2016年中考数学模拟试题汇编专题32:正多边形与圆(含答案)

合集下载

(完整)正多边形与圆-练习题含答案,推荐文档

(完整)正多边形与圆-练习题含答案,推荐文档

正多边形与圆副标题题号一二总分得分一、选择题(本大题共5小题,共15.0分)1.有一边长为4的正n 边形,它的一个内角为,则其外接圆的半径为 120∘()A. B. 4 C. D. 24323【答案】B【解析】解:经过正n 边形的中心O 作边AB 的垂线OC ,则度,度,∠B =60∠O =30在直角中,根据三角函数得到.△OBC OB =4故选B .根据正n 边形的特点,构造直角三角形,利用三角函数解决.正多边形的计算一般要经过中心作边的垂线,并连接中心与一个端点构造直角三角形,把正多边形的计算转化为解直角三角形.2.如图,的外切正六边形ABCDEF 的边长为2,则图中⊙O 阴影部分的面积为 ()A.3−π2B.3−32πC. 2−π3D. 3−π3【答案】A【解析】解:六边形ABCDEF 是正六边形,∵,∴∠AOB =60∘是等边三角形,,∴△OAB OA =OB =AB =2设点G 为AB 与的切点,连接OG ,则,⊙O OG ⊥AB ,∴OG =OA ⋅sin 60∘=2×32=3∴S 阴影=S △OAB −S 扇形OMN =12×2×3−60π×(3)2360=3−π2.故选A .由于六边形ABCDEF 是正六边形,所以,故是等边三角形,∠AOB =60∘△OAB ,设点G 为AB 与的切点,连接OG ,则,OA =OB =AB =2⊙O OG ⊥AB ,再根据,进而可得出结论.OG =OA ⋅sin 60∘S 阴影=S △OAB −S 扇形OMN 本题考查的是正多边形和圆,根据正六边形的性质求出是等边三角形是解答此△OAB 题的关键.3.如图,是等边三角形ABC 的外接圆,的半径为2,则⊙O ⊙O 等边的边长为 △ABC ()A. 1B.C.D. 2323【答案】D【解析】解:作于D ,连接OB ,如图所示:OD ⊥BC 则,BD =CD =12BC 是等边三角形ABC 的外接圆,∵⊙O ,∴∠OBD =12∠ABC =30∘,∴OD =12OB =1,∴BD =3OD =3,∴BC =2BD =23即等边的边长为;△ABC 23故选:D .作于D ,连接OB ,由垂径定理得出,由等边三角形的性质和OD ⊥BC BD =CD =12BC 已知条件得出,求出OD ,再由三角函数求出BD ,即可得出∠OBD =12∠ABC =30∘BC 的长.本题考查了等边三角形的性质、垂径定理、含角的直角三角形的性质、三角函数;30∘熟练掌握等边三角形的性质,并能进行推理计算是解决问题的关键.4.如图,正六边形ABCDEF 内接于,半径为4,则这⊙O 个正六边形的边心距OM 和的长分别为 BC⏜()A. 2,π3B. ,23πC. ,32π3D. ,234π3【答案】D【解析】解:连接OB ,,∵OB =4,∴BM =2,∴OM =23,BC ⏜=60π×4180=43π故选:D .正六边形的边长与外接圆的半径相等,构建直角三角形,利用直角三角形的边角关系即可求出OM ,再利用弧长公式求解即可.本题考查了正多边形和圆以及弧长的计算,将扇形的弧长公式与多边形的性质相结合,构思巧妙,利用了正六边形的性质,是一道好题.5.以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是 ()A. B. C. D. 223223【答案】A【解析】解:如图1,,∵OC =2;∴OD =2×sin 30∘=1如图2,,∵OB =2;∴OE =2×sin 45∘=2如图3,,∵OA =2,∴OD =2×cos 30∘=3则该三角形的三边分别为:1,,,23,∵(1)2+(2)2=(3)2该三角形是直角三角形,∴该三角形的面积是:.∴12×1×2=22故选:A .由于内接正三角形、正方形、正六边形是特殊内角的多边形,可构造直角三角形分别求出边心距的长,由勾股定理逆定理可得该三角形是直角三角形,进而可得其面积.本题主要考查多边形与圆,解答此题要明确:多边形的半径、边心距、中心角等概念,根据解直角三角形的知识解答是解题的关键.二、填空题(本大题共1小题,共3.0分)6.已知一个正六边形的边心距为,则它的半径为______ .3【答案】2【解析】解:如图,在中,,,Rt △AOG OG =3∠AOG =30∘ ;∴OA =OG ÷cos 30∘=3÷32=2故答案为:2.设正六边形的中心是O ,一边是AB ,过O 作与G ,在直OG ⊥AB 角中,根据三角函数即可求得OA .△OAG 本题主要考查正多边形的计算问题,常用的思路是转化为直角三角形中边和角的计算,属于常规题.。

全国各地中考数学试题分类汇编(第三期)专题32正多边形与圆(含解析)

全国各地中考数学试题分类汇编(第三期)专题32正多边形与圆(含解析)

∵ AF∥ BE, ∴ S△ABF=S△AOF, ∴ 图中阴影部分的面积=
=.
2. (2019 ?浙江丽水 ?10 分)如图,在平面直角坐标系中,正六边形 ABCDEF 的对称中心 P 在 反比例函数 y= (k> 0,x> 0)的图象上, 边 CD 在 x 轴上,点 B 在 y 轴上, 已知 CD= 2.
EAB,根据等腰三角形的性质,三角形外角的
性质计算即可.
【解答】解:∵五边形 ABCDE 是正五边形,
∴∠ EAB=∠ ABC =

∵ BA= BC, ∴∠ BAC=∠ BCA= 36°, 同理∠ ABE= 36°, ∴∠ AFE =∠ ABF +∠ BAF= 36°+36°= 72°. 故答案为: 72 【点评】本题考查的是正多边形的内角与外角,掌握正多边形的内角的计算公式、等腰 三角形的性质是解题的关键. 2. ( 2019?海南省 ?4 分)如图, ⊙ O 与正五边形 ABCDE 的边 AB、 DE 分别相切于点 B、 D, 则劣弧 所对的圆心角 ∠ BOD 的大小为 144 度.
定理得到 ∠ 3= ∠ 1,然后利用三角形外角性质和角度的代换证明
∠ 4= ∠DBI ,从而可判
断 DI = DB.
【解答】解:连接 BI ,如图,
∵△ ABC 内心为 I ,
∴∠ 1= ∠ 2, ∠5= ∠ 6,
∵∠ 3= ∠ 1,
∴∠ 3= ∠ 2,
∵∠ 4= ∠ 2+∠ 6= ∠ 3+∠ 5,
);
(2)易求 D (3,0) ,E(4, ) ,待定系数法求出 DE 的解析式为 y= 例函数与一次函数即可求点 Q;
x-3
,联立反比
(3)E(4, ), F (3, 2 ),将正六边形向左平移两个单位后, 则点 E 与 F 都在反比例函数图象上; 【解答】 解: (1)过点 P 作 x 轴垂线 PG,连接 BP, ∵ P 是正六边形 ABCDEF 的对称中心, CD= 2,

中考数学复习----《正多边形与圆》知识点总结与练习题(含答案)

中考数学复习----《正多边形与圆》知识点总结与练习题(含答案)

中考数学复习----《正多边形与圆》知识点总结与练习题(含答案)知识点总结1.正多边形与圆的关系把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆。

2.正多边形的有关概念①中心:正多边形的外接圆的圆心叫做正多边形的中心。

②正多边形的半径:外接圆的半径叫做正多边形的半径。

③中心角:正多边形每一边所对的圆心角叫做正多边形的中心角。

④边心距:中心到正多边形的一边的距离叫做正多边形的边心距。

练习题1、(2022•长春)跳棋是一项传统的智力游戏.如图是一副跳棋棋盘的示意图,它可以看作是由全等的等边三角形ABC和等边三角形DEF组合而成,它们重叠部分的图形为正六边形.若AB=27厘米,则这个正六边形的周长为厘米.【分析】根据对称性和周长公式进行解答即可.【解答】解:由图象的对称性可得,AM=MN=BN=AB=9(厘米),∴正六边形的周长为9×6=54(厘米),故答案为:54.2、(2022•营口)如图,在正六边形ABCDEF中,连接AC,CF,则∠ACF=度.【分析】设正六边形的边长为1,正六边形的每个内角为120°,在△ABC中,根据等腰三角形两底角相等得到∠BAC=30°,从而∠CAF=∠BAF﹣∠BAC=120°﹣30°=90°,过点B作BM⊥AC于点M,根据含30°的直角三角形的性质求出BM,根据勾股定理求出AM,进而得到AC的长,根据tan∠ACF===即可得出∠ACF=30°.【解答】解:设正六边形的边长为1,正六边形的每个内角=(6﹣2)×180°÷6=120°,∵AB=BC,∠B=120°,∴∠BAC=∠BCA=×(180°﹣120°)=30°,∵∠BAF=120°,∴∠CAF=∠BAF﹣∠BAC=120°﹣30°=90°,如图,过点B作BM⊥AC于点M,则AM=CM(等腰三角形三线合一),∵∠BMA=90°,∠BAM=30°,∴BM=AB=,∴AM===,∴AC=2AM=,∵tan∠ACF===,∴∠ACF=30°,故答案为:30.3、(2022•呼和浩特)如图,从一个边长是a的正五边形纸片上剪出一个扇形,这个扇形的面积为(用含π的代数式表示);如果将剪下来的扇形围成一个圆锥,圆锥的底面圆直径为.【分析】先求出正五边形的内角的度数,根据扇形面积的计算方法进行计算即可;扇形的弧长等于圆锥的底面周长,可求出底面直径.【解答】解:∵五边形ABCDE是正五边形,∴∠BCD==108°,∴S扇形==;又∵弧BD的长为=,即圆锥底面周长为,∴圆锥底面直径为,故答案为:;.4、(2022•绥化)如图,正六边形ABCDEF和正五边形AHIJK内接于⊙O,且有公共顶点A,则∠BOH的度数为度.【分析】求出正六边形的中心角∠AOB和正五边形的中心角∠AOH,即可得出∠BOH的度数.【解答】解:如图,连接OA,正六边形的中心角为∠AOB=360°÷6=60°,正五边形的中心角为∠AOH=360°÷5=72°,∴∠BOH=∠AOH﹣∠AOB=72°﹣60°=12°.故答案为:12.5、(2022•梧州)如图,四边形ABCD是⊙O的内接正四边形,分别以点A,O为圆心,取大1OA的定长为半径画弧,两弧相交于点M,N,作直线MN,交⊙O于点E,F.若OA 于2=1,则BE⌒,AE,AB所围成的阴影部分面积为.【分析】连接OE、OB.由题意可知,∴△AOE为等边三角形,推出S阴影=S扇形AOB﹣S弓形AOE﹣S△AOB=S扇形AOB﹣(S扇形AOE﹣S△AOE)﹣S△AOB=S扇形AOB﹣S扇形AOE+S△AOE ﹣S△AOB,即可求出答案.【解答】解:连接OE、OB,由题意可知,直线MN垂直平分线段OA,∴EA=EO,∵OA=OE,∴△AOE为等边三角形,∴∠AOE=60°,∵四边形ABCD是⊙O的内接正四边形,∴∠AOB=90°,∴∠BOE=30°,∵S弓形AOE=S扇形AOE﹣S△AOE,∴S阴影=S扇形AOB﹣S弓形AOE﹣S△AOB=S扇形AOB﹣(S扇形AOE﹣S△AOE)﹣S△AOB=S扇形AOB﹣S扇形AOE+S△AOE﹣S△AOB=S扇形BOE+S△AOE﹣S△AOB=+﹣=.故答案为:.6、(2022•宿迁)如图,在正六边形ABCDEF中,AB=6,点M在边AF上,且AM=2.若经过点M的直线l将正六边形面积平分,则直线l被正六边形所截的线段长是.【分析】设正六边形ABCDEF的中心为O,过点M、O作直线l交CD于点N,则直线l 将正六边形的面积平分,直线l被正六边形所截的线段长是MN,连接OF,过点M作MH ⊥OF于点H,连接OA,由正六边形的性质得出AF=AB=6,∠AFO=∠AFE=×=60°,MO=ON,进而得出△OAF是等边三角形,得出OA=OF=AF=6,由AM=2,得出MF=4,由MH⊥OF,得出∠FMH=30°,进而求出FH=2,MH=2,再求出OH=4,利用勾股定理求出OM=2,即可求出MN的长度,即可得出答案.【解答】解:如图,设正六边形ABCDEF的中心为O,过点M、O作直线l交CD于点N,则直线l将正六边形的面积平分,直线l被正六边形所截的线段长是MN,连接OF,过点M 作MH⊥OF于点H,连接OA,∵六边形ABCDEF是正六边形,AB=6,中心为O,∴AF=AB=6,∠AFO=∠AFE=×=60°,MO=ON,∵OA=OF,∴△OAF是等边三角形,∴OA=OF=AF=6,∵AM=2,∴MF=AF﹣AM=6﹣2=4,∵MH⊥OF,∴∠FMH=90°﹣60°=30°,∴FH=MF=×4=2,MH===2,∴OH=OF﹣FH=6﹣2=4,∴OM===2,∴NO=OM=2,∴MN=NO+OM=2+2=4,故答案为:4.。

2016年全国中考数学真题分类 正多边形、扇形和圆锥(习题解析)

2016年全国中考数学真题分类 正多边形、扇形和圆锥(习题解析)

