考研数学三试题解析超详细版

合集下载

2020考研数学(三)真题(含解析)

2020考研数学(三)真题(含解析)


而 cos f '(x) cos f '(x) ,故 cos f '(x) 也为偶函数,故 cos f '(x) f (x) 为非奇非偶函数。


(4) 已知幂级数 nan (x 2)n 的收敛区间为(−2,6) ,则 an (x 1)2n 的收敛区间为
n1
n1
(A).(-2,6) (B).(-3,1) (C).(-5,3) (D).(-17,15)
(C) x k11 k23 k34
【答案】 C
(D) x k12 k23 k34
4
(5)设 4 阶矩阵 A (aij ) 不可逆, a12 的代数余子式 A12 0 ,1,2,3,4 是矩阵 A 的列向量组, A*为
A 的伴随矩阵,则 A* x 0 的通解为(

(A) x k11 k22 k33
(B) x k11 k22 k34
f ( x)a f ( x) a
ua u a
【解析二】由拉格朗日中值公式得 sin f (x) sin a ( f (x) a)cos ,其中 介于 a 与 f (x) 之间,
由 lim f (x) a b ,知 lim f (x) a 0 ,即 lim f (x) a ,故 lim a ,

xa x a
xa
xa
(A) bsin a (B) bcos a (A) bsin f (a) (A) bcos f (a)
【答案】B
【解析一】由 lim f (x) a b ,知 lim f (x) a 0 ,即 lim f (x) a ,
xa x a

2024考研(数学三)真题答案及解析完整版

2024考研(数学三)真题答案及解析完整版

2024考研(数学三)真题答案及解析完整版2024年全国硕士研究生入学考试数学(三)真题及参考答案考研数学三考什么内容?数学三在高等数学这一部分因为要求的内容相对较少,所以很多学校经济类、管理类专业在本科期间所用教材并非理工类专业通常会使用的《高等数学》同济大学版,更多的学校本科阶段的教材是中国人民大学版《微积分》。

而考数学三的同学中在实际复习过程中使用哪一本教材的都有)(函数、极限、连续、一元函数微分学、一元函数积分学、多元函数微积分学、无穷级数、常微分方程与差分方程);线性代数(行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型);概率论与数理统计(随机事件和概率、随机变量及其分布、多维随机变量及其分布、随机变量的数字特征、大数定律和中心极限定理、数理统计的基本概念、参数估计、假设检验)。

考研的考试内容有哪些一、考研公共课:政治、英语一、英语二、俄语、日语、数学一、数学二、数学三,考研公共课由国家教育部统一命题。

各科的考试时间均为3小时。

考研的政治理论课(马原22分、毛中特30分、史纲14分、思修18分、形势与政策16分)。

考研的英语满分各为100分(完型10分、阅读理解60分、小作文10分、大作文20分)。

数学(其中理工科考数一、工科考数二、经管类考数三)满分为150分。

数一的考试内容分布:高数56%(84分)、线代22%(33分)、概率22%(33分);数二的内容分布:高数78%(117分)、线代22%(33分);数三的内容分布:高数56%(84分)、线代22%(33分)、概率22%(33分)。

这些科目的考试知识点和考试范围在各科考试大纲上有详细规定,一般变动不大,因此可以参照前一年的大纲,对一些变动较大的科目,必须以新大纲为准进行复习。

二、考研专业课统考专业课:由国家教育部考试中心统一命题,科目包括:西医综合、中医综合、计算机、法硕、历史学、心理学、教育学、农学。

其中报考教育学、历史学、医学门类者,考专业基础综合(满分为300分);报考农学门类者,考农学门类公共基础(满分150分)。

数学三考研题目答案及解析

数学三考研题目答案及解析

数学三考研题目答案及解析数学三考研题目答案及解析:题目:设函数\( f(x) \)在区间\( [a, b] \)上连续,且\( f(a) =f(b) \),证明至少存在一点\( c \)在区间\( (a, b) \)内,使得\( f(c) = f(a) \)。

答案:根据罗尔定理(Rolle's Theorem),如果一个函数在闭区间\( [a, b] \)上连续,在开区间\( (a, b) \)内可导,并且两端的函数值相等,即\( f(a) = f(b) \),那么至少存在一点\( c \)在开区间\( (a, b) \)内,使得\( f'(c) = 0 \)。

首先,我们构造一个新的函数\( g(x) = f(x) - f(a) \)。

显然,\( g(x) \)在\( [a, b] \)上连续,并且在\( (a, b) \)内可导,因为\( f(x) \)在这些区间上具有相应的性质。

由于\( f(a) = f(b) \),我们有\( g(a) = g(b) = 0 \)。

现在,我们可以应用罗尔定理于函数\( g(x) \)在\( [a, b] \)上。

根据定理,存在至少一点\( c \)在\( (a, b) \)内,使得\( g'(c) = 0 \)。

计算\( g'(x) \),我们得到\( g'(x) = f'(x) - 0 = f'(x) \)。

因此,\( g'(c) = f'(c) = 0 \)。

由于\( g(c) = f(c) - f(a) \),并且我们已经知道\( g'(c) = 0 \),我们可以得出\( g(c) = 0 \)。

这意味着\( f(c) - f(a) = 0 \),即\( f(c) = f(a) \)。

这就证明了至少存在一点\( c \)在区间\( (a, b) \)内,满足\( f(c) = f(a) \)。

2022考研数学三真题及答案解析(数三)

2022考研数学三真题及答案解析(数三)

