y m+=⎧⎨-=⎩可得出x 与y 的关系是( )A .1x y +=B .1x y +=-C .7x y +=D .7x y +=-【解答】解:原方程可化为43x m y m +=⎧⎨-=⎩①②,①+②得,7x y +=. 故选:C .7.(3分)已知278ax by cx y +=⎧⎨-=⎩的解为32x y =⎧⎨=-⎩,某同学由于看错了c 的值,得到的解为22x y =-⎧⎨=⎩,则a b c ++的值为( )A .7B .8C .9D .10【解答】解:根据题意得:322222a b a b -=⎧⎨-+=⎩,解得:45a b =⎧⎨=⎩,将3x =,2y =-代入得:3148c +=, 解得:2c =-,则4527a b c ++=+-=. 故选:A .8.(3分)已知x ,y 满足方程组36x m y m +=⎧⎨-=⎩,则无论m 取何值,x ,y 恒有关系式是( )A .1x y +=B .1x y +=-C .9x y +=D .9x y +=-【解答】解:36x m y m +=⎧⎨-=⎩①②,把②代入①得,63x y +-=,整理得,9x y+=,故选:C.9.(3分)《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的23,那么乙也共有钱50.问:甲,乙两人各带了多少钱?设甲,乙两人持钱的数量分别为x,y,则可列方程组为()A.2502503x yx y+=⎧⎪⎨+=⎪⎩B.15022503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩C.15022503x yx y⎧-=⎪⎪⎨⎪-=⎪⎩D.2502503x yx y-=⎧⎪⎨-=⎪⎩【解答】解:设甲需持钱x,乙持钱y,根据题意,得:15022503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩,故选:B.10.(3分)文峰超市以同样的价格卖出同样的牙刷和牙膏,以下是4天的记录:第1天,卖出13支牙刷和7盒牙膏,收入132元;第2天,卖出26支牙刷和14盒牙膏,收入264元;第3天,卖出39支牙刷和21盒牙膏,收入393元;第4天,卖出52支牙刷和28盒牙膏,收入528元;其中记录有误的是()A.第1天B.第2天C.第3天D.第4天【解答】解:设每支牙刷x元,每盒牙膏y元.第1天:137132x y+=;第2天:2614264x y+=;第3天:3921393x y+=;第4天:5228528x y+=.假设第1天的记录正确,则第2天、第4天的记录也正确;假设第1天的记录错误,则第2天、第4天的记录也错误.故选:C.二.填空题(共8小题,满分24分,每小题3分)11.(3分)已知95xy=⎧⎨=⎩是关于x、y的方程23x ay-=的一个解,则a的值是3.5y =⎩移项得:5318a -=-, 合并得:515a -=-, 解得:3a =. 故答案为:3.12.(3分)试写出一个关于x 、y 的的二元一次方程,使它的一个解为12x y =⎧⎨=⎩,这个方程为3x y +=(答案不唯一) .【解答】解:根据题意:3x y +=(答案不唯一), 故答案为:3x y +=(答案不唯一)13.(3分)已知x 、y 满足方程组52723x y x y +=⎧⎨-=⎩,则x y +的值为 1 .【解答】解:527(1)23(2)x y x y +=⎧⎨-=⎩,(1)-(2)得:444x y +=, 1x y ∴+=,故答案为:1.14.(3分)若22(24)()|4|0x x y z y -+++-=,则x y z ++等于 12- .【解答】解:22(24)()|4|0x x y z y -+++-=, ∴240040x x y z y -=⎧⎪+=⎨⎪-=⎩, 解得:2212x y z ⎧⎪=⎪=-⎨⎪⎪=-⎩,则112222x y z ++=--=-. 故答案为:12-.15.(3分)若21x y =⎧⎨=⎩是方程组75ax by bx cy +=⎧⎨+=⎩的解,则a 与c 的关系是 49a c -= .1y =⎩5bx cy +=⎩得2725a b b c +=⎧⎨+=⎩①②,①2⨯-②,得49a c -=. 故答案为:49a c -=.16.(3分)请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”若诗句中谈到的鸦为x 只,树为y 棵,则可列出方程组为 355(1)x y x y =+⎧⎨=-⎩.【解答】解:设诗句中谈到的鸦为x 只,树为y 棵,则可列出方程组为: 355(1)x y x y =+⎧⎨=-⎩. 故答案为:355(1)x y x y =+⎧⎨=-⎩.17.(3分)我国明代数学读本《算法统宗》有一道题,其题意为:客人一起分银子,若每人7两,还剩4两;若每人9两,则差8两.银子共有 46 两. 【解答】解:设有x 人,银子y 两, 由题意得:7498y x y x =+⎧⎨=-⎩,解得646x y =⎧⎨=⎩,故答案为46.18.(3分)元旦期间,忠县永辉超市对三种风味的酸奶(原味、果粒味、大红枣味)进行A 、B 、C 三种套餐的促销活动.已知A 种套餐由3盒原味、4盒果粒味、5盒大红枣味搭配而成;B 种套餐由2盒原味、8盒果粒味、8盒大红枣味搭配而成;C 种套餐由5盒原味、4盒果粒味、6盒大红枣味搭配而成,每一种套餐的费用就是搭配该套餐的三种风味酸奶费用的总和.若一个A 种套餐需35元,那么小明同学要买2个A 种套餐、1个B 种套餐和2个C 种套餐共需费用 210 元.【解答】解:设1盒原味的价格为x 元,1盒果粒味的价格为y 元,1盒大红枣味的结果为z 元, 由题意得:34535x y z ++=,则小明同学要买2个A 种套餐、1个B 种套餐和2个C 种套餐共需费用为: 2352882(546)x y z x y z ⨯++++++ 70121620x y z =+++ 704(345)x y z =+++ 70435=+⨯210=(元),故答案为:210.三.解答题(共6小题,满分53分)19.(6分)已知方程1352x y+=,请你写出一个二元一次方程,使它与已知方程所组成的方程组的解为41xy=⎧⎨=⎩.【解答】解:经验算41xy=⎧⎨=⎩是方程1352x y+=的解,再写一个方程,如3x y-=.20.(12分)解下列方程组:(1)124x yx y+=⎧⎨-=-⎩(2)1234()5()38x y x yx y x y+-⎧+=⎪⎨⎪+--=-⎩【解答】解:(1)在1(1)24(2)x yx y+=⎧⎨-=-⎩中,(1)+(2)得:33x=-,解得:1x=-,把1x=-代入(1)得:2y=.∴方程组的解为12xy=-⎧⎨=⎩.(2)在1(1)234()5()38(2)x y x yx y x y+-⎧+=⎪⎨⎪+--=-⎩中,由(1)得:56x y+=(3),由(2)得:938x y-+=-,938x y∴=+,将938x y=+代入(3)得:46184y=-, 4y∴=-.把4y=-代入938x y=+,得2x=.∴方程组的解为24xy=⎧⎨=-⎩.21.(7分)已知方程组27431x yx y+=⎧⎨-=-⎩的解也是关于x,y的二元一次方程3x y a=+的解,求(1)(1)7a a+-+的值.【解答】解:方程组27431x y x y +=⎧⎨-=-⎩①②, ①3⨯+②得:1020x =,即2x =,把2x =代入①得:3y =,把2x =,3y =代入方程得:63a =+,即3a =,则原式21791715a =-+=-+=.22.(8分)本地某快递公司规定:寄件不超过1千克的部分按起步价计费:寄件超过1千克的部分按千克计费.小文分别寄快递到上海和北京,收费标准及实际收费如表: 收费标准: 目的地起步价(元) 超过1千克的部分(元/千克) 上海7 b 北京10 4b + 目的地质量(千克) 费用(元) 上海2 6a - 北京3 7a +【解答】解:依题意得:7(21)610(31)(4)7b a b a +-=-⎧⎨+-+=+⎩, 解得:152a b =⎧⎨=⎩. 答:a 的值为15,b 的值为2.23.(10分)疫情期间为保护学生和教师的健康,某学校储备“抗疫物资”,用19000元购进甲、乙两种医用口罩共计900盒,甲、乙两种口罩的售价分别是20元/盒,25元/盒.(1)求甲、乙两种口罩各购进了多少盒?(2)现已知甲、乙两种口罩的数量分别是20个/盒,25个/盒,按照市教育局要求,学校必须储备足够使用10天的口罩,该校师生共计900人,每人每天2个口罩,问购买的口罩数量是否能满足市教育局的要求?【解答】解:(1)设甲种口罩购进了x 盒,乙种口罩购进了y 盒,依题意得:900202519000x y x y +=⎧⎨+=⎩, 解得:700200x y =⎧⎨=⎩,答:甲种口罩购进了700盒,乙种口罩购进了200盒.(2)207002520014000500019000⨯+⨯=+=(个),29001018000⨯⨯=(个), 1900018000>,∴购买的口罩数量能满足市教育局的要求.24.(10分)为了提倡节约用水,某市制定了两种收费方式:当每户每月用水量不超过312m时,按一级单价收费;当每户每月用水量超过312m时,超过部分按二级单价收费.已知李阿姨家五月份用水量为310m,缴纳水费32元.七月份因孩子放假在家,用水量为314m,缴纳水费51.4元.(1)问该市一级水费,二级水费的单价分别是多少?(2)某户某月缴纳水费为64.4元时,用水量为多少?【解答】解:(1)设该市一级水费的单价为x元,二级水费的单价为y元,依题意得:103212(1412)51.4xx y=⎧⎨+-=⎩,解得:3.26.5xy=⎧⎨=⎩.答:该市一级水费的单价为3.2元,二级水费的单价为6.5元.(2) 3.21238.4⨯=(元),38.464.4<,∴用水量超过312m.设用水量为a3m,依题意得:38.4 6.5(12)64.4a+-=,解得:16a=.答:当缴纳水费为64.4元时,用水量为316m.。

湘教版七年级数学下册 第2章 达标检测卷【名校试卷+含详细解答】

湘教版七年级数学下册  第2章 达标检测卷【名校试卷+含详细解答】

湘教版七年级数学下册第2章达标检测卷(本试卷分第Ⅰ卷和第Ⅱ卷,考试时间:120分钟,赋分:120分)第Ⅰ卷(选择题共36分)一、选择题(本大题共12小题,每小题3分,共36分)1.计算(-x3y)2的结果是()A.-x5y B. x6y C. -x3y2 D. x6y22.有下列各式:①-(-a3)4=a12;②(-a n)2=(-a2)n;③(-a-b)3=(a-b)3;④(a-b)4=(-a+b)4.其中正确的个数有()A.1个 B. 2个 C. 3个 D. 4个3.下列计算正确的是()A.(-2a)·(3ab-2a2b)=-6a2b-4a3bB.(2ab2)·(-a2+2b2-1)=-4a3b4C.(abc)·(3a2b-2ab2)=3a3b2-2a2b3D.(ab)2·(3ab2-c)=3a3b4-a2b2c4.(汉阳区期中)如图,在一块长为a米,宽为b米的长方形草地上,有一条弯曲的小路,小路的左边线向右平移2米就是它的右边线,这块草地的绿地面积是(单位:平方米)()A.ab B.(a-2)b C.a(b-2) D.(a-2)(b-2)5.李老师做了个长方形教具,其中一边长为2a+b,另一边长为a-b,则该长方形的面积为()A .6a +bB .2a 2-ab -b 2C .3aD .10a -b6.若(x +a)(x -2)的积中不含x 项,那么a 的值为( )A .2B .-2C .12D .-127.已知M ,N 分别是2次多项式和3次多项式,则M ×N ( )A .一定是5次多项式B .一定是6次多项式C .一定是不高于5次的多项式D .无法确定积的次数8.计算(2x 2-4)⎝ ⎛⎭⎪⎫2x -1-32x 的结果,与下列式子相同的是( ) A .-x 2+2 B .x 3+4C .x 3-4x +4D .x 3-2x 2-2x +49.若M(3x -y 2)=y 4-9x 2,则代数式M 应是( )A .-(3x +y 2)B .y 2-3xC .3x +y 2D .3x -y 210.若(x +1)(x -1)(x 2+1)(x 4+1)=x n -1,则n 等于( )A .16B .8C .6D .411.利用完全平方公式计算992,下列变形中最恰当的是( )A .(100-1)2B .(101-2)2C .(98+1)2D .(50+48)212.若a +b =3,a -b =7,则ab =( )A .-10B .-40C .10D .40第Ⅱ卷(非选择题共84分)二、填空题(本大题共6小题,每小题3分,共18分)13.计算:(-3x)2·2x=.14.已知x n=2,y n=3,则(xy)n=.15.已知m+n=mn,则(m-1)(n-1)=.16.(江阴期中)若二项式a2+(m-1)a+9是一个含a的完全平方式,则m等于.17.★(江阴期中)如图,两个正方形边长分别为a,b,如果a+b=20,ab=30,那么阴影部分的面积为.18.★(彭州期末)在数学综合与实践课上,老师给出了一组等式:1×2×3×4+1=(12+3×1+1)2,2×3×4×5+1=(22+3×2+1)2,3×4×5×6+1=(32+3×3+1)2,…,根据你的观察,则n×(n+1)×(n+2)×(n+3)+1=.三、解答题(本大题共8小题,满分66分,解答应写出文字说明、证明过程或演算步骤)19.(本题满分10分)计算:(1)(5x+2y)(5x-2y)-5x(5x-3y);(2)(2x -3)(x +4)-(x +3)(x -4).20.(本题满分5分)(港南区期末)先化简,再求值:(x -2y)2-x(x +3y)-4y 2,其中x =-4,y =12.21.(本题满分6分)已知甲数为2a ,乙数比甲数的2倍多3,丙数比甲数的2倍少3,求甲,乙,丙三数的积.当a =-2.5时,积是多少?22.(本题满分8分)已知|x +2y -5|+(3x -y -1)2=0.求(2x -y)2-2(2x +y)(2x -y)+(2x +y)2的值.23.(本题满分8分)已知a+b=5,ab=-6,求下列各式的值:(1)a2+b2;(2)a2-ab+b2.24.(本题满分8分)(文山州期末)如图,某小区有一块长为(4a+b)米,宽为(3a +b)米的长方形土地,物业管理公司计划在阴影部分的区域进行绿化,中间修建一个正方形喷水池.(1)求绿化的面积是多少平方米;(2)若a=1,b=2时,求绿化面积.25.(本题满分11分)(杭州期末)观察下列各式:(x-1)(x+1)=x2-1;(x-1)(x2+x+1)=x3-1;(x-1)(x3+x2+x+1)=x4-1;…根据这一规律计算:(1)(x-1)(x4+x3+x2+x+1)=x5-1;(x-1)(x n+x n-1+…+x+1)=x n+1-1;(2)22 020+22 019+22 018+…+22+2+1;(3)32 020-32 019+32 018-32 017+…+32-3+1.26.(本题满分10分)如图,有多个长方形和正方形的卡片,图甲是选取了2块不同的卡片,拼成的一个图形,借助图中阴影部分面积的不同表示可以用来验证等式a(a+b)=a2+ab成立.(1)根据图乙,利用面积的不同表示方法,写出一个恒成立的等式________;(2)试写出一个与(1)中恒成立的等式类似的等式,并用上述拼图的方法说明它的正确性.参考答案第Ⅰ卷(选择题共36分)一、选择题(本大题共12小题,每小题3分,共36分)1.计算(-x3y)2的结果是(D)A.-x5y B. x6y C. -x3y2 D. x6y22.有下列各式:①-(-a3)4=a12;②(-a n)2=(-a2)n;③(-a-b)3=(a-b)3;④(a-b)4=(-a+b)4.其中正确的个数有(A)A.1个 B. 2个 C. 3个 D. 4个3.下列计算正确的是(D)A.(-2a)·(3ab-2a2b)=-6a2b-4a3bB.(2ab2)·(-a2+2b2-1)=-4a3b4C.(abc)·(3a2b-2ab2)=3a3b2-2a2b3D.(ab)2·(3ab2-c)=3a3b4-a2b2c4.(汉阳区期中)如图,在一块长为a米,宽为b米的长方形草地上,有一条弯曲的小路,小路的左边线向右平移2米就是它的右边线,这块草地的绿地面积是(单位:平方米)(B)A.ab B.(a-2)b C.a(b-2) D.(a-2)(b-2)5.李老师做了个长方形教具,其中一边长为2a+b,另一边长为a-b,则该长方形的面积为(B)A.6a+b B.2a2-ab-b2 C.3a D.10a-b6.若(x +a)(x -2)的积中不含x 项,那么a 的值为 ( A )A .2B .-2C .12D .-127.已知M ,N 分别是2次多项式和3次多项式,则M ×N ( A )A .一定是5次多项式B .一定是6次多项式C .一定是不高于5次的多项式D .无法确定积的次数8.计算(2x 2-4)⎝ ⎛⎭⎪⎫2x -1-32x 的结果,与下列式子相同的是 ( D ) A .-x 2+2 B .x 3+4C .x 3-4x +4D .x 3-2x 2-2x +49.若M(3x -y 2)=y 4-9x 2,则代数式M 应是 ( A )A .-(3x +y 2)B .y 2-3xC .3x +y 2D .3x -y 210.若(x +1)(x -1)(x 2+1)(x 4+1)=x n -1,则n 等于( B )A .16B .8C .6D .411.利用完全平方公式计算992,下列变形中最恰当的是 ( A )A .(100-1)2B .(101-2)2C .(98+1)2D .(50+48)212.若a +b =3,a -b =7,则ab = ( A )A .-10B .-40C .10D .40第Ⅱ卷 (非选择题 共84分)二、填空题(本大题共6小题,每小题3分,共18分)13.计算:(-3x)2·2x=18x3.14.已知x n=2,y n=3,则(xy)n=6.15.已知m+n=mn,则(m-1)(n-1)=1.16.(江阴期中)若二项式a2+(m-1)a+9是一个含a的完全平方式,则m等于7或-5.17.★(江阴期中)如图,两个正方形边长分别为a,b,如果a+b=20,ab=30,那么阴影部分的面积为155.18.★(彭州期末)在数学综合与实践课上,老师给出了一组等式:1×2×3×4+1=(12+3×1+1)2,2×3×4×5+1=(22+3×2+1)2,3×4×5×6+1=(32+3×3+1)2,…,根据你的观察,则n×(n+1)×(n+2)×(n+3)+1=(n2+3n+1)2.三、解答题(本大题共8小题,满分66分,解答应写出文字说明、证明过程或演算步骤)19.(本题满分10分)计算:(1)(5x+2y)(5x-2y)-5x(5x-3y);解:原式=25x2-4y2-25x2+15xy=15xy-4y2.(2)(2x-3)(x+4)-(x+3)(x-4).解:原式=2x2+8x-3x-12-(x2+3x-4x-12)=2x 2+5x -12-x 2+x +12=x 2+6x.20.(本题满分5分)(港南区期末)先化简,再求值:(x -2y)2-x(x +3y)-4y 2,其中x =-4,y =12. 解:原式=x 2-4xy +4y 2-x 2-3xy -4y 2=-7xy ,当x =-4,y =12时, 原式=-7×(-4)×12=14.21.(本题满分6分)已知甲数为2a ,乙数比甲数的2倍多3,丙数比甲数的2倍少3,求甲,乙,丙三数的积.当a =-2.5时,积是多少?解:因为甲数为2a ,乙数比甲数的2倍多3,丙数比甲数的2倍少3,所以乙数为4a +3,丙数为4a -3,所以甲,乙,丙三数的积为2a(4a +3)(4a -3)=2a(16a 2-9)=32a 3-18a ,因为a =-2.5,所以32a 3-18a =32×(-2.5)3-18×(-2.5)=-455.22.(本题满分8分)已知|x +2y -5|+(3x -y -1)2=0.求(2x -y)2-2(2x +y)(2x -y)+(2x +y)2的值.解:原式=2[(2x)2+y 2]-2(4x 2-y 2)=4y 2,因为|x +2y -5|+(3x -y -1)2=0,所以⎩⎪⎨⎪⎧x +2y -5=0,3x -y -1=0,解得⎩⎪⎨⎪⎧x =1,y =2.所以原式=4y 2=4×22=16.23.(本题满分8分)已知a +b =5,ab =-6,求下列各式的值:(1)a 2+b 2;(2)a 2-ab +b 2.解:(1) a 2+b 2=(a +b)2-2ab=25+12=37.(2) a 2-ab +b 2=(a +b)2-3ab=52-3×(-6)=25+18=43.24.(本题满分8分)(文山州期末)如图,某小区有一块长为(4a+b)米,宽为(3a +b)米的长方形土地,物业管理公司计划在阴影部分的区域进行绿化,中间修建一个正方形喷水池.(1)求绿化的面积是多少平方米;(2)若a=1,b=2时,求绿化面积.解:(1)由图形可得(4a+b)(3a+b)-(a+b)2=12a2+4ab+3ab+b2-a2-2ab-b2=11a2+5ab.所以绿化的面积是(11a2+5ab)平方米.(2)当a=1,b=2时,绿化面积为11×1+5×1×2=21(平方米).所以当a=1,b=2时,绿化面积为21平方米.25.(本题满分11分)(杭州期末)观察下列各式:(x-1)(x+1)=x2-1;(x-1)(x2+x+1)=x3-1;(x-1)(x3+x2+x+1)=x4-1;…根据这一规律计算:(1)(x-1)(x4+x3+x2+x+1)=x5-1;(x-1)(x n+x n-1+…+x+1)=x n+1-1;(2)22 020+22 019+22 018+…+22+2+1;(3)32 020-32 019+32 018-32 017+…+32-3+1.解:(1)根据规律可得,x5-1,x n+1-1.故答案为x5-1 x n+1-1.(2)(x-1)(x n+x n-1+…+x+1)=x n+1-1,把x=2,n=2 020代入得,22 020+22 019+22 018+…+22+2+1=(2-1)(22 020+22 019+22 018+…+22+2+1)=22 021-1.(3)(x-1)(x n+x n-1+…+x+1)=x n+1-1,把x=-3,n=2 020代入得(-3-1)(32 020-32 019+32 018-32 017+…+32-3+1)=(-3)2 021-1,所以32 020-32 019+32 018-32 017+…+32-3+1=-32 021-1-3-1=32 021+14.26.(本题满分10分)如图,有多个长方形和正方形的卡片,图甲是选取了2块不同的卡片,拼成的一个图形,借助图中阴影部分面积的不同表示可以用来验证等式a(a+b)=a2+ab成立.(1)根据图乙,利用面积的不同表示方法,写出一个恒成立的等式________;(2)试写出一个与(1)中恒成立的等式类似的等式,并用上述拼图的方法说明它的正确性.解:(1)观察图乙得知:长方形的长为a+2b,宽为a+b,所以面积为(a+2b)(a+b)=a2+3ab+2b2.(2)如图所示,恒等式是(a+b)(a+b)=a2+2ab+b2.。

