2018届广东省广州市海珠区高三综合测试(一)数学理试题

合集下载

2018届广州市高三上学期第一次调研测试数学(理)试题(解析版)

2018届广州市高三上学期第一次调研测试数学(理)试题(解析版)

2018届广州市高三上学期第一次调研测试数学(理)试题一、单选题1.设集合{}1,0,1,2,3A =-, {}2|3 0B x x x =->,则A B ⋂=A. {}1-B. {}1,0-C. {}1,3-D. {}1,0,3- 【答案】A 【解析】由B 中不等式变形得()30x x ->,解得0x <或3x >,即{| 0B x x =<或}3x >,{}1,0,1,2,3A =-, {}1A B ∴⋂=-,故选A.2.若复数z 满足()121i z i +=-,则z = ( )A.25 B. 35C.D. 【答案】C【解析】()121i z i +=-111121212i i i z z i i i ---⇒=⇒====+++ ,选C. 3.在等差数列{}n a 中,已知22a =,前7项和756S =,则公差d = A. 2 B. 3 C. 2- D. 3-【答案】B【解析】因为等差数列{}n a 中,已知22a =,前7项和756S =,所以可得()117121{ { 73563a d a S a d d +==-⇒=+==,故选B. 4.已知变量x , y 满足20{230 0x y x y y -≤-+≥≥,,,则2z x y =+的最大值为A. 0B. 4C. 5D. 6 【答案】B【解析】画出20{230 0x y x y y -≤-+≥≥,,表示的可行域,如图, 2z x y =+化为2y x z =-+,由20{230x y x y -=-+=,可得()1,2P ,平移直线2y x z =-+,当直线经点()1,2P 时,直线截距最大值为2124z =⋅+=,故选B.【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5.912x x ⎛⎫- ⎪⎝⎭的展开式中3x 的系数为A. 212-B. 92-C. 92D. 212【答案】A 【解析】912x x ⎛⎫- ⎪⎝⎭的展开式的通项为9992999111222nnnn n nn n n n C x Cx x C x x----⎛⎫⎛⎫⎛⎫⋅-=⋅-⋅=⋅-⋅⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当923n -=时, 3391213,22n C ⎛⎫=-=- ⎪⎝⎭,故选A.6.在如图的程序框图中, ()i f x '为()i f x 的导函数,若()0sin f x x =,则输出的结果是A. sin x -B. cos xC. sin xD. cos x -【答案】A【解析】执行程序框图,()0sin f x x =; ()()10'cos f x f x x ==;()()21'sin f x f x x ==-; ()()32'cos f x f x x ==-; ()()43'f x f x sinx ==; ()()54'cos f x f x x ==,可得()n f x 是周期4T =的函数,当2018i =时,结束循环,输()()20182sin f x f x x ==-,故选A.7.正方体1111ABCD A BC D -的棱长为2,点M 为1CC 的中点,点N 为线段1DD 上靠近1D 的三等分点,平面BMN 交1AA 于点Q ,则AQ 的长为 A.23 B. 12 C. 16 D. 13【答案】D【解析】如图,将MB 平移至',M A N 为靠近1DD 的三个等分点处, 123D N ∴=, M 为1CC 的中点, 'M ∴也为1D D 中点, 11'1,'3D M NM ∴=∴=,根据四点共面, //'QN AM , 1'3AQ NM ∴==,故选D. 8.已知直线2y kx =-与曲线ln y x x =相切,则实数k 的值为 A. ln2 B. 1 C. 1ln2- D. 1ln2+ 【答案】D【解析】由ln y x x =得'ln 1y x =+,设切点为()00,x y ,则0ln 1k x =+,000002{ y kx y x lnx =-=,0002ln kx x x ∴-=, 002ln k x x ∴=+,对比0ln 1k x =+, 02x ∴=,ln21k ∴=+,故选D.9.某学校获得5个高校自主招生推荐名额,其中甲大学2名,乙大学2名,丙大学1名,并且甲大学和乙大学都要求必须有男生参加,学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有A. 36种B. 24种C. 22种D. 20种 【答案】B【解析】第一类:男生分为1,1,1,女生全排,男生全排得323212A A ⋅=,第二类:男生分为2,1,所以男生两堆全排后女生全排22232212C A A ⋅=,不同的推荐方法共有121224+= ,故选B.10.将函数2sin sin 36y x x ππ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭的图象向左平移()0ϕϕ>个单位,所得图象对应的函数恰为奇函数,则ϕ的最小值为 A.6π B. 12π C. 4π D. 3π【答案】A 【解析】2323y s i n xs i n x πππ⎡⎤⎛⎫⎛⎫=+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 2cos 33sin x x ππ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭223sin x π⎛⎫=+ ⎪⎝⎭,平移ϕ, 222,3sin x πϕ⎛⎫++⎪⎝⎭平移作为奇函数, 223k πϕπ∴+=, 32πϕπϕ=-+,当1k =时, 6πϕ=,故选A. 11.在直角坐标系xOy 中,设F 为双曲线C : 22221(0,0)x y a b a b-=>>的右焦点,P 为双曲线C 的右支上一点,且△OPF 为正三角形,则双曲线C 的离心率为A.B.3C. 1D. 2【答案】C【解析】因为三角形OPF 为正三角形,所以PF FO c ==,设双曲线左焦点为'F 可得'60PFF ∠= '90F PF ∠=, '2F F c =, 'PF ∴,根据双曲线的定义可得'2PF PF c a -=-=, 1ce a∴==+ C. 【 方法点睛】本题主要考查双曲线的定义及离心率,属于难题. 离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.本题中,根据题设条件利用特殊直角三角形的性质.从而找出,a c 之间的关系,求出离心率e .12.对于定义域为R 的函数()f x ,若满足① ()00f =;② 当x R ∈,且0x ≠时,都有()0xf x '>;③ 当120x x <<,且12x x =时,都有()()12f x f x <,则称()f x 为“偏对称函数”.现给出四个函数:()32132f x x x =-+; ()21x f x e x =--;()411,0,{ 2120,0.x x x f x x ⎛⎫+≠ ⎪=-⎝⎭=则其中是“偏对称函数”的函数个数为A. 0B. 1C. 2D. 3 【答案】C【解析】因为条件②()0xf x '>,所以x 与()'f x 同号, ()21'33f x x x =-+不符合②, ()1f x 不是“偏对称函数”;对于()21xf x e x =--; ()2'1xf x e =-,满足①②,构造函数()()()222x x x f x f x e e xϕ-=--=--,()'220x x x e e ϕ-=+-≥=, ()2x x x e e x ϕ-=--在R 上递增,当120x x <<,且12x x =时,都有()()()()()()12121212200x f x f x f x f x ϕϕ=--=-<=, ()()2122f x f x <,满足条件 ③, ()21xf x e x =--是“偏对称函数”;对于()3f x , ()31'1f x x =- ,满足条件①②,画出函数()3y f x =的图象以及()3y f x =在原点处的切线, 2y x = 关于y 轴对称直线2y x =-,如图,由图可知()3y f x =满足条件③,所以知()3y f x =是“偏对称函数”;函数()4f x 为偶函数, ()()1212x x f x f x =⇒=,不符合③,函数()4f x 不是,“偏对称函数”,故选C. 【方法点睛】本题考查函数的图象与性质以及导数的应用、新定义问题及数形结合思想,属于难题. 新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.本题定义“偏对称函数”达到考查函数的图象与性质以及导数的应用的目的.二、填空题13.已知向量(),2a x x =-, ()3,4b =,若a b ,则向量a 的模为________. 【答案】10【解析】因为//a b,所以234x x -=, 6x =-,10a =,故答案为10.14.在各项都为正数的等比数列{}n a 中,若20182a =,则2017201912a a +的最小值为______. 【答案】4【解析】因为等比数列{}n a 各项都为正数,所以220182017201912aa a ==,20172019124a a +≥=,故答案为4.15.过抛物线C : 22(0)y px p =>的焦点F 的直线交抛物线C 于A , B 两点.若6AF =, 3BF =,则p 的值为________.【答案】4【解析】设过抛物线C : 22(0)y px p =>的准线l 与x 轴交于点G ,与直线AB 交于C ,过A 作l 的垂线,垂足为E ,作BD l ⊥ 于D ,根据相似三角形性质可得12BD BF B AE AF ==⇒是AC 中点,可得9BC =,124618FG CF FG FG AE AC =⇒=⇒=, 4P ∴=,故答案为4.16.如图,网格纸上正方形小格的边长为1,图中粗线画出的是某三棱锥的三视图,则该三棱锥的外接球的表面积为________.【答案】11π【解析】由三视图可知,三棱锥直观图A BCD - ,如图G 是BCD ∆的外心, GP ⊥平面BCD ,令AP BP =,则P 是外接球球心,设G Pa =, 22BP AP = ,222212BP BG GP a =+=+, ()()222222311122AP EG a a ⎛⎫⎛⎫=+-=++- ⎪ ⎪⎝⎭⎝⎭,32a ∴=, ∴球半径2r BP ===, 2244112S r πππ⎛⎫==⋅= ⎪ ⎪⎝⎭,故答案为11π.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.三、解答题17.△ABC 的内角A , B , C 的对边分别为a , b ,c ,且满足2a =,()cos 2cos a B c b A =-.(1)求角A 的大小;(2)求△ABC 周长的最大值. 【答案】(1)3A π=(2)最大值为6【解析】试题分析:(1)由()cos 2cos a B c b A =-根据正弦定理以及两角好的正弦公式可得1c o s A 2=,从而可得角A 的大小;(2)由2a =,利用余弦定理可得224bc b c +=+,配方后利用基本不等式可得4b c +≤,从而可得△ABC 周长的最大值.试题解析:(1)由已知,得cos cos 2cos a B b A c A +=. 2ccosA acosB bcosA +=由正弦定理,得sin cos sin cos 2sin cos A B B A C A += 2sinCcosA sinAcosB sinBcosA +=,即()sin 2sin cos A B C A += ()sin A B 2sinCcosA +=.因为()()sin sin sin A B C C π+=-=, ()()sin A B sin πC sinC +=-= 所以sin 2sin cos C C A =. sinC 2sinCcosA =因为sin 0C ≠ sinC 0≠,所以1cos 2A =. 因为0A π<<,所以π3 3A π=. (2)由余弦定理2222cos a b c bc A =+-, 2222a b c bccosA =+- 得224bc b c +=+, 即()234b c bc +=+.因为22b c bc +⎛⎫≤ ⎪⎝⎭,所以()()22344b c b c +≤++. 即4b c +≤(当且仅当2b c == 2b c == 时等号成立). 所以6a b c ++≤.故△ABC 周长 a b c ++的最大值为6.18.如图,已知多面体PABCDE 的底面ABCD 是边长为2的菱形, PA ⊥底面ABCD , ED PA ,且22PA ED ==.(1)证明:平面PAC ⊥平面PCE ; (2)若直线PC ?与平面所成的角为,求二面角的余弦值.【答案】(1)见解析;(2)【解析】试题分析:(1)连接BD ,交AC 于点O ,设PC 中点为F ,连接OF , EF ,先根据三角形中位线定理及平行四边形的性质可得BD EF ,再证明BD ⊥平面PAC ,从而可得EF ⊥平面PAC ,进而可得平面PAC ⊥平面PCE ;(2)以A 为原点, AM , AD , AP 分别为x y z ,,轴,建立空间直角坐标系A xyz -,分别求出平面PCE 与平面CDE 的一个法向量,根据空间向量夹角余弦公式,可得结果 试题解析:(1)证明:连接,交于点O ,设PC 中点为F ,连接OF , EF .因为O , F 分别为AC , PC 的中点,所以OF PA ,且12OF PA =, 因为DE PA ,且12DE PA =,所以OF DE ,且OF DE =.所以四边形OFED 为平行四边形,所以OD EF ,即BD EF . 因为PA ⊥平面ABCD , BD ⊂平面ABCD ,所以PA BD ⊥. 因为ABCD 是菱形,所以BD AC ⊥.因为PA AC A ⋂=,所以BD ⊥平面PAC . 因为BD EF ,所以EF ⊥平面PAC .因为FE ⊂平面PCE ,所以平面PAC ⊥平面PCE . (2)解法:因为直线PC ?与平面ABCD 所成角为45 ,所以45PCA ∠=,所以2AC PA ==.