2022年全国硕士研究生入学统一考试数学(三)试题及参考答案一、选择题:1~10题,每小题5分,共50分.1、当0→x 时,)()(x x βα、是非零无穷小量,给出以下四个命题 ① 若)(~)(x x βα,则)(~)(22x x βα; ② 若)(~)(22x x βα,则)(~)(x x βα; ③ 若)(~)(x x βα,则))(()()(x o x x αβα=-; ④ 若))(()()(x o x x αβα=-,则)(~)(x x βα. 其中正确的序号是( )A :①②;B :①④;C :①③④;D :②③④. 答案:C .解析:当0→x 时,若)(~)(x x βα,则1)()(lim 0=→x x x βα,故1)()(lim )()(lim 20220=⎪⎪⎭⎫⎝⎛=→→x x x x x x βαβα,即)(~)(22x x βα,且011)()()(lim0=-=-→x x x x αβα,故))(()()(x o x x αβα=-.所以①③正确.当0→x 时,)(~)(22x x βα,则1)()(lim 220=→x x x βα,此时1)()(lim 0±=→x x x βα,而1)()(lim 0-=→x x x βα时,)(x α与)(x β不是等价无穷小,故 ②不正确.当0→x 时,若))(()()(x o x x αβα=-,1)()(lim ))(()()(lim )()(lim000==-=→→→x x x o x x x x x x x αααααβα,所以)(~)(x x βα,④正确.综上,C 为选项.2 、已知),2,1()1( =--=n nn a nnn ,则}{n a ( ) A :有最大值,有最小值; B :有最大值,没有最小值; C :没有最大值,有最小值; D :没有最大值,没有最小值. 答案:A .解析:1212,1221<-=>=a a ,又1lim =∞→n n a ,故存在0>N ,当N n >时,12a a a n <<,所以}{n a 有最大值和最小值,选项A 正确.3、设函数)(t f 连续,令⎰---=y x dt t f t y x y x F 0)()(),(,则( )A :2222y F x F y F x F ∂∂=∂∂∂∂=∂∂,; B :2222y Fx F y F x F ∂∂-=∂∂∂∂=∂∂,; C :2222y F x F y F x F ∂∂=∂∂∂∂-=∂∂,; D :2222yF x F y F x F ∂∂-=∂∂∂∂-=∂∂,. 答案:C .解析:⎰⎰⎰-----=--=y x y x y x dt t tf dt t f y x dt t f t y x y x F 0)()()()()(),(,⎰⎰--=-----+=∂∂y x y x dt t f y x f y x y x f y x dt t f x F 00)()()()()()(,)(22y x f x F -=∂∂,同理⎰⎰---=--+----=∂∂y x y x dt t f y x f y x y x f y x dt t f yF00)()()()()()(,)(22y x f y F -=∂∂, 综上2222yF x F y F x F ∂∂=∂∂∂∂-=∂∂,,选项C 正确. 4、已知⎰⎰⎰+=++=+=101031021sin 12,cos 1)1ln(,)cos 1(2dx x xI dx x x I dx x x I ,则( ) A :321I I I <<; B :312I I I <<; C :231I I I <<; D :123I I I <<. 答案:A .解析:⎰⎰⎰+=++=+=1010310212sin 1,cos 1)1ln(,)cos 1(2dx xx I dx x x I dx x xI ,先比较21,I I 的大小,令)1,0()1ln(2)(∈+-=x x xx f ,此时0)0(=f ,此时0)1(211121)(<+-=+-='x x x x f ,即)(x f 单调递减,从而0)0()(=<f x f ,可得)1,0()1ln(2∈+x x x《,从而21I I <.再比较23,I I 的大小,因)1,0(,cos 12sin 1,)1ln(∈+<+<+x x x x x ,则2sin 1cos 1)1ln(x xxx +<++,从而23I I >.综上,可得A 正确.5、设A 为3阶矩阵,⎪⎪⎪⎭⎫ ⎝⎛-=Λ000010001,则A 的特征值为011,,-的充分必要条件是( )A :存在可逆矩阵Q P ,,使得Q P A Λ=;B :存在可逆矩阵P ,使得1-Λ=P P A ; C :存在正交矩阵Q ,使得1-Λ=Q Q A ; D :存在可逆矩阵P ,使得TP P A Λ=; 答案:B解析:3阶A 有011,,-三个不同的特征值,所以A 可以相似对角化,故存在可逆矩阵P ,使得1-Λ=P P A ;若存在可逆矩阵P ,使得1-Λ=P P A ,即A 相似与Λ,而相似矩阵具有相同的特征值,而Λ的特征值为011,,-,故A 的特征值为011,,-.因此选B . 6、设矩阵⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=421,1111122b b b a a A ,则线性方程组b Ax =解的情况为( )A :无解; B: 有解; C:有无穷多解或无解 ; D: 有唯一解或无解; 答案:D .解析:⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫⎝⎛→31101110111141211111)|2222b b a a b b a a b A ((1)当1=a 或1=b 时,)|()(b A r A r ≠,方程无解(2)当1≠a 且1≠b 时,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----+→⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+-+→11130011110111113110111101111)|a b a b a a b b a a b A ( (i )当b a ≠时,3)|()(==b A r A r ,方程有唯一解 (ii )当b a =时,3)|(2)(==b A r A r ,,方程无解; 综述:方程有唯一解或无解,选D .7、设⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=243211,11,11,11λλαλαλαλα,若向量组321,,ααα与421,,ααα等价,则λ的取值范围( )A :}1,0{ ; B:}2,|{-≠∈λλλR ;C:}2,1,|{-≠-≠∈λλλλR ; D:}1,|{-≠∈λλλR . 答案:C解析:向量组321,,ααα与421,,ααα等价的充要条件是()),,.,,(,,),,(421321421321ααααααααααααr r r ==,而),,,(),,.,,(4321421321αααααααααα,r r =()⎪⎪⎪⎭⎫ ⎝⎛-----→⎪⎪⎪⎭⎫ ⎝⎛→λλλλλλλλλλλλαααα2222431201101101111111111,,,(1)当1=λ时,()1).,,(,,),,(4321421321===ααααααααααr r r ,此时向量组等价 (2)当1≠λ时()⎪⎪⎪⎭⎫ ⎝⎛++---→⎪⎪⎪⎭⎫⎝⎛---+→⎪⎪⎪⎭⎫ ⎝⎛-++→24312)1(2001110111111001101110110110111,,,λλλλλλλλλλλαααα(i )当2-=λ时,3).,,(),,(2),,(4321421321===ααααααααααr r r ,,此时向量组不等价 (ii )当1,2-=-≠λλ时,3).,,(2),,(3),,(4321421321===ααααααααααr r r ,,,此时向量组不等价(iii )当1,2-≠-≠λλ时,3).,,(),,(),,(4321421321===ααααααααααr r r ,此时向量组等价 综上,当1,2-≠-≠λλ时,向量组321,,ααα与421,,ααα等价;选C8、随机变量)4,0(~N X ,随机变量⎪⎭⎫⎝⎛31,3~B Y ,且X 与Y 不相关,则=+-)13(Y X D ( )A: 2; B: 4; C: 6; D: 10. 答案:D .解析:由题意知,0),(32)(,4)(===Y X Cov Y D X D ,; 10)(9)()3()13(=+=-=+-Y D X D Y X D Y X D ,故选D .9、设随机变量序列 ,,,21n X X X 独立同分布,且i X 的概率密度为⎩⎨⎧<-=其他11)(x xx f 则当∞→n 时,∑=n i i X n 121依概率收敛于( )A :81; B : 61; C: 31; D: 21. 答案:B .解析:61)1(2)1()()(1211222=-=-==⎰⎰⎰-+∞∞-dx x x dx x x dx x f x X E i ,从而∑∑====⎪⎭⎫ ⎝⎛n i i n i i X E n X n E 121261)(11,由辛钦大数定律可得,∑=n i i X n 121依概率收敛于⎪⎭⎫ ⎝⎛∑=n i i X n E 121,从而选B .10、设二维随机变量),(Y X 的概率分布若事件}2},{max{==Y X A 与事件}1},{min{==Y X B 相互独立,则=),(Y X Cov ( )A :6.0- ; B: 36.0-; C: 0; D: 48.0. 答案:B .解析:1.0}2,1{)(,2.0)(,1.0)(=====+=Y X P AB P B P b A P ,由B A ,相互独立,故)()()(B P A P AB P =,解得4.0=b ,由分布律的性质得2.0=a ,6.0)(,2.1)(,2.0)(-==-=XY E Y E X E从而36.0)()()(),(-=-=Y E X E XY E Y X Cov ,故选B . 二、填空题:11~16题,每题5分,共30分.11、若=⎪⎪⎭⎫ ⎝⎛+→xx x e cot 021lim .答案:21e .解析:21tan 21lim21ln cot lim cot 00021lim e eeex e e x xxx x x xx ===⎪⎪⎭⎫⎝⎛+-⎪⎪⎭⎫ ⎝⎛+→→→.12、⎰=++-2024242dx x x x .答案:333ln π-. 解析:原式⎰⎰++-+++=2022024*******dx x x dx x x x ⎰⎰++-++++=20222022)3()1(1642)42(dx x x x x x d 20202|31arctan 36|)42ln(+-++=x x x 333ln π-=.13、已知函数x xe e xf sin sin )(-+=,则=''')2(πf .答案:0.解析:方法一:x xxe xex f sin sin cos cos )(--=',x x e x x e x x x f sin 2sin 2)sin (cos )sin (cos )(-++-='',)cos sin cos 2()sin (cos cos )sin (cos cos )cos sin cos 2()(sin sin 2sin 2sin x x x eex x x e x x x e x x x x f xxxx +-++--+--='''--从而01111)2(=+--='''πf . 方法二:x xe ex f sin sin )(-+=,显然)()(sin sin x f e e x f x x=+=--,故)(x f 为偶函数,且周期π2=T ,于是)(x f '为奇函数,)(x f ''为偶函数,)(x f '''为奇函数,从而0)0(='''f ,而0)0()2(='''='''f f π.14、已知⎩⎨⎧≤≤=其他,010,)(x e x f x ,则=-⎰⎰∞+∞-∞+∞-dy x y f x f dx )()( .答案:2)1(-e .解析:记}10,10|),{(≤-≤≤≤=x y x y x D ,原式⎰⎰⎰⎰-=-=Dx y x Ddxdy e e dxdy x y f x f )()(,2111)1()1(-=-==⎰⎰⎰+-e dy e e dy edx e x x xxy x.15、设A 为3阶矩阵,交换A 的第2行和第3行,再将第2列的1-倍加到第一列,得到矩阵⎪⎪⎪⎭⎫ ⎝⎛----=001011112B ,则1-A 的迹=-)(1A tr .答案:-1.解析:令⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=100011001,010********P P ,则B AP P =21 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛==--0100011111000110010010111120101000011211BP P A 0)1)(1(1011112=++-=-------=-λλλλλλE A ,解得i i -==-=321,,1λλλ 故1-A 的特征值为i i =-=-=321,,1λλλ,从而1)(1-=-A tr16、设C B A ,,为随机事件,且A 与B 互不相容,A 与C 互不相容,B 与C 相互独立,31)()()(===C P B P A P ,则=)|(C B A C B P .答案:85. 解析:()C B A P C B P C B A C B P )()|(=()98)()())(()()(95)()()()()()()()(=+=-+==-+=-+=C B P A P C B A P C B P A P C B A P C P B P C P B P BC P C P B P C B P从而85)|(=C B A C B P . 三、解答题:17~22小题,共94分,解答应写出文字说明,证明过程或演算步骤. 17、(本题满分10分)设函数)(x y 是微分方程x y xy +=+'221满足条件3)1(=y 的解,求曲线)(x y y =的渐近线.解:])2([)(2121C dx ex ex y dxxdxx+⎰+⎰=⎰-])2([C dx e x e x x ++=⎰-]2[C xee xx +=-xCe x -+=2,其中C 为任意常数,又3)1(=y ,得e C =,即xe x x y -+=12)(.22limlim 1=+==-+∞→+∞→xe x x y a xx x ,0lim )2(lim 1==-=-+∞→+∞→xx x e x y b ,故x y 2=为曲线)(x y y =的斜渐近线.18、(本题满分12分)设某产品的产量Q 由资本投入量x 和劳动投入量y 决定,生产函数为612112y x Q =,该产品的销售单价P 与Q 的关系为Q P 5.11160-=,若单位资本投入量和单位蓝洞投入量的价格分别为6和8,求利润最大时的产量.解:利润y x xy y x y x Q Q y x PQ L 862161392086)6.11160(86316121---=---=--=令⎪⎩⎪⎨⎧=--=--='=--=--='--------08)722320(872232006)722320(362166960612132326521612131316121y x xy xy y x L y x y y y x L yx,得驻点)64,256(, 此时38464256126=⨯⨯=Q ,在实际问题中由于驻点唯一,故利润L 在384=Q 处取到最大值. 19、(本题满分12分)已知平面区域}20,42|),{(2≤≤-≤≤-=y y x y y x D ,计算⎰⎰+-=Ddxdy y x y x I 222)(. 解:⎰⎰⎰⎰⎰⎰--+-=+-=ππϕϕπρρϕϕϕρρϕϕϕ2cos sin 20220202222)sin (cos )sin (cos )(d d d d dxdy y x y x I D⎰⎰+-=πππϕϕϕϕ2202)cos sin 21(2d d 22)12(2|)sin (2202-=+-=+-=ππππϕϕπ. 20、(本题满分12分)求幂级数∑∞=++-02)12(41)4(n nnn x n 的收敛域及和函数)(x S . 解:1)12(41)4()32(41)4(lim 22211n <++-++-+++∞→nnn n n n x n xn ,解得1||<x ,从而1=R ,收敛区间)1,1(-,当1±=x 时,∑∞=++-0)12(41)4(n nn n 收敛,故收敛域为]1,1[-. 当]1,1[-∈x ,令∑∑∞=∞=+++-=012)12(412)1()(n n n nn n n x x n x S , 令∑∑∞=+∞=≠+-=+-=0120210,12)1(112)1()(n n n n n n x n x x n x x S ,此时∑∑∞=∞=++=-='⎪⎪⎭⎫ ⎝⎛+-02201211)1(12)1(n nn n n n x x n x ,x dx x n x x n n n arctan 1112)1(0202=+=+-⎰∑∞=,故0,arctan 1)(1≠=x x xx S .∑∑∞=+∞=≠+=+=0120220,1241)12(4)(n n n n n n x n x x n x x S )(,此时2202012444114124x x x n x n n nn n n -=-=='⎪⎪⎭⎫ ⎝⎛+∑∑∞=∞=+)(,0,22ln 4412402012≠-+=-=+⎰∑∞=+x x x dx x n x x n n n )(,故0,22ln 1)(2≠-+=x xx x x S .0=x 时,2)0(=S .综上当]1,1[-∈x ,⎪⎩⎪⎨⎧=-∈-++=0,2]1,0)0,1[,22ln1arctan 1)(x x xx x x x x S ( . 21、(本题满分12分)已知二次型312322213212343),,(x x x x x x x x f +++=,(1)求正交变换Qy x =将),,(321x x x f 化为标准形; (2)证明:2)(min=≠xx x f T x . 解:(1)二次型对应矩阵⎪⎪⎪⎭⎫⎝⎛=301040103A ,0)2()4(3010401032=---=---=-λλλλλλE A ,解得4,2321===λλλ21=λ对应特征向量满足0)2(=-x E A ,解得⎪⎪⎪⎭⎫⎝⎛-=1011ξ432==λλ对应特征向量满足0)4(=-x E A ,解得⎪⎪⎪⎭⎫ ⎝⎛=0102ξ,⎪⎪⎪⎭⎫ ⎝⎛=1013ξ321,,ξξξ已经两两正交,单位化得⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛-=22022,010,22022321ηηη,故存在正交矩阵),,(321ηηη=Q ,当Qy x =时232221321442),,(y y y y y y f ++=.(2)2322212322232221232221222442)()()(y y y y y y y y y y y y y y f Qy Q y y f x x x f T T T Qy x T ++++=++++==== 当0≠x 时,由Qy x =得0≠y ,当0,0132≠==y y y 时,2322212322222y y y y y ++++的最小值为2,故2)(min=≠xx x f Tx . 22、(本题12分)设n X X X ,,,21 为来自均值为θ的指数分布总体X 的简单随机样本,m Y Y Y ,,,21 为来自均值为θ2的指数分布总体Y 的简单随机样本,且两样本相互独立,其中)0(>θθ是未知参数,利用样本n X X X ,,,21 ,m Y Y Y ,,,21 ,求θ的最大似然估计量θˆ,并求)ˆ(θD . 解:由题知:总体Y X ,的概率密度为,0021)(,0001)(2⎪⎩⎪⎨⎧≤>=⎪⎩⎪⎨⎧≤>=--y y ey f x x ex f y YxX θθθθ令θθθθθθθθθ21211111121211),(),(∑∑=⋅=⋅===--+=-=-==∏∏∏∏mj j ni ij iy x n m m mj y ni x m j j Y ni i Xee e ey f x fLθθθ2ln )(2ln ln 11∑∑==--+--=mj jni i yx n m m L02ln 2121=+++-=∑∑==θθθθmj jni i yx n m d L d 解得⎪⎪⎭⎫⎝⎛++=∑∑==m j j n i i y x n m 11211ˆθ故θ的最大似然估计量⎪⎪⎭⎫⎝⎛++=∑∑==m j j n i i Y X n m 11211ˆθ⎪⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛++=∑∑∑∑====m j j n i i m j j n i i Y D X D n m Y X n m D D 11211)(41)()(1211)ˆ(θ⎪⎭⎫ ⎝⎛++=)(4)()(12j i Y D m X nD n m 而224)(,)(θθ==j i Y D X D ,从而n m m n n m D +=⎪⎭⎫ ⎝⎛⋅++=222244)(1)ˆ(θθθθ。

