2017初三房山数学一模答案

合集下载

北京市房山区初中毕业考试中考一模数学试题含答案解析

北京市房山区初中毕业考试中考一模数学试题含答案解析

北京市房山区初中毕业考试(中考一模)数学试题初中数学第I 卷(选择题)一、选择题(本大题共30分,每小题3分):1.为了减少燃煤对大气的污染,北京实施煤改电工程.每年冬季采暖季期间可压减燃煤约608000吨,将608000用科学记数法表示应为A.460.810⨯ B.46.0810⨯ C. 60.60810⨯ D. 56.0810⨯【考点】科学记数法和近似数、有效数字【试题解析】608000= 所以选D【答案】D2.如图,数轴上有A ,B ,C ,D 四个点,其中表示2的相反数的点是A.点AB.点BC.点CD.点D【考点】实数的相关概念【试题解析】解析:表示2的相反数的点是-2,所以选A【答案】A3.有五张形状、大小、质地都相同的卡片,这些卡片上面分别画有下列图形:①正方形;②等边三角形;③平行四边形;④等腰三角形;⑤圆.C B A 12345-1-2-3-46将卡片背面朝上洗匀,从中随机抽取一张,抽出的纸片正面图形是轴对称图形,但不是中心对称图形的概率是A. 51B. 52 C. 53 D. 54【考点】轴对称与轴对称图形【试题解析】解析:里面是轴对称图形,不是中心对称图形的有等腰三角形,所以概念为所以选A【答案】A4.如图,在△ABC 中,∠C =90°,点D 在AC 边上,DE ∥AB ,如果∠ADE =46°,那么∠B 等于A .34°B .54°C .46°D .44°【考点】轴对称与轴对称图形【试题解析】解析:∵DE//AB∴∠ADE=∠A=46°∴∠B=∠C-∠A=44°【答案】D5.象棋在中国有着三千多年的历史,属A BED C4题图于二人对抗性游戏的一种。

由于用具简单,趣味性强,成为流行极为广泛的棋艺活动。

如图是一方的棋盘,如果“帅”的坐标是(0,1),“卒”的坐标是(2,2),那么“马”的坐标是A.(-2,1) B.(2,-2) C.(-2,2) D.(2,2)【考点】平面直角坐标系及点的坐标【试题解析】解析:马的坐标纵坐标和卒的相等,所以排除A,B横坐标,在帅的左边2个单位,所以是-2所以选C【答案】C6.为了估算河的宽度,我们可以在河对岸的岸边选定一个目标记为点A,再在河的这一边选点B和点C,使得AB⊥BC,然后再在河岸上选点E,使得EC⊥BC,设BC与AE交于点D,•如图所示,测得BD=120米,DC=60米,EC=50米,那么这条河的大致宽度是A.75米 B.25米 C.100米 D.120米【考点】相似三角形的应用【试题解析】解析:根据题意可得:△ABD∽△CDE∴AB:CE=BD:CD∴AB=100米所以选C【答案】C7. 在“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的A. 中位数B. 众数C.平均数D. 方差【考点】平均数、众数、中位数【试题解析】中位数是表示在中间的那一个数或者中间两个数的平均数,有5名同学,那么中位数就是第3名同学的成绩,所以只要知道中位数,就可以知道是否进入前三名了.【答案】A8. 下列几何体中,主视图相同的是A.①② B.①④ C.①③ D.②④【考点】几何体的三视图【试题解析】解析:主视图就是指从正面观察到的图形是什么,①从正面观察到的是一个长方形,③也是一个长方形,所以选C【答案】C9.如图,将△ABC绕点C按顺时针旋转60°得到△A′B′C,已知AC=6,BC=4,则线段AB扫过的图形的面积为A. 23π B.83π C.6π D.103π【考点】图形的旋转【试题解析】解析:阴影面积=故选D.【答案】D10.如图,在正方形ABCD中,AB=3cm,动点M自点A出发沿AB方向以每秒1厘米的速度运动,同时动点N自点A出发沿折线AD—DC—CB以每秒3厘米的速度运动,到达点B时运动同时停止.设△AMN的面积为y(厘米2),运动时间为x(秒),则下列图象中能大致反映y与x之间的函数关系的是NMD CB A【考点】函数的表示方法及其图像【试题解析】解析:当点N在AD上时,即0≤x≤1,S△AMN=当点N在AD上时,即0≤x≤1,S△AMN=×x×3x=x2,点N在CD上时,即1≤x≤2,S△AMN=×x×3=x,y随x的增大而增大,所以排除A、D;当N在BC上时,即2≤x≤3,S△AMN=×x×(9-3x)=-x2+x,开口方向向下.选B.【答案】B二、填空题(本大题共18分,每小题3分):=________________.11. 分解因式:3a a【考点】因式分解【试题解析】原式=a(a²-1)=a(a+1)(a-1)【答案】a(a+1)(a-1)12.已知反比例函数的图象经过A(2,-3),那么此反比例函数的关系式为______. 【考点】反比例函数表达式的确定【试题解析】解析:设反比例函数解析式为把x=-2,y=-3代入得:k=-6【答案】13.3月12日“植树节”前夕,某小区为绿化环境,购进200棵柏树苗和120棵枣树苗,且两种树苗所需费用相同.每棵枣树苗的进价比每棵柏树苗的进价的2倍少5元,求这两种树苗的进价分别是多少元.如果设每棵柏树苗的进价是x元,那么可列方程为______________.【考点】一次方程(组)的应用【试题解析】根据题意,这道题的等量关系式是柏树苗的费用=枣树苗的费用200x=120(2x-5)【答案】14.关于x的一元二次方程mx2+4x+1=0有两个实数根,那么m的取值范围是 . 【考点】一元二次方程的根与系数的关系【试题解析】解析:m≠0△=16-4m≥0解得:m ≤4且m ≠0【答案】m ≤4且m ≠015. 二次函数y=ax 2+bx+c(a ≠0)图象经过A(-1,m),B(2,m).写出一组满足条件的a 、b 的值:a=_____,b=______.【考点】二次函数表达式的确定【试题解析】解析:a-b+c=m 4a+2b+c=m -3a-3b=0 a=-b所以a=1,b=-1【答案】a=1,b=-116.如图,已知∠AOB . 小明按如下步骤作图:① 以点O 为圆心,任意长为半径画弧,交OA 于点D ,交OB 于点E . ② 分别以D ,E 为圆心,大于12DE C .③ 画射线OC .所以射线OC 为所求∠AOB 的平分线.BACED根据上述作图步骤,回答下列问题:(1)写出一个正确的结论:________________________. (2)如果在OC 上任取一点M,那么点M到OA、OB的距离相等.依据是:_______________________________________________________.【考点】尺规作图【试题解析】(1)以同样长画弧,OD,OE 都是这个固定的长度,所以OD=OE(2)角平分线上的带你到角两边距离相等.【答案】(1) OD=OE (2)角平分线上的点到角两边距离相等.三、解答题(本大题共72分,其中第17—26题,每小题5分,第27题7分,第28题7分,第29题8分):17. 计算:10)21(31)-(2016+3tan30 -+-+︒π. 【考点】实数运算【试题解析】解析:== 【答案】18.已知07432=--a a ,求代数式22))(()12(b b a b a a --+--的值.【考点】代数式及其求值【试题解析】== = ∵,∴,当时原式==8【答案】819. 解分式方程:2212+=--x xx . 【考点】分式方程的解法【试题解析】解得:经检验是原方程的解.∴原方程的解是【答案】x=-120.已知:如图,在△ABC 中,∠ABC = 90°,BD 为AC 边的中线,过点C 作 CE ∥AB 与BD 延长线交于点E . 求证:∠A =∠E .【考点】平行线的判定及性质【试题解析】∵在△ABC 中, ∠ABC = 90°,BD 为AC 边的中线.∴BD = AD = AC.∴∠A= ∠ABD,∵CE ∥AB ,∴∠ABD =∠E.∴∠A=∠E.【答案】见解析21.列方程(组)解应用题:为提高饮用水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A 、B 两种型号家用净水器共160台,A 型号家用净水器进价为每台150元,B 型号家用净水器进价为每台350元,购进两种型号的家用净水器共用去36000元.求A 、B 两种型号家用净水器各购进了多少台.EDB【考点】一次方程(组)的应用【试题解析】设购进A 型号净水器每台元,B 型号净水器每台元,根据题意,得:解得:答:A 种型号家用净水器购进了100台,B 种型号家用净水器购进了60台.【答案】A 种型号家用净水器购进了100台,B 种型号家用净水器购进了60台.22. 如图,在ABCD 中,E 为BC 中点,过点E 作AB EG ⊥于G ,连结DG ,延长DC ,交GE 的延长线于点H.已知10BC =,45GDH ∠=︒,DG 82=.求 CD 的长.【考点】平行四边形的性质【试题解析】∵四边形是平行四边形∴∥,∵EG ⊥于点,∴在△中,,,,∴.∵为中点,,∴.∵∴△≌△.∴.在△中,,,,∴.∴【答案】523 .如图,在平面直角坐标系中,点A(2,0),B(0,3),C(0,2),点D在第二象限,且△AOB≌△OCD.(1) 请在图中画出△OCD ,并直接写出点D的坐标;(2) 点P在直线AC上,且△PCD是等腰直角三角形.x yBCA11o求点P的坐标.【考点】平面直角坐标系及点的坐标【试题解析】(1)图1,正确画出△COD点D的坐标为:D(-3,2).(2) 由OC=OA=2,∠AOC=90°,∴∠OAC=45°.∵A(2,0),C(0,2)∴过A、C两点的一次函数的关系式为:①当CD为直角边时,如图2,此时,点P的横坐标为-3. ∴P(-3,5).②当CD为斜边时,如图,此时3,点P 的横坐标为.∴P().∴在直线AC上,使△PCD是等腰直角三角形的点P坐标为:(-3,5)或(,).【答案】见解析24.如图,AB为⊙O的直径,点C在⊙O上,且∠CAB=30°,点D为弧AB的中点,AC=43.求CD的长.【考点】与圆有关的计算【试题解析】连结BC∵AB为⊙O的直径,点C在⊙O上,∴∠ACB =90°∵∠CAB =30°,∴∠D =60°.∵点D为弧AB的中点,∴∠ACD =45°.CB AO过点A作AE⊥CD,∵AC=,∴AE=CE =.∴DE =.∴CD =.【答案】25.“PM2.5”是指大气中危害健康的直径小于2.5微米的颗粒物,也称可入肺颗粒物.公众对于大气环境质量越来越关注,某市为了了解市民对于“PM 2.5浓度升高时,对于户外活动的影响”的态度,随机抽取了部分市民进行调查.根据调查的相关数据,绘制的统计图表如下:PM2.5浓度升高时,对于户外活动是百分比否有影响,您的态度是A.没有影响2%B.影响不大,还可以进行户外活动30%C.有影响,减少户外活动42%D.影响很大,尽可能不去户外活动mE .不关心这个问题6%根据以上信息解答下列问题:(1)直接写出统计表中m的值;(2)根据以上信息,请补全条形统计图;(3)如果该市约有市民400万人,根据上述信息,请你估计一下持有“影响很大,尽可能不去户外活动”这种态度的约有多少万人.【考点】统计图的分析【试题解析】(1)1-2%-6%-30%-42%=20%;(2)如图2% 42% C6% E30% BDA PM2.5浓度升高时对于户外活动 公众的态度的扇形统计图12084040PM2.5浓度升高时对于户外活动 公众的态度的条形统计图C D E B A 公众的态度80160240320400480560640720800880o(3)400×20%=80(万人).【答案】见解析26.如图,在平面直角坐标系xOy 中,双曲线12y x=(1)当x 时,1y >0;(2)直线2y x b =-+,当22b =时,直线与双曲线有唯一公共点,问:b 时,直线与双曲线有两个公共点;(3)如果直线2y x b =-+与双曲线12y x=交于A 、B 两点,且点A 的坐标为(1,2),点B 的纵坐标为1.设E 为线段AB 的中点,过点E 作x 轴的垂线EF ,交双曲线于点F .求线段EF 的长.【考点】反比例函数的图像及其性质【试题解析】(1)>0(2)当<或>,(3)∵点B 的纵坐标为1,∴点B 的横坐标为2,∵点E 为AB 中点,xyy 1=2x12345–1–2–3–4–512345–1–2–3–4–5o∴点E 坐标为(∴点F 的坐标为(,)∴EF=【答案】见解析27. 如图,二次函数c bx x ++-=2y 的图象(抛物线)与x 轴交于A(1,0), 且当0x =和2x -=时所对应的函数值相等.(1)求此二次函数的表达式;(2)设抛物线与x 轴的另一交点为点B ,与y 轴交于点C ,在这条抛物线的对称轴上是否存在点D ,使得△DAC 的周长最小?如果存在,求出D 点的坐标;如果不存在,请说明理由. (3)设点M 在第二象限,且在抛物线上,如果△MBC 的面积最大,求此时点M 的坐标及△MBC 的面积.【考点】二次函数表达式的确定xy12345–1–2–3–4–512–1–2–3–4–5o【试题解析】(1)∵二次函数,当和时所对应的函数值相等,∴二次函数的图象的对称轴是直线.∵二次函数的图象经过点A(,),∴解得∴二次函数的表达式为:.(2)存在由题知A、B两点关于抛物线的对称轴x=﹣1对称∴连接BC,与x=﹣1的交于点D,此时△DAC周长最小∵∴C的坐标为:(0,3)直线BC解析式为:y=x+3∴D(﹣1,2);(3)设M点(x,)(﹣3<x<0)作过点M作ME⊥x轴于点E,则E(x,0)∵S△MBC=S四边形BMCO﹣S△BOC=S四边形BMCO﹣,S四边形BMCO=S△BME+S四边形MEOC=(x+3)()+(﹣x)(+3)=∵要使△MBC的面积最大,就要使四边形BMCO面积最大当x=时,四边形BMCO在最大面积=∴△BMC最大面积=当x=时,=∴点M坐标为(,)【答案】见解析28.如图1,在四边形ABCD中,BA=BC,∠ABC=60°,∠ADC=30°,连接对角线BD.(1)将线段CD绕点C顺时针旋转60°得到线段CE,连接AE.①依题意补全图1;②试判断AE与BD的数量关系,并证明你的结论;(2)在(1)的条件下,直接写出线段DA、DB和DC之间的数量关系;(3)如图2,F是对角线BD上一点,且满足∠AFC=150°,连接FA和FC,探究线段FA、FB和FC之间的数量关系,并证明.(图1)(图2)【考点】四边形综合题【试题解析】解析:如图3,连接AC∵BA=BC,且∠ABC=60°∴△ABC是等边三角形∴∠ACB=60°,且CA=CB将线段CF绕点C顺时针旋转60°得到线段CE,连接EF、EA ∴CE=CF,且∠FCE=60°,∴△CEF是等边三角形∴∠CFE=60°,且FE=FC∴∠BCF=∠ACE∴△BCF≌△ACE(SAS)∴AE=BF∵∠AFC=150°, ∠CFE=60°∴∠AFE=90°在Rt△AEF中,有:∴.【答案】见解析29.在平面直角坐标系xoy 中,对于任意三点A ,B ,C 给出如下定义:如果正方形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在正方形的内部或边界上,那么称该正方形为点A ,B ,C 的外延正方形,在点A ,B ,C 所有的外延正方形中,面积最小的正方形称为点A ,B ,C 的最佳外延正方形.例如,图1中的正方形A 1B 1C 1D 1,A 2B 2C 2D 2 ,A 3B 3CD 3都是点A ,B ,C 的外延正方形,正方形A 3B 3CD 3是点A ,B ,C 的最佳外延正方形.xy12345–1–2–3–4–512345–1–2–3–4–5B 1C 1B 2C 2C B 3oA 2D 3A 1A 3D 1D 2A B(图1) (图2)(1)如图1,点A (-1,0),B (2,4),C (0,t )(t 为整数).① 如果t =3,则点A ,B ,C 的最佳外延正方形的面积是 ;② 如果点A ,B ,C 的最佳外延正方形的面积是25,且使点C 在最佳外延正方形的一边上,请写出一个符合题意的t 值 ;xy12345–1–2–3–4–512345–1–2–3–4–5Do(图3 ) (图4)(2)如图3,已知点M (3,0),N (0,4),P (x ,y )是抛物线y=x 2-2x -3上一点,求点M ,N ,P 的最佳外延正方形的面积以及点P 的横坐标x 的取值范围;(3)如图4,已知点E (m ,n )在函数x 6y(x >0)的图象上,且点D 的坐标为(1,1),设点O ,D ,E 的最佳外延正方形的边长为a ,请直接写出a 的取值范围.【考点】二次函数与几何综合【试题解析】(1)① 16 ;② 5或-1 ;(2)以ON 为一边在第一象限作正方形OKIN ,如图3①点M 在正方形OKIN 的边界上,抛物线一部分在正方形OKIN 内,P 是抛物线上一点,∴正方形OKIN 是点M ,N ,P 的一个面积最小的最佳外延正方形∴点M ,N ,P 的最佳外延正方形的面积的最小值是16;∴点M,N,P的最佳外延正方形的面积S的取值范围是:S 16满足条件的点P的横坐标的取值范围是 3(3)【答案】见解析。