所以 AC AB =,故△ABC 为等边三角形.设BC 的中点为M ,连接AM ,则AM BC ⊥.以A 为原点, AM , AD , AP 分别为x y z ,,轴,建立空间直角坐标系A xyz -(如图).则()0,02P ,, )0C,, ()0,21E ,, ()0,20D ,,,()CE =,,==. 设平面PCE 的法向量为{}111,,n x y z =,则·0,{·0,n PC n CE ==即11111120, 0.y z y z +-=++= 11,y =令则11{2.x z ==所以)n =.设平面CDE 的法向量为()222,,m x y z =,则0,{ 0,m DE m CE ⋅=⋅=即22220,{0.z y z =++=令21,x =则22{ 0.yz ==所以()13,0m =. 设二面角P CE D --的大小为θ,由于θ为钝角,所以cos cos ,n m n m n mθ⋅=-=-==⋅ 所以二面角P CED --的余弦值为 【方法点晴】本题主要考查线面垂直及面面垂直的判定定理以及利用空间向量求二面角,属于难题. 空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.19.某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量X (小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量y (百斤)与使用某种液体肥料x (千克)之间对应数据为如图所示的折线图.(1)依据数据的折线图,是否可用线性回归模型拟合y 与x 的关系?请计算相关系数r 并加以说明(精确到0.01).(若0.75r >,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量X 限制,并有如下关系:若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.若商家安装了3台光照控制仪,求商家在过去50周周总利润的平均值.附:相关系数公式()()niix x y y r --=,参考数据0.55≈,.【答案】(1)可用线性回归模型拟合y与x 的关系(2)商家在过去50周周总利润的平均值为4600元【解析】试题分析:(1)先算出相关系数0.950.75nx x y y r --===≈>可得结论;(2)安装1台光照控制仪可获得周总利润3000元,分别列出离散型随机变量的分布列,算出安装2台光照控制仪总利润为5200元,安装3台光照控制仪总利润为4600元,从而可得结果.试题解析:(1)由已知数据可得24568344455,455x y ++++++++====.因为()()()()5131000316iii x x y y =--=-⨯-++++⨯=∑,===所以相关系数0.95nx x y y r --===≈.因为0.75r >,所以可用线性回归模型拟合与的关系.(2)记商家周总利润为Y 元,由条件可知至少需安装1台,最多安装3台光照控制仪.①安装1台光照控制仪可获得周总利润3000元. ②安装2台光照控制仪的情形:当X >70时,只有1台光照控制仪运行,此时周总利润Y =3000-1000=2000元, 当30<X ≤70时,2台光照控制仪都运行,此时周总利润Y =2×3000=6000元, 故Y 的分布列为所以20000.260000.85200EY =⨯+⨯=元. ③安装3台光照控制仪的情形:当X >70时,只有1台光照控制仪运行,此时周总利润Y =1×3000-2×1000=1000元, 当50≤X ≤70时,有2台光照控制仪运行,此时周总利润Y =2×3000-1×1000=5000元, 当30<X ≤70时,3台光照控制仪都运行,周总利润Y =3×3000=9000元, Y所以10000.250000.790000.14600EY =⨯+⨯+⨯=元.综上可知,为使商家周总利润的均值达到最大应该安装2台光照控制仪.20.如图,在直角坐标系xOy 中,椭圆C : 22221y x a b+= ()0a b >>的上焦点为1F ,椭圆C 的离心率为12 ,且过点⎛ ⎝⎭. (1)求椭圆C 的方程;(2)设过椭圆C 的上顶点A 的直线l 与椭圆C 交于点B (B 不在y 轴上),垂直于l 的直线与l 交于点M ,与x 轴交于点H ,若11•0F B F H =,且MO MA =,求直线l 的方程.【答案】(1)22143y x +=(2)2y x =+【解析】试题分析:(1)由椭圆C 的离心率为12得12c a =,把点⎛ ⎝⎭代人椭圆方程,结合222+a b c =,可求得,a b 的值,从而可得椭圆方程;(2)直线l 的方程为+2y kx =,由222,{ 1,34y kx x y =++=得()2234120k x kx ++=,根据韦达定理及斜率公式,结合题设11•0F B F H = ,且MO MA =,可得2221214903434k k k k k k --⎛⎫⋅--= ⎪++⎝⎭,求得k 的值即可得结果.试题解析:(1)因为椭圆C 的离心率为12,所以12c a =,即2a c =. 又222+a b c =,得22=3b c ,即2234b a =,所以椭圆C 的方程为2222134y x a a +=.把点⎛ ⎝⎭代人C 中,解得24a =. 所以椭圆C 的方程为22143y x +=. (2)解法1:设直线l 的斜率为k ,则直线l 的方程为+2y kx =,由222,{ 1,34y kx x y =++=得()2234120k x kx ++=. 设(),A A A x y , (),B B B x y ,则有0A x =, 21234B kx k -=+,所以226834B k y k -+=+.所以2221268,3434k k B k k ⎛⎫--+ ⎪++⎝⎭因为MO MA =,所以M 在线段OA 的中垂线上,所以1M y =,因为2M M y kx =+,所以1M x k =-,即1,1M k ⎛⎫- ⎪⎝⎭. 设(),0H H x ,又直线HM 垂直l ,所以1MH k k=-,即111H k x k=---.所以1H x k k =-,即1,0H k k ⎛⎫- ⎪⎝⎭. 又()10,1F ,所以21221249,3434k k F B k k ⎛⎫--= ⎪++⎝⎭, 11,1F H k k ⎛⎫=-- ⎪⎝⎭ .因为110F B F H ⋅= ,所以2221214903434k k k k k k --⎛⎫⋅--= ⎪++⎝⎭, 解得283k =.所以直线l 的方程为2y x =+. 【方法点晴】本题主要考查待定系数求椭圆方程以及直线与椭圆的位置关系和数量积公式,属于难题. 利用待定系数法求椭圆方程的一般步骤;①作判断:根据条件判断椭圆的焦点在x 轴上,还是在y 轴上,还是两个坐标轴都有可能;②设方程:根据上述判断设方程()222210x y a b a b +=>>或22221x y b a+= ()0a b >>;③找关系:根据已知条件,建立关于a 、b 、c 的方程组;④得方程:解方程组,将解代入所设方程,即为所求. 21.已知函数()ln bf x a x x =+ ()0a ≠.(1)当2b =时,若函数()f x 恰有一个零点,求实数a 的取值范围;(2)当0a b +=, 0b >时,对任意121,,e e x x ⎡⎤∈⎢⎥⎣⎦,有()()12e 2f x f x -≤-成立,求实数b 的取值范围.【答案】(1)2a e =-或a 0>(2)](01 ,【解析】试题分析:(1)讨论0a >、0a <两种情况,分别利用导数研究函数的单调性,结合函数的单调性,利用零点存在定理可得函数()f x 恰有一个零点时实数a 的取值范围;(2)对任意121,,e ex x ⎡⎤∈⎢⎥⎣⎦,有()()12e 2f x f x -≤-成立,等价于()()max min 2f x f x e ⎡⎤⎡⎤-≤-⎣⎦⎣⎦,利用导数研究函数的单调性,分别求出最大值与最小值,解不等式即可的结果.试题解析:(1)函数()f x 的定义域为()0,+∞.当2b =时, ()2ln f x a x x =+,所以()222a x a f x x x x='+=+.①当0a >时, ()0f x '>,所以()f x 在()0,+∞上单调递增,取10ax e -=,则21110a af e e --⎛⎫⎛⎫=-+< ⎪ ⎪⎝⎭⎝⎭,(或:因为00x <<且01ex <时,所以()200001ln ln ln 0ef x a x x a x a a a =+<+<+=.)因为()11f =,所以()()0·10f x f <,此时函数()f x 有一个零点.②当0a <时,令()0f x '=,解得x =.当0x << ()0f x '<,所以()f x 在⎛ ⎝上单调递减;当x >时, ()0f x '>,所以()f x 在⎫+∞⎪⎪⎭上单调递增.要使函数()f x 有一个零点,则02af a ==即2a e =-.综上所述,若函数()f x 恰有一个零点,则2a e =-或a 0>. (2)因为对任意121,,e e x x ⎡⎤∈⎢⎥⎣⎦,有()()12e 2f x f x -≤-成立,因为()()()()12max min f x f x f x f x ⎡⎤⎡⎤-≤-⎣⎦⎣⎦, 所以()()max min 2f x f x e ⎡⎤⎡⎤-≤-⎣⎦⎣⎦. 因为0a b +=,则a b =-.所以()ln b f x b x x =-+,所以()()11bb b x b f x bx x x---=='+. 当01x <<时, ()0f x '<,当1x >时, ()0f x '>,所以函数()f x 在1,1e ⎡⎫⎪⎢⎣⎭上单调递减,在(]1,e 上单调递增, ()()min 11f x f ⎡⎤==⎣⎦,因为1e e b f b -⎛⎫=+ ⎪⎝⎭与()e e bf b =-+,所以()()max 1max ,f x f f e e ⎧⎫⎛⎫⎡⎤=⎨⎬ ⎪⎣⎦⎝⎭⎩⎭. 设()()1e e e 2e b b g b f f b -⎛⎫=-=-- ⎪⎝⎭()0b >,则()e e220bbg b -=+->='.所以()g b 在()0,+∞上单调递增,故()()00g b g >=,所以()1e e f f ⎛⎫> ⎪⎝⎭. 从而()max f x ⎡⎤=⎣⎦ ()e e bf b =-+.所以e 1e 2b b -+-≤-即e e 10bb --+≤,设()=e e 1bb b ϕ--+ ()0b >,则()=e 1bb ϕ'-.当0b >时,()0b ϕ'>,所以()b ϕ在()0,+∞上单调递增.又()10ϕ=,所以e e 10b b --+≤,即为()()1b ϕϕ≤,解得1b ≤. 因为0b >,所以b 的取值范围为(]0,1. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为{2x cos y sin αα==,(α为参数),将曲线1C 经过伸缩变换2{x x y y=''=,后得到曲线2C .在以原点为极点, x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为cos sin 100ρθρθ--=.(1)说明曲线2C 是哪一种曲线,并将曲线2C 的方程化为极坐标方程;(2)已知点M 是曲线2C 上的任意一点,求点M 到直线l 的距离的最大值和最小值.【答案】(1)2C 为圆心在原点,半径为2的圆, 2ρ=(2)d 取到最小值为2最大值为2+【解析】试题分析:(1)利用三角恒等式消元法消去参数可得曲线1C 的普通方程,再利用放缩公式可得曲线2C 方程,从而可判定2C 是哪一种曲线,利用极坐标护互化公式可得2C 的方程化为极坐标方程;(2)利用2C 的参数方程设出点M 的坐标,利用点到直线距离公式、辅助角公式及三角函数的有界性可得结果. 试题解析:(1)因为曲线1C 的参数方程为{2x cos y sin αα==(α为参数), 因为2{ .x x y y ''==,,则曲线2C 的参数方程2{ 2.x cos y sin αα''==,.所以2C 的普通方程为224x y ''+=. 所以2C 为圆心在原点,半径为2的圆. 所以2C 的极坐标方程为24ρ=,即2ρ=. (2)解法:直线l 的普通方程为100x y --=.曲线2C 上的点M 到直线l的距离+)10|d πα-==当cos +=14πα⎛⎫⎪⎝⎭即()=24k k Z παπ-∈时, d2. 当cos +=14πα⎛⎫- ⎪⎝⎭即()3=24k k Z παπ+∈时, d 取到最大值为122+23.选修4-5:不等式选讲 已知函数()f x x a =+.(1)当1a =时,求不等式()211f x x ≤+-的解集;(2)若函数()()3g x f x x =-+的值域为A ,且[]2,1A -⊆,求a 的取值范围 【答案】(1){}|1x 1x x ≤-≥,或(2)(][),15,-∞⋃+∞【解析】试题分析:(1)对x 分三种情况讨论,分别求解不等式组,然后求并集即可得结果;(2)将函数()()3g x f x x =-+化为分段函数,根据分类讨论思想结合分段函数的图象,求出分段函数的值域,根据集合的包含关系列不等式求解即可. 试题解析:(1)当1a =时, ()1f x x =+.①当1x ≤-时,原不等式可化为122x x --≤--,解得1x ≤-. ②当112x -<<-时,原不等式可化为122x x +≤--,解得1x ≤-,此时原不等式无解. ③当12x ≥-时,原不等式可化为12x x +≤,解得1x ≥. 综上可知,原不等式的解集为{ 1 x x ≤-或}1x ≥.(2)解法:①当3a ≤时, ()3,3,{23,3, 3,.a x g x x a x a a x a -≤-=----<<--≥-所以函数()g x 的值域[]3,3A a a =--, 因为[]2,1A -⊆,所以32{31a a -≤--≥,,解得1a ≤.②当3a >时, ()3,,{23,3, 3, 3.a x a g x x a a x a x -≤-=++-<<--≥-所以函数()g x 的值域[]3,3A a a =--, 因为[]2,1A -⊆,所以32{31a a -≤--≥,,解得5a ≥.综上可知, a 的取值范围是(][),15,-∞⋃+∞.。