2020年全国硕士研究生招生考试(数学三)--答案解析

2020年全国硕士研究生招生考试(数学三)--答案解析

y))dy
dz (0, ) ( 1)dx dy
10. y x 1
解析:x y e2xy 0 两边对 x 求导得1 y ' e2xy 2( y xy ') 0 带入 (0, 1) 得 y ' 1 则切
线方程为 y x 1。
11.8
解析 L(Q) PQ C(Q)
700 1600 16Q Q2
e n
ex 2 sin 2x
n
ex 4 cos 2xdx
n

en 4an
从而 an
1 en 5
,则
n1
an
1 5
n1
e
n
e
5 1 e
1 5 e 1
18.解:令 A f x, y dxdy ,则对函数两边求二重积分可得
D
A y 1 x2 dxdy A xdxdy ,
05÷÷÷÷ .
5
所以 P1T AP1 = P2T BP2 , P2 P1T AP1P2T = B
2 1 1 -2
4 -3
所以 Q = P1P2T =
5 1
5 -2
5 2
5= 5
5.
1
-3 -4
5
55 5
55
21.(1)由于 P = (α, Aα) , α ¹ 0 ,且 lα ¹ Aα 则 α 与 Aα 不成比例,且 α ¹ 0 ,故 P 可逆.
从而两边积分得 xf (x, y)dxdy xy 1 x2 dxdy A x2dxdy ,而由积分区域关于 y
D
D
D
轴对称,而 xy 1 x2 为 x 的奇函数,得 xy 1 x2 dxdy 0 ,而 D
x2dxdy

2020全国硕士研究生入学统一考试数学三真题详解

2020全国硕士研究生入学统一考试数学三真题详解

Born to win
(B) E
5X
5
Y 0 , D
5 X
5
Y
1
5 D X D Y 2 cov X ,Y
7 5
(C) E
3X
3
Y 0 , D
3 X
3
Y
1
3 D X D Y 2 cov X ,Y
1
(D) E
3 X
3
Y
0,D
3 X
xa
f
(x) sin xa
a
()
(A)b sin a (B)b cos a (C)b sin f (a) (D)b cos f (a)
【答案】(B) 【解析】由lim f (x) a b, 得 f (a) a, f (a) b ,则
xa x a
lim sin f (x) sin a lim sin f (x) sin f (a) sin f (x)
关与独立等价,故选项(C)符合题意。
二、填空题:914 小题,每小题 4 分,共 24 分,请将答案写在答.题.纸.指定位置上.
(9)设 z arctan xy sin x y ,则 dz 0,
【答案】 1 dx dy
z
y cos x y z
x cosx y
【解析】
,
x 1 xy sin x y2 y
12 3
0 0 1
13
的线性无关的特征向量, 2 应为A 的属于特征值1的线性无关的特征向量。
这里根据题设,1,2 为 A 的属于特征值为 1 的线性无关的特征向量,则1 2 也为 A 的属于特征值为 1 的线性无关的特征向量。又因3 为 A 的属于 1的特征向量,则 3也

2021考研数学(三)真题(含详细解析)

2021考研数学(三)真题(含详细解析)

【答案】C
【解析】当
x
0
时,
x2 0
(et3
1)dt
'
2x(ex6
1)
2x7 ,故 x2 (et3 1)dt 是 x7 的高阶无穷小. 0
(2)函数
f
(x)
ex
1
,
x
x
0 ,在
x
0
处(

1, x 0
(A)连续且取极大值 (B)连续且取极小值 (C)可导且导数为 0 (D)可导且导数不为 0
B
1T
T 2

1 1
,k
表示任意常数,则线性方
3T
1
程组 Bx 的通解 x ( )
(A) k1 2 3 4
(B)1 k2 3 4
(C)1 2 k3 4
【答案】D
(D)1 2 3 k4
【解析】由 A (1,2,3,4 ) 为 4 阶正交矩阵,知向量组 1,2,3,4 是一组标准正交向量组,则
0 0 1 3
PAQ Q
,则
Q
1 0 0
0 1
1
3
.选(C)
0 1
0 0 1 0 0 1
(8)设 A, B 为随机事件,且 0 P(B) 1,下列命题不成立的是(

(A)若 P(A | B) P(A) ,则 P(A | B) P(A)
(B)若 P(A | B) P(A) ,则 P(A | B) P(A)
从而 E( ) E X EY 1 2 ,
D( ) DX DY 2cov(X ,Y ) DX DY 2
DX
DY
12
2 2
21 2
.选(D).

