高中数学(人教B版,选修2-2):第一章 导数及其应用+(课件+同步练习+章末归纳总结+综合检测,2
高中数学(人教B版,选修2-2):第一章 导数及其应用+(课件+同步练习+章末归纳总结+综合检测,2
=12180x2+80x0-145,
h′(x)=64x0-8x020=x63-408x02 3(0≤x≤120).
令h′(x)=0,得x=80.
当x∈(0,80)时,h′(x)<0,h(x)是减函数; 当x∈(80,120)时,h′(x)>0,h(x)是增函数. ∴当x=80时,h(x)取得极小值. 此时h(x)=1281000×803-830×80+8×54=445=11.25(L). ∴当汽车以80 km/h的速度匀速行驶时,从甲地到乙地耗 油最少,最少为11.25 L.
要耗油1281000×403-830×40+8×2.5=17.5(L). ∴当汽车以40 km/h的速度匀速行驶时,从甲地到乙地要 耗油17.5L.
(2)当速度为x
km/h时,汽车从甲地到乙地行驶了
100 x
h,
设耗油量为h(x) L,依题意得
h(x)=1281000x3-830x+8×10x 0
成才之路 ·数学
人教B版 • 选修2-2
路漫漫其修远兮 吾将上下而求索
第一章 导数及其应用
第一章
1.3 导数的应用 第3课时 导数的实际应用
1 课前自主导学 2 课堂互动探究
3 学法归纳总结 4 课后强化作业
课前自主导学
低碳生活(low-carbon life)可以理解为减少二氧化碳的排 放,就是低能量、低消耗、低开支的生活.低碳生活节能环 保,势在必行.现实生活中,当汽车行驶路程一定时,我们 希望汽油的使用效率最高,即每千米路程的汽油消耗最少或 每升汽油能使汽车行驶的路程最长.
课堂互动探究
费用最省问题
已知A、B两地相距200 km,一只船从A地逆水 而行到B地,水速为8km/h,船在静水中的速度为v km/h(8<v≤v0).若船每小时的燃料费与其在静水中的速度的 平方成正比.当v=12 km/h时,每小时的燃料费为720元,为 了使全程燃料费最省,船的实际速度为多少?
人教课标版(B版)高中数学选修2-2第一章 导数及其应用导数
感悟高考
由 g′(x)=0,得 x1=1,x2=2. 所以当 x∈(-∞, 1)时, g′(x)<0, g(x)在(-∞, 1)上为减函数;
当 x∈(1,2)时,g′(x)>0,g(x)在(1,2)上为增函数; 当 x∈(2,+∞)时,g′(x)<0,g(x)在(2,+∞)上为减函数; 1 所以,当 x=1 时,g(x)取得极小值 g(1)= ,当 x=2 时函数取 e 3 得极大值 g(2)= 2. e 函数 y=k 与 y=g(x)的图象的大致形状如上, 1 3 由图象可知,当 k= 和 k= 2时,关于 x 的方程 f(x)=kex 恰有两 e e 个不同的实根.
1 1 ①当 x∈-2,0时,h′(x)>0,∴h(x)在-2,0上单调递增.
②当 x∈(0,+∞)时,h′(x)<0,∴h(x)在(0,+∞)上单调递减.
1 1 1-2ln 2 ∴当 x∈-2,0时,h(x)>h-2= . 4
g(3)<0, 即a+4-2ln 2<0, 解得 2ln 3-5≤a<2ln 2-4. g(4)≥0, a+5-2ln 3≥0,
综上所述,a 的取值范围是[2ln 3-5,2ln 2-4). 2 方法二 ∵f(x)=2ln(x-1)-(x-1) ,
∴f(x)+x2-3x-a=0 x+a+1-2ln(x-1)=0, 即 a=2ln(x-1)-x-1, 令 h(x)=2ln(x-1)-x-1, 3-x 2 ∵h′(x)= -1= ,且 x>1, x-1 x-1 由 h′(x)>0,得 1<x<3;由 h′(x)<0,得 x>3. ∴h(x)在区间[2,3]上单调递增,在区间[3,4]上单调递减.
高中数学选修2-2(人教B版)第一章导数及其应用1.2知识点总结含同步练习题及答案
′
解:(1)y ′ = (e3x+2 ) = e3x+2 ⋅ (3x + 2)′ = 3e3x+2 ; (2)y ′ = (ln(2x − 1))′ =
1 2 . ⋅ (2x − 1)′ = 2x − 1 2x − 1
2.利用导数求函数的切线方程 描述: 利用导数求函数的切线方程 步骤一:求出函数 y = f (x) 在点 x0 处的导数 f ′ (x0 ) ; 步骤二:根据直线方程的点斜式,得到切线方程为 y − f (x0 ) = f ′ (x0 )(x − x0 ). 例题: 求曲线 y = ex + 1 在 (0, 2) 处的切线方程. 解:因为 y = ex + 1,所以 y ′ = ex ,故曲线 y = ex + 1在 (0, 2)处的切线斜率为
解:(1)因为 y =
所以在点 P 处的切线的斜率等于 4 .所以在点 P 处的切线方程是
y−
即
8 = 4(x − 2), 3
12x − 3y − 16 = 0.
(2)设切点为 (x 0 , y 0 ),则由(1)知切线的斜率 k = x2 ,切线方程为 y − y 0 = x2 (x − x 0 ) . 0 0 又切线过点 P (2,
8 1 ) 且 (x0 , y 0 ) 在曲线 y = x3 上,所以 3 3 ⎧ ⎪ 8 − y = x2 (2 − x0 ), 0 0 ⎨3 1 ⎪ ⎩ y = x3 , ⎪ 0 3 0 − 3x2 + 4 = 0, x3 0 0
整理得
即
(x0 − 2)2 (x0 + 1) = 0.
