七年级较难数学题
人教版七年级数学上册《计算重难题型》专题训练-附带答案
人教版七年级数学上册《计算重难题型》专题训练-附带答案一.易错计算强化1.计算:(1)(13−52+16)×(−36);(2)(−1)2022×3−23+(−14)2÷|−125|.试题分析:(1)根据乘法分配律计算即可;(2)先算乘方再算乘除法最后算加减法即可.答案详解:解:(1)(13−52+16)×(−36)=13×(﹣36)−52×(﹣36)+16×(﹣36)=﹣12+90+(﹣6)=72;(2)(−1)2022×3−23+(−14)2÷|−125|=1×3﹣8+116÷132=1×3﹣8+116×32=3﹣8+2=﹣3.2.计算:(1)−14−(−2)3×14−16×(12−14+38).(2)−22−2×[(−3)2−3÷12 ].试题分析:(1)先算乘方再算乘法最后算加减法即可;(2)先算乘方和括号内的式子然后计算括号外的乘法最后算减法即可.答案详解:解:(1)−14−(−2)3×14−16×(12−14+38)=﹣14﹣(﹣8)×14−16×12+16×14−16×38=﹣14+2﹣8+4﹣6=﹣22;(2)−22−2×[(−3)2−3÷1 2 ]=﹣4﹣2×(9﹣3×2)=﹣4﹣2×(9﹣6)=﹣4﹣2×3=﹣4﹣6=﹣10.3.计算:(1)﹣32÷(﹣3)2+3×(﹣2)+|﹣4|;(2)[50−(79−1112+16)×(−6)2]÷(−7)2.试题分析:(1)先算乘方再算乘除法最后算加减法即可;(2)先算乘方再根据乘法分配律计算括号内的式子最后算括号外的除法.答案详解:解:(1)﹣32÷(﹣3)2+3×(﹣2)+|﹣4|=﹣9÷9+3×(﹣2)+4=﹣1+(﹣6)+4=﹣3;(2)[50−(79−1112+16)×(−6)2]÷(−7)2 =[50﹣(79−1112+16)×36]÷49=(50−79×36+1112×36−16×36)÷49 =(50﹣28+33﹣6)÷49 =49÷49 =1.4.计算:(1)(−12)﹣(﹣314)+(+234)﹣(+512);(2)﹣8+12﹣(﹣16)﹣|﹣23|; (3)42×(−23)﹣(−34)÷(﹣0•25); (4)(134−78−712)÷(−78)+(−83);试题分析:按照有理数混合运算的顺序 先乘方后乘除最后算加减 有括号的先算括号里面的 计算过程中注意正负符号的变化.答案详解:解:(1)原式=(−12)+134+114−224 =(−12)+24=0;(2)原式=(﹣8)+12+16﹣23 =﹣3;(3)原式=(﹣28)﹣3 =﹣31; (4)原式=(4224−2124−1424)×(−87)−83=(−13)−83=﹣3. 5.计算下列各题:①−14÷(−5)2×(−53)+|0.8−1|②−52−[(−2)3+(1−0.8×34)÷(−22)×(−2)].试题分析:①原式第一项被除数表示1四次幂的相反数除数表示两个﹣5的乘积再利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算最后一项利用绝对值的代数意义化简计算即可得到结果;②原式第一项表示5平方的相反数中括号中第一项表示三个﹣2的乘积第二项算计算括号中的运算再利用乘法法则计算即可得到结果.答案详解:解:①原式=﹣1÷25×(−53)+0.2=﹣1×125×(−53)+0.2=115+15=415;②原式=﹣25﹣[﹣8+(1−35)÷(﹣4)×(﹣2)]=﹣25﹣(﹣8+25×14×2)=﹣25+8−15=−17.2.二.二进制与十进制的转化6.我们常用的数是十进制数计算机程序使用的是二进制数(只有数码0和1)它们两者之间可以互相换算如将(101)2(1011)2换算成十进制数为:(101)2=1×22+0×21+1=4+0+1=5;(1011)2=1×23+0×22+1×21+1=11;两个二进制数可以相加减相加减时将对应数位上的数相加减.与十进制中的“逢十进一”、“退一还十”相类似应用“逢二进一”、“退一还二”的运算法则如:(101)2+(11)2=(1000)2;(110)2﹣(11)2=(11)2用竖式运算如右侧所示.(1)按此方式将二进制(1001)2换算成十进制数的结果是9.(2)计算:(10101)2+(111)2=(11100)2(结果仍用二进制数表示);(110010)2﹣(1111)2=35(结果用十进制数表示).试题分析:(1)根据例子可知:若二进制的数有n位那么换成十进制等于每一个数位上的数乘以2的(n﹣1)方再相加即可;(2)关于二进制之间的运算利用“逢二进一”、“退一还二”的运算法则计算即可.答案详解:解:(1)(1001)2=1×23+0×22+0×21+1=9;(2)(10101)2+(111)2=(11100)2;(110010)2﹣(1111)2=(100011)2=1×25+1×21+1=35.所以答案是:9;(11100)2;35.7.我们常用的数是十进制数计算机程序使用的是二进制数(只有数码0和1)它们两者之间可以互相换算如将(101)2(1011)2换算成十进制数应为:(101)2=1×22+0×21+1×20=4+0+1=5;(1011)2=1×23+0×22+1×21+1×20=8+0+2+1=11.按此方式将二进制(1001)2换算成十进制数和将十进制数13转化为二进制的结果分别为()A.9 (1101)2B.9 (1110)2C.17 (1101)2D.17 (1110)2试题分析:首先理解十进制的含义然后结合有理数运算法则计算出结果然后根据题意把13化成按2的整数次幂降幂排列即可求得二进制数.答案详解:解:(1001)2=1×23+0×22+0×21+1×20=9.13=8+4+1=1×23+1×22+0×21+1×20=(1101)2所以选:A.8.计算机程序使用的是二进制数(只有数码0和1)是逢2进1的计数制二进制数与常用的十进制数之间可以互相换算如将(10)2(1011)2换算成十进制数应为:(10)2=1×21+0×20=2 (1011)2=1×23+0×22+1×21+1×20=11.按此方式则(101)2+(1101)2=18.试题分析:仿照所给的方式进行求解即可.答案详解:解:(101)2+(1101)2=1×22+0×21+1×20+1×23+1×22+0×21+1×20=4+0+1+8+4+0+1=18.所以答案是:18.三.数值转化机9.按如图所示的程序运算:当输入的数据为﹣1时则输出的数据是()A.2B.4C.6D.8试题分析:把x=﹣1代入程序中计算判断结果与0的大小即可确定出输出结果.答案详解:解:把x=﹣1代入程序中得:(﹣1)2×2﹣4=2﹣4=﹣2<0把x=﹣2代入程序中得:(﹣2)2×2﹣4=8﹣4=4>0则输出的数据为4.所以选:B.10.下图是计算机计算程序若开始输入x=﹣2 则最后输出的结果是﹣17.试题分析:把﹣2按照如图中的程序计算后若<﹣5则结束若不是则把此时的结果再进行计算直到结果<﹣5为止.答案详解:解:根据题意可知(﹣2)×4﹣(﹣3)=﹣8+3=﹣5所以再把﹣5代入计算:(﹣5)×4﹣(﹣3)=﹣20+3=﹣17<﹣5即﹣17为最后结果.故本题答案为:﹣1711.按照如图所示的操作步骤若输入值为﹣3 则输出的值为55.试题分析:把﹣3代入操作步骤中计算即可确定出输出结果.答案详解:解:把﹣3代入得:(﹣3)2=9<10则有(9+2)×5=55.所以答案是:55.四.类比推理--规律类的钥匙12.观察下列各式:1 1×2+12×3=(11−12)+(12−13)=1−13=23.1 1×2+12×3+13×4=(11−12)+(12−13)+(13−14)=1−14=34.…(1)试求11×2+12×3+13×4+14×5的值.(2)试计算11×2+12×3+13×4+⋯+1n×(n+1)(n为正整数)的值.试题分析:(1)根据已知等式得到拆项规律原式变形后计算即可得到结果;(2)原式利用拆项法变形计算即可得到结果.答案详解:解:(1)原式=1−12+12−13+14−15=1−15=45;(2)原式=1−12+12−13+..+1n−1n+1=1−1n+1=n n+1.13.阅读下面的文字完成后面的问题.我们知道11×2=1−1212×3=12−1313×4=13−14那么14×5=14−1512005×2006=1 2005−1 2006.(1)用含有n的式子表示你发现的规律1n−1n+1;(2)依上述方法将计算:1 1×3+13×5+15×7+⋯+12003×2005=10022005(3)如果n k均为正整数那么1n(n+k)=1k⋅(1n−1n+k).试题分析:观察发现每一个等式的左边都是一个分数其中分子是1 分母是连续的两个正整数之积并且如果是第n个等式分母中的第一个因数就是n第二个因数是n+1;等式的右边是两个分数的差这两个分数的分子都是1 分母是连续的两个正整数并且是第n个等式被减数的分母就是n减数的分母是n+1.然后把n=4 n=2005代入即可得出第5个等式;(1)先将(1)中发现的第n个等式的规律1n(n+1)=1n−1n+1代入再计算即可;(2)先类比(1)的规律得出1n(n+2)=12(1n−1n+1)再计算即可.(3)根据(2)的规律即可得出结论.答案详解:解:∵第一个式子:11×2=1−12;第二个式子:12×3=12−13;第三个式字:13×4=13−14… ∴14×5=14−1512005×2006=12005−12006.所以答案是:14−1512005−12006;(1)由以上得出的规律可知 第n 个等式的规律 1n(n+1)=1n−1n+1;(2)原式=12(1−13+13−14⋯+12003−12005) =12(1−12005) =10022005(3)由(2)可知n k 均为正整数1k⋅(1n−1n+k).14.类比推理是一种重要的推理方法 根据两种事物在某些特征上相似 得出它们在其他特征上也可能相似的结论.阅读感知:在异分母的分数的加减法中 往往先化作同分母 然后分子相加减 例如:12−13=32×3−23×2=3−26=16我们将上述计算过程倒过来 得到16=12×3=12−13这一恒等变形过程在数学中叫做裂项.类似地 对于14×6可以用裂项的方法变形为:14×6=12(14−16).类比上述方法 解决以下问题.【类比探究】(1)猜想并写出:1n×(n+1)=1n −1n+1; 【理解运用】(2)类比裂项的方法 计算:11×2+12×3+13×4+⋯+199×100;【迁移应用】(3)探究并计算:1−1×3+1−3×5+1−5×7+1−7×9+⋯+1−2021×2023.试题分析:(1)根据题目中的例子 可以写出相应的猜想; (2)根据式子的特点 采用裂项抵消法可以解答本题; (3)将题目中的式子变形 然后裂项抵消即可解答本题. 答案详解:解:(1)1n×(n+1)=1n−1n+1所以答案是:1n−1n+1;(2)由(1)易得:(1−12)+(12−13)+(13−14)+⋯+(199−1100) =1−12+12−13+13−14+⋯+199−1100 =1−1100 =99100; (3)1−1×3+1−3×5+1−5×7+1−7×9+...+1−2021×2023=−12×(21×3+23×5+25×7+27×9+⋯+22021×2023)=−12×(1−13+13−15+15−17+17−19+⋯+12021−12023) =−12×(1−12023) =−12×20222023=−10112023. 15.“转化”是一种解决问题的常用策略 有时画图可以帮助我们找到转化的方法.例如借助图① 可以把算式1+3+5+7+9+11转化为62=36.请你观察图② 可以把算式12+14+18+116+132+164+1128转化为127128.试题分析:根据图形观察发现 把正方形看作单位“1” 即算式可以转化成1−1128 再求出答案即可.答案详解:解:12+14+18+116+132+164+1128=1−1128=127128所以答案是:127128.16.观察下列等式:第1个等式:a 1=11×2=1−12; 第2个等式:a 2=12×3=12−13; 第3个等式:a 3=13×4=13−14; 第4个等式:a 4=14×5=14−15⋯ 请解答下列问题:(1)按以上规律写出:第n 个等式a n = 1n(n+1)=1n−1n+1(n 为正整数);(2)求a 1+a 2+a 3+a 4+…+a 100的值; (3)探究计算:11×4+14×7+17×10+⋯+12020×2023.试题分析:(1)对所给的等式进行分析 不难总结出其规律; (2)利用所给的规律进行求解即可;(3)仿照所给的等式 对各项进行拆项进行 再运算即可. 