2018年高三最新 广州市2018年高三数学综合测试(一) 精品

2018年高三最新 广州市2018年高三数学综合测试(一) 精品

广州市2018年高三数学综合测试(一)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分为150分.考试时间 120分钟.第Ⅰ卷(选择题 共60分)参考公式:三角函数和差化积公式2sin 2sin 2cos cos 2cos 2cos 2cos cos 2sin 2cos 2sin sin 2cos 2sin 2sin sin ϕθϕθϕθϕθϕθϕθϕθϕθϕθϕθϕθϕθ-+-=--+=+-+=--+=+正棱台、圆台的侧面积公式:S 台侧=l c c )'(21+,其中c '、c 分别表示上、下底面周长,l 表示斜高或母线长 台体的体积公式V 台体=h S S S S )''(31++,其中S '、S 分别表示上、下底面积,h 表示高一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)满足条件M ⊂{0,1,2}的集合M 共有A .3个B .6个C .7个D .8个(2)在等比数列{a n }中,a 1=31,公比q =31,前n 项和为S n ,则∞→n lim S n 的值为 A .0 B .31 C .21 D .1 (3)(x 2+x1)12的展开式的常数项是 A .第四项 B .第五项 C .第八项 D .第九项(4)与圆 (x -2)2+y 2=2相切,且在x 轴与y 轴上的截距相等的直线有A .1条B .2条C .3条D .4条(5)复数z 1、z 2在复平面上对应的点分别是A 、B ,O 为坐标原点,若z 1=2 (cos60°+i sin60°)·z 2,|z 2|=2,则△AOB 的面积为A .43B .23C .3D .2(6)函数y =lg11-x 的图象大致是A B C D(7)已知直线l ⊥平面α,直线m ⊂平面β,则下列命题中正确的是A .α∥β⇒l ⊥mB .α⊥β⇒l ∥mC .l ∥β⇒m ⊥αD .l ⊥m ⇒α∥β(8)在极坐标系中,已知等边三角形ABC 的两个顶点A (2,4π)、B (2,45π),顶点C 在直线32)43cos(=-πθρ上,那么顶点C 的极坐标是 A .(4732π,) B .(2,47π) C .(2,43π) D .(23,43π) (9)设函数f (x )的定义域为(-∞,+∞),对于任意x 、y ∈(-∞,+∞),都有f (x +y )= f (x )+f (y ),当x >0时,f (x ) <0,则函数f (x ) 为A .奇函数,且在(-∞,+∞)上为增函数B .奇函数,且在(-∞,+∞)上为减函数C .偶函数,且在(-∞,0)上为增函数,在(0,+∞)上为减函数D .偶函数,且在(-∞,0)上为减函数,在(0,+∞)上为增函数(10)函数y =sin 2x +2cos x (3π≤x ≤34π)的最大值和最小值分别是 A .最大值为47,最小值为-41 B .最大值为47,最小值为-2C .最大值为2,最小值为-41 D .最大值为2,最小值为-2(11)如图,在直三棱柱ABC -A 1B 1C 1中,AB =AC =13,BB 1=BC =6,E 、F 为侧棱AA 1上的两点,且EF =3,则多面体BB 1C 1CEF 的体积为A .30B .18C .15D .12(12)三人互相传球,由甲开始发球,并作为第一次传球,经过5次传球后,球仍回到甲手中,则不同的传球方式共有A .6种B .8种C .10种D .16种第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分. 把答案填在题中的横线上.(13)已知函数f (x )=1+(21)1-x ,则f -1(5)= . (14)已知圆台的轴截面面积为Q ,母线与底面成30°的角,则该圆台的侧面积为 .(15)某校有一个由18名学生组成的社区服务小组,其中女生多于男生.现从这个小组内推选二女一男共3名学生参加某街道的科普宣传活动,不同的推选方法的总数恰为该组内女生人数的33倍,则这个小组内女生人数为 (用数字作答).(16)长度为a 的线段AB 的两个端点A 、B 都在抛物线y 2=2px (p >0,且a >2p )上滑动,则线段AB 的中点M 到y 轴的最短距离为 .三、解答题:本大题共6小题,满分74分.解答应写出文字说明、证明过程或演算步骤.(17)(本小题满分10分)解不等式 1+log 21(x +4)< 2log 21(x -2) .(18)(本小题满分12分)在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,4sin 22C B -cos2A =27. (Ⅰ)求角A 的度数;(Ⅱ)若a =3,b +c =3,求b 和c 的值.(19)(本小题满分12分)正方形ABCD 的边长为a ,E 、F 分别为边AD 、BC 的中点(如图甲所示).现将该正方形沿其对角线BD 折成直二面角,并连结AC 、EF ,得到如图乙所示的棱锥A -BCD .在棱锥A -BCD 中,(Ⅰ)求线段AC 的长;(Ⅱ)求异面直线EF 和AB 所成角的大小.图 甲 图 乙(20)(本小题满分12分)已知椭圆C 的中心在原点,焦点在x 轴上,离心率e =21,且经过点M (-1,23). (Ⅰ)求椭圆C 的方程.(Ⅱ)若椭圆C 上有两个不同的点P 、Q 关于直线y =4x +m 对称,求m 的取值范围.(21)(本小题满分14分)流行性感冒(简称流感)是由流感病毒引起的急性呼吸道传染病.某市去年11月份曾发生流感.据资料统计,11月1日,该市新的流感病毒感染者有20人,此后,每天的新感染者平均比前一天的新感染者增加50人.由于该市医疗部门采取措施,使该种病毒的传播得到控制.从某天起,每天的新感染者平均比前一天的新感染者减少30人.到11月30日止,该市在这30日内感染该病毒的患者总共有8670人.问11月几日,该市感染此病毒的新患者人数最多?并求这一天的新患者人数.(22)(本小题满分14分)已知函数f (x )=12 a a(a x -a -x ),其中a >0,a ≠1. (Ⅰ)判断函数f (x )在 (-∞,+∞) 上的单调性,并根据函数单调性的定义加以证明; (Ⅱ)若n ∈N ,且n ≥2,证明f (n )>n .。

广州市海珠区2018届高三综合测试(一)(理数)

广州市海珠区2018届高三综合测试(一)(理数)

广州市海珠区2018届高三综合测试(一)数学(理科)本试卷共4页,23小题,满分150分.考试用时120分钟.一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合}{4),(22=+=y x y x A ,}{12),(+==x y y x B ,则AB 中元素的个数为A .3B .2C .1D .02.设复数z 满足(1-i)z =2i ,则z =A .2B .22C .12D .23.下列说法中正确的是①相关系数r 用来衡量两个变量之间线性关系的强弱,r 越接近于1,相关性越弱; ②回归直线y bx a =+一定经过样本点的中心(),x y ;③随机误差e 满足()0E e =,其方差()D e 的大小用来衡量预报的精确度; ④相关指数2R 用来刻画回归的效果,2R 越小,说明模型的拟合效果越好. A .①② B .③④ C .①④ D .②③ 4.已知向量a ,b 的夹角为 60,2=a ,22=-b a ,则=bA .4B .2C .2D .15.已知B A ,为抛物线x y 22=上两点,且A 与B 的纵坐标之和为4,则直线AB 的斜率为A .21B .21-C .2-D .2 6.已知等差数列{}n a 的公差为2,若431,,a a a 成等比数列,则{}n a 前6项的和为A .20-B .18-C .16-D .14- 7.6)2)((y x y x -+的展开式中34y x 的系数为A .80-B .40-C .40D .808.已知圆锥的底面半径为4,高为8,则该圆锥的外接球的表面积为A .10πB .64πC .100πD .500π39.设函数)32cos()(π-=x x f ,则下列结论错误的是A .)(x f 的一个周期为π-B .)(x f y =的图像关于直线32π=x 对称 C .)2(π+x f 的一个零点为3π-=xD .)(x f 在区间⎥⎦⎤⎢⎣⎡2,3ππ上单调递减 10.执行如图所示的程序框图,如果输出=S 49,则输入的=n A .3 B .4 C .5 D .611.已知双曲线C :12222=-by a x )0,0(>>b a 的两条渐近线均与圆05622=+-+x y x 相切,且双曲线的右焦点为该圆的圆 心,则C 的离心率为AB .26C .553D .2512.已知函数)(ln )(ax x x x f -=有两个极值点,则实数a 的取值范围是A .)21,0(B .)1,0(C .)0,(-∞D .)21,(-∞二、填空题:本题共4小题,每小题5分,共20分。

(2018年广州一模理科)有答案).docx

(2018年广州一模理科)有答案).docx

秘密 ★ 启用前试卷类型: A2018 年广州市普通高中毕业班综合测试(一)理科数学2018. 3本试卷共 5 页, 23 小题, 满分 150 分。

考试用时 120 分钟。

注意事项:1.答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,用2B 铅笔在答题卡的相应位置填涂考生号,并将试卷类型(A )填涂在答题卡相应位置上。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1满足 z 1 i24i,则复数 z的共轭复数 z A.设复数 zA . 2B . 2C . 2iD . 2i2.设集合 Axx30 , Bx x ≤ 3 ,则集合 x x ≥1 Dx1A . A I BB . A U B开始C . 痧R A U R BD . 痧R AIRBn 2, S 03.若 A , B , C , D , E 五位同学站成一排照相,则A ,B 两位同学不相邻的概率为 B4 32D .A .B .C .555 4.执行如图所示的程序框图,则输出的S D94 2D .A .B .C .20995.已知 sin x3,则 cos xD454A .4B .3C .4 D .11S S+25n n9 n n240否n ≥19?是3输出 S5 555结束6.已知二项式 2x21xAn 的所有二项式系数之和等于 128,那么其展开式中含1项的系数是xA .84B .14 C . 14 D . 847.如图,网格纸上小正方形的边长为1,粗线画出的是某个几何体的三视图,则该几何体的表面积为 CA . 4 4 2 2 3B . 14 4 2C . 10 42 2 3D .4yxy 2≥0,z x2x y8满足约束条件 2 y 1 0,则 2 2的最小值为D.若 x ,≥x 1≤0,A .11C . 1D .3B .24249.已知函数 f xsinx60 在区间4 , 上单调递增,则 的取值范围为3BA . 0,8B . 0,1C . 1 ,8D . 3, 2322 3810.已知函数f xx 3 ax 2bx a 2 在 x 1 处的极值为 10,则数对 a, b 为 CA .3,3B .11,4C . 4,11D .3,3 或 4, 1111.如图,在梯形ABCD 中,已知 ABuuur2 uuur2 CD , AEAC ,双曲线5DEC过 C , D , E 三点,且以 A , B 为焦点,则双曲线的离心率为 AA . 7B . 2 2ABC . 3D . 1012.设函数 f x在 R 上存在导函数 f x,对于任意的实数x ,都有 f xf x2x 2 ,当 x 0 时, f x 1 2x ,若 f a 1 ≤f a 2a 1,则实数 a 的最小值为 A1B .1C.3D.2A .22二、填空:本共 4 小,每小 5 分,共 20分.13.已知向量a m,2 , b1,1,若 a b a b ,数m2.14 .已知三棱P ABC 的底面 ABC 是等腰三角形, AB⊥AC , PA⊥底面 ABC ,PA AB1,个三棱内切球的半径33.615.△ABC的内角A,B,C的分a,b,c,若2a cosB2b cos A c 0 ,cos 的1.216.我国南宋数学家所著的《解九章算》中,用①的三角形形象地表示了二式系数律,俗称“ 三角形”.将三角形中的奇数成1,偶数成 0 ,得到②所示的由数字 0 和 1 成的三角形数表,由上往下数,第 n 行各数字的和S n,如S11,S2 2 , S3 2 , S4 4 ,⋯⋯,S12664.图①图②三、解答:共70 分.解答写出文字明、明程或演算步.第17~21必考,每个考生都必做答.第22、 23 考,考生根据要求做答.(一)必考:共60 分.17.(本小分12 分)已知数列n的前 n 和S n,数列Sn是首1,公差 2 的等差数列.a n (1)求数列a n的通公式;a 1 a 2a nn(2)设数列b5 4n 51 b 的前 n 项和 T n .满足L,求数列nb 1 b 2b n2n18.(本小题满分 12 分)某地 1~10 岁男童年龄x i(岁)与身高的中位数y i cm i1,2, L,10 如下表:x (岁)12345678910 y cm76.588.596.8104.1111.3117.7124.0130.0135.4140.2对上表的数据作初步处理,得到下面的散点图及一些统计量的值.x y 10210210x i xi 1y i y x i x y i y i 1i 15.5112.4582.503947.71566.85( 1)求y关于x的线性回归方程(回归方程系数精确到0.01);( 2)某同学认为,y px2qx r 更适宜作为y关于x的回归方程类型,他求得的回归方程是 y0.30 x210.17 x68.07 .经调查,该地11岁男童身高的中位数为145.3cm .与( 1)中的线性回归方程比较,哪个回归方程的拟合效果更好?n$$$$x i x y i y附:回归方程 y a bx 中的斜率和截距的最小二乘估计公式分别为:i 1,b n2x i x $$i 1a y bx.19.(本小题满分12 分)S 如图,四棱锥S ABCD 中,△ABD为正三角形,BCD120,CB CD CS2,BSD90.DC平面 SBD;( 1)求证:AC( 2)若SC BD ,求二面角 A SB C 的余弦值.A B20.(本小题满分 12 分)216 的圆心为 M ,点 P 是圆 M 上的动点,点 N 3,0 ,点 G 在已知圆 x 3y 2 线段 MP 上,且满足uuur uuur uuur uuur GN GP GN GP .( 1)求点 G 的轨迹 C 的方程;( 2)过点 T4,0 作斜率不为 0 的直线 l 与( 1)中的轨迹 C 交于 A , B 两点,点 A 关于x 轴的对称点为 D ,连接 BD 交 x 轴于点 Q ,求△ ABQ 面积的最大值.21.(本小题满分 12 分)已知函数 f xax ln x 1 .(1)讨论函数 f x 零点的个数;(2)对任意的x 0 , f x ≤xe 2 x 恒成立,求实数 a 的取值范围.(二)选考题:共10分.请考生在第 22、23题中任选一题作答. 如果多做,则按所做的第一题计分.22.(本小题满分 10 分)选修 4-4:坐标系与参数方程x3 t ,m已知过点 P m,0 的直线 l 的参数方程是2 ( t 为参数),以平面直角坐标系y1t ,2的原点为极点, x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为2cos .( 1)求直线 l 的普通方程和曲线C 的直角坐标方程;( 2)若直线 l 和曲线 C 交于 A , B 两点,且 PA PB2 ,求实数 m 的值.23.(本小题满分 10 分)选修 4-5:不等式选讲已知函数 f ( x)2 x a 3x b .(1)当 a1 , b 0 时,求不等式 f x ≥3 x 1的解集;(2)若 a0 , b 0 ,且函数 f x 的最小值为 2 ,求 3ab 的值.。