高中数学第一章导数及其应用1.2导数的运算课件新人教B版选修2_2
1
2
3
【做一做 2】 下列求导运算正确的是( A.
1 ′ ������ + ������
)
1
= 1 + ������2
1
B. (log2������)′ = ������ln2 D.(x2cos x)'=-2xsin x
1 + ������
C.(3x)'=3x· log3e
解析: 由求导公式知,B 选项正确. ������ 1 − ������ − 2 = 1 −
3.两函数的和、差、积、商的求导法则,称为可导函数四则运算 的求导法则. 4.若两个函数可导,则它们的和、差、积、商(商的分母不为零) 必可导. 若两个函数不可导,则它们的和、差、积、商不一定不可导. 例如,设 f(x)=sin x+ ������ , ������ (������) = cos x− ������ , 则f(x),g(x)在 x=0 处均不 可导,但它们的和 f(x)+g(x)=sin x+cos x 在 x=0 处可导.
1
2
3
知识拓展 对于复合函数的求导应注意以下几点: (1)分清复合函数是由哪些基本函数复合而成的,适当选定中间变 量. (2)分步计算的每一步都要明确是对哪个变量进行求导的,而其中 要特别注意的是中间变量的导数.如(sin 2x)'=2cos 2x,而(sin 2x)'≠cos 2x.
(3)根据基本初等函数的导数公式及导数的运算法则,求出各函数 的导数,并把中间变量转换成自变量的函数.如求 y=sin 的导数,设 y=sin
解析:由求导公式可知,①③④⑥正确. 答案:B
1
2
3
高中数学第一章导数及其应用本章整合课件新人教B版选修2_2
, × - 2 = 12 .
5 125
专题一
专题二
专题三
专题四
专题三 函数的单调性与极值、最大(小)值 (1)求可导函数f(x)单调区间的步骤: ①求f'(x); ②解不等式f'(x)>0(或f'(x)<0); ③确认并指出函数的单调区间. (2)求可导函数f(x)在区间[a,b]上最大(小)值的步骤: ①求出f(x)在区间(a,b)内的极值; ②将f(x)在区间(a,b)内的极值与f(a),f(b)比较,确定f(x)的最大值与 最小值.
(1)当 a=1 时,f'(x)= 单调减区间为( 2, 2).
2),
(2)当 x∈(0,1]时,f'(x)=
1 . 2
> 0,
所以 f(x)在区间(0,1]上单调递增,故 f(x)在区间(0,1]上的最大值 为 f(1)=a,因此 a=
专题一
专题二
专题三
专题四
专题四 用定积分求平面图形的面积 用定积分求平面图形的面积是定积分的一个重要应用,几种典型 的平面图形的面积计算如下:
因为 l1⊥l2,所以 2b+1=− 3 , ������ = − 3. 所以直线 l2 的方程为 y=− 3 ������ − 9 .
1 22
1
2
专题一
专题二
专题三
专题四
1 ������ = , ������ = 3������-3, 6 (2)解方程组 1 22 得 5 ������ = - 3 ������- 9 , ������ = - 2 , 1 5 所以直线 l1 和 l2 的交点坐标为 6 ,- 2 . 22 l1,l2 与 x 轴交点的坐标分别为(1,0), - ,0 3 1 22 所以所求三角形的面积为 S= 2 × 1 + 3
2019-2020学年高中数学(人教B版 选修2-2)教师用书:第1章 导数及其应用 1.2.1、1.2.2
1.2 导数的运算1.2.1 常数函数与幂函数的导数 1.2.2 导数公式表及数学软件的应用1.能根据定义求函数y =c ,y =x ,y =x 2,y =1x ,y =x 的导数.(难点) 2.掌握基本初等函数的导数公式,并能进行简单的应用.(重点、易混点)[基础·初探]教材整理1 几个常用函数的导数 阅读教材P 14~P 15,完成下列问题.【答案】 0 1 2x -1x2判断(正确的打“√”,错误的打“×”) (1)若y =x 3+2,则y ′=3x 2+2.( ) (2)若y =1x ,则y ′=1x2.( ) (3)若y =e ,则y ′=0.( )【解析】(1)由y=x3+2,∴y′=3x2.(2)由y=1x,∴y′=-1x2.(3)由y=e,∴y′=0.【答案】(1)×(2)×(3)√教材整理2基本初等函数的导数公式阅读教材P17,完成下列问题.【答案】0 nx n-1μxμ-1a x ln a e x1xln a1xcos x-sin x1.给出下列命题:①y=ln 2,则y′=1 2;②y=1x2,则y′=-2x3;③y=2x,则y′=2x ln 2;④y=log2x,则y′=1 xln 2.其中正确命题的个数为( )A.1 B.2C.3 D.4【解析】对于①,y′=0,故①错;显然②③④正确,故选C.【答案】 C2.若函数f (x )=10x ,则f ′(1)等于( ) A.110 B .10 C .10ln 10D.110ln 10【解析】 ∵f ′(x )=10x ln 10,∴f ′(1)=10ln 10. 【答案】 C[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑:[小组合作型](1)y =x 12;(2)y =1x4;(3)y =5x3;(4)y =3x ;(5)y =log 5x .【精彩点拨】 首先观察函数解析式是否符合求导形式,若不符合可先将函数解析式化为基本初等函数的求导形式.【自主解答】 (1)y ′=(x 12)′=12x 11. (2)y ′=⎝ ⎛⎭⎪⎫1x4′=(x -4)′=-4x -5=-4x5.(3)y ′=(5x3)′=(x 35)′=35x -25. (4)y ′=(3x )′=3x ln 3. (5)y ′=(log 5x )′=1xln 5.1.若所求函数符合导数公式,则直接利用公式求解.2.对于不能直接利用公式的类型,一般遵循“先化简,再求导”的基本原则,避免不必要的运算失误.3.要特别注意“1x 与ln x ”,“a x 与log a x ”,“sin x 与cos x ”的导数区别.[再练一题]1.若f (x )=x 3,g (x )=log 3x, 则f ′(x )-g ′(x )=__________.