答案详解:解:(1)∵第1个等式:a 1=11×2=1−12; 第2个等式:a 2=12×3=12−13; 第3个等式:a 3=13×4=13−14; 第4个等式:a 4=14×5=14−15; …∴第n 个等式:a n =1n(n+1)=1n −1n+1 所以答案是:1n(n+1)=1n−1n+1;(2)a 1+a 2+a 3+a 4+…+a 100=11×2+12×3+13×4+14×5+⋯+1100×101 =1−12+12−13+13−14+14−15+⋯+1100−1101=1−1101 =100101; (3)11×4+14×7+17×10+⋯+12020×2023 =13×(1−14+14−17+17−110+⋯+12020−12023) =13×(1−12023)=13×20222023=6742023.五.阅读类--化归思想17.阅读下列材料:计算5÷(13−14+112)解法一:原式=5÷13−5÷14+5÷112 =5×3﹣5×4+5×12=55解法二:原式=5÷(412−312+112) =5÷16=5×6=30解法三:原式的倒数=(13−14+112)÷5=(13−14+112)×15 =13×15−14×15+112×15=130∴原式=30(1)上述的三种解法中有错误的解法 你认为解法 一 是错误的(2)通过上述解题过程 请你根据解法三计算(−142)÷(16−314−23+37)试题分析:(1)根据运算律即可判断;(2)类比解法三计算可得.答案详解:解:(1)由于除法没有分配律所以解法一是错误的所以答案是:一;(2)原式的倒数=(16−314−23+37)÷(−142) =(16−314−23+37)×(﹣42) =16×(﹣42)−314×(﹣42)−23×(﹣42)+37×(﹣42) =﹣7+9+28﹣18=12∴原式=112.18.先阅读下面材料 再完成任务:【材料】下列等式:4−35=4×35+1 7−34=7×34+1 … 具有a ﹣b =ab +1的结构特征 我们把满足这一特征的一对有理数称为“共生有理数对” 记作(a b ).例如:(4 35)、(7 34)都是“共生有理数对”.【任务】(1)在两个数对(﹣2 1)、(2 13)中 “共生有理数对”是 (2 13) ; (2)请再写出一对“共生有理数对” (−12 ﹣3) ;(要求:不与题目中已有的“共生有理数对”重复)(3)若(x ﹣2)是“共生有理数对” 求x 的值;(4)若(m n )是“共生有理数对” 判断(﹣n ﹣m ) 是 “共生有理数对”.(填“是”或“不是”)试题分析:(1)读懂题意 根据新定义判断即可;(2)随意给出一个数 设另一个数为x 代入新定义 求出另一个数即可;(3)根据新定义列等式求出x的值;(4)第一对是“共生有理数对”列等式通过等式判断第二对数是否符合新定义.答案详解:解:(1)(﹣2 1)∵(﹣2)﹣1=﹣3 (﹣2)×1+1=﹣1 ﹣3=﹣1∴(﹣2 1)不是“共生有理数对”;(2 1 3)∵2−13=532×13+1=5353=53∴(2 13)是“共生有理数对”;所以答案是:(2 13);(2)设一对“共生有理数对”为(x﹣3)∴x﹣(﹣3)=﹣3x+1∴x=−1 2∴这一对“共生有理数对”为(−12﹣3)所以答案是:(−12﹣3);(3)∵(x﹣2)是“共生有理数对”∴x﹣(﹣2)=﹣2x+1∴x=−1 3;(4)∵(m n)是“共生有理数对”∴m﹣n=mn+1∴﹣n﹣(﹣m)=(﹣n)(﹣m)+1∴(﹣n﹣m)是“共生有理数对”所以答案是:是.19.阅读材料解决下列问题:【阅读材料】求n个相同因数a的积的运算叫做乘方记为a n.若10n=m(n>0 m≠1 m>0)则n叫做以10为底m的对数记作:lgm=n.如:104=10000 此时4叫做以10为底10000的对数记作:lg10000=lg104=4 (规定lg10=1).【解决问题】(1)计算:lg100=2;lg1000=3;lg100000=5;lg1020=20;(2)计算:lg10+lg100+lg1000+⋅⋅⋅+lg1010;【拓展应用】(3)由(1)知:lg100+lg1000与lg100000之间的数量关系为:lg100+lg1000=lg100000;猜想:lga+lgb=lgab(a>0 b>0).试题分析:(1)应用题目所给的计算方法进行计算即可得出答案;(2)应用题目所给的计算方法和有理数乘方法则进行计算即可得出答案;(3)应用题目所给的计算方法进行计算即可得出答案.答案详解:解:(1)根据题意可得lg100=2;lg1000=3;lg100000=5;lg1020=20;所以答案是:2 3 5 20;(2)lg10+lg100+lg1000+⋅⋅⋅+lg1010=1+2+3+……+10=55;(3)∵lg100+lg1000=2+3=5lg100000=5∴lg100+lg1000=lg100000;所以答案是:lg100+lg1000=lg100000;lga+lgb=lgab.所以答案是:lgab.20.阅读下列各式:(a•b)2=a2b2(a•b)3=a3b3(a•b)4=a4b4…回答下列三个问题:(1)验证:(2×12)100=12100×(12)100=1;(2)通过上述验证归纳得出:(a•b)n=a n b n;(abc)n=a n b n c n.(3)请应用上述性质计算:(﹣0.125)2017×22016×42015.试题分析:(1)先算括号内的乘法再算乘方;先乘方再算乘法;②根据有理数乘方的定义求出即可;③根据同底数幂的乘法计算再根据积的乘方计算即可得出答案.答案详解:解:(1)(2×12)100=1 2100×(12)100=1;②(a•b)n=a n b n(abc)n=a n b n c n③原式=(﹣0.125)2015×22015×42015×[(﹣0.125)×(﹣0.125)×2]=(﹣0.125×2×4)2015×1 32=(﹣1)2015×1 32=﹣1×1 32=−132.所以答案是:1 1;a n b n a n b n c n.。
七年级数学试卷超难的题目
一、选择题(每题5分,共25分)1. 下列各数中,不是有理数的是()A. 3/5B. √4C. -2.5D. π2. 已知一个正方形的边长为a,那么它的面积是()A. a^2B. a^3C. 2aD. 4a3. 若一个等腰三角形的底边长为b,腰长为c,那么它的周长是()A. 2b + cB. b + cC. 2c + bD. b + b + c4. 下列方程中,无解的是()A. 2x + 3 = 7B. 5x - 2 = 3x + 4C. 3x^2 - 4x + 4 = 0D. 4x + 2 = 2x + 65. 已知一个等差数列的首项为a,公差为d,那么它的第n项是()A. a + (n - 1)dB. a - (n - 1)dC. a + ndD. a - nd二、填空题(每题10分,共20分)6. 已知x^2 - 5x + 6 = 0,求x的值。
7. 一个等边三角形的周长为24cm,求它的边长。
三、解答题(每题15分,共45分)8. (15分)已知一个数列的前三项分别为1,-2,3,求该数列的第四项。
9. (15分)一个梯形的上底为a,下底为b,高为h,求梯形的面积。
10. (15分)已知一个圆的半径为r,求圆的周长和面积。
四、综合题(每题20分,共40分)11. (20分)一个长方形的长为2x,宽为x+3,求长方形的面积。
12. (20分)已知一个直角三角形的两个直角边分别为a和b,斜边为c,求三角形的面积。
答案:一、选择题1. D2. A3. C4. D5. A二、填空题6. x = 2 或 x = 37. 8cm三、解答题8. 第四项为69. 梯形面积为 (a + b)h/210. 周长为2πr,面积为πr^2四、综合题11. 长方形面积为 2x(x + 3) = 2x^2 + 6x12. 三角形面积为 ab/2。
七年级上册数学难题及答案
七年级上册数学难题及答案1. 若干学生住若干间房间,如果每间住4人,则有20人没有地方住,如果每间房住8人,则有一间只有4人住,问共有多少个学生?2.甲对乙说:“你给我100元,我的钱将比你多1倍。
”乙对甲说:“你只要给我10元,我的钱将比你多5倍。
”问甲乙两人各有多少元钱?3.小王和小李从AB两地,相向而行,80分钟后相遇,小王先出发60分钟后小李在出发,40分钟后相遇,问小李和小王单独走完这段距离需要多长时间?4.一天,猫发现前面20米的地方有只老鼠,立即去追,同时,老鼠也发现了猫,马上就跑。
猫每秒跑7米,用了10秒追上老鼠。
老鼠每秒跑多少米?5.一项工程,甲单独做10天完成,乙单独做6天完成。
先由甲先做2天,然后甲乙合作,问:甲乙合作还需要多少天完成工作?6.某商场经销一种商品,由于进货时价格比原来进价降低了6.4%,使得利润率增加了8个百分点,求经销这种商品原来的利润率是多少?7.某商场购进甲,乙两种商品50件,甲种商品进价每件35元,利润率是20%,乙种商品的进价每件20元,利润率是15%,共获利278元,问甲乙两种商品各购进了多少件?8.时钟从9点走到9点25分,时针转过的角度是?分针转过的角度是?9.现有某位储户按零存整取的存款方式每月存入500元,存期为3年,存入时三年期零存整取方式的月利率为1.725‰。
此储户在期满时应得的本息和是多少元?参考答案1.设有x间宿舍每间住4人,则有20人无法安排所以有4x+20人每间住8人,则最后一间不空也不满所以x-1间住8人,最后一间大于小于8所以0<(4x+20)-8(x-1)<80<-4x+28<8 乘以-1,不等号改向-8<4x-28<0加上28 20<4x<28 除以4 5<x<7x是整数所以x=6 4x+20=44所以有6间宿舍,44人2.设甲原有x元,乙原有y元.x+100=2*(y-100) 6*(x-10)=y+10 x=40 y=1703.解:设小王的速度为x,小李的速度为y根据:路程=路程,可列出方程:80(x+y)=60x+40(x+y)解得y=1\2x 设路程为单位1,则:80(1\2x+x)=1 解得x=1\120 所以y=1\240所以小王单独用的时间:1*1\120=120(分)小李单独用的时间:1*1\240=240(分)4.解:设老鼠每秒跑X米7*10=10X+20 10X=70-20 X=5 答:老鼠每秒跑5米。
七年级数学练习题含答案(难)
七年级数学练习题(难)七年级数学练习题(难)一、选择题:一、选择题:1、若的值是,则a a a 12=( ) A 、1 B 、-1 C 、1或-1 D 、以上都不对、以上都不对2、方程132=-+-x x 的解的个数是( ) A 、0 B 、1 C 、2 D 、3 E 、多于3个3、下面有4个命题:个命题:①存在并且只存在一个正整数和它的相反数相同。
①存在并且只存在一个正整数和它的相反数相同。
②存在并且只存在一个有理数和它的相反数相同。
②存在并且只存在一个有理数和它的相反数相同。
③存在并且只存在一个正整数和它的倒数相同。
③存在并且只存在一个正整数和它的倒数相同。
④存在并且只存在一个有理数和它的倒数相同。
④存在并且只存在一个有理数和它的倒数相同。
其中正确的命题是:( )(A )①和②)①和② (B )②和③)②和③(C )③和④)③和④ (D )④和①)④和①4、两个质数的和是49,则这两个质数的倒数和是( ) A 、4994B 、9449C 、4586D 、86455、设y=ax 15+bx 13+cx 11-5(a 、b 、c 为常数),已知当x=7时,y=7,则x= -7时,y 的值等于( ) A 、-7 B 、-17 C 、17 D 、不确定、不确定6、若a 、c 、d 是整数,b 是正整数,且满足a+b=c ,b+c=d ,c+d=a ,则a+b+c+d 的最大值是( ) A 、-1 B 、0C 、1 D 、-5 二、填空题二、填空题7、设a<0,且x ≤21 ,--+x x a a则= =8、a 、b 是数轴上两个点,且满足a ≤b 。
点x 到a 的距离是x 到b 的距离的2倍,则x= 9、 若()236-+m a 与互为相反数,则=ma 10、计算:=+++++++++++++10032113211321121111、若a 是有理数,则|)|(||||)(a a a a -+-++-的最小值是___的最小值是___..12、有理数c b a ,,在数轴上的位置如图所示,化简._____|1||||1|||=------+c c a b b a三、解答题三、解答题1212、有理数、有理数c b a ,,均不为0,且.0=++c b a 设试求代数式++x x 99192000之值。
七年级数学较难应用题
七年级数学较难应用题
当然可以,以下是一个七年级数学的应用题:
某大型超市开展了一项促销活动,顾客消费满100元可以获得一次转盘抽奖的机会。
转盘分为10个部分,其中6个部分标有“谢谢参与”,4个部分标有不同的优惠券金额。
如果顾客抽中了优惠券,可以按照优惠券的金额在下次购物时抵扣。
现在,有一位顾客已经消费了150元,他希望通过抽奖来决定是否进行再次购物。
请问,这位顾客获得优惠券的概率是多少?