初一下学期数学第一、二章试卷

初一下学期数学第一、二章试卷

七年级数学(下)第一、二章单元试卷班级 姓名 分数一、填空题:(共33分) 1.、计算:[(-2)2+(-2)6]×2-2=_____ 2.、[-a 2(b 4)3]2=_____ . 3、.(3x +5y )· =9x 2-25y 2.4、.(x +y )2- =(x -y )2.5、.若x 2+x +m 是一个完全平方式,则m =6.、若3x =12,3y =4,则3x -y =_____ .7、.如图1,直线AB 、CD 相交于点O ,OB 平分∠DOE ,若∠DOE =60°,则∠AOC 的度数是_____ .8、.已知∠AOB =40°,OC 平分∠AOB ,则∠AOC 的补角等于_____.图1图29、.如图2,已知直线a ∥b ,c ∥d ,∠1=115°,则∠2=_____,∠3=_____.10、.如图3,已知直线AB 、CD 、EF 相交于点O ,∠1=95°,∠2=32°,则∠BOE=_____.图3图411、.如图4,∠1=82°,∠2=98°,∠3=80°,则∠4的度数为_____. 12、如图5,AD ∥BC ,AC 与BD 相交于O ,则图中相等的角有_____对.图5 图613、如图6,已知AB ∥CD ,∠1=100°,∠2=120°,则∠α=_____. 14、如图8,DAE 是一条直线,DE ∥BC ,则∠BAC =_____. 15、如图9,AB ∥CD ,AD ∥BC ,则图中与∠A 相等的角有_____个.16、如图10,标有角号的7个角中共有_____对内错角,_____对同位角,_____对同旁内角.图8 图9 图10 二、选择题:(每题3分,共24分) 17、下列计算正确的是( )A .623a a a =⋅B .4442b b b =⋅C .1055x x x =+D .87y y y =⋅ 18、下列计算正确的是( )A .633)(x x =B .2446a a a =⋅C .16444)(b a ab =D .236b b b =÷ 19、下列各式中,不能用平方差公式计算的是( )A 、))((y x y x +--B 、))((y x y x --+-C 、))((y x y x ---D 、))((y x y x +-+20、若2)32(--=a ,1)1(--=b ,0)2(π-=c ,则 a 、b 、c 的大小关系是( )A 、a >b >cB 、a >c >bC 、c >a >bD 、c >b >a21、若)1)(2(22+-=-+x x mx x ,且0≠x ,则m 等于( )A 、0B 、-1C 、1D 、222、如图,在下列四组条件中,能判定AB ∥CD 的是………… ( ) A 、BDC ABD ∠=∠ B 、43∠=∠C 、 180=∠+∠ABC BAD D 、21∠=∠23、如图:如果a ∥b ,则下列结论正确的是( )A 、53∠=∠B 、64∠=∠C 、 18041=∠+∠D 、18062=∠+∠ 24、已知:如图AB ∥CD ,∠︒=60α,∠D = ∠C ,则∠B 为( ) A 、︒30 B 、︒60 C 、︒120 D 、︒150 三、计算:(每题4分,共20分)25、)2)(2(2-+-x x xα 1 3 2 45 626、)232)(232(+---y x y x (利用乘法公式计算)27、[])(2)2)(1(x x x -÷-++28、已知A=1224+-a a ,B=24324+--a a ,计算B A -329、化简求值(6分)当 2=x ,25=y 时,求 ()()()()x xy y x y x y x 2]4222[2÷--++-的值。

北师大版七年级数学下册第二章《相交线与平行线》单元检测练习及答案

北师大版七年级数学下册第二章《相交线与平行线》单元检测练习及答案

七年级数学下册第二章《相交线与平行线》单元检测练习命题人:家长签名:班级:______________ 姓名:________________ 座位号:________ 总分一. 选择题(每小题3分,共10小题,答案写在表格内,否则答案无效)题号 1 2 3 4 5 6 7 8 9 10 答案1.已知∠α=35°,那么∠α的余角等于( )A.35°B.55°C.65°D.145°2.下面四个图形中,∠1与∠2是对顶角的图形()A.B.C.D.3.下列四幅图中,∠1和∠2是同位角的是()A.⑴⑵B.⑶⑷C.⑴⑵⑶D.⑵⑶⑷4.下列说法:①在同一平面内,不相交的两条线段叫做平行线;②过一点,有且只有一条直线平行于已知直线;③两条平行直线被第三条直线所截,同位角相等;④同旁内角相等,两直线平行.正确的个数有()个.A.1 B.2 C.3 D.45.如图,已知直线a∥b,直线c与a,b相交,∠1=110°,则∠2的度数为( )(第5题图)(第6题图)A.60°B.70°C.80°D.110°6.如图,直线AB、CD相交于点E,DF∥AB.若∠AEC=100°,则∠D等于()A.70°B.80°C.90°D.100°7.如图所示,直线l 1,l 2被直线l 所截形成八个角.由下列哪一个选项中的条件可判定l 1∥l 2 ( )(第7题图) (第8题图) A .∠2+∠4=180° B .∠3+∠8=180° C .∠5+∠6=180° D .∠7+∠8=180° 8.如图,AB∥CD,则图中∠1、∠2、∠3关系一定成立的是 ( )A .∠1+∠2+∠3=180°B .∠1+∠2+∠3=360°C .∠1+∠3=2∠2D .∠1+∠3=∠29.如图,A B∥CD,∠1=58°,FG 平分∠EFD,则∠FGB 的度数等于( )(第9题图) (第10题图) A .122°B .151°C .116°D .97°10.如图,已知//AB CD .直线EF 分别交,AB CD 于点,,E F EG 平分BEF ∠.若1 50∠=︒.则2∠的度数为( ) A .50︒B .65︒C .60︒D .70︒二.填空题(每小题4分,共7小题)11.一个角的度数为20°,则它的补角的度数为_____________12.如图,图①是装修工人装修的一部分,图②是一活动角工具(∠1的度数可大可小),利用活动角工具,装修工人能检测出a 与b 是否平行,其中的依据是_______________________________________________________13.如图,已知AB∥CD,∠1=130°,则∠2=_____________14.如图,直线a∥b,直线c与直线a、b分别相交于A、B两点,若∠1=60°,则∠2=_______(第14题图)(第15题图)15.如图,直线a,b与直线c,d相交,若∠1=∠2,∠3=70°,则∠4的度数是16.如图,∠1=80°,∠2=100°,∠3=76°,则∠4的度数是___________(第16题图)(第17题图)17.如图,直线a,b与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°;⑤∠6=∠8,其中能判断a∥b的是_______________________________ (填序号)三.解答题(18-20每题6分,21-23每题8分,24-25每题10分)18.如图,∠1=∠2,DE⊥BC,AB⊥BC,试说明:∠A=∠3.解:因为DE⊥BC,AB⊥BC(已知),所以∠DEC=∠ABC=90°(____________________________________),所以DE∥AB(____________________________________________),所以∠2=________ (____________________________________),∠1=________ (____________________________________).因为∠1=∠2(已知),所以∠A=∠3(等量代换).19.如图,已知AC∥DF,直线AF分别与直线BD、CE相交于点G,H,∠1=∠2.求证:∠C=∠D解:∵∠1=∠2(已知)∠1=∠DGH(),∴∠2=_______(等量代换)∴_______∥_______(同位角相等,两直线平行)∴∠C=_______(两直线平行,同位角相等)又∵AC∥DF()∴∠D=∠ABG ()∴∠C=∠D ()20.已知:如图:∠1=∠2,∠3+∠4= 180°;确定直线a,c的位置关系,并说明理由;解:a c;理由:∵∠1=∠2(),∴ a // ( );∵ ∠3+∠4= 180°(),∴ c // ( );∵ a // , c // ,∴ // ( );21.如图,E 点为DF 上的点,B 为AC 上的点,12∠=∠,C D ∠=∠,求证:DF∥AC.证明:∵ 12∠=∠(已知),∠1=∠3,∠2=∠4( ),∴∠3=∠4(等量代换).∴ // ( );∴∠C=∠ABD( )∵∠C=∠D( )∴∠D=__________( )∴AC∥DF ( )22.已知:如图,DE∥BC,∠ADE=64°,BE 平分∠DBC,求∠DEB 的度数.23.如图,直线EF∥GH,点A 在EF 上,AC 交GH 于点B ,若∠FAC=72°,∠ACD=58°,点D 在GH 上,求∠BDC 的度数.24.按要求作图(不写作法,但要保留作图痕迹)已知点P、Q分别在∠AOB的边OA,OB上(如图所示)①作直线PQ;②过点P作OB的垂线;③过点Q作OA的平行线.25.已知:如图,直线a∥b,直线c与直线a、b分别相交于C、D两点,直线d与直线a、b分别相交于A、B两点.(1)如图1,当点P在线段AB上(不与A、B两点重合)运动时,∠1、∠2、∠3之间有怎样的大小关系?请说明理由;(2)如图2,当点P在线段AB的延长线上运动时,∠1、∠2、∠3之间的大小关系为________;(3)如图3,当点P在线段BA的延长线上运动时,∠1、∠2、∠3之间的大小关系为________.七年级数学下册第二章《相交线与平行线》单元检测练习参考答案一. 选择题(每小题3分,共10小题)二.填空题(每小题4分,共7小题)11. 160°12. 同位角相等,两直线平行. 13. 50°14.60° 15.110°16. 76°17. ①③④⑤三.解答题(共8小题)18. 垂直的定义同位角相等,两直线平行∠3两直线平行,内错角相等∠A两直线平行,同位角相等19. 对顶角相等,∠DGH,BD∥CE ,∠ABG,已知,两直线平行,内错角相等,等量代换,20. 解:a // c;理由:∵∠1=∠2(已知),∴ a // b ( 内错角相等,两直线平行);∵ ∠3+∠4= 180°(已知),∴ c // b ( 同旁内角互补,两直线平行);∵ a // b ,c // b ,∴ a // c ( 平行于同一条直线的两条直线平行);21. 对顶角相等;DB;CE;内错角相等,两直线平行;两直线平行,同位角相等;已知;等量代换;内错角相等,两直线平行.22.解:因为DE∥BC,所以∠DBC=∠ADE=64°.因为BE平分∠DBC,所以∠CBE=12∠DBC=12×64°=32°.因为DE∥BC,所以∠DEB=∠CBE=32°.23.解:∵EF∥GH,∴∠ABD+∠FAC=180°,∴∠ABD=180°﹣72°=108°,∵∠ABD=∠ACD+∠BDC,∴∠BDC=∠ABD﹣∠ACD=108°﹣58°=50°.24.解:如图所示:25. (1)解:如图1,过点P作PE∥a,则∠1=∠CPE.∵a∥b,PE∥a,∴PE∥b,∴∠2=∠DPE,∴∠3=∠1+∠2;(2)解:如图2,过点P作PE∥b,则∠2=∠EPD,∵直线a∥b,∴a∥PE,∴∠1=∠3+∠EPD,即∠1=∠2+∠3.故答案为∠1=∠2+∠3;(3)解:如图3,设直线AC与DP交于点F,∵∠PFA是△PC F的外角,∴∠PFA=∠1+∠3,∵a∥b,∴∠2=∠PFA,即∠2=∠1+∠3.故答案为∠2=∠1+∠3.。