2016年全国中考数学真题分类正多边形、扇形和圆锥侧面展开图一、选择题7.(3分)(2016•无锡,7,3分)已知圆锥的底面半径为4cm,母线长为6cm,则它的侧面展开图的面积等于()A.24cm2B.48cm2C.24πcm2D.12πcm2【分析】根据圆锥的侧面积=×底面圆的周长×母线长即可求解.【解答】解:底面半径为4cm,则底面周长=8πcm,侧面面积=×8π×6=24π(cm2).故选:C.【点评】本题考查了圆锥的有关计算,解题的关键是了解圆锥的有关元素与扇形的有关元素的对应关系.4.(2016台湾,4)如图,已知扇形AOB的半径为10公分,圆心角为54°,则此扇形面积为多少平方公分?()A.100π B.20π C.15π D.5π【考点】扇形面积的计算.【专题】计算题;圆的有关概念及性质.【分析】利用扇形面积公式计算即可得到结果.【答案】解:∵扇形AOB的半径为10公分,圆心角为54°,∴S==15π(平方公分),扇形AOB故选C.23.(2016台湾,23)如图,正六边形ABCDEF中,P、Q两点分别为△ACF、△CEF的内心.若AF=2,则PQ的长度为何?()A.1 B.2 C.2﹣2 D.4﹣2【考点】三角形的内切圆与内心.【分析】先判断出四边形FPCQ是筝形,再求出AC=,AF=2,CF=2AF=4,然后计算出PQ即可.【答案】解:如图,连接PF,QF,PC,QC,∵P、Q两点分别为△ACF、△CEF的内心∴四边形FPCQ是筝形,∴PQ⊥CF,∵△ACF≌△ECF,且内角是30°,60°,90°的三角形,∴AC=,AF=2,CF=2AF=4,∴PQ=2×=2+2﹣4=2﹣2.故选C.18.(2016台湾,18)如图,有一内部装有水的直圆柱形水桶,桶高20公分;另有一直圆柱形的实心铁柱,柱高30公分,直立放置于水桶底面上,水桶内的水面高度为12公分,且水桶与铁柱的底面半径比为2:1.今小贤将铁柱移至水桶外部,过程中水桶内的水量未改变,若不计水桶厚度,则水桶内的水面高度变为多少公分?()A.4.5 B.6 C.8 D.9【考点】圆柱的计算.【分析】由水桶底面半径:铁柱底面半径=2:1,得到水桶底面积:铁柱底面积=22:12=4:1,设铁柱底面积为a,水桶底面积为4a,于是得到水桶底面扣除铁柱部分的环形区域面积为4a﹣a=3a,根据原有的水量为3a×12=36a,即可得到结论.【答案】解:∵水桶底面半径:铁柱底面半径=2:1,∴水桶底面积:铁柱底面积=22:12=4:1,设铁柱底面积为a,水桶底面积为4a,则水桶底面扣除铁柱部分的环形区域面积为4a﹣a=3a,∵原有的水量为3a×12=36a,∴水桶内的水面高度变为=9(公分).故选D.二、填空题6.(2016云南,6,3分)如果圆柱的侧面展开图是相邻两边长分别为6、16π的长方形,那么这个圆柱的体积等于.【答案】144或384π14.(2016湖南常德,14,3分)如图,△ABC是⊙O的内接正三角形,⊙O的半径为3,则图中阴影部分的面积是3π.【考点】三角形的外接圆与外心;圆周角定理;扇形面积的计算.【分析】根据等边三角形性质及圆周角定理可得扇形对应的圆心角度数,再根据扇形面积公式计算可得.【答案】解:∵△ABC是等边三角形,∴∠C=60°,根据圆周角定理可得∠AOB=2∠C=120°,∴阴影部分的面积是=3π,故答案为:3π.17.(2016四川眉山,17,3分)一个圆锥的侧面展开图是半径为8cm,圆心角为120°的扇形,则此圆锥的底面半径为 .【答案】8 3(2016•大庆,17,3分)如图,在矩形ABCD中,AB=5,BC=10,一圆弧过点B和点C,且与AD相切,则图中阴影部分面积为75﹣.【分析】设圆的半径为x,根据勾股定理求出x,根据扇形的面积公式、阴影部分面积为:矩形ABCD的面积﹣(扇形BOCE的面积﹣△BOC的面积)进行计算即可.【解答】解:设圆弧的圆心为O,与AD切于E,连接OE交BC于F,连接OB、OC,设圆的半径为x,则OF=x﹣5,由勾股定理得,OB2=OF2+BF2,即x2=(x﹣5)2+(5)2,解得,x=5,则∠BOF=60°,∠BOC=120°,则阴影部分面积为:矩形ABCD的面积﹣(扇形BOCE的面积﹣△BOC的面积)=10×5﹣+×10×5=75﹣,故答案为:75﹣.5. (2016湖北咸宁,15,3分)用m根火柴恰好可拼成如图1所示的a个等边三角形或如图2所示的b个正六边形,则a b=_______________.【考点】根据实际意义列出一次函数变量之间的关系式,数形结合思想.【分析】分别根据图1,求出拼成a个等边三角形用的火柴数量,即m与a之间的关系,再根据图2找到b与m之间的等量关系,最后利用m相同得出b的值.a【解答】解:由图1可知:一个等边三角形有3条边,两个等边三角形有3+2条边,∴m=1+2a,由图2可知:一个正六边形有6条边,两个正六边形有6+5条边,∴m=1+5b ,∴1+2a =1+5b∴ab =52. 故答案为:52.三、解答题22.(2016四川攀枝花,22,8分)如图,在矩形ABCD 中,点F 在边BC 上,且AF=AD ,过点D 作DE ⊥AF ,垂足为点E.(1)求证:DE=AB ;(2)以A 为圆心,AB 长为半径作圆弧交AF 于点G ,若BF=FC=1,求扇形ABG 的面积.(结果保留π)【考点】扇形面积的计算;全等三角形的判定与性质;矩形的性质.【分析】(1)根据矩形的性质得出∠B=90°,AD=BC ,AD ∥BC ,求出∠DAE=∠AFB ,∠AED=90°=∠B ,根据AAS 推出△ABF ≌△DEA 即可;(2)根据勾股定理求出AB ,解直角三角形求出∠BAF ,根据全等三角形的性质得出DE=DG=AB=,∠GDE=∠BAF=30°,根据扇形的面积公式求得求出即可.【答案】(1)证明:∵四边形ABCD 是矩形,∴∠B=90°,AD=BC ,AD ∥BC ,∴∠DAE=∠AFB ,∵DE⊥AF,∴∠AED=90°=∠B,在△ABF和△DEA中,∴△ABF≌△DEA(AAS),∴DE=AB;(2)解:∵BC=AD,AD=AF,∴BC=AF,∵BF=1,∠ABF=90°,∴由勾股定理得:AB==,∴∠BAF=30°,∵△ABF≌△DEA,∴∠GDE=∠BAF=30°,DE=AB=DG=,∴扇形ABG的面积==π.21.(2016湖北宜昌,21,8分)如图,CD是⊙O的弦,AB是直径,且CD∥AB,连接AC、AD、OD,其中AC=CD,过点B的切线交CD的延长线于E.(1)求证:DA平分∠CDO;(2)若AB=12,求图中阴影部分的周长之和(参考数据:π=3.1, =1.4,=1.7).【考点】切线的性质;弧长的计算.【分析】(1)只要证明∠CDA=∠DAO,∠DAO=∠ADO即可.(2)首先证明==,再证明∠DOB=60°得△BOD是等边三角形,由此即可解决问题.【解答】证明:(1)∵CD∥AB,∴∠CDA=∠BAD,又∵OA=OD,∴∠ADO=∠BAD,∴∠ADO=∠CDA,∴DA平分∠CDO.(2)如图,连接BD,∵AB是直径,∴∠ADB=90°,∵AC=CD,∴∠CAD=∠CDA,又∵CD∥AB,∴∠CDA=∠BAD,∴∠CDA=∠BAD=∠CAD,∴==,又∵∠AOB=180°,∴∠DOB=60°,∵OD=OB,∴△DOB是等边三角形,∴BD=OB=AB=6,∵=,∴AC=BD=6,∵BE切⊙O于B,∴BE⊥AB,∴∠DBE=∠ABE﹣∠ABD=30°,∵CD∥AB,∴BE⊥CE,∴DE=BD=3,BE=BD×cos∠DBE=6×=3,∴的长==2π,∴图中阴影部分周长之和为2=4π+9+3=4×3.1+9+3×1.7=26.5.。

人教版九年级上数学24.3正多边形和圆练习题含答案

人教版九年级上数学24.3正多边形和圆练习题含答案

24.3正多边形和圆01基础题知识点1认识正多边形1.下面图形中,是正多边形的是(C)A.矩形B.菱形C.正方形D.等腰梯形2.(柳州中考)如图,正六边形的每一个内角都相等,则其中一个内角α的度数是(B) A.240°B.120°C.60°D.30°3.(连云港中考)一个正多边形的一个外角等于30°,则这个正多边形的边数为12.4.(资阳中考)如图,AC是正五边形ABCDE的一条对角线,则∠ACB=36°.知识点2与正多边形有关的计算5.(沈阳中考)如图,正六边形ABCDEF内接于⊙O,正六边形的周长是12,则⊙O的半径是(B)A. 3B.2C.2 2D.2 36.(株洲中考)下列圆的内接正多边形中,一条边所对的圆心角最大的图形是(A) A.正三角形B.正方形C.正五边形D.正六边形7.(滨州中考)若正方形的外接圆半径为2,则其内切圆半径为(A)A. 2 B .2 2 C.22D .18.边长为6 cm 的等边三角形的外接圆半径是9.(宁夏中考)如图,将正六边形ABCDEF 放在直角坐标系中,中心与坐标原点重合.若A 点的坐标为(-1,0),则点C 的坐标为(12,-2).10.(教材P109习题T6变式)将一个边长为1的正八边形补成如图所示的正方形,这个正方形的边长等于结果保留根号).知识点3 画正多边形11.如图,AD 为⊙O 的直径,作⊙O 的内接正三角形ABC ,甲、乙两人的作法分别是:对于甲、乙两人的作法,可判断(A)A .甲、乙均正确B .甲、乙均错误C .甲正确,乙错误D .甲错误,乙正确12.(镇江中考改编)图1是我们常见的地砖上的图案,其中包含了一种特殊的平面图形——正八边形. 如图2,AE 是⊙O 的直径,用直尺和圆规作⊙O 的内接正八边形ABCDEFGH(不写作法,保留作图痕迹).解:如图.02中档题13.正三角形内切圆半径r与外接圆半径R之间的关系为(D)A.4R=5r B.3R=4rC.2R=3r D.R=2r14.(滨州中考)如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(-3,2),(b,m),(c,m),则点E的坐标是(C)A.(2,-3) B.(2,3)C.(3,2) D.(3,-2)15.(达州中考)以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是(A)A.22 B.32 C. 2 D. 316.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为(A)A.2a2 B.3a2 C.4a2D.5a217.(山西中考命题专家原创)如图,圆O与正八边形OABCDEFG的边OA,OG分别交于点M,N,则弧MN所对的圆心角∠MPN的大小为67.5°.18.(连云港中考)如图,正十二边形A 1A 2…A 12,连接A 3A 7,A 7A 10,则∠A 3A 7A 10=75°.19.如图,⊙O 是正方形ABCD 与正六边形AEFCGH 的外接圆.(1)正方形ABCD 与正六边形AEFCGH(2)连接BE ,BE 是否为⊙O 的内接正n 边形的一边?如果是,求出n 的值;如果不是,请说明理由.解:BE 是⊙O 的内接正十二边形的一边, 理由:连接OA ,OB ,OE , 在正方形ABCD 中, ∠AOB =90°,在正六边形AEFCGH 中,∠AOE =60°, ∴∠BOE =30°. ∵n =360°30°=12,∴BE 是正十二边形的边. 03 综合题20.如图1,2,3,…,m ,M ,N 分别是⊙O 的内接正三角形ABC ,正方形ABCD ,正五边形ABCDE ,…正n 边形ABCDEF …的边AB ,BC 上的点,且BM =CN ,连接OM ,ON.(1)求图1中∠MON 的度数;(2)图2中∠MON 的度数是90°,图3中∠MON 的度数是72°; (3)试探究∠MON 的度数与正n 边形边数n 的关系(直接写出答案). 解:(1)连接OA ,OB. ∵正三角形ABC 内接于⊙O , ∴OA =OB ,∠OAM =∠OBA =30°, ∠AOB =120°.∵BM =CN ,AB =BC , ∴AM =BN.∴△AOM ≌△BON(SAS). ∴∠AOM =∠BON.∴∠AOM +∠BOM =∠BON +∠BOM , 即∠AOB =∠MON. ∴∠MON =120°. (3)∠MON =360°n .。

人教版九年级数学上册《24.3 正多边形和圆》同步练习题-附答案

人教版九年级数学上册《24.3 正多边形和圆》同步练习题-附答案

人教版九年级数学上册《24.3 正多边形和圆》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________考点 正多边形与圆1.定义:正多边形的 圆的圆心叫做这个正多边形的中心 圆的半径叫做正多边形的半径 正多边形每一边所对的 角叫做正多边形的中心角 到正多边形的一边的距离 叫做正多边形的边心距。

2.公式:正多边形的有关概念:边长(a ) 中心(O ) 中心角(∠AOB ) 半径(R )) 边心距(r ) 如图所示①.边心距222a r R ⎛⎫=- ⎪⎝⎭中心角360n ︒=关键点:三角形的内切圆与外接圆 关系定义圆心 实质半径图示外接圆经过三角形各顶点的圆外心三角形各边垂直平分线的交点交点到三角形三个顶点的距离相等内切圆与三角形各边都相切的圆内心三角形各内角平分线的交点交点到三角形各边的距离相等名校提高练习:一选择题:本题共10小题每小题3分共30分。

在每小题给出的选项中只有一项是符合题目要求的。

1.(2024·四川省泸州市·月考试卷)已知圆内接正三角形的面积为√ 3则该圆的内接正六边形的边心距是( )A. 2B. 1C. √ 3D. √ 322.同一个圆的内接正三角形正方形正六边形的边心距分别为r3r4r6则r3:r4:r6等于( )A. 1:√2:√3B. √3:√2:1C. 1:2:3D. 3:2:13.如图若干个全等的正五边形排成环状图中所示的是前3个正五边形要完成这一圆环还需正五边形的个数为( )A. 10B. 9C. 8D. 74.(2024·贵州省黔东南苗族侗族自治州·月考试卷)正六边形ABCDEF内接于⊙O正六边形的周长是12则⊙O的半径是( )A. √ 3B. 2C. 2√ 2D. 2√ 35.(2024·山东省·单元测试)《几何原本》中记载了用尺规作某种六边形的方法其步骤是:①在⊙O上任取一点A连接AO并延长交⊙O于点B②以点B为圆心BO为半径作圆弧分别交⊙O于C D两点③连接CO DO并延长分别交⊙O于点E F④顺次连接BC CF FA AE ED DB得到六边形AFCBDE.再连接AD EF AD EF交于点G.则下列结论不正确的是( )A. GF=GDB. ∠FGA=60°C. EFAE=√ 2 D. AF⊥AD6.(2024·江苏省·同步练习)以半径为2的圆的内接正三角形正方形正六边形的边心距为三边作三角形则该三角形的面积是( )A. √ 22B. √ 32C. √ 2D. √ 37.(2024·江苏省·同步练习)如图正十二边形A1A2…A12连接A3A7A7A10则∠A3A7A10的度数为( )A. 60°B. 65°C. 70°D. 75°8.(2024·江苏省·同步练习)如图若干个全等的正五边形排成环状.图中所示的是前3个正五边形要完成这一圆环还需正五边形的个数为( )A. 6B. 7C. 8D. 99.(2024·北京市市辖区·期末考试)如图正方形ABCD的边长为6且顶点A B C D都在⊙O上则⊙O 的半径为().A. 3B. 6C. 3√ 2D. 6√ 210.(2024·广东省广州市·月考试卷)如图已知⊙O的周长等于4πcm则圆内接正六边形的边长为()cm.A. √ 3B. 2C. 2√ 3D. 4二填空题:本题共6小题每小题3分共18分。