【导学号:05410008】【解析】 ∵f ′(x )=3x 2,g ′(x )=1xln 3, ∴f ′(x )-g ′(x )=3x 2-1xln 3. 【答案】 3x 2-1xln 3(1)求质点在t =π3时的速度; (2)求质点运动的加速度.【精彩点拨】 (1)先求s ′(t ),再求s ′⎝ ⎛⎭⎪⎫π3.(2)加速度是速度v (t )对t 的导数,故先求v (t ),再求导. 【自主解答】 (1)v (t )=s ′(t )=cos t ,∴v ⎝ ⎛⎭⎪⎫π3=cos π3=12.即质点在t =π3时的速度为12. (2)∵v (t )=cos t ,∴加速度a (t )=v ′(t )=(cos t )′=-sin t .1.速度是路程对时间的导数,加速度是速度对时间的导数.2.求函数在某定点(点在函数曲线上)的导数的方法步骤是:(1)先求函数的导函数;(2)把对应点的横坐标代入导函数求相应的导数值.[再练一题]2.(1)求函数f (x )=13x在(1,1)处的导数;(2)求函数f (x )=cos x 在⎝ ⎛⎭⎪⎫π4,22处的导数.【解】 (1)∵f ′(x )=⎝ ⎛⎭⎪⎪⎫13x ′=(x -13)′=-13x -43=-133x4, ∴f ′(1)=-1331=-13.(2)∵f ′(x )=-sin x , ∴f ′⎝ ⎛⎭⎪⎫π4=-sin π4=-22.[探究共研型]探究1 f (x )=x ,f (x ) 【提示】 ∵(x )′=1·x 1-1,(x 2)′=2·x 2-1,(x)′=⎝ ⎛⎭⎪⎫x 12′=12x 12-1,∴(x α)′=α·x α-1.探究2 点P 是曲线y =e x 上的任意一点,求点P 到直线y =x 的最小距离.【提示】 如图,当曲线y =e x 在点P (x 0,y 0)处的切线与直线y =x 平行时,点P 到直线y =x 的距离最近,则曲线y =e x 在点P (x 0,y 0)处的切线斜率为1,又y ′=(e x )′=e x , ∴e x 0=1,得x 0=0,代入y =e x ,得y 0=1,即P (0,1). 利用点到直线的距离公式得最小距离为22.求过曲线f (x )=cos x 上一点P ⎝ ⎛⎭⎪⎫π3,12且与曲线在这点的切线垂直的直线方程.【精彩点拨】 错误!→错误!→所求直线斜率k =-1f′⎝ ⎛⎭⎪⎫π3→利用点斜式写出直线方程【自主解答】 因为f (x )=cos x ,所以f ′(x )=-sin x ,则曲线f (x )=cos x 在点P ⎝ ⎛⎭⎪⎫π3,12的切线斜率为f ′⎝ ⎛⎭⎪⎫π3=-sin π3=-32, 所以所求直线的斜率为23 3, 所求直线方程为y -12=233⎝ ⎛⎭⎪⎫x -π3, 即y =23 3x -239π+12.求曲线方程或切线方程时应注意:(1)切点是曲线与切线的公共点,切点坐标既满足曲线方程也满足切线方程; (2)曲线在切点处的导数就是切线的斜率;(3)必须明确已知点是不是切点,如果不是,应先设出切点.[再练一题]3.若将上例中点P 的坐标改为(π,-1),求相应的直线方程. 【解】 ∵f (x )=cos x ,∴f ′(x )=-sin x ,则曲线f (x )=cos x 在点P (π,-1)处的切线斜率为f ′(π)=-sin π=0, 所以所求直线的斜率不存在, 所以所求直线方程为x =π.[构建·体系]1.已知f (x )=x α(α∈Q +),若f ′(1)=14,则α等于( ) 【导学号:05410009】 A.13 B.12 C.18D.14【解析】∵f(x)=xα,∴f′(x)=αxα-1,∴f′(1)=α=1 4.【答案】 D 2.给出下列结论:①若y=1x3,则y′=-3x4;②若y=3x,则y′=133x;③若f(x)=3x,则f′(1)=3.其中正确的个数是( )A.1 B.2C.3 D.0【解析】对于①,y′=错误!=错误!=错误!,正确;对于②,y′=13x13-1=13x-23,不正确;对于③,f′(x)=3,故f′(1)=3,正确.【答案】 B3.已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线过点(2,7),则a=________. 【解析】∵f′(x)=3ax2+1,∴f′(1)=3a+1.又f(1)=a+2,∴切线方程为y-(a+2)=(3a+1)(x-1).∵切线过点(2,7),∴7-(a+2)=3a+1,解得a=1.【答案】 14.已知函数y=kx是曲线y=ln x的一条切线,则k=__________.【解析】设切点为(x0,y0),∵y′=1x,∴k=1x0,∴y=1x0·x,又点(x0,y0)在曲线y=ln x上,∴y0=ln x0,∴ln x0=x0x0,∴x0=e,∴k=1e.【答案】1 e5.已知直线y=kx是曲线y=3x的切线,则k的值为________. 【解析】设切点为(x0,y0).因为y′=3x ln 3,①所以k=3x0ln 3,所以y=3x0ln 3·x,又因为(x0,y0)在曲线y=3x上,所以3x0ln 3·x0=3x0,②所以x0=1 ln 3=log3 e.所以k=eln 3.【答案】eln 3我还有这些不足:(1)(2)我的课下提升方案:(1)(2)。
(人教版)高中数学选修2-2课件:第1章 导数及其应用1.1.3
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
1.1.3 导数的几何意义
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
自主学习 新知突破
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
[思路点拨]
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
求曲线上某点(x0,y0)处切线方程的步骤: 求出f′x0即切线斜率 ↓ 写出切线的点斜式方程 ↓ 化简切线方程
时,割线 PQ 逼近点 P 的切线 l,从而割线的斜率逼近切线 l 的
斜率.因此,函数 f(x)在 x=x0 处的导数就是切线 l 的斜率 k, 即
k= lim Δx→0
fx0+ΔΔxx-fx0=f′(x0).