【单元卷】浙教版七年级数学下册: 第1章 平行线 单元质量检测卷(二)含答案与解析

【单元卷】浙教版七年级数学下册: 第1章 平行线  单元质量检测卷(二)含答案与解析

浙教版七年级数学下册单元质量检测卷(二)第1章平行线姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,考试时间90分钟,试题共25题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.如图,将△ABC绕点B按逆时针方向旋转40°到△DBE(其中点D与点A对应,点E与点C对应),连接AD,若AD∥BC,则∠ABE的度数为()A.25°B.30°C.35°D.40°2.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠BCD+∠ABC=180°(两直线平行,同旁内角互补)C.∵AD∥BC,∴∠BAD+∠D=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AD∥BC(同位角相等,两直线平行)3.如图,直线AB∥CD∥EF,点O在直线EF上,下列结论正确的是()A.∠α+∠β﹣∠γ=90°B.∠α+∠γ﹣∠β=180°C.∠γ+∠β﹣∠α=180°D.∠α+∠β+∠γ=180°4.如图,△ABC为钝角三角形,将△ABC绕点A按逆时针方向旋转100°得到△AB′C′,连接CC′,若CC′∥AB,则∠CAB'的度数为()A.45°B.60°C.70°D.90°5.如图,AB∥CD,BE平分∠ABC且过点D,∠CDE=160°,则∠C的度数是()A.110°B.120°C.130°D.140°6.下列说法正确的是()A.两条直线被第三条直线所截,同位角相等B.垂直于同一条直线的两条直线互相平行C.经过一点,有且只有一条直线与已知直线平行D.平行于同一条直线的两条直线互相平行7.如图,将直尺与30°角的三角尺叠放在一起,若∠1=40°,则∠2的大小是()A.40°B.60°C.70°D.80°8.在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠BCD=()A.16°B.28°C.44°D.45°9.如图,已知直线AB,CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB,CD,AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③180°﹣α﹣β,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④10.如图,已知:AB∥CD,EG平分∠AEF,EH⊥EG,EH∥GF,则下列结论:①EG⊥GF;②EH平分∠BEF;③FG平分∠EFC;④∠EHF=∠FEH+∠HFD;其中正确的结论个数是()A.4个B.3个C.2个D.1个二、填空题(本大题共8小题,每小题4分,共32分.不需写出解答过程,请把答案直接填写在横线上)11.如图,若∠1=∠D=39°,∠C+∠D=90°,则∠B=.12.如图,直线a、b、c、d,若∠1=∠2,∠3=70°,则∠4=.13.如图CD⊥AB于D,EF⊥AB于F,∠DGC=105°,∠BCG=75°,则∠1+∠2=.14.如图,三角形ABC中,D是AB上一点,F是BC上一点,E,H是AC上的点,EF的延长线交AB的延长线于点G,连接DE,DH,DE∥BC.若∠CEF=∠CHD,∠EFC=∠ADH,∠CEF:∠EFC=5:2,∠C=47°,则∠ADE的度数为.15.如图,在长20米,宽10米的长方形草地内修建了宽2米的道路,则草地的面积为.16.已知将一块直角三角板DEF放置在△ABC上,使得该三角板的两条直角边DE,DF恰好分别经过点B、C.过点A作直线MN∥DE,若∠ACD=20°,则∠CAM=.17.如图,PQ∥MN,A,B分别为直线MN、PQ上两点,且∠BAN=45°,若射线绕点A顺时针旋转至AN后立即回转,射线BQ绕点B逆时针旋转至BP后立即回转,两射线分别绕点A、点B不停地旋转,若射线AM 转动的速度是a°/秒,射线BQ转动的速度是b°/秒,且a、b满足|a﹣5|+(b﹣1)2=0.若射线AM 绕点A顺时针先转动18秒,射线BQ才开始绕点B逆时针旋转,在射线BQ到达BA之前,问射线AM再转动秒时,射线AM与射线BQ互相平行.18.两块含30°角的三角尺叠放如图所示,现固定三角尺ABC不动,将三角尺DEC绕顶点C顺时针转动,使两块三角尺至少有一个组边互相平行,且点D在直线BC的上方,则∠BCD所有可能符合的度数为.三、解答题(本大题共7小题,共58分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.如图,已知AB∥CD,DA平分∠BDC,∠A=∠C.(1)试说明:CE∥AD;(2)若∠C=30°,求∠B的度数.20.如图,在△ABC的三边上有D,E,F三点,点G在线段DF上,∠1与∠2互补,∠3=∠C.(1)若∠C=40°,求∠BFD的度数;(2)判断DE与BC的位置关系,并说明理由.21.AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E.∠ADC=80°.(1)若∠ABC=50°,求∠BED的度数;(2)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,若∠ABC=120°,求∠BED 的度数.22.如图,已知CD⊥AB,EF⊥AB,垂足分别为D,F,∠B+∠BDG=180°,试说明∠BEF=∠CDG.将下面的解答过程补充完整,并填空(填写理由依据或数学式,将答案按序号填在答题卷的对应位置内).证明:∵CD⊥AB,EF⊥AB(),∴∠BFE=∠BDC=90°(),∴EF∥CD(),∴∠BEF=(),又∵∠B+∠BDG=180°(),∴BC∥DG(),∴∠CDG=(),∴∠CDG=∠BEF().23.探究:如图①,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F,若∠ABC=50°,求∠DEF的度数.请将下面的解答过程补充完整,并填空解:∵DE∥BC∴∠DEF=.()∵EF∥AB,∴=∠ABC.()∴∠DEF=∠ABC.(等量代换)∵∠ABC=50°,∴∠DEF=.应用:如图②,直线AB,BC,AC两两相交,交点分别为A、B、C,点D在线段AB的延长线上,过点D 作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F,若∠ABC=65°,则∠DEF=.24.如图1,点A、B分别在直线GH、MN上,∠GAC=∠NBD,∠C=∠D.(1)求证:GH∥MN;(2)如图2,AE平分∠GAC,DE平分∠BDC,若∠AED=∠GAC,求∠GAC与∠ACD之间的数量关系;(3)如图3,BF平分∠DBM,点K在射线BF上,∠KAG=∠GAC,若∠AKB=∠ACD,直接写出∠GAC的度数.25.已知M、N分别为直线AB,直线CD上的点,且AB∥CD,E在AB,CD之间.(1)如图1,求证:∠BME+∠DNE=∠MEN;(2)如图2,P是CD上一点,连PM,作MQ∥EN,若∠QMP=∠BME.试探究∠E与∠AMP的数量关系,并说明理由;(3)在(2)的条件下,作NG⊥CD交PM于G,若MP平分∠QME,NF平分∠ENG,若∠MGN=m°,∠MFN =n°,直接写出m与n的数量关系.参考答案与解析一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.如图,将△ABC绕点B按逆时针方向旋转40°到△DBE(其中点D与点A对应,点E与点C对应),连接AD,若AD∥BC,则∠ABE的度数为()A.25°B.30°C.35°D.40°【答案】B【分析】由旋转的性质可得AB=DB,∠ABD=∠CBE=40°,由等腰三角形的性质可求∠BAD=∠BDA=70°,由平行线的性质可求∠DAB=∠ABC=70°,即可求解.【解答】解:∵将△ABC绕点B按逆时针方向旋转40°,∴AB=DB,∠ABD=∠CBE=40°,∴∠BAD=∠BDA=70°,∵AD∥BC,∴∠DAB=∠ABC=70°,∴∠ABE=∠ABC﹣∠EBC=30°,故选:B.【知识点】旋转的性质、平行线的性质2.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠BCD+∠ABC=180°(两直线平行,同旁内角互补)C.∵AD∥BC,∴∠BAD+∠D=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AD∥BC(同位角相等,两直线平行)【答案】C【分析】依据内错角相等,两直线平行;两直线平行,内错角相等;两直线平行,同旁内角互补;同位角相等,两直线平行进行判断即可.【解答】解:A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行),正确;B.∵AB∥CD,∴∠BCD+∠ABC=180°(两直线平行,同旁内角互补),正确;C.∵AD∥BC,∴∠BCD+∠D=180°(两直线平行,同旁内角互补),故C选项错误;D.∵∠DAM=∠CBM,∴AD∥BC(同位角相等,两直线平行),正确;故选:C.【知识点】平行线的判定与性质3.如图,直线AB∥CD∥EF,点O在直线EF上,下列结论正确的是()A.∠α+∠β﹣∠γ=90°B.∠α+∠γ﹣∠β=180°C.∠γ+∠β﹣∠α=180°D.∠α+∠β+∠γ=180°【答案】B【分析】根据平行线的性质得出∠α=∠BOF,∠γ+∠COF=180°,进而利用角的关系解答即可.【解答】解:∵AB∥EF,∴∠α=∠BOF,∵CD∥EF,∴∠γ+∠COF=180°,∵∠BOF=∠COF+∠β,∴∠γ+∠α﹣∠β=180°,故选:B.【知识点】平行线的性质4.如图,△ABC为钝角三角形,将△ABC绕点A按逆时针方向旋转100°得到△AB′C′,连接CC′,若CC′∥AB,则∠CAB'的度数为()A.45°B.60°C.70°D.90°【答案】B【分析】由旋转的性质可得AC=AC',∠BAB'=∠CAC'=100°,由等腰三角形的性质可得∠ACC'=∠AC'C =40°,由平行线的性质可得∠BAC=∠ACC'=40°,即可求解.【解答】解:∵将△ABC绕点A按逆时针方向旋转100°得到△AB′C′,∴AC=AC',∠BAB'=∠CAC'=100°,∴∠ACC'=∠AC'C=40°,∵AB∥CC',∴∠BAC=∠ACC'=40°,∴∠CAB'=∠BAB'﹣∠BAC=60°,故选:B.【知识点】旋转的性质、平行线的性质5.如图,AB∥CD,BE平分∠ABC且过点D,∠CDE=160°,则∠C的度数是()A.110°B.120°C.130°D.140°【答案】D【分析】首先根据邻补角互补可得∠CDB=180°﹣160°=20°,然后再根据平行线的性质可得∠ABD=∠CDB=20°,进而得到∠CBD=20°,再利用三角形内角和定理算出∠C的度数.【解答】解:∵∠CDE=160°,∴∠CDB=180°﹣160°=20°,∵AB∥CD,∴∠ABD=∠CDB=20°,∵BE平分∠ABC,∴∠CBE=∠ABE=20°,∴∠C=180°﹣20°﹣20°=140°,故选:D.【知识点】三角形内角和定理、平行线的性质6.下列说法正确的是()A.两条直线被第三条直线所截,同位角相等B.垂直于同一条直线的两条直线互相平行C.经过一点,有且只有一条直线与已知直线平行D.平行于同一条直线的两条直线互相平行【答案】D【分析】根据平行线的判定与性质、平行公理及推论进行逐一判断即可.【解答】解:两条平行直线被第三条直线所截,同位角相等,故A错误;同一平面内,垂直于同一条直线的两条直线互相平行,故B错误;经过直线外一点,有且只有一条直线与已知直线平行,故C错误;平行于同一条直线的两条直线互相平行,故D正确.故选:D.【知识点】平行线的判定与性质、同位角、内错角、同旁内角、平行公理及推论7.如图,将直尺与30°角的三角尺叠放在一起,若∠1=40°,则∠2的大小是()A.40°B.60°C.70°D.80°【答案】D【分析】根据平角的定义和平行线的性质即可得到结论.【解答】解:由题意得,∠4=60°,∵∠1=40°,∴∠3=180°﹣60°﹣40°=80°,∵AB∥CD,∴∠3=∠2=80°,故选:D.【知识点】平行线的性质8.在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠BCD=()A.16°B.28°C.44°D.45°【答案】A【分析】延长ED,交AC于F,根据等腰三角形的性质得出∠A=∠ACB=28°,根据平行线的性质得出∠CFD =∠A=28°,由三角形外角的性质即可求得∠ACD的度数,于是得到结论.【解答】解:延长ED,交AC于F,∵△ABC是等腰三角形,∠ABC=124°,∴∠A=∠ACB=28°,∵AB∥DE,∴∠CFD=∠A=28°,∵∠CDE=∠CFD+∠ACD=72°,∴∠ACD=72°﹣28°=44°,∴∠BCD=∠ACD﹣∠ACB=16°,故选:A.【知识点】等腰三角形的性质、平行线的性质、三角形内角和定理9.如图,已知直线AB,CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB,CD,AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③180°﹣α﹣β,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④【答案】B【分析】根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.【解答】解:(1)如图1,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图2,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图3,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图4,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.(5)(6)当点E在CD的下方时,同理可得,∠AEC=α﹣β或β﹣α.综上所述,∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β.故选:B.【知识点】平行线的性质10.如图,已知:AB∥CD,EG平分∠AEF,EH⊥EG,EH∥GF,则下列结论:①EG⊥GF;②EH平分∠BEF;③FG平分∠EFC;④∠EHF=∠FEH+∠HFD;其中正确的结论个数是()A.4个B.3个C.2个D.1个【答案】A【分析】根据平行线的性质,等角的余角相等,角平分线的定义一一判断即可.【解答】解:∵EG平分∠AEF,∴∠AEG=∠FEG,∵EH⊥EG,∴∠HEG=90°,∴∠AEG+∠BEH=90°,∠FEG+∠FEH=90°,∴∠BEH=∠FEH,∴EH平分∠BEF,故②正确,∵EH∥FG,∴∠GFE=∠FEH,∴∠GFE+∠GEF=∠FEH+∠GEF=90°,∴∠G=90°,∴EG⊥FG,故①正确,∵AB∥CD,∴∠AEF+∠CFE=180°,∵∠GFE+∠GEF=90°,∴∠AEG+∠CFG=90°,∵∠AEG=∠GEF,∴∠GFC=∠GFE,∴FG平分∠CFE,故③正确.∵∠EHF+∠HEF+∠HFE=180°,∠BFE+∠HEF+∠HFE+∠HFD=180°,∴∠EHF=∠BEH+∠DFH,∵∠EHF=∠BEH,∴∠EHF=∠FEH+∠HFD,故④正确,故选:A.【知识点】三角形内角和定理、平行线的性质二、填空题(本大题共8小题,每小题4分,共32分.不需写出解答过程,请把答案直接填写在横线上)11.如图,若∠1=∠D=39°,∠C+∠D=90°,则∠B=.【答案】129°【分析】由条件可判定AB∥CD,由∠C和∠D互余可求得∠C,再由平行线的性质可得∠B+∠C=180°,则可求得∠B.