2017房山九上数学期末答案

2017房山九上数学期末答案

房山区2017-2017学年度第一学期终结性检测试卷九年级数学(答案及评分标准)一.选择题(每小题3分,共30分):二、填空题(每小题3分,共18分):11.x;12. 6;13. 30°;14.4p-;15.()()21=+-=-++;1020010101002000y x x x x16.角平分线上的点到角两边距离相等;(1分)经过半径的外端并且垂直于这条半径的直线是圆的切线(或:如果圆心到直线的距离等于半径,那么直线与圆相切).(2分)三.解答题(每小题5分,共50分):17. 解:原式=11?-?………………4分21225分18. 解:(1) y2699+5=-+-………………1分x x()234=--………………3分x(2) 抛物线的对称轴为:x=3 ………………4分顶点坐标为(3,-4)………………5分19. 解:∵在Rt△ABC中,∠B = 90°,AB =2,AC =∴(22222=-=-=即BC=2………………1分24BC AC AB∵sin BCA=A=45°………………3分AC∴∠C=45°………………4分答:这个三角形的BC=2,∠A=∠C=45°………………5分注:此题方法不唯一,其他正确解答请相应评分.AB AC AD BA BC BD CA CB CD DA DB DC结 果第二次第一次D AB CC AB DB AC DDC BA 20.解:由图象可知:抛物线的对称轴为x = 1,………………1分设抛物线的表达式为:()21y a x k =-+………………2分 ∵抛物线经过点(-1,0)和(0,-3)∴043a k a kì=+ïí-=+ïî解得14a k ì=ïí=-ïî………………4分 ∴抛物线的表达式为:()221423y x x x =--=--(不要求化简)……………5分此题解答过程不唯一,其他正确解答请相应评分.21.解:树状图:列表:树状图或列表正确………………1分结果共有12种等可能的情况………………2分 其中两张均为黑色有CD 、DC 两种不同的情况………………3分∴P (摸出的两张牌均为黑色)=21126=………………4分 答:摸出的两张牌均为黑色的概率是16……………5分22. 解:(1) ∵二次函数()22211y x m x m =+++-与x 轴有两个交点 ∴△>0 ………………1分即 ()()222141m m +--= 45m +>0∴m >54-………………2分(2) m 取值正确………………3分 相应的两个交点坐标正确………………5分23. (1)证明:∵点A 、O 、B 在⊙P 上,且∠AOB =90°,∴AB 为⊙P 直径,即P 为AB 中点.………………1分(2)∵P 为12y x=(x >0)上的点,设点P 的坐标为(m ,n ),则mn=12………………2分GF ED C BA过点P 作PM ⊥x 轴于M ,PN ⊥y 轴于N ………………3分 ∴M 的坐标为(m ,0),N 的坐标为(0,n ), 且OM= m , ON= n ∵点A 、O 、B 在⊙P 上, ∴M 为OA 中点,OA=2 m ;N 为OB 中点, OB=2 n ………………4分∴S △AOB =12OA ·O B =2mn=24………………5分24.解:过点B 作BE ⊥AD 于E ………………1分 ∵△ABC 中,AB = AC ,∠BAC =30°∴∠ABC =75° ∵△ABC 沿AC 翻折,∴∠BAB ’=2∠BAC=60°, ∴∠D =45°………………2分在Rt △ABE 中,∠AEB =90°,AB=4,∠BAE =60° ∴AE =2,BE=4分在Rt △BED 中,∠BED =90°,∠D =45°, BE =∴ED =∴AD =AE +ED =2+………………5分25. (1)锐角△ABC 的最小覆盖圆是它的外接圆(不必写出结论,作图正确即可)画图略.…………………2分(2) 直角△ABC 最小覆盖圆的圆心是斜边中点;…………………3分 (3)①锐角△ABC 的最小覆盖圆是它的外接圆,②直角△ABC 的最小覆盖圆是它的外接圆(或以最长边为直径的圆),③钝角△ABC 的最小覆盖圆是以最长边为直径的圆. …………………5分 注:第(3)问不必严格分三种情况叙述,不遗漏即可.26. (1) 测量方案的示意图:……………………1分需要测量的线段EG = DF ;需要测量的角: ∠ADC 、∠AFC ……………………3分 (2)在Rt △ACD 中,tan ∠ADC=ACCD,CD =AC ·tan ∠ADCx3x+1在Rt△ABD中,tan∠AFC=ACCF,CF=AC·tan∠AFC………………………4分由CF-CD = DF,可得到关于AC的方程,解这个方程求出AC的值,得到塔高AB=AC+1.5 ……………………5分注:学生提出的方案可测量、可操作均可适度评分.四、解答题(第27题7分,第28题7分,第29题8分,共22分)27. 解:(1)∵抛物线221y x x n=-+-的对称轴为x = 1,……………1分∴B点坐标为(1,0),OB = 1∵抛物线与y轴的交点为A(0,n-1),∴OA=1n-又∵△OAB是等腰直角三角形,∴OA= OB,即11n-=∴n = 2或n = 0 ………………3分(2)如图,当抛物线顶点在x轴上时221y x x=-+,此时2n=;抛物线与线段OC有且只有一个公共点(1,0);………………4分当抛物线过原点时22y x x=-,1n=,此时抛物线与线段OC有两个公共点(0,0)和(2,0);………………5分当抛物线过点C时223y x x=--,2n-=,此时抛物线与线段OC有且只有一个公共点C(3,0);………………6分综上所述:当2-≤n<1或2n=时,抛物线与线段OC有且只有一个公共点.………………7分28. (1) 证明:连接OD ………………1分∵⊙O切BC于点D∴OD⊥BC (2)∵∠ACB =90°∴OD∥AC,∠ODA=∠DAC∵OA=OD∴∠ODA=∠OAD∴∠OAD =∠DAC,即AD平分∠BAC ………………3分(2) 解:连接OF、DF ………………4分∵∠B=30°,∠ACB =90°∴∠BAC=60°,∠DAC=30°∴∠DOF=2∠DAF=60°………………5分 ∵⊙O 中半径OD=OF ,∴△OD F 是等边三角形,DF=OD ,∠ODF=60° ∵OD ⊥BC ,∴∠FDC=30°在△DC F 中CF=1,∠DCF=90°,∠FDC=30° ∴DF=OD=2,6分在Rt △ODC 中, OD=2,ODC=90° ∴7分29.解:(1) ∵“带线”L 的顶点在反比例函数xy 6=(x <0)的图象上,且它的“路线”l 的表达式为42-=x y ,∴直线42-=x y 与xy 6=的交点为“带线”L 的顶点,令xx 642=-, 解得3121=-=x x ,(舍去) ………………1分∴“带线”L 的顶点坐标为(-1,-6).设L 的表达式为6)1(2-+=x a y …………………2分 ∵“路线”42-=x y 与y 轴的交点坐标为(0,-4)∴“带线”L 也经过点(0,-4),将(0,-4)代人L 的表达式,解得2=a ∴“带线”L 的表达式为 4426)1(222-+=-+=x x x y …………………3分(不必化为一般式)(2) ∵直线1+=nx y 与y 轴的交点坐标为(0,1),∴抛物线122-+-=m mx mx y 与y 轴的交点坐标也为(0,1),得m =2 …………4分 ∴抛物线表达式为1422+-=x x y ,其顶点坐标为(1,-1)∴直线1+=nx y 经过点(1,-1),解得n = -2 ……………………5分 ∴“带线”L 的表达式为1422+-=x x y “路线”l (3)设抛物线的顶点为B ,则点B 坐标为(1,-1), 过点B 作BC ⊥y 轴于点C ,又∵点A 坐标为(0,1) ∴AO=1,BC=1,AC=2.∵“路线”l 是经过点A 、B 的直线 且⊙P 与“路线”l 相切于点A ,连接P A 交 x 轴于点D ,则P A ⊥AB …………………6分显然Rt △AOD ≌Rt △BCA ,∴OD= AC=2,D 点坐标为(-2,0) 则经过点D 、A 、P 的直线表达式为121+=x y ……………………7分∵点P 为直线121+=x y 与抛物线L :1422+-=x x y 的交点,解方程组⎪⎩⎪⎨⎧+=+-=1211422x y x x y 得⎩⎨⎧==1011y x (即点A 舍去),⎪⎪⎩⎪⎪⎨⎧==8174922y x 即点P 的坐标为⎪⎭⎫ ⎝⎛81749,. ……………………8分本评分标准仅出示一种解答过程,其他正确解答请相应评分.。

房山区2016-2017学年第一学期初三期末数学试题及答案

房山区2016-2017学年第一学期初三期末数学试题及答案

xyO房山区2016-2017学年度第一学期终结性检测试卷九 年 级 数 学一、 选择题(每小题3分,共30分):下面各题均有四个选项,其中只有一个符合题意. 1. 下列函数中是反比例函数的是( )A .3x y =B .3+1y x =C .22x y =D .32y x=2. 已知:⊙O 的半径为r ,点P 到圆心的距离为d. 如果d ≥r ,那么P 点( ) A .在圆外 B .在圆外或圆上 C .在圆内或圆上 D .在圆内3. 已知,在Rt △ABC 中,∠C=90°,AB=5,BC =3,则sin A 的值是( )A .53 B .35 C .54 D . 434.三角形内切圆的圆心为( )A .三条高的交点B .三条边的垂直平分线的交点C .三条角平分线的交点5.yx2O xy2O6. 同时抛掷两枚质量均匀的硬币,恰好一枚正面朝上、一枚反面朝上的概率是() A .1B .12C .13D .147. 已知A (x 1,y 1)、B (x 2,y 2)是函数22y x m =-+(m 是常数)图象上的两个点,如果x 1<x 2<0, 那么y 1,y 2的大小关系是( )A. y 1>y 2B. y 1= y 2C. y 1<y 2D. y 1,y 2的大小不能确定8. 已知: A 、B 、C 是⊙O 上的三个点,且∠AOB =60°,那么∠ACB 的度数是( )A .30°B .120°C .150° D. 30°或 150° 9. 在同一坐标系下,抛物线x x y 421+-=和直线x y 22=的图象如图所示, 那么不等式x x 42+->x 2的解集是( )A .x < 0B .0 < x <2C .x > 2D .x < 0或 x > 210. 如图,A 、B 是半径为1的⊙O 上两点,且O A ⊥OB . 点P 从A 出发,在⊙O 上以每秒一个单位的速度匀速运动,回到点A 运动结束. 设运动时间为x ,弦BP 的长度为y ,那么下面图象中可能..表示y 与x 的函数关系的是( )xy y 2=2xy 1= x 2+4x–1–21234561234OOPAA BCOxy2O xy2O① ②③ ④A. ① B .④ C .①或③ D. ②或④二、填空题(每小题3分,共18分):11. 函数1xy x =-中自变量x 的取值范围是 . 12. 在圆中,如果75°的圆心角所对的弧长为2.5πcm ,那么这个圆的半径是 .13. 如果一个等腰三角形的三条边长分别为1、13底角的度数为 .14.如图,正△ABC 内接于半径是2的圆,那么阴影部分的面积是 .15. 某商店销售一种进价为50元/件的商品,当售价为60元/件时,一天可卖出200件;经调查发现,如果商品的单价每上涨1元,一天就会少卖出10件.设商品的售价上涨了x 元/件(x 是正整数),销售该商品一天的利润为y 元,那么y 与x 的函数关系的表达式为 .(不写出x 的取值范围)16.在数学课上,老师请同学思考如下问题:在数学课上,老师请同学思考如下问题:已知:在△ABC 中,∠A =90°. 求作:⊙P ,使得点P 在AC 上,且⊙P 与AB ,BC 都相切.小轩的作法如下:老师说:“小轩的作法正确.”请回答:⊙P 与BC 相切的依据是.三、解答题(每小题5分,共50分)17. 计算:12cos45tan60sin30tan 452︒-︒+︒-︒18. 已知二次函数的表达式为: y = x 2-6x + 5, (1)利用配方法将表达式化成y = a (x -h )2 + k 的形式; (2)写出该二次函数图象的对称轴和顶点坐标.19. 在Rt △ABC 中,已知∠B = 90°,AB =2,AC =22.(1)作∠ABC 的平分线BF ,与AC 交于点P ; (2)以点P 为圆心,AP 长为半径作⊙P .⊙P 即为所求.FPCBAyx311O20. 已知:二次函数y=ax 2+ bx + c(a≠0)的图象如图所示.请你根据图象提供的信息,求出这条抛物线的表达式.21.如图,有四张背面相同的纸牌A、B、C、D,其正面分别是红桃A、方块A、黑桃A、梅花A,其中红桃、方块为红色,黑桃、梅花为黑色.小明将这4张纸牌背面朝上洗匀后,摸出一张,将剩余3张洗匀后再摸出一张. 请用画树状图或列表的方法,求摸出的两张牌均为黑色的概率.22.已知:二次函数()22211y x m x m=+++-与x轴有两个交点.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时二次函数与x轴的交点.AB'xy BAP O23. 如图,在平面直角坐标系中, O 为坐标原点,P 是反比例函数12y x(x >0)图象上任意一点,以P 为圆心,PO 为半径的圆与x 轴交于点 A 、与y 轴交于点B ,连接AB . (1) 求证:P 为线段AB 的中点;(2) 求△AOB 的面积;24. 已知: △ABC 中,∠BAC = 30°,AB=AC=4. 将△ABC 沿AC 翻折,点B 落在B ′点,连接并延长A B ′与线段BC 的延长线相交于点D ,求AD 的长.25. 我们将能完全覆盖某平面图形的最小圆...称为该平面图形的最小覆盖圆......例如线段AB 的最小覆盖圆就是以线段AB 为直径的圆(图1).(1) 在图2中作出锐角△ABC 的最小覆盖圆(要求用尺规作图,保留作图痕迹,不写作法);BA(2) 图3中,△ABC 是直角三角形,且∠C = 90°,请说明△ABC 的最小覆盖圆圆心所在位置; (3) 请在图4中对钝角△ABC 的最小覆盖圆进行探究,并结合(1)、(2)的结论,写出关于任意△ABC 的最小覆盖圆的规律.BAACBBACABC图3图4图2图126. “昊天塔”又称多宝佛塔,是北京地区惟一的楼阁式空心砖塔,位于良乡东北1公里的燎石岗上. 此塔始建于隋,唐朝曾重修,现存塔是辽代修建的,已历经一千多年. 某校九年级数学兴趣小组的同学进行社会实践活动时,想利用所学的解直角三角形的知识测量它的高度.他们的测量工具有:高度为1.5m 的测角仪(测量仰角、俯角的仪器)、皮尺. 请你帮他们设计一种测量方案,求出昊天塔的塔顶到地面的高度AB ,注意:因为有护栏,他们不能..到达塔的底部.要求:(1)画出测量方案的示意图,标出字母,写出图中需要并且能测量的角与线段............(用图中的字母表示);(2)结合示意图, 简要说明你测量与计算的思路(不必写出结果).E DCBAF O四、解答题(第27题7分,第28题7分,第29题8分,共22分)27. 已知:△ABC 中∠ACB = 90°,E 在AB 上,以AE 为直径的⊙O 与BC 相切于D ,与AC 相交于F ,连接AD .(1)求证:AD 平分∠BAC ;(2)连接OC ,如果∠B=30°,CF =1,求OC 的长.28. 在平面直角坐标系中,已知抛物线221y x x n =-+-与y 轴交于点A ,其对称轴与x 轴交于点B . (1)当△OAB 是等腰直角三角形时,求n 的值;(2)点C 的坐标为(3,0),若该抛物线与线段OC 有且只有一个公共点,结合函数的图象求n 的取值范围.29. 若抛物线L :()02≠++=abc c b a c bx ax y 是常数,且,,与直线l 都经过y 轴上的同一点,且抛物线L 的顶点在直线l 上,则称此抛物线L 与直线l 具有“一带一路”关系,并且将直线l 叫做抛物线yxC–1–212345123–1–2–3OL 的“路线”,抛物线L 叫做直线l 的“带线”.(1) 若“路线”l 的表达式为42-=x y ,它的“带线”L 的顶点在反比例函数x y 6=(x <0)的图象上,求“带线”L 的表达式;(2)如果抛物线122-+-=m mx mx y 与直线1+=nx y 具有“一带一路”关系,求m ,n 的值; (3)设(2) 中的“带线”L 与它的“路线”l 在 y 轴上的交点为A . 已知点P 为“带线”L 上的点,当以点P 为圆心的圆与“路线”l 相切于点A 时,求出点P 的坐标.xy –1–2123–1123O备用图房山区2016-2017学年度第一学期终结性检测试卷九年级数学(答案及评分标准)一.选择题(每小题3分,共30分):题号 1 2 3 4 5 6 7 8 9 10 答案 A B D C A C A D B C二、填空题(每小题3分,共18分):11.1x;12.6;13.30°;14.433p-;15.()()2y x x x x=+-=-++;102001010100200016.角平分线上的点到角两边距离相等;(1分)经过半径的外端并且垂直于这条半径的直线是圆的切线(或:如果圆心到直线的距离等于半径,那么直线与圆相切).(2分)三.解答题(每小题5分,共50分):17. 解:原式=211?-?………………4分23122223………………5分18. 解:(1) y 2699+5=-+-………………1分x x()234=--………………3分x(2) 抛物线的对称轴为:x = 3 ………………4分 顶点坐标为(3,-4) ………………5分19. 解:∵在Rt △ABC 中,∠B = 90°,AB =2,AC =2∴ ()222222224BC AC AB =-=-= 即BC=2 ………………1分∵ 2sin BC A AC= ∴ ∠A=45° ………………3分∴∠C=45° ………………4分 答:这个三角形的BC=2,∠A=∠C=45° ………………5分 注:此题方法不唯一,其他正确解答请相应评分.20. 解:由图象可知:抛物线的对称轴为x = 1, ………………1分设抛物线的表达式为:()21y a x k =-+ ………………2分 ∵ 抛物线经过点(-1,0)和(0,-3)∴ 043a k a kì=+ïí-=+ïî 解得14a k ì=ïí=-ïî ………………4分 ∴ 抛物线的表达式为:()221423y x x x =--=--(不要求化简)……………5分此题解答过程不唯一,其他正确解答请相应评分.AB AC AD BA BC BD CA CB CD DA DB DC结 果第二次第一次D AB CC AB DB AC DDC BA21. 解:树状图:列表: 树状图或列表正确 ………………1分结果共有12种等可能的情况………………2分 其中两张均为黑色有CD 、DC 两种不同的情况 ………………3分∴P (摸出的两张牌均为黑色)=21126= ………………4分 答: 摸出的两张牌均为黑色的概率是 16 ……………5分22. 解:(1) ∵二次函数()22211y x m x m =+++-与x 轴有两个交点 ∴ △>0 ………………1分即 ()()222141m m +--= 45m +>0∴m >54- ………………2分(2) m 取值正确 ………………3分 相应的两个交点坐标正确 ………………5分第一次第二次ABCDA BA CA DAB ABCB DB C AC BCDC DAD BD CDAEy xN M P AB O23. (1)证明:∵点A 、O 、B 在⊙P 上,且∠AOB =90°,∴ AB 为⊙P 直径,即P 为AB 中点. ………………1分(2) ∵P 为12y x=(x >0)上的点,设点P 的坐标为(m ,n ),则mn=12 ………………2分 过点P 作PM ⊥x 轴于M ,PN ⊥y 轴于N ………………3分 ∴M 的坐标为(m ,0),N 的坐标为(0,n ), 且OM= m , ON= n ∵点A 、O 、B 在⊙P 上, ∴M 为OA 中点,OA=2 m ;N 为OB 中点, OB=2 n ………………4分∴S △AOB =12OA ·O B =2mn=24 ………………5分24. 解:过点B 作BE ⊥AD 于E ………………1分 ∵△ABC 中,AB = AC ,∠BAC =30°∴∠ABC =75° ∵△ABC 沿AC 翻折,∴∠BAB ’=2∠BAC=60°, ∴∠D =45° ………………2分 在Rt △ABE 中,∠AEB =90°,AB=4,∠BAE =60° ∴AE =2,BE =3 ………………4分GF ED CBA在Rt △BED 中,∠BED =90°,∠D =45°, BE =3∴ED =23∴AD =AE +ED =23+ ………………5分25. (1) 锐角△ABC 的最小覆盖圆是它的外接圆(不必写出结论,作图正确即可)画图略. …………………2分 (2) 直角△ABC 最小覆盖圆的圆心是斜边中点; …………………3分 (3) ①锐角△ABC 的最小覆盖圆是它的外接圆,②直角△ABC 的最小覆盖圆是它的外接圆(或以最长边为直径的圆),③钝角△ABC 的最小覆盖圆是以最长边为直径的圆. …………………5分 注:第(3)问不必严格分三种情况叙述,不遗漏即可.26. (1) 测量方案的示意图:……………………1分需要测量的线段EG = DF ;需要测量的角: ∠ADC 、∠AFC ……………………3分 (2)在Rt △ACD 中,tan ∠ADC=ACCD,CD =AC ·tan ∠ADC 在Rt △ABD 中,tan ∠AFC=ACCF,CF =AC ·tan ∠AFC ………………………4分xyC y =x 22x 3y =x 22xy =x 2x +1–1–2–3–41234–1–21234O由CF -CD = DF ,可得到关于AC 的方程,解这个方程求出AC 的值,得到塔高AB =AC +1.5 ……………………5分注:学生提出的方案可测量、可操作均可适度评分.四、解答题(第27题7分,第28题7分,第29题8分,共22分) 27. 解:(1) ∵ 抛物线221y x x n =-+-的对称轴为x = 1,……………1分 ∴ B 点坐标为(1,0),OB = 1∵ 抛物线与y 轴的交点为A (0,n -1),∴OA=1n -又∵△OAB 是等腰直角三角形,∴ OA= OB,即11n -=∴n = 2或n = 0 ………………3分(2)如图,当抛物线顶点在x 轴上时221y x x =-+,此时2n =;抛物线与线段OC 有且只有一个公共点(1,0); ………………4分 当抛物线过原点时22y x x =-,1n =,此时抛物线与线段OC 有两个公共点(0,0)和(2,0);………………5分 当抛物线过点C 时223y x x =--,2n -=,此时抛物线与线段OC 有且只有一个公共点C (3,0); ………………6分 综上所述:当2-≤n <1或2n =时,抛物线与线段OC 有且只有一个公共点. ………………7分FABCDEO28. (1) 证明:连接OD ………………1分∵ ⊙O 切BC 于点D∴ OD ⊥BC ………………2分∵∠ACB =90°∴OD ∥AC ,∠ODA =∠DAC ∵ OA=OD ∴ ∠ODA =∠OAD∴ ∠OAD =∠DAC ,即AD 平分∠BAC ………………3分(2) 解:连接OF 、DF ………………4分 ∵∠B=30°,∠ACB =90° ∴∠BAC=60°,∠DAC=30°∴∠DOF=2∠DAF=60° ………………5分 ∵⊙O 中半径OD=OF ,∴△OD F 是等边三角形,DF=OD ,∠ODF=60° ∵OD ⊥BC ,∴∠FDC=30°在△DC F 中 CF=1,∠DCF=90°,∠FDC=30°∴DF=OD=2,3 ………………6分 在Rt △ODC 中, OD=2,3ODC=90°y L : y=2x 2-4x+1l : y=-2x+1P23∴O C=7 ………………7分29.解:(1) ∵“带线”L 的顶点在反比例函数xy 6=(x < 0)的图象上,且它的“路线”l 的表达式为42-=x y ,∴ 直线42-=x y 与xy 6=的交点为“带线”L 的顶点,令xx 642=-, 解得3121=-=x x ,(舍去) ………………1分∴“带线”L 的顶点坐标为(-1,-6).设L 的表达式为6)1(2-+=x a y …………………2分 ∵“路线”42-=x y 与y 轴的交点坐标为(0,-4)∴“带线”L 也经过点(0,-4),将(0,-4)代人L 的表达式,解得2=a ∴“带线”L 的表达式为 4426)1(222-+=-+=x x x y …………………3分(不必化为一般式)(2) ∵直线1+=nx y 与y 轴的交点坐标为(0,1),∴ 抛物线122-+-=m mx mx y 与y 轴的交点坐标也为(0,1),得m = 2 …………4分∴ 抛物线表达式为1422+-=x x y ,其顶点坐标为(1,-1) ∴ 直线1+=nx y 经过点(1,-1),解得n = -2 ……………………5分 ∴ “带线”L 的表达式为1422+-=x x y “路线”l (3) 设抛物线的顶点为B ,则点B 坐标为(1,-1),过点B 作BC ⊥y 轴于点C ,又∵点A 坐标为(0,1) , ∴AO=1,BC=1,AC=2. ∵“路线”l 是经过点A 、B 的直线 且⊙P 与“路线”l 相切于点A ,连接P A 交 x 轴于点D ,则P A ⊥AB …………………6分显然Rt △AOD ≌Rt △BCA ,∴OD= AC=2,D 点坐标为(-2,0)则经过点D 、A 、P 的直线表达式为121+=x y ……………………7分∵点P 为直线121+=x y 与抛物线L :1422+-=x x y 的交点,解方程组⎪⎩⎪⎨⎧+=+-=1211422x y x x y 得⎩⎨⎧==1011y x (即点A 舍去),⎪⎪⎩⎪⎪⎨⎧==8174922y x 即点P 的坐标为⎪⎭⎫ ⎝⎛81749,. ……………………8分本评分标准仅出示一种解答过程,其他正确解答请相应评分.。