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
1 . 设 f′(x0) = 0 , 则 曲 线 y = f(x) 在 点 (x0 , f(x0)) 处 的 切 线
()
A.不存在
B.与x轴平行或重合
C.与x轴垂直
D.与x轴相交
解析: 在点(x0,f(x0))处切线斜率为0的直线与x轴平行或 重合,故选B.
答案: B
数学 选修2-2
第一章 导数及其应用
(人教版)高中数学选修2-2课件:第1章 导数及其应用1.6
=(0-1)-[0-(-1)]
=-1-1=-2.
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
(3)∵(ex-sin x)′=ex-cos x,
0
∴ -π
(ex-cos
x)dx=(ex-sin
x)|
0 -π
=(e0-sin 0)-[e-π-sin(-π)]
=1-e-π.
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
求简单的定积分关键注意两点: (1)掌握基本函数的导数以及导数的运算法则,正确求解被 积函数的原函数,当原函数不易求时,可将被积函数适当变形 后再求解; (2)精确定位积分区间,分清积分下限与积分上限.
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
定积分的应用
已知 f(x)=21x++x12,,xx∈∈[2-,24,],2],
3
求
使
k
f(x)dx
=
430恒成立的 k 值.
数学 选修2-2
第一章 导数及其应用
[思路点拨]
自主学习 新知突破
0
(3)
(ex-cos x)dx.
-π
[思路点拨] 先求被积函数的原函数,然后利用微积分基
本定理求解.
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
(1)∵x3+12x2-x′=3x2+x-1,
人教版高二数学选修2-2(B版)全册PPT课件
3.1.1 实数系
3.1.3 复数的几何意义
3.2.2 复数的乘法
பைடு நூலகம்
本章小节
附录 部分中英文词汇对照表
第一章 导数及其应用
人教版高二数学选修2-2(B版)全册 PPT课件
1.2 导数的运算
1.2.1 常数函数与冥函数的导
1.2.3 导数的四则运算法则
1.3.2 利用导数研究函数的极值
1.4 定积分与微积分基本定理
1.4.1 曲边梯形
本章小结
第二章 推理与证明
2.1.2 演绎推理
2.2.2 反证法
2.3.2 数学归纳法应用举例
阅读与欣赏
《原本》与公理化思想
3.1 数系的扩充与复数的概念
人教版高二数学选修2-2(B版)全 册PPT课件目录
0002页 0036页 0087页 0156页 0219页 0238页 0254页 0282页 0336页 0371页 0418页 0458页 0460页 0495页 0555页 0598页 0600页
第一章 导数及其应用
1.1.2 瞬时速度与导数
高中数学选修2-2(人教B版)第一章导数及其应用1.4知识点总结含同步练习题及答案
1 1 1 25 . + +⋯+ < n+1 n+2 2n 36
即
2n 1 1 1 1 n + +⋯+ <∫ dx = ln x| 2 n = ln 2n − ln n = ln 2, n+1 n+2 2n x n
因为ln 2 ≈ 0.6931 , 25 ≈ 0.6944 ,所以ln 2 < 25 .所以
3 1
π 2 dx;(3)∫ 0 2 (sin x − cos x)dx. x
∫
(1 + x + x2 ) = ∫
3 1
1 2 3 1 x | 1 + x3 | 3 1 2 3 1 1 = (3 − 1) + (3 2 − 1 2 ) + (3 3 − 1 3 ) 2 3 44 = . 3 = x| 3 1 +
∑ f (ξi )Δx = ∑
i =1 i =1 n n
b−a f (ξi ), n
当 n → ∞ 时,上述和式无限接近某个常数,这个常数叫做函数 f (x) 在区间 [a, b] 上的定积分(definite integral),记作 ∫ ab f (x)dx,即
∫
b a
f (x)dx = lim ∑
∫
b a
f (x)dx = F (x)| b a = F (b) − F (a).