初中数学正多边形和圆考试卷及答案.docx

初中数学正多边形和圆考试卷及答案.docx

xx学校xx学年xx 学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx 题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:下列命题中,是假命题的是( )A.各边相等的圆内接多边形是正多边形B.正多边形的任意两个角的平分线如果相交,则交点为正多边形的中心C.正多边形的任意两条边的中垂线如果相交,则交点是正多边形的中心D.一个外角小于一个内角的正多边形一定是正五边形试题2:如图2433,正六边形螺帽的边长是2 cm,这个扳手的开口a的值应是( )A.2 cm B. cmC. cm D.1 cm试题3:已知正六边形的边长为10 cm,则它的边心距为( )评卷人得分A. cm B.5 cm C.5 cm D.10 cm试题4:正六边形的两条平行边之间的距离为1,则它的边长为( )A. B. C. D.试题5:正多边形的一个中心角为36°,那么这个正多边形的一个内角等于________.试题6:某工人师傅需要把一个半径为6 cm的圆形铁片加工成边长最大的正六边形铁片,求此正六边形的边长.试题7:如图2434,在圆内接正五边形ABCDE中,对角线AC,BD相交于点P,求∠APB的度数.试题8:圆的半径为8,那么它的外切正方形的周长为____,内接正方形的周长为________.试题9:将一块正五边形纸片[图2435(1)]做成一个底面仍为正五边形且高相等的无盖纸盒[侧面均垂直于底面,见图2435(2)],需在每一个顶点处剪去一个四边形,例如图中的四边形ABCD,则∠BAD的大小是________.试题10:如图2436,施工工地的水平地面上,有三根外径都是1 m的水泥管,两两相切地堆放在一起,求其最高点到地面的距离?试题11:(1)如图2437(1),在圆内接△ABC中,AB=BC=CA,OD,OE为⊙O的半径,OD⊥BC于点F,OE⊥AC于点G,求证:阴影部分四边形OFCG的面积是△ABC面积的;(2)如图2437(2),若∠DOE保持120°不变,求证:当∠DOE绕着点O旋转时,由两条半径和△ABC的两条边围成的图形(图中阴影部分)面积始终是△ABC面积的.(1) (2)试题1答案:D试题2答案:A试题3答案:C试题4答案:D试题5答案:144°试题6答案:解:如图D35,只有当正六边形是圆的内接正六边形时,此正六边形的边长最大,最大边长为6 cm.试题7答案:解:如图D36,连接OA,OB.∵五边形ABCDE是正五边形,∴∠AOB==72°.∵AB=CD,∴=.∴∠2=∠1=∠AOB=36°.∴∠APB=∠1+∠2=72°.试题8答案:64 32试题9答案:72°试题10答案:解:由于三个圆两两外切,所以圆心距等于半径之和.所以以三个圆心为顶点的三角形是边长为1 m的等边三角形,最高点到地面距离是等边三角形的高加上一个直径.因为等边三角形的高是,故最高点到地面的距离是m. 试题11答案:证明:(1)连接OA,OC.∵点O是等边三角形ABC的外心,∴Rt△OFC≌Rt△OGC≌Rt△OGA.∴S四边形OFCG=2S△OFC=S△OAC.∵S△OAC=S△ABC,∴S四边形OFCG=S△ABC.(2)如图D37,连接OA,OB和OC.图D37则△AOC≌△COB≌△BOA,∠1=∠2.不妨设OD交BC于点F,OE交AC于点G.∵∠AOC=∠3+∠4=120°,∠DOE=∠5+∠4=120°,∴∠3=∠5.在△OAG和△OCF中,∴△OAG≌△OCF.∴S四边形OFCG=S△AOC=S△ABC.。