2019-2019学年北京市房山区中考一模数学试卷含答案

2019-2019学年北京市房山区中考一模数学试卷含答案

第1题图主视图俯视图2017年房山区初中毕业会考试卷一. 选择题(本题共30分,每小题3分):下列各题均有四个选项,其中只有一个..是符合题意的. 1. 实数a 、b 、c 、d 在数轴上的对应点的位置如图所示,在这四个数中,绝对值最小的数是 A. a B. b C.c D. d2. 下列图案是轴对称图形的是A. B. C. D.3. 北京地铁燕房线,是北京地铁房山线的西延线,现正在紧张施工,通车后将是中国大陆第二条全自动无人驾驶线路. 预测初期客流量日均132300人次,将 132300用科学记数法表示应为 A .1.323×105B .1.323×104C .1.3×105D .1.323×1064. 如图,直线a ∥b ,三角板的直角顶点放在直线b 上,两直角边与直线a 相交,如果∠1=55°,那么∠2等于A. 65°B.55°C.45°D. 35°5. 如图,A ,B ,C ,D 是四位同学画出的一个空心圆柱的主视图和俯视图,正确的一组是A. B. C.D.6. 一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其他区别,从这个盒子中随机摸出一个球,摸到红球的概率为xyxyyOOOxyOyOx yyOOA .B .C .D .第7题图CBA东0°330°300°270°240°210°180°150°120°90°60°30°54321A.152 B.31 C.158 D.217. 雷达二维平面定位的主要原理是:测量目标的两个信息——距离 和角度,目标的表示方法为()αγ,,其中: γ表示目标与探测器的距离;α表示以正东为始边,逆时针旋转的角度.如图,雷达探测器显示在点A ,B ,C 处有目标出现,其中目标A 的位置表示为(5,30°) ,目标B 的位置表示为B (4,150°). 用这种方法表示目标C 的位置,正确的是 A. (-3,300°) B. (3,60°) C. (3,300°) D. (-3,60°)8. 2022年将在北京—张家口举办冬季奥运会,北京将成为世界上第一个既举办夏季奥运会,又举办冬季奥运会的城市.某校开设了冰球选修课,12名同学被分成甲、乙两组进行训练,他们的身高(单位:cm )如下表所示:队员1 队员2 队员3 队员4 队员5 队员6 甲组 176 177 175 176 177 175 乙组178175170174183176设两队队员身高的平均数依次为甲x ,乙x ,方差依次为2甲s ,2乙s ,下列关系中完全正确的是A .甲x =乙x ,2甲s <2乙s B .甲x =乙x ,2甲s >2乙s C .甲x <乙x ,2甲s <2乙sD .甲x >乙x ,2甲s >2乙s9.在同一平面直角坐标系中,正确表示函数()0≠+=k k kx y 与()0≠=k xky 图象的是yxO第10题图2第10题图1203HGFE D CBA 第15题图313.5206.7139.69256.936.723.42016201520142013201220112010年份(年)业务量(亿件)22032030028026024020018016014012010080604020第13题图ba nm ABC第14题图10. 如图1,已知点E ,F ,G ,H 是矩形ABCD 各边的中点,AB=6,BD=8.动点M 从点E 出发,沿E →F →G →H →E 匀速运动,设点M 运动的路程为x ,点M 到矩形的某一个顶点的距离为y ,如果表示y 关于x 函数关系的图象如图2所示,那么矩形的这个顶点是 A. 点A B. 点B C. 点C D. 点D二.填空题(本题共18分,每小题3分)11. 如果二次根式5-x 有意义,那么x 的取值范围是 . 12. 分解因式:1822-m = .13. 右图中的四边形均为矩形.根据图形,利用图中的字母,写出一个正确的等式: .14.《九章算术》是我国古代最重要的数学著作之一,在 “勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者 高几何?”翻译成数学问题是: 如图所示,△ABC 中,∠ACB =90°,AC+AB =10,BC =3,求AC 的长. 如果设AC =x ,可列出的方程为 .15. 中国国家邮政局公布的数据显示, 2016年中国快递业务量突破313.5亿件,同比增长51.7%,快递业务量位居世界第一. 业 内人士表示,快递业务连续6年保持50%以上的高速增长,已 成为中国经济的一匹“黑马”,未来中国快递业务仍将保持快 速增长势头. 右图是根据相关数据绘制的统计图,请你预估2017年全国快递的业务量大约为 (精确到0.1)亿件.16.在数学课上,老师提出如下问题:尺规作图:过直线外一点作已知直线的平行线.已知:直线l 及其外一点A .求作:l 的平行线,使它经过点A .A小云的作法如下:小云作图的依据是 .三.解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程。

北京市房山区2017届九年级上月考数学试卷(9月)含答案解析

北京市房山区2017届九年级上月考数学试卷(9月)含答案解析
28.如图,某校数学兴趣小组的同学欲测量一座垂直于地面的古塔 BD的高度,他们先在 A 处测得 古塔顶端点 D 的仰角为 45°,再沿着 BA的方向后退 20m至 C 处,测得古塔顶端点 D 的仰角为 30°.求该古塔 BD的高度( ≈1.732,结果保留一位小数).
29.如图,小山岗的斜坡 AC的坡度是 tanα= ,在与山脚 C 距离 200米的 D 处,测得山顶 A 的仰 角为 26.6°,求小山岗的高 AB(结果取整数:参考数据:sin26.6°=0.45,cos26.6°=0.89, tan26.6°=0.50).
2016-2017 学年北京市房山区九年级(上)月考数学试卷(9 月份)
一、选择题 1. sin60°的值等于( ) A. B. C. D.
2.sin30°的值为( )
A.
B.
C. D.
3. tan60,点 A(t,3)在第一象限,OA与 x 轴所夹的锐角为 α,tanα= ,则 t 的值是( )
30.如图,正方形网格中的每个小正方形边长都是 1,每个小格的顶点叫做格点,以格点为顶点分 别按下列要求画三角形(涂上阴影). (1)在图 1 中,画一个三角形,使它的三边长都是有理数; (2)在图 2,图 3 中,分别画一个直角三角形,使它的三边长都是无理数.(两个三角形不全 等)
第 4 页(共 23 页)
31.如图,在△ABC中,AD是 BC上的高,tanB=cos∠DAC. (1)求证:AC=BD; (2)若 sin∠C= ,BC=12,求 AD的长.
第 5 页(共 23 页)
A.1 B.1.5 C.2 D.3 5.在 Rt△ABC中,∠C=90°,sinA= ,则 cosB的值为( ) A. B. C. D. 6.在 Rt△ABC中,∠C=90°,BC=3,AB=5,则 sinA的值为( ) A. B. C. D. 7.如图,在平面直角坐标系中,直线 OA过点(2,1),则 tanα 的值是( )

2017.1 房山初三上 数学期末答案

2017.1 房山初三上 数学期末答案
9 4 , 17 8 )




17. 【答案】√2 − √3
18. 【答案】(1)y = (x − 3)
2
−4

(2)对称轴为x = 3 ,顶点坐标为(3, −4) .
19. 【答案】这个三角形的BC = 2 ,∠A = ∠C = 45∘ .


20. 【答案】y = x2 − 2x − 3 .

21. 【答案】树状图,列表见解析,摸出的两张牌均为黑色的概率 .
6
1
22. 【答案】(1)m > −
5 4

(2)答案不唯一,符合条件即可.
23. 【答案】(1)证明见解析. (2)S △AOB= 24 .
24. 【答案】AD = 2 + 2√3 .
25. 【答案】(1)答案见解析. (2)直角△ABC 最小覆盖圆的圆心是斜边中点. (3)①锐角△ABC 的最小覆盖圆是它的外接圆, ②直角△ABC 的最小覆盖圆是它的外接圆(或以最长边为直径的圆), ③钝角△ABC 的最小覆盖圆是以最长边为. (2)答案见解析.
四、解答题(第27题7分,第28题7分,第29题8分,共22分)
27. 【答案】(1)证明见解析. (2)OC = √7 .
28. 【答案】(1)n = 2 或n = 0 . (2)−2 ⩽ n < 1 或n = 2 .
29. 【答案】(1)y = 2x2 + 4x − 4 . (2)m = 2 ,n = −2 . (3)点P 的坐标为(
12. 【答案】6
13. 【答案】30∘



14. 【答案】4π − 3√3
15. 【答案】y = (10 + x)(200 − 10x) = −10x2 + 100x + 2000

中考数学一模考试试题练习2017年(附答案)

中考数学一模考试试题练习2017年(附答案)