例题: 利用定积分定义计算: (1)∫ 1 (1 + x)dx;(2)∫ 0 xdx. 解:(1)因为 f (x) = 1 + x 在区间 [1, 2] 上连续,将区间 [1, 2] 分成 n 等份,则每个区间的
人教B版选修22高中数学第一章《导数及其应用》同步练习
导数的应用第1题、 2007海南、宁夏文)设函数错误!超链接引用无效. (Ⅰ)讨论错误!超链接引用无效。
的单调性;(Ⅱ)求错误!超链接引用无效。
在区间错误!超链接引用无效.的最大值和最小值.答案:解:错误!超链接引用无效。
的定义域为错误!超链接引用无效。
.(Ⅰ)错误!超链接引用无效。
.当错误!超链接引用无效。
时,错误!超链接引用无效。
;当错误!超链接引用无效。
时,错误!超链接引用无效。
;当错误!超链接引用无效.时,错误!超链接引用无效.. 从而,错误!超链接引用无效.分别在区间错误!超链接引用无效。
,错误!超链接引用无效.单调增加,在区间错误!超链接引用无效.单调减少.(Ⅱ)由(Ⅰ)知错误!超链接引用无效。
在区间错误!超链接引用无效.的最小值为错误!超链接引用无效。
又错误!超链接引用无效.错误!超链接引用无效。
. 所以错误!超链接引用无效。
在区间错误!超链接引用无效.的最大值为错误!超链接引用无效.. 第2题、 (2002海南、宁夏理)曲线错误!超链接引用无效。
在点错误!超链接引用无效.处的切线与坐标轴所围三角形的面积为( ) A。
错误!超链接引用无效。
B。
错误!超链接引用无效。
C。
错误!超链接引用无效.D.错误!超链接引用无效。
答案:D第3题、 (2007海南、宁夏理)设函数错误!超链接引用无效。
.(I )若当错误!超链接引用无效.时,错误!超链接引用无效。
取得极值,求错误!超链接引用无效。
的值,并讨论错误!超链接引用无效。
的单调性;(II )若错误!超链接引用无效。
存在极值,求错误!超链接引用无效。
的取值范围,并证明所有极值之和大于错误!超链接引用无效。
答案:解:(Ⅰ)错误!超链接引用无效。
,依题意有错误!超链接引用无效。
,故错误!超链接引用无效。
.从而错误!超链接引用无效.。
错误!超链接引用无效。
的定义域为错误!超链接引用无效。
.当错误!超链接引用无效。
时,错误!超链接引用无效.;当错误!超链接引用无效。
2020版高中数学人教B版选修2-2课件:1.1.1 函数的平均变化率
【解析】质点在2到2+Δt之间的平均速度为
[(2 t)2 1] 22 1 4t (t)2
v
4 t.
t
t
又 v≤5,即4+Δt≤5,
所以Δt≤1.
又Δt>0,
所以Δt的取值范围为(0,1]. 答案:(0,1]
【易错误区案例】 求解函数的平均变化率问题 【典例】函数y=2x2+3x在[1,2]内的平均变化率为_-_9_.
y x
f x2 f x1
x2 x1
公式中Δx与Δy可能同号,也可能异号.
(3)×.函数值的改变量应是f(x0+Δx)-f(x0).
2.若已知函数f(x)=x2-1的图象上一点(1,0)及附近一 点(1+Δx,Δy),则Δy的值为________. 【解析】Δy=f(1+Δx)-f(1)= (1+Δx)2-1=(Δx)2+2Δx. 答案:(Δx)2+2Δx
33 3
所以函数f(x)=3-x2在x0=1附近的平均变化率最大.
【方法技巧】 比较平均变化率的方法步骤
(1)求出两不同点处的平均变化率. (2)作差(或作商),并对差式(或商式)作合理变形,以 便探讨差的符号(或商与1的大小). (3)下结论.
【补偿训练】一质点做直线运动,其位移s与时间t的 关系为s(t)=t2+1,该质点在2到2+Δt(Δt>0)之间的 平均速度不大于5,则Δt的取值范围是______.
为 f x1 f x2 ?
x1 x2
提示:能.若从x1变为x2,平均变化率为
若从x2变为x1,平均变化率为
而 f x2 =f x1 f x.1 f x2
f x1 f,
2019-2020学年高中数学(人教B版 选修2-2)教师用书:第1章 导数及其应用 1.3.1
1.3导数的应用1.3.1利用导数判断函数的单调性1.理解导数与函数的单调性的关系.(易混点)2.掌握利用导数判断函数单调性的方法.(重点)3.会用导数求函数的单调区间.(重点、难点)[基础·初探]教材整理函数的单调性与导数之间的关系阅读教材P24,完成下列问题.用函数的导数判定函数单调性的法则(1)如果在(a,b)内,________,则f(x)在此区间是增函数,(a,b)为f(x)的单调增区间;(2)如果在(a,b)内,________,则f(x)在此区间是减函数,(a,b)为f(x)的单调减区间.【答案】f′(x)>0 f′(x)<0判断(正确的打“√”,错误的打“×”)(1)函数f(x)在定义域上都有f′(x)>0,则函数f(x)在定义域上单调递增.( )(2)函数在某一点的导数越大,函数在该点处的切线越“陡峭”.( )(3)函数在某个区间上变化越快,函数在这个区间上导数的绝对值越大.( )【答案】(1)×(2)×(3)√[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型](1)函数y=f(图1-3-1①函数y=f(x)的定义域是[-1,5];②函数y=f(x)的值域是(-∞,0]∪[2,4];③函数y=f(x)在定义域内是增函数;④函数y=f(x)在定义域内的导数f′(x)>0.其中正确的序号是( )A.①②B.①③C.②③D.②④(2)设函数f(x)在定义域内可导,y=f(x)的图象如图1-3-2所示,则导函数y=f′(x)的图象可能为( )图1-3-2【精彩点拨】研究一个函数的图象与其导函数图象之间的关系时,注意抓住各自的关键要素,对于原函数,要注意其图象在哪个区间内单调递增,在哪个区间内单调递减;而对于导函数,则应注意其函数值在哪个区间内大于零,在哪个区间内小于零,并分析这些区间与原函数的单调区间是否一致.