2022年研究生考试数学三真题及详解

2022年研究生考试数学三真题及详解

【解析】
lim
x0
1
e 2
x
cot x
elim cot x0
xIn
1ex 2
lim ex 1
ex0 2tan x
1
e2
(12)
2 0
2x 4 x2 +2x+4
dx
【答案】 ln 3 3 3
【解析】
数学(三)解析 第 5 页
2 2x 4
2 2x+2
6
0 x2 +2x+4 dx 0 x2 +2x+4 x+12 +3 dx
为 6 和 8,求利润最大时的产量.
数学(三)解析 第 7 页
【答案】384
【解析】利润
L
PQ
C
1160
1
1.5 12 x 2
1
y6
1
12 x 2
y
1 6
6x
8y
,即
11
1
L 13920x2 y6 216xy3 6x 8y
,令
Lx
1
6960x 2
1
y6
1
216 y 3
6
0
Ly
1
2320x 2
0 0 0 0
1
1
1
(7)设
1
=
1

2
=

3
=
1

4
=
,若向量组
1,2
,3

1,2
,4

1
1
2
价,则 的取值范围是(

数学(三)解析 第 3 页

2023年全国硕士研究生招生考试数学试题(数学三)真题解析

2023年全国硕士研究生招生考试数学试题(数学三)真题解析

2023 考研数学三真题及解析一、选择题:1~10 小题,每小题 5 分,共 50 分.在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上.1.已知函数 f( ,x y ) = ln ( y + x sin y ),则( ).(A )()0,1f x ∂∂不存在,()0,1fy∂∂存在(B )()0,1f x∂∂存在,()0,1fy ∂∂不存在(C )()0,1f x∂∂()0,1f y∂∂均存在(D )()0,1f x∂∂()0,1f y∂∂均不存在【答案】(A )【解析】 本题考查具体点偏导数的存在性,直接用定义处理,()0,10f =()()()()0,1000ln 1sin1sin1,10,1sin1,0lim lim limsin1,0x x x x x f x f x fx x x x x +−→→→+ −→∂=== ∂−→ 故()0,1f x∂∂不存在()()()0,1110,0,1ln lim lim 111y y f y f f y y y y →→−∂===∂−−,()0,1f y∂∂存在,选(A )2.函数() 0,()1cos ,0.x f x x x x ≤=+>的一个原函数是( )(A)), 0,()(1)cos sin ,0.x x F x x x x x −≤= +−>(B))1, 0,()(1)cos sin ,0.x x F x x x x x +≤=+−>(C)), 0,()(1)sin cos ,0.x x F x x x x x −≤= ++>(D))1, 0,()(1)sin cos ,0.x x F x x x x x +≤=++> 【答案】(D) .【分析】本题主要考查原函数的概念,分段函数不定积分的求法以及函数可导与连续的关系.【详解】由于当0x <时,)1()lnF xx x C==+∫当0x >时,()()2()1cos d 1sin cos F x x x x x x x C =+=+++∫由于()F x 在0x =处可导性,故()F x 在0x =处必连续因此,有00lim ()lim ()x x F x F x −+→→=,即 121C C =+.取20C =得)1, 0,()(1)sin cos ,0.x x F x x x x x −+≤= ++> 应选(D) .【评注】此题考查分段函数的不定积分,属于常规题,与2016年真题的完全类似,在《真题精讲班》系统讲解过. 原题为已知函数2(1),1,()ln , 1.x x f x x x −< = ≥则()f x 的一个原函数是( )(A) 2(1),1,()(ln 1), 1.x x F x x x x −<= −≥ (B) 2(1),1,()(ln 1)1, 1.x x F x x x x −<=+−≥ (C) 2(1),1,()(ln 1)1, 1.x x F x x x x −<= ++≥ (D) 2(1),1,()(ln 1)1, 1.x x F x x x x −<= −+≥3.若微分方程0y ay by ′′′++=的解在(,)−∞+∞上有界,则( )(A )00a b <>, (B )00a b >>, (C )00a b =>, (D )00a b =<, 【答案】(C )【解析】特征方程为20r ar b ++=,解得1,2r =.记24a b ∆=−当0∆>时,方程的通解为1212()e e r x r x yx c c ⋅⋅=+,当12,c c 不全为零时()y x 在(,)−∞+∞上无界.当12,c c 不全为零时()y x 在(,)−∞+∞上无界.当0∆=时,1202ar r −=<=,方程的通解为1112()e e r x r x yx c c x =+,当12,c c 不全为零时()y x 在(,)−∞+∞上无界.当0∆<时,1,22a r i β=−±,方程的通解为()212()e cos sin axy x c x c x ββ−=+. 只有当0a =,且240a b ∆=−<,即0b >时,lim ()lim ()0x x y x y x →+∞→−∞==,此时方程的解在(,)−∞+∞上有界. 故选(C )【评注】此题关于x →+∞方向的讨论,在《基础班》习题课上讲解过,见《基础班》习题课第八讲《常微分方程》第15题.4.已知()1,2,n n a b n <=,若1nn a∞=∑与1n n b ∞=∑均收敛.则1nn a∞=∑绝对收敛是1n n b ∞=∑绝对收敛的( )(A )充分必要条件 (B )充分不必要条件 (C )必要不充分条件(D )既非充分也非必要条件 【答案】(A ) 【解析】由题设条件知()1nn n ba ∞=−∑为收敛的正项级数,故()1n n n b a ∞=−∑也是绝对收敛的若1nn a∞=∑绝对收敛,则n n n n n n n b b a a b a a =−+≤−+,由比较判别法知,1n n b ∞=∑绝对收敛;若1n n b ∞=∑绝对收敛,则则nn n n n n n aa b b a b b =−+≤−+,由比较判别法知,1n n a ∞=∑绝对收敛;故应选(A )【评注】本题考查正项级数的比较判别法,及基本不等式放缩.关于上述不等式《基础班》第一讲在讲解数列极限定义时就反复强调过.5.设A,B 分别为n 阶可逆矩阵,E 是n 阶单位矩阵,*M 为M 的伴随矩阵,则AE OB 为( ) (A )*****−A B B A O A B (B )****− A B A B OB A(C )****−B A B A OA B (D )****−B A A B OA B 【答案】(D )【解析】由分块矩阵求逆与行列式的公式,结合1∗−=A A A 得11111∗−−−−− −==A E A E A E E A A AB B O B O B O B O B ∗∗∗∗−=B O A A A B B 选(D )【评注】这钟类型的题在02年,09年均考过完全类似的题,《基础班》第二讲也讲过,原题为【例1】设,A B ∗∗分别为n 阶可逆矩阵,A B 对应的伴随矩阵,∗∗=A O C O B6.二次型()()()222123121323(,,)4f x x x x x x x x x =+++−−的规范形为( ). (A )2212y y + (B )2212y y −(C )222123y y y −−(D )222123y y y +−【答案】(B )【详解】因为123(,,)f x x x 222123121323233228x x x x x x x x x =−−+++方法1.二次型的矩阵为 211134143 =− −A , 由()()211134730143λλλλλλλ−−−−=−+−=+−=−−+E A ,得特征值为0,7,3−,故选(B )方法2.()222123123121323,,233228f x x x x x x x x x x x x =−−+++()()()22232322211232323233842x x x x x x x x x x x x ++=+++−−−+ 222222322332323126616222x x x x x x x x x x x +++++−=+−()22231237222x x x x x +=+−− 故所求规范形为()2212312,,f x x x y y =−【评注】本题考查二次型的规范形,与考查正负惯性指数是同一类题,在《基础班》《强化班》均讲过. 《解题模板班》类似例题为【11】设123123(,,),(,,)T T a a a b b b αβ==,,αβ线性无关,则二次型123112233112233(,,)()()f x x x a x a x a x b x b x b x =++++的规范型为( ).(A)21y (B) 2212y y + (C) 2212y y − (D) 222123y y y ++7.已知向量12121,,1222150390,1====ααββ,若γ既可由12,αα表示,也由与12,ββ表示,则=γ( ).(A )334k (B )3510k(C )112k − (D )158k【答案】(D ) 【解析】由题意可设11212212x y x y +==+γααββ,只需求出21,x x 即可即解方程组112112220x y y x +−−=ααββ()121212211003,,2150010131910011,−−−−=−→− −−ααββ 得()()2211,,1,3,,1,1TTx k x y y =−−,k 为任意常数11221212133215318x k k k k k x+=−+=−+=−=γαααα,故选(D )【评注】1.此题与《强化班》讲义第三讲练习第12题完全类似,原题为【12】(1)设21,αα,21,ββ均是三维列向量,且21,αα线性无关, 21,ββ线性无关,证明存在非零向量ξ,使得ξ既可由21,αα线性表出,又可由21,ββ线性表出.(2)当 =4311α,=5522α:1231β= − ,2343β−=−时,求所有既可由21,αα线性表出,又可21,ββ线性表出的向量。

2023年全国硕士研究生招生考试《数学三》真题及答案解析【完整版】

2023年全国硕士研究生招生考试《数学三》真题及答案解析【完整版】

2023年全国硕士研究生招生考试《数学三》真题及答案解析【完整版】一、选择题:1~10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上。