广东省广州市2018届高三综合测试(一)数学理

广东省广州市2018届高三综合测试(一)数学理

AC 5 ,双曲线
D
C
E
过 C , D , E 三点,且以 A , B 为焦点,则双曲线的离心率为
A
B
A. 7
B. 2 2
C. 3
D . 10
f
12.设函数
x 在 R 上存在导函数
f
x ,对于任意的实数 x ,都有 f x
f
x
2x2 ,当 x 0
时, f x 1 2x ,若 f a 1 ≤f a 2a 1,则实数 a 的最小值为
同学不相邻的概率为
4 A. 5
3 B. 5
2 C. 5
1 D. 5
4.执行如图所示的程序框图,则输出的
S
9 A . 20
4 B. 9
2
9
C. 9 D. 40
sin x
5.已知
4
3
cos x
5 ,则
4
n 2, S 0 y log x
1 S S+
nn 2
nn2
否 n≥19? 是
输出 S 结束
4 A. 5
3 B. 5
4
3
C. 5 D. 5
6.已知二项式
n
2x2 1 x 的所有二项式系数之和等于
1 128,那么其展开式中含 x 项的系数是
A . 84
B. 14
C. 14
D. 84
7.如图,网格纸上小正方形的边长为
1,粗线画出的是某个几何体的三
· 1·
视图,则该几何体的表
A. 4 4 2 2 3
面积为
1 0, B. 2
18 ,
C. 2 3
3 ,2
D. 8
10.已知函数 f x x3 ax2 bx a2 在 x 1 处的极值为 10 ,则数对 a, b 为

2018年广州市一模理科数学答案解析(可编辑修改word版)

2018年广州市一模理科数学答案解析(可编辑修改word版)

绝密★启用前2018年广州市普通高中毕业班综合测试(一)理科数学试题答案及评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数.选择题不给中间分.选择题二.填空题13. 2 14. -―—15.——16. 646 2三.解答题17.解:(1)因为数列是首项为1,公差为2的等差数列,所以i = i + 2(7?-l) = 2z?-l.所以S n=2n2-jj.当H = 1 时,a l=S l=l.当2时,a n=S n-S nA=(2H2-77)-[2(« -1)2-(FZ-1)] = 3,当77 = 1时,%=1也符合上式.所以数列的通项公式=477-3(7?G N*).(2) n = l 时,> =丄,所以A =2^ =2.2两式相减,得^ = (4z7-3)f|]) ?n+12,则数列& }是首项为2公比为2的等比数列.又-^ = — =£(h£)=2-_21-2 -a = = 112.45-6.87x5.5 = 74.67 ,所以y 关于x 的线性回归方程为y = 6.87x + 74.67 .(2)若回归方程为y = 6.87x + 74.67,当 x=ll 时,y=150. 24.若回归方程为y = -0.30.x 2 +10.17.x + 68.07 ,当 x=ll 时,尸143. 64.|143.64-145.3| = 1.66 < |150.24-145.3| = 4.94,所以回归方程JF = -0.30X 2+10.17.Y + 68.07对该地11岁男童身髙中位数的拟合效果更好.当a>2时,由&+& + ... + \ b 2 所以 t+t“+&=5-(4”+1)⑸n —1因为=4/7-3,所以h =(4"-3)⑷G 77_3> - = 2n (77 = 1时也符合公式). 2n18.解:(1)nf=ii ('-寸 i=i566.8582.5= 6.874 = 5-(4n + 5)19. (1)证明:设ACC\BD = O f连sa,因为AB = AD t CB = CD,所以wc是的垂直平分线,即a为中点,且we丄so.在ASCD中,因为CB = CD = 2, ZBCD = 120°, 所以BD = 2礼CO = 1.在RtASBO中,因为ZBSD = 9Q°,O为BD中点,所以SO = ^BD = y/3.在△ sac 中,因为CO = l,SO = y/3, CS = 2f所以SO1 +CO1 =cs2.所以SO丄AC.因为BDC]SO = O,所以3C丄平面S3Z).(2)解法1:过点a作(2尺丄S3于点尤,连I, CK,由(1)知丄平面SSO.所以da丄5B.因为OKC\AO = O,所以SS丄平面AOK.因为AK c平面AOK,所以丄S3.同理可证CX丄5B.所以Z^:C是二面角A-SB-C的平面角.因为SC丄50,由(1)知/C丄SD,且ACHSC = C f 所以SD丄平面SAC.而SOc平面SAC,所以SO丄50.在RtASOS 中,OK=SOOB=1. SB 2同理可求CK =35 解法2:勸SC1BD ,由(1)知WC 丄SO, 且 ACHSC = C f所以SD 丄平面&4C.而SOc 平面SAC ,所以SO 丄SO.由(1)知,WC 丄平面SSO, SOc 平面SSO,所以SO 丄/C. 因为ACC\BD = O,所以SO 丄平面/SCO.以a 为原点,OA ,OB ,as 为x 轴,y 轴,z 轴正向建立空间直角坐标系, 则^(3,0,0), B (0,73,0), C (—1,0,0),S (0,0,73) 设平面的法向量为n = ^y^f由?"H =o ’令乃=万, SBn = V3>1-^z 1=0,所以平面&43的一个法向量为n =(1,>/3.73). 同理可得平面SCS 的一个法向量为///=(-73,1,1).所以COS <….,〃>=G -似4\n m因为二面角A-SB-C 是钝角,所以二面角A-SB-C 的余弦值为-gp.所以二面角A-SB-C 的余弦值为-. 在A 麟得COS 厦戶2+CA :2-d 2AK-CK35所以3 =(,CB20.解:(1)因为(GN + GP )丄(GN-GPy所以(GN+GPy{GN-GP)= 0,即GN 2-GP 2=0. 所以 |GP|=|G^|.所 \ik\GM\ + \GN\=\GM\ + \GP\^MP\=4>2y/3^MN\.所以点G 在以M ,#为焦点,长轴长为4的椭圆上,2a = 4,2c = 2^. 即a = 2,c= y/3f 所以b 2 =a 2-c 2 =1.所以点G的轨迹⑽方程为f + "2=1.(2〉解法1:依题意可设直线I \x = my + A.x = my + 4,由■ x 2 7,得(,"2+4)v 2+8”(y + 12 = 0.7” =1,设直线/与椭圆C 的两交点为5(x 2,y 2),由 A = 64w 2 -4x 12x(w 2 + 4) = 16(w 2 -12)>0,得m 2>12.①因为点d 关于A •轴的对称点为Z ),则D^-y.),可设2(x o ,O ),所以所在直线方程为y-y 2=、(x - my 2- 4).州(y 2-yi )_代入③,即X 0 =2-A +4(W 、) yi +y 2所以点0的坐标为(1,0).数学(理科)答案A 第5页共16页且 y ,y 28m 7772 + 4yiy 2 = 12m 2+4所以k B D =火2+火1州(y 2-yJ令产0,得x 0 =^1+^224JH - 32m-8/".V2+.h因为s灣=|s聊-S聊| = ^\QT\\y2-乃| =^(y l^y2)2-4y l y2 = 6::2令/= W2+4,结合①得/>16.所以•^=+<卜士) +去.当且仅当t = 32时,即 ///= ±2^7 时,[5^]^=|.所以ZUS0面积的最大值为.4【求\ABQ面积的另解:因为点Q(1.0)到直线I的距离为d = Vl + Z//2I 1= 7l + 7"2 .永h + h)2 -切2 = yjl + nr4 7/f~12 . ¥nr + 4所以S AABO=^d-\AB\=6^~^ .】' 2 nr+4解法2:依题意直线/的斜率存在,设其方程为y = k(x-4),得(4^2+l) y2 + 8X>. +12々2 = 0 .设直线/与椭圆C的两交点为A(x^yi y S(x2,^2),由A=(8々)2—4X(4^2+1)X12々2〉0,①因为点j关于:r轴的对称点为D,则D^-y.),可设^(.r o.O), 所以‘= 所以直线方程为y-y2=k^^-(x-x.)..V2-.V1令产0,得x0 = 2V1V2+4K I1+v2)^2+^1)数学(理科)答案A ③第6页共16页y = A-(x-4), 令+/=1’且w-Sk4P+1 ,則2 =12k24A-2+l将②代入③,得Xo=^^)=1.所以点⑽坐标为(1專因为 s-0 = |s 琴-=蚤加+於如2 =6弋:「了令/ = 4々2+1,则k 2=—,结合①得1 <r<i. 43H .16当且仅当卜吾时,_ = ±吞时,[S 辦V 曇.所以琴积的最大值为I【求ZU50面积的另解:因为点Q (1.0)到直线/的距离为d = yjl + k 2所以衅】 解法3:依题意直线/的斜率存在,设其方程为y = k(x-4),y = A-(x-4),Y2得(4^2+l)x 2 -32々2X + 64々2-4 = 0 .—+ /=1, V ’ 14 .设直线/与椭圆C 的两交点为5(x 2,;y 2), 由 A=(-32A-2)--4X (4^2+1)X (64^2 -4)> 0,得k 2<$ .① 且 W 笔,1 24/C 2 + 11 24F+1因为点/关于:r 轴的对称点为D ,则D^-y.),可设0(%.0),则V-即‘☆念4F+1所以5^=3 -4\AB\=即电_m 整理得铲③ x 2-x 0Xj-Xo X!+X 2-8将①代入②,得X o =l.所以点0的坐标为(1.0).3|介|因为点P(LO )到直线I 的距离为d = -=JJ= yjk~+1叫研 7(.Y I+X 2)L4.V2 =432^E4介2 + 1令/ = 4々2+1,MF=—,结合①得43^7 H . 16当且仅当卜蚤,即A- = ±吞时,[S 考;|皿=|. 所以A4S0面积的最大值为1.4解法4:设直线/与椭圆C 的两交点为^(2cossin, 5(2cossin^>) 则直线 AB 的方程为y-sin 6 =S111^-S111^ (x .2cos 0).2cosp-2cos 沒2cos^sin^-2siii^cos^sin sin 沒因为点2关于x 轴的对称点为D ,则Z)(2cos^.-sin0),同理可得=2 cos 0 sin (p+2 sin 0 cos cpsin ^? +sin 4 cos 2 沒 sin 2 9?-4siii 2 沒 cos 2cp sin 2 p-sin 2 0=4 因为x r =4,所以x 0=l ,即点0的坐标为(1.0). 因为=|S A7B ^-S A ^| = || QT\\sm(p-sm0\ =||siii^-sm^|数学(理科)答案A 第8页共16页所以“ =| AB \= 6"F -12介4所以^=3 -4由丄B,7三点共线,可得Sm^-= Sm^ ,即sm^-sin^ = -sin(^-^) 2cos^-4 2 cos 6^-4 2 v所以S_=i|sin(炉一沒)|.当且仅当sin(炉-0) = ±1 时,所以A4S0面积的最大值为j .21.解:(1)解法1:函数/(x)的定义域为(0,+如),由/(x) = ax + lii.x + l =0 , 得a =-比.' +1 ./ x lllx + l z …“、lllxA令g(x) =——(x〉0),则g (x) = —因为当0<x<l, g'(x)<0,当x〉l时,g'(.Y)〉0,所以函数在(0.1)上单调递减,在(1.榔)上单调递增.所以[^WL=^(1)=-i-(]\ 1 1因为g - =0,当0<x< —时,g(x)>0;当x>-时,g(x)<0 . le J e e所以当a<-l时,函数/GO没有零点;当a = -l或a>0时,函数有1个零点;当-l<a< 0时,函数有2个零点.解法2:函数/(.Y)的定义域为(0,+<»),因为/(.Y)=OT +1II.X +1,所以/(x) = a + ^.①当a>0时,/'(.Y>0,函数/(x)在(0,+ OD)内单调递增.因为/(I) = a + l〉0,f^-a~x) = -^-a所以/ 在(e-^a)上有1个零点.所以当67>0时,函数有1个零点.1 a②当a<0时,/f (x) = n + - = -当X 〉一丄时,/'(x )<0;当0<x<—丄时,/'(x )〉0, aa令t =-去,即证明当/〉1时/(〆)=-&丁 _,<0,再令p(t)=e -r 2-/,则有//(/) = e f -2/-1,设q(t) = e-2t-\,则f(/) = e'-2〉0,所以<7(/) = e r —2/-1 单调递増, 因为<?(1)<0, <吾)〉0,所以q(t) = e-2t-1 有零点 1 <,0<|,即#-2/0-1 = 0. 即当0</</0时,/(/)<0,当t>t Q 时,y(/)>o.所以当0</</0时,单调递减,当t>t Q 时,单调递増,数学(理科)答案A 第10页共16页所以当a<0时,函数/⑺在(0,一去内单调递增,在+ 内单调递减.l) 2) 3) 当a<-l 时,[/(x )]皿 <0,所以函数没有零点.当一l<a< 0 时, >0,因(念:=三<0,e且-丄〉1〉!a e,所以函数在(0.--1上有i 个零点. \ a 可以证明f ea=ae」+1<0,且」<e —; a a ,所以函数/Xr )在(—^, + oo j 上有1个零点.以下证明f e =ae-丄+ 1<0:所以[,(礼=/=ln0,所以函数/卜)有1个零点.当a = -l 时,[/(x)]皿=ln所以 p(t)>p{t^ -z 02-t Q =-t} +/0 +1,当 l <r 0<| 时,有-<+,o+i 〉o,即 X/)〉o,即 制=-中<0. 所以当一\<a<0时,所以函数有2个零点.综上可知,当a<_l 时,函数/(A J 没有零点;当a = -1或a>0时,函数有1个零点;当 _l<a<0时,函数/C0有2个零点.(2)解法1:因为f(x) = ax + ]nx + l,所以对任意的x 〉0,f(x) < xe 2x 恒成立,等价于a <e 2x -乜1.' +1在(0, + OD)上恒成立.令n/(x) = e 2x-^^ (x>0),则"/,(x)= 2<e-Y :ln.YXX再令"(x)=2x 2e 2x + ln.Y,则w /(x) = 4(x 2+x) e 2x +->0. 所以"(x) = 2x 2e2x+ In .Y 在(0,+oo)上单调递增."⑴〉0,所以 7?(x)=2.x 2e 2x + hi.Y 有唯一零点%,且-<x 0 <1. 所以当0<x<:r 0时,7"'(X)<0,当x>x Q 时,7"'(.Y)〉0. 所以函数川在(0, .xj 上单调递减,在(x 0, + o ))上单调递增. 因为2.xV r °+liix o =O,即e 2x ° =-^,则0<%<1.o所以 2x 0 = hi(-hi x 0)-hi (2x 0)-hix 0,即 lii (2x 0)+ 2x 0 = lii(-hix 0)+ (_Inx 0). 设s(x) = hix + x f 则5z (x) = i + l>0,X所以函数s(x) = hix + x 在(0,+oo)上单调递增,所以s(2x 0) = s(-hix 0).所以2x 0=-lii.x 0.于是有e 2^=—.=—-21ii2<08g所以7/7(.Y)>7/?(.Y0)= e2x° -^lA°+1 = 2 .则有a<2. x0造函数^(x) = xe x (x>0),则p'(x) = (x + l)e x >0 ,所以炉(x)在(O.+oo)上单调递增.因为解法2:设g(.x) = xe2x-ax-liix-l (x>0),对任意的x〉0, /(x)<.xe2x恒成立,等价于^(^)]^>0在(0,+①)上恒成立.因为当X—>0+时,g'(.Y)^-CO ,当X—>4-00 时,g'(.Y)^4-00 ,2X0—丄一a = 0,即a = (2.Y0+l)e2x°—因为当0<x<x。