【自主解答】(1)由图象可知,函数的定义域为[-1,5],值域为(-∞,0]∪[2,4],故①②正确,选A.(2)由函数的图象可知:当x<0时,函数单调递增,导数始终为正;当x>0时,函数先增后减再增,即导数先正后负再正,对照选项,应选D.【答案】(1)A (2)D1.利用导数判断函数的单调性比利用函数单调性的定义简单的多,只需判断导数在该区间内的正负即可.2.通过图象研究函数单调性的方法(1)观察原函数的图象重在找出“上升”“下降”产生变化的点,分析函数值的变化趋势;(2)观察导函数的图象重在找出导函数图象与x轴的交点,分析导数的正负.[再练一题]1.(1)设f′(x)是函数f(x)的导函数,将y=f(x)和y=f′(x)的图象画在同一个直角坐标系中,不正确的是( )A B C D(2)若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y=f(x)在区间[a,b]上的图象可能是( )A B C D【解析】(1)A,B,C均有可能;对于D,若C1为导函数,则y=f(x)应为增函数,不符合;若C2为导函数,则y=f(x)应为减函数,也不符合.(2)因为y=f(x)的导函数在区间[a,b]上是增函数,则从左到右函数f(x)图象上的点的切线斜率是递增的.【答案】(1)D (2)A求函数f(x)=x+ax(a≠0)的单调区间.【精彩点拨】求出导数f′(x),分a>0和a<0两种情况.由f′(x)>0求得单调增区间,由f′(x)<0求得单调减区间.【自主解答】f(x)=x+ax的定义域是(-∞,0)∪(0,+∞),f′(x)=1-a x2.当a>0时,令f′(x)=1-ax2>0,解得x>a或x<-a;令f′(x)=1-ax2<0,解得-a<x<0或0<x<a;当a<0时,f′(x)=1-ax2>0恒成立,所以当a>0时,f(x)的单调递增区间为(-∞,-a)和(a,+∞);单调递减区间为(-a,0)和(0,a).当a<0时,f(x)的单调递增区间为(-∞,0)和(0,+∞).利用导数求函数单调区间的步骤1.确定函数f(x)的定义域.2.求导数f′(x).3.由f′(x)>0(或f′(x)<0),解出相应的x的范围.当f′(x)>0时,f(x)在相应的区间上是增函数;当f′(x)<0时,f(x)在相应区间上是减函数.4.结合定义域写出单调区间.[再练一题]2.(1)函数f(x)=e x-e x,x∈R的单调递增区间为( ) 【导学号:05410017】A.(0,+∞) B.(-∞,0)C.(-∞,1) D.(1,+∞)(2)函数f(x)=ln x-x的单调递增区间是( )A.(-∞,1) B.(0,1)C .(0,+∞)D .(1,+∞)【解析】 (1)∵f ′(x )=(e x -e x )′=e x -e , 由f ′(x )=e x -e>0,可得x >1.即函数f (x )=e x -e x ,x ∈R 的单调增区间为 (1,+∞),故选D.(2)函数的定义域为(0,+∞),又f ′(x )=1x -1, 由f ′(x )=1x -1>0,得0<x <1,所以函数f (x )=ln x -x 的单调递增区间是(0,1),故选B. 【答案】 (1)D (2)B[探究共研型]探究1 【提示】 由已知得f ′(x )=3x 2-a , 因为f (x )在(-∞,+∞)上是单调增函数, 所以f ′(x )=3x 2-a ≥0在(-∞,+∞)上恒成立, 即a ≤3x 2对x ∈R 恒成立,因为3x 2≥0,所以只需a ≤0. 又因为a =0时,f ′(x )=3x 2≥0, f (x )=x 3-1在R 上是增函数,所以a ≤0.探究2 若函数f (x )=x 3-ax -1的单减区间为(-1,1),如何求a 的取值范围. 【提示】 由f ′(x )=3x 2-a , ①当a ≤0时,f ′(x )≥0, ∴f (x )在(-∞,+∞)上为增函数. ②当a >0时,令3x 2-a =0,得x =±3a3, 当-3a 3<x <3a3时,f ′(x )<0. ∴f (x )在⎝ ⎛⎭⎪⎫-3a 3,3a 3上为减函数, ∴f (x )的单调递减区间为⎝⎛⎭⎪⎫-3a 3,3a 3,∴3a3=1,即a=3.已知关于x的函数y=x3-ax+b.(1)若函数y在(1,+∞)内是增函数,求a的取值范围;(2)若函数y的一个单调递增区间为(1,+∞),求a的值.【精彩点拨】(1)函数在区间(1,+∞)内是增函数,则必有y′≥0在(1,+∞)上恒成立,由此即可求出a的取值范围.(2)函数y的一个单调递增区间为(1,+∞),即函数单调区间的端点值为1,由此可解得a 的值.【自主解答】y′=3x2-a.(1)若函数y=x3-ax+b在(1,+∞)内是增函数.则y′=3x2-a≥0在x∈(1,+∞)时恒成立,即a≤3x2在x∈(1,+∞)时恒成立,则a≤(3x2)最小值.因为x>1,所以3x2>3.所以a≤3,即a的取值范围是(-∞,3].(2)令y′>0,得x2>a3.若a≤0,则x2>a3恒成立,即y′>0恒成立,此时,函数y=x3-ax+b在R上是增函数,与题意不符.若a>0,令y′>0,得x>a3或x<-a3.因为(1,+∞)是函数的一个单调递增区间,所以a3=1,即a=3.1.解答本题注意:可导函数f(x)在(a,b)上单调递增(或单调递减)的充要条件是f′(x)≥0(或f′(x)≤0)在(a,b)上恒成立,且f′(x)在(a,b)的任何子区间内都不恒等于0.2.