1.已知函数f (x ,y )=ln (y +|xsiny|),则( )。

A .()0,1fx ∂∂不存在,()0,1f y ∂∂存在B .()0,1fx ∂∂存在,()0,1f y ∂∂不存在C .()0,1fx ∂∂,()0,1f y ∂∂均存在D .()0,1fx ∂∂,()0,1f y∂∂均不存在【答案】A【解析】f (0,1)=0,由偏导数的定义()()()()0000,1ln 1sin1,10,1lim lim sin1lim x x x x x f x f fx x xx →→→+-∂===∂,因为0lim 1x x x+→=,0lim 1x x x-→=-,所以()0,1fx ∂∂不存在, ()()()1110,10,0,1ln 1lim lim lim 1111y y y f y f f y y y y y y →→→-∂-====∂---,所以()0,1f y∂∂存在.2.函数()()01cos ,0x f x x x x ≤=+>⎩的原函数为( )。

A .())()ln ,01cos sin ,0x x F x x x x x ⎧≤⎪=⎨⎪+->⎩B .())()ln 1,01cos sin ,0x x F x x x x x ⎧+≤⎪=⎨⎪+->⎩C .())()ln ,01sin cos ,0x x F x x x x x ⎧≤⎪=⎨⎪++>⎩D .())()ln 1,01sin cos ,0x x F x x x x x ⎧+≤⎪=⎨⎪++>⎩【答案】D【解析】当x ≤0时,()(1d ln f x x x C ==+⎰当x >0时,()()()()()2d 1cos d 1dsin 1sin sin d 1sin cos f x x x x xx x x x x x x x x C =+=+=+-=+++⎰⎰⎰⎰原函数在(-∞,+∞)内连续,则在x =0处(110lim ln x x C C -→++=,()220lim 1sin cos 1x x x x C C +→+++=+ 所以C 1=1+C 2,令C 2=C ,则C 1=1+C ,故())()ln 1,0d 1sin cos ,0x C x f x x x x x C x ⎧++≤⎪=⎨⎪+++>⎩⎰,综合选项,令C =0,则f (x )的一个原函数为())()ln 1,01sin cos ,0x x F x x x x x ⎧+≤⎪=⎨⎪++>⎩.3.已知微分方程式y ′′+ay ′+by =0的解在(-∞,+∞)上有界,则( )。

2020年全国硕士研究生入学考试数学三试题完整版附答案解析

2020年全国硕士研究生入学考试数学三试题完整版附答案解析

为 X 独立的是().
A. 5 ( X + Y ) B. 5 ( X −Y ) C. 3 ( X + Y ) D. 3 ( X −Y )
5
5
3
3
答案: B
解析:
E
5 5
(X
− Y )
=
5 E(X −Y) = 5
5 (0 − 0) = 0 5
D
5 (X 5

Y
)
=
1 5
D(
X

Y
)
=
1 5
6.设 A 为 3 阶矩阵 a1, a2 为 A 的属于特征值 1 的线性无关的特征向量, a3 为 A 的属于特征
1 0 0
值-1
的特征向量,则满足
P
−1
AP
=
0
−1
0
的可逆矩阵为
0 0 1
A.(a1 + a3, a2 ,-a3) B.(a1 + a2, a2 ,-a3) C.(a1 + a3, −a3 ,a2 ) D.(a1 + a2, −a2 ,a2 )
2020 年全国硕士研究生入学考试数学三试题
完整版附答案解析
一、选择题:1~8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个
选项是符合题目要求的,请将选项前的字母填在答题纸指定位置上.
f (x)−a
sin f ( x) − sin a
1.设 lim
= b, 则 lim
=
x→a x − a
x→a
x−a
A. b sin a
B. b cos a
C. b sin f (a)

考研数学三真题解析

考研数学三真题解析

骤.
15、(本题满分 10 分)
已知
f
(x)
=
x2x,

xex
+
1,
x 0, 求 f (x) ,并求 f (x) 的极值. x 0.
【答案】������′(������)
=
2������ 2������ (������������������ {
+
1);x
>
0,
������������(������ + 1);x < 0
C. 与 , 2 都有关.
D. 与 , 2 都无关.
【答案】A
【解析】X − Y ~ N (0, 2 2 ,所以 P{ X − Y 1} = (1− 0 ) = ( −1− 0) = 2( 1 ) −1;
2
2
2
选A
二、填空题:9~14 小题,每小题 4 分,共 24 分.
−4 k 4 . 3.已知微分方程 y + ay + by = cex 的通解为 y = (C1 + C2 )e−x + ex ,则 a, b, c 依次为( )
A、1, 0,1
B、 1, 0, 2
C、 2,1,3
D、 2,1, 4
【答案】 D.
【解析】由通解形式知, 1 = 2 = −1 ,故特征方程为( +1)2 = 2 + 2 +1=0 ,所以
x2
【答案】(1) y(x) = xe 2 . (2)
【解析】(1)
y(
x)
=
e−