【解答】解:∵∠1=∠D,∴AB∥CD,∴∠B+∠C=180°,∵∠C+∠D=90°,∠D=39°,∴∠C=90°﹣∠D=90°﹣39°=51°,∴∠B=180°﹣∠C=180°﹣51°=129°,故答案为:129°.【知识点】平行线的判定与性质12.如图,直线a、b、c、d,若∠1=∠2,∠3=70°,则∠4=.【答案】70°【分析】根据平行线的判定得出a∥b,根据平行线的性质得出∠3=∠4,代入求出即可.【解答】解:∵∠1=∠2,∴a∥b,∴∠3=∠4,∵∠3=70°,∴∠4=70°,故答案为:70°.【知识点】平行线的判定与性质13.如图CD⊥AB于D,EF⊥AB于F,∠DGC=105°,∠BCG=75°,则∠1+∠2=.【答案】180°【分析】由∠DGC=105°,∠BCG=75°,得出∠DGC+∠BCG=180°,判断DG∥BC,得出∠1=∠DCB,由CD⊥AB,EF⊥AB,判断CD∥EF,得出∠DCB+∠2=180°,等量代换即可.【解答】解:∵∠DGC=105°,∠BCG=75°(已知),∴∠DGC+∠BCG=180°,∴DG∥BC(同旁内角互补,两直线平行),∴∠1=∠DCB(两直线平行,内错角相等),∵CD⊥AB,EF⊥AB(已知),∴CD∥EF(平面内,垂直于同一直线的两直线平行),∴∠DCB+∠2=180°(两直线平行,同旁内角互补),∴∠1+∠2=180°(等量代换),故答案为:180°.【知识点】平行线的判定与性质14.如图,三角形ABC中,D是AB上一点,F是BC上一点,E,H是AC上的点,EF的延长线交AB的延长线于点G,连接DE,DH,DE∥BC.若∠CEF=∠CHD,∠EFC=∠ADH,∠CEF:∠EFC=5:2,∠C=47°,则∠ADE的度数为.【答案】76°【分析】根据平行线的性质和三角形的内角和解答即可.【解答】解:∵∠CEF=∠CHD,∴DH∥GE,∴∠ADH=∠G,∵∠EFC=∠ADH,∵∠BFG=∠EFC,∴∠G=∠BFG,∴∠ABC=∠G+∠BFG=2∠EFC,∵∠CEF:∠EFC=5:2,∠C=47°,∴∠EFC=38°,∴∠ABC=76°,∵DE∥BC,∴∠ADE=∠ABC=76°,故答案为:76°.【知识点】平行线的性质15.如图,在长20米,宽10米的长方形草地内修建了宽2米的道路,则草地的面积为.【答案】144米2【分析】将道路分别向左、向上平移,得到草地为一个长方形,分别求出长方形的长和宽,再用长和宽相乘即可.【解答】解:将道路分别向左、向上平移,得到草地为一个长方形,长方形的长为20﹣2=18(米),宽为10﹣2=8(米),则草地面积为18×8=144米2.故答案为:144米2.【知识点】生活中的平移现象16.已知将一块直角三角板DEF放置在△ABC上,使得该三角板的两条直角边DE,DF恰好分别经过点B、C.过点A作直线MN∥DE,若∠ACD=20°,则∠CAM=.【答案】110°【分析】在Rt△ABC中,根据三角形内角和定理得∠ABC+∠ACB+∠A=180°,即,∴∠ABD+∠BAC=90°﹣∠ACD=70°,整体代入即可得出结论.【解答】解:在△DBC中,∵∠DBC+∠DCB+∠D=180°,而∠D=90°,∴∠DBC+∠DCB=90°,∵∠ABC+∠ACB+∠A=180°,即∠ABD+∠DBC+∠DCB+∠ACD+∠BAC=180°,而∠DBC+∠DCB=90°,∴∠ABD+∠ACD=90°﹣∠BAC,∴∠ABD+∠BAC=90°﹣∠ACD=70°.又∵MN∥DE,∴∠ABD=∠BAN.而∠BAN+∠BAC+∠CAM=180°,∴∠ABD+∠BAC+∠CAM=180°,∴∠CAM=180°﹣(∠ABD+∠BAC)=110°.故答案为110°.【知识点】平行线的性质、三角形内角和定理17.如图,PQ∥MN,A,B分别为直线MN、PQ上两点,且∠BAN=45°,若射线绕点A顺时针旋转至AN后立即回转,射线BQ绕点B逆时针旋转至BP后立即回转,两射线分别绕点A、点B不停地旋转,若射线AM转动的速度是a°/秒,射线BQ转动的速度是b°/秒,且a、b满足|a﹣5|+(b﹣1)2=0.若射线AM 绕点A顺时针先转动18秒,射线BQ才开始绕点B逆时针旋转,在射线BQ到达BA之前,问射线AM再转动秒时,射线AM与射线BQ互相平行.【答案】15或22.5【分析】分两种情况讨论,依据∠ABQ'=∠BAM″时,BQ'∥AM″,列出方程即可得到射线AM、射线BQ互相平行时的时间.【解答】解:设射线AM再转动t秒时,射线AM、射线BQ互相平行.如图,射线AM绕点A顺时针先转动18秒后,AM转动至AM'的位置,∠MAM'=18×5=90°,分两种情况:①当9<t<18时,∠QBQ'=t°,∠M'AM″=5t°,∵∠BAN=45°=∠ABQ,∴∠ABQ'=45°﹣t°,∠BAM″=∠M'AM″﹣∠M'AB=5t﹣45°,当∠ABQ'=∠BAM″时,BQ'∥AM″,此时,45°﹣t°=5t﹣45°,解得t=15;②当18<t<27时,∠QBQ'=t°,∠NAM″=5t°﹣90°,∠BAM″=∠M'AM″﹣∠M'AB=5t﹣45°,∵∠BAN=45°=∠ABQ,∴∠ABQ'=45°﹣t°,∠BAM″=45°﹣(5t°﹣90°)=135°﹣5t°,当∠ABQ'=∠BAM″时,BQ'∥AM″,此时,45°﹣t°=135°﹣5t,解得t=22.5;综上所述,射线AM再转动15秒或22.5秒时,射线AM、射线BQ互相平行.故答案为15或22.5.【知识点】非负数的性质:绝对值、非负数的性质:偶次方、平行线的判定与性质18.两块含30°角的三角尺叠放如图所示,现固定三角尺ABC不动,将三角尺DEC绕顶点C顺时针转动,使两块三角尺至少有一个组边互相平行,且点D在直线BC的上方,则∠BCD所有可能符合的度数为.【答案】30°或60°或90°或120°或150°【分析】有7种情形分别画出图形求解即可.【解答】解:如图1中,当DE∥AB时,∠BCD=30°如图2中,当AB∥CE时,∠BCD=60°.如图3中,当DE∥BC时,∠BCD=90°.如图4中,当AB∥CD时,∠BCD=120°如图5中,当AB∥DE时,∠BCD=150°.如图6中,当BC∥DE时,∠BCD=90°.如图7中,当DE∥AC时,∠BCD=60°.综上所述,满足条件的∠BCD的值为30°或60°或90°或120°或150°.【知识点】平行线的判定三、解答题(本大题共7小题,共58分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.如图,已知AB∥CD,DA平分∠BDC,∠A=∠C.(1)试说明:CE∥AD;(2)若∠C=30°,求∠B的度数.【分析】(1)欲证明CE∥AD,只需推知∠ADC=∠C即可;(2)利用(1)中平行线的性质来求∠B的度数.【解答】解:(1)∵AB∥CD,∴∠A=∠ADC.∵∠A=∠C,∴∠ADC=∠C,∴CE∥AD;(2)由(1)可得∠ADC=∠C=30°.∵DA平分∠BDC,∠ADC=∠ADB,∴∠CDB=2∠ADC=60°.∵AB∥DC,∴∠B+∠CDB=180°,∴∠B=180°﹣∠CDB=120°.【知识点】平行线的判定与性质20.如图,在△ABC的三边上有D,E,F三点,点G在线段DF上,∠1与∠2互补,∠3=∠C.(1)若∠C=40°,求∠BFD的度数;(2)判断DE与BC的位置关系,并说明理由.【分析】(1)由∠1与∠2互补,利用“同旁内角互补,两直线平行”可得出AC∥DF,再利用“两直线平行,同位角相等”可求出∠BFD的度数;(2)由(1)可知∠BFD=∠C,结合∠C=∠3可得出∠BFD=∠3,再利用“内错角相等,两直线平行”即可找出DE∥BC.【解答】解:(1)∵∠1与∠2互补,∴AC∥DF,∴∠BFD=∠C=40°;(2)DE∥BD,理由如下:由(1)可知:∠BFD=∠C,∵∠C=∠3,∴∠BFD=∠3,∴DE∥BC.【知识点】平行线的判定与性质21.AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E.∠ADC=80°.(1)若∠ABC=50°,求∠BED的度数;(2)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,若∠ABC=120°,求∠BED的度数.【分析】(1)作EF∥AB,如图1,利用角平分线的定义得到∠ABE=25°,∠EDC=40°,利用平行线的性质得到∠BEF=∠ABE=25°,∠FED=∠EDC=40°,从而得到∠BED的度数;(2)作EF∥AB,如图2,利用角平分线的定义得到∠ABE=60°,∠EDC=40°,利用平行线的性质得到∠BEF=120°,∠FED=∠EDC=40°,从而得到∠BED的度数.【解答】解:(1)作EF∥AB,如图1,∵BE平分∠ABC,DE平分∠ADC,∴∠ABE=∠ABC=25°,∠EDC=∠ADC=40°,∵AB∥CD,∴EF∥CD,∵∠BEF=∠ABE=25°,∠FED=∠EDC=40°,∴∠BED=25°+40°=65°;(2)作EF∥AB,如图2,∵BE平分∠ABC,DE平分∠ADC,∴∠ABE=∠ABC=60°,∠EDC=∠ADC=40°,∵AB∥CD,∴EF∥CD,∵∠BEF=180°﹣∠ABE=120°,∠FED=∠EDC=40°,∴∠BED=120°+40°=160°.【知识点】平行线的性质、平移的性质22.如图,已知CD⊥AB,EF⊥AB,垂足分别为D,F,∠B+∠BDG=180°,试说明∠BEF=∠CDG.将下面的解答过程补充完整,并填空(填写理由依据或数学式,将答案按序号填在答题卷的对应位置内).证明:∵CD⊥AB,EF⊥AB(),∴∠BFE=∠BDC=90°(),∴EF∥CD(),∴∠BEF=(),又∵∠B+∠BDG=180°(),∴BC∥DG(),∴∠CDG=(),∴∠CDG=∠BEF().【答案】【第1空】已知【第2空】垂直定义【第3空】同位角相等,两直线平行【第4空】∠BCD【第5空】两直线平行,同位角相等【第6空】已知【第7空】同旁内角互补,两直线平行【第8空】∠BCD【第9空】两直线平行,内错角相等【第10空】等量代换【分析】根据平行线的判定与性质即可完成证明过程.【解答】证明:∵CD⊥AB,EF⊥AB(已知),∴∠BFE=∠BDC=90°(垂直定义),∴EF∥CD(同位角相等,两直线平行),∴∠BEF=∠BCD(两直线平行,同位角相等),又∵∠B+∠BDG=180°(已知),∴BC∥DG(同旁内角互补,两直线平行),∴∠CDG=∠BCD(两直线平行,内错角相等),∴∠CDG=∠BEF(等量代换).故答案为:已知;垂直定义;同位角相等,两直线平行;∠BCD,两直线平行,同位角相等;已知,同旁内角互补,两直线平行;∠BCD,两直线平行,内错角相等;等量代换.【知识点】平行线的判定与性质23.探究:如图①,直线AB、BC、AC两两相交,交点分别为点A、B、C,点D在线段AB上,过点D作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F,若∠ABC=50°,求∠DEF的度数.请将下面的解答过程补充完整,并填空解:∵DE∥BC∴∠DEF=.()∵EF∥AB,∴=∠ABC.()∴∠DEF=∠ABC.(等量代换)∵∠ABC=50°,∴∠DEF=.应用:如图②,直线AB,BC,AC两两相交,交点分别为A、B、C,点D在线段AB的延长线上,过点D 作DE∥BC交AC于点E,过点E作EF∥AB交BC于点F,若∠ABC=65°,则∠DEF=.【答案】【第1空】∠EFC【第2空】两直线平行,内错角相等【第3空】∠EFC【第4空】两直线平行,同位角相等【第5空】50°【第6空】115°【分析】探究:依据两直线平行,内错角相等;两直线平行,同位角相等,即可得到∠DEF=50°.应用:依据两直线平行,同位角相等;两直线平行,同旁内角互补,即可得到∠DEF=180°﹣65°=115°.【解答】解:探究:∵DE∥BC,∴∠DEF=∠EFC.(两直线平行,内错角相等)∵EF∥AB,∴∠EFC=∠ABC.(两直线平行,同位角相等)∴∠DEF=∠ABC.(等量代换)∵∠ABC=50°,∴∠DEF=50°.故答案为:∠EFC,两直线平行,内错角相等,∠EFC,两直线平行,同位角相等,50°;应用:∵DE∥BC,∴∠ABC=∠ADE=60°.(两直线平行,同位角相等)∵EF∥AB,∴∠ADE+∠DEF=180°.(两直线平行,同旁内角互补)∴∠DEF=180°﹣65°=115°.故答案为:115°.【知识点】平行线的性质、相交线24.如图1,点A、B分别在直线GH、MN上,∠GAC=∠NBD,∠C=∠D.(1)求证:GH∥MN;(2)如图2,AE平分∠GAC,DE平分∠BDC,若∠AED=∠GAC,求∠GAC与∠ACD之间的数量关系;(3)如图3,BF平分∠DBM,点K在射线BF上,∠KAG=∠GAC,若∠AKB=∠ACD,直接写出∠GAC的度数.【分析】(1)根据平行线的判定可得AP∥BD,再根据平行线的性质,和等量代换可得到∠GAC=∠NPA,进而得出结论;(2)延长AC交MN于点P,交DE于点Q,易求∠AQD=∠E+∠EAQ,由平行线的性质可得∠BDQ=∠E+∠EAQ,再结合角平分线的定义可求解;(3)根据平行线的性质,角平分线的定义易求∠ACD=∠DBF+∠KAG,结合已知条件可得关于∠GAC的等式∠GAC+∠GAC=3∠GAC,计算即可求解.【解答】解:(1)如图1,延长AC交MN于点P,∵∠ACD=∠D,∴AP∥BD,∴∠NBD=∠NPA,∵∠GAC=∠NBD,∴∠GAC=∠NPA,∴GH∥MN;(2)延长AC交MN于点P,交DE于点Q,∵∠E+∠EAQ+∠AQE=180°,∠EQA+∠AQD=180°,∴∠AQD=∠E+∠EAQ,∵AC∥BD,∴∠AQD=∠BDQ,∴∠BDQ=∠E+∠EAQ,∵AE平分∠GAC,DE平分∠BDC,∴∠GAC=2∠EAQ,∠CDB=2∠BDQ,∴∠CDB=2∠E+∠GAC,∵∠AED=∠GAC,∠ACD=∠CDB,∴∠ACD=2∠GAC+∠GAC=3∠GAC;(3)设射线BF交GH于I,∵GH∥MN,∴∠AIB=∠FBM,∵BF平分∠MBD,∴∠DBF=∠FBM=,∴∠AIB=∠DBF,∵∠AIB+∠KAG=∠AKB,∠AKB=∠ACD,∴∠ACD=∠DBF+∠KAG,∵∠KAG=∠GAC,∠GAC=∠NBD,∴∠GAC+=∠ACD=3∠GAC,即∠GAC+∠GAC=3∠GAC,解得∠GAC=.故答案为.【知识点】平行线的判定与性质25.已知M、N分别为直线AB,直线CD上的点,且AB∥CD,E在AB,CD之间.(1)如图1,求证:∠BME+∠DNE=∠MEN;(2)如图2,P是CD上一点,连PM,作MQ∥EN,若∠QMP=∠BME.试探究∠E与∠AMP的数量关系,并说明理由;(3)在(2)的条件下,作NG⊥CD交PM于G,若MP平分∠QME,NF平分∠ENG,若∠MGN=m°,∠MFN =n°,直接写出m与n的数量关系.【答案】4n-m=270°【分析】(1)过E作EG∥AB,根据平行线的性质可得∠BME=∠MEG,∠DNE=∠GEN,结合∠MEN=∠MEG+∠GEN,可证明结论;(2)根据MQ∥EN,得∠QME+∠E=180°,再由∠QMP=∠BME可求解;(3)根据平行线的性质,结合角平分线的定义可求解.【解答】解:(1)过E作EG∥AB,如图1,∵AB∥CD,∴EG∥CD,∴∠BME=∠MEG,∠DNE=∠GEN,∵∠MEN=∠MEG+∠GEN,∴∠BME+∠DNE=∠MEN;(2)∠E=∠AMP.理由:∵AB∥CD,∴∠BMP+∠MPD=180°,∠MPD=∠AMP,∵MQ∥EN,∴∠QME+∠E=180°,∵∠QMP=∠BME.∴∠QME=∠BMP,∴∠E=∠MPD,∴∠E=∠AMP;(3)如图3,在(2)的条件下,∠AMP=∠E,∵∠QMP=∠BME,∴∠AMQ=∠DNE,∵MP平分∠QME,∴∠PMQ=∠PME=∠BME,∵NG⊥CD,NF平分∠ENG,∴∠FNG=∠ENF,若∠MGN=m°,∠MFN=n°,∠PMQ=∠PME=∠BME=y°,∠AMQ=∠DNE=x°,∠FNG=∠ENF=z,则m=x+y+90°,n=x+y+z,x+2z=90°,x+3y=180°,解得4n﹣m=270°.故答案为4n﹣m=270°.【知识点】平行线的性质、垂线31。