已知f(x)在区间(a,b)上的单调性,求参数范围的方法(1)利用集合的包含关系处理f(x)在(a,b)上单调递增(减)的问题,则区间(a,b)是相应单调区间的子集;(2)利用不等式的恒成立处理f(x)在(a,b)上单调递增(减)的问题,则f′(x)≥0(f′(x)≤0)在(a,b)内恒成立,注意验证等号是否成立.[再练一题]3.将上例(1)改为“若函数y在(1,+∞)上不单调”,则a的取值范围又如何?【解】y′=3x2-a,当a<0时,y′=3x2-a>0,函数在(1,+∞)上单调递增,不符合题意.当a>0时,函数y在(1,+∞)上不单调,即y′=3x2-a=0在区间(1,+∞)上有根.由3x2-a=0可得x=a3或x=-a3(舍去).依题意,有a3>1,∴a>3,所以a的取值范围是(3,+∞).[构建·体系]1.函数y=f(x)的图象如图1-3-3所示,则导函数y=f′(x)的图象可能是( )图1-3-3【解析】∵函数f(x)在(0,+∞),(-∞,0)上都是减函数,∴当x>0时,f′(x)<0,当x<0时,f′(x)<0.【答案】 D2.已知函数f (x )=x +ln x ,则有( ) A .f (2)<f (e)<f (3) B .f (e)<f (2)<f (3) C .f (3)<f (e)<f (2)D .f (e)<f (3)<f (2)【解析】 因为在定义域(0,+∞)上,f ′(x )=12x+1x >0,所以f (x )在(0,+∞)上是增函数,所以有f (2)<f (e)<f (3).故选A.【答案】 A3.函数f (x )=2x 3-9x 2+12x +1的单调减区间是________.【解析】 f ′(x )=6x 2-18x +12,令f ′(x )<0,即6x 2-18x +12<0,解得1<x <2. 【答案】 (1,2)4.已知函数f (x )=ax +1x +2在(-2,+∞)内单调递减,则实数a 的取值范围为________. 【解析】 f ′(x )=错误!,由题意得f ′(x )≤0在(-2,+∞)内恒成立,∴解不等式得a ≤12,但当a =12时,f ′(x )=0恒成立,不合题意,应舍去,所以a 的取值范围是⎝ ⎛⎭⎪⎫-∞,12. 【答案】 ⎝ ⎛⎭⎪⎫-∞,125.已知函数f (x )=ln x ,g (x )=12ax 2+2x ,a ≠0.若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围. 【解】 h (x )=ln x -12ax 2-2x ,x ∈(0,+∞), 所以h ′(x )=1x -ax -2. 因为h (x )在[1,4]上单调递减, 所以x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立, 即a ≥1x2-2x 恒成立,所以a ≥G (x )最大值,而G (x )=⎝ ⎛⎭⎪⎫1x -12-1.因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以G (x )最大值=-716(此时x =4),所以a ≥-716. 当a =-716时,h ′(x )=1x +716x -2=16+7x2-32x 16x=错误!. 因为x ∈[1,4], 所以h ′(x )=错误!≤0, 即h (x )在[1,4]上为减函数. 故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-716,+∞.我还有这些不足:(1) (2) 我的课下提升方案:(1) (2)。
人教b版选修2-2第一章 导数及其应用.docx
第一章 导数及其应用一、知识体系:1.导数的概念如果函数)(x f y = ,则称)(x f 在点0x 处可导,并称此极限值为函数)(x f y =在点0x 处的导数,记为 或 。
(答:满足xx f x x f x ∆-∆+→∆)()(000lim存在,00),(x x y x f ='')2.函数)(x f y = ,就说)(x f 在区间(b a ,)内可导,其导数也是(b a ,)内的函数,叫做)(x f 的导函数,记作 或 。
(答:在开区间(a,b )内每一点都可导,y x f ''),()3.函数=y )(x f 在点0x 处可导是函数)(x f y =在点0x 处连续的 条件。
(答:充分而不必要)4.导数的几何意义:①设函数)(x f y =在点0x 处可导,那么 等于函数所表示曲线的相应点),(00y x M 处的切线斜率。
(答:)(0x f ')②设)(t s s =是位移函数,则 表示物体在0t t =时刻瞬时速度。
(答:)(0t s ')5.几种常见函数的导数:①='c (答:0) ②=')(nx (答:nx n-1)③=')(sin x (答:cosx )④=')(cos x (答:-sinx ) ⑤=')(xe (答:e x)⑥=')(xa (答:a xlna )⑦=')(ln x (答:1x )⑧=')(log x a (答:1x log a e )6.两个函数的四则运算的导数: 若)(),(x v x u 的导数都存在,则①='±)(v u (答:v u '±')②='⋅)(v u , =')(cu (答:v u v u '÷') ③=')(v u (答:2vv u v u '-') 7.复合函数的导数:设 ,则复合函数))((x f y φ=在点x 处可导,且='x y 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本节重点:导数公式和导数的运算法则及其应用. 本节难点:导数公式和运算法则的应用.