xdx

C
+

1 2x

2020考研数学三数学分析题解及答案

2020考研数学三数学分析题解及答案

2020考研数学三数学分析题解及答案在2020年的考研数学三中,数学分析部分是考生们需要掌握的重要内容。

本文将对2020年考研数学三数学分析题目进行详细解析,帮助考生们更好地理解题目,并给出相应的答案。

第一题:对于第一题,考生需要证明函数f(x)=x^3-3x和g(x)=x^2-3的最小正解为√3。

解析:首先我们需要找到f(x)和g(x)的交点,即解方程f(x)=g(x)。

将两个函数相减得到x^3-3x-x^2+3=0,整理后得到x^3-x^2-3x=0。

通过观察可以发现x=√3可能为一个解。

将x=√3带入方程,得到(√3)^3-(√3)^2-3x=0,化简后得到0=0,此时x=√3满足方程,因此x=√3为f(x)和g(x)的交点。

其次,我们需要证明x=√3为最小正解。

首先,我们可以使用导数来分析函数的单调性。

求导得f'(x)=3x^2-3和g'(x)=2x,分别对应函数f(x)和g(x)的导数。

我们可以看到,当x<√3时,f'(x)为负值,而g'(x)为正值。

当x>√3时,f'(x)为正值,而g'(x)为正值。

因此x=√3为f(x)和g(x)的交点,且在该点处f(x)从负数变为正数,g(x)从正数变为正数。

所以我们可以得出结论,x=√3为f(x)和g(x)的最小正解。

第二题:第二题要求考生求定积分∫[1,2] (1-x^2)^(1/2) dx。

解析:要求定积分,我们可以利用变量代换来解决。

令x=sinθ,即dx=cosθ dθ。

将x=sinθ代入原式中,得到∫[1,2] (1-sin^2θ)^(1/2) cosθ dθ。

利用三角恒等式1-sin^2θ=cos^2θ,将其代入上式,得到∫[1,2] cos^2θ dθ。

接下来,我们可以利用换元积分法来计算上式。

令u=cosθ,即du=-sinθ dθ。

将u=cosθ代入上式,得到∫[1,2] (u^2) du,将其化简得到∫[1,2]u^2 du。

2023年考研数学(三)答案解析

2023年考研数学(三)答案解析

2023年全国硕士研究生统一入学考试数学(三)试题解析一、选择题:1-10小题,每小题5分,共50分,下列每题给出的四个选项中,只有一个选项是符合要求的请将所选项前的字母填在答题纸指定位置上.(1)【答案】:A【解析】(0,1)0f ,由偏导数定义(0,1)000(,1)(0,1)ln(1sin1||)|||lim lim sin1limx x x f f x f x x x x xx 因为00||||lim 1,lim 1x x x x x x ,所以(0,1)|f x 不存在,(0,1)11(0,)(0,1)ln |lim lim 111y y f f y f y y y y ,所以(0,1)|f y存在(2)【答案】:D【解析】:当0x时1()ln(f x dx x C 当0x 时()(1)cos (1)sin sin f x dx x xdx x x xdx2(1)sin cos x x x C 原函数在(,) 内连续,则在0x处1122lim ln(,lim(1)sin cos 1x x x C C x x x C C所以121C C ,令2C C ,则11C C,故ln(1,0()(1)sin cos ,0x C x f x dx x x x C x结合选项,令0C ,则()f x的一个原函数为ln(1,0()()(1)sin cos ,0x x f x dx F x x x x x(3)【答案】:C 【解析】:微分方程"'0y ay by 的特征方程为20a b ,当240a b ,特征方程有2个不同的实数根12, ,则12, 至少有一个不等于零,若12,C C 都不为零,则微分方程的解1212xx y C eC e 在(,) 无界当240a b ,特征方程有2个相等的实根,1,22a 若20C ,则微分方程的解 212axy C C x e在(,) 无界当240a b时,特征方程的根为1,222a i则通解为:212(cos sin )22ay eC x C x 此时,要使微分方程的解在在(,) 有界,则0a ,再由240a b 知0b (4)【答案】:A 【解析】由条件知1()nn n ba为收敛的正项级数,进而绝对收敛;设1nn a绝对收敛,则由||||||||n n n n n n n b b a a b a a ,由比较判别法知,得1nn b绝对收敛设1nn b绝对收敛,则由||||||||n n n n n n n a a b b b a b ,由比较判别法知,1nn a绝对收敛(5)【答案】:D 【解析】110000A E A E A E A E A B B B B B,另外:1234000X X A E E X X B E,解出111121340X X A A B X X B,则:0A E B****0B A A B A B(6)【答案】:B【解析】:令:11221333y x x y x x y x ,22222212312121274,,4333y f x x x y y y y y y,可见规范形为2212y y (7)【答案】:D【解析】:根据题意,即是存在1234,,,k k k k ,使得11223344k k k k ,等价于求解12123434(,,,)0k k k k ,得到通解:12343111k k k k k,代入34,k k k k ,得到:15,8k k R(8)【答案】:C【解析】:由X 服从参数为1的泊松分布,得到1EX ,1111110212211!!!!k k k k e e e e E X EX k e k e k k k k e(9)【答案】:D【解析】:注意到:2212221222121222111,1,2211,11n S m S Z n Z m Z S n Z F n m Z S m(10)【答案】:A【解析】:注意到: 0,1Y N,根据:ˆE Ea Y,则a,22222y y E Y y,解出2a二、填空题:11~16小题,每小题5分,共30分.请将答案写在答题纸指定位置上.(11)【解析】:做变量替换: 10x t t,230333300112sin cos lim 2sin cos lim sin (1cos )262lim lim 3x t t t t t t t x x x x t t t t t t t t t(12)【解析】:已知2222,x y yx f f x y x y, 22arctan y x f dx y x y y,另外: '2222y x x f y x y x y, y C ,带入初值: 1,14f ,得到: ,arctan 2x f x y y,则3f(13)【解析】:令 202!nn x s x n,对变量x 求导,则有: 21222'110''21!22!2!n n nn n n x x x s x s x s x n n n,得到: ''s x s x 另外已知初值条件,有: '01,00s s ,解出微分方程,得到: 1122x xs x e e(14)【解析】:由题意可得方程 tof x dx f t t t t,则有2tof x dx f t t,两边同时求导有'2f t f t t ,由一阶线性微分方程知 22t f t ce t ,由 00f ,解出2c ,则 222t f t e t (15)【解析】:由已知:(A)(A,b)34r r ,得到:(A,b)0 ,即是:14440111101110(A,b)1(1)122(1)11012001202a a a a a a a a baa b则:111280a a a b(16)【解析】:因为 1,p X B ,所以 1DX p p ; Y 2,p B ,所以21DY p p(,)(X,X)(Y,X)(Y,X)(Y,Y)1COV X Y X Y COV COV COV COV DX DY P P 又因为X 与Y 相互独立,则有:31,31D X Y DX DY p p D X Y DX DY p p 因此13三、解答题:17~22小题,共70分.请将解答写在答题纸指定位置上,解答应写出文字说明、证明过程或演算步骤.(17)【解析】:将 00y 带入原方程,得到:0a b 另外,原方程两边同时对x 求导,得到: '''cos 2ln 1+y sin 01x yae yy y x y x,带入 00y , '00y 到上式,则有:10a 因此得到:1,1a b(18)【解析】(1)由题设条件可知面积2111S (1)D x21112ln 1x t)(2)2222211111111arctan11(14V dx dx xx x xx x(19)【解析】112cos3200032322223331(1)(1)1882cos cos cos21(1sin)sin363183161869Dd r rd d r rdd d d22cos3233010811(1)2cos36318Ddxdy d r rdr d12322[11]9D DI(20)【证明】(1)22111''()''()()(0)'(0)'(0),022f ff x f f x x f x x x介于与之间,则222''()()'(0),(0,)2ff a f a a a,233''()()'(0),,0)2ff a f a a a(-,则223()()''()''()2af a f a f f,由()f x在 ,a a上具有2阶连续导数,故()f x在32, 上具有2阶连续导数,所以()f x在32, 上必存在最大值M和最小值m,使得231''()''()2m f f M由介值定理存在存在32,(,)a a,使得23211''()''()''()()()2f f f f a f aa,得证.(2)设()f x在0x x 点处取得极值,则'()0f x ,在x处进行二阶泰勒展开:221100000010''()''()()()'()()()()(),22f ff x f x f x x x x x f x x x x x介于与之间,220020''()()()(),,2ff a f x a x a x(),230030''()()()(),,2ff a f x a x a x(),222232003020''()''()1|()()||()()||''()|()|''()|()222f ff a f a a x a x f a x f a x32(,),''()max{|''()|,|''()|}a a f f f,故2D1D223020222001|()()||''()|()|''()|()2|''()|[()()]2|''()|2f a f a f a x f a x f a x a x a f命题得证。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考研数学三试题解析超详细版LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】备注:前期已经传了2003-2011年9年的真题,现将答案发布供大家参考!想只要真题的童鞋请搜索C Z _V i c t o r 的文库下载,谢谢!2005年考研数学(三)真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)极限12sin lim 2+∞→x xx x = .(2) 微分方程0=+'y y x 满足初始条件2)1(=y 的特解为______.For personal use only in study and research; not for commercial use (3)设二元函数)1ln()1(y x xe z y x +++=+,则=)0,1(dz________.(4)设行向量组)1,1,1,2(,),,1,2(a a ,),1,2,3(a ,)1,2,3,4(线性相关,且1≠a ,则a=_____.(5)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y, 则For personal use only in study and research; not for commercial use}2{=Y P =______.(6)设二维随机变量(X,Y) 的概率分布为X Y 0 1 0 a 1 b已知随机事件}0{=X 与}1{=+Y X 相互独立,则a= , b= .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)当a 取下列哪个值时,函数a x x x x f -+-=1292)(23恰好有两个不同的零点.(A) 2. (B) 4. (C) 6. (D) 8. [ ](8)设σd y x I D⎰⎰+=221cos ,σd y x I D ⎰⎰+=)cos(222,σd y x I D⎰⎰+=2223)cos(,其中}1),{(22≤+=y x y x D ,则(A) 123I I I >>. (B )321I I I >>.(C) 312I I I >>. (D) 213I I I >>. [ ](9)设,,2,1,0 =>n a n 若∑∞=1n n a 发散,∑∞=--11)1(n n n a 收敛,则下列结论正确的是(A) ∑∞=-112n n a 收敛,∑∞=12n n a 发散 . (B ) ∑∞=12n n a 收敛,∑∞=-112n n a 发散.