中考数学专题复习之 32 正多边形与圆(含解析)1 精编

中考数学专题复习之 32 正多边形与圆(含解析)1 精编

32 正多边形与圆(含解析)一、选择题1.(2分)(2016•南京)已知正六边形的边长为2,则它的内切圆的半径为( )A .1B .3C .2D .32【考点】正多边形和圆;切线的性质.【分析】根据题意画出图形,利用正六边形中的等边三角形的性质求解即可.【解答】解:如图,连接OA 、OB ,OG ;∵六边形ABCDEF 是边长为2的正六边形,∴△OAB 是等边三角形,∴OA=AB=2,∴OG=OA•sin60°=2×23=3, ∴边长为2的正六边形的内切圆的半径为3.故选B .【点评】本题考查学生对正多边形的概念掌握和计算的能力.解答这类题往往一些学生因对正多边形的基本知识不明确,将多边形的半径与内切圆的半径相混淆而造成错误计算,记住基本概念是解题的关键,属于中考常考题型.2.1.(2016•凉山州)一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为( )A .7B .7或8C .8或9D .7或8或9【考点】多边形内角与外角.【分析】首先求得内角和为1080°的多边形的边数,即可确定原多边形的边数.【解答】解:设内角和为1080°的多边形的边数是n ,则(n ﹣2)•180°=1080°, 解得:n=8.则原多边形的边数为7或8或9.故选:D .【点评】本题考查了多边形的内角和定理,一个多边形截去一个角后它的边数可能增加1,可能减少1,或不变.3.(2016•泸州)以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是( )A D【分析】由于内接正三角形、正方形、正六边形是特殊内角的多边形,可构造直角三角形分别求出边心距的长,由勾股定理逆定理可得该三角形是直角三角形,进而可得其面积.【解答】解:如图1,∵OC=1,∴OD=1×sin30°=12; 如图2,∵OB=1,∴OE=1×sin45°; 如图3,∵OA=1,∴OD=1×cos30°,则该三角形的三边分别为:12∵(12)2+(2)2=(2)2,∴该三角形是以12、2为直角边,2为斜边的直角三角形,∴该三角形的面积是12×12×2=8, 故选:D .【点评】本题主要考查多边形与圆,解答此题要明确:多边形的半径、边心距、中心角等概念,根据解直角三角形的知识解答是解题的关键.4.(3分)(2016•南充)如图,正五边形的边长为2,连结对角线AD ,BE ,CE ,线段AD 分别与BE 和CE 相交于点M ,N .给出下列结论:①∠AME=108°;②AN 2=AM •AD ;③MN=3﹣;④S △EBC =2﹣1.其中正确结论的个数是( )A .1个B .2个C .3个D .4个【考点】相似三角形的判定与性质;正多边形和圆.【分析】根据正五边形的性质得到∠ABE=∠AEB=∠EAD=36°,根据三角形的内角和即可得到结论;由于∠AEN=108°﹣36°=72°,∠ANE=36°+36°=72°,得到∠AEN=∠ANE ,根据等腰三角形的判定定理得到AE=AN ,同理DE=DM ,根据相似三角形的性质得到,等量代换得到AN 2=AM •AD ;根据AE 2=AM •AD ,列方程得到MN=3﹣;在正五边形ABCDE 中,由于BE=CE=AD=1+,得到BH=BC=1,根据勾股定理得到EH==,根据三角形的面积得到结论.【解答】解:∵∠BAE=∠AED=108°,∵AB=AE=DE ,∴∠ABE=∠AEB=∠EAD=36°,∴∠AME=180°﹣∠EAM ﹣∠AEM=108°,故①正确;∵∠AEN=108°﹣36°=72°,∠ANE=36°+36°=72°,∴∠AEN=∠ANE ,∴AE=AN ,同理DE=DM ,∴AE=DM ,∵∠EAD=∠AEM=∠ADE=36°,∴△AEM ∽△ADE ,∴, ∴AE 2=AM •AD ;∴AN2=AM•AD;故②正确;∵AE2=AM•AD,∴22=(2﹣MN)(4﹣MN),∴MN=3﹣;故③正确;在正五边形ABCDE中,∵BE=CE=AD=1+,∴BH=1BC=1,∴EH==,∴S△EBC=BC•EH=1×2×=,故④错误;故选C.【点评】本题考查了相似三角形的判定和性质,勾股定理,正五边形的性质,熟练掌握正五边形的性质是解题的关键.5.(4分)(2016•曲靖)数如图,AD,BE,CF是正六边形ABCDEF的对角线,图中平行四边形的个数有()A.2个B.4个C.6个D.8个【考点】正多边形和圆;平行四边形的判定.【分析】根据正六边形的性质,直接判断即可;【解答】解:如图,∵AD,BE,CF是正六边形ABCDEF的对角线,∴OA=OE=AF=EF,∴四边形AOEF是平行四边形,同理:四边形DEFO,四边形ABCO,四边形BCDO,四边形CDEO,四边形FABOD都是平行四边形,共6个,故选C【点评】此题是正多边形和圆,主要考查了正六边形的性质,平行四边形的判定,掌握平行四边形的判定是解本题的关键.注意:数平行四边形个数时,按顺时针或逆时针数.二、填空题1.(3分)(2016•株洲)如图,正六边形ABCDEF内接于半径为3的圆O,则劣弧AB的长度为π.【考点】正多边形和圆;弧长的计算.【分析】求出圆心角∠AOB的度数,再利用弧长公式解答即可.【解答】解:如图,连接OA、OB,∵ABCDEF为正六边形,∴∠AOB=360°×16=60°,AB的长为603180π∙=π.故答案为:π.【点评】本题主要考查正多边形的性质和弧长公式,熟练掌握正多边形的性质是解题的关键.2.(3分)(2016•连云港)如图,正十二边形A1A2…A12,连接A3A7,A7A10,则∠A3A7A10= 75°.【考点】多边形内角与外角.【分析】如图,作辅助线,首先证得3710A A A =512 ⊙O 的周长,进而求得∠A 3OA 10=512⨯ 360︒=150°,运用圆周角定理问题即可解决.【解答】解:设该正十二边形的圆心为O ,如图,连接A 10O 和A 3O ,由题意知,3710A A A =512⊙O 的周长, ∴∠A 3OA 10=512⨯ 360︒=150°, ∴∠A 3A 7A 10=75°,故答案为:75°.【点评】此题主要考查了正多边形及其外接圆的性质及圆周角定理,作出恰当的辅助线,灵活运用有关定理来分析是解答此题的关键.3.(3分)(2016•威海)如图,正方形ABCD 内接于⊙O ,其边长为4,则⊙O 的内接正三角形EFG【考点】正多边形和圆.【分析】连接AC 、OE 、OF ,作OM ⊥EF 于M ,先求出圆的半径,在Rt △OEM 中利用30度角的性质即可解决问题.【解答】解;连接AC 、OE 、OF ,作OM ⊥EF 于M ,∵四边形ABCD 是正方形,∴AB=BC=4,∠ABC=90°,∴AC 是直径,∴OM ⊥EF ,∴EM=MF ,∵△EFG 是等边三角形,∴∠GEF=60°,在RT △OME 中,∵,∠OEM=12∠CEF=30°,∴,∴EF=2.故答案为.【点评】本题考查正多边形与圆、等腰直角三角形的性质、等边三角形的性质等知识,解题的关键是熟练应用这些知识解决问题,属于中考常考题型.4.(4分)(2016•滨州)如图,△ABC 是等边三角形,AB=2,分别以A ,B ,C 为圆心,以2为半径作弧,则图中阴影部分的面积是332-π【考点】扇形面积的计算;等边三角形的性质.【分析】根据等边三角形的面积公式求出正△ABC 的面积,根据扇形的面积公式S=3602R n π求出扇形的面积,求差得到答案.【解答】解:∵正△ABC 的边长为2,∴△ABC 的面积为21×2×3=3, 扇形ABC 的面积为ππ323602602=⨯⋅, 则图中阴影部分的面积=3×(332-π)=2π﹣33,故答案为:2π﹣33.【点评】本题考查的是等边三角形的性质和扇形的面积计算,掌握扇形的面积公式S=3602R n π是解题的关键. 三、解答题1.(10分)(2016•苏州)如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3m/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<85).(1)如图1,连接DQ平分∠BDC时,t的值为43;(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;(3)请你继续进行探究,并解答下列问题:①证明:在运动过程中,点O始终在QM所在直线的左侧;②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM与⊙O是否也相切?说明理由.【分析】(1)先利用△PBQ∽△CBD求出PQ、BQ,再根据角平分线性质,列出方程解决问题.(2)由△QTM∽△BCD,得QM TQBD BC=列出方程即可解决.(3)①如图2中,由此QM交CD于E,求出DE、DO利用差值比较即可解决问题.②如图3中,由①可知⊙O只有在左侧与直线QM相切于点H,QM与CD交于点E.由△OHE∽△BCD,得OH OEBC BD=,列出方程即可解决问题.利用反证法证明直线PM不可能由⊙O相切.【解答】(1)解:如图1中,∵四边形ABCD是矩形,∴∠A=∠C=∠ADC=∠ABC=90°,AB=CD=6.AD=BC=8,∴,∵PQ⊥BD,∴∠BPQ=90°=∠C,∵∠PBQ=∠DBC,∴△PBQ∽△CBD,∴PB PQ BQ BC DC BD==,∴48610t PQ BQ==,∴PQ=3t,BQ=5t,∵DQ平分∠BDC,QP⊥DB,QC⊥DC,∴QP=QC,∴3t=8﹣5t,∴t=1,故答案为:1.(2)解:如图2中,作MT⊥BC于T.∵MC=MQ,MT⊥CQ,∴TC=TQ,由(1)可知TQ=12(8﹣5t),QM=3t,∵MQ∥BD,∴∠MQT=∠DBC,∵∠MTQ=∠BCD=90°,∴△QTM∽△BCD,∴QM TQ BD BC=,∴1(85) 32108tt-=,∴t=4049(s),∴t=4049s时,△CMQ是以CQ为底的等腰三角形.(3)①证明:如图2中,由此QM交CD于E,∵EQ∥BD,∴EC CQ CD CB=,∴EC=34(8﹣5t),ED=DC﹣EC=6﹣34(8﹣5t)=154t,∵DO=3t,∴DE﹣DO=154t﹣3t=34t>0,∴点O在直线QM左侧.②解:如图3中,由①可知⊙O只有在左侧与直线QM相切于点H,QM与CD交于点E.∵EC=34(8﹣5t),DO=3t,∴OE=6﹣3t﹣34(8﹣5t)=34t,∵OH⊥MQ,∴∠OHE=90°,∵∠HEO=∠CEQ,∴∠HOE=∠CQE=∠CBD,∵∠OHE=∠C=90°,∴△OHE∽△BCD,∴OH OE BC BD=,∴3 0.84 810t=,∴t=43.∴t=43s时,⊙O与直线QM相切.连接PM,假设PM与⊙O相切,则∠OMH=12PMQ=22.5°,在MH上取一点F,使得MF=FO,则∠FMO=∠FOM=22.5°,∴∠OFH=∠FOH=45°,∴OH=FH=0.8,∴MH=0.8),由OH HEBC DC=得到HE=35,由EC CQBD CB=得到EQ=53,∴MH=MQ﹣HE﹣EQ=4﹣35﹣53=2615,∴0.8)≠2615,矛盾,∴假设不成立.∴直线PM与⊙O不相切.【点评】本题考查圆综合题、正方形的性质、相似三角形的判定和性质、切线的判定和性质、勾股定理、角平分线的性质等知识,解题的关键灵活运用这些知识解决问题,学会利用方程的思想思考问题,充分利用相似三角形的性质构建方程,在最后一个问题证明中利用了反证法,属于中考压轴题.2.(10分)(2016•黄石)如图1所示,已知:点A(﹣2,﹣1)在双曲线C:y=ax上,直线l1:y=﹣x+2,直线l2与l1关于原点成中心对称,F1(2,2),F2(﹣2,﹣2)两点间的连线与曲线C在第一象限内的交点为B,P是曲线C上第一象限内异于B的一动点,过P 作x轴平行线分别交l1,l2于M,N两点.(1)求双曲线C及直线l2的解析式;(2)求证:PF2﹣PF1=MN=4;(3)如图2所示,△PF1F2的内切圆与F1F2,PF1,PF2三边分别相切于点Q,R,S,求证:点Q与点B重合.(参考公式:在平面坐标系中,若有点A(x1,y1),B(x2,y2),则A、B两点间的距离公式为)【考点】圆的综合题.【分析】(1)利用点A 的坐标求出a 的值,根据原点对称的性质找出直线l 2上两点的坐标,求出解析式;(2)设P (x ,2x),利用两点距离公式分别求出PF 1、PF 2、PM 、PN 的长,相减得出结论; (3)利用切线长定理得出1122PR PS F R F Q F S F Q =⎧⎪=⎨⎪=⎩,并由(2)的结论PF 2﹣PF 1=4得出PF 2﹣PF 1=QF 2﹣QF 1=4,再由两点间距离公式求出F 1F 2的长,计算出OQ 和OB 的长,得出点Q 与点B 重合.【解答】解:(1)解:把A (﹣2,﹣1)代入y=a x 中得: a=(﹣2)×(﹣1)=2,∴双曲线C :y=2x, ∵直线l 1与x 轴、y 轴的交点分别是(2,0)、(0,2),它们关于原点的对称点分别是(﹣2,0)、(0,﹣2),∴l 2:y=﹣x ﹣2(2)设P (x , 2x), 由F 1(2,2)得:PF 12=(x ﹣2)2+(2x ﹣2)2=x 2﹣4x+24x ﹣8x +8, ∴PF 12=(x+2x﹣2)2, ∵x+2x ﹣2=222x x x+-=2(1)1x x -+>0, ∴PF 1=x+2x﹣2, ∵PM ∥x 轴 ∴PM=PE+ME=PE+EF=x+2x ﹣2, ∴PM=PF 1,同理,PF 22=(x+2)2+(2x +2)2=(x+2x +2)2, ∴PF 2=x+2x +2,PN=x+2x+2 因此PF 2=PN ,∴PF 2﹣PF 1=PN ﹣PM=MN=4,(3)△PF 1F 2的内切圆与F 1F 2,PF 1,PF 2三边分别相切于点Q ,R ,S ,∴1122PR PS F R F Q F S F Q =⎧⎪=⎨⎪=⎩⇒PF 2﹣PF 1=QF 2﹣QF 1=4又∵QF 2+QF 1=F 1F 2=QF 1=2,OF 1=OF 2=∴QO=2,∵F 1F 2的直线:y=x 与双曲线C :y=2x相交于点B ∴B,∴OB=2=OQ ,所以,点Q 与点B 重合.【点评】此题主要考查了圆的综合应用以及反比例函数的性质等知识,将代数与几何融合在一起,注意函数中线段的长可以利用本题给出的两点距离公式解出,也可以利用勾股定理解出;解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.3.(10分)(2016•衡阳)在平面直角坐标中,△ABC 三个顶点坐标为A0)、B0)、C (0,3).(1)求△ABC 内切圆⊙D 的半径.(2)过点E (0,﹣1)的直线与⊙D 相切于点F (点F 在第一象限),求直线EF 的解析式.(3)以(2)为条件,P 为直线EF 上一点,以P 为圆心,以P .若⊙P 上存在一点到△ABC 三个顶点的距离相等,求此时圆心P 的坐标.【考点】圆的综合题.【分析】(1)由A 、B 、C 三点坐标可知∠CBO=60°,又因为点D 是△ABC 的内心,所以BD 平分∠CBO ,然后利用锐角三角函数即可求出OD 的长度;(2)根据题意可知,DF 为半径,且∠DFE=90°,过点F 作FG ⊥y 轴于点G ,求得FG 和OG 的长度,即可求出点F 的坐标,然后将E 和F 的坐标代入一次函数解析式中,即可求出直线EF 的解析式;(3)⊙P 上存在一点到△ABC 三个顶点的距离相等,该点是△ABC 的外接圆圆心,即为点D ,所以P 在直线EF 上,所以这样的点P 共有2个,且由勾股定理可知PF=3【解答】解:(1)连接BD ,∵B 0),C (0,3),∴OC=3,∴tan ∠CBO=OC OB ∴∠CBO=60°∵点D 是△ABC 的内心,∴BD 平分∠CBO ,∴∠DBO=30°,∴tan ∠DBO=OD OB, ∴OD=1,∴△ABC 内切圆⊙D 的半径为1;(2)连接DF ,过点F 作FG ⊥y 轴于点G ,∵E (0,﹣1)∴OE=1,DE=2,∵直线EF 与⊙D 相切,∴∠DFE=90°,DF=1,∴sin ∠DEF=DF DE, ∴∠DEF=30°,∴∠GDF=60°,∴在Rt △DGF 中,∠DFG=30°,∴DG=12,由勾股定理可求得:GF=2,∴F(2,12), 设直线EF 的解析式为:y=kx+b ,∴112b b =-⎧⎪⎨=+⎪⎩, ∴直线EF 的解析式为:﹣1;(3)∵⊙P 上存在一点到△ABC 三个顶点的距离相等,∴该点必为△ABC 外接圆的圆心,由(1)可知:△ABC 是等边三角形,∴△ABC 外接圆的圆心为点D∴设直线EF 与x 轴交于点H ,∴令y=0代入﹣1,∴x=3, ∴H(30), ∴当P 在x 轴上方时,过点P 1作P 1M ⊥x 轴于M ,由勾股定理可求得:P 1∴P 1H=P 1F+FH=3, ∵∠DEF=∠HP 1M=30°,∴HM=12P 1,P 1M=5, ∴∴P 1(5),当P 在x 轴下方时,过点P 2作P 2N ⊥x 轴于点N ,由勾股定理可求得:P 2∴P 2H=P 2F ﹣∴∠DEF=30°∴∠OHE=60°∴sin ∠OHE22P N P H, ∴P 2N=4, 令y=﹣4代入﹣1,∴x=∴P 24),综上所述,若⊙P 上存在一点到△ABC 三个顶点的距离相等,此时圆心P 的坐标为(54).【点评】本题是圆的综合问题,涉及圆的外接圆和内切圆的相关性质,圆的切线性质,锐角三角函数,一次函数等知识,综合程度较高,需要学生将各知识点灵活运用.4.(10分)(2016•南充)已知正方形ABCD的边长为1,点P为正方形内一动点,若点M 在AB上,且满足△PBC∽△PAM,延长BP交AD于点N,连结CM.(1)如图一,若点M在线段AB上,求证:AP⊥BN;AM=AN;(2)①如图二,在点P运动过程中,满足△PBC∽△PAM的点M在AB的延长线上时,AP⊥BN和AM=AN是否成立?(不需说明理由)②是否存在满足条件的点P,使得PC=?请说明理由.【考点】相似形综合题.【分析】(1)由△PBC∽△PAM,推出∠PAM=∠PBC,由∠PBC+∠PBA=90°,推出∠PAM+∠PBA=90°即可证明AP⊥BN,由△PBC∽△PAM,推出==,由△BAP∽△BNA,推出=ANAB,得到=,由此即可证明.(2)①结论仍然成立,证明方法类似(1).②这样的点P不存在.利用反证法证明.假设PC=,推出矛盾即可.【解答】(1)证明:如图一中,∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠DAB=∠ABC=∠BCD=∠D=90°,∵△PBC∽△PAM,∴∠PAM=∠PBC,=,∴∠PBC+∠PBA=90°,∴∠PAM+∠PBA=90°,∴∠APB=90°,∴AP ⊥BN ,∵∠ABP=∠ABN ,∠APB=∠BAN=90°,∴△BAP ∽△BNA ,∴PA =AN AB, ∴AN =AM , ∵AB=BC ,∴AN=AM .(2)解:①仍然成立,AP ⊥BN 和AM=AN .理由如图二中,∵四边形ABCD 是正方形,∴AB=BC=CD=AD ,∠DAB=∠ABC=∠BCD=∠D=90°,∵△PBC ∽△PAM ,∴∠PAM=∠PBC , AM =P,∴∠PBC+∠PBA=90°,∴∠PAM+∠PBA=90°,∴∠APB=90°,∴AP ⊥BN ,∵∠ABP=∠ABN ,∠APB=∠BAN=90°,∴△BAP ∽△BNA ,∴=AN AB, ∴=, ∵AB=BC ,∴AN=AM .②这样的点P 不存在.理由:假设PC=,如图三中,以点C 为圆心为半径画圆,以AB 为直径画圆,CO==2>1, ∴两个圆外离,∴∠APB <90°,这与AP ⊥PB 矛盾,∴假设不可能成立,∴满足PC=的点P 不存在.【点评】本题考查相似三角形综合题、正方形的性质、圆的有关知识,解题的关键是熟练应用相似三角形性质解决问题,最后一个问题利用圆的位置关系解决问题,有一定难度,属于中考压轴题.5.(10分)(2016•内江)如图,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及AB的延长线相交于点D,E,F,⊙O是△BEF的外接圆,∠EBF的平分线交EF于点G,交⊙O于点H,连接BD、FH.(1)试判断BD与⊙O的位置关系,并说明理由;(2)当AB=BE=1时,求⊙O的面积;(3)在(2)的条件下,求HG•HB的值.【分析】(1)连接OB ,证得∠DBO=90°,即可得到BD 与⊙O 相切;(2)由等腰直角三角形的性质得到CF=2BF ,由于DF 垂直平分AC ,得到AF=CF=AB+BF=1+BF=2BF ,根据勾股定理得到EF 的长,根据圆的面积公式即可得到结论;(3)推出△EHF 是等腰直角三角形,求得HF=22EF ,通过△BHF ∽△FHG ,列比例式即可得到结论.【解答】解:(1)BD 与⊙O 相切,理由:如图1,连接OB ,∵OB=OF ,∴∠OBF=∠OFB ,∵∠ABC=90°,AD=CD ,∴BD=CD ,∴∠C=∠DBC ,∵∠C=∠BFE ,∴∠DBC=∠OBF ,∵∠CBO+∠OBF=90°,∴∠DBC+∠CBO=90°,∴∠DBO=90°,∴BD 与⊙O 相切;(2)如图2,连接CF ,HE ,∵∠CBF=90°,BC=BF ,∴CF=2BF ,。

中考数学专题复习之 32 正多边形与圆(含解析)2 精编

中考数学专题复习之 32 正多边形与圆(含解析)2 精编

32 正多边形与圆(含解析)一、选择题1.(3分)(2016•台湾)如图,△ABC中,∠A=60°,∠B=58°.甲、乙两人想在△ABC外部取一点D,使得△ABC与△DCB全等,其作法如下:(甲)1.作∠A的角平分线L.2.以B为圆心,BC长为半径画弧,交L于D点,则D即为所求.(乙)1.过B作平行AC的直线L.2.过C作平行AB的直线M,交L于D点,则D即为所求.对于甲、乙两人的作法,下列判断何者正确?(D)A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确【考点】作图—复杂作图;全等三角形的判定.【专题】作图题与三角形全等.【分析】根据题意先画出相应的图形,然后根据题意进行推理即可得到哪个正确哪个错误,本题得以解决.【解答】解:(甲)如图一所示,∵∠A=60°,∠B=58°,∴∠ACB=62°,∴AB≠BC≠CA,由甲的作法可知,BC=BD,故△ABC和△DCB不可能全等,故甲的作法错误;(乙)如图二所示,∵BD ∥AC ,CD ∥AB ,∴∠ABC=DCB ,∠ACB=∠DBC ,在△ABC 和△DCB 中,ABC DCB BC CBACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DCB (ASA ),∴乙的作法是正确的.故选D .【点评】本题考查作图﹣复杂作图,全等三角形的判定,解题的关键是明确题意,作出相应的图形,进行合理的推理证明.2.2.1.1.(3分)(2016•玉林)如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为S 1,正八边形外侧八个扇形(阴影部分)面积之和为S 2,则12s s =( )A . 34B . 35C . 23D .1 【考点】扇形面积的计算;正多边形和圆.【分析】先根据正多边形的内角和公式可求正八边形的内角和,根据周角的定义可求正八边形外侧八个扇形(阴影部分)的内角和,再根据半径相等的扇形面积与圆周角成正比即可求解.【解答】解:∵正八边形的内角和为(8﹣2)×180°=6×180°=1080°,正八边形外侧八个扇形(阴影部分)的内角和为360°×8﹣1080°=2880°﹣1080°=1800°, ∴12s s =10801800=35. 故选:B .【点评】考查了扇形面积的计算,求不规则的图形的面积,可以转化为几个规则图形的面积的和或差来求.2.3.4.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.二、填空题1.(3分)(2016•株洲)如图,正六边形ABCDEF内接于半径为3的圆O,则劣弧AB的长度为π.【考点】正多边形和圆;弧长的计算.【分析】求出圆心角∠AOB的度数,再利用弧长公式解答即可.【解答】解:如图,连接OA、OB,∵ABCDEF为正六边形,∴∠AOB=360°×16=60°,AB的长为603180π∙=π.故答案为:π.【点评】本题主要考查正多边形的性质和弧长公式,熟练掌握正多边形的性质是解题的关键.2.2.1.1.(3分)(2016•玉林)如图,△ABC中,∠C=90°,∠A=60°,ABC沿直线CB向右作无滑动滚动一次,则点C经过的路径长是52π.【考点】轨迹.【分析】根据锐角三角函数,可得BC的长,根据线段旋转,可得圆弧,根据弧长公式,可得答案.【解答】解:由锐角三角函数,得BC=AB•sin∠A=3,由旋转的性质,得'CC是以B为圆心,BC长为半径,旋转了150°,由弧长公式,得' CC=23150360π⨯⨯=52π,故答案为:52π.【点评】本题考查了轨迹,利用线段旋转得出圆弧是解题关键3.1.1.(3分)(2016•巴中)如图,将边长为3的正六边形铁丝框ABCDEF变形为以点A为圆心,AB为半径的扇形(忽略铁丝的粗细).则所得扇形AFB(阴影部分)的面积为18.【考点】正多边形和圆;扇形面积的计算.【分析】由正六边形的性质得出·BAF的长=12,由扇形的面积=12弧长×半径,即可得出结果.【解答】解:∵正六边形ABCDEF的边长为3,∴AB=BC=CD=DE=EF=FA=3,∴·BAF的长=3×6﹣3﹣3═12,∴扇形AFB(阴影部分)的面积=12×12×3=18.故答案为:18.【点评】本题考查了正多边形和圆、正六边形的性质、扇形面积公式;熟练掌握正六边形的性质,求出弧长是解决问题的关键.4.5.6.8.9.10.11.12.13.14.15.16.17.18.19.20.三、解答题1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.17.18.19.20.。