为了解决这个问题,我们需要先明确概率的计算方法。
概率是成功事件的数量与所有可能事件的数量之比。
在这个问题中,成功事件是抽中优惠券,数量为4;所有可能事件是转盘的10个部分,数量为10。
因此,获得优惠券的概率为:
$P(\text{优惠券}) = \frac{\text{优惠券的数量}}{\text{转盘的部分数量}} = \frac{4}{10} = $
所以,这位顾客获得优惠券的概率为或40%。
七年级数学方程应用题难题
七年级数学方程应用题难题七班级数学方程应用题难题1:市场经济、打折销售问题(1)商品利润=商品售价-商品成本价 (2)商品利润率=×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售(按原价的0.8倍出售.)1.一家商店将一种自行车按进价提高45%后标价,又以八折特惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?假设设这种自行车每辆的进价是*元,那么所列方程为( )A.45% ×(1+80%)*-*=50B. 80%×(1+45%)* - * = 50C. *-80%×(1+45%)* = 50D.80%×(1-45%)* - * = 502. 某商店开张,为了吸引顾客,全部商品一律按八折特惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?特惠价是多少元?3. 一家商店将某种服装按进价提高40%后标价,又以8折特惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?4.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店预备打折出售,但要保持利润率不低于5%,那么至多打几折.七班级数学方程应用题难题2:方案选择问题1. 某蔬菜公司的一种绿色蔬菜,假设在市场上径直销售,每吨利润为1000元,•经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产技能是:假如对蔬菜进行精加工,每天可加工16吨,假如进行精加工,每天可加工6吨,•但两种加工方式不能同时进行,受季度等条件限制,公司需要在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,•在市场上径直销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多 ?为什么?2.某市移动通讯公司开设了两种通讯业务:“全球通”运用者先缴50•元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1•分钟需付话费0.4元(这里均指市内电话).假设一个月内通话*分钟,两种通话方式的费用分别为y1元和y2元.(1)写出y1,y2与*之间的函数关系式(即等式).(2)一个月内通话多少分钟,两种通话方式的`费用相同?(3)假设某人估计一个月内运用话费120元,那么应选择哪一种通话方式较合算?3.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C 种每台2500元.(1)假设家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你讨论一下商场的进货方案.新-课- -第-一 -网(2)假设商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,•销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?4.小刚为书房买灯。
七年级奥数题10道巨难
七年级奥数题10道巨难摘要:1.介绍七年级奥数题的难度2.列举10 道巨难的奥数题目3.分析这些题目的难点4.提出解决这些题目的建议正文:对于很多初中生来说,奥数是一项极具挑战性的任务。
尤其是七年级的奥数题,难度相对较大,对学生的思维能力和解题技巧有很高的要求。
在这里,我们将介绍10 道七年级奥数题中的“巨难”题目,并分析它们的难点以及如何解决。
1.题目一:一个长方体的长、宽、高分别为a、b、c,求证:abc = (a+b+c)(a+b-c)(a-b+c)(-a+b+c)。
2.题目二:一个车队行驶在无限长的直线道路上,每辆车的速度是前一辆车的2 倍,如果第一辆车的速度是1,那么第10 辆车的速度是多少?3.题目三:已知函数f(x) = x^3 - 3x^2 + 2x - 1,求解f(x) 的零点。
4.题目四:有一个矩阵,其元素满足:a1b2 + a2b3 + a3b1 = 0,a1c2 + a2c3 + a3c1 = 0,求证:矩阵的行列式为零。
5.题目五:一个球体的半径是1,一个立方体的边长是1,求球体可以放入立方体的最大角度。
6.题目六:已知一个等差数列的前5 项和为15,前10 项和为55,求第15 项的值。
7.题目七:一个凸多边形的所有内角和为(n-2)×180°,求证:这个凸多边形至少有一个对角线存在,使得该对角线的两端所在角的和大于180°。
8.题目八:已知函数g(x) = x^2 - 3x + 2,求解不等式|g(x)| < 1 的解集。
9.题目九:一个机器人从原点出发,每次向右移动一个单位,然后向上移动一个单位,问机器人在第n 次移动后,离原点的最大距离是多少?10.题目十:已知一个正整数n,满足n^2 - n + 1 可以被4 整除,求证:n^2 - n + 1 可以被8 整除。
这些题目涵盖了七年级奥数的多个领域,包括代数、几何、组合等。
对于这些难题,学生需要具备扎实的基础知识,善于观察和发现题目中的规律,同时要有耐心和毅力。
七年级下册数学最难的题目
七年级下册数学最难的题目
七年级下册数学难题:
一、假设题
1、有四张卡片,每张上分别印有数字1、
2、
3、4,从中抽三张,求抽到相同数字的概率是多少?
2、如果一个多边形有10个顶点,求它的内角和是多少?
3、一个口袋里有4个红球,4个白球和4个黑球,求不看颜色的情况
下抽出2个球求含有不同颜色球的概率是多少?
4、已知△ABC,∠B=90°,AB=AC,求∠C是多少度?
二、数列题
1、已知数列{1, 3, 5, 7, 9,...},求101项所代表的数字
2、已知数列{2, 4, 8, 16, 32...},求1000项所代表的数字
3、已知数列{1, 1.5, 2.25, 4.0625, 8.234375…},求最多保留4位小数后,100项所代表的数字
4、已知数列{2, 7, 18, 37, 66...},求第18项代表的数字
三、几何题
1、已知三角形的两个内角的度数分别是15°和24°,求第三个内角的大小
2、已知长方体的面积是600,求它的体积
3、如果椭圆的长轴的长度是10,短轴的长度是8,求它的面积
4、圆心角π,半径是R,求圆的周长
四、方程题
1、求解1/2x+3/5=2/5
2、3x+2y=20,求x、y的值
3、求解 man+mxn+2m=51
4、求解 y+29=2x-4。
七年级下册数学期末压轴难题试题及答案解答
七年级下册数学期末压轴难题试题及答案解答一、选择题1.如图,下列各组角中是同位角的是()A .∠1和∠2B .∠3和∠4C .∠2和∠4D .∠1和∠42.下列图案可以由部分图案平移得到的是()A .B .C .D .3.点()3,5A -在平面直角坐标系中所在的象限是()A .第一象限B .第二象限C .第三象限D .第四象限4.下列四个命题:①两条直线相交,若对顶角互补,则这两条直线互相垂直;②两条直线被第三条直线所截,内错角相等;③如果两条直线都与第三条直线平行,那么这两条直线也互相平行;④经过直线外一点,有且只有一条直线与已知直线平行.其中是真命题的个数是()A .1B .2C .3D .45.将一张边沿互相平行的纸条如图折叠后,若边//AD BC ,则翻折角1∠与2∠一定满足的关系是()A .122∠=∠B .1290∠+∠=︒C .1230∠-∠=︒D .213230∠-∠=︒6.下列说法正确的是()A .0的立方根是0B .0.25的算术平方根是-0.5C .-1000的立方根是10D .49的算术平方根是23±7.如图,已知////AB CD EF ,FC 平分AFE ∠,26C ∠=︒,则A ∠的度数是()A .35︒B .45︒C .50︒D .52︒8.如图,一个机器人从点O 出发,向正西方向走2m 到达点1A ;再向正北方向走4m 到达点2A ,再向正东方向走6m 到达点3A ,再向正南方向走8m 到达点4A ,再向正西方向走10m 到达点5A ,…按如此规律走下去,当机器人走到点20A 时,点20A 的坐标为()A .(20,20)-B .(20,20)C .(22,20)--D .(22,22)-二、填空题9.算术平方根等于本身的实数是__________.10.在平面直角坐标系中,已知点A 的坐标为(﹣2,5),点Q 与点A 关于y 轴对称,点P 与点Q 关于x 轴对称,则点P 的坐标是___.11.如图,已知在四边形ABCD 中,∠A =α,∠C =β,BF ,DP 为四边形ABCD 的∠ABC 、∠ADC 相邻外角的角平分线.当α、β满足条件____________时,BF ∥DP .12.已知//AB CD ,ABE α∠=,FCD β∠=,CFE γ∠=,且BE EF ⊥,请直接写出α、β、γ的数量关系________.13.如图,将△ABC 沿直线AC 翻折得到△ADC ,连接BD 交AC 于点E ,AF 为△ACD 的中线,若BE =2,AE =3,△AFC 的面积为2,则CE=_____.14.对于三个数a ,b ,c ,用M{a ,b ,c}表示这三个数的平均数,用min{a ,b ,c}表示这三个数中最小的数.例如:M{-1,2,3}=123433-++=,min{-1,2,3}=-1,如果M{3,2x +1,4x -1}=min{2,-x +3,5x},那么x =_______.15.已知AB ∥x 轴,A (-2,4),AB =5,则B 点横纵坐标之和为______.16.如图,在平面直角坐标系中,点()10,0A ,点()22,1A ,点()34,2A ,点()46,3A ,,按照这样的规律下去,点2021A 的坐标为__________.三、解答题17.计算下列各题:;18.已知:215a ab +=,210b ab +=,1a b -=,求下列各式的值:(1)a b +的值;(2)22a b +的值.19.如图.已知∠1=∠2,∠C =∠D ,求证:∠A =∠F .(1)请把下面证明过程中序号对应的空白内容补充完整.证明:∴∠1=∠2(已知)又∵∠1=∠DMN ()∵∠2=∠DMN (等量代换)∴DB ∥EC ()∴∠DBC +∠C =180°().∵∠C =∠D (已知),∴∠DBC+()=180°(等量代换)∴DF∥AC()∴∠A=∠F()(2)在(1)的基础上,小明进一步探究得到∠DBC=∠DEC,请帮他写出推理过程.20.将△ABO向右平移4个单位,再向下平移1个单位,得到三角形A′B′O′(1)请画出平移后的三角形A′B′O′.(2)写出点A′、O′的坐标.21.阅读理解.23.∴11<21的整数部分为1,12.解决问题:已知a3的整数部分,b﹣3的小数部分.(1)求a,b的值;(2)求(﹣a)3+(b+4)2)2=17.二十二、解答题22.已知在44⨯的正方形网格中,每个小正方形的边长为1.(1)计算图①中正方形ABCD的面积与边长.(2)利用图②中的正方形网格,作出面积为8的正方形,并在此基础上建立适当的数.二十三、解答题23.已知,AB ∥DE ,点C 在AB 上方,连接BC 、CD .(1)如图1,求证:∠BCD +∠CDE =∠ABC ;(2)如图2,过点C 作CF ⊥BC 交ED 的延长线于点F ,探究∠ABC 和∠F 之间的数量关系;(3)如图3,在(2)的条件下,∠CFD 的平分线交CD 于点G ,连接GB 并延长至点H ,若BH 平分∠ABC ,求∠BGD ﹣∠CGF 的值.24.如图1,//AB CD ,E 是AB 、CD 之间的一点.(1)判定BAE ∠,CDE ∠与AED ∠之间的数量关系,并证明你的结论;(2)如图2,若BAE ∠、CDE ∠的两条平分线交于点F .直接写出AFD ∠与AED ∠之间的数量关系;(3)将图2中的射线DC 沿DE 翻折交AF 于点G 得图3,若AGD ∠的余角等于2E ∠的补角,求BAE ∠的大小.25.如图①,AD 平分BAC ∠,AE ⊥BC ,∠B=450,∠C=730.(1)求DAE ∠的度数;(2)如图②,若把“AE ⊥BC ”变成“点F 在DA 的延长线上,FE BC ⊥”,其它条件不变,求DFE ∠的度数;(3)如图③,若把“AE ⊥BC ”变成“AE 平分BEC ∠”,其它条件不变,DAE ∠的大小是否变化,并请说明理由.26.如图①所示,在三角形纸片ABC 中,70C ∠=︒,65B ∠=︒,将纸片的一角折叠,使点A 落在ABC 内的点A '处.(1)若140∠=︒,2∠=________.(2)如图①,若各个角度不确定,试猜想1∠,2∠,A ∠之间的数量关系,直接写出结论.②当点A 落在四边形BCDE 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,1∠,2∠之间又存在什么关系?请说明.(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的123456∠+∠+∠+∠+∠+∠和是________.【参考答案】一、选择题1.D解析:D【分析】根据同位角的定义分析即可,两条直线被第三条直线所截,如果两个角分别在两条直线的同侧,且在第三条直线的同旁,那么这两个角叫做同位角.【详解】A.∠1和∠2是邻补角,不符合题意;B.∠3和∠4是同旁内角,不符合题意;C.∠2和∠4没有关系,不符合题意;D.∠1和∠4是同位角,符合题意;故选D .【点睛】本题考查了同位角的定义,理解同位角的定义是解题的关键.2.C【分析】根据平移的定义,逐一判断即可.【详解】解:、是旋转变换,不是平移,选项错误,不符合题意;、轴对称变换,不是平移,选项错误,不符合题意;、是平移,选项正确,符合题意;、图形的大解析:C【分析】根据平移的定义,逐一判断即可.【详解】解:A 、是旋转变换,不是平移,选项错误,不符合题意;B 、轴对称变换,不是平移,选项错误,不符合题意;C 、是平移,选项正确,符合题意;D 、图形的大小发生了变化,不是平移,选项错误,不符合题意.故选:C .【点睛】本题考查平移变换,解题的关键是判断图形是否由平移得到,要把握两个“不变”,图形的形状和大小不变;一个“变”,位置改变.3.B【分析】根据坐标的特点即可求解.【详解】点()3,5A -在平面直角坐标系中所在的象限是第二象限故选B .【点睛】此题主要考查坐标所在象限,解题的关键是熟知直角坐标系的特点.4.C【分析】根据对顶角的性质和垂直的定义判断①;根据内错角相等的判定方法判定②;根据平行线的判定对③进行判断;根据经过直线外一点,有且只有一条直线与已知直线平行判断④即可【详解】解:两条直线相交,若对顶角互补,则这两条直线互相垂直,所以①正确;两条互相平行的直线被第三条直线所截,内错角相等;,所以②错误;如果两条直线都与第三条直线平行,那么这两条直线也互相平行,所以③正确;经过直线外一点,有且只有一条直线与已知直线平行,所以④正确.故选:C .【点睛】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,熟练掌握相关性质是解题的关键.5.B【分析】根据平行可得出∠DAB +∠CBA =180°,再根据折叠和平角定义可求出1290∠+∠=︒.【详解】解:由翻折可知,∠DAE =21∠,∠CBF =22∠,∵//AD BC ,∴∠DAB +∠CBA =180°,∴∠DAE +∠CBF =180°,即2122180∠+∠=°,∴1290∠+∠=︒,故选:B .【点睛】本题考查了平行线的性质和角平分线的性质,解题关键是熟练运用平行线的性质进行推理计算.6.A【分析】根据算术平方根以及立方根的概念逐一进行凑数即可得.【详解】A .0的立方根是0,正确,符合题意;B .0.25的算术平方根是0.5,故B 选项错误,不符合题意;C .-1000的立方根是-10,故C 选项错误,不符合题意;D .49的算术平方根是23,故D 选项错误,不符合题意,故选A .【点睛】本题考查了算术平方根、立方根,熟练掌握相关概念以及求解方法是解题的关键.7.D【分析】由题意易得26EFC C ∠=∠=︒,则有52EFA ∠=︒,然后根据平行线的性质可求解.