(C) )(1212∑∞=-+n n n a a 收敛. (D) )(1212∑∞=--n n n a a 收敛. [ ](10)设x x x x f cos sin )(+=,下列命题中正确的是(A) f(0)是极大值,)2(πf 是极小值. (B ) f(0)是极小值,)2(πf 是极大值.(C ) f(0)是极大值,)2(πf 也是极大值. (D) f(0)是极小值,)2(πf 也是极小值.[](11)以下四个命题中,正确的是(A) 若)(x f '在(0,1)内连续,则f(x)在(0,1)内有界. (B )若)(x f 在(0,1)内连续,则f(x)在(0,1)内有界. (C )若)(x f '在(0,1)内有界,则f(x)在(0,1)内有界.(D) 若)(x f 在(0,1)内有界,则)(x f '在(0,1)内有界. [ ](12)设矩阵A=33)(⨯ij a 满足T A A =*,其中*A 是A 的伴随矩阵,T A 为A 的转置矩阵. 若131211,,a a a 为三个相等的正数,则11a 为(A) 33. (B) 3. (C) 31. (D) 3. [ ](13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A) 01=λ. (B) 02=λ. (C) 01≠λ. (D) 02≠λ. [ ](14) 设一批零件的长度服从正态分布),(2σμN ,其中2,σμ均未知. 现从中随机抽取16个零件,测得样本均值)(20cm x =,样本标准差)(1cm s =,则μ的置信度为的置信区间是(A) )).16(4120),16(4120(05.005.0t t +- (B) )).16(4120),16(4120(1.01.0t t +-(C))).15(4120),15(4120(05.005.0t t +-(D))).15(4120),15(4120(1.01.0t t +- [ ]三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分8分)求).111(lim 0xe x x x --+-→ (16)(本题满分8分)设f(u)具有二阶连续导数,且)()(),(y x yf x y f y x g +=,求.222222y g y x g x ∂∂-∂∂ (17)(本题满分9分)计算二重积分σd y x D⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .(18)(本题满分9分) 求幂级数∑∞=-+12)1121(n n x n 在区间(-1,1)内的和函数S(x). (19)(本题满分8分)设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,0)(≥'x f ,0)(≥'x g .证明:对任何a ]1,0[∈,有(20)(本题满分13分) 已知齐次线性方程组(i ) ⎪⎩⎪⎨⎧=++=++=++,0,0532,032321321321ax x x x x x x x x和(ii ) ⎩⎨⎧=+++=++,0)1(2,03221321x c x b x cx bx x 同解,求a,b, c 的值.(21)(本题满分13分)设⎥⎦⎤⎢⎣⎡=B C C A D T为正定矩阵,其中A,B 分别为m 阶,n 阶对称矩阵,C 为n m ⨯矩阵.(I) 计算DP P T,其中⎥⎦⎤⎢⎣⎡-=-n mE oC A EP 1; (II )利用(I)的结果判断矩阵C A C B T 1--是否为正定矩阵,并证明你的结论. (22)(本题满分13分)设二维随机变量(X,Y)的概率密度为求:(I ) (X,Y)的边缘概率密度)(),(y f x f Y X ; (II ) Y X Z -=2的概率密度).(z f Z ( III ) }.2121{≤≤X Y P (23)(本题满分13分)设)2(,,,21>n X X X n 为来自总体N(0,2σ)的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(I ) i Y 的方差n i DY i ,,2,1, =; (II )1Y 与n Y 的协方差).,(1n Y Y Cov(III )若21)(n Y Y c +是2σ的无偏估计量,求常数c.2005年考研数学(三)真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)极限12sin lim 2+∞→x xx x = 2 .【分析】 本题属基本题型,直接用无穷小量的等价代换进行计算即可.【详解】 12sin lim 2+∞→x x x x =.212lim 2=+∞→x xx x(2) 微分方程0=+'y y x 满足初始条件2)1(=y 的特解为 2=xy . 【分析】 直接积分即可.【详解】 原方程可化为 0)(='xy ,积分得 C xy =, 代入初始条件得C=2,故所求特解为 xy=2.(3)设二元函数)1ln()1(y x xe z y x +++=+,则=)0,1(dz dy e edx )2(2++ .【分析】 基本题型,直接套用相应的公式即可. 【详解】 )1ln(y xe e x zy x y x +++=∂∂++,yx xe y z y x +++=∂∂+11, 于是 =)0,1(dzdy e edx )2(2++.(4)设行向量组)1,1,1,2(,),,1,2(a a ,),1,2,3(a ,)1,2,3,4(线性相关,且1≠a ,则a= 21.【分析】 四个4维向量线性相关,必有其对应行列式为零,由此即可确定a. 【详解】 由题设,有=1234123121112a a a 0)12)(1(=--a a , 得21,1==a a ,但题设1≠a ,故.21=a (5)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y, 则}2{=Y P =4813. 【分析】 本题涉及到两次随机试验,想到用全概率公式, 且第一次试验的各种两两互不相容的结果即为完备事件组或样本空间的划分.【详解】 }2{=Y P =}12{}1{===X Y P X P +}22{}2{===X Y P X P+}32{}3{===X Y P X P +}42{}4{===X Y P X P=.4813)4131210(41=+++⨯(6)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 a 1 b已知随机事件}0{=X 与}1{=+Y X 相互独立,则a= , b= .【分析】 首先所有概率求和为1,可得a+b=, 其次,利用事件的独立性又可得一等式,由此可确定a,b 的取值.【详解】 由题设,知 a+b=又事件}0{=X 与}1{=+Y X 相互独立,于是有 }1{}0{}1,0{=+===+=Y X P X P Y X X P , 即 a=))(4.0(b a a ++, 由此可解得 a=, b=二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)当a 取下列哪个值时,函数a x x x x f -+-=1292)(23恰好有两个不同的零点.(A) 2. (B) 4. (C) 6. (D) 8. [ B ]【分析】 先求出可能极值点,再利用单调性与极值画出函数对应简单图形进行分析,当恰好有一个极值为零时,函数f(x)恰好有两个不同的零点.【详解】 12186)(2+-='x x x f =)2)(1(6--x x ,知可能极值点为x=1,x=2,且 a f a f -=-=4)2(,5)1(,可见当a=4时,函数f(x) 恰好有两个零点,故应选(B).(8)设σd y x I D⎰⎰+=221cos ,σd y x I D ⎰⎰+=)cos(222,σd y x I D⎰⎰+=2223)cos(,其中}1),{(22≤+=y x y x D ,则(A) 123I I I >>. (B )321I I I >>.(C) 312I I I >>. (D) 213I I I >>. [ A ] 【分析】 关键在于比较22y x +、22y x +与222)(y x +在区域}1),{(22≤+=y x y x D 上的大小.【详解】 在区域}1),{(22≤+=y x y x D 上,有1022≤+≤y x ,从而有 由于cosx 在)2,0(π上为单调减函数,于是因此 <+⎰⎰σd y x D22cos <+⎰⎰σd y x D)cos(22σd y x D⎰⎰+222)cos(,故应选(A). (9)设,,2,1,0 =>n a n 若∑∞=1n n a 发散,∑∞=--11)1(n n n a 收敛,则下列结论正确的是(A) ∑∞=-112n n a 收敛,∑∞=12n n a 发散 . (B ) ∑∞=12n n a 收敛,∑∞=-112n n a 发散.(C) )(1212∑∞=-+n n n a a 收敛. (D) )(1212∑∞=--n n n a a 收敛.[ D ]【分析】 可通过反例用排除法找到正确答案.【详解】 取n a n 1=,则∑∞=1n n a 发散,∑∞=--11)1(n n n a 收敛,但∑∞=-112n n a 与∑∞=12n n a 均发散,排除(A),(B)选项,且)(1212∑∞=-+n n n a a 发散,进一步排除(C), 故应选(D). 事实上,级数)(1212∑∞=--n n n a a 的部分和数列极限存在.(10)设x x x x f cos sin )(+=,下列命题中正确的是(B) f(0)是极大值,)2(πf 是极小值. (B ) f(0)是极小值,)2(πf 是极大值.(C ) f(0)是极大值,)2(πf 也是极大值. (D) f(0)是极小值,)2(πf 也是极小值.[ B] 【分析】 先求出)(),(x f x f ''',再用取极值的充分条件判断即可.【详解】 x x x x x x x f cos sin cos sin )(=-+=',显然 0)2(,0)0(='='πf f ,又 x x x x f sin cos )(-='',且02)2(,01)0(<-=''>=''ππf f ,故f(0)是极小值,)2(πf 是极大值,应选(B).(11)以下四个命题中,正确的是(A) 若)(x f '在(0,1)内连续,则f(x)在(0,1)内有界. (B )若)(x f 在(0,1)内连续,则f(x)在(0,1)内有界. (C )若)(x f '在(0,1)内有界,则f(x)在(0,1)内有界.(D) 若)(x f 在(0,1)内有界,则)(x f '在(0,1)内有界. [ C ]【分析】 通过反例用排除法找到正确答案即可.【详解】 设f(x)=x 1, 则f(x)及21)(x x f -='均在(0,1)内连续,但f(x)在(0,1)内无界,排除(A)、(B); 又x x f =)(在(0,1)内有界,但xx f 21)(='在(0,1)内无界,排除(D). 故应选(C).(12)设矩阵A=33)(⨯ij a 满足T A A =*,其中*A 是A 的伴随矩阵,T A 为A 的转置矩阵. 若131211,,a a a 为三个相等的正数,则11a 为(A)33. (B) 3. (C) 31. (D) 3. [ A ]【分析】 题设与A 的伴随矩阵有关,一般联想到用行列展开定理和相应公式:.**E A A A AA ==.【详解】 由T A A =*及E A A A AA ==**,有3,2,1,,==j i A a ij ij ,其中ij A 为ij a 的代数余子式,且032=⇒=⇒=A A AE A AA T 或1=A而03211131312121111≠=++=a A a A a A a A ,于是1=A ,且.3311=a 故正确选项为(A).(13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A) 01=λ. (B) 02=λ. (C) 01≠λ. (D) 02≠λ. [ D ]【分析】 讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可.【详解】 方法一:令 0)(21211=++αααA k k ,则022211211=++αλαλαk k k , 0)(2221121=++αλαλk k k . 由于21,αα线性无关,于是有当02≠λ时,显然有0,021==k k ,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A 线性无关,则必然有02≠λ(,否则,1α与)(21αα+A =11αλ线性相关),故应选(B).方法二: 由于 ⎥⎦⎤⎢⎣⎡=+=+21212211121101],[],[)](,[λλαααλαλααααA , 可见1α,)(21αα+A 线性无关的充要条件是.001221≠=λλλ故应选(D).(14) 设一批零件的长度服从正态分布),(2σμN ,其中2,σμ均未知. 