正多边形和圆 冀教版初中数学九年级下册练习题(含答案)

正多边形和圆 冀教版初中数学九年级下册练习题(含答案)

29.5正多边形和圆练习题一、选择题1.如图,正五边形ABCDE内接于⊙O,点P是劣弧BĈ上一点(点P不与点C重合),则∠CPD=()2.A. 45°B. 36°C. 35°D. 30°3.正八边形的中心角为A. 45°B. 60°C. 70°D. 90°4.如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分的面积)是()A. 6√3−πB. 6√3−2πC. 6√3+πD. 6√3+2π5.半径为r的圆的内接正六边形边长为()A. 12r B. √32r C. r D. 2r6.正六边形的周长为6,则它的外接圆半径为()A. 1B. 2C. 3D. 67.若一个正多边形的中心角为40°,则这个多边形的边数是()A. 9B. 8C. 7D. 68.顺次连接边长为6cm的正六边形的不相邻的三边的中点,又形成一个新的正三角形,则这个新的正三角形的面积等于()A. 81√34cm2 B. 36√3cm2 C. 18√3cm2 D. 9√34cm29.如图,⊙O与正六边形OABCDE的边OA,OE分别交于点F,G,点M为劣弧FG的中点.若FM=4√2.则点O到FM的距离是()A. 4B. 3√2C. 2√6D. 4√210.如图,在平面直角坐标系中,将边长为1的正六边形OABCDE绕点O顺时针旋转i个45°,得到正六边形OA i B i C i D i E i,则正六边形OA i B i C i D i E i(i=2020)的顶点C i的坐标是()A. (1,−√3)B. (1,√3)C. (1,−2)D. (2,1)11.若正多边形的中心角为72°,则该正多边形的边数为()A. 8B. 7C. 6D. 5二、填空题12.如图,已知正六边形ABCDEF中,G,H分别是AF和CD的中点,P是GH上的动点,连接AP,BP,则AP+BP的值最小时,BP与HG的夹角(锐角)度数为______.13.若正六边形的边长为3,则其较长的一条对角线长为______.14.如图,正六边形ABCDEF的顶点B,C分别在正方形AMNP的边AM,MN上.若AB=4,则CN=______.15.若正六边形的内切圆半径为2,则其外接圆半径为______.三、解答题16.如图,五边形ABCDE内接于⊙O,且AB=BC=CD=DE=AE,BD和CE相交于F,求证:四边形ABFE是菱形.17.如图,圆O的半径等于4,正六边形ABCDEF内接于圆O,求正六边形ABCDEF的面积.18.如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,求∠CDF的度数.19.如图,正五边形ABCDE的对角线AC和BE相交于点M.求证:ME=AE.20.如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,求∠CDF的度数.答案和解析1.【答案】B【解析】【试题解析】【分析】本题考查正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.连接OC,OD.求出∠COD的度数,再根据圆周角定理即可解决问题.【解答】解:如图,连接OC,OD.∵ABCDE是正五边形,=72°,∴∠COD=360°5∴∠CPD=1∠COD=36°,2故选B.2.【答案】A【解析】【试题解析】【分析】本题考查了正多边形和圆的知识,解题的关键是牢记中心角的定义及求法.根据中心角是正多边形相邻的两个半径的夹角来解答.【解答】解:正八边形的中心角等于360°÷8=45°;故选:A.3.【答案】A【解析】略4.【答案】C【解析】解:如图,ABCDEF是⊙O的内接正六边形,连接OA,OB,则三角形AOB是等边三角形,所以AB=OA=r.故选:C.画出圆O的内接正六边形ABCDEF,连接OA,OB,得到正三角形AOB,可以求出AB的长.本题考查的是正多边形和圆,连接OA,OB,得到正三角形AOB,就可以求出正六边形的边长.5.【答案】A【解析】【分析】本题考查的是正多边形和圆,熟知正六边形的性质是解答此题的关键.根据正六边形的周长是6求出其边长,再根据等边三角形的性质即可得出结论.【解答】解:∵正六边形的周长是6,=1.∴其边长=66∵正六边形的边长与其外接圆半径恰好组成等边三角形,∴它的外接圆半径是1.故选:A.6.【答案】A【解析】【分析】是解本题考查的是正多边形和圆的有关知识,掌握正多边形的中心角的计算公式:360°n题的关键.根据正多边形的中心角的计算公式:360°n计算即可.【解答】解:设这个多边形的边数是n,由题意得,360°n=40°,解得,n=9,故选:A.7.【答案】A【解析】解:如图所示:作AP⊥GH于P,BQ⊥GH于Q,如图所示:∵△GHM是等边三角形,∴∠MGH=∠GHM=60°,∵六边形ABCDEF是正六边形,∴∠BAF=∠ABC=120°,正六边形ABCDEF是轴对称图形,∵G、H、M分别为AF、BC、DE的中点,△GHM是等边三角形,∴AG=BH=3cm,∠MGH=∠GHM=60°,∠AGH=∠FGM=60°,∴∠BAF+∠AGH=180°,∴AB//GH,∵作AP⊥GH于P,BQ⊥GH于Q,∴PQ=AB=6cm,∠PAG=90°−60°=30°,∴PG=12AG=32cm,同理:QH=32cm,∴GH=PG+PQ+QH=9cm,∴△GHM的面积=√34GH2=81√34cm2;故选:A.作AP⊥GH于P,BQ⊥GH于Q,由正六边形和等边三角形的性质求出GH=PG+PQ+ QH=9cm,由等边三角形的面积公式即可得出答案.此题主要考查了正六边形的性质、等边三角形的性质及三角形的面积公式等知识;熟练掌握正六边形和等边三角形的性质是解题的关键.8.【答案】C【解析】【分析】本题考查正多边形与圆,解题的关键是学会添加常用辅助线,构造圆内接四边形解决问题.连接OM,过O作OH⊥FM于H,根据正六边形的性质和垂径定理以及解直角三角形即可得到结论.【解答】解:连接OM,过O作OH⊥FM于H,∵正六边形OABCDE,∴∠FOG=120°,∵点M为劣弧FG的中点,∴∠FOM=60°,∵OH⊥FM,OF=OM,FM=2√2,∴∠OFH=60°,∠OHF=90°,FH=12∴OH=√3FH=2√6,故选:C.9.【答案】A【解析】【试题解析】解:由题意旋转8次应该循环,∵2020÷8=252…4,∴C i的坐标与C4的坐标相同,∵C(−1,√3),点C与C4关于原点对称,∴C4(1,−√3),∴顶点C i的坐标是(1,−√3),故选:A.由题意旋转8次应该循环,因为2020÷8=252…4,所以C i的坐标与C4的坐标相同.本题考查正多边形与圆,坐标与图形变化−性质等知识,解题的关键是学会探究规律的方法,属于中考常考题型.10.【答案】D=72°,【解析】解:由题意,360°n∴n=5,故选:D.根据正多边形的中心角=360°,求出n即可.n本题考查正多边形的中心角知识,解题的关键是熟练掌握基本知识,属于中考常考题型.11.【答案】60°【解析】解:如图,连接PF,BF,BF交GH于点P′,连接AP′.∵正六边形ABCDEF中,G,H分别是AF和CD的中点,∴GH是正六边形的对称轴,∴PA=PF,∴PA+PB=PB+PF,∵PB+PF≥BF,∴当点P与点P′重合时,PA+PB的值最小,∵∠BAF=120°,AB=AF,∴∠ABF=∠AFB=30°,∵∠FGP′=90°,∴∠FP′G=60°,故答案为60°.如图,连接PF,BF,BF交GH于点P′,连接AP′.首先证明当点P与点P′重合时,PA+PB 的值最小,利用等腰三角形的性质求出∠AFB=30°即可解决问题.本题考查正多边形与圆,轴对称最短问题等知识,解题的关键是学会利用三角形的三边关系解决最短问题,属于中考常考题型.12.【答案】6【解析】解:如图所示为正六边形最长的三条对角线,由正六边形性质可知,△AOB,△COD为两个边长相等的等边三角形,∴AD=2AB=6,故答案为6.根据正六边形的性质即可得到结论.该题主要考查了正多边形和圆的性质及其应用问题;解题的关键是灵活运用正多边形和圆的性质来分析、判断、解答.13.【答案】6−2√3【解析】解:在Rt△BCM中,∵AB=BC=4,∠CBM=60°,∠M=90°,∴∠BCM=30°,BC=2,CM=√3BM=2√3,∴BM=12∴AM=4+2=6,∵四边形AMNP是正方形,∴MN=MA=6,∴CN=MN−CM=6−2√3,故答案为6−2√3.在Rt△BCM中,根据条件AB=BC=4,∠CBM=60°,∠M=90°,解直角三角形即可解决问题;本题考查正多边形与圆,解直角三角形,正方形的性质,正六边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.14.【答案】4√33【解析】【分析】本题考查了正六边形和圆、等边三角形的判定与性质;熟练掌握正多边形的性质,证明△OAB是等边三角形是解决问题的关键.根据题意画出图形,利用正六边形中的等边三角形的性质和三角函数求解即可.【解答】解:如图,连接OA、OB,作OG⊥AB于G;则OG=2,∵六边形ABCDEF正六边形,∴△OAB是等边三角形,∴∠OAB=60°,∴OA=OGsin60∘=2√32=4√33,∴正六边形的内切圆半径为2,则其外接圆半径为4√33.故答案为:4√33.15.【答案】证明:∵五边形ABCDE内接于圆O,且AB=BC=CD=DE=AE,∴五边形ABCDE是正五边形,∴∠A=∠ABC=∠BCD=108°,∵CB=CD,∴∠CBD=36°,∴∠ABD=108°−36°=72°,∴∠A+∠ABD=180°,∴AE//BD,同理AB//CE,∴四边形ABFE是平行四边形,∵AB=AE,∴四边形ABFE是菱形.【解析】此题主要考查了菱形的判定以及正多边形与圆,得出AE//BD是解题关键.利用正多边形的判定方法得出五边形ABCDE是正五边形,进而求出各角的度数,进而得出AE//BD,同理AB//CE,即可得出答案.16.【答案】解:过O作OH⊥AF于H,连接OA,OF,∵六边形ABCDEF为正六边形,∴∠OAF=60°,∴△OAF是等边三角形,∴AF=OA=4,在Rt△AOH中,∠AOH=30°,∴AH=12OA=2,∴OH=√OA2−AH2=√42−22=2√3,∴S△AOF=12×4×2√3=4√3,∴正六边形ABCDEF的面积=6S△AOF=24√3.【解析】【试题解析】本题考查了正多边形和圆、含30°的直角三角形性质、等边三角形的判定和性质、勾股定理,正确识图是解题关键.过O作OH⊥AF于H,连接OA,OF,求得∠OAF=60°,根据等边三角形的性质得到AF=OA=4,由Rt△AOH中,∠AOH=30°,可得AH的长,再由勾股定理求得OH的长,根据三角形的面积公式即可得到结论.17.【答案】解:∵五边形ABCDE是⊙O的内接正五边形,∴∠BAE=108°,∠BDC=360°2×5=36°,∵AF是⊙O的直径,∴BF⏜=EF⏜,∴∠BAF=12∠BAE=12×108°=54°,∴∠BDF=∠BAF=54°,∴∠CDF=∠BDF=∠BDC=54°−36°=18°.【解析】【试题解析】本题考查的是正多边形与圆,圆周角定理有关知识,熟练运用正多边形与圆和圆周角定理是解决本题的关键.根据五边形ABCDE是⊙O的内接正五边形得出∠BAE=108°,∠BDC=360°2×5=36°,然后再利用AF是⊙O的直径得出BF⏜=EF⏜,从而得出∠BAF=12∠BAE=12×108°=54°,最后再进行计算即可.18.【答案】证明:∵五边形ABCDE是正五边形,∴∠ABC =∠EAB =∠DCB =∠DEA =(5−2)×180∘5=108∘,AB =AE ,∴∠AEB =∠ABE =36°,∵∠EAC =72°, ∴∠EMA =180°−36°−72°=72°,∴∠EAM =∠EMA ,∴ME =AE .【解析】本题考查了正多边形的性质.根据正多边形求出∠ABC =∠EAB =∠DCB =∠DEA =(5−2)×180∘5=108∘,AB =BC ,求出∠CAB =∠BCA =36°,求出∠EAC =72°,最后求出∠DEA +∠EAC =180°即可. 19.【答案】解:∵五边形ABCDE 是⊙O 的内接正五边形,∴∠BAE =108∘,∠BDC =360∘2×5=36∘.∵AF 是⊙O 的直径,∴BF ⌢=EF ⌢,∴∠BAF =12∠BAE =12×108∘=54∘,∴∠BDF =∠BAF =54°,∴∠CDF =∠BDF −∠BDC =54°−36°=18°.【解析】【试题解析】本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题,属于中考常考题型.利用正五边形的性质和圆周角定理即可得到结论.。