【详解】解:∵//CD EF ,26C ∠=︒,∴26EFC C ∠=∠=︒,∵FC 平分AFE ∠,∴26EFC CFA ∠=∠=︒,∴52EFA ∠=︒,∵//AB CD ,∴52A EFA ∠=∠=︒;故选D .【点睛】本题主要考查平行线的性质及角平分线的定义,熟练掌握平行线的性质及角平分线的定义是解题的关键.8.A【分析】先求出A1,A2,A3,…A8,发现规律,根据规律求出A20的坐标即可.【详解】解:∵一个机器人从点出发,向正西方向走到达点,点A1在x 轴的负半轴上,∴A1(-2,0)从点A2解析:A【分析】先求出A 1,A 2,A 3,…A 8,发现规律,根据规律求出A 20的坐标即可.【详解】解:∵一个机器人从点O 出发,向正西方向走2m 到达点1A ,点A 1在x 轴的负半轴上,∴A 1(-2,0)从点A 2开始,由点1A 再向正北方向走4m 到达点2A ,A 2(-2,4),由点2A 再向正东方向走6m 到达点3A ,A 3(6-2,4)即(4,4),由点3A 再向正南方向走8m 到达点4A ,A 4(4,4-8)即(4,-4),由点A 4再向正西方向走10m 到达点5A ,A 5(4-10,-4)即(-6,-4),由点A 5再向正北方向走12m 到达点A 6,A 6(-6,12-4)即(-6,8),由点A 6再向再向正东方向走14m 到达点A 7,A 7(14-6,8)即(8,8),由点A 7再向正南方向走16m 到达点8A ,A 8(8,8-16)即(8,-8),观察图象可知,下标为偶数时在二四象限,下标为奇数时(除1外)在一三象限,下标被4整除在第四象限.且横坐标与下标相同,因为2054=⨯,所以20A 在第四象限,坐标为(20,20)-.故选择A .【点睛】本题考查平面直角坐标系点的坐标规律问题,掌握求点的坐标方法与过程,利用下标与坐标的关系找出规律是解题关键.二、填空题9.0或1【详解】根据负数没有算术平方根,一个正数的算术平方根只有一个,1和0的算术平方根等于本身,即可得出答案.解:1和0的算术平方根等于本身.故答案为1和0“点睛”本题考查了算术平方根的知解析:0或1【详解】根据负数没有算术平方根,一个正数的算术平方根只有一个,1和0的算术平方根等于本身,即可得出答案.解:1和0的算术平方根等于本身.故答案为1和0“点睛”本题考查了算术平方根的知识,注意掌握1和0的算术平方根等于本身.10.(2,﹣5).【分析】根据题意分析点P,先关于y轴对称,再求关于x轴对称的点即可【详解】∵点A的坐标为(﹣2,5),点Q与点A关于y轴对称,∴点Q的坐标为(2,5),∵点P与点Q关于x轴解析:(2,﹣5).【分析】根据题意分析点P,先关于y轴对称,再求关于x轴对称的点即可【详解】∵点A的坐标为(﹣2,5),点Q与点A关于y轴对称,∴点Q的坐标为(2,5),∵点P与点Q关于x轴对称,∴点P的坐标是(2,﹣5).故答案为:(2,﹣5).【点睛】本题考查了平面直角坐标系的定义,轴对称,理解题意是解题的关键.11.α=β【详解】试题解析:当BF ∥DP 时,即:整理得:故答案为解析:α=β【详解】试题解析:360.ABC ADC A C ∠+∠+∠+∠= 360.ABC ADC CBM CDN ∠+∠+∠+∠= .CBM CDN A C αβ∴∠+∠=∠+∠=+当BF ∥DP 时,()1,2C PDC FBC CDN CBM ∠=∠+∠=∠+∠即:()1,2βαβ=+整理得:.αβ=故答案为.αβ=12.(上式变式都正确)【分析】过点E 作,过点F 作,可得出(根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案.【详解】解:如图解析:90γαβ+=︒+(上式变式都正确)【分析】过点E 作//EM AB ,过点F 作//FN AB ,可得出//////AB EM FN CD (根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案.【详解】解:如图所示,过点E 作//EM AB ,过点F 作//FN AB ,∵//AB CD ,∴//////AB EM FN CD ,∵//AB EM ,∴ABE BEM ∠=∠,∵//EM FN ,∴MEF EFN ∠=∠,∵//NF CD ,∴NFC FCD ∠=∠,∴ABE EFN NFC BEM MEF FCD ∠+∠+∠=∠+∠+∠,∴ABE EFC BEF FCD ∠+∠=∠+∠,∵ABE α∠=,FCD β∠=,CFE γ∠=,且BE EF ⊥,∴90αγβ+=︒+,故答案为:90αγβ+=︒+.【点睛】题目主要考察平行线的性质及等式的性质,作出相应的辅助线、找出相应的角的关系是解题关键.13.【分析】根据已知条件以及翻折的性质,先求得S 四边形ABCD ,根据S 四边形ABCD ,即可求得,进而求得【详解】∵AF 为△ACD 的中线,△AFC 的面积为2,∴S △ACD =2S △AFC =4,∵解析:【分析】根据已知条件以及翻折的性质,先求得S 四边形ABCD ,根据S 四边形ABCD =12AC BD ⨯⨯,即可求得AC ,进而求得CE【详解】∵AF 为△ACD 的中线,△AFC 的面积为2,∴S △ACD =2S △AFC =4,∵△ABC沿直线AC翻折得到△ADC,∴S△ABC=S△ADC,BD⊥AC,BE=ED,∴S四边形ABCD=8,∴18 2AC BD⨯⨯=,∵BE=2,AE=3,∴BD=4,∴AC=4,∴CE=AC﹣AE=4﹣3=1.故答案为1.【点睛】本题考查了三角形中线的性质,翻折的性质,利用四边形ABCD的等面积法求解是解题的关键.14.或【详解】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}==2x+1解析:12或13【详解】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}=321413x x+++-=2x+1,∵M{3,2x+1,4x-1}=min{2,-x+3,5x},∴有如下三种情况:①2x+1=2,x=12,此时min{2,-x+3,5x}=min{2,52,52}=2,成立;②2x+1=-x+3,x=23,此时min{2,-x+3,5x}=min{2,73,103}=2,不成立;③2x+1=5x,x=13,此时min{2,-x+3,5x}=min{2,83,53}=53,成立,∴x=12或13,故答案为12或13.【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解.15.-3或7【分析】由AB ∥x 轴可知B 点的纵坐标和A 点的纵坐标相同,再根据线段AB 的长度为5,B 点在A 点的坐标或右边,分别求出B 点的坐标,即可得到答案.【详解】解:∵AB ∥x 轴,∴B 点的纵坐标解析:-3或7【分析】由AB ∥x 轴可知B 点的纵坐标和A 点的纵坐标相同,再根据线段AB 的长度为5,B 点在A 点的坐标或右边,分别求出B 点的坐标,即可得到答案.【详解】解:∵AB ∥x 轴,∴B 点的纵坐标和A 点的纵坐标相同,都是4,又∵A (-2,4),AB =5,∴当B 点在A 点左侧的时候,B (-7,4),此时B 点的横纵坐标之和是-7+4=-3,当B 点在A 点右侧的时候,B (3,4),此时B 点的横纵坐标之和是3+4=7;故答案为:-3或7.【点睛】本题考查了与坐标轴平行的线上点的坐标特征以及分情况讨论的思想,要注意根据B 点位置的不确定得出两种情况分别求解.16.【分析】观察点,点,点,点点的横坐标为,纵坐标为,据此即可求得的坐标;【详解】,,,,,故答案为:【点睛】本题考查了坐标系中点的规律,找到规律是解题的关键.解析:(4040,2020)【分析】观察点()10,0A ,点()22,1A ,点()34,2A ,点()46,3A ,,点的横坐标为22n -,纵坐标为1n -,据此即可求得2021A 的坐标;【详解】()10,0A ,()22,1A ,()34,2A ,()46,3A ,,(22,1)n A n n --,∴2021(4040,2020)A 故答案为:(4040,2020)【点睛】本题考查了坐标系中点的规律,找到规律是解题的关键.三、解答题17.(1)5;(2)-2;(3)2【解析】【分析】根据实数的性质进行化简,再求值.【详解】解:(1)==5;(2)-×=-×4=-2;(3)-++=-6+5+3=2.【点睛】此题主要解析:(1)5;(2)-2;(3)2【解析】【分析】根据实数的性质进行化简,再求值.【详解】解=-12×4=-2;【点睛】此题主要考查实数的计算,解题的关键是熟知实数的性质.18.(1)±5;(2)13【分析】(1)将已知两式相减,再利用完全平方公式得到,可得结果;(2)根据完全平方公式可得=,代入计算即可【详解】解:(1)∵①,②,①+②得:,即,∴;(2)解析:(1)±5;(2)13【分析】(1)将已知两式相减,再利用完全平方公式得到()225a b +=,可得结果;(2)根据完全平方公式可得22a b +=()()2212a b a b ⎡⎤++-⎣⎦,代入计算即可【详解】解:(1)∵215a ab +=①,210b ab +=②,①+②得:22225a b ab ++=,即()225a b +=,∴5a b +=±;(2)∵1a b -=,∴22a b +=()()2212a b a b ⎡⎤++-⎣⎦=()221512⎡⎤±+⎣⎦=13.【点睛】本题主要考查了完全平方公式的变式应用,熟练应用完全平方公式的变式进行计算是解决本题的关键.19.(1)见解析;(2)见解析【分析】(1)由对顶角相等及等量代换得到∠2=∠DMN ,由此判定DB ∥EC ,由平行线的性质及等量代换得出∠DBC+∠D=180°即可判定DF ∥AC ,再根据平行线的性质即解析:(1)见解析;(2)见解析【分析】(1)由对顶角相等及等量代换得到∠2=∠DMN ,由此判定DB ∥EC ,由平行线的性质及等量代换得出∠DBC +∠D =180°即可判定DF ∥AC ,再根据平行线的性质即可得解;(2)由平行线的性质及等量代换即可得解.【详解】解:(1)证明:∵∠1=∠2(已知),又∵∠1=∠DMN (对顶角相等),∴∠2=∠DMN (等量代换),∴DB ∥EC (同位角相等,两直线平行),∴∠DBC +∠C =180°(两直线平行,同旁内角互补),∵∠C =∠D (已知),∵∠DBC +(∠D )=180°(等量代换),∴DF ∥AC (同旁内角互补,两直线平行),∴∠A =∠F (两直线平行,内错角相等).(2)∵DB ∥EC ,∴∠DBC +∠C =180°,∠DEC +∠D =180°,∵∠C =∠D ,∴∠DBC =∠DEC .【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的判定定理与性质定理是解题的关键.20.(1)见解析;(2)A′,O′【分析】(1)分别作出A ,B ,O 的对应点A′,B′,O′即可.(2)根据点的位置写出坐标即可.【详解】解:(1)如图,△A′B′O′即为所求作.(2)A′(解析:(1)见解析;(2)A ′()2,1,O ′()41-,【分析】(1)分别作出A ,B ,O 的对应点A ′,B ′,O ′即可.(2)根据点的位置写出坐标即可.【详解】解:(1)如图,△A ′B ′O ′即为所求作.(2)A ′(2,1),O ′(4,−1).【点睛】本题考查作图−平移变换,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(1)a =1,b =﹣4;(2)±4.【分析】(1)根据被开饭数越大算术平方根越大,可得a,b的值,(2)根据开平方运算,可得平方根.【详解】解:(1)∴,∴4<5,∴1<﹣3<2,∴解析:(1)a=1,b4;(2)±4.【分析】(1)根据被开饭数越大算术平方根越大,可得a,b的值,(2)根据开平方运算,可得平方根.【详解】解:(1<∴4<<5,∴1﹣3<2,∴a=1,b﹣4;(2)(﹣a)3+(b+4)2=(﹣1)3+﹣4+4)2=﹣1+17=16,∴(﹣a)3+(b+4)2的平方根是:±4.【点睛】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出4<5是解题关键.二十二、解答题22.(1)正方形的面积为10,正方形的边长为;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画解析:(1)正方形ABCD的面积为10,正方形ABCD;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形ABCD的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画出图形,然后建立数轴,根据算术平方根的意义即可表示出结论.【详解】解:(1)正方形ABCD的面积为4×4-4×12×3×1=10则正方形ABCD ;(2)如下图所示,正方形的面积为4×4-4×12×2×2=8,所以该正方形即为所求,如图建立数轴,以数轴的原点为圆心,正方形的边长为半径作弧,分别交数轴于两点∴弧与数轴的左边交点为【点睛】此题考查的是求网格中图形的面积和实数与数轴,掌握算术平方根的意义和利用数轴表示无理数是解题关键.二十三、解答题23.(1)证明见解析;(2);(3).【分析】(1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证;(2)过点作,同(1)的方法,先根据平行线的性质解析:(1)证明见解析;(2)90ABC F ∠-∠=︒;(3)45︒.【分析】(1)过点C 作CF AB ∥,先根据平行线的性质可得180ABC BCF ∠+∠=︒,再根据平行公理推论可得CF DE ,然后根据平行线的性质可得180CDE BCF BCD ∠+∠+∠=︒,由此即可得证;(2)过点C 作CG AB ∥,同(1)的方法,先根据平行线的性质得出180ABC BCG ∠+∠=︒,180F BCG BCF ∠+∠+∠=︒,从而可得ABC F BCF ∠-∠=∠,再根据垂直的定义可得90BCF ∠=︒,由此即可得出结论;(3)过点G 作GM AB ,延长FG 至点N ,先根据平行线的性质可得ABH MGH ∠=∠,MGN DFG ∠=∠,从而可得MGH MGN ABH DFG ∠-∠=∠-∠,再根据角平分线的定义、结合(2)的结论可得45MGH MGN ∠=-∠︒,然后根据角的和差、对顶角相等可得BGD CG MGH MGN F ∠-∠=∠-∠,由此即可得出答案.【详解】证明:(1)如图,过点C 作CF AB ∥,180ABC BCF ∴∠+∠=︒,AB DE ,CF DE ∴P ,180CDE DCF ∴∠+∠=︒,即180CDE BCF BCD ∠+∠+∠=︒,CDE BCF BCD ABC BCF ∴∠+∠+∠=∠+∠,BCD CDE ABC ∴∠+∠=∠;(2)如图,过点C 作CG AB ∥,180ABC BCG ∴∠+∠=︒,AB DE ,CG DE ∴ ,180F FCG ∴∠+∠=︒,即180F BCG BCF ∠+∠+∠=︒,F BCG BCF ABC BCG ∴∠+∠+∠=∠+∠,ABC F BCF ∴∠-∠=∠,CF BC ⊥ ,90BCF ∴∠=︒,90ABC F ∴∠-∠=︒;(3)如图,过点G 作GM AB ,延长FG 至点N ,ABH MGH ∴∠=∠,AB DE ,GM DE ∴ ,MGN DFG ∴∠=∠,BH 平分ABC ∠,FN 平分CFD ∠,11,22ABH AB D C CF DFG ∴∠=∠∠∠=,由(2)可知,90ABC CFD ∠-∠=︒,411225MGH MGN ABH DFG CF B D A C ∠-∠=∠-∠∠-==∴︒,又BGD MGH MGD CGF DGN MGN MGD ∠=∠+∠⎧⎨∠=∠=∠+∠⎩,45MGH BGD GF MGN C ∠-∠∴-==∠∠︒.【点睛】本题考查了平行线的性质、对顶角相等、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.24.(1),见解析;(2);(3)60°【分析】(1)作EF//AB ,如图1,则EF//CD ,利用平行线的性质得∠1=∠BAE ,∠2=∠CDE ,从而得到∠BAE +∠CDE =∠AED ;(2)如图2,解析:(1)BAE CDE AED ∠+∠=∠,见解析;(2)12AFD AED ∠=∠;(3)60°【分析】(1)作EF //AB ,如图1,则EF //CD ,利用平行线的性质得∠1=∠BAE ,∠2=∠CDE ,从而得到∠BAE +∠CDE =∠AED ;(2)如图2,由(1)的结论得∠AFD =∠BAF +∠CDF ,根据角平分线的定义得到∠BAF =12∠BAE ,∠CDF =12∠CDE ,则∠AFD =12(∠BAE +∠CDE ),加上(1)的结论得到∠AFD =12∠AED ;(3)由(1)的结论得∠AGD =∠BAF +∠CDG ,利用折叠性质得∠CDG =4∠CDF ,再利用等量代换得到∠AGD =2∠AED -32∠BAE ,加上90°-∠AGD =180°-2∠AED ,从而可计算出∠BAE 的度数.