高三数学-2018年广州市高三数学一模试题及答案 精品

高三数学-2018年广州市高三数学一模试题及答案 精品

试卷类型:A2018年广州市普通高中毕业班综合测试(一)数 学2018.3本试卷分选择题和非选择题两部分,共4页。

满分为150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号填写在答题卡上,用2B 铅笔将试卷类型(A )填涂在答题卡上。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号,不能答在试题卷上。

3. 非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁,考试结束后,将本试题卷和答题卡一并交回。

第一部分 选择题(共60分)参考公式:如果事件A 、B 互斥,那么 球的表面积公式P (A +B )=P (A )+P (B ) S =4πR 2 如果事件A 、B 相互独立,那么 其中R 表示球的半径P (A ·B )=P (A )·P (B ) 球的体积公式 如果事件A 在一次试验中发生的概率是P .334R V π=那么n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n kk n n P P C k P --=)1()(一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有 一项是符合题目要求的. (1)已知向量a =(8,x 21,x ),b =(x ,1,2),其中x >0.若a ∥b ,则x 的值为 (A )8 (B )4 (C )2 (D ) 0 (2)已知复数i z +=21,i z +=12,则21z z 在复平面内对应的点位于 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 (3)下列函数在0x =处连续的是(A )1(0)()1(0)x f x x x -≤⎧=⎨->⎩(B ) ln y x =(C ) x y x = (D ) 1(0)()0(0)1(0)x f x x x ->⎧⎪==⎨⎪<⎩(4)已知函数f (xx ∈[0,52]),则其反函数1()f x -为 (A(x ∈[0,52]) (B(x ∈[0,5]) (C(x ∈[0,52]) (D(x ∈[0,5]) (5)已知3sin()45x π-=,则sin 2x 的值为(A )1925 (B )1625 (C )1425 (D )725(6)已知双曲线2213x ym -=的离心率e =2,则该双曲线两条准线间的距离为(A )2 (B )32 (C )1 (D )12(7)若x x f 21log )(=, A )2(b a f +=,G )(ab f =,H )2(ba abf +=,其中a ,∈b R +,则A ,G ,H 的大小关系是(A )A ≤G ≤H (B )A ≤H ≤G (C )H ≤G ≤A (D )G ≤H ≤A(8)在同一平面直角坐标系中,函数12)(+=x x f 与x x g -=12)(的图象关于(A )原点对称 (B ) x 轴对称(C )y 轴对称 (D )直线x y =对称 (9)直线x -3y +4=0与曲线2cos 2sin x y θθ=⎧⎨=⎩(θ为参数)的交点有(A )0个 (B )1个 (C )2个 (D )3个(10)某文艺团体下基层进行宣传演出,原准备的节目表中有6个节目,如果保持这些节目的相对顺序不变,在它们之间再插入2个小品节目,并且这2个小品节目在节目表中既不排头,也不排尾,则不同的插入方法有 (A )20种 (B )30种 (C )42种 (D )56种(11)若等比数列的各项均为正数,前n 项之和为S ,前n 项之积为P ,前n 项倒数之和为M ,则(A )P =M S (B )P >M S (C )n M S P ⎪⎭⎫ ⎝⎛=2 (D )2P >nM S ⎪⎭⎫ ⎝⎛(12)某个凸多面体有32个面,各面是三角形或五边形,每个顶点处的棱数都相等,则这个凸多面体的顶点数可以是(A )60 (B )45 (C )30 (D )15第二部分 非选择题(共90分)二、填空题:本大题共4小题,每小题4分,共16分.(13)抛物线x y 42=上一点M 与该抛物线的焦点F 的距离MF = 4,则点M 的横坐标=x . (14)若正六棱锥的底面边长为6,侧棱长为35,则它的侧面与底面所成的二面角的大小为 . (15)已知某离散型随机变量ξ的数学期望E ξ=7,ξ的分布列如下: 则a = .(16)设p :|4x -3|≤1; q :2(21)(1)x a x a a -+++≤0.若﹁ p 是﹁ q 的必要而不充分的条件,则实数a 的取值范围是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分12分)某班有两个课外活动小组,其中第一小组有足球票6张,排球票4张;第二小组有足球票4张,排球票6张.甲从第一小组的10张票中任抽1张,和乙从第二小组的10张票中任抽1张.(Ⅰ)两人都抽到足球票的概率是多少?(Ⅱ)两人中至少有1人抽到足球票的概率是多少?(18)(本小题满分12分)如图,在正四棱柱1111D C B A ABCD -中,已知AB =2,AA 1=5,E 、F 分别为1D D 、B 1B 上的点,且11==F B DE .(Ⅰ)求证:⊥BE 平面ACF ;(Ⅱ)求点E 到平面ACF 的距离.(19)(本小题满分12分)已知电流I 与时间t 的关系式为sin()I A t ωϕ=+.(Ⅰ)右图是sin()I A t ωϕ=+(ω>0,||2πϕ<)在一个周期内的图象,根据图中数据求sin()I A t ωϕ=+的解析式;(Ⅱ)如果t 在任意一段1150秒的时间内,电流 sin()I A t ωϕ=+都能取得最大值和最小值,那么ω的最小正整数值是多少?(20)(本小题满分12分)已知数列}{n a 的前n 项和为S n ,且对任意正整数n 都有2S n =(n +2)a n -1. (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设13242111n n n T a a a a a a +=+++⋅⋅⋅ ,求lim n n T →∞.(21)(本小题满分12分)已知函数()ln(1)f x x x =+-. (Ⅰ)求函数()f x 的单调递减区间; (Ⅱ)若1x >-,证明:11ln(1)1x x x -≤+≤+.(22)(本小题满分14分)已知曲线2224440x y x y ++++=按向量a =(2,1)平移后得到曲线C . (Ⅰ)求曲线C 的方程;(Ⅱ)过点D (0,2)的直线l 与曲线C 相交于不同的两点M 、N ,且M 在D 、N 之间,设DM=λMN,求实数λ的取值范围.2018年广州市普通高中毕业班综合测试(一)数学试题参考解答及评分标准一、选择题:本题考查基本知识和基本运算.每小题5分,满分60分. 一、二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. (13)3 (14)300 (15)31 (16)[0,12]三、解答题:(17)本小题主要考查相互独立事件同时发生和互斥事件至少有一个发生的概率的计算方法,考查运用概率知识解决实际问题的能力.满分12分.解:记“甲从第一小组的10张票中任抽1张,抽到足球票”为事件A ,“乙从第二小组的10张票中任抽1张,抽到足球票”为事件B ,则“甲从第一小组的10张票中任抽1张,抽到排球票”为事件A ,“乙从第二小组的10张票中任抽1张,抽到排球票”为事件B ,…2分 于是 63()105P A ==,2()5P A =;42()105P B ==,3()5P B =. 由于甲(或乙)是否抽到足球票,对乙(或甲)是否抽到足球票没有影响,因此A 与B 是相互独立事件. …6分(Ⅰ)甲、乙两人都抽到足球票就是事件A ·B 发生,根据相互独立事件的概率乘法公式,得到P (A ·B )=P (A )·P (B )=3255⋅=625. 答:两人都抽到足球票的概率是625. …9分 (Ⅱ)甲、乙两人均未抽到足球票(事件A ·B 发生)的概率为:P (A ·B )=P (A )·P (B )=2355⋅=625. ∴ 两人中至少有1人抽到足球票的概率为:P =1-P (A ·B )=1-625=1925. 答:两人中至少有1人抽到足球票的概率是1925. …12分(18)本小题主要考查空间线面关系和空间距离的概念,考查空间想象能力、运算能力和逻辑推理能力.满分12分. 解法一:(Ⅰ)以D 为原点,DA 、DC 、DD 1所在直线分别为x 、y 、z 轴建立如图的空间直角坐标系,则 D (0,0,0),A (2,0,0),B (2,2,0), C (0,2,0),D 1(0,0,5),E (0,0,1), F (2,2,4). …2分∴ AC =(-2,2,0),AF=(0,2,4),BE =(-2,-2,1),AE=(-2,0,1).…4分 ∵ BE ·AC =0,BE ·AF=0,从而⊥BE AC ,⊥BE AF ,且A AF AC = , ∴ ⊥BE 平面ACF . …6分(Ⅱ)由(Ⅰ)知,BE为平面ACF 的一个法向量,∴ 向量AE 在BE上的射影长即为E 到平面ACF 的距离,设为d . …8分于是 |||cos ,|d AE AE BE =<> =||||AE BE BE ⋅=53, 故点E 到平面ACF 的距离为53. …12分 解法二:(Ⅰ)连BD ,在正四棱柱1111D C B A ABCD -中,AC ⊥BD , 根据三垂线定理得AC ⊥BE . ① …2分 过E 作EG ∥DC 交CC 1于G ,连BG , ∵ tan ∠GBC =GC BC =12,tan ∠CFB =BC FB =24=12, 且∠GBC 和∠CFB 都为锐角,∴ ∠GBC =∠CFB .∵ ∠GBC +∠FCB =∠CFB +∠FCB =900, ∴ CF ⊥BG , …4分 又CF ⊥EG ,且G EG BG = ,∴ CF ⊥平面BEG .∵ BE ⊂平面BEG , ∴ CF ⊥BE . ②由①、②可知,⊥BE 平面ACF . …6分 (Ⅱ)BE 3. …8分 先求出点B 到平面ACF 的距离h . 由 B ACF F ABC V V --=得 ABC ACFS FBh S ∆∆⋅=. …10分在△ACF 中,AC =AF =CF =∴ ACF S ∆=6,又FB =4,ABC S ∆=2. ∴ 246h ⋅==43. 故点E 到平面ACF 的距离为3-43=53. …12分 (19)考查运算能力和逻辑推理能力.满分12分.解:(Ⅰ)由图可知 A =300,设t 1=-1900,t 2=1180, 则周期T =2(t 2-t 1)=2(1180+1900)=175. ∴ ω=2T π=150π. …4分 又当t =1180时,I =0,即sin (150π·1180+ϕ)=0,而||2πϕ<, ∴ ϕ=6π. 故所求的解析式为300sin(150)6I t ππ=+. …8分(Ⅱ)依题意,周期T ≤1150,即2πω≤1150,(ω>0) ∴ ω≥300π>942,又ω∈N *,故最小正整数ω=943. …12分(20)本小题主要考查数列与极限等基础知识,考查运算能力和逻辑推理能力.满分12分. (Ⅰ)解法一:在2S n =(n +2)a n -1中, 令n =1,得2 a 1=3 a 1-1,求得a 1=1, 令n =2,得2(a 1+a 2)=4a 2-1,求得a 2=32; 令n =3,得2(a 1+a 2+a 3)=5 a 3-1,求得a 3=2; 令n =4,得2(a 1+a 2+a 3+a 4)=6 a 4-1,求得a 4=52. 由此猜想:a n =12n +. …3分 下面用数学归纳法证明.(1)当n =1时,a 1=112+=1,命题成立. (2)假设当n =k 时,命题成立,即a k =12k +,且2S k =(k +2)a k -1,则由2S k +1=(k +3)a k +1-1及S k +1= S k +a k +1,得(k +3)a k +1-1=2S k +2a k +1,即(k +3)a k +1-1=[(k +2)a k -1]+2a k +1. 则a k +1=(2)1k k a k ++=22k +,这说明当n =k +1时命题也成立. 根据(1)、(2)可知,对一切n ∈N *命题均成立. …6分 解法二:在2S n =(n +2)a n -1中,令n =1,求得a 1=1. ∵ 2S n =(n +2)a n -1,∴ 2S n -1=(n +1)a n -1-1.当n ≥2时,两式相减得:2(S n -S n -1)=(n +2)a n -(n +1)a n -1, 即 2 a n =(n +2)a n -(n +1)a n -1, 整理得,11n n a n a n -+=. …3分 ∴ n a =1n n a a -·12n n a a --·…·32a a ·21aa ·1a =1n n +·1n n -·…·43·32·1 =12n +.当n =1时, n a =112+,满足上式,∴ n a =12n +. …6分(Ⅱ)由(Ⅰ)知n a =12n +,则21n n a a +⋅=4(1)(3)n n ++=2(11n +-13n +). …9分∴ 13242111n n n T a a a a a a +=+++⋅⋅⋅ =2[(12-14)+(13-15)+(14-16)+……+(1n -12n +)+(11n +-13n +)]=2(12+13-12n +-13n +).∴ lim n n T →∞=53. …12分(21)本小题主要考查函数、不等式、导数等有关知识,考查运用所学知识分析和解决问题的能力.满分12分.(Ⅰ)解:函数()f x 的定义域为(1,)-+∞.()f x '=11x +-1=-1x x + …2分 由()f x '<0及x >-1,得x >0.∴ 当x ∈(0,+∞)时,()f x 是减函数,即()f x 的单调递减区间为(0,+∞). …4分(Ⅱ)证明:由(Ⅰ)知,当x ∈(-1,0)时,()f x '>0,当x ∈(0,+∞)时,()f x '<0, 因此,当1x >-时,()f x ≤(0)f ,即ln(1)x x +-≤0.∴ ln(1)x x +≤. …6分 令1()ln(1)11g x x x =++-+, 则211()1(1)g x x x '=-++=2(1)xx +. …8分 ∴ 当x ∈(-1,0)时,()g x '<0,当x ∈(0,+∞)时,()g x '>0. …10分 ∴ 当1x >-时,()g x ≥(0)g ,即 1ln(1)11x x ++-+≥0, ∴ 1ln(1)11x x +≥-+. 综上可知,当1x >-时,有11ln(1)1x x x -≤+≤+. …12分 (22)本小题主要考查平面向量、线段的定比分点、平移、直线与椭圆的关系等有关知识,考查综合运用所学知识分析和解决问题的能力.满分14分.(Ⅰ)解:设P (x ,y )为曲线C 上任意一点,它在曲线2224440x y x y ++++=上的对应点为P '(x ',y '),依题意21x x y y '=+⎧⎨'=+⎩ 即21x x y y '=-⎧⎨'=-⎩…2分代入曲线2224440x y x y ++++=中,得22(2)2(1)4(2)4(1)40x y x y -+-+-+-+=.整理得 2222x y +=.∴ 曲线C 的方程为2212x y +=. …4分 (Ⅱ)解法一:(1)当直线l 的斜率不存在时,显然有M (0,1),N (0,-1),此时λ=12. …6分 (2)当直线l 的斜率存在时,设直线l 的方程为:2y kx =+.将直线l 的方程代入椭圆C 中并整理得:22(21)860k x kx +++=. (*)由于直线l 与椭圆有两个不同的交点,则△=64k 2-24(2k 2+1)>0,得k 2>32. …8分 设M (x 1,y 1),N (x 2,y 2),则x 1、x 2为方程(*)的两相异实根,于是 122122821621k x x k x x k ⎧+=-⎪⎪+⎨⎪=⎪+⎩,∵ DM =λMN ,∴x 1=λ(x 2-x 1),则121x x λλ=+,进而122111x x x x λλλλ++=++. …10分另一方面22212121212211212()2x x x x x x x x x x x x x x ++-+===22323(21)k k +-2=23213(2)k+-2, 而 k 2>32,得 4<23213(2)k+<163,即12211023x x x x <+<, …12分 亦即 110213λλλλ+<+<+, 又λ>0,故解得 λ>12.综合(1)、(2)得,λ的取值范围为[12,+∞). …14分 解法二:设M (x 1,y 1),N (x 2,y 2),根据线段的定比分点公式得,211x x λλ=+,2121y y λλ+=+. …6分 由于点M 、N 在椭圆2222x y +=上, ∴ 221122x y +=,即22()1x λλ++2222()1y λλ++=2. …8分 整理得2222222(2)88242x y y λλλλ+++=++.∵222222x y +=,∴222288242y λλλλ++=++.即2234y λλ-=. …11分 ∵-1≤y 2≤1,∴ -1≤234λλ-≤1,又λ>0,故解得 λ≥12.故λ的取值范围为[12,+∞). …14分解法三:设曲线C 上任一点Pα,sin α),则|PD|…8分当sinα=1,即点P为椭圆短轴上端点B(0,1)时,|PD|min=1,当sinα=-1,即点P为椭圆短轴下端点A(0,-1)时,|PD|max=3,…10分∴|DM|≥|DB|=1,|DN|≤|DA|=3,从而|MN|=|DN|-|DM|≤2.…12分∴λ=||||DMMN≥12(等号当且仅当B与M重合时成立).又∵λ>0,故λ的取值范围为[12,+∞).…14分。