七年级数学下册-第一章综合检测试卷1-北师大版(含答案)

七年级数学下册-第一章综合检测试卷1-北师大版(含答案)

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

——高斯第一章综合检测试卷(满分:120分)一、选择题(每小题3分,共30分) 1.下列运算中,正确的是( C ) A .7a +a =7a 2 B .a 2·a 3=a 6 C .a 3÷a =a 2D .(ab )2=ab 22.计算(a 2)3+a 2·a 3-a 2÷a -3的结果是( D )A .2a 5-aB .2a 5-1aC .a 5D .a 63.下列运算中,利用完全平方公式计算正确的是( C ) A .(x +y )2=x 2+y 2 B .(x -y )2=x 2-y 2 C .(-x +y )2=x 2-2xy +y 2D .(-x -y )2=x 2-2xy +y 24.绿色植物靠吸收光量子来进行光合作用,已知每个光量子的波长约为688纳米,1纳米=0.000 000 001米,则每个光量子的波长可用科学记数法表示为( B )A .6.88×10-11米 B .6.88×10-7米 C .0.688×10-3米D .0.688×10-6米5.小亮在计算(6x 3y -3x 2y 2)÷3xy 时,错把括号内的减号写成了加号,那么正确结果与错误结果的乘积是( C )A .2x 2-xyB .2x 2+xyC .4x 4-x 2y 2D .无法计算6.要使(x 2-3x +4)(x 2-ax +1)的展开式中含x 2项的系数为-1,则a 应等于( A ) A .-2 B .2 C .-1D .-47.已知a =8131,b =2741,c =961,则a 、b 、c 的大小关系是( A ) A .a >b >c B .a >c >b C .a <b <cD .b >c >a8.计算⎝⎛⎭⎫ -32 2020·⎝⎛⎭⎫ 23 2021的结果是( D ) A .-1 B .-23C .1D .239.如图所示,用边长为c 的一个小正方形和直角边长分别为a 、b 的四个直角三角形,恰好能拼成一个新的大正方形,其中a 、b 、c 满足等式c 2=a 2+b 2,由此可验证的乘法公式是( A )A .a 2+2ab +b 2=(a +b )2B .a 2-2ab +b 2=(a -b )2C .(a +b )(a -b )=a 2-b 2D .a 2+b 2=(a +b )210.已知a =120x +20,b =120x +19,c =120x +21,那么代数式a 2+b 2+c 2-ab -bc -ac的值是( B )A .4B .3C .2D .1二、填空题(每小题4分,共28分) 11.计算:(a 2b 3-a 2b 2)÷(ab )2= b -1 .12.若x 2-4x -4=0,则2(x -1)2-(x +1)(x -1)的值为 7 . 13.已知x +1x =2,则x 2+1x2= 2 .14.利用完全平方公式计算:1022+982= 20 008 . 15.已知x 满足22x +2-22x +1=32,则x = 2 . 16.四个数a 、b 、c 、d 排列成⎪⎪⎪⎪⎪⎪ab cd ,我们称之为二阶行列式,规定它的运算法则为⎪⎪⎪⎪⎪⎪a b cd =ad -bc .若⎪⎪⎪⎪⎪⎪x +3 x -3x -3 x +3=12,则x = 1 . 17.如图,两个正方形的边长分别为a 和b ,如果a -b =4,ab =32,那么阴影部分的面积是 24 .三、解答题(一)(每小题6分,共18分) 18.计算:(1)(2a 2b )3-3(a 3)2b 3; 解:原式=5a 6b 3.(2)(x +y )m +n ·(x +y )m +2n÷(x +y )m -n ;解:原式=(x +y )m+4n.(3)⎝⎛⎭⎫12-x ⎝⎛⎭⎫14+x 2⎝⎛⎭⎫x +12+x 4; 解:原式=116.(4)(π-3.14)0+2-2+(-3)2-⎝⎛⎭⎫12-2.解:原式=614.19.已知a 、b 满足(a +b )2=1,(a -b )2=25,求a 2+b 2+ab 的值.解:因为(a +b )2-(a -b )2=4ab ,(a +b )2-(a -b )2=1-25,所以4ab =1-25,所以ab =-6,所以a 2+b 2+ab =(a +b )2-ab =1-(-6)=1+6=7.20.先化简,再求值:(x 2y 3-2x 3y 2)÷⎝⎛⎭⎫-12xy 2-[2(x -y )]2,其中x =3,y =-12. 解:原式=-2xy +4x 2-4x 2+8xy -4y 2=6xy -4y 2.当x =3,y =-12时,原式=6×3×⎝⎛⎭⎫-12-4×⎝⎛⎭⎫-122=-9-1=-10. 四、解答题(二)(每小题8分,共24分)21.有一道题:“化简求值:(2a +1)(2a -1)+(a -2)2-4(a +1)(a -2),其中a =2.”小明在解题时错误地把“a =2”抄成了“a =-2”,但显示计算的结果是正确的,你能解释一下,这是怎么回事吗?解:(2a +1)(2a -1)+(a -2)2-4(a +1)(a -2)=4a 2-1+a 2-4a +4-4a 2+4a +8=a 2+11.当a =-2时,a 2+11=15;当a =2时,a 2+11=15.所以当a =2或a =-2时,结果相等.22.已知3a =4,3b =10,3c =25. (1)求32a 的值; (2)求3c+b -a的值;(3)试说明:2b =a +c . (1)解:32a =(3a )2=42=16. (2)解:3c+b -a=3c ·3b ÷3a =25×10÷4=62.5.(3)证明:因为32b =(3b )2=102=100,3a +c =3a ×3c =4×25=100,所以32b =3a +c ,所以2b =a +c .23.观察以下等式: (x +1)(x 2-x +1)=x 3+1; (x +3)(x 2-3x +9)=x 3+27; (x +6)(x 2-6x +36)=x 3+216; ……(1)按以上等式的规律,填空:(a +b )( a 2-ab +b 2 )=a 3+b 3; (2)利用多项式的乘法法则,说明(1)中的等式成立;(3)利用(1)中的公式化简:(x +y )(x 2-xy +y 2)-(x +2y )(x 2-2xy +4y 2). 解:(2)(a +b )(a 2-ab +b 2)=a 3-a 2b +ab 2+a 2b -ab 2+b 3=a 3+b 3. (3)原式=(x 3+y 3)-(x 3+8y 3)=-7y 3. 五、解答题(三)(每小题10分,共20分)24.如图1,我们在2020年5月的日历中标出一个十字星,并计算它的“十字差”(将十字星左右两数,上下两数分别相乘再将所得的积作差,称为该十字星的“十字差”).该十字星的十字差为12×14-6×20=48,再选择其他位置的十字星,可以发现“十字差”仍为48.(1)如图2,将正整数依次填入5列的长方形数表中,探究不同位置十字星的“十字差”,可以发现相应的“十字差”也是一个定值,则这个定值为24;(2)若将正整数依次填入k列的长方形数表中(k≥3),继续前面的探究,可以发现相应“十字差”为与列数k有关的定值,请用k表示出这个定值,并证明你的结论;(3)如图3,将正整数依次填入三角形的数表中,探究不同十字星的“十字差”.若某个十字星中心的数在第32行,且其相应的“十字差”为2019,求这个十字星中心的数.(直接写出结果)解:(2)“十字差”为k2-1=(k+1)(k-1).证明如下:设十字星中心的数为x,则十字星左右两数分别为x-1、x+1,上下两数分别为x-k、x+k(k≥3).故“十字差”为(x-1)(x +1)-(x-k)(x+k)=x2-1-x2+k2=k2-1.(3)设正中间的数为a,则上下两数分别为a-62、a+64,左右两数分别为a-1、a+1.根据题意,得(a-1)(a+1)-(a-62)(a+64)=2019,即2a=1948,解得a=974.即这个十字星中心的数为974.25.图1是由4个长为m、宽为n的长方形拼成的,图2是由这四个长方形拼成的正方形,中间的空隙(阴影部分)恰好是一个小正方形.(1)用m、n表示图2中小正方形的边长;(2)用两种不同的方法表示出图2中阴影部分的面积;(3)观察图2,利用(2)中的结论,写出代数式(m+n)2、(m-n)2、mn之间的等量关系;(4)根据(3)中的等量关系,解决如下问题:已知a+b=7,ab=5,求(a-b)2的值.解:(1)图2中小正方形的边长为m-n.(2)(方法一)S阴影=(m-n)(m-n)=(m-n)2;(方法二)S阴影=(m+n)2-4mn.(3)因为图中阴影部分的面积不变,所以(m-n)2=(m+n)2-4mn.(4)由(3)知,(a-b)2=(a+b)2-4ab.因为a+b=7,ab=5,所以(a-b)2=72-4×5=49-20=29.一天,毕达哥拉斯应邀到朋友家做客。

七年级数学下第二章相交线与平行线单元达标检测试卷含答案

七年级数学下第二章相交线与平行线单元达标检测试卷含答案

第二章相交线与平行线达标检测卷一、选择题(每题3分,共30分)1.在同一平面内两条直线的位置关系可能是()A.相交或垂直B.垂直或平行C.平行或相交D.平行或相交或垂直2.a,b,c是同一平面内任意三条直线,交点可能有()A.1个或2个或3个B.0个或1个或2个或3个C.1个或2个D.都不对3.如图,是同位角关系的是()A.∠3和∠4B.∠1和∠4C.∠2和∠4D.不存在4.下列语句叙述正确的有()①如果两个角有公共顶点且没有公共边,那么这两个角是对顶角;②如果两个角相等,那么这两个角是对顶角;③连接两点的线段长度叫做两点间的距离;④直线外一点到这条直线的垂线段叫做这点到直线的距离.A.0个B.1个C.2个D.3个5.下列说法正确的是()A.两点之间的距离是两点间的线段B.同一平面内,过一点有且只有一条直线与已知直线平行C.与同一条直线垂直的两条直线也垂直D.同一平面内,过一点有且只有一条直线与已知直线垂直6.∠1和∠2是直线AB和CD被直线EF所截得到的同位角,那么∠1和∠2的大小关系是()A.∠1=∠2B.∠1>∠2C.∠1<∠2D.无法确定7.如图,有三条公路,其中AC与AB垂直,小明和小亮分别从A,B两点沿AC,BC同时出发骑车到C城,若他们同时到达,则下列判断中正确的是()A.小亮骑车的速度快B.小明骑车的速度快C.两人骑车的速度一样快D.因为不知道公路的长度,所以无法判断他们骑车速度的快慢8.下列说法中,正确的是()A.过点P不能画线段AB的垂线B.P是直线AB外一点,Q是直线AB上一点,连接PQ,使PQ⊥ABC.在同一平面内,过一点有且只有一条直线垂直于已知直线D.过一点有且只有一条直线平行于已知直线9.如图,如果AB ∥CD ,则∠α,∠β,∠γ之间的关系是()A. ∠α+∠β+∠γ=180°B. ∠α-∠β+∠γ=180°C.∠α+∠β-∠γ=180°D.∠α+∠β+∠γ=270°10.如图,已知A1B∥A n C,则∠A1+∠A2+…+∠A n=()A.180°nB.(n+1)180°C.(n-1)180°D.(n-2)180°二、填空题(每题3分,共24分)11.尺规作图是指用____________画图.12. 如图,直线a,b相交,∠1=60°,则∠2=__________,∠3=__________,∠4=__________.13.如图,直线AB与CD的位置关系是_________,记作_________于点_________,此时∠AOD=_________=_________=_________=90°.14.如图,AB∥CD,EF分别交AB,CD于G,H两点,若∠1=50°,则∠EGB=_________.15.如图,请写出能判断CE∥AB的一个条件,这个条件是:_________或_________或_________.16.如图,已知AB∥CD,CE,AE分别平分∠ACD,∠CAB,则∠1+∠2=_________.17.同一平面内的三条直线a,b,c,若a⊥b,b⊥c,则a__________c.若a∥b,b∥c,则a_________c.若a∥b,b⊥c,则a_________c.18.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西.三、解答题(19~21题每题8分,25题12分,其余每题10分,共66分)19.如图,点P是∠ABC内一点.(1)画图:①过点P画BC的垂线,垂足为D;②过点P画BC的平行线交AB 于点E,过点P画AB的平行线交BC于点F.(2)∠EPF等于∠B吗?为什么?(3)请你用直尺和圆规作图,作一个角,使它等于2∠ABC.(要求用尺规作图,不必写作法,但要保留作图痕迹)20.如图,已知AD∥BC,∠1=∠2,要说明∠3+∠4=180°,请补充完整解题过程,并在括号内填上相应的依据:解:因为AD∥BC(已知),所以∠1=∠3(___________).因为∠1=∠2(已知),所以∠2=∠3.所以BE∥___________ (___________).所以∠3+∠4=180°(___________).21.如图,已知∠1=∠2,AC平分∠DAB,你能判定哪两条直线平行?说明理由.22.将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)试说明:CF∥AB;(2)求∠DFC的度数.23.如图,∠1+∠2=180°,∠3=100°,OK平分∠DOH,求∠KOH的度数.24.如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.试说明:AD∥BC.25.如图,已知AB∥CD,分别探讨下面的四个图形中∠APC与∠PAB,∠PCD的关系,请你从所得关系中任意选取一个加以说明.参考答案一、1.【答案】C2.【答案】B解:三条直线两两平行,没有交点;三条直线交于一点,有一个交点;两条直线平行与第三条直线相交,有两个交点;三条直线两两相交,不交于同一点,有三个交点,故选B.本题考查了相交线,分类讨论是解题关键,注意不要漏掉任何一种情况.3.【答案】B解:同位角的特征:在截线同旁,在两条被截直线同一方向上.4.【答案】B5.【答案】D6.【答案】D解:因为不知道直线AB和CD是否平行,平行时同位角相等,不平行时同位角不相等,所以无法确定同位角的大小关系,故选D.7.【答案】A8.【答案】C解:过一点画线段的垂线,即过一点画线段所在直线的垂线,故A错误;P是直线AB外一点,Q是直线AB上一点,如果P点不在过Q点且与AB垂直的直线上,或Q点不在过P点且与AB垂直的直线上,连接PQ,不可能有PQ⊥AB,故B错误;过一点画直线的平行线,这点不能在直线上,否则是同一条直线,故D错误;故C正确.9.【答案】C解:如图,过点E向右作EF∥CD,则∠FED=∠γ;由AB∥CD,可知EF∥AB,所以∠α+∠AEF=180°,即∠AEF=180°-∠α.不难看出∠β=∠FED+∠AEF,由此得到∠β=∠γ+∠AEF=∠γ+180°-∠α,即∠α+∠β-∠γ=180°,故选C.10.【答案】C解:如图,过点A2向右作A2D∥A1B,过点A3向右作A3E∥A1B,……因为A1B∥A n C,所以A3E∥A2D∥…∥A1B∥A n C,所以∠A1+∠A1A2D=180°,∠DA2A3+∠A2A3E=180°,…,所以∠A1+∠A1A2A3+…+∠A n-1A n C=(n-1)180°.二、11.【答案】圆规和没有刻度的直尺12. 【答案】120°;60°;120°13.【答案】垂直;AB⊥CD; O;∠BOD; ∠BOC;∠AOC14.【答案】50°解:因为AB∥CD,所以∠1=∠AGF.因为∠AGF与∠EGB是对顶角,所以∠EGB=∠AGF.故∠EGB=50°.15.【答案】∠DCE=∠A;∠ECB=∠B;∠A+∠ACE=180°16.【答案】90°解:因为AB∥CD,所以∠BAC+∠ACD=180°.因为CE,AE分别平分∠ACD,∠CAB,所以∠1+∠2=90°.17.【答案】∥;∥;⊥18.【答案】48°三、19.解:(1)如图,①直线PD即为所求;②直线PE,PF即为所求.(2)∠EPF=∠B.理由:因为PE∥BC(已知),所以∠AEP=∠B(两直线平行,同位角相等).又因为PF∥AB(已知),所以∠EPF=∠AEP(两直线平行,内错角相等),所以∠EPF=∠B(等量代换).(3)作∠MGH=∠ABC,以GH为一边在外侧再作∠HGN=∠ABC,即∠MGN=2∠ABC.20.解:因为AD∥BC(已知),所以∠1=∠3(两直线平行,内错角相等).因为∠1=∠2(已知),所以∠2=∠3.所以BE∥DF(同位角相等,两直线平行).所以∠3+∠4=180°(两直线平行,同旁内角互补).21.解:DC∥AB,理由如下:因为AC平分∠DAB,所以∠1=∠3.又因为∠1=∠2,所以∠2=∠3.所以DC∥AB(内错角相等,两直线平行).22.解:(1)因为CF平分∠DCE,所以∠1=∠2=∠DCE.因为∠DCE=90°,所以∠1=45°.因为∠3=45°,所以∠1=∠3.所以CF∥AB(内错角相等,两直线平行).(2)因为∠D=30°,∠1=45°,所以∠DFC=180°-30°-45°=105°.23.解:因为∠1+∠2=180°,所以AB∥CD.所以∠3=∠GOD.因为∠3=100°,所以∠GOD=100°.所以∠DOH=180°-∠GOD=180°-100°=80°.因为OK平分∠DOH,所以∠KOH=∠DOH=×80°=40°.24.解:因为AE平分∠BAD,所以∠1=∠2.因为AB∥CD,∠CFE=∠E,所以∠1=∠CFE=∠E.所以∠2=∠E.所以AD∥BC.25.解:题图①:∠APC+∠PAB+∠PCD=360°.理由:过点P向右作PE∥AB,如图①,因为AB∥CD,所以AB∥PE∥CD.所以∠A+∠1=180°,∠2+∠C=180°.所以∠A+∠1+∠2+∠C=360°.所以∠APC+∠PAB+∠PCD=360°.题图②:∠APC=∠PAB+∠PCD.理由:过点P向左作PE∥AB, 如图②,因为AB∥CD,所以AB∥PE∥CD.所以∠1=∠A,∠2=∠C.所以∠APC=∠1+∠2=∠PAB+∠PCD.题图③:∠APC=∠PAB-∠PCD.理由: 延长BA交PC于E, 如图③, 因为AB∥CD,所以∠1=∠C.因为∠PAB=180°-∠PAE=∠1+∠P,所以∠PAB=∠APC+∠PCD.所以∠APC=∠PAB-∠PCD.题图④:∠APC=∠PCD-∠PAB.理由:设AB与PC交于点Q,如图④,因为AB∥CD,所以∠1=∠C.因为∠1=180°-∠PQA=∠A+∠P, 所以∠P=∠1-∠A.所以∠APC=∠PCD-∠PAB.。

最新人教版初一数学下月考试卷(一、二章 )

最新人教版初一数学下月考试卷(一、二章 )

2013—2014学年七年级数学(下)周末辅导资料(05)理想文化教育培训中心学生姓名________ 得分_______一、选择题:1、在同一平面内,两条直线可能的位置关系是( )A. 平行B. 相交C. 相交或平行D. 垂直2、在-1.732,2,π, 3.41 ,2+3,3.212212221…,3.14这些数中,无理数的个数为( ).A.5B.2C.3D.43、如图,已知∠1=∠B,∠2=∠C,则下列结论不成立的是( )A.AD∥BCB.∠B=∠CC.∠2+∠B=180°D.AB∥CD4、下列各式中,正确的是( ).A.3355-=- B.6.06.3-=- C.13)13(2-=- D.636±=5、有下列说法:其中正确的说法的个数是()(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;(3)无理数包括正无理数、零、负无理数;(4)无理数都可以用数轴上的点来表示。

A.1 B.2 C.3 D.46、如图,直线AB、CD相交于点O,EF⊥AB于O,且∠COE=50°,则∠BOD等于( )A.40°B.45°C.55°D.65°7、()20.7-的平方根是()A.0.7- B.0.7± C.0.7 D.0.498、如图,若AB∥CD,则∠A、∠E、∠D之间的关系是( )A.∠A+∠E+∠D=180°B.∠A-∠E+∠D=180°C.∠A+∠E-∠D=180°D.∠A+∠E+∠D=270°二、填空题:9、如图,直线AB、CD相交于点O,OB平分∠DOE,若∠DOE=60°,则∠AOC的度数是_____10、如图,已知直线a∥b, c∥d,∠1=115°,则∠2=_____,∠3=_____.11、如图,已知AB∥CD,∠1=100°,∠2=120°,则∠α=_____.212、化简 =___________。

浙教版数学七年级下册第2章二元一次方程组单元检测(含答案)

浙教版数学七年级下册第2章二元一次方程组单元检测(含答案)