中考数学一模考试试题练习2017年(附答案)初中的学习至关重要,广大中学生朋友们一定要掌握科学的学习方法,提高学习效率。

以下是精品学习网初中频道为大家提供的中考数学一模考试试题练习,供大家复习时使用A级基础题1.若二次函数y=ax2的图象经过点P(-2,4),则该图象必经过点( )A.(2,4)B.(-2,-4)C.(-4,2)D.(4,-2)2.抛物线y=x2+bx+c的图象先向右平移2个单位长度,再向下平移3个单位长度,所得图象的函数解析式为y=(x-1)2-4,则b,c的值为( )A.b=2,c=-6B.b=2,c=0C.b=-6,c=8D.b=-6,c=23.如图3 4 11,二次函数y=ax2+bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是( )A.abc 0B.2a+b 0C.a-b+c 0D.4ac-b2 04.二次函数y=ax2+bx的图象如图3 4 12,那么一次函数y=ax+b的图象大致是( )5.若抛物线y=x2-2x+c与y轴的交点为(0,-3),则下列说法不正确的是( )A.抛物线开口向上B.抛物线的对称轴是x=1C.当x=1时,y的最大值为-4D.抛物线与x轴的交点为(-1,0),(3,0)6.二次函数y=ax2+bx+c图象上部分点的坐标满足下表:x -3 -2 -1 0 1y -3 -2 -3 -6 -11则该函数图象的顶点坐标为( )A.(-3,-3)B.(-2,-2)C.(-1,-3)D.(0,-6)7.若关于x的函数y=kx2+2x-1与x轴仅有一个公共点,则实数k的值为__________.8.请写出一个开口向上,并且与y轴交于点(0,1)的抛物线的解析式______________.9.已知抛物线y=-x2+bx+c经过点A(3,0),B(-1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.B级中等题10.已知二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2-3x+m=0的两实数根是( )A.x1=1,x2=-1B.x1=1,x2=2C.x1=1,x2=0D.x1=1,x2=311.二次函数y=ax2+bx+c的图象如图3 4 13,给出下列结论:①2a+b ②b a ③若-1图3 4 1312.已知二次函数y=x2-2mx+m2-1.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图3 4 14,当m=2时,该抛物线与y轴交于点C,顶点为D,求C,D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.C级拔尖题13.如图3 4 15,已知抛物线y=1a(x-2)(x+a)(a 0)与x轴交于点B,C,与y轴交于点E,且点B 在点C的左侧.(1)若抛物线过点M(-2,-2),求实数a的值;(2)在(1)的条件下,解答下列问题;①求出△BCE的面积;②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标.14已知二次函数y=mx2+nx+p图象的顶点横坐标是2,与x轴交于A(x1,0),B(x2,0),x1 0(1)求证:n+4m=0;(2)求m,n的值;(3)当p 0且二次函数图象与直线y=x+3仅有一个交点时,求二次函数的最大值.15.(2013年广东湛江)如图3 4 16,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x轴与B,C两点(点B在点C的左侧),已知A点坐标为(0,-5).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与△C的位置关系,并给出证明;(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形.若存在,求点P的坐标;若不存在,请说明理由.参考答案:1.A2.B 解析:利用反推法解答,函数y=(x-1)2-4的顶点坐标为(1,-4),其向左平移2个单位长度,再向上平移3个单位长度,得到函数y=x2+bx+c,又△1-2=-1,-4+3=-1,平移前的函数顶点坐标为(-1,-1),函数解析式为y=(x+1)2-1,即y=x2+2x,b=2,c=0.3.D4.C5.C6.B7.k=0或k=-1 8.y=x2+1(答案不唯一)9.解:(1)△抛物线y=-x2+bx+c经过点A(3,0),B(-1,0),抛物线的解析式为y=-(x-3)(x+1),即y=-x2+2x+3.(2)△y=-x2+2x+3=-(x-1)2+4,抛物线的顶点坐标为(1,4).10.B 11.①③④12.解:(1)将点O(0,0)代入,解得m= 1,二次函数关系式为y=x2+2x或y=x2-2x.(2)当m=2时,y=x2-4x+3=(x-2)2-1,D(2,-1).当x=0时,y=3,C(0,3).(3)存在.接连接C,D交x轴于点P,则点P为所求.由C(0,3),D(2,-1)求得直线CD为y=-2x+3.当y=0时,x=32,P32,0.13.解:(1)将M(-2,-2)代入抛物线解析式,得-2=1a(-2-2)(-2+a),解得a=4.(2)①由(1),得y=14(x-2)(x+4),当y=0时,得0=14(x-2)(x+4),解得x1=2,x2=-4.△点B在点C的左侧,B(-4,0),C(2,0).当x=0时,得y=-2,即E(0,-2).S△BCE=12 6 2=6.②由抛物线解析式y=14(x-2)(x+4),得对称轴为直线x=-1,根据C与B关于抛物线对称轴x=-1对称,连接BE,与对称轴交于点H,即为所求.设直线BE的解析式为y=kx+b,将B(-4,0)与E(0,-2)代入,得-4k+b=0,b=-2,解得k=-12,b=-2. 直线BE的解析式为y=-12x-2.将x=-1代入,得y=12-2=-32,则点H-1,-32.14.(1)证明:△二次函数y=mx2+nx+p图象的顶点横坐标是2,抛物线的对称轴为x=2,即-n2m=2,化简,得n+4m=0.(2)解:△二次函数y=mx2+nx+p与x轴交于A(x1,0),B(x2,0),x1 0OA=-x1,OB=x2,x1+x2=-nm,x1 x2=pm.令x=0,得y=p,C(0,p). OC=|p|.由三角函数定义,得tan CAO=OCOA=-|p|x1,tan CBO=OCOB=|p|x2.△tan CAO-tan CBO=1,即-|p|x1-|p|x2=1.化简,得x1+x2x1 x2=-1|p|.将x1+x2=-nm,x1 x2=pm代入,得-nmpm=-1|p|化简,得n=p|p|= 1.由(1)知n+4m=0,当n=1时,m=-14;当n=-1时,m=14.m,n的值为:m=14,n=-1(此时抛物线开口向上)或m=-14,n=1(此时抛物线开口向下).(3)解:由(2)知,当p 0时,n=1,m=-14,抛物线解析式为:y=-14x2+x+p.联立抛物线y=-14x2+x+p与直线y=x+3解析式得到-14x2+x+p=x+3,化简,得x2-4(p-3)=0.△二次函数图象与直线y=x+3仅有一个交点,一元二次方程根的判别式等于0,即=02+16(p-3)=0,解得p=3.y=-14x2+x+3=-14(x-2)2+4.当x=2时,二次函数有最大值,最大值为4.15.解:(1)设此抛物线的解析式为y=a(x-3)2+4,此抛物线过点A(0,-5),-5=a(0-3)2+4,a=-1.抛物线的解析式为y=-(x-3)2+4,即y=-x2+6x-5.(2)抛物线的对称轴与△C相离.证明:令y=0,即-x2+6x-5=0,得x=1或x=5,B(1,0),C(5,0).设切点为E,连接CE,由题意,得,Rt△ABO△Rt△BCE.ABBC=OBCE,即12+524=1CE,解得CE=426.△以点C为圆心的圆与直线BD相切,△C的半径为r=d=426.又点C到抛物线对称轴的距离为5-3=2,而2 426.则此时抛物线的对称轴与△C相离.(3)假设存在满足条件的点P(xp,yp),△A(0,-5),C(5,0),AC2=50,AP2=(xp-0)2+(yp+5)2=x2p+y2p+10yp+25,CP2=(xp-5)2+(yp-0)2=x2p+y2p-10xp+25.①当A=90 时,在Rt△CAP中,由勾股定理,得AC2+AP2=CP2,50+x2p+y2p+10yp+25=x2p+y2p-10xp+25,整理,得xp+yp+5=0.△点P(xp,yp)在抛物线y=-x2+6x-5上,yp=-x2p+6xp-5.xp+(-x2p+6xp-5)+5=0,解得xp=7或xp=0,yp=-12或yp=-5.点P为(7,-12)或(0,-5)(舍去).②当C=90 时,在Rt△ACP中,由勾股定理,得AC2+CP2=AP2,50+x2p+y2p-10xp+25=x2p+y2p+10yp+25,整理,得xp+yp-5=0.△点P(xp,yp)在抛物线y=-x2+6x-5上,yp=-x2p+6xp-5,xp+(-x2p+6xp-5)-5=0,解得xp=2或xp=5,yp=3或yp=0.点P为(2,3)或(5,0)(舍去)综上所述,满足条件的点P的坐标为(7,-12)或(2,3).这就是我们为大家准备的中考数学一模考试试题练习的内容,希望符合大家的实际需要。

北京市房山区初三一模数学试卷(WORD版含答案)

北京市房山区初三一模数学试卷(WORD版含答案)

2015-2016学年北京市房山区初三一模数学试卷(WORD版含答案)房山区2016年初三数学综合练习(一)一、选择题(本大题共30分,每小题3分):1.为了减少燃煤对大气的污染,北京实施煤改电工程.每年冬季采暖季期间可压减燃煤约608000吨,将608000用科学记数法表示应为A.60.810B.6.0810C. 0.60810D. 6.08102.如图,数轴上有A,B,C,D四个点,其中表示2的相反数的点是4465 A-4A.点A B0C123456D.点D -3-2-1B.点B C.点C3.有五张形状、大小、质地都相同的卡片,这些卡片上面分别画有下列图形:①正方形;②等边三角形;③平行四边形;④等腰三角形;⑤圆.将卡片背面朝上洗匀,从中随机抽取一张,抽出的纸片正面图形是轴对称图形,但不是中心对称图形的概率是 A. B. 15234 C. D. 5554题图4.如图,在△ABC中,∠C=90°,点D在AC边上,DE∥AB,如果∠ADE=46°,那么∠B等于A.34° B.54° C.46° D.44°5.象棋在中国有着三千多年的历史,属于二人对抗性游戏的一种。

由于用具简单,趣味性强,成为流行极为广泛的棋艺活动。

如图是一方的棋盘,如果“帅”的坐标是(0,1),“卒”的坐标是(2,2),那么“马”的坐标是A.(-2,1) B.(2,-2) C.(-2,2)D.(2,2) B6.为了估算河的宽度,我们可以在河对岸的岸边选定一个目标记为点A,再在河的这一边选点B和点C,使得AB⊥BC,然后再在河岸上选点E,使得EC⊥BC,设BC与AE交于点D,•如图所示,测得BD=120米,DC=60米,EC=50米,那么这条河的大致宽度是A.75米 B.25米 C.100米 D. 120米7. 在“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的A. 中位数B. 众数C.平均数D. 方差8. 下列几何体中,主视图相同的是A.①② B.①④ C.①③ D.②④9.如图,将△ABC绕点C按顺时针旋转60°得到△A′B′C,已知AC=6,BC=4,则线段AB扫过的图形的面积为 A. 8210π B. π C.6π D. π 33310.如图,在正方形ABCD中,AB=3cm,动点M自点A出发沿AB方向以每秒1厘米的速度运动,同时动点N自点A出发沿折线AD—DC—CB以每秒3厘米的速度运动,到达点B时运动同时停止.设△AMN的面积为y(厘米),运动时间为x(秒),则下列图象中能大致反映y与x之间的函数关系的是二、填空题(本大题共18分,每小题3分):11. 分解因式:a3a=________________.12.已知反比例函数的图象经过A(2,-3),那么此反比例函数的关系式为______.13. 2016年3月12日“植树节”前夕,某小区为绿化环境,购进200棵柏树苗和120棵枣树苗,且两种树苗所需费用相同.每棵枣树苗的进价比每棵柏树苗的进价的2倍少5元,求这两种树苗的进价分别是多少元.如果设每棵柏树苗的进价是x元,那么可列方程为______________.14.关于x的一元二次方程mx+4x+1=0有两个实数根,那么m的取值范围是 .15. 二次函数y=ax+bx+c(a≠0)图象经过A(-1,m),B(2,m).写出一组满足条件的a、b的值:a=_____,b=______.16.如图,已知∠AOB.小明按如下步骤作图:① 以点O为圆心,任意长为半径画弧,交OA于点D,交OB于点E.222DCNAMB② 分别以D,E为圆心,大于③ 画射线OC. 1DE长为半径画弧,在∠AOB的内部两弧交于点C. 2所以射线OC为所求∠AOB的平分线.根据上述作图步骤,回答下列问题:(1)写出一个正确的结论:________________________.(2)如果在OC上任取一点M,那么点M到OA、OB的距离相等.依据是:_______________________________________________________.三、解答题(本大题共72分,其中第17—26题,每小题5分,第27题7分,第28题7分,第29题8分):17. 计算: 3tan30+(2016-)13().18.已知3a4a70,求代数式(2a1)2(a b)(a b)b2的值.19. 解分式方程:20.已知:如图,在△ABC中,∠ABC = 90°,BD为AC边的中线,过点C 作CE∥AB与BD延长线交于点E.求证:∠A =∠E.21.列方程(组)解应用题:为提高饮用水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A、B两种型号家用净水器共160台,A型号家用净水器进价为每台150元,B型号家用净水器进价为每台350元,购进两种型号的家用净水器共用去36000元.求A、B两种型号家用净水器各购进了多少台.BE20121x221. xx 222. 如图,在ABCD中,E为BC中点,过点E作EG AB 于G,连结DG,延长DC,交GE的延长线于点H.已知BC10,GDH45,DG求 CD的长.23 .如图,在平面直角坐标系中,点A(2,0),B(0,3),C(0,2),点D在第二象限,且△AOB≌△OCD.(1) 请在图中画出△OCD,并直接写出点D的坐标; (2) 点P在直线AC上,且△PC D是等腰直角三角形.求点P的坐标.24.如图,AB为⊙O的直径,点C在⊙O上,且∠CAB=30°,点D为弧AB的中点, AC=求CD的长.xAB25. “PM2.5”是指大气中危害健康的直径小于2.5微米的颗粒物,也称可入肺颗粒物.公众对于大气环境质量越来越关注,某市为了了解市民对于“PM 2.5浓度升高时,对于户外活动的影响”的态度,随机抽取了部分市民进行调查.根据调查的相关数据,绘制的统计图表如下:PM2.5浓度升高时对于户外活动公众的态度的扇形统计图2%6%30% BPM2.5浓度升高时对于户外活动公众的态度的条形统计图D42% C根据以上信息解答下列问题:(1)直接写出统计表中m的值;(2)根据以上信息,请补全条形统计图;(3)如果该市约有市民400万人,根据上述信息,请你估计一下持有“影响很大,尽可能不去户外活动”这种态度的约有多少万人.26.如图,在平面直角坐标系xOy中,双曲线y1(1)当x 时,y1>0;2 x(2)直线y2xb,当b线有唯一公共点,问:b 时,直线与双曲线有两个公共点;(3)如果直线y2x b与双曲线y1交于A、xB两点,且点A的坐标为(1,2),点B的纵坐标为1.设E为线段AB的中点,过点E作x轴的垂线EF,交双曲线于点F.求线段EF的长.27. 如图,二次函数y x2bx c的图象(抛物线)与x轴交于A(1,0), 且当x0和x2时所对应的函数值相等.(1)求此二次函数的表达式;(2)设抛物线与x轴的另一交点为点B,与y轴交于点C,在这条抛物线的对称轴上是否存在点D,使得△DAC的周长最小?如果存在,求出D点的坐标;如果不存在,请说明理由.(3)设点M在第二象限,且在抛物线上,如果△MBC的面积最大,求此时点M的坐标及△MBC的面积.28.如图1,在四边形ABCD中,BA=BC,∠ABC=60°,∠ADC=30°,连接对角线BD.(1)将线段CD绕点C顺时针旋转60°得到线段CE,连接AE.①依题意补全图1;②试判断AE与BD的数量关系,并证明你的结论;(2)在(1)的条件下,直接写出线段DA、DB和DC之间的数量关系;(3)如图2,F是对角线BD上一点,且满足∠AFC=150°,连接FA和FC,探究线段FA、FB和FC之间的数量关系,并证明.(图1)(图2)29.在平面直角坐标系xoy中,对于任意三点A,B,C给出如下定义:如果正方形的任何一条边均与某条坐标轴平行,且A,B,C三点都在正方形的内部或边界上,那么称该正方形为点A,B,C的外延正方形,在点A,B,C所有的外延正方形中,面积最小的正方形称为点A,B,C的最佳外延正方形.例如,图1中的正方形A1B1C1D1,A2B2C2D2 ,A3B3CD3都是点A,B,C的外延正方形,正方形A3B3CD3是点A,B,C的最佳外延正方形.(图1)(图2)(1)如图1,点A(-1,0),B(2,4),C(0,t)(t为整数).① 如果t=3,则点A,B,C的最佳外延正方形的面积是;② 如果点A,B,C的最佳外延正方形的面积是25,且使点C在最佳外延正方形的一边上,请写出一个符合题意的t值;(图3 )(图4)(2)如图3,已知点M(3,0),N(0,4),P(x,y)是抛物线y=x2-2x-3上一点,求点M,N,P的最佳外延正方形的面积以及点P的横坐标x的取值范围;(3)如图4,已知点E(m,n)在函数y6(x>0)的图象上,且点D的坐标为(1,1),设点O,xD,E的最佳外延正方形的边长为a,请直接写出a的取值范围.房山区2016年初三数学综合练习(一)参考答案及评分标准三、选择题(本大题共30分,每小题3分):四、填空题(本大题共18分,每小题3分):11.a a1a1. 12. y= 6. 13. 200x1202x5. x14.m4且m0. 15. a=1,b=-1. 答案不唯一(全对给3分).16. (1) OD=OE或DC=EC或OC平分∠AOB等等均可;--------------------------1分(2)角平分线上的点到角两边距离相等. --------------------------3分三、解答题(本大题共72分,其中第17—26题,每小题5分,第27题7分,第28题7分,第29题8分):17.解: 3tan30+(2016-)1() 012 1=33131 2 ----------------------------4分 3=2 2 ----------------------------5分18.解:法1:(2a1)2(a b)(a b)b2=4a4a1(a b) b ---------------------------2分=4a4a1a b b=3a4a 1 ----------------------------3分∵3a4a70,∴3a4a7, -----------------------------4分当3a4a7时原式=71=8 --------------------------5分法2:(2a1)(a b)(a b) b=4a4a1(a b) b ---------------------------2分=4a4a1a b b=3a4a 1 ----------------------------3分22222222222222222222222∵3a4a70,∴a11,a227 -----------------------------4分 3当a11时,原式=8 当a219.解: (x2)(x2)x(x2)2x ---------------------------1分 7时,原式=8 ------------------------------5分 3x24x22x2x ----------------------------2分解得:x 1 ------------------------------------------------3分经检验x1是原方程的解. ------------------------------------------------4分∴原方程的解是x 1. -------------------------------------------------5分20.证明:法1:∵在△ABC中, ∠ABC = 90°,BD为AC边的中线.∴BD = AD = 1AC. ---------------------------------------------1分 2∴∠A= ∠ABD, ---------------------------------------------3分∵CE∥AB ,∴∠ABD =∠E. --------------------------------------------4分∴∠A=∠E. ---------------------------------------------5分法2:∵CE∥AB ,∴∠ABC +∠ECB =180°. ---------------------------------------------1分∵∠ABC = 90°,∴∠ECB = 90°. ---------------------------------------------2分∴∠A +∠ACB =90°,∠E +∠EBC= 90°.∵在△ABC中, ∠ABC = 90°,BD为AC边的中线,∴CD = BD = 1AC. ---------------------------------------------3分 2∴∠ACB = ∠EBC, -----------------------------------------------4分∴∠A=∠E. ------------------------------------------------5分法3:∵CE∥AB ,∴∠ABC +∠ECB =180°. ---------------------------------------------1分∵∠ABC = 90°,∴∠ECB = 90°. ----------------------------------------------2分∴∠ABC =∠ECB.∵在△ABC中, ∠ABC = 90°,BD为AC边的中线,∴CD = BD = 1AC. --------------------------------------------3分 2∴∠ACB = ∠EBC, --------------------------------------------4分∴△ABC∽△ECB.∴∠A=∠E. --------------------------------------------5分法4:∵在△ABC中, ∠ABC = 90°,BD为AC边的中线,∴CD = BD = 1AC. ---------------------------------------------1分 2∴∠DCB = ∠DBC, -------------------------------------------2分∵CE∥AB ,∴∠ABC +∠ECB =180°. ----------------------------------------------3分∵∠ABC = 90°,∴∠ECB =90°.∴∠ABC =∠ECB . ----------------------------------------------4分∵BC=CB∴△ABC ≌△ECB.∴∠A=∠E. ----------------------------------------------5分法5:∵在△ABC中, ∠ABC = 90°,BD为AC边的中线,∴BD = CD = 1AC. ---------------------------------------------1分 2∴∠DBC= ∠DCB, ---------------------------------------------2分∵CE∥AB ,∴∠ABC +∠ECB =180°. --------------------------------------------3分∵∠ABC = 90°,∴∠ECB =90°.∴∠ABC =∠ECB . ---------------------------------------------4分∴∠ABC-∠DBC =∠ECB-∠DCB .即:∠ABD =∠ECD∵∠ADB =∠EDC .∴∠A=∠E. --------------------------------------------5分21.解:设购进A型号净水器每台x元,B型号净水器每台y元,-----------------------1分根据题意,得:解得: ---------------------------3分x100 ----------------------------5分y60答:A种型号家用净水器购进了100台,B种型号家用净水器购进了60台.22.解:∵四边形ABCD是平行四边形∴AB∥CD,∵EG ⊥AB于点G,∴BGE EHC90.在△DHG中,GHD90,GDH45,DG∴DH GH8. -------------------------1分∵E为BC中点,BC10,∴BE EC5. ------------------------2分∵BEG CEH∴△BEG≌△CEH.∴GE HE12GH4. ------------------------3分在△EHC中,H90,CE5,EH4,∴CH3. -----------------------4分∴CD 5 -------------------------5分23.(1)图1,正确画出△COD ---------------------------1分x点D的坐标为:D(-3,2). -----------------------2分 (2) 由OC =OA=2,∠AOC=90°,∴∠OAC=45°.∵A(2,0),C(0,2)∴过A、C两点的一次函数的关系式为:y x 2 ------------------3分① 当CD为直角边时,如图2,此时,点P的横坐标为-3.∴P(-3,5). --------------------------------------4分② 当CD为斜边时,如图,此时3,点P的横坐标为 32. ∴P(3722). ---------------------------------------5分∴在直线AC 上,使△PCD是等腰直角三角形的点P坐标为:(-3,5)或(32,72).(图1)(图2)(图3)24.解法1:连结BC∵AB为⊙O的直径,点C在⊙O上,∴∠ACB =90°. -------------1分∵∠CAB =30°,∴∠D =60°. ---------------2分∵点D为弧AB的中点,∴∠ACD =45°.过点A作AE⊥CD,∵AC=AB∴AE=CE =分∴DE =分∴CD =分解法2:∵AB为⊙O的直径,点D为弧AB的中点,∴∠DAB =∠ACD =45°. ------------1分∵∠CAB =30°,∴弧BC=60°,弧AC =120°.∴∠ADC =60°. ------------------2分过点A作AE⊥CD,∵AB∴AE=CE =分∴DE =分∴CD =分25. 解:(1)20%; ---------------------------------- 1分(2)如图-----------------------3分(3)400×20%=80(万人). -----------------------5分26.解:(1)x>0 -----------1分(2)当b<22或b>22,-----3分(3)∵点B的纵坐标为1,∴点B的横坐标为2,∵点E为AB中点,33∴点E坐标为(,) ---------4分2234∴点F的坐标为(,)23341∴EF= -------------5分23627.解:(1)∵二次函数y x2bx c,当x0和x2时所对应的函数值相等,∴二次函数y x2bx c的图象的对称轴是直线x1.∵二次函数y x2bx c的图象经过点A(1,0),1b c0 b∴ ----------------------------------------1分1 2解得b 2c 3∴二次函数的表达式为:y x22x3. ---------------------------------------2分(2)存在由题知A、B两点关于抛物线的对称轴x=﹣1∴连接BC,与x=﹣1的交于点 D,此时△DAC长最小 ----------------------3分∵y x22x 3∴C的坐标为:(0,3)直线BC解析式为:y=x+3 --------------------4分∴D(﹣1,2); ---------- 5分(3)设M点(x,x2x3)(﹣3<x<0)作过点M作ME⊥x轴于点E,则E(x,0) ∵S△MBC=S四边形BMCO﹣S△BOC=S四边形BMCO﹣29, 2S四边形BMCO=S△BME+S四边形MEOC11BE ME OE(ME OC) 221122=(x+3)(x2x3)+(﹣x)(x2x3+3) 2233927=x2228∵要使△MBC的面积最大,就要使四边形BMCO面积最大23927时,四边形BMCO在最大面积= 228927927∴△BMC最大面积= --------------------------------6分2828315当x=-时,y x22x3=24315∴点M坐标为(-,) --------------------------------7分24当x=-28. (1)①补全图形,如图1 ---------------------------------1分②判断: AE=BD ---------------------------------2分证明:如图2,连接AC∵BA=BC,且∠ABC=60° ∴△ABC是等边三角形∴∠ACB=60°,且CA=CB∵将线段CD绕点C顺时针旋转60°得到线段CE ∴CD=CE,且∠DCE=60° ∴∠BCD=∠ACE∴△BCD≌△ACE(SAS)B∴AE=BD ------------------------------3分(2)判断:DA DC DB ------------------------4分(3)判断:FA FC FB -------------------------5分证明:如图3,连接AC∵BA=BC,且∠ABC=60° ∴△ABC是等边三角形∴∠ACB=60°,且CA=CB将线段CF绕点C顺时针旋转60°得到线段CE,连接EF、EA222222B∴CE=CF,且∠FCE=60°,∴△CEF是等边三角形∴∠CFE=60°,且FE=FC ∴∠BCF=∠ACE∴△BCF≌△ACE(SAS)∴AE=BF ---------------------------------6分∵∠AFC=150°, ∠CFE=60° ∴∠AFE=90°在Rt△AEF中,有:FA FE AE∴FA FC FB. ---------------------------------7分29.解:(1)① 16 ; ---------------------------------2分② 5或-1 ; ----------------------------------3分(2)以ON为一边在第一象限作正方形OKIN,如图3①点M在正方形OKIN的边界上,抛物线一部分在正方形OKIN内,P是抛物线上一点,∴正方形OKIN是点M,N,P的一个面积最小的最佳外延正方形∴点M,N,P的最佳外延正方形的面积的最小值是16;∴点M,N,P的最佳外延正方形的面积S的取值范围是:S16 -----------------5分满足条件的点P的横坐标x的取值范围是x 3 ------------------------------6分BC28-图322D2222(3)a 6 ----------------------------------8分。