初中数学人教版(五四制)九年级上册第三十一章 圆31.3 正多边形和圆-章节测试习题(3)

初中数学人教版(五四制)九年级上册第三十一章  圆31.3 正多边形和圆-章节测试习题(3)

章节测试题1.【答题】半径相等的圆的内接正三角形、正方形、正六边形的边长之比为()A. 1∶∶B. ∶∶1C. 3∶2∶1D. 1∶2∶3【答案】B【分析】本题考查了正多边形和圆,根据正多边形的性质解答即可.【解答】设圆的半径为R,如图(一),连接OB,过O作OD⊥BC于D,则∠OBC=30∘,BD=OB⋅cos30∘=R,故BC=2BD=R;如图(二),连接OB、OC,过O作OE⊥BC于E,则△OBE是等腰直角三角形,2BE2=OB2,即BE=R,故BC=R;如图(三),连接OA、OB,过O作OG⊥AB,则△OAB是等边三角形,故AG=OA⋅cos60∘=R,AB=2AG=R,故圆内接正三角形、正方形、正六边形的边长之比为R: R:R=::1.2.【答题】使用同一种规格的下列地砖,不能进行平面镶嵌的是()A. 正三角形地砖B. 正四边形地砖C. 正五边形地砖D. 正六边形地砖【答案】C【分析】本题考查了正多边形和圆,根据正多边形的性质解答即可.【解答】解:A、正三角形的每个内角是60°,能整除360°,能密铺,故A不符合题意;B、正四边形每个内角是90°,能整除360°,能密铺,故B不符合题意;C、正五边形每个内角是180°-360°÷5=108°,不能整除360°,不能密铺,故C符合题意;D、正六边形每个内角是120°,能整除360°,能密铺,故D不符合题意.选C.3.【答题】正六边形的两条平行边之间的距离为1,则它的边长为()A.B.C.D.【答案】D【分析】本题考查了正多边形和圆,根据正多边形的性质解答即可.【解答】根据题意画出图形,再根据正六边形的性质求出正六边形的一个内角度数,利用垂径定理求出这个内角度数的一半,再利用锐角三角函数的定义求出答案.4.【答题】同圆的内接正三角形与内接正方形的边长的比是()A.B.C.D.【答案】A【分析】本题考查了正多边形和圆,根据正多边形的性质解答即可.【解答】根据题意画出图形,设出圆的半径,再根据垂径定理,由正多边形及直角三角形的性质求解即可.5.【答题】用若干个全等的正五边形可以拼成一个环状,图中所示的是前3个正五边形的拼接情况,要完全拼成一个圆环还需要的正五边形个数是()A. 5B. 6D. 8【答案】C【分析】本题考查了正多边形和圆,根据正多边形的性质解答即可.【解答】解:如图,圆心角为∠1,∵五边形的内角和为:(5-2)×180°=3×180°=540°,∴五边形的每一个内角为:540°÷5=108°,∴∠1=108°×2-180°=216°-180°=36°,∵360°÷36°=10,∵360°÷36°=10,∴他要完成这一圆环共需10个全等的五边形.∴要完全拼成一个圆环还需要的正五边形个数是:10-3=7选C.6.【答题】一个边长为2的正多边形的内角和是其外角和的2倍,则这个正多边形的半径是()B.C. 1D.【答案】A【分析】本题考查了正多边形和圆,根据正多边形的性质解答即可.【解答】解:设多边形的边数为n.因为正多边形内角和为(n-2)•180°,正多边形外角和为360°,根据题意得:(n-2)•180°=360°×2,解得:n=6故正多边形为6边形.边长为2的正六边形可以分成六个边长为2的正三角形,所以正多边形的半径等于2.选A.7.【答题】如图,正十二边形A1A2…A12,连接A3A7,A7A10,则∠A3A7A10的度数为()A. 60°B. 65°C. 70°D. 75°【答案】D【分析】本题考查了正多边形和圆,根据正多边形的性质解答即可. 【解答】设该正十二边形的中心为O,如图,连接A10O和A3O,由题意知,=⊙O的周长,∴∠A3OA10==150°,∴∠A3A7A10=75°.选D.8.【答题】如图,正六边形ABCDEF内接于⊙O,若直线PA与⊙O相切于点A,则∠PAB=()A. 30°B. 35°C. 45°D. 60°【答案】A【分析】本题考查了正多边形和圆,根据正多边形的性质和切线的性质解答即可.【解答】解:连接OA,根据直线PA为切线可得∠OAP=90°,根据正六边形的性质可得∠OAB=60°,则∠PAB=∠OAP-∠OAB=90°-60°=30°.9.【答题】正多边形的中心角与该正多边形一个内角的关系是()A. 互余B. 互补C. 互余或互补D. 不能确定【答案】B【分析】本题考查了正多边形和圆,根据正多边形的性质解答即可.【解答】设正多边形的边数为n,则正多边形的中心角为,正多边形的一个外角等于,所以正多边形的中心角等于正多边形的一个外角,而正多边形的一个外角与该正多边形相邻的一个内角的互补,所以正多边形的中心角与该正多边形一个内角互补.选B.10.【答题】顺次连接正六边形的的三个不相邻的顶点,得到如图所示的图形,该图形()A. 既是轴对称图形也是中心对称图形B. 是轴对称图形但不是中心对称图形C. 是中心对称图形但不是轴对称图形D. 既不是轴对称图形也不是中心对称图形【答案】B【分析】本题考查了正多边形和圆,根据正多边形的性质解答即可.【解答】解:此图形是等边三角形,等边三角形是轴对称图形但并不是中心对称图形,选B.11.【答题】圆的半径扩大一倍,则它的相应的圆内接正n边形的边长与半径之比()A. 扩大了一倍B. 扩大了两倍C. 扩大了四倍D. 没有变化【答案】D【分析】本题考查了正多边形和圆,根据正多边形的性质解答即可.【解答】解:圆的半径扩大一倍,则它的相应的圆内接正n边形的边长与半径之比没有发生变化.选D.12.【答题】如图,半径为1的⊙O与正六边形ABCDEF相切于点A、D,则弧AD的长为()A.B.C.D.【答案】C【分析】本题考查了正多边形和圆,根据正多边形的性质解答即可.【解答】解:如图,可由正六边形的性质可知:∠F=∠E=120°,∠DAF=∠EDA=60°,然后根据切线的性质,可知∠OAF=∠ODE=90°,因此可得∠ODA=∠OAD=30°,再由三角形的内角和求得∠O=120°,因此可知的度数为120°,根据弧长公式可知的长为:.选C.13.【答题】一元钱硬币的直径约为24 mm,则用它能完全覆盖住的正六边形的边长最大不能超过()A. 12 mmB. 12mmC. 6 mmD. 6mm【答案】A【分析】本题考查了正多边形和圆,根据正多边形的性质解答即可.【解答】解:已知圆内接半径r为12mm,则OB=12,∴BD=OB•sin30°=12×=6,则BC=2×6=12,可知边长为12mm,就是完全覆盖住的正六边形的边长最大.选A.14.【答题】以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A.B.C.D.【答案】D【分析】本题考查了正多边形和圆,根据正多边形的性质解答即可.【解答】解:如图1,∵OC=2,∴OD=2×sin30°=1;如图2,∵OB=2,∴OE=2×sin45°=;如图3,∵OA=2,∴OD=2×cos30°=,则该三角形的三边分别为:1,,,∵(1)2+()2=()2,∴该三角形是直角边,∴该三角形的面积是×1××=,选D.15.【答题】若正六边形的半径长为4,则它的边长等于()A.4B.2C.D.【答案】A【分析】本题考查了正多边形和圆,根据正多边形的性质解答即可.【解答】解:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的半径等于4,则正六边形的边长是4选A.16.【答题】如图,一张半径为1的圆形纸片在边长为a(a≥3)的正方形内任意移动,则在该正方形内,这张圆形纸片“不能接触到的部分”的面积是()A. a2-πB. (4-π)a2C. πD. 4-π【答案】D【分析】本题考查了正多边形和圆,根据正多边形的性质解答即可.【解答】解:小正方形的面积是:1;当圆运动到正方形的一个角上时,形成扇形BAO,它的面积是:.则这张圆形纸片“不能接触到的部分”的面积是4(1﹣)=4﹣π.选D.17.【答题】若正三角形、正方形、正六边形的周长相等,它们的面积分别是S1,S2,S3,则下列关系成立的是()A.B.S1<S2<S3C.S1>S2>S3D.S2>S3>S1【答案】B【分析】本题考查了正多边形和圆,根据正多边形的性质解答即可.【解答】解:首先假设周长都是12,则正三角形的边长为4,面积为;正方形的边长为3,面积为9,;正六边形的边长为2,面积为:,则.18.【答题】如果一个正多边形的中心角为72°,那么这个正多边形的边数是( )A. 4B. 5C. 6D. 7【答案】B【分析】本题考查了正多边形和圆,根据正多边形的性质解答即可.【解答】解:这个多边形的边数是360÷72=5,选B.19.【答题】如图,圆内接正五边形ABCDE中,对角线AC和BD相交于点P,则∠APB的度数是()A. 36°B. 60°C. 72°D. 108°【答案】C【分析】本题考查了正多边形和圆,根据正多边形的性质解答即可.【解答】解:∵五边形ABCDE为正五边形,∴AB=BC=CD,∠ABC=∠BCD=108度,∴∠BAC=∠BCA=∠CBD=∠BDC==36°,∴∠APB=∠DBC+∠ACB=72°,选C.20.【答题】正多边形的中心角是36°,那么这个正多边形的边数是()A. 10B. 8C. 6D. 5【答案】A【分析】本题考查了正多边形和圆,根据正多边形的性质解答即可.【解答】解:一个正多边形的中心角都相等,且所有中心角的和是360度,用360度除以中心角的度数,就得到中心角的个数,即多边形的边数.解:由题意可得:边数为360°÷36°=10,则它的边数是10故答案为10.。

初三数学正多边形和圆同步测试题含答案新人教版

初三数学正多边形和圆同步测试题含答案新人教版

适用精选文件资料分享初三数学正多边形和圆同步测试题(含答案新人教版)初三数学正多边形和圆同步测试题(含答案新人教版)知识点相等,______________也相等的多边形叫做正多边形 . 2 .把一个圆分成几等份,连接各点所获得的多边形是________________,它的中心角等于______________________________________________. 3.一个正多边形的外接圆的 ____________叫做这个正多边形的中心,外接圆的__________叫做正多边形的半径,正多边形每一边所对的 __________叫做正多边形的中心角,中心到正多边形的一边的____________叫做正多边形的边心距 . 4. 正 n 边形的半径为 R,边心距为 r ,边长为 a,(1)中心角的度数为: ______________. (2)每个内角的度数为:_______________________. (3)每个外角的度数为: ____________.(4)周长为: _________,面积为: _________. 5. 正 n 边形都是轴对称图形,当边数为偶数时,它的对称轴有 _______条,而且还是中心对称图形;当边数为奇数时,它不过 _______________.(填“轴对称图形”或“中心对称图形”)一、选择题 1. 以下说法正确的选项是()A. 各边相等的多边形是正多边形B. 各角相等的多边形是正多边形C.各边相等的圆内接多边形是正多边形 D. 各角相等的圆内接多边形是正多边形 2.(2013?天津)正六边形的边心距与边长之比为()A.:3 B.:2 C. 1 :2 D.:2 3.(2013山东滨州)若正方形的边长为 6,则其外接圆半径与内切圆半径的大小分别为 ( ) A.6,B .,3 C.6,3 D., 4. 以以下图,正六边形 ABCDEF内接于⊙ O,则∠ADB的度数是(). A .60° B .45° C.30° D. 22.5°5.半径相等的圆的内接正三角形,正方形,正六边形的边长的比为()A. B. C.3:2:1 D.1:2:36.圆内接正五边形 ABCDE中,对角线 AC和 BD订交于点 P,则∠ APB 的度数是(). A .36° B .60° C.72° D.108°7. (2013?自贡)如图,点 O是正六边形的对称中心,假如用一副三角板的角,借助点O(使该角的极点落在点O处),把这个正六边形的面积n 均分,那么 n 的全部可能取值的个数是()A.4B.5C.6D. 78.如图,△PQR是⊙O的内接正三角形,四边形ABCD是⊙O 的内接正方形,BC∥QR,则∠ AOQ的度数是()°°°°二、填空题 9. 一个正 n 边形的边长为 a,面积为 S,则它的边心距为__________. 10. 正多边形的一此中心角为36度,那么这个正多边形的一个内角等于 __________度. 11. 若正六边形的面积是cm 2,则这个正六边形的边长是__________. 12.已知正六边形的边心距为,则它的周长是 _______. 13. 点 M、N分别是正八边形相邻的边AB、BC 上的点,且 AM=BN,点 O是正八边形的中心,则∠ MON=_____________.14.边长为 a 的正三角形的边心距、半径(外接圆的半径)和高之比为_________________. 15. 要用圆形铁片截出边长为 4cm的正方形铁片,则采纳的圆形铁片的直径最小要__________cm. 16. 若正多边形的边心距与边长的比为 1:2 ,则这个正多边形的边数是 __________. 17.一个正三角形和一个正六边形的周长相等,则它们的面积比为__________.18.(2 013? 徐州 ) 如图,在正八边形 ABCDEFGH中,四边形 BCFG的面积为 20cm2,则正八边形的面积为 ________cm2.三、解答题 19. 比较正五边形与正六边形,可以发现它们的同样点与不一样点 .正五边形正六边形比方它们的一个同样点:正五边形的各边相等,正六边形的各边也相等 . 它们的一个不一样点:正五边形不是中心对称图形,正六边形是中心对称图形 . 请你再写出它们的两个同样点和不一样点 . 同样点:(1)___________________________________________________________ _________; (2)___________________________________________________________ ________. 不一样点:(1)___________________________________________________________ _________; (2)__________________________________________________________________. 20. 已知,如,正六形ABCDEF的 6cm,求个正六形的外接半径R、心距 r6 、面 S6.21.如,⊙O的半径,⊙O的内接一个正多形,心距 1,求它的中心角、、面 .22.已知⊙O和⊙O上的一点A. (1)作⊙O的内接正方形ABCD和内接正六形 AEFCGH;(2)在( 1)的作中,假如点 E 在弧 AD上,求: DE是⊙O内接正十二形的一 .23.如 1、 2、 3、⋯、 n,M、N分是⊙O 的内接正三角形ABC、正方形 ABCD、正五形 ABCDE、⋯、正 n 形 ABCDE⋯的 AB、BC 上的点,且 BM=CN, OM、ON.(1)求 1 中∠ MON的度数; (2) 2 中∠ MON的度数是 _________, 3 中∠ MON的度数是 _________;(3) 研究∠ MON的度数与正 n形数 n 的关系 ( 直接写出答案 ).24.3 正多形和知点 1. 各各角 2.正多形正多形每一所的心角 3. 心半径心角距离称形一、解:依据内接正多形的性可知,只要把此正六形再化正多形即可,即周角除以 30 的倍数就可以解决. 360÷30=12; 360÷60=6; 360÷90=4;360÷120=3; 360÷180=2.所以 n 的全部可能的共五种状况,故B. 8.D 二、填空 9. 10.144 11.4cm 12.12 13.45 ° 14.1:2:315.16. 四 17.2:3 18.40 三、解答题 19. 同样点:(1)每个内角都相等(或每个外角都相等或对角线都相等);(2)都是轴对称图形(或都有外接圆和内切圆) . 不一样点:(1)正五边形的每个内角是108°,正六边形的每个内角是120°;(2)正五边形的对称轴是5 条,正六边形的对称轴是 6 条. 20. 21. 解:连接 OB ∵在 Rt△AOC 中,AC==1 ∴AC=OC∴∠ AOC=∠OAC=45° ∵OA=OBOC⊥AB∴AB=2AC=2 ∠AOB=2∠OAC=2×45°=90° ∴这个内接正多边形是正方形 . ∴面积为 22=4 ∴中心角为 90°,边长为 2,面积为 4. 22. (1) 作法:①作直径 AC; ②作直径 BD⊥AC; ③挨次连接 A、B、C、D 四点 ,四边形ABCD即为⊙O的内接正方形 ; ④分别以 A、C为圆心,以 OA长为半径作弧,交⊙O于 E、H、F、G; ⑤按序连接 A、E、F、C、G、H 各点 . 六边形 AEFCGH即为⊙O的内接正六边形 . (2) 证明:连接 OE、DE.∵∠ AOD==90°,∠ AOE==60°,∴∠ DOE=∠ AOD-∠ AOE=90°- 60°=30°. ∴DE为⊙O的内接正十二边形的一边 . 23.(1) 方法一:连接 OB、OC. ∵正△ ABC内接于⊙ O,∴∠ OBM=∠OCN=30°,∠ BOC=120°. 又∵ BM=CN, OB=OC,∴△ OBM≌△ OCN(SAS). ∴∠ BOM =∠ CON.∴∠ MON=∠BOC=120°. 方法二:连接 OA、OB. ∵正△ ABC 内接于⊙ O,∴AB=AC,∠ OAM=∠OBN=30°, ∠AOB=120°. 又∵ BM=CN,∴AM=BN.又∵ OA=OB,∴△ AOM≌△ BON(SAS). ∴∠ AOM=∠BON.∴∠ MON=∠AOB=120°. (2)90° 72° (3)∠MON= .。