浙教版数学七年级下册第2章单元检测一、选择题1.下列方程中,属于二元一次方程的是( B ) A .x +xy =8 B .y =x -1 C .x +1x =2D .x 2-2x +1=02.方程组⎩⎨⎧3x +2y =19,2x -y =1的解为( A )A.⎩⎨⎧x =3,y =5B.⎩⎨⎧x =5,y =2C.⎩⎨⎧x =3,y =-5D.⎩⎨⎧x =5,y =93.已知⎩⎨⎧x =2,y =-1是关于x ,y 的方程2x +ay =6的一个解,则a 的值为( B )A .-3B .-2C .2D .3【解析】 ∵⎩⎨⎧x =2,y =-1是关于x ,y 的方程2x +ay =6的一个解,∴2×2-a =6,解得a =-2.4.已知式子12x a -1y 3与-3x -b y 2a +b 是同类项,则a ,b 的值为( A ) A.⎩⎨⎧a =2,b =-1 B.⎩⎨⎧a =2,b =1 C.⎩⎨⎧a =-2,b =-1 D.⎩⎨⎧a =-2,b =1 【解析】 由题意,得⎩⎨⎧a -1=-b ,3=2a +b ,解得⎩⎨⎧a =2,b =-1.5.某文具店一本练习本和一支水笔的价格合计为 3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x 元,水笔每支为y 元,那么下列方程组中,正确的是( B )A.⎩⎨⎧x -y =3,20x +10y =36B.⎩⎨⎧x +y =3,20x +10y =36 C.⎩⎨⎧y -x =3,20x +10y =36 D.⎩⎨⎧x +y =3,10x +20y =36 6.二元一次方程2x +y =11的非负的整数解有( C ) A .2个B .5个C .6个D .无数个【解析】 最小的非负的整数为0,当x =0时,0+y =11,解得y =11; 当x =1时,2+y =11,解得y =9; 当x =2时,4+y =11,解得y =7; 当x =3时,6+y =11,解得y =5; 当x =4时,8+y =11,解得y =3; 当x =5时,10+y =11,解得y =1;当x =6时,12+y =11,解得y =-1(不合题意,舍去),故当x ≥6时,不合题意, 故二元一次方程2x +y =11的非负的整数解有6个.7.如图,在3×3的方格中做填数游戏,要求每行、每列及对角线上三个方格中的数之和都相等,则表格中x ,y 的值为( A )A.⎩⎨⎧x =-1,y =1B.⎩⎨⎧x =1,y =-1C.⎩⎨⎧x =2,y =-1D.⎩⎨⎧x =-2,y =18.若方程组⎩⎨⎧a 1x +b 1y =c 1,a 2x +b 2y =c 2的解为⎩⎨⎧x =4,y =6,则方程组⎩⎨⎧4a 1x +3b 1y =5c 1,4a 2x +3b 2y =5c 2的解为( C )A.⎩⎨⎧x =4,y =6B.⎩⎨⎧x =5,y =6C.⎩⎨⎧x =5,y =10D.⎩⎨⎧x =10,y =15 【解析】 ∵⎩⎨⎧a 1x +b 1y =c 1,a 2x +b 2y =c 2的解为⎩⎨⎧x =4,y =6,∴⎩⎨⎧4a 1+6b 1=c 1,4a 2+6b 2=c 2,即⎩⎨⎧20a 1+30b 1=5c 1,20a 2+30b 2=5c 2.又∵⎩⎨⎧4a 1x +3b 1y =5c 1,4a 2x +3b 2y =5c 2,∴⎩⎨⎧4x =20,3y =30,解得⎩⎨⎧x =5,y =10.9.如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根高出水面的长度是它的13,另一根高出水面的长度是它的15.两根铁棒长度之和为110 cm ,此时木桶中水的深度是( C )第9题图A .60 cmB .50 cmC .40 cmD .30 cm【解析】 设较长的铁棒长度为x (cm),较短的铁棒长度为y (cm).由题意,得⎩⎪⎨⎪⎧x +y =110,⎝⎛⎭⎪⎫1-13x =⎝ ⎛⎭⎪⎫1-15y ,解得⎩⎨⎧x =60,y =50, ∴⎝ ⎛⎭⎪⎫1-13x =40,即木桶中水的深度是40 cm. 10.下列关于x ,y 的方程组⎩⎨⎧x +3y =4-a ,x -5y =3a 的说法中,正确的是( C )①⎩⎨⎧x =5,y =-1是方程组的解;②不论a 取什么实数,x +y 的值始终不变; ③当a =-2时,x 与y 相等. A .①②B .①③C .②③D .①②③【解析】 把⎩⎨⎧x =5,y =-1代入x +3y =4-a ,得5-3=4-a ,解得a =2.把⎩⎨⎧x =5,y =1,代入x -5y =3a ,得5+5=3a ,解得a =103,故①不正确;解方程⎩⎨⎧x +3y =4-a ,x -5y =3a ,得⎩⎪⎨⎪⎧x =a +52,y =1-a 2,∴x +y =3,故无论a 取何值,x +y 的值始终不变,故②正确; 把a =-2代入方程组,得⎩⎨⎧x +3y =6,x -5y =-6,两式相加,得2x -2y =0, ∴x =y ,故③正确.综上所述,正确的是②③.故选C. 二、填空题11.写出一个以⎩⎨⎧x =2,y =-3为解的二元一次方程组:__⎩⎨⎧x +y =-1,x -y =5(答案不唯一)__.12.已知方程组⎩⎨⎧2x +3y =12,3x +2y =18,则x +y =__6__.【解析】 ⎩⎨⎧2x +3y =12,①3x +2y =18.②①+②,得5x +5y =30, ∴5(x +y )=30, ∴x +y =6.13.如果方程组⎩⎨⎧x =3,ax +by =5的解与方程组⎩⎨⎧y =4,bx +ay =2的解相同,那么a =__-1__,b =__2__.14.对于有理数x ,y ,定义新运算“※”:x ※y =ax +by +1(a ,b 为常数).若3※4=9,4※7=5,则7※11=__13__.【解析】 ∵3※4=9,4※7=5,∴根据题中的新定义化简,可得⎩⎨⎧3a +4b =8,①4a +7b =4,②①+②,得7a +11b =12, 则7※11=7a +11b +1=12+1=13.15.《孙子算经》中记载:“今有三人共车,二车空.二人共车,九人步.问人和车各几何?”其大意是:今有若干人乘车,若每3人乘一辆车,则最终剩余2辆空车;若每2人同乘一辆车,则最终剩下9人因无车可乘而步行,问有多少人,多少辆车?设有x 辆车,y 个人,则由题意可列方程组为__⎩⎨⎧3(x -2)=y ,2x +9=y__.16.已知关于x ,y 的方程组⎩⎨⎧3x +y =24,4x +ay =18有正整数解,则整数a 的值为__-1__.【解析】 ⎩⎨⎧3x +y =24,①4x +ay =18,②①×4-②×3,得(4-3a )y =42,∴y =424-3a .∵方程组的解为正整数,且a 为整数, ∴a =1或-1.当a =1时,y =42,代入①可得x =-6,不合题意,舍去; 当a =-1时,y =6,代入①可得x =6,符合题意. 故整数a 的值为-1. 三、解答题 17.解下列方程组: (1)⎩⎨⎧3x -4y =24,2x +3y =-1.解:⎩⎨⎧3x -4y =24,①2x +3y =-1,②①×3+②×4,得17x =68,解得x =4. 把x =4代入①,得12-4y =24,解得y =-3. ∴原方程组的解为⎩⎨⎧x =4,y =-3. (2)⎩⎪⎨⎪⎧2(x -1)=3-y ,y -12-x -13=-1.解:方程组整理,得⎩⎨⎧2x +y =5,①2x -3y =5,②①-②,得4y =0,解得y =0. 把y =0代入①,得2x =5, 解得x =52.∴原方程组的解为⎩⎪⎨⎪⎧x =52,y =0.18.若等式(2x -4)2+⎪⎪⎪⎪⎪⎪y -12=0中的x ,y 是方程组⎩⎨⎧mx +4y =8,5x +16y =n的解,求m ,n 的值.解:∵(2x -4)2+⎪⎪⎪⎪⎪⎪y -12=0,∴2x -4=0且y -12=0, ∴x =2,y =12.把x =2,y =12代入⎩⎨⎧mx +4y =8,5x +16y =n ,得⎩⎨⎧2m +2=8,10+8=n ,解得⎩⎨⎧m =3,n =18.19.解方程组⎩⎨⎧ax +by =2,cx +5y =8时,一马虎的学生把c 写错而得⎩⎨⎧x =-3,y =1,而正确的解为⎩⎨⎧x =3,y =-2.求a +b -c 的值.解:把⎩⎨⎧x =-3,y =1和⎩⎨⎧x =3,y =-2分别代入ax +by =2,得⎩⎨⎧-3a +b =2,①3a -2b =2.②①+②,得-b =4,解得b =-4.把b =-4代入①,得-3a -4=2,解得a =-2. 把⎩⎨⎧x =3,y =-2代入cx +5y =8,得3c -10=8,解得c =6, ∴a +b -c =-2-4-6=-12.20.如图,在大长方形ABCD 中,放入六个相同的小长方形,已知BC =11,DE =7. (1)设每个小长方形的长为x ,宽为y ,求x ,y 的值. (2)求图中阴影部分的面积.第20题图解:(1)由题意,得⎩⎨⎧x +y -2y =7,x +3y =11,解得⎩⎨⎧x =8,y =1.(2)S 阴影=11×(8+1)-6×1×8=51. 答:图中阴影部分的面积为51. 21.阅读理解:善于思考的小聪在解方程组⎩⎨⎧2x -3y =3,①2x -5y =5②时,发现①和②之间存在一定关系,他的解法如下:解:把②变形为2x -3y -2y =5.③ 把①代入③,得3-2y =5, 解得y =-1.把y =-1代入①,得x =0,∴原方程组的解为⎩⎨⎧x =0,y =-1.小聪的这种解法叫“整体换元法”.请用“整体换元法”解下列方程组: (1)⎩⎨⎧2x +5y =3,3x +5y =2.解:解方程组⎩⎨⎧2x +5y =3,①3x +5y =2.②把②变形为x +2x +5y =2.③把①代入③,得x +3=2,解得x =-1. 把x =-1代入①,得y =1, ∴原方程组的解为⎩⎨⎧x =-1,y =1.(2)⎩⎨⎧3x -2y =5,9x -4y =19.解:解方程组⎩⎨⎧3x -2y =5,①9x -4y =19.②把②变形为3(3x -2y )+2y =19.③ 把①代入③,得3×5+2y =19, 解得y =2.把y =2代入①,得x =3, ∴原方程组的解为⎩⎨⎧x =3,y =2.22.在手工制作课上,老师组织班级同学用硬纸制作圆柱形茶叶筒.全班共有学生50人,其中男生x 人,女生y 人,男生人数比女生人数少 2人.已知每名同学每小时剪筒身40个或剪筒底120个.(1)求这个班男生、女生各有多少人?(2)原计划男生负责剪筒底,女生负责剪筒身,若要求一个筒身配两个筒底,请说明每小时剪出的筒身与筒底能否配套?如果不配套,请说明如何调配人员,才能使每小时剪出的筒身与筒底刚好配套?解:(1)由题意,得⎩⎨⎧x +y =50,x =y -2,解得⎩⎨⎧x =24,y =26.答:这个班有男生有24人,女生有26人.(2)男生每小时剪筒底的数量为24×120=2 880(个), 女生每小时剪筒身的数量为26×40=1 040(个). ∵一个筒身配两个筒底,2 880∶1 040≠2∶1,∴原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套. 设男生应向女生支援a 人,由题意,得120(24-a )=(26+a )×40×2, 解得a =4.答:原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套.男生应向女生支援4人,才能使每小时剪出的筒身与筒底配套.23.小明为练习书法,去商店购买书法用品,购买发票上有部分信息不慎被墨汁污染导致无法看清,如下表所示.请解答下列问题:(1)小明购买墨水和毛笔各多少?(2)若小明再次购买墨水和字帖两种用品共花费150元,则有哪几种不同的购买方案? 解:(1)设小明购买墨水x 瓶,毛笔y 支. 由题意,得⎩⎨⎧x +y +2=5,15x +40y +90=185,解得⎩⎨⎧x =1,y =2. 答:小明购买墨水1瓶,毛笔2支. (2)字帖的单价为90÷2=45(元). 设再次购买墨水m 瓶,字帖n 本, 由题意,得15m +45n =150,∴m =10-3n . 又∵m ,n 均为正整数, ∴⎩⎨⎧m =1,n =3或⎩⎨⎧m =4,n =2或⎩⎨⎧m =7,n =1, ∴共有3种购买方案:方案一:购买1瓶墨水,3本字帖;方案二:购买4瓶墨水,2本字帖;方案三:购买7瓶墨水,1本字帖.。