北京市房山区初三一模数学试题及答案

北京市房山区初三一模数学试题及答案

房山区初三毕业会考试卷数学一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一.个.是符合题意的.用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑. 1.如图,数轴上有A ,B ,C ,D 四个点,其中表示2的相反数的点是C B A12345-1-2-3-46A .点AB .点BC .点CD .点D2.据海关统计,2015年前两个月,我国进出口总值为37900亿元人民币,将37900用科学记数法表示为 A .3.79×102B .0.379×105C .3.79×104D .379×1023.一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,则摸出红球的概率是 A .47 B .37 C .34D .14.如图,直线,,a b a∥b ,点C 在直线b 上,∠DCB =90°,若∠1=则∠2的度数为A .20°B . 25°C .30°D . 40°5. 右图是某几何体的三视图,该几何体是A. 圆柱B.正方体C. 圆锥D.长方体第4题图俯视图左视图主视图B6.:则这6个区域降雨量的众数和平均数分别为A .13,13.8B .14,15C .13,14D .14,14.57.小强骑自行车去郊游,9时出发,15时返回.右图表示他距家的距离y (千米)与相应的时刻x (时)之间的函数关系的图象.根据这个图象,小强14时距家的距离是A.13B.14C.15D.168. 如图,AB 是⊙O 的直径,C 、D 是圆上两点,∠BOC =70°,则∠D 等于A .25°B .35°C .55°D .70°9.如图,某人站在楼顶观测对面的笔直的旗杆AB .已知观测点C 到旗杆的距离CE=8m ,测得旗杆的顶部A 的仰角∠ECA=30°,旗杆底部B 的俯角∠ECB=45°,那么,旗杆AB 的高度是A.m )3828(+B .m )388(+C .m )33828(+D .m )3388(+第9题图10.如图,已知抛物线2+23y x x =-,把此抛物线沿y 轴向上平移,平移后的抛物线和原抛物线与经过点()0,2-,()0,2且平行于y 轴的两条直线所围成的阴影部分的面积为s ,平移的距离为m ,则下列图象中,能表示s 与m 的函数关系的图象大致是msm smsO O O Om s二、填空题(本题共18分,每小题3分)11. 分解因式:a a -34=________________.12.把代数式x 2-4x +1化成 (x -h )2+k 的形式,其结果是_____________. 13.请写出一个y 随x 的增大而增大的反比例函数的表达式: ________________.14.甲、乙两人进行射击比赛,在相同条件下各射击10次.已知他们的平均成绩相同,方差分别是2=2.6S 甲,23S =乙,那么甲、乙两人成绩较为稳定的是________________.15.随着北京公交票制票价调整,公交集团更换了新版公交站牌,乘客在乘车时可以通过新版公交站牌计算乘车费用.新版站牌每一个站名上方都有一个对应的数字,将上下车站站名所对应数字相减取绝对值就是乘车路程,再按照其所在计价区乘车路程计价区段 0-10 11-15 16-20 ... 对应票价(元)234...另外,一卡通普通卡刷卡实行5折优惠,学生卡刷卡实行2.5折优惠.小明用学生卡乘车,上车时站名上对应的数字是5,下车时站名上对应的数字是22,那么,小明乘车的费用是________________元.yx2-2OA B C D第10题图16.如图,在平面直角坐标系中放置了5个正方形,点B 1(0,2)在y 轴上,点C 1,E 1,E 2,C 2,E 3,E 4,C 3在x 轴上,C 1的坐标是(1,0),B C 11∥B C 22∥B C 33.则点A 1到x 轴的距离是________________,点A 2到x 轴的距离是________________,点A 3到x 轴的距离是________________.三、解答题(本题共30分,每小题5分)171012tan 60()(2015)3︒-++-.18.解不等式+x x--21123≤,并把它的解集在数轴上表示出来.19.如图,CE =CB ,CD =CA ,∠DCA =∠ECB .求证:DE =AB .20.已知x x +-=2280,求代数式x x x x x +÷---++221111211的值. 32O 第16题图y3432211B第19题图C21.如图,在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0)的图象经过A (0,﹣2),B (1,0)两点,与反比例函数my x(m ≠0)的图象在第一象限内交于点M ,若△OBM 的面积是2. (1)求一次函数和反比例函数的表达式;(2)若点P 是x 轴上一点,且满足△AMP 是以AM 为直角边的直角三角形,请直接写出点P 的坐标.22.列方程或方程组解应用题为了鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费).规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.下图是张磊家2014年3月和4月所交电费的收据:请问该市规定的第一阶梯电价和第二阶梯电价分别为每度多少元?第21题图yxBAMO四、解答题(本题共20分,每小题5分)23.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,过点O 作一条直线分别交DA 、BC的延长线于点E 、F ,连接BE 、DF . (1)求证:四边形BFDE 是平行四边形;(2)若AB =4,CF =1,∠ABC =60°,求sin DEO 的值.24. 某校开展“人人读书”活动.小明为调查同学们的阅读兴趣,抽样调查了40名学生在本校图书馆的借阅情况(每人每次只能借阅一本图书),绘制了统计图1. 并根据图书馆各类图书所占比例情况绘制了统计图2,已知综合类图书有40本.(1)补全统计图1;(2)该校图书馆共有图书________________本;(3)若该校共有学生1000人,试估算,借阅文学类图书.....的有______________人.校图书馆各类图书所占比例统计图各类图书借阅人次分布统计图图2图125.如图,AB 为⊙O 直径,C 是⊙O 上一点,CO ⊥AB 于点O ,弦CD 与AB 交于点F ,过点D 作∠CDE ,使∠CDE =∠DFE ,交AB 的延长线于点E . 过点A 作⊙O 的切线交ED 的延长线于点G . (1)求证:GE 是⊙O 的切线;(2)若OF :OB =1:3,⊙O 的半径为3,求AG 的长.26.小明遇到这样一个问题:如图1,在锐角△ABC 中,AD 、BE 、CF 分别为△ABC 的高,求证:∠AFE =∠ACB . 小明是这样思考问题的:如图2,以BC 为直径做半⊙O ,则点F 、E 在⊙O 上,∠BFE +∠BCE =180°,所以∠AFE =∠ACB .请回答:若∠ABC =40,则∠AEF 的度数是 . 参考小明思考问题的方法,解决问题:如图3,在锐角△ABC 中,AD 、BE 、CF 分别为△ABC 的高,求证:∠BDF =∠CDE .图1 图2 图3OG E第25题图五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27. 在平面直角坐标系中,抛物线32++=bx ax y 与x 轴的两个交点分别为A (-3,0), B (1,0),顶点为C .(1) 求抛物线的表达式和顶点坐标;(2) 过点C 作CH ⊥x 轴于点H ,若点P 为x 轴上方的抛物线上一动点(点P 与顶点C 不重合),PQ ⊥AC 于点Q ,当△PCQ 与△ACH 相似时,求点P 的坐标.28.如图1,已知线段BC =2,点B 关于直线AC 的对称点是点D ,点E 为射线CA 上一点,且ED =BD ,连接DE ,BE .(1) 依题意补全图1,并证明:△BDE 为等边三角形;(2) 若∠ACB =45°,点C 关于直线BD 的对称点为点F ,连接FD 、FB .将△CDE 绕点D 顺时针旋转α度(0°<α<360°)得到△''C DE ,点E 的对应点为E ′,点C 的对应点为点C ′.①如图2,当α=30°时,连接'BC .证明:EF ='BC ;②如图3,点M 为DC 中点,点P 为线段''C E 上的任意一点,试探究:在此旋转过程中,线段PM 长度的取值范围?图1 图2 图329.【探究】如图1,点()N m,n 是抛物线21114y x =-上的任意一点,l 是过点()02,-且与x 轴平行的直线,过点N 作直线NH ⊥l ,垂足为H .①计算: m=0时,NH= ; m =4时,NO = . ②猜想: m 取任意值时,NO NH (填“>”、“=”或“<”).【定义】我们定义:平面内到一个定点F 和一条直线l (点F 不在直线l 上)距离相等的点的集合叫做抛物线,其中点F 叫做抛物线的“焦点”,直线l 叫做抛物线的“准线”.如图1中的点O 即为抛物线1y 的“焦点”,直线l :2y =-即为抛物线1y 的“准线”.可以发现“焦点”F 在抛物线的对称轴上.【应用】(1)如图2,“焦点”为F (-4,-1)、“准线”为l 的抛物线()221+44y x k =+与y 轴交于点N (0,2),点M 为直线FN 与抛物线的另一交点.MQ ⊥l 于点Q ,直线l 交y 轴于点H .① 直接写出抛物线y 2的“准线”l : ; ②计算求值:1MQ +1NH =;(2)如图3,在平面直角坐标系xOy 中,以原点O 为圆心,半径为1的⊙O 与x 轴分别交于A 、B 两点(A 在B 的左侧),直线y = 33x +n 与⊙O 只有一个公共点F ,求以F 为“焦点”、x 轴为“准线”的抛物线23y ax bx c =++的表达式.图2图3图1房山区初中毕业会考试卷 数学参考答案和评分参考一、选择题(本题共30分,每小题3分,)下列各题均有四个选项,其中只有一个..是符合题意的.用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑.1.A 2.C 3.B 4.A 5. D 6.C 7.C 8.B 9.D 10.B 二、填空题(本题共18分,每小题3分) 11.(+2)(2)a a a - 12.2(2)3x -- 13.1y x=-(答案不唯一) 14.甲 15.1 16.3,32,34三、解答题(本题共30分,每小题5分) 17.原式=31++………………………………………4分=4 ………………………………………5分18.()()63221x x --+≤………………………………………1分63+62+2x x -≤ ………………………………………2分510x --≤ ………………………………………3分 2x ≥ ………………………………………4分O 1235-2 …………5分19.∵DCA ECB ∠=∠,∴DCA ACE BCE ACE ∠+∠=∠+∠DCE ACB ∠=∠∴ ……………………1分∵DCE ACB 在和中CDC AC DCE ACB CE CB =⎧⎪∠=∠⎨⎪=⎩DCE ACB ∴≌ ………………………………………4分 DE AB ∴= ………………………………………5分20.原式=()()()2111111x x x x x -⋅-+-++1………………………………………1分 =()2111x x x --++1………………………………………2分=()()221111x x x x -+-++=()2111x x x ---+=()221x -+………………………………………3分=2221x x -++2280x x +-=228x x ∴+= ………………………………………4分∴原式=29-………………………………………5分21.(1)一次函数解析式:22y x =- ………………………………………2分反比例函数解析式:12y x =………………………………………3分 (2)()110P ,或()40P ,-………………………………………5分22.设第一阶梯电价每度x 元,第二阶梯电价每度y 元,由题意可得:………………………………………1分2002011220065139x y x y +=⎧⎨+=⎩………………………………………3分解得0.50.6x y =⎧⎨=⎩ ………………………………………5分答:第一阶梯电价每度0.5元,第二阶梯电价每度0.6元.四、解答题(本题共20分,每小题5分)23.(1)证明:在菱形ABCD 中,AD ∥BC ,OA=OC ,OB=OD ,∴∠AEO =∠CFO ,∴△AEO ≌△CFO (AAS )∴OE=OF , ………………………………………1分 又∵OB=OD ,∴四边形BFDE 是平行四边形; ………………………………………2分(2)菱形ABCD ,60ABC ∠=∴BD AC ⊥4AB BC AD DC ====30ADO CDO ∠=∠=ADC 为等边三角形∴122AO AD ==, ………………………………………3分∴OD =作OM AD ⊥于M ∴122AO AD ==OM =………………………………………4分∴1AM == ∴2EM =∴OE =AEO CFO AOE COF OA OC AEO CFO ∠=∠⎧⎪∠=∠⎨⎪=⎩在和中M在Rt EOM ∆中,7sin DEO ∠=………………………………………5分24.(1)如图所示………………………………………1分 (2) 800 ………………………………………3分 (3)300 …………………………………5分25.(1)证明:连接OD ∵OC=OD , ∴∠C=∠ODC ∵OC ⊥AB∴∠COF =90° ……………………………………1分 ∴∠OCD +∠CFO =90° ∴∠ODC +∠CFO =90° ∵∠EFD =∠FDE ∠EFD =∠CDE∴∠CDO +∠CDE =90°∴DE 为⊙O 的切线………………………………2分 (2)解:∵OF :OB =1:3,⊙O 的半径为3, ∴OF =1,∵∠EFD =∠EDF , ∴EF=ED ,在Rt △ODE 中,OD =3,DE =x ,则EF =x ,OE =1+x , ∵OD 2+DE 2=OE 2,∴32+x 2=(x +1)2,解得x =4……………………3分 ∴DE =4,OE =5,∵AG 为⊙O 的切线, ∴AG ⊥AE , ∴∠GAE =90°, 而∠OED =∠GEA ,∴Rt △EOD ∽Rt △EGA , ………………………4分 ∴OD DE AG AE =,即3435AG =+, ∴AG =6.…………………………………………5分26. (1)40 ……………………1分GE(2)如图由题意:∵90AEB ADB ∠=∠=,∴点A 、E 、D 、B 在以AB 为直径的半圆上 ∴∠B AE +∠BDE =180°………………3分 又∵∠CDE +∠BDE =180°∴∠CDE =∠B A E ……………………4分 同理:点A 、F 、D 、C 在以AC 为直径的半圆上. ∴∠BDF =∠BAC∴∠BDF =∠CDE ……………………5分五、解答题(本题22分,第27题7分,第28题7分,第29题8分)27. (1)由题意,得9-33030a b a b +=⎧⎨++=⎩解得,⎩⎨⎧-=-=21b a抛物线的解析式为y=-x 2-2x+3 ………………………2分顶点C 的坐标为(-1,4) ………………………3分 (2)①若点P 在对称轴右侧(如图①),只能是△PCQ ∽△CAH ,得∠QCP =∠CAH . 延长CP 交x 轴于M ,∴AM =CM ,∴AM 2=CM 2. 设M (m ,0),则( m +3)2=42+(m +1)2,∴m =2,即M (2,0). 设直线CM 的解析式为y=k 1x+b 1, 则⎩⎨⎧=+=+-0241111b k b k , 解之得341-=k ,381=b .∴直线CM 的解析式3834+-=x y .…………………………………4分 3238342+--=+-x x x , 解得311=x ,12-=x (舍去).9201=y . ∴)92031(,P . ………………………………………………5分 ②若点P 在对称轴左侧(如图②),只能是△PCQ ∽△ACH ,得∠PCQ =∠ACH . 过A 作CA 的垂线交PC 于点F ,作FN ⊥x 轴于点N . 由△CFA ∽△CAH 得2==AHCHAF CA , 由△FNA ∽△AHC 得21===CA AF HC NA AH FN .∴12==FN AN ,, 点F 坐标为(-5,1).设直线CF 的解析式为y=k 2x+b 2,则⎩⎨⎧=+-=+-1542222b k b k ,解之得419,4322==b k .∴直线CF 的解析式41943+=x y .……………………………………6分 32419432+--=+x x x , 解得471-=x ,12-=x (舍去).∴)165547(,-P . …………………………………7分 ∴满足条件的点P 坐标为)201(,或)557(,-28.解:(1)补全图形,如图1所示;证明:由题意可知:射线CA 垂直平分BD ∴EB =ED 又∵ED =BD ∴EB =ED =BD∴△EBD 是等边三角形 ………………2分(2)①证明:如图2:由题意可知∠BCD =90°,BC =DC 又∵点C 与点F 关于BD 对称 ∴四边形BCDF 为正方形,∴∠FDC =90°,CD FD =(图①)(图②)图1∵30'CDCα︒==∠∴'60FDC︒=∠由(1)△BDE为等边三角形∴60'EDB FDC︒==∠∠,ED=BD∴'EDF BDC=∠∠…………………3分又∵''E DC EDC△是由△旋转得到的∴'C D CD FD==∴()'EDF DBC SAS△≌△∴'EF BC=…………………………4分②线段PM的取值范围是:11PM≤≤;设射线CA交BD于点O,I:如图3(1)当''E C DC,⊥''MP E C⊥,D、M、P、C共线时,PM此时DP=DO= 2 ,DM=1∴PM=DP-DM=2-1………………………5分II:如图3(2)当点P与点'E重合,且P、D、M、C共线时,PM有最大值.此时DP=DE′=DE=DB=2 2 ,DM=1∴PM= DP+DM=22+1 ………………………6分∴线段PM11PM≤≤………………7分29.解:【探究】① 1 ; 5 ; ……………2分②=. …………………3分【应用】(1)①3y=-;……………………4分② 1 . ……………………5分(2)如图3,设直线y n=+与x轴相交于点C由题意可知直线CF切⊙O于F,连接OF.∴∠OFC=90°∴∠COF=60°图3(1)图3(1)P)图3(2)又∵OF =1, ∴OC =2 ∴()20C ±,∴“焦点”112F ,⎛ ⎝⎭、212F ⎛- ⎝⎭.………6分∴抛物线3y 的顶点为1122,⎛⎛- ⎝⎭⎝⎭或.①当“焦点”为112F ,⎛ ⎝⎭,顶点为12,⎛ ⎝⎭,()20C , 时,易得直线CF 1:y = 过点A 作AM ⊥x 轴,交直线CF 1于点M.∴1MA MF =∴(1M -在抛物线3y 上.设抛物线2312y a x ⎛⎫=- ⎪⎝⎭,将M 点坐标代入可求得:a =∴22312y x x x ⎫=-=⎪⎝⎭7分②当“焦点”为212F ⎛ ⎝⎭,顶点为12⎛- ⎝⎭,()20C -,时,由中心对称性可得:2231+2y x ⎫==⎪⎝⎭ …………………………8分综上所述:抛物线23y x =23y x =+.。