2018年广州一模理科数学试题与答案(全word版)

2018年广州一模理科数学试题与答案(全word版)

试卷类型:A 2018年广州市普通高中毕业班综合测试<一)数学<理科)2018.3本试卷共4页,21小题,满分150分.考试用时120分钟注意事项:1.答卷前,考生务必用2B铅笔在“考生号”处填涂考生号。

用黑色字迹钢笔或签字笔将自己所在的市、县/区、学校以及自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B铅笔将试卷类型<A)填涂在答题卡相应位置上。

RUW9RT2d7t2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

RUW9RT2d7t3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

RUW9RT2d7t4.作答选做题时,请先用2B铅笔填涂选做题题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

1 / 202 / 20参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高. ()()22221211236n n n n ++++++=()*n ∈N . 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.RUW9RT2d7t 1.已知i 是虚数单位,若()2i 34i m +=-,则实数m 的值为A .2- B .2± C . D .2 2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若2C B =,则cb为 A .2sin C B .2cos B C .2sin B D .2cos C3.圆()()22121x y -+-=关于直线y x =对称的圆的方程为A .()()22211x y -+-= B .()()22121x y ++-= C .()()22211x y ++-= D .()()22121x y -++= 4.若函数()f x =R ,则实数a 的取值范围为 A .()2,2- B .()(),22,-∞-+∞ C .(][),22,-∞-+∞D .[]2,2-5成如图1的频率分布直方图.样本数据分组为[[)60,70,[)70,80,[)80,90,[]90,100.若用分层抽 样的方法从样本中抽取分数在[]80,100则其中分数在[]90,100范围内的样本数据有图1分数3 / 20A .5个B .6个C .8个D .10个RUW9RT2d7t 6.已知集合32A x x x ⎧⎫=∈∈⎨⎬-⎩⎭Z Z 且,则集合A 中的元素个数为 A .2 B .3 C .4 D .5RUW9RT2d7t 7.设a ,b 是两个非零向量,则使a b =a b 成立的一个必要非充分条件是 A .=a b B .⊥a b C .λ=a b ()0λ> D .a b8.设a ,b ,m 为整数<0m >),若a 和b 被m 除得的余数相同,则称a 和b 对模m 同余,记为()mod a b m ≡.若0122202020202020C C 2C 2C 2a =+⋅+⋅++⋅,()mod10a b ≡,则b 的值可以是A .2018B .2018C .2018D .2018RUW9RT2d7t 二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. <一)必做题<9~13题)9.若不等式1x a -<的解集为{}13x x <<,则实数a 的值为 . 10.执行如图2的程序框图,若输出7S =,则输入k ()*k ∈N 的值为 . 113所示,则这个四棱锥的体积是12.设αsin α⎛ ⎝侧<左)视图4 / 2013.在数列{}n a 中,已知11a =,111n n a a +=-+,记n S 为数列{}n a 的前n 项和,则2014S = .<二)选做题<14~15题,考生只能从中选做一题) 14.<坐标系与参数方程选做题)在极坐标系中,直线()sin cos a ρθθ-=与曲线2cos 4sin ρθθ=-相交于A ,B 两点,若AB=a 的值为 . 15.<几何证明选讲选做题)如图4,PC 是圆O 的切线,切点为C ,直线PA 与圆A ,B 两点,APC ∠的平分线分别交弦CA ,CB 于D ,E两点,已知3PC =,2PB =,则PEPD的值为 . 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.<本小题满分12分)已知函数()sin cos f x x a x =+的图象经过点π03⎛⎫- ⎪⎝⎭,.<1)求实数a 的值;<2)设[]2()()2g x f x =-,求函数()g x 的最小正周期与单调递增区间. 17.<本小题满分12分)甲,乙,丙三人参加某次招聘会,假设甲能被聘用的概率是25,甲,丙两人同时不能被聘用的概率是625,乙,丙两人同时能被聘用的概率是310,且三人各自能否被聘用相互独立.RUW9RT2d7t <1)求乙,丙两人各自能被聘用的概率;P图45 / 20<2)设ξ表示甲,乙,丙三人中能被聘用的人数与不能被聘用的人数之差的绝对值,求ξ的分布列与均值<数学期望).RUW9RT2d7t 18.<本小题满分14分)如图5,在棱长为a 的正方体1111ABCD A B C D -中,点E是棱1D D 的 中点,点F 在棱1B B 上,且满足12B F FB =.<1)求证:11EF A C ⊥;<2)在棱1C C 上确定一点G , 使A ,E ,G ,F 四点共面,并求此时1C G 的长;<3)求平面AEF 与平面ABCD 所成二面角的余弦值. 19.<本小题满分14分)已知等差数列{}n a 的首项为10,公差为2,等比数列{}n b 的首项为1,公比为2,*n ∈N .<1)求数列{}n a 与{}n b 的通项公式;<2)设第n 个正方形的边长为{}min ,n n n c a b =,求前n 个正方形的面积之和n S .<注:{}min ,a b 表示a 与b 的最小值.) 20.<本小题满分14分)已知双曲线E :()222104x y a a -=>的中心为原点O ,左,右焦点分别为1F ,2F ,点P 是直线23a x =上任意一点,点Q 在双曲线E 上,且满足220PF QF =. <1)求实数a 的值;<2)证明:直线PQ 与直线OQ 的斜率之积是定值;C1C1DA B DEF1A 1B图56 / 20<3)若点P 的纵坐标为1,过点P 作动直线l 与双曲线右支交于不同两点M ,N ,在线段MN 上取异于点M ,N 的点H ,满足PM MHPN HN=,证明点H 恒在一条定直线上.RUW9RT2d7t 21.<本小题满分14分)已知函数()()221e x f x x x =-+<其中e 为自然对数的底数). <1)求函数()f x 的单调区间;<2)定义:若函数()h x 在区间[],s t ()s t <上的取值范围为[],s t ,则称区间[],s t 为函数()h x 的“域同区间”.试问函数()f x 在()1,+∞上是否存在“域同区间”?若存在,求出所有符合条件的“域同区间”;若不存在,请说明理由.RUW9RT2d7t2018年广州市普通高中毕业班综合测试<一)数学<理科)试题参考答案及评分标准说明:1.参考答案与评分标准给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.RUW9RT2d7t2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.RUW9RT2d7t3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共8小题,每小题,满分40分.二、填空题:本大题考查基本知识和基本运算,体现选择性.共7小题,每小题,满分30分.其中14~15题是选做题,考生只能选做一题.RUW9RT2d7t三、解答题:本大题共6小题,满分80分.16.<本小题满分1)<本小题主要考查三角函数图象的周期性、单调性、同角三角函数的基本关系和三角函数倍角公式等等知识,考查化归与转化的数学思想方法,以及运算求解能力)RUW9RT2d7t 解:<1)因为函数()sin cos f x x a x =+的图象经过点π03⎛⎫- ⎪⎝⎭,,所以03f π⎛⎫-= ⎪⎝⎭. 即ππsin cos 033a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭.即02a+=. 解得a =<2)方法1:由<1)得()sin f x x x =+.所以2()[()]2g x f x =-()2sin 2x x =+-22sin cos 3cos 2x x x x =++-2cos 2x x =+122cos 22x x ⎫=+⎪⎪⎝⎭ 2sin 2cos cos 2sin 66x x ππ⎛⎫=+ ⎪⎝⎭π2sin 26x ⎛⎫=+ ⎪⎝⎭.所以()g x 的最小正周期为22π=π. 因为函数sin y x =的单调递增区间为2,222k k ππ⎡⎤π-π+⎢⎥⎣⎦()k ∈Z ,所以当πππ2π22π262k x k -≤+≤+()k ∈Z 时,函数()g x 单调递增, 即ππππ36k x k -≤≤+()k ∈Z 时,函数()g x 单调递增. 所以函数()g x 的单调递增区间为πππ,π36k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z .方法2:由<1)得()sin f x x x =+2sin cos cos sin 33x x ππ⎛⎫=+ ⎪⎝⎭π2sin 3x ⎛⎫=+ ⎪⎝⎭.所以2()[()]2g x f x =-2π2sin 23x ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦ 2π4sin 23x ⎛⎫=+- ⎪⎝⎭2π2cos 23x ⎛⎫=-+ ⎪⎝⎭分所以函数()g x 的最小正周期为22π=π分 因为函数cos y x =的单调递减区间为[]2,2k k ππ+π()k ∈Z ,所以当22223k x k ππ≤+≤π+π()k ∈Z 时,函数()g x 单调递增. 即ππππ36k x k -≤≤+<k ∈Z )时,函数()g x 单调递增.所以函数()g x 的单调递增区间为πππ,π36k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z .17.<本小题满分1)<本小题主要考查相互独立事件、解方程、随机变量的分布列与均值<数学期望)等知识,考查或然与必然的数学思想方法,以及数据处理能力、运算求解能力和应用意识)RUW9RT2d7t 解:<1)记甲,乙,丙各自能被聘用的事件分别为1A ,2A ,3A ,由已知1A ,2A ,3A 相互独立,且满足()()()()()113232,5611,253.10P A P A P A P A P A ⎧=⎪⎪⎪--=⎡⎤⎡⎤⎨⎣⎦⎣⎦⎪⎪=⎪⎩解得()212P A =,()335P A =.所以乙,丙各自能被聘用的概率分别为12,35. <2)ξ的可能取值为1,3.因为()()()1231233P P A A A P A A A ξ==+()()()()()()123123111P A P A P A P A P A P A =+---⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦213312525525=⨯⨯+⨯⨯625=. 所以()()113P P ξξ==-=61912525=-=.所以ξ的分布列为所以1963713252525E ξ=⨯+⨯=. 18.<本小题满分1)<本小题主要考查空间线面关系、四点共面、二面角的平面角、空间向量及坐标运算等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力)RUW9RT2d7t 推理论证法:<1)证明:连结11B D ,BD ,因为四边形1111A B C D 是正方形,所以1111A C B D ⊥. 在正方体1111ABCD A B C D -中,1DD ⊥平面1111A B C D ,11A C ⊂平面1111A B C D ,所以111A C DD ⊥.因为1111B D DD D =,11B D ,1DD ⊂平面11BB D D , 所以11A C ⊥平面11BB D D .因为EF ⊂平面11BB D D ,所以11EF A C ⊥. <2)解:取1C C 的中点H ,连结BH ,则BHAE .在平面11BB C C 中,过点F 作FG BH ,则FGAE .1DABCD EF 1A1B1C1DE1A1B 1CGH连结EG ,则A ,E ,G ,F 四点共面. 