【详解】解:(1)BAE CDE AED∠+∠=∠理由如下:作//EF AB ,如图1,//AB CD Q ,//EF CD ∴.1BAE ∴∠=∠,2CDE ∠=∠,BAE CDE AED ∴∠+∠=∠;(2)如图2,由(1)的结论得AFD BAF CDF ∠=∠+∠,BAE ∠ 、CDE ∠的两条平分线交于点F ,12BAF BAE ∴∠=∠,12CDF CDE ∠=∠,1()2AFD BAE CDE ∴∠=∠+∠,BAE CDE AED ∠+∠=∠ ,12AFD AED ∴∠=∠;(3)由(1)的结论得AGD BAF CDG ∠=∠+∠,而射线DC 沿DE 翻折交AF 于点G ,4CDG CDF ∴∠=∠,11422()22AGD BAF CDF BAE CDE BAE AED BAE ∴∠=∠+∠=∠+∠=∠+∠-∠=322AED BAE ∠-∠,901802AGD AED ︒-∠=︒-∠ ,390218022AED BAE AED ∴︒-∠+∠=︒-∠,60BAE ∴∠=︒.【点睛】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.25.(1)∠DAE =14°;(2)∠DFE =14°;(3)∠DAE 的大小不变,∠DAE =14°,证明详见解析.【分析】(1)求出∠ADE 的度数,利用∠DAE=90°-∠ADE 即可求出∠DAE解析:(1)∠DAE =14°;(2)∠DFE =14°;(3)∠DAE 的大小不变,∠DAE =14°,证明详见解析.【分析】(1)求出∠ADE 的度数,利用∠DAE=90°-∠ADE 即可求出∠DAE 的度数.(2)求出∠ADE 的度数,利用∠DFE=90°-∠ADE 即可求出∠DAE 的度数.(3)利用AE 平分∠BEC ,AD 平分∠BAC ,求出∠DFE=15°即是最好的证明.【详解】(1)∵∠B=45°,∠C=73°,∴∠BAC=62°,∵AD 平分∠BAC ,∴∠BAD=∠CAD=31°,∴∠ADE=∠B+∠BAD=45°+31°=76°,∵AE ⊥BC ,∴∠AEB=90°,∴∠DAE=90°-∠ADE=14°.(2)同(1),可得,∠ADE=76°,∵FE ⊥BC ,∴∠FEB=90°,∴∠DFE=90°-∠ADE=14°.(3)DAE ∠的大小不变.DAE ∠=14°理由:∵AD 平分∠BAC ,AE 平分∠BEC∴∠BAC=2∠BAD ,∠BEC=2∠AEB∵∠BAC+∠B+∠BEC+∠C =360°∴2∠BAD+2∠AEB=360°-∠B-∠C=242°∴∠BAD+∠AEB=121°∵∠ADE=∠B+∠BAD∴∠ADE=45°+∠BAD∴∠DAE=180°-∠AEB-∠ADE=180°-∠AEB-45°-∠BAD=135°-(∠AEB+∠BAD )=135°-121°=14°【点睛】本题考查了三角形内角和定理和三角形外角的性质,熟练掌握性质是解题的关键.26.(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A′DE ,∠AED=∠A′解析:(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知70C ∠=︒,65B ∠=︒,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A′DE ,∠AED=∠A′ED ,由两个平角∠AEB 和∠ADC 得:∠1+∠2等于360°与四个折叠角的差,化简得结果;②利用两次外角定理得出结论;(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG )以及(∠C'DE+∠C'ED )和(∠A'HL+∠A'LH ),再利用三角形的内角和定理即可求解.【详解】解:(1)∵70C ∠=︒,65B ∠=︒,∴∠A′=∠A=180°-(65°+70°)=45°,∴∠A′ED+∠A′DE =180°-∠A′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A′ED+∠A′DE )=360°-310°=50°;(2)①122A ∠+∠=∠,理由如下由折叠得:∠ADE=∠A′DE ,∠AED=∠A′ED ,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A′DE-∠AED-∠A′ED=360°-2∠ADE-2∠AED ,∴∠1+∠2=2(180°-∠ADE-∠AED )=2∠A ;②221A ∠=∠+∠,理由如下:∵2∠是ADF 的一个外角∴2A AFD ∠=∠+∠.∵AFD ∠是A EF '△的一个外角∴1AFD A '∠=∠+∠又∵A A '∠=∠∴221A ∠=∠+∠(3)如图由题意知,∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG )-(∠C'DE+∠C'ED )-(∠A'HL+∠A'LH )=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.【点睛】题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.。
七年级数学难题集锦
志在满分61.用同样规格的黑白两种颜色的正方形,按如图的方式拼图,请根据图中的信息完成下列的问题.①②③(1)在图②中用了块黑色正方形,在图③中用了块黑色正方形;(2)按如图的规律继续铺下去,那么第n个图形要用块黑色正方形;(3)如果有足够多的白色正方形,能不能恰好用完90块黑色正方形,拼出具有以上规律的图形?如果可以请说明它是第几个图形;如果不能,说明你的理由.2.如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第8层中含有正三角形个数是()3.为庆祝“六一”儿童节,某区小学统一组织文艺汇演,甲、乙两所学校共92名学生参加演出(其中甲校人数多于乙校人数且甲校学生不够90名),现准备统一购买演出服装,下面是某服装厂给出的演出服装的价格表:购买服装的套数1套至45套46套至90套91套及以上每套服装的价格60元50元40元如果两所学校分别单独购买服装,则他们一共应付5000元.问:( 1 ) 如果甲、乙两校联合起来购买服装,那么比各自购买服装共可以节省多少钱?( 2 )甲、乙两所学校各有多少名学生参加演出?( 3) 如果甲校有10名同学抽调去参加书法绘画比赛而不能参加演出,请你为两所学校设计一种最省钱的购买服装方案4.“水是生命之源”,市自来水公司为鼓励用户节约用水,按以下规定收取水费:用水量/月单位(元/吨)不超过40吨的部分 1超过40吨的部分 1. 5另:每吨用水加收0. 2元的城市污水处理费(1)某用户1月份共交水费65元,问1月份用水多少吨?(2)若该用户水表有故障,每次用水只有60%记入用水量,这样在2月份交水费43. 2元,该用户2月份实际应交水费多少元?5.某商店打出了促销广告如下表.对顾客实行优惠,某人在此商场两次购物分别付款168元和423元. (1)第一次付款168元,可购价值多少元的货物? (2)第二次付款423元,可购价值多少元的货物? (3)若把两次的货物合在一次买,需要多少钱?6.一个几何体是由一些大小相同的小立方块摆成的,如下图是从正面、左面、上面看这个几何体得到的平面图形,那么组成这个几何体所用的小立方块的个数是 .7.下面是按一定规律摆放的图案,按此规律,第2010个图案与第1~ 4个图案中相同的是 .(只填数字) 8. 某同学在A 、B 两家超市发现他看中的随身听的单价相同, 书包单价也相同. 随身听和书包单价之和是452元, 且随身听的单价是书包单位的4倍少8元. (1)求该同学看中的随身听和书包的单价各是多少元?(2)某一天该同学上街, 恰好赶上商家促销, 超市A 所有商品打八折销售, 超市B 全场购物满100元返购物券30元销售(不足100元不返券, 购物券全场通用), 但他只带了400元钱, 如果他只在一家超市购买看中的这两样物品, 请你说明他能够在哪一家购买?若两家都可以选择, 在哪一家购买更省钱?优惠条件 一次购物不超过200元 一次购物超过200元,但不超过500元一次购物超过500元优惠方法不予优惠按物价给予九折优惠其中500元按九折优惠,超过500元部分按八折优惠.第1个 第2个 第3个 第4个 第5个 第6个…(同一种商品不可同时参与两种活动,)(1)某单位购买A 商品30件,B 商品90件,选用何种活动划算?能便宜多少钱? (2)若某单位购买A 商品x 件(x 为正整数),购买B 商品的件数比A 商品件数的2倍还多一件,请问该单位该如何选择才能获得最大优惠?请说明理由.10.全世界每年都有大量土地被沙漠吞没,改造沙漠,保护土地资源己成为一项十分紧迫的任务,某地区沙漠原有面积100万公顷。
七年级上册较难数学试卷
考试时间:90分钟满分:100分一、选择题(每题3分,共30分)1. 下列各数中,是正数的是()A. -3B. 0C. 1.5D. -1.22. 下列各数中,有理数是()A. πB. √9C. √-1D. 2/33. 已知 a = -3,那么 -2a 的值是()A. 6B. -6C. 12D. -124. 下列各图中,是平行四边形的是()A. B. C. D.5. 在直角坐标系中,点 P(-2,3) 关于 y 轴的对称点是()A. (-2,3)B. (2,3)C. (-2,-3)D. (2,-3)6. 已知 a + b = 5,a - b = 1,那么 a 的值是()A. 3B. 4C. 5D. 67. 下列各式中,正确的是()A. (a + b)² = a² + b²B. (a - b)² = a² - b²C. (a + b)² = a² + 2ab + b²D. (a - b)² = a² - 2ab + b²8. 已知x² - 5x + 6 = 0,那么 x 的值是()A. 2B. 3C. 4D. 69. 下列各数中,是无理数的是()A. √4B. √9C. √16D. √-110. 下列各式中,能化为同类二次根式的是()A. √2 + √3B. √8 + √12C. √18 + √24D. √27 + √36二、填空题(每题3分,共30分)11. 若 a = -3,b = 2,则a² - b² 的值是 _______。
12. 在直角坐标系中,点 A(3,4) 和点 B(-2,1) 之间的距离是 _______。
13. 若a² = 16,则 a 的值是 _______。
14. 若(a + b)² = 25,a - b = 5,则 a 的值是 _______。
七年级上册数学较难题目汇总
七年级上册数学较难题目汇总1、下列说法:①若;则a−b 是负数;②若0=-b a ;则b a =;③两数的差一定小鱼它们的和。
其中错误的有( )A 、3个B 、2个C 、1个D 、0个2、若654,25322+-=+-=x x B x x A ;则A 与B 的大小关系是( )A 、A>B B 、A=BC 、A<BD 、无法确定3、若1280000001028.1-=⨯-n ;则n 的值为( )A 、6B 、7C 、8D 、94、使22222296)2()2(cy xy x y bxy ax y xy ax +-=++--+-成立的c b a ,,依次是( )A 、3;-1;-7B 、-3;7;-1C 、3;7;-1D 、-3;-7;15、若a a -=;则实数a 在数轴上的对应点一定在( )A 、原点左侧B 、原点或原点左侧C 、原点右侧D 、原点或原点右侧6、多项式xy y x y x y x 432223425--+是( )A 、按x 的升幂排列B 、按x 的降幂排列C 、按y 的升幂排列D 、按y 的降幂排列7、若,3,2=-=-z x y x ;则9)(3)(2+---y z z y 的值为( )A 、13B 、11C 、5D 、78、已知,4,2-=-=+mn n m 则)2(3)3(2mn n m mn --=的值为9、钟表2时15分时;时针和分针的夹角是10、计算:201620151...431321211⨯++⨯+⨯+⨯11、已知线段AB=8cm ;在直线AB 上有一点C ;且BC=4cm ;M 是线段AC 的中点;则AM 的长度是多少?12、某超市“五一放价”优惠顾客;若一次性购物不超过300元不优惠;超过300元时按全额就九折付款.一位顾客第一次购物付款180元;第二次购物付款288元;若这两次购物合并成一次付款;可节省多少元?13、如果c b a 、、是非零有理数;求式子cc b b a a ++的值。
七年级月考数学试题及参考答案(较难)
七年级月考数学试题及参考答案(较难)一.选择题(每题3分,共30分)1.在四边形ABCD中,如果AD∥BC,∠A=60°,则∠D的度数(D)A.是60°B.是120°C.60°或120°D.不能确定2.第四象限内一点A到x轴的距离是3,到y轴的距离是5,则点A的坐标是(D)A.(3,5)B.(5,3)C.(-3,5)D.(5,-3)3.如果一元一次不等式组无解,则a的取值范围是(D)A.a5B.a<5C.a≥5D.a<54.下列方程组中,与方程组的解不同的方程组是(C)5.若∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系为(C)A.∠1=∠3B.∠1=180°-∠3C.∠1=90°+∠3D.以上都不对6.现有边长相等的正三角形、正方形、正六边形、正八边形的地砖,如果选择其中的两种铺满地面,那么选择的两种地砖形状不可能的是(C)A.正三角形与正方形B.正三角形与正六边形C.正方形与正六边形D.正方形与正八边形7.点P(m-1,2m+1)在第二象限,则m的取值范围是(B)A.m>-1/2或m>1B.-<m<1C.m<1D.m>-1/28.已知关于x的不等式组的整数解共有6个,则m的取值范围是(D)A.-5<m<B.-5<m<-4C.-5<m<-4D.-5<m<-49.若关于x的不等式组的解集为x>-1,则n的值为(B)A.3B.-3C.1D.-110.某所中学现有学生4200人,计划一年后初中在校生增加8%,高中在校生增加11%,这样全校学生将增加10%,则这所中学现在的初中在校生和高中在校生人数分别是(A)A.1400人和2800人B.1900人和2300人C.2800人和1400人D.2300人和1900人二.填空题(每题3分,共30分)11.把命题能够被6整除的数一定能被3整除改写为如果那么的形式是:如果一个数能够被6整除,那么这个数一定能被3整除.12.关于x﹑y的二元一次方程组的解也是二元一次方程2x+3y=8的一个解,则k的值是1.13.三角形的两边为7cm和5cm,则该三角形周长C的取值范围是14<C<24.14.如图所示,将△ABC沿着DE翻折,若∠1+∠2=70°,则∠B=35°度.15.小马虎在进行多边形的内角和计算时,加掉了一个角,结果得到这个多边形的内角和为2021度,则加掉的那个角的度数为:148°.16.如图,△ABC中,∠ABC=50°,∠ACB=80°,AD平分∠BAC,EFperp;BC于E,则∠F=15°.17.如图,AM,CM分别平分∠BAD和∠BCD.∠B=40°,∠D=30°,则∠M=35度.18.点A、B分别在x、y轴上移动,BE平分∠ABy,EB与∠OAB的平分线交于点C,则∠C=45度.第14题图第16题图第17题图第18题图9.若2x-y-2z=0,x+2y-11z=0(xyzne;0)则代数式的值为1.20.用若干辆载重为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空,则共有6辆汽车;三、解答题(共60分)23.(8分)非直角△ABC中,∠A=45°,高BD和高CE所在的直线交于点H,求∠BHC的度数.解:∠BHC=45°或135°(每个4分)。
七年级上册数学难题100题