2017中考数学一模测试卷(含答案)

2017中考数学一模测试卷(含答案)

2017中考数学一模测试卷(含答案)中考数学是历年“拉分”科目,很多学生与自己心仪的高中失之交臂,主要原因就是数学“失手”。

下文为大家准备了中考数学一模测试卷的内容。

A级基础题1.在数0,2,-3,-1.2中,属于负整数的是( )A.0B.2C.-3D.-1.22.下列四个实数中,绝对值最小的数是( )A.-5B.-2C.1D.43.-2是2的( )A.相反数B.倒数C.绝对值D.算术平方根4.-3的倒数是( )A.3B.-3C.13D.-135.下列各式,运算结果为负数的是( )A.-(-2)-(-3)B.(-2)×(-3)C.(-2)2D.(-3)-36.计算:12-7×(-4)+8÷(-2)的结果是( )A.-24B.-20C.6D.367.如果+30m表示向东走30m,那么向西走40m表示为______________.8.计算:-(-3)=______,|-3|=______,(-3)-1=______,(-3)2=______.9.若a=1.9×105,b=9.1×104,则a______b(填“”).10.计算:|-5|-(2-3)0+6×13-12+(-1)2.B级中等题11.实数a,b在数轴上的位置如图1-1-4所示,以下说法正确的是( )图1-1-4A.a+b=0B.b0D.|b| 12.北京时间2011年3月11日,日本近海发生9.0级强烈地震.本次地震导致地球当天自转快了0.0000016秒.这里的0.0000016秒用科学记数法表示__________秒.13.观察下列顺序排列的等式:a1=1-13,a2=12-14,a3=13-15,a4=14-16……试猜想第n个等式(n为正整数):an=__________.14.计算:|1-3|+-12-3-2cos30°+(π-3)0.C级拔尖题15.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a-b|=2013,且AO=2BO,则a+b的值为________.16.观察下列等式:第1个等式:a1=11×3=12×1-13;第2个等式:a2=13×5=12×13-15;第3个等式:a3=15×7=12×15-17;第4个等式:a4=17×9=12×17-19;……请解答下列问题:(1)按以上规律列出第5个等式:a5=__________________=__________________;(2)用含有n的代数式表示第n个等式:an=__________________=__________________(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.1.C2.C3.A4.D5.D6.D7.-40m 8.3 3 -13 9 9.>10.解:原式=5-1+(2-3)+1=4.11.D 12.1.6×10-6 13.1n-1n+214.解:原式=3-1-8-2×32+1=-8.15.-67116.解:(1)19×1112×19-111(2)12n-1×2n+112×12n-1-12n+1(3)a1+a2+a3+a4+...+a100=12×1-13+12×13-15+12×15-17+...+12×1199-1201=12×1-13+13-15+15-17+ (1199)1201=12×1-1201=12×200201=100201.精心整理,仅供学习参考。