因为11122CH C C a ==,11133HG BF C C a ===, 所以1C G 116C C CH HG a =--=.故当1C G 16a =时,A ,E ,G ,F 四点共面. <3)延长EF ,DB ,设EF DB M =,连结AM , 则AM 是平面AEF 与平面ABCD 的交线.过点B 作BN AM ⊥,垂足为N ,连结FN , 因为FB AM ⊥,FB BN B =, 所以AM ⊥平面BNF .因为FN ⊂平面BNF ,所以AM ⊥FN . 所以FNB ∠为平面AEF 与平面ABCD 所成 二面角的平面角.因为123132aMB BF MD DE a ===,即23=,所以MB =.在△ABM 中,AB a =,135ABM ∠=, 所以2222cos135AM AB MB AB MB =+-⨯⨯⨯()222a a ⎛=+-⨯⨯⨯ ⎝⎭213a =.即AM =. 因为11sin13522AM BN AB MB ⨯=⨯⨯,所以sin135a AB MB BN AM⨯⨯⨯⨯===.1DAB CDE F 1A1B1CMN所以39FN a===.所以6cos7BNFNBFN∠==.故平面AEF与平面ABCD所成二面角的余弦值为67.空间向量法:<1)证明:以点D为坐标原点,DA,DC,1DD所在的直线分别为x轴,y轴,z轴,建立如图的空间直角坐标系,则(),0,0A a,()1,0,A a a,()10,,C a a,10,0,2E a⎛⎫⎪⎝⎭,1,,3F a a a⎛⎫⎪⎝⎭,所以()11,,0AC a a=-,1,,6EF a a a⎛⎫=-⎪⎝⎭.因为221100AC EF a a=-++=,所以11AC EF⊥.所以11EF A C⊥.<2)解:设()0,,G a h,因为平面11ADD A平面11BCC B,平面11ADD A平面AEGF AE=,平面11BCC B平面AEGF FG=,所以FG AE.<苏元高考吧: 广东省数学教师QQ群:179818939)所以存在实数λ,使得FG AEλ=.因为1,0,2AE a a⎛⎫=-⎪⎝⎭,1,0,3FG a h a⎛⎫=--⎪⎝⎭,所以11,0,,0,32a h a a aλ⎛⎫⎛⎫--=-⎪ ⎪⎝⎭⎝⎭.所以1λ=,56h a =.所以1C G 15166CC CG a a a =-=-=.故当1C G 16a =时,A ,E ,G ,F 四点共面.<3)解:由<1)知1,0,2AE a a ⎛⎫=- ⎪⎝⎭,10,,3AF a a ⎛⎫= ⎪⎝⎭. 设(),,x y z =n 是平面AEF 的法向量,则0,0.AE AF ⎧=⎪⎨=⎪⎩n n 即10,210.3ax az ay az ⎧-+=⎪⎪⎨⎪+=⎪⎩取6z =,则3x =,2y =-.所以()3,2,6=-n 是平面AEF 的一个法向量. 而()10,0,DD a =是平面ABCD 的一个法向量, 设平面AEF 与平面ABCD 所成的二面角为θ, 则11cos DD DD θ=n n (1)67==. 故平面AEF 与平面ABCD 所成二面角的余弦值为67. 第<1)、<2)问用推理论证法,第<3)问用空间向量法: <1)、<2)给分同推理论证法.<3)解:以点D 为坐标原点,DA ,DC ,1DD 所在的直线分别为x 轴,y 轴,z 轴,建立如图的空间直角坐标系,则(),0,0A a ,10,0,2E a ⎛⎫ ⎪⎝⎭,1,,3F a a a ⎛⎫⎪⎝⎭, 则1,0,2AE a a ⎛⎫=- ⎪⎝⎭,10,,3AF a a ⎛⎫=⎪⎝⎭. 设(),,x y z =n 是平面AEF 的法向量,则0,0.AE AF ⎧=⎪⎨=⎪⎩nn即10,210.3ax az ay az ⎧-+=⎪⎪⎨⎪+=⎪⎩取6z =,则3x =,2y =-.所以()3,2,6=-n 是平面AEF 的一个法向量. 而()10,0,DD a =是平面ABCD 的一个法向量, 设平面AEF 与平面ABCD 所成的二面角为θ, 则11cos DD DD θ=n n (1)67==. 故平面AEF 与平面ABCD 所成二面角的余弦值为67. 19.<本小题满分1)<本小题主要考查等差数列、等比数列、分组求和等知识,考查化归与转化的数学思想方法,以及运算求解能力和创新意识)RUW9RT2d7t 解:<1)因为等差数列{}n a 的首项为10,公差为2,所以()1012n a n =+-⨯, 即28n a n =+.因为等比数列{}n b 的首项为1,公比为2, 所以112n n b -=⨯, 即12n n b -=.<2)因为110a =,212a =,314a =,416a =,518a =,620a =,11b =,22b =,34b =,48b =,516b =,632b =.易知当5n ≤时,n n a b >.下面证明当6n ≥时,不等式n n b a >成立.方法1:①当6n =时,616232b -==620268a >=⨯+=,不等式显然成立. ②假设当n k =()6k ≥时,不等式成立,即1228k k ->+. 则有()()()()122222821826218k k k k k k -=⨯>+=++++>++. 这说明当1n k =+时,不等式也成立.综合①②可知,不等式对6n ≥的所有整数都成立. 所以当6n ≥时,n n b a >. 方法2:因为当6n ≥时()()()112281128n n n n b a n n ---=-+=+-+()()01211111C C C C 28n n n n n n -----=++++-+()()012321111111C C C C C C 28n n n n n n n n n n ---------≥+++++-+ ()()0121112C C C 28n n n n ---=++-+()()236460n n n n n =--=-+->,所以当6n ≥时,n n b a >.所以{}min ,n n n c a b =12,5,28,5.n n n n -⎧≤=⎨+>⎩ 则()22222,5,44, 5.n n n c n n -⎧≤⎪=⎨+>⎪⎩当5n ≤时,2222123n n S c c c c =++++ 2222123n b b b b =++++024222222n -=++++1414n -=-()1413n=-.当5n >时,2222123n n S c c c c =++++()()22222212567n b b b a a a =+++++++()51413=-()()()222464744n ⎡⎤+++++++⎣⎦()()()222341467867165n n n ⎡⎤=+++++++++-⎣⎦()()()()2222223414121253267645n n n ⎡⎤=++++-++++++++-⎣⎦()()()()()121653414553264562n n n n n n +++-⎡⎤=+-+⨯+-⎢⎥⎣⎦3242421867933n n n =++-. 综上可知,n S ()32141,5,3424218679, 5.33nn n n n n ⎧-≤⎪⎪=⎨⎪++->⎪⎩20.<本小题满分1)<本小题主要考查直线的斜率、双曲线的方程、直线与圆锥曲线的位置关系等知识,考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力和运算求解能力)RUW9RT2d7t <1)解:设双曲线E 的半焦距为c ,由题意可得2254.c a c a ⎧=⎪⎨⎪=+⎩解得a =.<2)证明:由<1)可知,直线2533a x ==,点()23,0F .设点5,3P t ⎛⎫⎪⎝⎭,()00,Q x y ,因为220PF QF =,所以()0053,3,03t x y ⎛⎫----= ⎪⎝⎭. 所以()00433ty x =-.因为点()00,Q x y 在双曲线E 上,所以2200154x y -=,即()2200455y x =-. 所以20000200005533PQ OQy t y y ty k k x x x x --⋅=⋅=--()()2002004453453553x x x x ---==-.所以直线PQ 与直线OQ 的斜率之积是定值45.<3)证法1:设点(),H x y ,且过点5,13P ⎛⎫ ⎪⎝⎭的直线l 与双曲线E 的右支交于不同两点()11,M x y ,()22,N x y ,则22114520x y -=,22224520x y -=,即()2211455y x =-,()2222455y x =-. 设PM MH PN HN λ==,则,.PM PN MH HN λλ⎧=⎪⎨=⎪⎩. 即()()1122112255,1,1,33,,.x y x y x x y y x x y y λλ⎧⎛⎫⎛⎫--=--⎪⎪ ⎪⎝⎭⎝⎭⎨⎪--=--⎩整理,得()()()1212121251,31,1,1.x x y y x x x y y y λλλλλλλλ⎧-=-⎪⎪⎪-=-⎨⎪+=+⎪+=+⎪⎩①②③④由①×③,②×④得()()22221222221251,31.x x x y y y λλλλ⎧-=-⎪⎨⎪-=-⎩⑤⑥将()2211455y x =-,()2222455y x =-代入⑥, 得2221224451x x y λλ-=⨯--. ⑦将⑤代入⑦,得443y x =-.所以点H 恒在定直线43120x y --=上. 证法2:依题意,直线l 的斜率k 存在.设直线l 的方程为513y k x ⎛⎫-=- ⎪⎝⎭,由2251,31.54y k x x y ⎧⎛⎫-=- ⎪⎪⎪⎝⎭⎨⎪-=⎪⎩ 消去y 得()()()22229453053255690k x k k x k k -+---+=.因为直线l 与双曲线E 的右支交于不同两点()11,M x y ,()22,N x y ,则有()()()()()()()22222122212290053900455690,3053,95425569.954k k k k k k k x x k k k x x k ⎧⎪∆=-+--+>⎪⎪-⎪+=⎨-⎪⎪-+⎪=⎪-⎩由PM MH PN HN =,得112125353x x x x x x --=--. 整理得()()1212635100x x x x x x -+++=.1 将②③代入上式得()()()()()2222150569303553100954954k k x k k x k k -++--+=--.整理得()354150x k x --+=. ④因为点H 在直线l 上,所以513y k x ⎛⎫-=- ⎪⎝⎭. ⑤联立④⑤消去k 得43120x y --=. 所以点H 恒在定直线43120x y --=上.①②③<本题<3)只要求证明点H 恒在定直线43120x y --=上,无需求出x 或y 的范围.)21.<本小题满分1)<本小题主要考查函数的单调性、函数的导数、函数的零点等知识,考查数形结合、化归与转化、分类与讨论的数学思想方法,以及运算求解能力、抽象概括能力与创新意识)RUW9RT2d7t 解:<1)因为()()221e x f x x x =-+,<苏元高考吧: )所以2()(22)e (21)e x x f x x x x '=-+-+()21e xx =-(1)(1)e x x x =+-.当1x <-或1x >时,()0f x '>,即函数()f x 的单调递增区间为(),1-∞-和()1,+∞.当11x -<<时,()0f x '<,即函数()f x 的单调递减区间为()1,1-.所以函数()f x 的单调递增区间为(),1-∞-和()1,+∞,单调递减区间为()1,1-. <2)假设函数()f x 在()1,+∞上存在“域同区间”[,](1)s t s t <<,由<1)知函数()f x 在()1,+∞上是增函数,所以(),().f s s f t t =⎧⎨=⎩ 即22(1)e ,(1)e .s ts s t t ⎧-⋅=⎨-⋅=⎩ 也就是方程2(1)e x x x -=有两个大于1的相异实根. 设2()(1)e (1)x g x x x x =-->,则2()(1)e 1x g x x '=--. 设()h x =2()(1)e 1x g x x '=--,则()()221e x h x x x '=+-.因为在(1,)+∞上有()0h x '>,所以()h x 在()1,+∞上单调递增.因为()110h =-<,()223e 10h =->,即存在唯一的()01,2x ∈,使得()00h x =.当()01,x x ∈时,()()0h x g x '=<,即函数()g x 在()01,x 上是减函数; 当()0,x x ∈+∞时,()()0h x g x '=>,即函数()g x 在()0,x +∞上是增函数.因为()110g =-<,0()(1)0g x g <<,2(2)e 20g =->, 所以函数()g x 在区间()1,+∞上只有一个零点.这与方程2(1)e x x x -=有两个大于1的相异实根相矛盾,所以假设不成立. 所以函数()f x 在()1,+∞上不存在“域同区间”. 申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。