初中数学中考正多边形与圆的关系(含答案解析)

初中数学中考正多边形与圆的关系(含答案解析)

正多边形与圆的关系一、选择题(本大题共10小题,共30.0分)1.半径为R的圆内接正三角形、正方形、正六边形的边心距分别为a,b,c,则a,b,c的大小关系是()A. a<b<cB. b<a<cC. a<c<bD. c<b<a2.若正方形的外接圆半径为2,则其内切圆半径为()A. √2B. 2√2C. √22D. 13.一个正方形的边长为a,则它的内切圆的面积为()A. 34a2π B. 14a2π C. 32a2π D. a2π4.若一个正多边形的边长与半径相等,则这个正多边形的中心角是()A. 45°B. 60°C. 72°D. 90°5.有下列四个命题:①各边相等的圆内接多边形是正多边形;②各边相等的圆外切多边形是正多边形;③各角相等的圆内接多边形是正多边形;④各角相等的圆外切多边形是正多边形.其中正确的个数为()A. 1B. 2C. 3D. 46.下列正多边形,通过直尺和圆规不能作出的是()A. 正三角形B. 正四边形C. 正五边形D. 正六边形7.正六边形的半径与边心距之比为()A. 1:√3B. √3:1C. √3:2D. 2:√38.若正六边形的边长为4,则它的外接圆的半径为().A. 4√3B. 4C. 2√3D. 29.正四边形的边心距为1,则它的半径是A. 2√2B. √2C. 2D. 110.如图,五边形ABCDE是⊙O的内接正五边形,则∠OCD的度数是()A. 60°B. 54∘C. 76°D. 72°二、填空题(本大题共10小题,共30.0分)11.若点O是正六边形ABCDEF的中心,∠MON=120°且角的两边分别交六边形的边AB、EF于M、N两点。

若多边形AMONF的面积为2√3,则正六边形ABCDEF的边长是____.12.半径为2的圆内接正六边形的边心距等于_____.13.圆内接正六边形的边长为10cm,它的边心距等于__________cm.14.正六边形的半径为1,则正六边形的面积为____________________;15.如图,点O为正六边形ABCDEF的中心,连接EA,则∠AED=____度;若OA=4,则该正六边形的面积为__________.16.半径为4的正n边形边心距为2√3,则此正n边形的边数为_____.17.已知一个正六边形的外接圆半径为2,则这个正六边形的周长为________.18.如图,⊙O是正五边形ABCDE的外接圆,则∠ADC的度数是________.19.如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是______°.20.半径为3的圆的内接正方形的边长是________.答案和解析1.【答案】A【解析】【分析】此题主要考查了正多边形和圆的性质,解决本题的关键是构造直角三角形,得到用半径表示的边心距;注意:正多边形的计算一般要转化为解直角三角形的问题来解决.根据三角函数即可求解.【解答】解:设圆的半径为R,则正三角形的边心距为a=R×cos60°=12R.四边形的边心距为b=R×cos45°=√22R,正六边形的边心距为c=R×cos30°=√32R.∵12R<√22R<√32R,∴a<b<c,故选:A.2.【答案】A【解析】【分析】本题考查的是正方形和圆、等腰直角三角形的性质等知识,解题的关键是根据题意画出图形,属于中考常考题型.根据题意画出图形,再由正方形及等腰直角三角形的性质求解即可.【解答】解:如图所示,连接OA、OE,∵AB是小圆的切线,∴OE⊥AB,∵四边形ABCD是正方形,∴AE=OE,∴△AOE是等腰直角三角形,AE2+OE2=AO2,∴OE=√22OA=√2.故选:A.3.【答案】B【解析】【分析】本题考查了正多边形与圆的关系,知道正方形的内切圆的直径等于正方形的边长是解题的关键.根据正方形的内切圆的直径等于正方形的边长求得圆的半径,最后再求出圆的面积即可.【解答】解:因为正方形的内切圆的直径等于正方形的边长,所以r=a2,所以正方形的内切圆的面积为πr2=π(a2)2=14a2π,故选B.4.【答案】B【解析】【分析】本题考查正多边形与圆的关系、等边三角形的判定与性质;解题的关键是作辅助线,灵活运用等边三角形的判定与性质来分析、解答.如图,作辅助线,由题意可得OA=OB= AB,从而得出△OAB是等边三角形,进而求出∠AOB的度数,问题即可解决.【解答】解:如图,连接OA、OB;AB为⊙O的内接正多边形的一边,∵正多边形的边长与半径相等,∴OA=OB=AB,∴△OAB是等边三角形,∴∠AOB=60°,即这个正多边形的中心角为60°.故选B.5.【答案】B【解析】【分析】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题,经过推理论证的真命题称为定理.根据命题的“真”“假”进行判断即可.【解答】解:①各边相等的圆内接多边形是正多边形,正确;②各边相等的圆外切多边形不一定正多边形,比如菱形,所以错误;③各角相等的圆内接多边形不一定是正多边形,比如长方形,所以错误;④各角相等的圆外切多边形是正多边形,正确.故选B.6.【答案】C【解析】【分析】本题主要考查作图−复杂作图,解题的关键是熟练掌握圆上等分点的尺规作图.根据尺规作图取圆的等分点的作法即可得出答案.【解答】解:取圆上一点为圆心,相同的长度为半径画弧,重复此种作法可得到圆的六等分点,据此可得圆的内接正六边形;在以上所得六等分点中,间隔取点,首尾连接可得圆的内接正三角形;由于圆的直径可以将圆二等分、两条互相垂直的直径可以将圆四等分,据此可作出圆的内接正四边形;综上可知,不可以用尺规作图作出的是圆的内接正五边形,故选C.7.【答案】D【解析】【试题解析】【分析】此题主要考查正多边形与圆的知识,等边三角形高的计算,要求学生熟练掌握应用.可设正六边形的半径为R,欲求半径与边心距之比,我们画出图形,通过构造直角三角形,解直角三角形即可得出.解:如图所示,设正六边形的半径为R,又该多边形为正六边形,故∠OBA=60°,R,在Rt△BOG中,OG=√32∴边心距r=√3R2即半径与边心距之比2:√3,故选D.8.【答案】B【解析】【分析】本题考查正多边形与圆,用到的知识点为:n边形的中心角为360÷n,有一个角是60°的等腰三角形是等边三角形.根据正六边形的边长等于正六边形的半径,即可求解.【解答】解:正六边形的中心角为360°÷6=60°.那么外接圆的半径和正六边形的边长将组成一个等边三角形.∴它的外接圆半径是4.故选B.9.【答案】B【解析】【分析】本题考查了正多边形和圆的知识,解题的关键是正确的构造如图所示的直角三角形并求解.利用正四边形的外接圆的半径是边心距的√2倍计算.【解答】解:如图,∵正四边形的边心距为1,∴OB=1,∵∠OAB=45°,∴OA=√2OB=√2,故选:B.10.【答案】B【解析】【分析】是解题的关键.本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式:360°n根据正多边形的中心角的计算公式:360°计算出∠COD,再由等腰三角形的性质可得.n【解答】解:∵五边形ABCDE是⊙O的内接正五边形,=72°,∴五边形ABCDE的中心角∠COD的度数为360°5∵OC=OD,∴∠OCD=∠ODC,∴∠OCD=(180°−72°)÷2=54°.故选B.11.【答案】2【解析】略12.【答案】√3【解析】【分析】此题主要考查了正多边形和圆、解直角三角形,正确掌握正六边形的性质是解题关键.构建直角三角形,利用直角三角形的边角关系即可求出.【解答】解:连接OA,作OM⊥AB,得到∠AOM=30°,AB=2,则AM=1,∴OM=OA⋅cos30°=√3∴正六边形的边心距是√3.故答案为√3.13.【答案】5√3【解析】【分析】本题考查的是正多边形与圆,熟知正六边形的性质是解答此题的关键.根据题意画出图形,利用等边三角形的性质及勾股定理直接计算即可.【解答】解:如图所示,连接OB、OC,过O作OG⊥BC于G,∵此多边形是正六边形,∴△OBC是等边三角形,∴∠OBG=60°,∴BG=5cm,OB=10cm,根据勾股定理可得:边心距OG=5√3cm;故答案为:5√3.14.【答案】3√32【解析】略15.【答案】90°;24√3【解析】【试题解析】【分析】本题考查了正多边形的性质,勾股定理的应用,等腰三角形的性质,属于中档题.六边形ABCDEF为正六边形,可得出∠AFE和∠FED的度数,进而得出∠AEF的度数,从而得出∠AED;连接OA,OF,过O作OG⊥AF于点G,先得出△AOF的面积,再乘以6,即可得出该正六边形的面积.【解答】解:∵六边形ABCDEF为正六边形,∴AF=FE,且∠AFE=∠FED=(6−2)×180°=120°,6=30°,则∠AEF=180°−120°2∴∠AED=∠FED−∠AEF=120°−30°=90°,连接OA,OF,过O作OG⊥AF于点G,∵点O为正六边形ABCDEF的中心,∴∠OAF=60°,则△AOF为等边三角形,∠AOG=30°,(三线合一)在Rt△OGA中,GA=12OA=12×4=2,则OG=√OA2−AG2=√42−22=2√3,故该正六边形的面积为:6S△AOF=6×12×4×2√3=24√3.故答案为90°;24√3.16.【答案】6【解析】【分析】此题主要考查了正多边形和圆的有关计算,根据已知得出中心角∠AOB=60°是解题关键.由三角函数求出∠DAO=60°,得出∠AOD=30°,求出中心角∠AOB=60°,即可得出答案.【解答】解:如图所示AB为正n边形的边长,OA为半径,OD为边心距,∵半径为4的正n边形边心距为2√3,∴sin∠DAO=DO AO =2√34=√32,∴∠DAO=60°,∴∠AOD=30°,∴∠AOB=60°,∴n=360°60°=6故答案为6.17.【答案】12【解析】解:∵l正六边形的半径等于边长,∴正六边形的边长a=2,正六边形的周长=6a=12,故答案为12.根据正六边形的半径等于边长进行解答即可.本题考查的是正六边形的性质,解答此题的关键是熟知正六边形的边长等于半径.18.【答案】72°【解析】【分析】本题主要考查了正多边形和圆的关系,以及圆周角定理的应用由正五边形的性质得出∠CDE=(5−2)×180°÷5=108°,AE=AB=BC,得出AE⏜= AB⏜=BC⏜,由圆周角定理即可得出答案.【解答】解:∵⊙O是正五边形ABCDE的外接圆,∴∠CDE=(5−2)×180°÷5=108°,AE=AB=BC,∴AE⏜=AB⏜=BC⏜,×108°=72°;∴∠ADC=23故答案为72°.19.【答案】54【解析】【分析】本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题,属于中考常考题型.连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C= 108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=18°,于是得到结论.【解答】解:连接AD,∵AF 是⊙O 的直径,∴∠ADF =90°,∵五边形ABCDE 是⊙O 的内接正五边形,∴∠ABC =∠C =108°,∵BC =CD ,,∴∠ABD =72°,∴∠F =∠ABD =72°,∴∠FAD =18°,∴∠CDF =∠DAF =18°,∴∠BDF =36°+18°=54°,故答案为54.20.【答案】3√2 【解析】 【分析】该题主要考查了正多边形和圆,解直角三角形,正方形的性质,正确的理解题意是解题的关键.画出图形,先根据题意首先求出BE 的长,即可解决问题.【解答】解:如图,∵四边形ABCD 是⊙O 的内接正方形,∴∠OBE =45°;∵OE ⊥BC ,∴BE =CE ;又OB =3,∴sin45°=OE OB ,cos45°=BE OB ,∴OE =3√22,即BE =3√22,∴BC=3√2,故答案为3√2.。