北京市房山区2017届九年级上期末数学试卷含答案解析

北京市房山区2017届九年级上期末数学试卷含答案解析

北京市房山区2017届九年级上期末数学试卷含答案解析一、选择题(每小题3分,共30分):下面各题均有四个选项,其中只有一个符合题意.1.下列函数中是反比例函数的是()A.B. C.D.2.已知:⊙O的半径为r,点P到圆心的距离为d.如果d≥r,那么P 点()A.在圆外B.在圆外或圆上C.在圆内或圆上D.在圆内3.已知,在Rt△ABC中,∠C=90°,AB=5,BC=3,则sinA的值是()A.B.C.D.4.三角形内切圆的圆心为()A.三条高的交点B.三条边的垂直平分线的交点C.三条角平分线的交点D.三条中线的交点5.在同一平面直角坐标系中,函数y=kx2+k与y=的图象可能是()A.B.C.D.6.同时抛掷两枚质量平均的硬币,恰好一枚正面朝上、一枚反面朝上的概率是()A.1 B.C.D.7.已知A(x1,y1)、B(x2,y2)是函数y=﹣2x2+m(m是常数)图象上的两个点,如果x1<x2<0,那么y1,y2的大小关系是()A.y1>y2 B.y1=y2C.y1<y2 D.y1,y2的大小不能确定8.已知:A、B、C是⊙O上的三个点,且∠AOB=60°,那么∠ACB 的度数是()A.30° B.120° C.150° D.30°或150°9.在同一坐标系下,抛物线y1=﹣x2+4x和直线y2=2x的图象如图所示,那么不等式﹣x2+4x>2x的解集是()A.x<0 B.0<x<2 C.x>2 D.x<0或x>210.如图甲,A、B是半径为1的⊙O上两点,且OA⊥OB.点P从A 动身,在⊙O上以每秒一个单位的速度匀速运动,回到点A运动终止.设运动时刻为x,弦BP的长度为y,那么如图乙图象中可能表示y与x的函数关系的是()A.①B.④ C.①或③D.②或④二、填空题(每小题3分,共18分):11.函数的自变量x的取值范畴是.12.在圆中,如果75°的圆心角所对的弧长为 2.5πcm,那么那个圆的半径是.13.如果一个等腰三角形的三条边长分不为1、1、,那么那个等腰三角形底角的度数为.14.如图,正△ABC内接于半径是2的圆,那么阴影部分的面积是.15.某商店销售一种进价为50元/件的商品,当售价为60元/件时,一天可卖出200件;经调查发觉,如果商品的单价每上涨1元,一天就会少卖出10件.设商品的售价上涨了x元/件(x是正整数),销售该商品一天的利润为y元,那么y与x的函数关系的表达式为.(不写出x的取值范畴)16.在数学课上,老师请同学摸索如下咨询题:已知:在△ABC中,∠A=90°.求作:⊙P,使得点P在AC上,且⊙P与AB,BC都相切.小轩的作法如下:(1)作∠ABC的平分线BF,与AC交于点P;(2)以点P为圆心,AP长为半径作⊙P.⊙P即为所求.老师讲:“小轩的作法正确.”请回答:⊙P与BC相切的依据是.三、解答题(每小题5分,共50分)17.运算:2cos45°﹣tan60°+sin30°﹣tan45°.18.已知二次函数的表达式为:y=x2﹣6x+5,(1)利用配方法将表达式化成y=a (x﹣h)2+k的形式;(2)写出该二次函数图象的对称轴和顶点坐标.19.在Rt△ABC中,已知∠B=90°,AB=2,AC=,解那个直角三角形.20.已知:二次函数y=ax 2+bx+c(a≠0)的图象如图所示.请你按照图象提供的信息,求出这条抛物线的表达式.21.如图,有四张背面相同的纸牌A,B,C,D,其正面分不是红桃、方块、黑桃、梅花,其中红桃、方块为红色,黑桃、梅花为黑色.小明将这4张纸牌背面朝上洗匀后,摸出一张,将剩余3张洗匀后再摸出一张.请用画树状图或列表的方法求摸出的两张牌均为黑色的概率.22.已知:二次函数y=x2+(2m+1)x+m2﹣1与x轴有两个交点.(1)求m的取值范畴;(2)写出一个满足条件的m的值,并求现在二次函数与x轴的交点.23.如图,在平面直角坐标系中,O 为坐标原点,P是反比例函数y=(x>0)图象上任意一点,以P为圆心,PO为半径的圆与x轴交于点A、与y轴交于点B,连接AB.(1)求证:P为线段AB的中点;(2)求△AOB的面积.24.已知:△ABC中,∠BAC=30°,AB=AC=4.将△ABC沿AC翻折,点B落在B′点,连接并延长 A B′与线段BC的延长线相交于点D,求AD的长.25.我们将能完全覆盖某平面图形的最小圆称为该平面图形的最小覆盖圆.例如线段AB的最小覆盖圆确实是以线段AB为直径的圆(图1).(1)在图2中作出锐角△ABC的最小覆盖圆(要求用尺规作图,保留作图痕迹,不写作法);(2)图3中,△ABC是直角三角形,且∠C=90°,请讲明△ABC的最小覆盖圆圆心所在位置;(3)请在图4中对钝角△ABC的最小覆盖圆进行探究,并结合(1)、(2)的结论,写出关于任意△ABC的最小覆盖圆的规律.26.“昊天塔”又称多宝佛塔,是北京地区惟一的楼阁式空心砖塔,位于良乡东北1公里的燎石岗上.此塔始建于隋,唐朝曾重修,现存塔是辽代修建的,已历经一千多年.某校九年级数学爱好小组的同学进行社会实践活动时,想利用所学的解直角三角形的知识测量它的高度.他们的测量工具有:高度为 1.5m的测角仪(测量仰角、俯角的仪器)、皮尺.请你帮他们设计一种测量方案,求出昊天塔的塔顶到地面的高度AB,注意:因为有护栏,他们不能到达塔的底部.要求:(1)画出测量方案的示意图,标出字母,写出图中需要同时能测量的角与线段(用图中的字母表示);(2)结合示意图,简要讲明你测量与运算的思路(不必写出结果).四、解答题(第27题7分,第28题7分,第29题8分,共22分)27.已知:△ABC中∠ACB=90°,E在AB上,以AE为直径的⊙O 与BC相切于D,与AC相交于F,连接AD.(1)求证:AD平分∠BAC;(2)连接OC,如果∠B=30°,CF=1,求OC的长.28.在平面直角坐标系中,已知抛物线y=x2﹣2x+n﹣1与y轴交于点A,其对称轴与x轴交于点B.(1)当△OAB是等腰直角三角形时,求n的值;(2)点C的坐标为(3,0),若该抛物线与线段OC有且只有一个公共点,结合函数的图象求n的取值范畴.29.若抛物线L:y=ax2+bx+c(a,b,c是常数,且abc≠0)与直线l 都通过y轴上的同一点,且抛物线L的顶点在直线l上,则称此抛物线L 与直线l具有“一带一路”关系,同时将直线l叫做抛物线L的“路线”,抛物线L叫做直线l的“带线”.(1)若“路线”l的表达式为y=2x﹣4,它的“带线”L的顶点在反比例函数y=(x<0)的图象上,求“带线”L的表达式;(2)如果抛物线y=mx2﹣2mx+m﹣1与直线y=nx+1具有“一带一路”关系,求m,n的值;(3)设(2)中的“带线”L与它的“路线”l在y轴上的交点为A.已知点P为“带线”L上的点,当以点P为圆心的圆与“路线”l相切于点A 时,求出点P的坐标.2016-2017学年北京市房山区九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分):下面各题均有四个选项,其中只有一个符合题意.1.下列函数中是反比例函数的是()A.B. C.D.【考点】反比例函数的定义.【分析】按照反比例函数的定义,可得答案.【解答】解:A、符合反比例函数的定义,故A正确;B、不符合反比例函数的定义,故B错误;C、是二次函数,故C错误;D、不符合反比例函数的定义,故D错误;故选:A.2.已知:⊙O的半径为r,点P到圆心的距离为d.如果d≥r,那么P 点()A.在圆外B.在圆外或圆上C.在圆内或圆上D.在圆内【考点】点与圆的位置关系.【分析】直截了当按照点与圆的位置关系即可得出结论.【解答】解:∵:⊙O的半径为r,点P到圆心的距离为d.如果d≥r,∴P点在圆外或圆上.故选B.3.已知,在Rt△ABC中,∠C=90°,AB=5,BC=3,则sinA的值是()A.B.C.D.【考点】锐角三角函数的定义.【分析】按照正弦函数是对边比斜边,可得答案.【解答】解:sinA==,故选:A.4.三角形内切圆的圆心为()A.三条高的交点B.三条边的垂直平分线的交点C.三条角平分线的交点D.三条中线的交点【考点】三角形的内切圆与内心.【分析】按照三角形内心的定义求解.【解答】解:三角形内切圆的圆心为三角形三个内角角平分线的交点.故选C.5.在同一平面直角坐标系中,函数y=kx2+k与y=的图象可能是()A.B.C.D.【考点】反比例函数的图象;二次函数的图象.【分析】分k>0和k<0分析两函数图象大致位置,对比四个选项即可得出结论.【解答】解:当k>0时,函数y=kx2+k的图象开口向上,顶点坐标在y轴正半轴上,现在,函数y=的图象在第一、三象限,∴A选项中图形合适;当k<0时,函数y=kx2+k的图象开口向下,顶点坐标在y轴负半轴上,现在,函数y=的图象在第二、四象限,∴无合适图形.故选A.6.同时抛掷两枚质量平均的硬币,恰好一枚正面朝上、一枚反面朝上的概率是()A.1 B.C.D.【考点】列表法与树状图法.【分析】列举出所有情形,看恰好一枚正面朝上、一枚反面朝上的情形数占总情形数的多少即可.【解答】解:画树形图得:共4种情形,一枚正面朝上、一枚反面朝上的有2种情形,因此概率为恰好一枚正面朝上、一枚反面朝上的概率是:.故选:B.7.已知A(x1,y1)、B(x2,y2)是函数y=﹣2x2+m(m是常数)图象上的两个点,如果x1<x2<0,那么y1,y2的大小关系是()A.y1>y2 B.y1=y2C.y1<y2 D.y1,y2的大小不能确定【考点】二次函数图象上点的坐标特点.【分析】按照二次函数图象上点的坐标特点可求出y1=﹣2+m、y2 =﹣2+m,按照x1<x2<0即可得出>,进而可得出y1<y2,此题得解.(利用二次函数的单调性更简单)【解答】解:∵A(x1,y1)、B(x2,y2)是函数y=﹣2x2+m(m是常数)图象上的两个点,∴y1=﹣2+m,y2=﹣2+m,∵x1<x2<0,∴>,∴y1<y2.故选C.(利用二次函数的单调性亦可得出y1<y2)8.已知:A、B、C是⊙O上的三个点,且∠AOB=60°,那么∠ACB 的度数是()A.30° B.120° C.150° D.30°或150°【考点】圆周角定理.【分析】本题有两种情形,一种情形是点C位于优弧AB上,现在按照圆周角定理可知∠ACB=∠AOB=30°,当点C位于劣弧AB上,现在∠ACB==150°,即可得出∠ACB的度数.【解答】解:如图1,当点C位于弧AB上时,∵∠AOB和∠ACB是弧AB所对的角,∴∠AOB=2∠ACB,∵∠AOB=60°,∴∠ACB=30°;如图2,当点C位于劣弧AB上,∠ACB==150°.故选:D.9.在同一坐标系下,抛物线y1=﹣x2+4x和直线y2=2x的图象如图所示,那么不等式﹣x2+4x>2x的解集是()A.x<0 B.0<x<2 C.x>2 D.x<0或x>2【考点】二次函数与不等式(组).【分析】按照函数图象写出抛物线在直线上方部分的x的取值范畴即可.【解答】解:由图可知,抛物线y1=﹣x2+4x和直线y2=2x的交点坐标为(0,0),(2,4),因此,不等式﹣x2+4x>2x的解集是0<x<2.故选B.10.如图甲,A、B是半径为1的⊙O上两点,且OA⊥OB.点P从A 动身,在⊙O上以每秒一个单位的速度匀速运动,回到点A运动终止.设运动时刻为x,弦BP的长度为y,那么如图乙图象中可能表示y与x的函数关系的是()A.①B.④ C.①或③D.②或④【考点】动点咨询题的函数图象.【分析】分两种情形讨论当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,由此即可解决咨询题.【解答】解:当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,故答案为①③,故选C.二、填空题(每小题3分,共18分):11.函数的自变量x的取值范畴是x≠1.【考点】函数自变量的取值范畴.【分析】按照分母不等于0列式运算即可得解.【解答】解:由题意得,x﹣1≠0,解得x≠1.故答案为:x≠1.12.在圆中,如果75°的圆心角所对的弧长为 2.5πcm,那么那个圆的半径是6.【考点】弧长的运算.【分析】按照弧长公式L=,将n=75,L=2.5π,代入即可求得半径长.【解答】解:∵75°的圆心角所对的弧长是 2.5πcm,由L=,∴2.5π=,解得:r=6,故答案为:6.13.如果一个等腰三角形的三条边长分不为1、1、,那么那个等腰三角形底角的度数为30°.【考点】解直角三角形;等腰三角形的性质.【分析】过点A作AD⊥BC于D,由等腰三角形的性质得出BD=BC =,再按照余弦函数可得答案.【解答】解:如图,过点A作AD⊥BC于D,∵AB=AC=1,BC=,∴BD=BC=,则cosB==,∴∠B=30°,故答案为:30°.14.如图,正△ABC内接于半径是2的圆,那么阴影部分的面积是4π﹣3.【考点】扇形面积的运算;等边三角形的性质.【分析】利用正三角形的性质,由它的内接圆半径可求出它的高和边,再用圆的面积减去三角形的面积即可.【解答】解:解:如图,点O既是它的外心也是其内心,∴OB=2,∠1=30°,∴OD=OB=1,BD=,∴AD=3,BC=2,∴S△ABC=×2×3=3;而圆的面积=π×22=4π,因此阴影部分的面积=4π﹣3,故答案为4π﹣3.15.某商店销售一种进价为50元/件的商品,当售价为60元/件时,一天可卖出200件;经调查发觉,如果商品的单价每上涨1元,一天就会少卖出10件.设商品的售价上涨了x元/件(x是正整数),销售该商品一天的利润为y元,那么y与x的函数关系的表达式为y=﹣10x2+100x+2000.(不写出x的取值范畴)【考点】按照实际咨询题列二次函数关系式.【分析】按照题意,得出每件商品的利润以及商品总的销量,即可得出y与x的函数关系式.【解答】解:设每件商品的售价上涨x元(x为正整数),则每件商品的利润为:(60﹣50+x)元,总销量为:件,商品利润为:y=(10+x)=﹣10x2+100x+2000.故答案为:y=﹣10x2+100x+2000.16.在数学课上,老师请同学摸索如下咨询题:已知:在△ABC中,∠A=90°.求作:⊙P,使得点P在AC上,且⊙P与AB,BC都相切.小轩的作法如下:(1)作∠ABC的平分线BF,与AC交于点P;(2)以点P为圆心,AP长为半径作⊙P.⊙P即为所求.老师讲:“小轩的作法正确.”请回答:⊙P与BC相切的依据是角平分线上的点到角两边距离相等;通过半径的外端同时垂直于这条半径的直线是圆的切线(或:如果圆心到直线的距离等于半径,那么直线与圆相切).【考点】作图—复杂作图;圆周角定理;切线的判定.【分析】按照角平分线的性质定理以及圆的切线的两个判定定理即可解决咨询题.【解答】解:如图作PE⊥BC于E.∵∠PBA=∠PBE,PA⊥AB,PE⊥BC,∴PA=PE,∴PE是⊙P的切线(角平分线上的点到角两边距离相等;通过半径的外端同时垂直于这条半径的直线是圆的切线.或:如果圆心到直线的距离等于半径,那么直线与圆相切)故答案为角平分线上的点到角两边距离相等;通过半径的外端同时垂直于这条半径的直线是圆的切线(或:如果圆心到直线的距离等于半径,那么直线与圆相切).三、解答题(每小题5分,共50分)17.运算:2cos45°﹣tan60°+sin30°﹣tan45°.【考点】实数的运算;专门角的三角函数值.【分析】原式利用专门角的三角函数值运算即可得到结果.【解答】解:原式=2×﹣+﹣×1=﹣.18.已知二次函数的表达式为:y=x2﹣6x+5,(1)利用配方法将表达式化成y=a (x﹣h)2+k的形式;(2)写出该二次函数图象的对称轴和顶点坐标.【考点】二次函数的三种形式.【分析】(1)第一把x2﹣6x+5化为(x﹣3)2﹣4,然后按照把二次函数的表达式y=x2﹣6x+5化为y=a(x﹣h)2+k的形式;(2)利用(1)中抛物线解析式直截了当写出答案.【解答】解:(1)y=x2﹣6x+9﹣9+5=(x﹣3)2﹣4,即y=(x﹣3)2﹣4;(2)由(1)知,抛物线解析式为y=(x﹣3)2﹣4,因此抛物线的对称轴为:x=3,顶点坐标为(3,﹣4).19.在Rt△ABC中,已知∠B=90°,AB=2,AC=,解那个直角三角形.【考点】解直角三角形.【分析】利用勾股定理即可求得BC的长,然后利用三角函数求得∠A 的度数.【解答】解:∵在Rt△ABC中,∠B=90°,AB=2,AC=,∴,即BC=2,∵,∴∠A=45°,∴∠C=45°答:那个三角形的BC=2,∠A=∠C=45°.20.已知:二次函数y=ax 2+bx+c(a≠0)的图象如图所示.请你按照图象提供的信息,求出这条抛物线的表达式.【考点】待定系数法求二次函数解析式;二次函数的图象.【分析】设顶点式y=a(x﹣1)2+k,然后把图象上的两点坐标代入得到a与k的方程组,再解方程组即可.【解答】解:由图象可知:抛物线的对称轴为x=1,设抛物线的表达式为:y=a(x﹣1)2+k∵抛物线通过点(﹣1,0)和(0,﹣3)∴解得,∴抛物线的表达式为:y=(x﹣1)2﹣4,即y=x2﹣2x﹣3.21.如图,有四张背面相同的纸牌A,B,C,D,其正面分不是红桃、方块、黑桃、梅花,其中红桃、方块为红色,黑桃、梅花为黑色.小明将这4张纸牌背面朝上洗匀后,摸出一张,将剩余3张洗匀后再摸出一张.请用画树状图或列表的方法求摸出的两张牌均为黑色的概率.【考点】列表法与树状图法.【分析】第一按照题意列出表格,然后由表格即可求得所有等可能的结果与摸出的两张牌均为黑色的情形,再利用概率公式即可求得答案.【解答】解:列表法:A B C DA AB AC ADB AB BC BDC AC CB CDD AD DB DC∵共有12种等可能的结果,摸出的两张牌均为黑色的有2种情形,∴P(摸出的两张牌均为黑色)==.22.已知:二次函数y=x2+(2m+1)x+m2﹣1与x轴有两个交点.(1)求m的取值范畴;(2)写出一个满足条件的m的值,并求现在二次函数与x轴的交点.【考点】抛物线与x轴的交点.【分析】(1)利用二次函数y=x2+(2m+1)x+m2﹣1与x轴有两个交点得(2m+1)2﹣4(m2﹣1)=4m+5>0,然后解不等式组可得m的范畴;(2)m取1得到抛物线解析式,然后运算函数值为0时对应的自变量的值即可得到两个交点坐标.【解答】解:(1)∵二次函数y=x2+(2m+1)x+m2﹣1与x轴有两个交点∴△>0,即(2m+1)2﹣4(m2﹣1)=4m+5>0∴m>;(2)m取1,则抛物线解析式为y=x2+3x,当y=0时,x2+3x=0,解得x1=0,x2=3,因此抛物线与x轴的交点坐标为(0,0),(3,0).23.如图,在平面直角坐标系中,O 为坐标原点,P是反比例函数y=(x>0)图象上任意一点,以P为圆心,PO为半径的圆与x轴交于点A、与y轴交于点B,连接AB.(1)求证:P为线段AB的中点;(2)求△AOB的面积.【考点】反比例函数系数k的几何意义;圆周角定理.【分析】(1)利用圆周角定理的推论得出AB是⊙P的直径即可;(2)第一假设点P坐标为(m,n)(m>0,n>0),得出OA=2OM=2 m,OB=2ON=2n,进而利用三角形面积公式求出即可.【解答】(1)证明:∵点A、O、B在⊙P上,且∠AOB=90°,∴AB为⊙P直径,即P为AB中点;(2)解:∵P为(x>0)上的点,设点P的坐标为(m,n),则mn=12,过点P作PM⊥x轴于M,PN⊥y轴于N,∴M的坐标为(m,0),N的坐标为(0,n),且OM=m,ON=n,∵点A、O、B在⊙P上,∴M为OA中点,OA=2 m;N为OB中点,OB=2 n,∴S△AOB=OA?O B=2mn=24.24.已知:△ABC中,∠BAC=30°,AB=AC=4.将△ABC沿AC翻折,点B落在B′点,连接并延长 A B′与线段BC的延长线相交于点D,求AD的长.【考点】翻折变换(折叠咨询题);等腰三角形的性质.【分析】过点B作BE⊥AD于E,按照等腰三角形两底角相等求出∠ABC=75°,按照翻折变换的性质求出∠BAB′,再按照三角形的内角和等于180°求出∠D=45°,然后解直角三角形求出AE、BE,最后按照AD= AE+DE运算即可得解.【解答】解:过点B作BE⊥AD于E,∵△ABC中,AB=AC,∠BAC=30°,∴∠ABC=75°,∵△ABC沿AC翻折,∴∠BAB’=2∠BAC=60°,∴∠D=180°﹣∠BAB′﹣∠ABC=180°﹣60°﹣75°=45°,在Rt△ABE中,∠AEB=90°,AB=4,∠BAE=60°,∴AE=2,BE=2,在Rt△BED中,∠BED=90°,∠D=45°,BE=2,∴ED=2,∴AD=AE+ED=2+2.25.我们将能完全覆盖某平面图形的最小圆称为该平面图形的最小覆盖圆.例如线段AB的最小覆盖圆确实是以线段AB为直径的圆(图1).(1)在图2中作出锐角△ABC的最小覆盖圆(要求用尺规作图,保留作图痕迹,不写作法);(2)图3中,△ABC是直角三角形,且∠C=90°,请讲明△ABC的最小覆盖圆圆心所在位置;(3)请在图4中对钝角△ABC的最小覆盖圆进行探究,并结合(1)、(2)的结论,写出关于任意△ABC的最小覆盖圆的规律.【考点】作图—复杂作图;三角形的外接圆与外心.【分析】(1)作△ABC的外接圆即可.(2)以AB为直径作圆即可.(3)以最长边AB为直径作圆即可.由(1)(2)不难得出结论.【解答】解:(1)锐角△ABC的最小覆盖圆是它的外接圆.如图2中所示,(2)直角△ABC最小覆盖圆的圆心是斜边中点,如图3中所示,(3)①锐角△ABC的最小覆盖圆是它的外接圆,②直角△ABC的最小覆盖圆是它的外接圆(或以最长边为直径的圆),③钝角△ABC的最小覆盖圆是以最长边为直径的圆.26.“昊天塔”又称多宝佛塔,是北京地区惟一的楼阁式空心砖塔,位于良乡东北1公里的燎石岗上.此塔始建于隋,唐朝曾重修,现存塔是辽代修建的,已历经一千多年.某校九年级数学爱好小组的同学进行社会实践活动时,想利用所学的解直角三角形的知识测量它的高度.他们的测量工具有:高度为 1.5m的测角仪(测量仰角、俯角的仪器)、皮尺.请你帮他们设计一种测量方案,求出昊天塔的塔顶到地面的高度AB,注意:因为有护栏,他们不能到达塔的底部.要求:(1)画出测量方案的示意图,标出字母,写出图中需要同时能测量的角与线段(用图中的字母表示);(2)结合示意图,简要讲明你测量与运算的思路(不必写出结果).【考点】解直角三角形的应用-仰角俯角咨询题.【分析】(1)要求使用测角仪和皮尺,可按照常见的题目中的运算方法,按示意图设计;构造直角三角形△ACD与△ACF;测出∠ADC与∠A FC及DF,利用公共边关系构造方程并解之可得答案.(2)由tan∠ADC=得CD=,在Rt△ABD中,由tan∠AFC =得CF=,利用CF﹣CD=DF,可得到关于AC的方程,解那个方程求出AC的值.【解答】解:(1)测量方案的示意图:需要测量的线段EG=DF;需要测量的角:∠ADC、∠AFC;(2)在Rt△ACD中,∵tan∠ADC=,∴CD=,在Rt△ABD中,∵tan∠AFC=,∴CF=,由CF﹣CD=DF,可得到关于AC的方程,解那个方程求出AC的值,得到塔高AB=AC+1.5.四、解答题(第27题7分,第28题7分,第29题8分,共22分)27.已知:△ABC中∠ACB=90°,E在AB上,以AE为直径的⊙O 与BC相切于D,与AC相交于F,连接AD.(1)求证:AD平分∠BAC;(2)连接OC,如果∠B=30°,CF=1,求OC的长.【考点】切线的性质;含30度角的直角三角形.【分析】(1)连接OD.按照圆的半径都相等的性质及等边对等角的性质知:∠1=∠2;再由切线的性质及平行线的判定与性质证明∠1=∠3;最后由角平分线的性质证明结论;(2)连接DF,按照角平分线的定义得到∠3=30°,由BC是⊙O的切线,得到∠FDC=∠3=30°,解直角三角形得到AF=2,过O作OG⊥AF于G,得到四边形ODCG是矩形,按照矩形的性质得到CG=2,OG=CD=,按照勾股定理即可得到结论.【解答】(1)证明:连接OD,∴OD=OA,∴∠1=∠2,∵BC为⊙O的切线,∴∠ODB=90°,∵∠C=90°,∴∠ODB=∠C,∴OD∥AC,∴∠3=∠2,∴∠1=∠3,∴AD是∠BAC的平分线;(2)解:连接DF,∵∠B=30°,∴∠BAC=60°,∵AD是∠BAC的平分线,∴∠3=30°,∵BC是⊙O的切线,∴∠FDC=∠3=30°,∴CD=CF=,∴AC=CD=3,∴AF=2,过O作OG⊥AF于G,∴GF=AF=1,四边形ODCG是矩形,∴CG=2,OG=CD=,∴OC==.28.在平面直角坐标系中,已知抛物线y=x2﹣2x+n﹣1与y轴交于点A,其对称轴与x轴交于点B.(1)当△OAB是等腰直角三角形时,求n的值;(2)点C的坐标为(3,0),若该抛物线与线段OC有且只有一个公共点,结合函数的图象求n的取值范畴.【考点】抛物线与x轴的交点;等腰直角三角形.【分析】(1)先求得点B的坐标,再按照△OAB是等腰直角三角形得出点A的坐标,代入求得n即可;(2)分两种情形:抛物线的顶点在x轴上和抛物线的顶点在x轴下方两种情形求解可得.【解答】解:(1)二次函数的对称轴是x=﹣=1,则B的坐标是(1,0),当△OAB是等腰直角三角形时,OA=OB=1,则A的坐标是(0,1)或(0,﹣1).抛物线y=x2﹣2x+n﹣1与y轴交于点A的坐标是(0,n﹣1).则n﹣1=1或n﹣1=﹣1,解得n=2或n=0;(2)①当抛物线的顶点在x轴上时,△=(﹣2)2﹣4(n﹣1)=0,解得:n=2;②当抛物线的顶点在x轴下方时,如图,由图可知当x=0时,y<0;当x=3时,y≥0,即,解得:﹣2≤n<1,综上,﹣2≤n<1或n=2.29.若抛物线L:y=ax2+bx+c(a,b,c是常数,且abc≠0)与直线l 都通过y轴上的同一点,且抛物线L的顶点在直线l上,则称此抛物线L 与直线l具有“一带一路”关系,同时将直线l叫做抛物线L的“路线”,抛物线L叫做直线l的“带线”.(1)若“路线”l的表达式为y=2x﹣4,它的“带线”L的顶点在反比例函数y=(x<0)的图象上,求“带线”L的表达式;(2)如果抛物线y=mx2﹣2mx+m﹣1与直线y=nx+1具有“一带一路”关系,求m,n的值;(3)设(2)中的“带线”L与它的“路线”l在y轴上的交点为A.已知点P为“带线”L上的点,当以点P为圆心的圆与“路线”l相切于点A 时,求出点P的坐标.【考点】二次函数综合题.【分析】(1)找出直线与反比例函数图象的交点坐标,由此设出抛物线的解析式,再由直线的解析式找出直线与x轴的交点坐标,将其代入抛物线解析式中即可得出结论;(2)找出直线y=nx+1与y轴的交点坐标,将其代入抛物线解析式中即可求出m的值;再按照抛物线的解析式找出顶点坐标,将其代入直线解析式中即可得出结论;(3)设抛物线的顶点为B,则点B坐标为(1,﹣1),过点B作BC ⊥y轴于点C,按照点A 坐标为(0,1)得到AO=1,BC=1,AC=2.然后按照“路线”l是通过点A、B的直线且⊙P与“路线”l相切于点A,连接PA交x轴于点D,则PA⊥AB,然后求解交点坐标即可.【解答】解:(1)∵“带线”L的顶点在反比例函数(x<0)的图象上,且它的“路线”l的表达式为y=2x﹣4,∴直线y=2x﹣4与的交点为“带线”L的顶点,令,解得x1=﹣1,x2=3(舍去)∴“带线”L的顶点坐标为(﹣1,﹣6).设L的表达式为y=a(x+1)2﹣6,∵“路线”y=2x﹣4与y轴的交点坐标为(0,﹣4)∴“带线”L也通过点(0,﹣4),将(0,﹣4)代入L的表达式,解得a=2∴“带线”L的表达式为y=2(x+1)2﹣6=2x2+4x﹣4;(2)∵直线y=nx+1与y轴的交点坐标为(0,1),∴抛物线y=mx2﹣2mx+m﹣1与y轴的交点坐标也为(0,1),得m=2,∴抛物线表达式为y=2x2﹣4x+1,其顶点坐标为(1,﹣1)∴直线y=nx+1通过点(1,﹣1),解得n=﹣2,∴“带线”L的表达式为y=2x2﹣4x+1“路线”l的表达式为y=﹣2 x +1;(3)设抛物线的顶点为B,则点B坐标为(1,﹣1),过点B作BC⊥y轴于点C,又∵点A 坐标为(0,1),∴AO=1,BC=1,AC=2.∵“路线”l是通过点A、B的直线且⊙P与“路线”l相切于点A,连接PA交x轴于点D,则PA⊥AB,明显Rt△AOD≌Rt△BCA,∴OD=AC=2,D点坐标为(﹣2,0)则通过点D、A、P的直线表达式为,∵点P为直线与抛物线L:y=2x2﹣4x+1的交点,解方程组得(即点A舍去),即点P的坐标为.2017年2月22日。