一、填空题.(每小题3分,共24分)1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.2.若x=-1是方程2x-3a=7的解,则a=_______.3.当x=______时,代数式x-1和的值互为相反数.4.已知x的与x的3倍的和比x的2倍少6,列出方程为________.5.在方程4x+3y=1中,用x的代数式表示y,则y=________.6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.7.已知三个连续的偶数的和为60,则这三个数是________.8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,•则需________天完成.二、选择题.(每小题3分,共30分)9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为().A.0 B.1 C.-2 D.-10.方程│3x│=18的解的情况是().A.有一个解是6 B.有两个解,是±6C.无解D.有无数个解11.若方程2ax-3=5x+b无解,则a,b应满足().A.a≠ ,b≠3B.a= ,b=-3C.a≠ ,b=-3 D.a= ,b≠-312.把方程的分母化为整数后的方程是().13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,•两人同地、同时、同向起跑,t分钟后第一次相遇,t等于().A.10分B.15分C.20分D.30分14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额().A.增加10% B.减少10% C.不增也不减D.减少1%15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=(•)厘米.A.1 B.5 C.3 D.416.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是().A.从甲组调12人去乙组B.从乙组调4人去甲组C.从乙组调12人去甲组D.从甲组调12人去乙组,或从乙组调4人去甲组17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,•一个队打了14场比赛,负了5场,共得19分,那么这个队胜了()场.A.3 B.4 C.5 D.618.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?()A.3个B.4个C.5个D.6个三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)19.解方程:-9.5.20.解方程:(x-1)- (3x+2)= - (x-1).21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,•这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.•已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.23.据了解,火车票价按“ ”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:车站名 A B C D E F G H各站至H站里程数(米)1500 1130 910 622 402 219 72 0例如:要确定从B站至E站火车票价,其票价为=87.36≈87(元).(1)求A站至F站的火车票价(结果精确到1元).(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员: “我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).24.某公园的门票价格规定如下表:购票人数1~50人51~100人100人以上票价5元 4.5元4元某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?(2)两班各有多少名学生?(提示:本题应分情况讨论)答案:一、1.32.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)3.(点拨:解方程x-1=- ,得x= )4.x+3x=2x-6 5.y= - x6.525 (点拨:设标价为x元,则=5%,解得x=525元)7.18,20,228.4 [点拨:设需x天完成,则x(+ )=1,解得x=4]二、9.D10.B (点拨:用分类讨论法:当x≥0时,3x=18,∴x=6当x<0时,-3=18,∴x=-6故本题应选B)11.D (点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a= ,b+3≠0,b≠-3,故本题应选D.)12.B (点拨;在变形的过程中,利用分式的性质将分式的分子、•分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)13.C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800•米,•列方程得260t+800=300t,解得t=20)14.D15.B (点拨:由公式S= (a+b)h,得b= -3=5厘米)16.D 17.C18.A (点拨:根据等式的性质2)三、19.解:原方程变形为200(2-3y)-4.5= -9.5∴400-600y-4.5=1-100y-9.5500y=404∴y=20.解:去分母,得15(x-1)-8(3x+2)=2-30(x-1)∴21x=63∴x=321.解:设卡片的长度为x厘米,根据图意和题意,得5x=3(x+10),解得x=15所以需配正方形图片的边长为15-10=5(厘米)答:需要配边长为5厘米的正方形图片.22.解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171解得x=3答:原三位数是437.23.解:(1)由已知可得=0.12A站至H站的实际里程数为1500-219=1281(千米)所以A站至F站的火车票价为0.12×1281=153.72≈154(元)(2)设王大妈实际乘车里程数为x千米,根据题意,得=66解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D站或G•站下的车.24.解:(1)∵103>100∴每张门票按4元收费的总票额为103×4=412(元)可节省486-412=74(元)(2)∵甲、乙两班共103人,甲班人数>乙班人数∴甲班多于50人,乙班有两种情形:①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得5x+4.5(103-x)=486解得x=45,∴103-45=58(人)即甲班有58人,乙班有45人.②若乙班超过50人,设乙班x人,则甲班有(103-x)人,根据题意,得4.5x+4.5(103-x)=486∵此等式不成立,∴这种情况不存在.故甲班为58人,乙班为45人.====================================================== ================3.2 解一元一次方程(一)——合并同类项与移项【知能点分类训练】知能点1 合并与移项1.下面解一元一次方程的变形对不对?如果不对,指出错在哪里,并改正.(1)从3x-8=2,得到3x=2-8; (2)从3x=x-6,得到3x-x=6.2.下列变形中:①由方程=2去分母,得x-12=10;②由方程x= 两边同除以,得x=1;③由方程6x-4=x+4移项,得7x=0;④由方程2- 两边同乘以6,得12-x-5=3(x+3).错误变形的个数是()个.A.4 B.3 C.2 D.13.若式子5x-7与4x+9的值相等,则x的值等于().A.2 B.16 C.D.4.合并下列式子,把结果写在横线上.(1)x-2x+4x=__________; (2)5y+3y-4y=_________;(3)4y-2.5y-3.5y=__________.5.解下列方程.(1)6x=3x-7 (2)5=7+2x(3)y- = y-2 (4)7y+6=4y-36.根据下列条件求x的值:(1)25与x的差是-8.(2)x的与8的和是2.7.如果方程3x+4=0与方程3x+4k=8是同解方程,则k=________.8.如果关于y的方程3y+4=4a和y-5=a有相同解,则a的值是________.知能点2 用一元一次方程分析和解决实际问题9.一桶色拉油毛重8千克,从桶中取出一半油后,毛重4.5千克,•桶中原有油多少千克?10.如图所示,天平的两个盘内分别盛有50克,45克盐,问应该从盘A内拿出多少盐放到盘B内,才能使两盘内所盛盐的质量相等.11.小明每天早上7:50从家出发,到距家1000米的学校上学,•每天的行走速度为80米/分.一天小明从家出发5分后,爸爸以180米/分的速度去追小明,•并且在途中追上了他.(1)爸爸追上小明用了多长时间?(2)追上小明时距离学校有多远?【综合应用提高】12.已知y1=2x+8,y2=6-2x.(1)当x取何值时,y1=y2? (2)当x取何值时,y1比y2小5?13.已知关于x的方程x=-2的根比关于x的方程5x-2a=0的根大2,求关于x的方程-15=0的解.【开放探索创新】14.编写一道应用题,使它满足下列要求:(1)题意适合一元一次方程;(2)所编应用题完整,题目清楚,且符合实际生活.【中考真题实战】15.(江西)如图3-2是某风景区的旅游路线示意图,其中B,C,D为风景点,E为两条路的交叉点,图中数据为相应两点间的路程(单位:千米).一学生从A处出发,以2千米/时的速度步行游览,每个景点的逗留时间均为0.5小时.(1)当他沿路线A—D—C—E—A游览回到A处时,共用了3小时,求CE的长.(2)若此学生打算从A处出发,步行速度与各景点的逗留时间保持不变,且在最短时间内看完三个景点返回到A处,请你为他设计一条步行路线,•并说明这样设计的理由(不考虑其他因素).答案:1.(1)题不对,-8从等号的左边移到右边应该改变符号,应改为3x=2+8.(2)题不对,-6在等号右边没有移项,不应该改变符号,应改为3x-x=-6.2.B [点拨:方程x= ,两边同除以,得x= )3.B [点拨:由题意可列方程5x-7=4x+9,解得x=16)4.(1)3x (2)4y (3)-2y5.(1)6x=3x-7,移项,得6x-3x=-7,合并,得3x=-7,系数化为1,得x=- .(2)5=7+2x,即7+2x=5,移项,合并,得2x=-2,系数化为1,得x=-1.(3)y- = y-2,移项,得y- y=-2+ ,合并,得y=- ,系数化为1,得y=-3.(4)7y+6=4y-3,移项,得7y-4y=-3-6,合并同类项,得3y=-9,系数化为1,得y=-3.6.(1)根据题意可得方程:25-x=-8,移项,得25+8=x,合并,得x=33.(2)根据题意可得方程:x+8=2,移项,得x=2-8,合并,得x=-6,系数化为1,得x=-10.7.k=3 [点拨:解方程3x+4=0,得x=- ,把它代入3x+4k=8,得-4+4k=8,解得k=3] 8.19 [点拨:∵3y+4=4a,y-5=a是同解方程,∴y= =5+a,解得a=19]9.解:设桶中原有油x千克,那么取掉一半油后,余下部分色拉油的毛重为(8-0.5x)千克,由已知条件知,余下的色拉油的毛重为4.5千克,因为余下的色拉油的毛重是一个定值,所以可列方程8-0.5x=4.5.解这个方程,得x=7.答:桶中原有油7千克.[点拨:还有其他列法]10.解:设应该从盘A内拿出盐x克,可列出表格:盘A 盘B原有盐(克)50 45现有盐(克)50-x 45+x设应从盘A内拿出盐x克放在盘B内,则根据题意,得50-x=45+x.解这个方程,得x=2.5,经检验,符合题意.答:应从盘A内拿出盐2.5克放入到盘B内.11.解:(1)设爸爸追上小明时,用了x分,由题意,得180x=80x+80×5,移项,得100x=400.系数化为1,得x=4.所以爸爸追上小明用时4分钟.(2)180×4=720(米),1000-720=280(米).所以追上小明时,距离学校还有280米.12.(1)x=-[点拨:由题意可列方程2x+8=6-2x,解得x=- ](2)x=-[点拨:由题意可列方程6-2x-(2x+8)=5,解得x=- ]13.解:∵x=-2,∴x=-4.∵方程x=-2的根比方程5x-2a=0的根大2,∴方程5x-2a=0的根为-6.∴5×(-6)-2a=0,∴a=-15.∴-15=0.∴x=-225.14.本题开放,答案不唯一.15.解:(1)设CE的长为x千米,依据题意得1.6+1+x+1=2(3-2×0.5)解得x=0.4,即CE的长为0.4千米.(2)若步行路线为A—D—C—B—E—A(或A—E—B—C—D—A),则所用时间为(•1.6+1+1.2+0.4+1)+3×0.5=4.1(小时);若步行路线为A—D—C—E—B—E—A(或A—E—B—E—C—D—A),则所用时间为(1.6+1+0.4+0.4×2+1)+3×0.5=3.9(小时).故步行路线应为A—D—C—E—B—E—A(或A—E—B—E—C—D—A)。
七年级上册整式化简100道较难
七年级上册整式化简100道较难一、1、a+(2b-3c-4d)=_________;2、a-(-2b-3c+4d)=________;3、(m-n)-3(z-p)=________;4、3x-[5x-(2x-1)]=________;5、4x2-[6x-(5x-8)-x2]=___________;6、(3x+5y)+(5x-7y)-2(2x-4y)=7、a-(-2b-3c+4d)=8、(m-n)-3(z-p)=9、3x-[5x-(2x-1)]=10、4x2-[6x-(5x-8)-x2]=11、(3x+5y)+(5x-7y)-2(2x-4y)=12、5ab+[2a2b+(a2b-3ab)]-2a2b=13、(2x2-x-1)-(x2-x- )+3(x2-1 ),其中x=1 .二、1、7x-3y-4z=-(_________);2、a2-2ab-a-b=a2-2ab-(_________);3、5x3-4x2+2x-3=5x3-(_________)-3;4、a3-a2b+ab2=-(_______)+ab2=a3-(________);5、5a2-6a+9b=5a2-3(_____)=-6a-(______);6、x3-3x2y+3xy2-y3=x3-3x2y-(_____)=x3-y3-(______);三、(1)(x3-4x2y+5xy2-3y3)-(-2xy2-4x3+x2y)=(2)一个多项式减去3a4-a3+2a-1得5a4+3a2-7a+2,求这个多项式。