现从中随机抽取16个零件,测得样本均值)(20cm x =,样本标准差)(1cm s =,则μ的置信度为的置信区间是(A) )).16(4120),16(4120(05.005.0t t +- (B) )).16(4120),16(4120(1.01.0t t +-(C))).15(4120),15(4120(05.005.0t t +-(D))).15(4120),15(4120(1.01.0t t +- [ C ]【分析】 总体方差未知,求期望的区间估计,用统计量:).1(~--n t ns x μ【详解】 由正态总体抽样分布的性质知,)1(~--n t ns x μ, 故μ的置信度为的置信区间是))1(1),1(1(22-+--n t n x n t nx αα,即)).15(4120),15(4120(05.005.0t t +-故应选(C).三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分8分)求).111(lim 0xe x x x --+-→ 【分析】 ""∞-∞型未定式,一般先通分,再用罗必塔法则.【详解】 )1(1lim )111(lim 200x xx x x e x e x x x e x --→-→-+-+=--+ =2201lim x e x x x x -→+-+=x e x xx 221lim 0-→-+=.2322lim0=+-→x x e (16)(本题满分8分)设f(u)具有二阶连续导数,且)()(),(y x yf x y f y x g +=,求.222222y g y x g x ∂∂-∂∂ 【分析】 先求出二阶偏导数,再代入相应表达式即可.【详解】 由已知条件可得)()(2y x f x y f xy x g '+'-=∂∂, )(1)()(242322y xf y y x f xy x y f x y x g ''+''+'=∂∂,)()()(1yxf y x y x f x y f x yg '-+'=∂∂, )()()()(13222222y xf y x y x f y x y x f y x x y f x yg ''+'+'-''=∂∂, 所以 222222yg y x g x ∂∂-∂∂ =)()()(2222y x f y x y x f x y x y f x y ''+''+')()(222y xf y x x y f xy ''-''- =).(2xy f x y ' (17)(本题满分9分)计算二重积分σd y x D⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .【分析】 被积函数含有绝对值,应当作分区域函数看待,利用积分的可加性分区域积分即可.【详解】 记}),(,1),{(221D y x y x y x D ∈≤+=,}),(,1),{(222D y x y x y x D ∈>+=,于是 σd y x D⎰⎰-+122=⎰⎰-+-1)1(22D dxdy y x ⎰⎰-++2)1(22D dxdy y x=⎰⎰--2021)1(πθrdr r d ⎰⎰-++Ddxdy y x )1(22⎰⎰-+-1)1(22D dxdy y x=8π+⎰⎰⎰⎰---+20102210210)1()1(πθrdr r d dy y x dx =.314-π(18)(本题满分9分) 求幂级数∑∞=-+12)1121(n n x n 在区间(-1,1)内的和函数S(x). 【分析】幂级数求和函数一般采用逐项求导或逐项积分,转化为几何级数或已知函数的幂级数展开式,从而达到求和的目的.【详解】 设∑∞=-+=12)1121()(n n x n x S , ∑∞=+=121121)(n nx n x S ,∑∞==122)(n n x x S , 则 )()()(21x S x S x S -=,).1,1(-∈x 由于∑∞==122)(n nxx S =221xx -, )1,1(,1))((22121-∈-=='∑∞=x x x xx xS n n, 因此 ⎰-++-=-=xxxx dt t t x xS 022111ln 211)(, 又由于 0)0(1=S ,故所以 )()()(21x S x S x S -=.0,1,0,1111ln 212=<⎪⎩⎪⎨⎧---+=x x x x xx(19)(本题满分8分)设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,0)(≥'x f ,0)(≥'x g .证明:对任何a ]1,0[∈,有【分析】 可用参数变易法转化为函数不等式证明,或根据被积函数的形式,通过分部积分讨论.【详解】 方法一:设=)(x F ⎰⎰-'+'xg x f dt t g t f dt t f t g 01)1()()()()()(,则F(x)在[0,1]上的导数连续,并且=')(x F )]1()()[()1()()()(g x g x f g x f x f x g -'='-',由于]1,0[∈x 时,0)(,0)(≥'≥'x g x f ,因此0)(≤'x F ,即F(x)在[0,1]上单调递减.注意到 =)1(F ⎰⎰-'+'11)1()1()()()()(g f dt t g t f dt t f t g ,而 ⎰⎰⎰'-=='1010110)()()()()()()()(dt t g t f t f t g t df t g dt t f t g=⎰'-10)()()1()1(dt t g t f g f , 故F(1)=0.因此]1,0[∈x 时,0)(≥x F ,由此可得对任何]1,0[∈a ,有 方法二:⎰⎰'-='aaa dx x g x f x f x g dx x f x g 000)()()()()()(=⎰'-a dx x g x f a g a f 0)()()()(, =⎰⎰'+'-1)()()()()()(dx x g x f dx x g x f a g a f a由于]1,0[∈x 时,0)(≥'x g ,因此)()()()(x g a f x g x f '≥',]1,[a x ∈, ⎰⎰-='≥'1010)]()1()[()()()()(a g g a f dx x g a f dx x g x f ,从而 ⎰⎰'+'adx x g x f dx x f x g 010)()()()((20)(本题满分13分) 已知齐次线性方程组(i ) ⎪⎩⎪⎨⎧=++=++=++,0,0532,032321321321ax x x x x x x x x和(ii ) ⎩⎨⎧=+++=++,0)1(2,03221321x c x b x cx bx x 同解,求a,b, c 的值.【分析】 方程组(ii )显然有无穷多解,于是方程组(i )也有无穷多解,从而可确定a ,这样先求出(i )的通解,再代入方程组(ii )确定b,c 即可.【详解】 方程组(ii )的未知量个数大于方程个数,故方程组方程组(ii )有无穷多解.因为方程组(i )与(ii )同解,所以方程组(i )的系数矩阵的秩小于3.对方程组(i )的系数矩阵施以初等行变换⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡20011010111532321a a , 从而a=2. 此时,方程组(i )的系数矩阵可化为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000110101211532321, 故T )1,1,1(--是方程组(i )的一个基础解系.将1,1,1321=-=-=x x x 代入方程组(ii )可得 2,1==c b 或.1,0==c b当2,1==c b 时,对方程组(ii )的系数矩阵施以初等行变换,有⎥⎦⎤⎢⎣⎡→⎥⎦⎤⎢⎣⎡110101312211, 显然此时方程组(i )与(ii )同解.当1,0==c b 时,对方程组(ii )的系数矩阵施以初等行变换,有⎥⎦⎤⎢⎣⎡→⎥⎦⎤⎢⎣⎡000101202101, 显然此时方程组(i )与(ii )的解不相同.综上所述,当a=2,b=1,c=2时,方程组(i )与(ii )同解. (21)(本题满分13分)设⎥⎦⎤⎢⎣⎡=B C C A D T为正定矩阵,其中A,B 分别为m 阶,n 阶对称矩阵,C 为n m ⨯矩阵.(I) 计算DP P T,其中⎥⎦⎤⎢⎣⎡-=-n mE oC A EP 1; (II )利用(I)的结果判断矩阵C A C B T 1--是否为正定矩阵,并证明你的结论. 【分析】 第一部分直接利用分块矩阵的乘法即可;第二部分是讨论抽象矩阵的正定性,一般用定义.【详解】 (I) 因 ⎥⎦⎤⎢⎣⎡-=-n T mT E AC o E P 1,有 DP P T =⎥⎦⎤⎢⎣⎡--n T mE AC o E 1⎥⎦⎤⎢⎣⎡B C C AT ⎥⎦⎤⎢⎣⎡--n mE o C A E 1=⎥⎦⎤⎢⎣⎡--C A C B o C A T 1⎥⎦⎤⎢⎣⎡--n m E o C A E 1 =⎥⎦⎤⎢⎣⎡--C A C B o o A T 1. (II )矩阵C A C B T 1--是正定矩阵. 由(I)的结果可知,矩阵D 合同于矩阵 又D 为正定矩阵,可知矩阵M 为正定矩阵.因矩阵M 为对称矩阵,故C A C B T 1--为对称矩阵. 对T X )0,,0,0( =及任意的0),,,(21≠=T n y y y Y ,有.0)(),(11>-=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---Y C A C B Y Y X C A C B o o A Y X T T T TT故C A C B T 1--为正定矩阵.(22)(本题满分13分)设二维随机变量(X,Y)的概率密度为求:(I ) (X,Y)的边缘概率密度)(),(y f x f Y X ; (II ) Y X Z -=2的概率密度).(z f Z ( III ) }.2121{≤≤X Y P 【分析】 求边缘概率密度直接用公式即可;而求二维随机变量函数的概率密度,一般用分布函数法,即先用定义求出分布函数,再求导得到相应的概率密度; 直接用条件概率公式计算即可.【详解】 (I ) 关于X 的边缘概率密度)(x f X =⎰+∞∞-dy y x f ),(=.,10,0,20其他<<⎪⎩⎪⎨⎧⎰x dy x=.,10,0,2其他<<⎩⎨⎧x x关于Y 的边缘概率密度)(y f Y =⎰+∞∞-dx y x f ),(=.,20,0,12其他<<⎪⎩⎪⎨⎧⎰y dx y=.,20,0,21其他<<⎪⎩⎪⎨⎧-y y(II ) 令}2{}{)(z Y X P z Z P z F Z ≤-=≤=, 1) 当0<z 时,0}2{)(=≤-=z Y X P z F Z ;2) 当20<≤z 时,}2{)(z Y X P z F Z ≤-= =241z z -; 3) 当2≥z 时,.1}2{)(=≤-=z Y X P z F Z即分布函数为: .2,20,0,1,41,0)(2≥<≤<⎪⎩⎪⎨⎧-=z z z z z z F Z故所求的概率密度为:.,20,0,211)(其他<<⎪⎩⎪⎨⎧-=z z z f Z(III ) .4341163}21{}21,21{}2121{==≤≤≤=≤≤X P Y X P X Y P (23)(本题满分13分)设)2(,,,21>n X X X n 为来自总体N(0,2σ)的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(I ) i Y 的方差n i DY i ,,2,1, =; (II )1Y 与n Y 的协方差).,(1n Y Y Cov(III )若21)(n Y Y c +是2σ的无偏估计量,求常数c.【分析】 先将i Y 表示为相互独立的随机变量求和,再用方差的性质进行计算即可;求1Y 与n Y 的协方差),(1n Y Y Cov ,本质上还是数学期望的计算,同样应注意利用数学期望的运算性质;估计21)(n Y Y c +,利用其数学期望等于2σ确定c 即可.【详解】 由题设,知)2(,,,21>n X X X n 相互独立,且),,2,1(,02n i DX EX i i ===σ,.0=X E(I )∑≠--=-=nij j i i i X n X n D X X D DY ]1)11[()(=∑≠+-nij ji DXnDX n 221)11(=.1)1(1)1(222222σσσn n n n n n -=-⋅+- (II ) )])([(),(111n n n EY Y EY Y E Y Y Cov --= =)])([()(11X X X X E Y Y E n n --= =)(211X X X X X X X E n n +-- =211)(2)(X E X X E X X E n +-=22121)(][20X E X D X X X E n nj j +++-∑==.112222σσσn n n -=+-(III ))(])([121n n Y Y cD Y Y c E +=+ =)],(2[121n Y Y Cov DY DY c ++ =222)2(2]211[σσσ=-=--+-c nn n n n n n c , 故 .)2(2-=n n c仅供个人用于学习、研究;不得用于商业用途。

相关文档
最新文档