北京市房山区2017届九年级上期末数学试卷含答案解析

北京市房山区2017届九年级上期末数学试卷含答案解析
第 5 页(共 29 页)
A.1 B. C. D.
7.已知 A(x1 ,y1 )、B(2x ,2y )是函数 y=﹣2+2mx (m 是常数)图象上的两个
点,如果 x1<x2 <0,那么 y1 ,2y 的大小关系是( )
A.y1 >y2 C.y1 <y2
B.1y =y
2
D.1y ,2y 的大小不能确定
ห้องสมุดไป่ตู้
8.已知:A、B、C 是⊙O 上的三个点,且∠AOB=60°,那么∠ACB 的度数是
26.“昊天塔”又称多宝佛塔,是北京地区惟一的楼阁式空心砖塔,位于良乡东 北 1 公里的燎石岗上.此塔始建于隋,唐朝曾重修,现存塔是辽代修建的,已 历经一千多年.某校九年级数学兴趣小组的同学进行社会实践活动时,想利用 所学的解直角三角形的知识测量它的高度.他们的测量工具有:高度为 1.5m 的 测角仪(测量仰角、俯角的仪器)、皮尺.请你帮他们设计一种测量方案,求出 昊天塔的塔顶到地面的高度 AB,注意:因为有护栏,他们不能到达塔的底部. 要求:(1)画出测量方案的示意图,标出字母,写出图中需要并且能测量的角 与线段(用图中的字母表示); (2)结合示意图,简要说明你测量与计算的思路(不必写出结果).
A. B. C. D.
4.三角形内切圆的圆心为( ) A.三条高的交点 B.三条边的垂直平分线的交点 C.三条角平分线的交点 D.三条中线的交点
5.在同一平面直角坐标系中,函数 y=k2x+k 与 y= 的图象可能是( )
A.
B.
C.
D.
6.同时抛掷两枚质量均匀的硬币,恰好一枚正面朝上、一枚反面朝上的概率是 ()
24.已知:△ABC 中,∠BAC=30°,AB=AC=4.将△ABC 沿 AC 翻折,点 B 落在 B′点,连接并延长 A B′与线段 BC 的延长线相交于点 D,求 AD 的长.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年房山区初中毕业会考数学答案及评分标准一.填空题(本题共30分,每小题3分): 1~ 5 C C A D D 6~ 10 B C A A B二.填空题(本题共18分,每小题3分):11.x ≥5 12. 2(m+3)( m -3)13. (m +n )(a +b )=ma +mb +na +nb 或ma +mb +na +nb = (m +n )(a +b )、(m +n )(a +b )=m (a +b )+n (a +b )、(m +n )(a +b )= (m +n )a +(m +n )b 14.x 2+32=( 10-x )215. 答案不唯一,大于或等于470.3即可.16. ① 四条边相等的四边形是菱形;菱形的对边平行;两点确定一条直线.② 两组对边分别相等的四边形是平行四边形;平行四边形的对边平行;两点确定一条直线.三.解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分) 分分原式解-5-----2-4-----32332: 17.=-++=18. 证明: △ABC 是等边三角形,BD ⊥AC∴∠ABC =60º,BD 平分∠ABC ------2分 ∴∠DBC =30º ------3分 ∵∠CED =30º∴∠DBE =∠DEB ------4分 ∴BD =DE ------5分19. 解:解不等式①得: 3-x ≤2x -6-3 x ≤-9 ------1分 x ≥3 ------2分解不等式②得: 2x ≥x -1 ------3分x ≥-1 ------4分∴原不等式组的解集是x ≥3 ------5分20. 解:原式b a b b a ab a -+--=222 ------1分ba b ab a -+-=222 ------2分()ba b a --=2------3分 =b a - ------4分∵0522=+-b a∴ 25-=-b a ∴ 原式= 25-------5分EDCBA21. 证明:(1)∵AF ∥BC∴∠AFB=∠FBD ,∠F AD=∠BDA∵点E 是AD 的中点∴AE = DE∴△FEA ≌△BED ------1分 ∴AF = BD ∵AD 是BC 边的中线,∴BD=DC ∴AF = DC ------2分 又∵AF ∥BC∴四边形ADCF 是平行四边形 ------3分(2)①当AB =AC 时,四边形ADCF 是 矩 形 ------4分 ②当∠BAC =90°时,四边形ADCF 是 菱 形 ------5分22.(1)证明:连结OE ,EC ------1分 ∵AE 平分∠BAC∴∠1=∠2, »»B E C E= ∴ BE=EC又∵O 为圆心∴OE 垂直平分BC ,即OE ⊥BC ------2分∵l ‖BC ∴OE ⊥l∴直线l 与⊙O 相切 ------3分 (2) 根据等弧(»»BECE =)所对的圆周角相等可证∠1=∠3 根据∠1=∠3,∠BEA =∠BEA 可证△BDE ∽△ABE ------4分 根据相似三角形对应边成比例可得BEDE AEBE =,将DE =a ,AE =b 代入即可求BE23. 解:(1)过点A 作AH ⊥x 轴于点H ------1分 在△AOH 中,∵34tan ==∠OH AH AOE ,∴可设OH =3m ,AH =4m 即A (3m ,4m ) 其中m >0 ∵点A 在xy 12=的图象上 ∴解得m=1 (舍负) ∴点A 坐标为(3,4) (2)∵点B (-6,n )在xy 12=的图象上∴n =-2,即B (-6,-2) ∵y=kx+b 的图象经过点A (3,4),B (-6,-2)∴⎩⎨⎧-=+-=+2643b k b k 解得 ⎪⎩⎪⎨⎧==232b k∴一次函数表达式为232+=x y ------4分 FEDC B A(3) 在232+=x y 中令y =0,则x =-3即C (-3,0) ∴BO C AO C AO B S S S ∆∆∆+=92121=⋅+⋅=B A y OC y OC------5分24.解:(1)∵ 正方形ABCD∴ AB=AD ,∠B=∠D=∠BAD=90º ∵ AM=AN∴ △ABM ≌△AND ------1分 ∴ ∠BAM =∠DAN又∵∠MAN =30º,∠BAD=90º∴∠BAM =30º ------2分 (2)过点M 作MH ⊥AN 于点H ------3分 ∵∠BAM =30º,∠B=90º∴在Rt △ABM 中,设BM=x ,则AM =2x ,AB =x 3又∵AM=AN =2x ,∠MAN =30º,MH ⊥AN ∴在Rt △AMH 中,MH=x∴1221212==⋅⋅=⋅=∆x x x MH AN S AMN ------4分解得:x =1(舍负)∴AB =33=x------5分25.(1)567.1 ------1分(2)我区2014-2016年全年地区生产总值、全社会固定资产投资和区域税收的统计表------5分图例全年地区生产总值社会固定资产投资区域税收区域税收社会固定资产投资全年地区生产总值EAC26.(1)全体实数 ------1分 (2)m=52 ------2分(3)------3分 (4)以下情况均给分:①图象位于第一、二象限 ②当x =1时,函数有最大值4. ③图象有最高点(1,4) ④x >1时,y 随x 增大而减小 ⑤x <1时,y 随x 增大而增大 ⑥图象与x 轴没有交点⑦图象与y 轴有一个交点 ⑧图象关于直线x =1对称 …… ------4分 (5)0<a <4 ------5分27.解:(1)∵直线y =2x -3与y 轴交于点A (0,-3) ------1分 ∴点A 关于x 轴的对称点为B (0,3),l 为直线y =3 ∵直线y =2x -3与直线l 交于点C ,∴点C 的坐标为(3,3) ------2分(2)∵抛物线n nx nx y 542+-= (n >0) ∴y = nx 2-4nx +4n +n = n (x -2)2+n∴抛物线的对称轴为直线x=2,顶点坐标为(2,n ) ------3分 ∵点B (0,3),点C (3,3)①当n >3时,抛物线最小值为n >3,与线段BC 无公共点; ②当n=3时,抛物线顶点为(2,3),在线段BC 上,此时抛物线与线段BC 有一个公共点; ------4分 ③当0<n <3时,抛物线最小值为n ,与直线BC 有两个交点 如果抛物线y=n (x -2)2+ n 经过点B (0,3),则3=5n ,解得53=n由抛物线的对称轴为直线x=2,可知抛物线经过点(4,3)点(4,3)不在线段BC 上,此时抛物线与线段BC 有一个公共点B ------5分 如果抛物线y=n (x -2)2+ n 经过点C (3,3),则3=2n ,解得23=n由抛物线的对称轴为直线x=2,可知抛物线经过点(1,3)点(1,3)在线段BC 上,此时抛物线与线段BC 有两个公共点 ------6分 综上所述,当53≤n <23或n=3时,抛物线与线段BC 有一个公共点. ------7分28.(1)补全图形 ------1分 (2)证明:∵∠B =90º∴∠BAD+∠BDA =90º∵∠ADE =90º,点D 在线段BC 上∴∠BAD+∠EDC =90º∴∠BAD=∠EDC ------2分E F A B D C 证法1:在AB 上取点F ,使得BF=BD ,连结DF ------3分 ∵BF =BD ,∠B =90º ∴∠BFD =45º∴∠AFD =135º∵BA=BC∴AF=CD ------4分 在△ADF 和△DEC 中⎪⎩⎪⎨⎧=∠=∠=DE AD CDE BAD CDAF ∴△ADF ≌△DEC ------5分 ∴∠DCE =∠AFD =135º ------6分证法2:以D 为圆心,DC 为半径作弧交AC 于点F ,连结DF ------3分 ∴DC=DF ∠DFC =∠DCF ∵AB=BC ∠B =90º∴∠ACB =45º ∠DFC =45º∴∠FDC =90º ∠AFD =135º ∵∠ADE =∠FDC =90º∴∠ADF =∠EDC ------4分 又∵AD =DE DF =DC∴△ADF ≌△CDE ------5分 ∴∠AFD =∠DCE =135º ------6分证法3:过点E 作EF ⊥BC 交BC 延长线于点F ------3分 ∴∠EFD =90º∵∠B =90º, ∴∠EFD =∠B∵∠BAD =∠CDE ,AD=DE∴△ABD ≌△DEF ------4分∴AB=DF BD=EF∵AB=BC∴BC=DF ,BC -DC =DF -DC 即BD =CF ------5分 ∴EF =CF ∵∠EFC =90º∴∠ECF =45º,∠DCE =135º ------6分 (2)∠DCE =45º ------7分29.(1)(3,2) ------1分 (2)∵点P 在函数y =x -2的图象上, ∴点P 的坐标为(x ,x -2),∵ x >x -2,根据关联点的定义,点Q 的坐标为(x ,2)------2分 又∵点P 和点Q 重合 ∴x -2=2 解得 x =4∴点P 的坐标是(4,2) ------3分(3)点M (m ,n )的关联点是点N ,由关联点定义可知第一种情况:当m ≥n 时,点N 的坐标为(m ,m -n ) ∵点N 在函数y =2x 2的图象上,∴m -n =2m 2,n =-2m 2 + m即m m y M +-=22,22m y N =∴mm y y MN N M +-=-=24①当0≤m ≤41时,m m +-24>0161814422+⎪⎭⎫ ⎝⎛--=+-=m m m MN ∴当81=m 时,线段MN 的最大值是161②当41<m ≤2时,m m +-24<0 161814422-⎪⎭⎫ ⎝⎛-=-=m m m MN∴当m =2时,线段MN 的最大值是14;综合 ①与②,当m ≥n 时线段MN 的最大值是14 ------5分 第二种情况:当m <n 时,点N 的坐标为(m ,n -m ) ∵点N 在函数y =2x 2的图象上, ∴n -m =2m 2即n =2m2 +m∴m m y M +=22,22m y N = ∴my y MN N M =-=∵0 ≤m ≤2 ∴m MN =∴当m <n 时,线段MN 的最大值是2; ------7分 综上所述,当m ≥n 时,线段MN 的最大值是14;当m <n 时,线段MN 的最大值是2. ------8分本答案仅给出部分结果,其他正确解答请相应酌情给分。

相关文档
最新文档