1.导数的四则运算法则
设函数f(x)、g(x)是可导的,则 (1)(f(x)±g(x))′=____f_′(_x_)_±__g_′(_x_) _________; (2)(f(x)·g(x))′=____f′_(x_)_g_(x_)_+__f_(x_)_·_g_′(_x_) ______; (3)gfxx′=____f′___x_g__x_g_-2_x_f_x_g_′___x______ (g(x)≠0).
求下列函数的导数: (1)y=cos3x-π6;(2)y=ln(2x2+3x+1).
[解析] (1)设y=cosu,u=3x-π6, ∴y′x=-sinu·3=-3sin3x-π6. (2)设y=lnu,u=2x2+3x+1, ∴y′x=y′u·u′x=1u·(4x+3) =2x24+x+3x3+1.
[解析] (1)y′=4x3-9x2+4x-4. (2)y′=x′cosx+x(cosx)′=cosx-xsinx. (3)y′=(sin2x)′=(2sinxcosx)′=(2sinx)′cosx+2sinx(cosx)′= 2cos2x-2sin2x=2cos2x.
(4)y′=(tanx+cotx)′=csoinsxx′+csoinsxx′ =cos2cxo+s2sxin2x+-sins2ixn-2xcos2x =co1s2x-sin12x=c-os2cxossi2nx2x=-s4inc2o2sx2x. (5)y′=2xlnx+x2·1x+0-logxa2l1xna =2xlnx+x-xllnna2x.
[说明] 1.复合函数的求导法则 复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数 间的关系为y′x=y′u·u′x(其中y′x表示y对x的导数).即y对x的导 数等于y对u的导数与u对x的导数的乘积. 2.求复合函数的导数需处理好以下环节: (1)中间变量的选择应是基本函数结构; (2)关键是正确分析函数的复合层次; (3)一般是从最外层开始,由外及里,一层层地求导; (4)善于把一部分表达式作为一个整体; (5)最后要把中间变量换成自变量的函数.
[解析] (1)y′=(x4-3x2-5x+6)′ =(x4)′-3(x2)′-5x′+(6)′ =4x3-6x-5.
(2)解法1:y′=[(x+1)(x+2)]′(x+3)+(x+1)(x+2)(x+3)′ =[(x+1)′(x+2)+(x+1)(x+2)′](x+3)+(x+1)(x+2)
=(x+2+x+1)(x+3)+(x+1)(x+2) =(2x+3)(x+3)+(x+1)(x+2) =3x2+12x+11. 解法2:∵y=x3+6x2+11x+6, ∴y′=3x2+12x+11.
(3)解法1:y′=xx- +11′ =x-1′x+1x+-1x2-1x+1′ =x+1x+-1x2-1=x+212 . 解法2:∵y=1-x+2 1, ∴y′=1-x+2 1′=-x+2 1′ =-2′x+x1+-122x+1′=x+212 .
2.复合函数f[g(x)]的导数和函数y=f(u),u=g(x)的导数 间的关系为y′x=____y_′_u·_u_′x____________.
课堂互动探究
导数的四则运算
求下列函数的导数. (1)y=x4-3x2-5x+6; (2)y=(x+1)(x+2)(x+3); (3)y=xx- +11; (4)y=2xx+2 1+2xx+2 1. [分析] 由和、差、积、商的导数公式直接求导.
成才之路 ·数学
人教B版 • 选修2-2
路漫漫其修远兮 吾将上下而求索
第一章 导数及其应用
第一章
1.2 导数的运算 第3课时 导数的四则运算法则
1 课前自主导学 2 课堂互动探究
3 学法归纳总结 4 课后强化作业
课前自主导学
其实,导数和实数一样可以进行四则运算,我们可以通 过导数的加减乘除来计算由基本初等函数通过加减乘除构成 的函数,这样我们就避免了使用导数的定义求复杂函数的导 数,使运算变得简单.
复合函数的导数
求下列函数的导数. (1)y=sin3x;(2)y= 3-x. [分析] 解答本题要严格按照复合函数求导方法进行.
[解析] (1)设y=sinu,u=3x, 则y′x=y′u·u′x=cosu·3=3cos3x. (2)设y= u,u=3-x, 则y′x=y′u·u′x=2y′=2xx+2 1′+2xx+2 1′ =2x+1′x2-x42x+1x2′+x2′2x+21x+-1x222x+1′ =2x2-4xx4 2-2x+4x2+2x2+x-122x2 =-2xx3-2+22xx2++12x2 .
1.知识与技能 能利用导数的四则运算法则和导数公式,求简单函数的 导数.通过例题,理解复合函数的求导法则. 2.过程与方法 通过本节的学习,掌握运用导数的四则运算法则和用基 本初等函数的导数公式求导数的方法.
3.情感态度与价值观 通过用导数定义证明函数和的求导法则的过程,学会一 些变形技巧,提高逻辑推理论证能力,进一步体会数学的应 用价值,提高学习数学的兴趣.
[说明] (1)熟练掌握和运用函数的和、差、积、商的导 数公式,并进行简单、合理的运算,注意运算中公式运用的 准确性.
(2)灵活运用公式,化繁为简,如小题(2)这种类型,展开 化为和、差的导数比用积的导数简单容易.
求下列函数的导数: (1)y=x4-3x3+2x2-4x-1; (2)y=xcosx; (3)y=sin2x; (4)y=tanx+cotx; (5)y=x2lnx+lo1gax(a>0且a≠1,x>0).