【单元卷】浙教版七年级数学下册:第2章 二元一次方程组 单元质量检测卷(一)含答案与解析

【单元卷】浙教版七年级数学下册:第2章 二元一次方程组  单元质量检测卷(一)含答案与解析

浙教版七年级数学下册单元质量检测卷(一)第2章二元一次方程组姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,考试时间90分钟,试题共25题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列方程组中,是二元一次方程组的是()A.B.C.D.2.若(a﹣1)x|a|﹣1+3y=1是关于x、y的二元一次方程,则a=()A.1 B.2 C.﹣2 D.2和﹣23.《孙子算经》中有这样一个问题:“用绳子去量一根木材的长,绳子还余4.5尺;将绳子对折再量木材的长,绳子比木材的长短1尺,问木材的长为多少尺?”若设木材的长为x尺,绳子长为y尺,则根据题意列出的方程组是()A.B.C.D.4.在“幻方拓展课程”探索中,小明在如图的3×3方格内填入了一些表示数的代数式,若图中各行、各列及对角线上的三个数之和都相等,则x﹣y=()A.2 B.4 C.6 D.85.已知关于x,y的方程组的解都为非负数,若a+b=4,W=3a﹣2b,则W的最小值为()A.2 B.1 C.﹣3 D.﹣56.某球队参加比赛,开局11场保持不败,积23分,按比赛规则,胜一场得3分,平一场得1分,则该队获胜的场数为()A.4 B.5 C.6 D.77.已知关于x、y的二元一次方程组的解满足x>y,且关于x的不等式组无解,那么所有符合条件的整数a的个数为()A.6个B.7个C.8个D.9个8.用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒.现有m张正方形纸板和n张长方形纸板,如果做两种纸盒若干个,恰好将纸板用完,则m+n的值可能是()A.200 B.201 C.202 D.2039.已知关于x,y的方程组,将此方程组的两个方程左右两边分别对应相加,得到一个新的方程,当m每取一个值时,就有一个方程,这些方程有一个公共解,这个公共解为()A.B.C.D.10.已知关于x,y的二元一次方程组,给出下列结论中正确的是()①当这个方程组的解x,y的值互为相反数时,a=﹣2;②当a=1时,方程组的解也是方程x+y=4+2a的解;③无论a取什么实数,x+2y的值始终不变;④若用x表示y,则y=﹣;A.①②B.②③C.②③④D.①③④二、填空题(本大题共8小题,每小题4分,共32分.不需写出解答过程,请把答案直接填写在横线上)11.一支部队第一天行军4小时,第二天行军5小时,两天共行军196千米,如果设第一天每小时行军x千米,第二天每小时行军y千米,依题意,可列方程为.12.足球比赛的计分规则为:胜一场积3分,平一场积1分,负1场积0分.初三(1)班在校足球联赛中踢了17场,其中负4场,共积31分,那么这支足球队胜了场.13.如果关于x、y的方程组的解满足x﹣2y=﹣1,则k的值=.14.方程2x+y=3的正整数解是.15.|3a+2b+7|+(5a﹣2b+1)2=0,则a+b=.16.已知关于x,y的二元一次方程组的解为,则关于m,n的方程组的解是.17.定义一种新的运算:a☆b=2a﹣b,例如:3☆(﹣1)=2×3﹣(﹣1)=7,那么(1)若(﹣2)☆b=﹣16,那么b=;(2)若a☆b=0,且关于x,y的二元一次方程(a﹣1)x+by+5﹣2a=0,当a,b取不同值时,方程都有一个公共解,那么这个公共解为.18.“驴友”小明分三次从M地出发沿着不同的线路(A线,B线,C线)去N地.在每条线路上行进的方式都分为穿越丛林、涉水行走和攀登这三种.他涉水行走4小时的路程与攀登6小时的路程相等.B线、C线路程相等,都比A线路程多32%,A线总时间等于C线总时间的,他用了3小时穿越丛林、2小时涉水行走和2小时攀登走完A线,在B线中穿越丛林、涉水行走和攀登所用时间分别比A线上升了20%,50%,50%,若他用了x小时穿越丛林、y小时涉水行走和z小时攀登走完C线,且x,y,z都为正整数,则=.三、解答题(本大题共7小题,共58分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.解方程组:(1);(2).20.解方程或方程组(1)=﹣1;(2).21.已知是方程组的解,求(a+b)2﹣(a﹣b)(a+b)的值.22.请阅读求绝对值不等式|x|<3和|x|>3的解集过程.对于绝对值不等式|x|<3,从图1的数轴上看:大于﹣3而小于3的绝对值是小于3的,所以|x|<3的解集为﹣3<x<3;对于绝对值不等式|x|>3,从图2的数轴上看:小于﹣3而大于3的绝对值是大于3的,所以|x|>3的解集为x<﹣3或x>3.已知关于x,y的二元一次方程组的解满足|x+y|≤3,其中m是负整数,求m的值.23.某公司计划购买A,B两种型号的打印机共20台,通过市场调研发现,购买3台A型打印机和4台B型打印机需6180元;购买4台A型打印机和6台B型打印机需8840元.(1)求购买A,B两种型号打印机每台的价格分别是多少元?(2)根据公司实际情况,要求购买A型打印机的数量不低于B型打印机数量的,不超过B型打印机数量的一半,且购买这两种型号打印机的总费用不能超过17800元,求该公司按计划购买A,B两种型号打印机共有几种购买方案,哪种方案费用最低?并求出最低费用.24.已知:用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨,某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运转,且恰好每辆车都装满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)请你帮该物流公司设计,有几种租车方案?(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次,请选出最省钱的租车方案,并求出最少租车费.25.阅读下列解方程组的方法,然后解答问题:解方程组时,由于x、y的系数及常数项的数值较大,如果用常规的代入消元法、加减消元法来解,那将是计算量大,且易出现运算错误,而采用下面的解法则比较简单:②﹣①得:3x+3y=3,所以x+y=1③③×14得:14x+14y=14④①﹣④得:y=2,从而得x=﹣1所以原方程组的解是(1)请你运用上述方法解方程组(2)请你直接写出方程组的解是;(3)猜测关于x、y的方程组(m≠n)的解是什么?并用方程组的解加以验证.参考答案与解析一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列方程组中,是二元一次方程组的是()A.B.C.D.【答案】A【分析】根据二元一次方程组的定义逐个判断即可.【解答】解:A.是二元一次方程组,故本选项符合题意;B.是二元二次方程组,不是二元一次方程组,故本选项不符合题意;C.是二元二次方程组,不是二元一次方程组,故本选项不符合题意;D.第二个方程不是整式方程,不是二元一次方程组,故本选项不符合题意;故选:A.【知识点】二元一次方程组的定义2.若(a﹣1)x|a|﹣1+3y=1是关于x、y的二元一次方程,则a=()A.1 B.2 C.﹣2 D.2和﹣2【答案】D【分析】利用二元一次方程定义可得答案.【解答】解:由题意得:|a|﹣1=1,且a﹣1≠0,解得:a=±2,故选:D.【知识点】绝对值、二元一次方程的定义3.《孙子算经》中有这样一个问题:“用绳子去量一根木材的长,绳子还余4.5尺;将绳子对折再量木材的长,绳子比木材的长短1尺,问木材的长为多少尺?”若设木材的长为x尺,绳子长为y尺,则根据题意列出的方程组是()A.B.C.D.【答案】C【分析】根据“用绳子去量一根木材的长,绳子还余4.5尺;将绳子对折再量木材的长,绳子比木材的长短1尺”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:依题意得:.故选:C.【知识点】由实际问题抽象出二元一次方程组4.在“幻方拓展课程”探索中,小明在如图的3×3方格内填入了一些表示数的代数式,若图中各行、各列及对角线上的三个数之和都相等,则x﹣y=()A.2 B.4 C.6 D.8【答案】C【分析】由图中各行、各列及对角线上的三个数之和都相等,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入(x﹣y)中即可求出结论.【解答】解:依题意得:,解得:,∴x﹣y=8﹣2=6.故选:C.【知识点】二元一次方程组的应用5.已知关于x,y的方程组的解都为非负数,若a+b=4,W=3a﹣2b,则W的最小值为()A.2 B.1 C.﹣3 D.﹣5【答案】C【分析】根据关于x,y的方程组的解都为非负数,可以求得a的取值范围,再根据a+b=4,W=3a﹣2b和一次函数的性质,可以得到W的最小值.【解答】解:由方程组可得,,∵关于x,y的方程组的解都为非负数,∴,解得,1≤a≤3,∵a+b=4,W=3a﹣2b,∴b=4﹣a,∴W=3a﹣2(4﹣a)=5a﹣8,∴W随a的增大而增大,∴当a=1时,W取得最小值,此时W=﹣3,故选:C.【知识点】二元一次方程组的解、一次函数的性质、解一元一次不等式组6.某球队参加比赛,开局11场保持不败,积23分,按比赛规则,胜一场得3分,平一场得1分,则该队获胜的场数为()A.4 B.5 C.6 D.7【答案】C【分析】设该队获胜了x场,平局了y场,由题意列出二元一次方程组,解方程组即可.【解答】解:设该队获胜了x场,平局了y场,由题意得:,解得:,即该队获胜的场数为6,故选:C.【知识点】一元一次方程的应用、二元一次方程组的应用7.已知关于x、y的二元一次方程组的解满足x>y,且关于x的不等式组无解,那么所有符合条件的整数a的个数为()A.6个B.7个C.8个D.9个【答案】B【分析】先求出方程组和不等式的解集,再求出a的范围,最后得出答案即可.【解答】解:解方程组得:,∵关于x、y的二元一次方程组的解满足x>y,∴2a+1>a﹣2,解得:a>﹣3,,∵解不等式①得:x,解不等式②得:x≥,又∵关于x的不等式组无解,∴≥a﹣,解得:a≤4,即﹣3<a≤4,∴所有符合条件的整数a的个数为7个(﹣2,﹣1,0,1,2,3,4,共7个),故选:B.【知识点】解一元一次不等式组、解一元一次不等式、二元一次方程组的解8.用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒.现有m张正方形纸板和n张长方形纸板,如果做两种纸盒若干个,恰好将纸板用完,则m+n的值可能是()A.200 B.201 C.202 D.203【答案】A【分析】设做竖式和横式的两种无盖纸盒分别为x个、y个,然后根据所需长方形纸板和正方形纸板的张数列出方程组,再根据x、y的系数表示出m+n并判断m+n为5的倍数,然后选择答案即可.【解答】解:设做竖式和横式的两种无盖纸盒分别为x个、y个,根据题意得,,两式相加得,m+n=5(x+y),∵x、y都是正整数,∴m+n是5的倍数,∵200、201、202、203四个数中只有200是5的倍数,∴m+n的值可能是200.故选:A.【知识点】二元一次方程组的应用9.已知关于x,y的方程组,将此方程组的两个方程左右两边分别对应相加,得到一个新的方程,当m每取一个值时,就有一个方程,这些方程有一个公共解,这个公共解为()A.B.C.D.【答案】C【分析】根据筛选法完成选择题的方法即可求得结论.【解答】解:将代入方程①,得m=﹣,再将m=﹣,x=5,y=﹣4代入方程②中,左边=,右边=.方程左右两边相等.其它选项的x、y的值代入方程中都不能使方程两边相等.所以这个公共解为故选:C.【知识点】解二元一次方程组、二元一次方程组的解10.已知关于x,y的二元一次方程组,给出下列结论中正确的是()①当这个方程组的解x,y的值互为相反数时,a=﹣2;②当a=1时,方程组的解也是方程x+y=4+2a的解;③无论a取什么实数,x+2y的值始终不变;④若用x表示y,则y=﹣;A.①②B.②③C.②③④D.①③④【答案】C【分析】根据方程组的解法可以得到x+y=2+a,①令x+y=0,即可求出a的值,验证即可,②由①得x+y=0,而x+y=4+2a,求出a的值,再与a=1比较得出答案,③解方程组可求出方程组的解,再代入x+2y求值即可,④用含有x、y的代数式表示a,进而得出x、y的关系,【解答】解:于x,y的二元一次方程组,①+②得,2x+2y=4+2a,即:x+y=2+a,(1)①当方程组的解x,y的值互为相反数时,即x+y=0时,即2+a=0,∴a=﹣2,故①正确,(2)②原方程组的解满足x+y=2+a,当a=1时,x+y=3,而方程x+y=4+2a的解满足x+y=6,因此②不正确,(3)方程组,解得,∴x+2y=2a+1+2﹣2a=3,因此③是正确的,(4)方程组,由方程①得,a=4﹣x﹣3y代入方程②得,x﹣y=3(4﹣x﹣3y),即;y=﹣+因此④是正确的,故选:C.【知识点】二元一次方程组的解、二元一次方程的解、解二元一次方程组二、填空题(本大题共8小题,每小题4分,共32分.不需写出解答过程,请把答案直接填写在横线上)11.一支部队第一天行军4小时,第二天行军5小时,两天共行军196千米,如果设第一天每小时行军x千米,第二天每小时行军y千米,依题意,可列方程为.【答案】4x+5y=196【分析】根据路程=速度×时间,即可得出关于x,y的二元一次方程,此题得解.【解答】解:依题意,得:4x+5y=196.故答案为:4x+5y=196.【知识点】由实际问题抽象出二元一次方程12.足球比赛的计分规则为:胜一场积3分,平一场积1分,负1场积0分.初三(1)班在校足球联赛中踢了17场,其中负4场,共积31分,那么这支足球队胜了场.【答案】9【分析】设这支足球队胜了x场,平了y场,根据“初三(1)班在校足球联赛中踢了17场,其中负4场,共积31分”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设这支足球队胜了x场,平了y场,依题意,得:,解得:.故答案为:9.【知识点】一元一次方程的应用、二元一次方程组的应用13.如果关于x、y的方程组的解满足x﹣2y=﹣1,则k的值=.【分析】将k看做已知数求出方程组的解,代入已知方程计算即可求出k的值.【解答】解:,①+②得:3x=5+k,解得:x=,则y=2+2k﹣=k+,故x﹣2y=﹣2×(k+)=﹣3k+1=﹣1,解得:k=.故答案为:.【知识点】二元一次方程组的解14.方程2x+y=3的正整数解是.【分析】把x看做已知数求出y,即可确定出正整数解.【解答】解:方程整理得:y=3﹣2x,当x=1时,y=1,则方程的正整数解为,故答案为:【知识点】解二元一次方程15.|3a+2b+7|+(5a﹣2b+1)2=0,则a+b=.【答案】-3【分析】由|3a+2b+7|+(5a﹣2b+1)2=0,可得:3a+2b+7=0和5a﹣2b+1=0,解方程组可得a和b的值,问题可求.【解答】解:由题意得:,解方程组得:a=﹣1,b=﹣2,∴a+b=﹣3.【知识点】非负数的性质:偶次方、解二元一次方程组、非负数的性质:绝对值16.已知关于x,y的二元一次方程组的解为,则关于m,n的方程组的解是.【分析】设,根据已知方程组的解确定出m与n的值即可.【解答】解:设,可得,解得:,故答案为:.【知识点】二元一次方程组的解、解二元一次方程组17.定义一种新的运算:a☆b=2a﹣b,例如:3☆(﹣1)=2×3﹣(﹣1)=7,那么(1)若(﹣2)☆b=﹣16,那么b=;(2)若a☆b=0,且关于x,y的二元一次方程(a﹣1)x+by+5﹣2a=0,当a,b取不同值时,方程都有一个公共解,那么这个公共解为.【分析】(1)根据新定义代入数据计算即可求解;(2)根据新定义可得b=2a,代入方程得到(a﹣1)x+2ay+5﹣2a=0,则(x+2y﹣2)a=x﹣5,根据当a,b取不同值时,方程都有一个公共解,得到方程组,解方程组即可求解.【解答】解:(1)∵(﹣2)☆b=﹣16,∴2×(﹣2)﹣b=﹣16,解得b=12;(2)∵a☆b=0,∴2a﹣b=0,∴b=2a,则方程(a﹣1)x+by+5﹣2a=0可以转化为(a﹣1)x+2ay+5﹣2a=0,则(x+2y﹣2)a=x﹣5,∵当a,b取不同值时,方程都有一个公共解,∴,解得.故这个公共解为.故答案为:12;.【知识点】解一元一次方程、有理数的混合运算、二元一次方程的解18.“驴友”小明分三次从M地出发沿着不同的线路(A线,B线,C线)去N地.在每条线路上行进的方式都分为穿越丛林、涉水行走和攀登这三种.他涉水行走4小时的路程与攀登6小时的路程相等.B线、C线路程相等,都比A线路程多32%,A线总时间等于C线总时间的,他用了3小时穿越丛林、2小时涉水行走和2小时攀登走完A线,在B线中穿越丛林、涉水行走和攀登所用时间分别比A线上升了20%,50%,50%,若他用了x小时穿越丛林、y小时涉水行走和z小时攀登走完C线,且x,y,z都为正整数,则=.【分析】因为他涉水行走4小时的路程与攀登6小时的路程相等,所以可以假设涉水行走的速度为3nkm/h 与攀登的速度为2nkm/h,穿越丛林的速度为mkm/h.由题意:,可得m=5n,5x+3y+2z=33 ①,x+y+z=14 ②,由①②消去z得到:3x+y=5,求出整数解即可解决问题.【解答】解:∵他涉水行走4小时的路程与攀登6小时的路程相等,∴可以假设涉水行走的速度为3nkm/h与攀登的速度为2nkm/h,穿越丛林的速度为mkm/h.由题意:,可得m=5n,5x+3y+2z=33 ①∵x+y+z=14 ②,由①②消去z得到:3x+y=5,∵x,y是正整数,∴x=1,y=2,z=11,∴==,故答案为.【知识点】三元一次方程组的应用三、解答题(本大题共7小题,共58分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.解方程组:(1);(2).【分析】(1)由①得2x=3y+5③,代入②求出y,再把y的值代入③求出x即可;(2)方程组整理后利用加减消元法解答即可.【解答】(1),由①得,2x=3y+5③,将③代入②中,得 2(3y+5)﹣5y=7,整理,得y=﹣3,把y=﹣3代入③,得 2x=﹣9+5,解得,x=﹣2.∴;(2)原方程组变为,①﹣②,得y=,将y=代入①,得5x+15×=6,解得x=0,所以原方程组的解为.【知识点】解二元一次方程组20.解方程或方程组(1)=﹣1;(2).【分析】(1)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)把原方程组整理后,再利用加减消元法解答即可.【解答】解:(1)去分母得:3(3x﹣1)﹣4(x+2)=﹣12,去括号得:9x﹣3﹣4x﹣8=﹣12,移项合并得:5x=1,解得:x=;(2)原方程组整理得:,①×3+②得:17m=17,解得m=1,把m=1代入①得,5+n=6,解得n=1.所以原方程组的解为:.【知识点】解一元一次方程、解二元一次方程组21.已知是方程组的解,求(a+b)2﹣(a﹣b)(a+b)的值.【分析】将代入方程组,求出a﹣b=﹣1,a+b=1,则可求出代数式的值.【解答】解:把代入方程组,得,整理得,∴(a+b)2﹣(a﹣b)(a+b)=12﹣(﹣1)×1=2.【知识点】二元一次方程组的解22.请阅读求绝对值不等式|x|<3和|x|>3的解集过程.对于绝对值不等式|x|<3,从图1的数轴上看:大于﹣3而小于3的绝对值是小于3的,所以|x|<3的解集为﹣3<x<3;对于绝对值不等式|x|>3,从图2的数轴上看:小于﹣3而大于3的绝对值是大于3的,所以|x|>3的解集为x<﹣3或x>3.已知关于x,y的二元一次方程组的解满足|x+y|≤3,其中m是负整数,求m的值.【分析】根据题意由|x+y|≤3得出﹣3≤x+y≤3,解二元一次方程组,得出x+y=﹣m﹣1,得到不等式组﹣3≤﹣m﹣1≤3,求出m值,结合m为负整数即可得出结果.【解答】解:∵|x+y|≤3,∴﹣3≤x+y≤3,解,①+②得:3x+3y=﹣3m﹣3,∴x+y=﹣m﹣1,则﹣3≤﹣m﹣1≤3,解得:﹣4≤m≤2,又m是负整数,∴m的值为﹣4或﹣3或﹣2或﹣1.【知识点】不等式的解集、二元一次方程组的解、绝对值、数轴23.某公司计划购买A,B两种型号的打印机共20台,通过市场调研发现,购买3台A型打印机和4台B型打印机需6180元;购买4台A型打印机和6台B型打印机需8840元.(1)求购买A,B两种型号打印机每台的价格分别是多少元?(2)根据公司实际情况,要求购买A型打印机的数量不低于B型打印机数量的,不超过B型打印机数量的一半,且购买这两种型号打印机的总费用不能超过17800元,求该公司按计划购买A,B两种型号打印机共有几种购买方案,哪种方案费用最低?并求出最低费用.【分析】(1)设购买A种型号打印机每台的价格是x元,购买B种型号打印机每台的价格是y元,根据购买3台A型打印机和4台B型打印机需6180元;购买4台A型打印机和6台B型打印机需8840元l列方程组求解;(2)设购买A种型号打印机m台,则购买B种型号打印机(20﹣m)台,根据要求购买A型打印机的数量不低于B型打印机数量的,不超过B型打印机数量的一半;购买这两种型号打印机的总费用不能超过17800元;可列不等式组求解.【解答】解:(1)设购买A种型号打印机每台的价格是x元,购买B种型号打印机每台的价格是y元,依题意有,解得.故购买A种型号打印机每台的价格是860元,购买B种型号打印机每台的价格是900元;(2)设购买A种型号打印机m台,则购买B种型号打印机(20﹣m)台,依题意有,解得:4≤m≤5.故共有两种购买方案:购买A种型号打印机4台,购买B种型号打印机16台,费用为860×4+900×16=17840(元);购买A种型号打印机5台,购买B种型号打印机15台,费用为860×5+900×15=17800(元);∵17840>17800,∴购买A种型号打印机5台,购买B种型号打印机15台,费用最低,最低费用为17800元.【知识点】一元一次不等式组的应用、二元一次方程组的应用24.已知:用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨,某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运转,且恰好每辆车都装满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)请你帮该物流公司设计,有几种租车方案?(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次,请选出最省钱的租车方案,并求出最少租车费.【分析】(1)设1辆A型车和1辆B型车一次分别可以运货x吨,y吨,根据题意列出方程组,求出方程组的解得到x与y的值,即可确定出所求;(2)根据某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,列出方程,确定出a的范围,根据a为整数,确定出a的值即可确定出具体租车方案.【解答】解:(1)设1辆A型车和1辆B型车一次分别可以运货x吨,y吨,根据题意得:,解得:,则1辆A型车和1辆B型车一次分别可以运货3吨,4吨;(2)∵某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,∴3a+4b=31,则有,解得:0≤a≤10,∵a为整数,∴a=1,2, (10)∵b==7﹣a+为整数,∴a=1,5,9,∴a=1,b=7;a=5,b=4;a=9,b=1,∴满足条件的租车方案一共有3种,a=1,b=7;a=5,b=4;a=9,b=1;(3)∵A型车每辆需租金100元/次,B型车每辆需租金120元/次,当a=1,b=7,租车费用为:W=100×1+7×120=940元;当a=5,b=4,租车费用为:W=100×5+4×120=980元;当a=9,b=1,租车费用为:W=100×9+1×120=1020元,∴当租用A型车1辆,B型车7辆时,租车费最少.【知识点】二元一次方程组的应用、二元一次方程的应用、一次函数的应用25.阅读下列解方程组的方法,然后解答问题:解方程组时,由于x、y的系数及常数项的数值较大,如果用常规的代入消元法、加减消元法来解,那将是计算量大,且易出现运算错误,而采用下面的解法则比较简单:②﹣①得:3x+3y=3,所以x+y=1③③×14得:14x+14y=14④①﹣④得:y=2,从而得x=﹣1所以原方程组的解是(1)请你运用上述方法解方程组(2)请你直接写出方程组的解是;(3)猜测关于x、y的方程组(m≠n)的解是什么?并用方程组的解加以验证.【分析】(1)、(2)利用“加减消元”来解方程组;(3)先假设该方程组的解,然后代入原方程组验证即可.【解答】解:(1)②﹣①得:3x+3y=3,所以x+y=1③③×2005得:2005x+2005y=2005④①﹣④得:y=2,把y=2代入③得:x+2=1,解得:x=﹣1所以原方程组的解是:(2)(3)当x=﹣1,y=2时,第一个方程:左边=﹣m+(m+1)×2=﹣m+2m+2=m+2=右边第二个方程:左边=﹣n+(n+1)×2=﹣n+2n+2=n+2=右边∴是原方程组的解.【知识点】解二元一次方程组。