九年级数学 专题32 正多边形与圆

九年级数学 专题32 正多边形与圆

九年级数学 正多边形与圆一.选择题1.(2015•广东广州,第9题3分)已知圆的半径是2,则该圆的内接正六边形的面积是( )A . 3B . 9C . 18D . 36考点: 正多边形和圆. 分析:解题的关键要记住正六边形的特点,它被半径分成六个全等的等边三角形.解答: 解:连接正六边形的中心与各个顶点,得到六个等边三角形, 等边三角形的边长是2,高为3,因而等边三角形的面积是3,∴正六边形的面积=18,故选C . 点评:本题考查了正多边形和圆,正六边形被它的半径分成六个全等的等边三角形,这是需要熟记的内容.2. (2015•浙江金华,第10题3分)如图,正方形ABCD 和正三角形AEF 都内接于⊙O ,EF 与BC ,CD 分别相交于点G ,H ,则EFGH的值是【 】A .26B . 2C . 3D . 2【答案】C .【考点】正方形和等边三角形的性质;圆周角定理;锐角三角函数定义;特殊角的三角函数值;等腰直角三角形的判定和性质,特殊元素法的应用.【分析】如答图,连接AC,EC ,AC 与EF 交于点M .则根据对称性质,AC 经过圆心O ,∴AC 垂直 平分EF ,01EAC FAC EAF 302∠=∠=∠=.不妨设正方形ABCD 的边长为2,则AC 22=.∵AC 是⊙O 的直径,∴0AEC 90∠=.在Rt ACE ∆中,3AE AC cos EAC 2262=⋅∠=⋅=,1CE AC sin EAC 2222=⋅∠=⋅=.在Rt MCE ∆中,∵0FEC FAC 30∠=∠=,∴12CM CE sin EAC 222=⋅∠=⋅=.易知GCH ∆是等腰直角三角形,∴GF 2CM 2==.又∵AEF ∆是等边三角形,∴EF AE 6==.∴EF 63GH 2==. 故选C .3. (2015山东济宁,7,3分)只用下列哪一种正多边形,可以进行平面镶嵌( )A .正五边形B .正六边形C .正八边形D .正十边形 【答案】B考点:正多边形的内角,平面镶嵌4. (2015•四川成都,第10题3分)如图,正六边形ABCDEF 内接于圆O ,半径为4,则这个正六边形的边心距OM 和弧BC 的长分别为(A )2、3π(B )32、π(C )3、23π (D )32、43π【答案】:D【解析】:在正六边形中,我们连接OB 、OC 可以得到OBC ∆为等边三角形,边长等于半径4。

中考数学模拟测试试题(正多边形和圆)(2021学年)

中考数学模拟测试试题(正多边形和圆)(2021学年)

四川省雅安市2016届中考数学模拟测试试题(正多边形和圆)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(四川省雅安市2016届中考数学模拟测试试题(正多边形和圆))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为四川省雅安市2016届中考数学模拟测试试题(正多边形和圆)的全部内容。

正多边形和圆一、选择题1.已知圆的半径是2,则该圆的内接正六边形的面积是( )A.3ﻩB.9ﻩC.18ﻩD.362.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为( )A.2, B.2,π C.,ﻩD.2,3.如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切,…按这样的规律进行下去,A10B10C10D10E10F10的边长为( )A.ﻩB.ﻩC.ﻩD.4.如图,⊙O是正五边形ABCDE的外接圆,这个正五边形的边长为a,半径为R,边心距为r,则下列关系式错误的是()A.R2﹣r2=a2ﻩB.a=2Rsin36°ﻩC.a=2rtan36° D.r=Rcos36°5.如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段.在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为()A.ﻩB. C.ﻩD.6.已知圆内接正三角形的边心距为1,则这个三角形的面积为( )A.2B.3ﻩC.4D.67.正六边形的边心距为,则该正六边形的边长是( )A. B.2 C.3 D.28.如图,边长为a的正六边形内有一边长为a的正三角形,则=( )A.3ﻩB.4 C.5ﻩD.69.如图,边长为a的正六边形内有两个三角形(数据如图),则=()A.3ﻩB.4ﻩC.5ﻩD.610.如图,在正五边形ABCDE中,连接A C、AD、CE,CE交AD于点F,连接BF,下列说法不正确的是( )A.△CDF的周长等于AD+CDﻩB.FC平分∠BFDC.AC2+BF2=4CD2ﻩD.DE2=EF•CE11.一元钱硬币的直径约为24mm,则用它能完全覆盖住的正六边形的边长最大不能超过( )A.12mmﻩB.12mm C.6mm D.6mm12.蜂巢的构造非常美丽、科学,如图是由7个形状、大小完全相同的正六边形组成的网络,正六边形的顶点称为格点,△ABC的顶点都在格点上.设定AB边如图所示,则△ABC是直角三角形的个数有( )A.4个ﻩB.6个ﻩC.8个D.10个13.一张圆心角为45°的扇形纸板和圆形纸板按如图方式分别剪成一个正方形,边长都为1,则扇形和圆形纸板的面积比是( )A.5:4ﻩB.5:2 C.:2 D.:14.如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H,则的值是( )A.ﻩB.C. D.215.阅读理解:如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由∠MOx的度数θ与OM的长度m确定,有序数对(θ,m)称为M点的“极坐标",这样建立的坐标系称为“极坐标系”.应用:在图2的极坐标系下,如果正六边形的边长为2,有一边OA在射线Ox上,则正六边形的顶点C的极坐标应记为()A.(60°,4)B.(45°,4)ﻩC.(60°,2)ﻩD.(50°,2)二、填空题16.如图,在正六边形ABCDEF中,连接对角线AC,CE,DF,EA,FB,可以得到一个六角星.记这些对角线的交点分别为H,I,J,K,L、M,则图中等边三角形共有个.17.已知正六边形ABCDEF的边心距为cm,则正六边形的半径为cm.18.已知⊙O的内接正六边形周长为12cm,则这个圆的半径是cm.19.圆内接正六边形的边心距为2cm,则这个正六边形的面积为cm2.20.如图,AD是正五边形ABCDE的一条对角线,则∠BAD=.21.半径为1的圆内接正三角形的边心距为.22.如图,将正六边形ABCDEF放在直角坐标系中,中心与坐标原点重合,若A点的坐标为(﹣1,0),则点C的坐标为.23.如图,⊙O的半径为1cm,正六边形ABCDEF内接于⊙O,则图中阴影部分面积为cm2.(结果保留π)24.如图,正方形ABCD的边长为1,中心为点O,有一边长大小不定的正六边形EFGHIJ绕点O可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD内(包括正方形的边),当这个正六边形的边长最大时,AE的最小值为.25.如图,点O是正五边形ABCDE的中心,则∠BAO的度数为.26.如图,四边形ABCD是⊙O的内接正方形,若正方形的面积等于4,则⊙O的面积等于.27.正六边形ABCDEF的边长为2,则对角线AE的长为.28.如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为4,则阴影部分的面积等于.29.如图,正六边形ABCDEF的边长为2,延长BA,EF交于点O.以O为原点,以边AB所在的直线为x轴建立平面直角坐标系,则直线DF与直线AE的交点坐标是( , ).三、解答题30.图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2)在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于.参考答案一、选择题1.C;2.D;3.D;4.A;5.B;6.B;7.B;8.C;9.C;10.B;11.A;12.D;13.A;14.C;15.A;二、填空题16.8;17.2;18.2;19.24;20.72°;21.;22.(,-);23.;24.;25.54°;26.2π;27.2;28.π;29.2;4;三、解答题30.;以上就是本文的全部内容,可以编辑修改。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正多边形与圆
一.选择题
1. (2016·黑龙江大庆·一模)下列命题:①等腰三角形的角平分线平分对边;②对角线垂直且相等的四边形是正方形;③正六边形的边心距等于它的边长;④过圆外一点作圆的两条切线,其切线长相等.其中真命题有()个.
A.1个B.2个C.3个D.4个
答案:A
2. (2016·天津北辰区·一摸)用48 m长的篱笆在空地上围成一个正六边形绿地,绿地的面积是().
m(B)2m
(A)2
m(D)2m
(C)2
答案:A
3. (2016·天津北辰区·一摸)用48 m长的篱笆在空地上围成一个正六边形绿地,绿地的面积是().
m(B)2m
(A)2
m(D)2m
(C)2
答案:A
4. (2016·天津市南开区·一模)正六边形的边心距与边长之比为()
A.1:2 B.:2 C.:1 D.:2
【考点】正多边形和圆.
【分析】首先根据题意画出图形,然后设六边形的边长是a,由勾股定理即可求得OC的长,继而求得答案.
【解答】解:如图:设正六边形的边长是a,则半径长也是a;
经过正六边形的中心O作边AB的垂线段OC,则AC=AB=a,
于是OC==a,
所以正六边形的边心距与边长之比为: a:a=:2.
故选:D.
【点评】此题考查了正多边形和圆的关系.此题难度不大,注意掌握数形结合思想的应用.5. (2016·天津五区县·一模)如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是()
A. cm B. cm C. cm D.1cm
【考点】正多边形和圆.
【专题】应用题;压轴题.
【分析】连接AC,作BD⊥AC于D;根据正六边形的特点求出∠ABC的度数,再由等腰三角形的性质求出∠BAD的度数,由特殊角的三角函数值求出AD的长,进而可求出AC的长.【解答】解:连接AC,过B作BD⊥AC于D;
∵AB=BC,
∴△ABC是等腰三角形,
∴AD=CD;
∵此多边形为正六边形,
∴∠ABC==120°,
∴∠ABD==60°,
∴∠BAD=30°,AD=AB•cos30°=2×=,
∴a=2cm.
故选A.
【点评】此题比较简单,解答此题的关键是作出辅助线,根据等腰三角形及正六边形的性质求解.
6. (2016·山西大同·一模)正六边形的边心距为)
A B.2 C .3 D.
答案:B
7. (2016·广东东莞·联考)为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为()
A.2a2B.3a2C.4a2D.5a2
【考点】正多边形和圆;等腰直角三角形;正方形的性质.
【分析】根据正八边形的性质得出∠CAB=∠CBA=45°,进而得出AC=BC=a,再利用正八边形周围四个三角形的特殊性得出阴影部分面积即可.
【解答】解:∵某小区将原来正方形地砖更换为如图所示的正八边形植草砖,设正八边形与其内部小正方形的边长都为a,
∴AB=a,且∠CAB=∠CBA=45°,
∴sin45°===,
∴AC=BC=a,
∴S△ABC=×a×a=,
∴正八边形周围是四个全等三角形,面积和为:
×4=a 2
. 正八边形中间是边长为a 的正方形,
∴阴影部分的面积为:a 2+a 2=2a 2,
故选:A .
【点评】此题主要考查了正八边形的性质以及等腰直角三角形的性质,根据已知得出S △ABC 的值是解题关键.
二.填空题
1. 如图,在正六边形ABCDEF 中,连接AE ,则tan 1 = .
(第1题)
2. (2016枣庄41中一模)如图,正方形ABCD 的边长为4,点M 在边DC 上,M 、N 两点关于对角线AC 对称,若DM=1,则tan∠ADN= .
【考点】正方形的性质;轴对称的性质;锐角三角函数的定义.
【分析】M、N两点关于对角线AC对称,所以CM=CM,进而求出CN的长度.再利用∠ADN=∠DNC 即可求得tan∠ADN.
【解答】解:在正方形ABCD中,BC=CD=4.
∵DM=1,
∴CM=3,
∵M、N两点关于对角线AC对称,
∴CN=CM=3.
∵AD∥BC,
∴∠ADN=∠DNC,
∵tan=∠DNC==,
∴tan∠ADN=.
故答案为:.
3. (2016枣庄41中一模)如图,边长为6的正方形ABCD中,点E是BC上一点,点F是AB上一点.点F关于直线DE的对称点G恰好在BC延长线上,FG交DE于点H.点M为AD
的中点,若MH=,则EG .
【考点】相似三角形的判定与性质;正方形的性质.
【分析】连接DF,DG,过H作HP⊥AB于P,HQ⊥AD于Q,由点F,点G关于直线DE的对称,得到DF=DG,根据正方形的性质得到AD=CD,∠ADC=∠A=∠BCD=90°,推出Rt△AFD≌Rt△CDG,证得△FDG是等腰直角三角形,推出四边形APHQ是矩形,证得△HPF≌△DHQ,根据全等三
角形的性质得到HP=HQ,推出△MHQ≌△DHQ,根据全等三角形的性质得到DH=MH=,
DQ=QM=,求得CH=DH=,通过△DQH∽△CEH,根据相似三角形的性质即可得到结论.【解答】解:连接DF,DG,过H作HP⊥AB于P,HQ⊥AD于Q,
∵点F,点G关于直线DE的对称,
∴DF=DG,
正方形ABCD中,
∵A D=CD,∠ADC=∠A=∠BCD=90°,
∴∠GCD=90°,
在Rt△AFD与Rt△CDG中,,
∴Rt△AFD≌Rt△CDG,
∴∠ADF=∠CDG,
∴∠FDG=∠ADC=90°,
∴△FDG是等腰直角三角形,
∵DH⊥CF,
∴DH=FH=FG,
∵HP⊥AB,HQ⊥AD,∠A=90°,
∴四边形APHQ是矩形,
∴∠PHQ=90°,
∵∠DHF=90°,
∴∠PHF=∠DHQ,
在△PFF与△DQH中,,∴△HPF≌△DHQ,
∴HP=HQ,
∵∠PHF=90°﹣∠FHM,∠QHM=90°﹣∠FHM,∴∠PHF=∠QHM,
∴∠QHM=∠DHQ,
在△MHQ与△DHQ中,,
∴△MHQ≌△DHQ,
∴DH=MH=,DQ=QM=,
∴CH=DH=,
∵点M为AD的中点,
∴DM=3,∴DQ=QM=,
∴HQ==,
∵∠QDH=∠HEG,
∴△DQH∽△CEH,
∴,
即,
∴EG=.
故答案为:.
4. (2016·四川峨眉·二模)半径为4的正n边形边心距为n边形的边数为
▲ .
答案:6
5. (2016·上海浦东·模拟)正八边形的中心角等于 45 度.
6. (2016·山东枣庄·模拟)如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,
∠B=135°,则的长π.
【考点】弧长的计算;圆内接四边形的性质.
【分析】连接OA、OC,然后根据圆周角定理求得∠AOC的度数,最后根据弧长公式求解.【解答】解:连接OA、OC,
∵∠B=135°,
∴∠D=180°﹣135°=45°,
∴∠AOC=90°,
则的长==π.
故答案为:π.
【点评】本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式L=。

相关文档
最新文档