四、先化简下列各式,再求值(1) x-2(x- )+3( x+ ),其中x=-4;(2)(3xy-2x2)-(2x2-y2)-(y2-2xy)+(-y2+5x2+xy),其中x= ,y=- ;(3)5xyz-{2x2y-[3xyz-(4xy2-x2y)]}其中x=-2,y=-1,z=31、5y+2x-(5y-2x)2、x(x-y)+x(y-x)3、3、(x-y)2-(x-y)4、(2x-y)2-2(2x-y)+15、3(2x+y)2+2(2x+y)6、7x-(5x-5y)-y7、2x-(3x-2y+2)+(3x-4y-1)8、2x+2y-[3x-2(x-y)]9、a+[a+b+c]-[b-a]10、a×[b+c]-a[b-c]11、a+b+(b-a)-b-a12、{[a÷b]×{b÷a+1]}×{b÷a}13、(3a+b)214、(-x+3y)215、(a+b)(a-b)16、(-a-b)217、(2x+ )218、(3x+5y)+(5x-7y)-2(2x-4y)19、(3x+5y)+(5x-7y)+2(2x-4y)20、2(2a-3b)+3(2b-3a)化简求值:1、-9(x-2)-y(x-5)(1)化简整个式子.(2)当x=5时,求y的解.2、5(9+a)×b-5(5+b)×a (1)化简整个式子.(2)当a=5/7时,求式子的值.3、62g+62(g+b)-b(1)化简整个式子.(2)当g=5/7时,求b的解. 4、3(x+y)-5(4+x)+2y(1)化简整个式子.5、(x+y)(x-y)(1)化简整个式子.6、2ab+a×a-b(1)化简整个式子.7、5.6x+4(x+y)-y(1)化简整个式子.8、6.4(x+2.9)-y+2(x-y)(1)化简整个式子.9、(2.5+x)(5.2+y)(1)化简整个式子.3.3ab-4ab+8ab-7ab+ab=______.4.7x-(5x-5y)-y=______.5.23a3bc2-15ab2c+8abc-24a3bc2-8abc=______.6.-7x2+6x+13x2-4x-5x2=______.7.2y+(-2y+5)-(3y+2)=______.11.(2x2-3xy+4y2)+(x2+2xy-3y2)=______.12.2a-(3a-2b+2)+(3a-4b-1)=______.13.-6x2-7x2+15x2-2x2=______.14.2x-(x+3y)-(-x-y)-(x-y)=______.16.2x+2y-[3x-2(x-y)]=______.17.5-(1-x)-1-(x-1)=______.18.( )+(4xy+7x2-y2)=10x2-xy.19.(4xy2-2x2y)-( )=x3-2x2y+4xy2+y3.21.已知A=x3-2x2+x-4,B=2x3-5x+3,计算A+B=______.22.已知A=x3-2x2+x-4,B=2x3-5x+3,计算A-B=______.23.若a=-0.2,b=0.5,代数式-(|a2b|-|ab2|)的值为______.25.一个多项式减去3m4-m3-2m+5得-2m4-3m3-2m2-1,那么这个多项式等于______.26.-(2x2-y2)-[2y2-(x2+2xy)]=______.27.若-3a3b2与5ax-1by+2是同类项,则x=______,y=______.28.(-y+6+3y4-y3)-(2y2-3y3+y4-7)=______.29.化简代数式4x2-[7x2-5x-3(1-2x+x2)]的结果是______.30.2a-b2+c-d3=2a+( )-d3=2a-d3-( )=c-( ).31.3a-(2a-3b)+3(a-2b)-b=______.32.化简代数式x-[y-2x-(x+y)]等于______.33.[5a2+( )a-7]+[( )a2-4a+( )]=a2+2a+1.34.3x-[y-(2x+y)]=______.35.化简|1-x+y|-|x-y|(其中x<0,y>0)等于______.36.已知x≤y,x+y-|x-y|=______.37.已知x<0,y<0,化简|x+y|-|5-x-y|=______.38.4a2n-an-(3an-2a2n)=______.39.若一个多项式加上-3x2y+2x2-3xy-4得2x2y+3xy2-x2+2xy,则这个多项式为______.40.-5xm-xm-(-7xm)+(-3xm)=______.41.当a=-1,b=-2时,[a-(b-c)]-[-b-(-c-a)]=______.43.当a=-1,b=1,c=-1时,-[b-2(-5a)]-(-3b+5c)=______.44.-2(3x+z)-(-6x)+(-5y+3z)=______.45.-5an-an+1-(-7an+1)+(-3an)=______.46.3a-(2a-4b-6c)+3(-2c+2b)=______.48.9a2+[7a2-2a-(-a2+3a)]=______.50.当2y-x=5时,5(x-2y)2-3(-x+2y)-100=______.。
七年级上册数学难题100题
一、填空题.(每小题3分,共24分)1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.2.若x=-1是方程2x-3a=7的解,则a=_______.3.当x=______时,代数式x-1和的值互为相反数.4.已知x的与x的3倍的和比x的2倍少6,列出方程为________.5.在方程4x+3y=1中,用x的代数式表示y,则y=________.6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.7.已知三个连续的偶数的和为60,则这三个数是________.8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,•则需________天完成.二、选择题.(每小题3分,共30分)9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为().A.0 B.1 C.-2 D.-?10.方程│3x│=18的解的情况是().A.有一个解是6 B.有两个解,是±6C.无解D.有无数个解11.若方程2ax-3=5x+b无解,则a,b应满足().A.a≠ ,b≠3 B.a= ,b=-3C.a≠ ,b=-3 D.a= ,b≠-312.把方程的分母化为整数后的方程是().?13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,•两人同地、同时、同向起跑,t分钟后第一次相遇,t等于().A.10分B.15分C.20分D.30分14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额().A.增加10% B.减少10% C.不增也不减D.减少1%15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=(•)厘米.A.1 B.5 C.3 D.416.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是().A.从甲组调12人去乙组B.从乙组调4人去甲组C.从乙组调12人去甲组D.从甲组调12人去乙组,或从乙组调4人去甲组17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,•一个队打了14场比赛,负了5场,共得19分,那么这个队胜了()场.A.3 B.4 C.5 D.618.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡()A.3个B.4个C.5个D.6个三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)19.解方程:.20.解方程:(x-1)- (3x+2)= - (x-1).21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,•这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.•已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.23.据了解,火车票价按“ ”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:车站名A B C D E F G H各站至H站里程数(米)1500 1130 910 622 402 219 72 0例如:要确定从B站至E站火车票价,其票价为=≈87(元).(1)求A站至F站的火车票价(结果精确到1元).(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员: “我快到站了吗”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).24.某公园的门票价格规定如下表:购票人数1~50人51~100人100人以上票价5元元4元某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?(2)两班各有多少名学生(提示:本题应分情况讨论)答案:一、1.32.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)3.(点拨:解方程x-1=- ,得x= )4.x+3x=2x-6 5.y= - x6.525 (点拨:设标价为x元,则=5%,解得x=525元)7.18,20,228.4 [点拨:设需x天完成,则x(+ )=1,解得x=4]二、9.D10.B (点拨:用分类讨论法:当x≥0时,3x=18,∴x=6当x<0时,-3=18,∴x=-6故本题应选B)11.D (点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a= ,b+3≠0,b≠-3,故本题应选D.)12.B (点拨;在变形的过程中,利用分式的性质将分式的分子、•分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)13.C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800•米,•列方程得260t+800=300t,解得t=20)14.D15.B (点拨:由公式S= (a+b)h,得b= -3=5厘米)16.D 17.C18.A (点拨:根据等式的性质2)三、19.解:原方程变形为200(2-3y)=∴=500y=404∴y=?20.解:去分母,得15(x-1)-8(3x+2)=2-30(x-1)∴21x=63∴x=321.解:设卡片的长度为x厘米,根据图意和题意,得5x=3(x+10),解得x=15所以需配正方形图片的边长为15-10=5(厘米)答:需要配边长为5厘米的正方形图片.22.解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171解得x=3答:原三位数是437.23.解:(1)由已知可得=A站至H站的实际里程数为1500-219=1281(千米)所以A站至F站的火车票价为×1281=≈154(元)(2)设王大妈实际乘车里程数为x千米,根据题意,得=66解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D站或G•站下的车.24.解:(1)∵103>100∴每张门票按4元收费的总票额为103×4=412(元)可节省486-412=74(元)(2)∵甲、乙两班共103人,甲班人数>乙班人数∴甲班多于50人,乙班有两种情形:①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得5x+(103-x)=486解得x=45,∴103-45=58(人)即甲班有58人,乙班有45人.②若乙班超过50人,设乙班x人,则甲班有(103-x)人,根据题意,得+(103-x)=486∵此等式不成立,∴这种情况不存在.故甲班为58人,乙班为45人.======================================================================解一元一次方程(一)?——合并同类项与移项?【知能点分类训练】?知能点1 合并与移项?1.下面解一元一次方程的变形对不对如果不对,指出错在哪里,并改正.?(1)从3x-8=2,得到3x=2-8; (2)从3x=x-6,得到3x-x=6.?2.下列变形中:?①由方程=2去分母,得x-12=10;?②由方程x= 两边同除以,得x=1;?③由方程6x-4=x+4移项,得7x=0;?④由方程2- 两边同乘以6,得12-x-5=3(x+3).?错误变形的个数是()个.?A.4 B.3 C.2 D.1?3.若式子5x-7与4x+9的值相等,则x的值等于().?A.2 B.16 C.D.?4.合并下列式子,把结果写在横线上.?(1)x-2x+4x=__________; (2)5y+3y-4y=_________;?(3)5.解下列方程.?(1)6x=3x-7 (2)5=7+2x?(3)y- = y-2 (4)7y+6=4y-3?6.根据下列条件求x的值:?(1)25与x的差是-8.(2)x的与8的和是2.?7.如果方程3x+4=0与方程3x+4k=8是同解方程,则k=________.?8.如果关于y的方程3y+4=4a和y-5=a有相同解,则a的值是________.?知能点2 用一元一次方程分析和解决实际问题?9.一桶色拉油毛重8千克,从桶中取出一半油后,毛重千克,•桶中原有油多少千克?10.如图所示,天平的两个盘内分别盛有50克,45克盐,问应该从盘A内拿出多少盐放到盘B内,才能使两盘内所盛盐的质量相等.?11.小明每天早上7:50从家出发,到距家1000米的学校上学,•每天的行走速度为80米/分.一天小明从家出发5分后,爸爸以180米/分的速度去追小明,•并且在途中追上了他.?(1)爸爸追上小明用了多长时间?(2)追上小明时距离学校有多远?【综合应用提高】?12.已知y1=2x+8,y2=6-2x.?(1)当x取何值时,y1=y2 (2)当x取何值时,y1比y2小5?13.已知关于x的方程x=-2的根比关于x的方程5x-2a=0的根大2,求关于x的方程-15=0的解.?【开放探索创新】?14.编写一道应用题,使它满足下列要求:?(1)题意适合一元一次方程;?(2)所编应用题完整,题目清楚,且符合实际生活.?【中考真题实战】?15.(江西)如图3-2是某风景区的旅游路线示意图,其中B,C,D为风景点,E为两条路的交叉点,图中数据为相应两点间的路程(单位:千米).一学生从A处出发,以2千米/时的速度步行游览,每个景点的逗留时间均为0.5小时.?(1)当他沿路线A—D—C—E—A游览回到A处时,共用了3小时,求CE的长.?(2)若此学生打算从A处出发,步行速度与各景点的逗留时间保持不变,且在最短时间内看完三个景点返回到A处,请你为他设计一条步行路线,•并说明这样设计的理由(不考虑其他因素).?答案:?1.(1)题不对,-8从等号的左边移到右边应该改变符号,应改为3x=2+8.?(2)题不对,-6在等号右边没有移项,不应该改变符号,应改为3x-x=-6.?2.B [点拨:方程x= ,两边同除以,得x= )?3.B [点拨:由题意可列方程5x-7=4x+9,解得x=16)?4.(1)3x (2)4y (3)-2y?5.(1)6x=3x-7,移项,得6x-3x=-7,合并,得3x=-7,系数化为1,得x=- .?(2)5=7+2x,即7+2x=5,移项,合并,得2x=-2,系数化为1,得x=-1.?(3)y- = y-2,移项,得y- y=-2+ ,合并,得y=- ,系数化为1,得y=-3.?(4)7y+6=4y-3,移项,得7y-4y=-3-6,合并同类项,得3y=-9,?系数化为1,得y=-3.?6.(1)根据题意可得方程:25-x=-8,移项,得25+8=x,合并,得x=33.?(2)根据题意可得方程:x+8=2,移项,得x=2-8,合并,得x=-6,?系数化为1,得x=-10.?7.k=3 [点拨:解方程3x+4=0,得x=- ,把它代入3x+4k=8,得-4+4k=8,解得k=3]?8.19 [点拨:∵3y+4=4a,y-5=a是同解方程,∴y= =5+a,解得a=19]?9.解:设桶中原有油x千克,那么取掉一半油后,余下部分色拉油的毛重为()千克,由已知条件知,余下的色拉油的毛重为千克,因为余下的色拉油的毛重是一个定值,所以可列方程=.?解这个方程,得x=7.?答:桶中原有油7千克.?[点拨:还有其他列法]?10.解:设应该从盘A内拿出盐x克,可列出表格:?盘A 盘B?原有盐(克)50 45?现有盐(克)50-x 45+x?设应从盘A内拿出盐x克放在盘B内,则根据题意,得50-x=45+x.?解这个方程,得x=,经检验,符合题意.?答:应从盘A内拿出盐克放入到盘B内.?11.解:(1)设爸爸追上小明时,用了x分,由题意,得?180x=80x+80×5,?移项,得100x=400.?系数化为1,得x=4.?所以爸爸追上小明用时4分钟.?(2)180×4=720(米),1000-720=280(米).?所以追上小明时,距离学校还有280米.?12.(1)x=-?[点拨:由题意可列方程2x+8=6-2x,解得x=- ]?(2)x=-?[点拨:由题意可列方程6-2x-(2x+8)=5,解得x=- ]?13.解:∵x=-2,∴x=-4.?∵方程x=-2的根比方程5x-2a=0的根大2,?∴方程5x-2a=0的根为-6.?∴5×(-6)-2a=0,∴a=-15.?∴-15=0.?∴x=-225.?14.本题开放,答案不唯一.?15.解:(1)设CE的长为x千米,依据题意得?+1+x+1=2(3-2×)?解得x=,即CE的长为千米.?(2)若步行路线为A—D—C—B—E—A(或A—E—B—C—D—A),?则所用时间为(•+1+++1)+3×=(小时);?若步行路线为A—D—C—E—B—E—A(或A—E—B—E—C—D—A),?则所用时间为(+1++×2+1)+3×=(小时).?故步行路线应为A—D—C—E—B—E—A(或A—E—B—E—C—D—A)。
七年级上册数学月考难题
七年级上册数学月考难题
七年级上册数学月考难题包括但不限于以下几道:
1. 计算题:(-2)^100 + (-2)^99
2. 选择题:若 a = 4,b = 6,且 a + b = -(a + b),则 2a - b 的值为()
A. -14
B. -10
C. 4
D. 14
3. 选择题:若关于 x 的一元一次不等式组 {x > a, x > b} 的解集是 x > a,则下列结论正确的是 ( )
A. a > b
B. a < b
C. a = b
D. 以上都不对
4. 填空题:若 x = 5 是关于 x 的一元一次方程 2x - k = 3 的解,则 k 的值
为 _______.