人教版七年级下册数学第一与二章试题与答案

人教版七年级下册数学第一与二章试题与答案

人教版七年级下册数学第一与二章试题一、选择题(共10小题,每题3分,共30分)1.下列图形中,∠1与∠2是对顶角的是()【答案】C.2.如图,OA⊥OB,若∠1=55°,则∠2的度数是()A.35°B.40°C.45°D.60°【答案】A.3.如图,能确定l1∥l2的α为()A.140°B.150°C.130°D.120°【答案】A4.如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF,若∠1=50°,则∠2的度数是()A.70°B.65°C.60°D.50°【答案】B.5.如图,AD平分∠BAC,DE∥AC交AB于点E,∠1=25°,则∠BED等于A .40°B .50°C .60°D .25° 【答案】B6.在6×6方格中,将图1中的图形N 平移后位置如图2所示,则图形N 的平移方法中,正确的是( )A .向下移动1格B .向上移动1格C .向上移动2格D .向下移动2格 【答案】D.7.4的平方根是( )A .4B .2C .2D .±2 【答案】D.8.在|﹣5|,0,﹣3,2四个数中,最小的数是( )A.|﹣5|B.0C.﹣3D.【答案】C9.下列说法不正确的是( )A 、51251±的平方根是 B 、3273-=-C 、4是16的平方根D 、-7是-49的平方根 【答案】D 【解析】 试题分析:A 、251的平方根是±51,正确;B 、﹣3是﹣27的立方根,正确;C 、16的算术平方根是4,正确;D 、﹣49没有平方根,错误; 故选D .10.下列计算正确的是A 、525±=B 、3)3(2-=-C 、51253±=D 、3273-=- 【答案】D. 【解析】试题分析:A 、2555=≠±,故错误; B 、2(3)|3|33-=-=≠- ,故错误; C 、312555=≠±,故错误;D 、3273-=-,故正确.[来源:学&科&网] 故选D.二、填空题(共10小题,每题3分,共30分)11.如图,直线a 、b 相交于点O ,∠1=50°,则∠2= 度.【答案】50.12.已知三条不同的直线a ,b ,c 在同一平面内,下列四个命题: ①如果a//b ,a ⊥c ,那么b ⊥c ; ②如果b//a ,c//a ,那么b//c ; ③如果b ⊥a ,c ⊥a ,那么b ⊥c ; ④如果b ⊥a ,c ⊥a ,那么b//c .其中真命题的是 .(填写所有真命题的序号) 【答案】①②④. 【解析】试题分析:①如果a ∥b ,a ⊥c ,那么b ⊥c 是真命题,故①正确;②如果b ∥a ,c ∥a ,那么b ∥c 是真命题,故②正确;③如果b ⊥a ,c ⊥a ,那么b ⊥c 是假命题,故③错误;④如果b ⊥a ,c ⊥a ,那么b ∥c 是真命题,故④正确.故答案为:①②④.13.已知:如图,∠1=∠2=∠3=50°则∠4的度数是 .【答案】130°14.如图:AB∥CD,∠B=115°,∠C=45°,则∠BEC=_______.【答案】110°【解析】试题分析:延长AB和CE交于M,∵AB∥CD,∠C=45°,∴∠M=∠C=45°,∵∠B=115°,∴∠MBE=180°-115°=65°,∴∠BEC=∠M+∠MBE=45°+65°=110°15.如图,已知直线a∥b,∠1=120°,则∠2的度数是°.【答案】60°【解析】试题分析:如图,根据平行线的性质:两直线平行,同位角相等,由a∥b可得∠1=∠3=120°,再根据∠2+∠3=180°,可求得∠2=60°.16.如图,一张长为12cm,宽为6cm的长方形白纸中阴影部分的面积(阴影部分间距均匀)是cm2.【答案】12.17.-8的立方根是,81的算术平方根是.【答案】-2,3.【解析】试题分析:-8的立方根是-2,81的算术平方根,即9的算术平方根,所以81的算术平方根是 3. 故答案为:-2;3. 18.的平方根是916__________, 64的立方根是__________【答案】±34,2 【解析】 试题分析:的平方根是91616493±=±,64的立方根即8的立方根是2. 19.请你写出一个无理数 【答案】π. 【解析】试题分析:由题意可得,π是无理数.20.如图,数轴上M 、N 两点表示的数分别为3和5.2,则M 、N 两点之间表示整数的点共有 个.【答案】4.三、解答题(共60分)21.(6分)计算:(-1)2438-5︱ 【答案】0 【解析】试题分析:先求平方,算术平方根,立方根,绝对值,最后再求和 试题解析:原式=1+2+2-5=0 22.(10分)计算:(1)已知:(x +2)2=25,求x ; (23416825-+【答案】(1)3,-7 (2)512 23.(6分)画出数轴,在数轴上表示下列各数,并用“<”连接: -2,25,0 ,38【答案】数轴见解析,-2<0<25 <38 01-1【解析】试题分析:先将38化简成2,然后比较大小,最后在数轴上表示. 试题解析:因为38=2,所以-2<0<25 <38,数轴上表示如图:24.(8分)已知:如图, AB ⊥CD 于点O ,∠1=∠2,OE 平分∠BOF ,∠EOB=55°,求∠DOG 的度数.【答案】70°. 【解析】试题分析:由OE 为角平分线,利用角平分线定义得到∠BOF=2∠EOB ,根据∠EOB 的度数求出∠BOF 的度数,再由AB 与CD 垂直,利用垂直的定义得到一对角为直角,根据∠1的度数求出∠2的度数,根据∠DOG 与∠2互余即可求出∠DOG 的度数.试题解析:∵OE 平分∠BOF ,∴∠BOF=2∠EOB ,∵∠EOB=55°,∴∠BOF=110°,∵AB ⊥CD ,∴∠AOD=∠BOC=90°,∴∠1=20°,又∵∠1=∠2,∴∠2=20°,∴∠DOG=70°25.(8分)如图,AB ∥CD,直线EF 交AB 、CD 于点G 、H.如果GM 平分∠BGF,HN 平分∠CHE ,那么,GM 与HN 平行吗?为什么?【答案】GM ∥HN ,理由略26.(6分)完成下面的解题过程,并在括号内填上依据. 如图,EF ∥AD,∠1=∠2,∠BAC=85°.求∠AGD 的度数ABCD EFGH MN解:∵EF∥AD,∴∠2=____( )又∵∠1=∠2∴∠1=∠3∴∥____( )∴∠BAC+____=180°∵∠BAC=85°∴∠AGD=950【答案】∠3;两直线平行,同位角相等;DG AB;内错角相等,两直线平行;∠AGD27.(8分)看图填空:已知:如图,AD⊥BC于D,EF⊥BC于F,交AB于G,交CA延长线于E,∠1=∠2.求证:AD平分∠BAC.【答案】证明略28.(6分)如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为;(2)画出小鱼向左平移7格后的图形.(不要求写作图步骤和过程)【答案】(1)16;(2)画图略。

七年级数学第一、二章单元质量检测试题

七年级数学第一、二章单元质量检测试题

七年级数学第一、二章质量检测试题时间 45分钟 姓名: 成绩等级:一、选择题:1.下列说法中,正确的个数有( ).(1)射线AB 和射线BA 是同一条射线 (2)延长射线MN 到C(3)延长线段MN 到A 使NA==2MN (4)连结两点的线段叫做两点间的距离A .1B .2C .3D .42.已知点A 、B 、C 都是直线l 上的点,且AB=5cm ,BC=3cm ,那么点A 与点C 之间的距离是( ).A .8cmB .2cmC .8cm 或2cmD .4cm3.如图1,C 是线段AB 的中点,D 是CB 上一点,下列说法中错误的是( ).A .CD=AC-BDB .CD=21BC C .CD=21AB-BD D .CD=AD-BC 4. -2的相反数是( )A .-2B .2C .±2D .125. -3的绝对值等于( )A .-3B .3C .-13D .13 6.下列结论中一定正确的是( )A. 若一个数是整数,则这个数一定是有理数B. 若一个数是有理数,则这个数一定是整数C. 若一个数是有理数,则这个数一定是负数D. 若一个数是有理数,则这个数一定是正数图17. 下列说法中:①π的相反数为-π ; ②符号相反的数为相反数; ③--(.)38的相反数为 3.8; ④一个数与它的相反数不可能相等; ⑤两个互为相反数的绝对值相等.正确的是( )A. ①②B. ①⑤C. ②③D. ①④8. 数轴上原点及原点右边的点表示的数是( )A. 正数B. 负数C. 非负数D. 非正数9. 下列各组数中,大小关系正确的是( )A. -<-<-752B. ->->752C. -<-<-725D.->->-27510.绝对值大于2而小于5的所有正整数的和为( )A. 7B. 8C. 9D. 10 11.如果一个数的相反数等于这个数的绝对值,则这个数是( )A .负数或0B .负数C .正数D .正数或0二、填空题:12. 支出100元记作:-100元,收入300元记作: __________元。

北师大版数学七年级下第一、二章检测题

北师大版数学七年级下第一、二章检测题

, x y 1 ,那么 x 2 y 2 18、如果 x y 2009 三、用心想一想(本题共 66 分)
班级
19、 (6 分)填空,并在括号内填注理由 已知:如图 2-82,DE∥BC,∠ADE=∠EFC,求证:∠1=∠2 证明:∵ DE∥BC( ∴∠ADE=______( ∵∠ADE=∠EFC( ∴______=______( ∴DB∥EF( ∴∠1=∠2( ) ) ) ) ) )
2
学校
1
20、(6 分)已知:如图 2-83,AD∥BC,∠D=100°,AC 平分∠BCD, 求∠DAC 的度数.
(5) 、 (2) 0 ( ) 4 ( ) 2 ( ) 3
1 2
1 2
1 2
(6) 、 ( xy 5) 2 ( xy 5)(xy 5)
(7) 、计算 20052-2004×2006(用乘法公式计算)
5、如果一个角的补角是 150°,那么这个角的余角的度数是( ) A、30° B、 60° C、 90° D、 120° 1 1 1 2x-1 6、代数式 - x, ,2xy, ,1-2y, 中是单项式的有( ) 2 π x 3 A、2 个 B、3 个 C、4 个 D、5 个 2 2 7、已知 a +b =2 a+b=1 则 ab 的值为: ( ) 1 3 A、-1 B、C、D、3 2 2 8、下列计算正确的有( ) 2 3 6 3 2 3 2 ①、 (-4m a)=-64m a ②、 (2m x ) =4m2x6 ③、 am-n=am-an ④、 6an+2÷3an-1=2a ⑤、 (-a3)2=-a6 A、1 个 B、2 个 C、3 个 D、4 个 2 2 9、如果(3x y-2xy )÷M=-3x+2y,则单项式 M 等于( ) A、 xy B、 -xy C、 x D、 -y 10、长方形的长增加 2%,宽减少 2%,则面积 ( ) A、不变 B、增加 4% C、减少 4% D、以上全不对

七年级数学下册一二章试卷

七年级数学下册一二章试卷

一、选择题(每题4分,共20分)1. 下列数中,是整数的是()A. √16B. 2.5C. -3D. 0.62. 下列数中,是有理数的是()A. √2B. πC. 3/4D. 无理数3. 下列数中,是正数的是()A. -5B. 0C. -2/3D. 1/24. 下列数中,是偶数的是()A. 7B. 6C. 5D. 85. 下列数中,是质数的是()A. 1C. 11D. 10二、填空题(每题4分,共16分)6. 3的平方根是__________,4的立方根是__________。

7. 下列数中,-2的相反数是__________,0的相反数是__________。

8. 下列数中,绝对值最小的是__________。

9. 下列数中,有理数和无理数的分界点是__________。

三、解答题(共16分)10. (8分)写出下列数的相反数和绝对值。

(1)-7(2)3/411. (8分)比较下列数的大小。

(1)-3和-5(2)√9和3四、应用题(共24分)12. (8分)一个数的相反数是-5,求这个数。

13. (8分)一个数的绝对值是2,求这个数。

14. (8分)一个数的立方是27,求这个数的立方根。

15. (8分)一个数的平方是4,求这个数的平方根。

答案:一、选择题1. C3. D4. B5. C二、填空题6. √3,27. 5,08. 09. 0三、解答题10. (1)-7的相反数是7,绝对值是7。

(2)3/4的相反数是-3/4,绝对值是3/4。

11. (1)-3比-5大。

(2)√9等于3,所以√9比3大。

四、应用题12. 这个数是5。

13. 这个数是±2。

14. 这个数的立方根是3。

15. 这个数的平方根是±2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B A C
D
O 5题图
1
A B F
D C E
2一二章检测试卷
1、下列计算,正确的是 ( )
(A) (a -b)(b -a) =-a 2 +2ab -b 2 (B) (a -b) 2 = (a +b) 2 –2ab (C) (x +
x 1)2=x 2 (D) (x 2+3y 2)(x -3y)=x 3-9y 3 2、若(2x +a)( x -1)x 的一次项,则a 等于.( ) (A) a =2 (B) a =-2 (C) a =1 (D) a =-1 3、若x 2+ ax +9=( x+3) 2,则a 的值为 ( )
(A) 3 (B) ±3 (C) 6 (D)±6 4、下列计算 ① (-1)0=-1 ② (-1)-
1=-1 ③ 2×2-
2=
2
1 ④ 3a -
2
⑤(-a 2)m =(-a m )2正确的有( )
(A) 2个 (B) 3个 (C) 4个 (D) 5个 5、如图:已知AB ∥CD ,∠B=1200
,∠D=1500
,则∠O 等于( ).
(A )500 (B )600 (C )800 (D )900
6.如图,若AB ∥CD ,CD ∥EF ,那么∠BCE =( )
A .∠1+∠2
B .∠2-∠1
C .180°-∠1+∠2
D .180°-∠2+∠1 7.如图5,填空并在括号中填理由:
(1)由∠ABD =∠CDB 得 ∥ ( ); (2)由∠CAD =∠ACB 得 ∥ ( );
(3)由∠CBA +∠BAD = 180°得 ∥ ( )
6题图
A D
C B O 图5 图6
5 1 2
4 3 l 1 l 2 图7
5 4 3
2 1
A D C
B
2
1F E
D
C
B A
G
B A
20题图1
l 3
l 2
l 132
1
P D C 8.如图6,尽可能多地写出直线l 1∥l 2的条件: .
9.如图7,尽可能地写出能判定AB∥CD 的条件来: .
10.如图,AB ∥CD,直线EF 分别交AB 、CD 于E 、F,EG 平分∠BEF,若∠1=72°,•则∠2=______度.
11.如图,∠D =∠A,∠B =∠FCB,求证:ED∥CF.
12、如图,已知直线l 1∥l 2,且l 3和l 1、l 2分别交于A 、B 两点,点P 在直线AB 上,试找出∠1,∠2,∠3
之间的等式关系,并说明理由.
13.如图,直线AB 、CD 被EF 所截,∠1 =∠2,∠CNF =∠BME。

求证:AB∥CD,MP∥NQ.
14、(3a -7)(3a +7)-2a(2
a
3-1) , 其中a =-3
10题图
E B
A
F
D C
11题图 F
2
A B C
D
Q
E 1 P M
N
15、[(3x -
21y 2)+3y(x -12y )] ÷[(2x +y)2-4y(x +4
1
y)] ,其中x =-7.8, y =8.7
16.如图,已知∠ABE +∠DEB = 180°,∠1 =∠2,求证:∠F =∠G.
17.如图,∠ABD 和∠BDC 的平分线交于E ,BE 交CD 于点F ,∠1 +∠2 = 90°.
求证:(1)AB∥CD; (2)∠2 +∠3 = 90°.
18.如图,已知AB∥CD,试再添上一个条件,使∠1 =∠2成立.(要求给出两个以上答案,并选择其中一个加以证明)
1 2
A C
B F G
E D C 1
2
3 A
B D F 1
2 A B E F
D
C。

相关文档
最新文档