5. 解答题:若关于 x 的一元一次不等式组 {x > a, x < b} 无解,则关于 y 的一次函数 y = (a - 1)x + 3 与 y = (1 - b)x - 2 的图象的位置关系是
_______.
6. 解答题:若 a = 3,b = 5,且 a + b = a + b,求 a - b 的值.
7. 解答题:当 x = -3 时,代数式 ax^3 + bx + 1 的值为 2023,那么当 x
= 3 时,代数式 ax^3 + bx + 1 的值为 _______.
以上题目难度较大,需要学生掌握扎实的基础知识和灵活的解题技巧。
较难的七年级数学试卷
1. 已知函数f(x) = x^2 - 2x + 1,那么f(x)的图像是:A. 抛物线开口向上,顶点为(1, 0)B. 抛物线开口向下,顶点为(1, 0)C. 抛物线开口向上,顶点为(0, 1)D. 抛物线开口向下,顶点为(0, 1)2. 已知a、b是实数,且a^2 + b^2 = 1,那么下列哪个选项不正确?A. a和b都是正数B. a和b都是负数C. a和b一个为正数,一个为负数D. a和b一个是正数,一个是03. 已知等差数列{an},首项a1 = 2,公差d = 3,那么第10项an = ?A. 25B. 28C. 31D. 344. 在直角坐标系中,点A(2, 3),点B(-3, -4),那么线段AB的中点坐标是:A. (-0.5, -0.5)B. (0.5, 0.5)C. (-1, -1)D. (1, 1)5. 已知一元二次方程x^2 - 5x + 6 = 0,那么它的两个根分别是:A. 2和3B. 3和2C. 1和4D. 4和1二、填空题(每题5分,共20分)6. 已知函数f(x) = 2x - 1,那么f(-3) = __________。
7. 已知等差数列{an},首项a1 = 1,公差d = 2,那么第5项an = __________。
8. 在直角坐标系中,点C(4, 5),点D(-2, -3),那么线段CD的长度是__________。
9. 已知一元二次方程x^2 - 4x + 3 = 0,那么它的两个根分别是 __________。
10. 已知等比数列{an},首项a1 = 3,公比q = 2,那么第4项an = __________。
三、解答题(每题10分,共30分)11. 已知函数f(x) = x^2 + 2x + 1,求f(x)的图像与x轴的交点坐标。
12. 已知等差数列{an},首项a1 = 3,公差d = 2,求前10项的和S10。
13. 已知等比数列{an},首项a1 = 2,公比q = 3,求第5项an。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
XX 实验学校2009-2010学年度第二学期期中质量检测七年级数学问卷(时间:120分钟,满分100分)命题者:支柳香 何健 审题者:陈健(考试说明:试卷共7页,共28题,考试时间120分钟,满分100分,请用黑色的圆珠笔或钢笔作答,试卷不允许使用涂改工具,不可以使用计算器,请将答案写在答卷指定的区域内)一、选择题(每小题2分,共20分)1. 在下列多边形材料中,不能..单独用来铺满地面的是( * ) A .三角形 B .四边形 C .正六边形 D .正八边形2. 如图AB ∥CD ,EF ∥GH ,下列结论中不正确...的是( * ) A. ∠1=∠4 B. ∠1=∠2 C. ∠3+∠5=180° D. ∠1+∠3=180°3. 在以下四点中,哪一点与点(-3,4)的连结线段与x 轴和y 轴都不相交...( * ) A.(-2,3) B.(2,-3) C.(2,3) D.(-2,-3)4. 在平面直角坐标系上,点P (-3,4)到x 轴的距离是( * )个单位长度 A. 3 B. 4 C. 5 D. 75. 二元一次方程248x y +=有( * )组整数解... A. 1 B. 2 C. 3 D. 无数6. 一个三角形的两边长为3和8,第三边长为奇数,则第三边长为( * ) A. 5或7 B. 7或9 C. 7 D. 97. 某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x 人,组数为y 组,则列方程组为( * )A. 7385y x y x =-⎧⎨=+⎩B. 7385y x y x =+⎧⎨-=⎩C. 7385y x y x =+⎧⎨+=⎩D. 7385y x y x =-⎧⎨=-⎩8. 在△ABC 中,三个外角度数的比为3:4:5,那么△ABC 是( * ) A. 锐角三角形 B. 直角三角形 C. 钝角三角形 D. 不能确定 9. 图中共有( * )个三角形A. 4B. 6C. 8D. 10PACBD10. 在一个n 边形中,除了一个内角外,其余(n -1)个内角和为2750°,则n =( * ) A .15B .16C .17D .18二、填空题(每小题2分,共20分)11. 如图,计划把河中的水引到水池M 中,可以先过M 点作MC ⊥AB ,垂足为C ,然后沿MC 开渠,则能使所开 的渠最短,这种设计方案的根据是 *12. 在平面直角坐标系内,把点P (-5,-2)先向左平移2个单位度,再向上平移4个单位长度后得到的点的坐标是 * 13. 已知点P (a ,b )在第四象限,则点Q (b -1,-a )在第 * 象限14. 将命题“邻补角的角平分线互相垂直”改写成“如果…,那么…”的形式: * 15. 如图AB ∥CD ,AD ∥BC ,则∠1、∠2与∠3之间的数量关系是 *16. 如图,AB ∥CD ,且60BAP α∠=︒-,45APC α∠=︒+,30PCD α∠=︒-,则α= *17. 已知32x k =-,22y k =+,则用含x 的代数式表示y 的式子是 * 18. 如图,小亮从A 点出发前进10m ,向右转15°, 再前进10m ,又向右转15°…… 这样一直走下去, 他第一次回到出发点A 时,一共走了 * m19. 如图,七星形中∠A+∠B+∠C+∠D+∠E+∠F+∠G = *20. 如图,BG 、CG 是四边形ABFC 的两条外角平分线,分别平分∠DBE 和∠ECD , BE 和CD 交于点F ,若∠A =α,∠BFC =β,则∠G = *A1515CBA B EAD GC F FABC第19题第20题第21题三、画图题(6分)21. (1)画出图中△ABC的高AD;(2)画出把△ABC沿射线AD方向平移2cm后得到的△A1B1C1(3)根据“图形平移”的性质,得BB1= * cm,AC与A1C1的关系是 *四、解答题(第23题6分,其余各题8分,共54分)22. 解下列方程组:(1)237x yx y=-⎧⎨-=⎩(2)1134934x y x yx y x y+-⎧+=⎪⎪⎨+-⎪-=⎪⎩23. 如图,已知点A的坐标是(3,-2),一格一个单位长度.(1)画出平面直角坐标系,并写出点B,C的坐标.(2)连结AB,BC,CA,求三角形ABC的面积.24. 如图,已知∠B=∠C,AD与BC交于点G,∠BAE=∠CDF. 求证:AE∥FDFE GA BC D25. 在△ABC中,AB=AC,AC上的中线BD把三角形分成的两个三角形周长之差为4,且△ABC的周长为16,求△ABC的各边长.26. 列方程组解题:甲乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价。
在实际出售时,应顾客要求两件服装均按9折出售,这样商店共获利157元。
求甲乙两件服装的成本各是多少元.27. 如图,在△ABC中AD平分∠BAC,CD⊥AD.比较∠ACD与∠B的大小关系.28. 如图,在△ABC中,点D是BC延长线上的点,点F是AB延长线上的点. ∠ACD的平分线交BA 延长线于点E,∠FBC的平分线交AC延长线于点G.. 若∠G=∠GCB,∠E=∠EBC,求∠ABC的度数CXX 实验学校2009-2010学年度第二学期期中质量检测七年级数学 答案一、选择题(共10小题,每题2分,共20分)题号 1 2 3 4 5 6 7 8 9 10 答案DCABDBABCD二、填空题(共10小题,每小题2分,共20分)11. 垂线段最短 12. (-7,2) 13. 三 14._如果两个角是邻补角,那么它们的角平分线互相垂直(如果两条射线是两个邻补角的角平分线,那么它们互相垂直) ; 15.312 16. 15° 17.5y x18. 240 19. 180° 20.22三、21.(1)画图(略)……2分 (2)画图(略)……2分(3) 2; AC ∥A 1C 1 且AC =A 1C 1(平行且相等) ……2分 四、22.(1)解:将①代入②得: (2)解: ①+②得:67y y 30x y ③ ……1分 1y ……2分 4xy④ ……1分将1y代入①得: ③+④得: 17x ……1分2x……2分 将17x 代入③得:∴21x y是方程组的解 13y……1分∴1713x y是方程组的解23. 解:(1)如图:B(-6,0);C(-4,4) ……2分 (2)如图:ABCDBCBEAACFSS SSS四边形DEAF111222DE AEDC DB BE AE FC FA=11169242967222=20 ……4分24. 解:∵∠B=∠C∴AB ∥CD (内错角相等,两直线平行)……2分 ∴∠BAD=∠ACD (两直线平行,内错角相等)……2分 即∠1+∠2=∠3+∠4 ∵∠1=∠4∴∠2=∠3 ……2分∴AE ∥DF (内错角相等,两直线平行) ……2分 25. 解:由BD 是AC 上的中线,设AD=DC=x 则AB=AC=2x ∵AB+AC+BC =16 ∴BC =164x依题意得: 2(164)4xx 或 (164)24x x103x2x ……4分 ∴三角形的三边长分别为: 20208,,333或 4,4,8但4+4=8,不满足三角形任意两边之和大于第三边的关系,所以需舍去 ……2分∴三角形三边长分别为20208,,333……2分26. 解:设甲乙两件服装的成本分别为x 元和y 元.50090%(150%)90%(140%)500157xy x……4分解得:300200x y……4分答: 甲乙两件服装的成本分别为200元,300元.27. 解: ∠3>∠B ……2分延长CD 交AB 于点E ……2分 ∵∠4是△BEC 的一个外角∴∠4>∠B (三角形的一个外角大于与它不相邻的任意一个内角) ……2分 ∵AD 平分∠BAC ∴∠1=∠2 ∵CD ⊥AD ∴∠ADC=∠ADE=90° ∵∠1+∠4+∠ADE=180° ∠2+∠3+∠ADC=180° ∴∠3=∠4 ……2分 ∴∠3>∠B28. 解:设∠ABC =x ,则∠E =∠EBC =x ∵∠DCE 是△BEC 的一个外角∴∠DCE =∠E +∠EBC =2x(三角形的一个外角等于与它不相邻的两个内角和)∵CE 平分∠DCA∴∠DCA =2∠DCE =4x ……2分 ∵∠DCA 是△ABC 的一个外角∴∠DCA =∠CAB +∠CBA (三角形的一个外角等于与它不相邻的两个内角和) 有∠CAB =∠DCA -∠CBA =4x -x =3x ……2分GC D∵∠G=∠GCB ∠GCB=∠DCA(对顶角相等)∴∠G=∠GCB=∠DCA=4x(等量代换)∵∠GBF是△GAB的一个外角∴∠GBF=∠G+∠GAB=4x+3x=7x(三角形的一个外角等于与它不相邻的两个内角和)……2分∵BG平分∠FBC∴∠GBC=∠GBF=7x∵在△BCG中,∠GBC+∠G+∠GCB=180°∴ 7x+4x+4x=180°x=12°∴∠ABC=12°……2分。