高三数学-2018广东广州一模 精品

高三数学-2018广东广州一模 精品

试卷类型:A2018年广州市普通高中毕业综合测试(一)数 学2018-3-22本试卷分选择题和非选择题两部分,共4页。

满分150分。

考试时间120分钟。

注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号填写在答题卡上。

用2B 铅笔将答题卡上试卷类型(A )涂黑。

在答题卡右上角的“试室号”栏填写本科目试室号,在“座位号列表”内填写座位号,并用2B 铅笔将相应的信息点涂黑。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁,考试结束后,将试卷和答题卡一并交回。

参考公式: 如果事件A 、B 互斥,那么 球的表面积公式 ()()()P A B P A P B +=+24πS R =如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B ⋅=⋅球的体积公式如果事件A 在一次试验中发生的概率是p ,那34π3V R =么在n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)k kn k n n P k C p p -=-第一部分 选择题(共50分)一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知集合{|||1}A x x =≤,2{|0}B x x x =-≤,则AB = ( )A .{|1}x x ≤-B .{|10}x x -≤≤C .{|01}x x ≤≤D .{|12}x x ≤≤2. 若函数1()(1)2x f x e =+,则1(1)f -=( )A .0B .1C .2D .1(1)2e +3. 如图所示,在两个圆盘中,指针在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是 ( )A .49B .29C .23D .134. 复数a bi +与c di +(,,,a b c d ∈R )的积是纯虚数的充要条件是( )A .0ac bd -=B .0ad bc +=C .0ac bd -≠且0ad bc +=D .0ac bd -=且0ad bc +≠5. 已知向量a 和向量b 的夹角为60︒,||6a =,||4b =,那么||a b +=( )A .100B .76C .10 D. 6. 若tan 2α=,则sin cos αα的值为( )A .12B .23C .25D .17. 在圆224x y +=上的所有点中,到直线43120x y +-=的距离最大的点的坐标是( )A .86,55⎛⎫- ⎪⎝⎭B .86,55⎛⎫-- ⎪⎝⎭C .86,55⎛⎫- ⎪⎝⎭D .86,55⎛⎫ ⎪⎝⎭8. 在210(1)(1)x x x ++-的展开式中,3x 的系数是( )A .85-B .84-C .83D .849. 设函数|1|(1)()3(1)x x f x x x +<⎧=⎨-+≥⎩,则使得()1f x ≥的自变量x 的取值范围是( )A .(,2][1,2]-∞-B .(,2)(0,2)-∞-C .(,2][0,2]-∞-D .[2,0][2,)-+∞10. 设A 、B 、C 、D 是半径为2的球面上的四个不同的点,且满足0AB AC ⋅=,0AD AC ⋅= ,0AB AD ⋅=,用ABC S ∆、ABD S ∆、ACD S ∆分别表示ABC ∆、ABD ∆、ACD ∆的面积,D则ABC ABD ACD S S S ∆∆∆++的最大值是 ( )A .16B .8C .4D .2第二部分 非选择题(共100分)二、填空题:本大题共4小题,每小题5分,共20分。

2018年3月广东省广州市2018年普通高中毕业班综合测试一文科数学试题及理科数学试题参考答案汇编广州一模

2018年3月广东省广州市2018年普通高中毕业班综合测试一文科数学试题及理科数学试题参考答案汇编广州一模



4n

3

1 2
n


因为 an
4n 3 ,所以 bn

4n-3

4n-3

1 2
n

2n ( n
1 时也符合公式).
又 bn1 2n1 2 ,则数列
bn
2n
bn
是首项为 2 公比为 2 的等比数列.
2 1 2n
所以Tn 1 2 2n1 2 .
可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答 有较严重的错误,就不再给分.
3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分.
一.选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A D B D D A C D B C A A
以 O 为原点, OA , OB , OS 为 x 轴, y 轴, z 轴正向建立空间直角坐标系,
则 A3,0,0 , B 0, 3,0 , C 1,0,0 , S 0,0, 3 .
所以 AB 3, 3,0 , CB 1, 3,0 , SB 0, 3, 3 .
所以二面角 A SB C 的余弦值为 105 . 35
解法 2:因为 SC BD ,由(1)知 AC BD ,且 AC SC C , 所以 BD 平面 SAC . 而 SO 平面 SAC ,所以 SO BD . 由(1)知, AC 平面 SBD , SO 平面 SBD ,所以 SO AC . 因为 AC BD O ,所以 SO 平面 ABCD .

【省会检测】2018年广东省广州市高考数学一模试卷(理科)

【省会检测】2018年广东省广州市高考数学一模试卷(理科)

2018年广东省广州市高考数学一模试卷(理科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z满足z(1﹣i)2=4i,则复数z的共扼复数=()A.﹣2 B.2 C.﹣2i D.2i2.设集合A={x|<0},B={x|x≤﹣3},则集合{x/x≥1}=()A.A∩B B.A∪B C.(∁R A)∪(∁R B}D.(∁R A)∩(∁R B}3.若A,B,C,D,E五位同学站成一排照相,则A,B两位同学不相邻的概率为()A.B.C.D.4.执行如图所示的程序框图,则输出的S=()A.B.C.D.5.已知,则=()A.B.C.D.6.已知二项式(2x2﹣)n的所有二项式系数之和等于128,那么其展开式中含项的系数是()A.﹣84 B.﹣14 C.14 D.847.如图,网格纸上小正方形的边长为1,粗线画出的是某个几何体的三视图,则该几何体的表面积为()A.B. C. D.48.若x,y满足约束条件,则z=x2+2x+y2的最小值为()A.B.C.﹣ D.﹣9.已知函数f(x)=sin(ωx+)(ω>0)在区间[﹣,]上单调递增,则ω的取值范围为()A.(0,]B.(0,]C.[,]D.[,2]10.已知函数f(x)=x3+ax2+bx+a2在x=1处的极值为10,则数对(a,b)为()A.(﹣3,3)B.(﹣11,4) C.(4,﹣11)D.(﹣3,3)或(4,﹣11) 11.如图,在梯形ABCD中已知|AB|=2|CD|。

=,双曲线过C,D,E三点,且以A,B为焦点,则双曲线的离心率为()A.B.2 C.3 D.12.设函数f(x)在R上存在导函数f'(x),对于任意的实数x,都有f(x)+f (﹣x)=2x2,当x<0时,f'(x)+1<2x,若f(a+1)≤f(﹣a)+2a+1,则实数a的最小值为()A.B.﹣1 C.D.﹣2二、填空题:本题共4小题,每小题5分,共20分.13.已知向量=(m,2),=(1,1),若||=||+||,则实数m=.14.已知三棱锥P﹣ABC的底面ABC是等腰三角形,AB⊥AC,PA⊥底面ABC,PA=AB=1,则这个三棱锥内切球的半径为.15.△ABC的内角A,B,C的对边分别为a,b,c,若2acos(θ﹣B)+2bcos(θ+A)+c=0,则cosθ的值为.16.我国南宋数学家杨辉所著的《详解九章算术》中,用图①的三角形形象地表示了二项式系数规律,俗称“杨辉三角形”.现将杨辉三角形中的奇数换成1,偶数换成0,得到图②所示的由数字0和1组成的三角形数表,由上往下数,记第n行各数字的和为S n,如S1=1,S2=2,S3=2,S4=4,……,则S126=.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12.00分)已知数列{a n}的前n项和为S n,数列{}是首项为1,公差为2的等差数列.(1)求数列{a n}的通项公式;(2)设数列{b n }满足++…+=5﹣(4n+5)()n,求数列{b n}的前n项和T n.18.(12。

2018年广东省珠海市高考数学一模试卷(理科)

2018年广东省珠海市高考数学一模试卷(理科)

2018年广东省珠海市高考数学一模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请在答题卡上填涂相应选项. 1. 复数2−i i=( )A.1+2iB.1−2iC.−1+2iD.−1−2i2. 命题“∃x 0∈N +,使得2x 0(x 0+1)>1”的否定是( ) A.∀x ∈N +,都有2x (x +1)>1 B.∀x ∉N +,都有2x (x +1)≤1 C.∀x 0∉N +,都有2x 0(x 0+1)≤1 D.∀x ∈N +,都有2x (x +1)≤13. S n 是正项等比数列{a n }的前n 项和,a 3=18,S 3=26,则a 1=( ) A.2 B.3 C.1 D.64. 将一个长、宽、高分别为3、4、5的长方体截去一部分后,得到的几何体的三视图如图所示,则该几何体的体积为( )A.24B.48C.30D.605. 设变量x ,y 满足约束条件{2x +y −2≥0x −y +2≥04x −y −4≤0,则z =x −2y 的最小值为( )A.4B.−6C.6D.−46. 进位制转换:13=______${_{(3)}(}{)}$ A.101 B.110 C.111 D.1217. 将5个不同的球放入4个不同的盒子中,每个盒子至少放一个球,则不同放法共有( )种 A.480 B.360 C.240 D.1208. 执行如图的程序框图,如果输入a =1,则输出的s =( )A.−23B.−191C.23D.1919. 已知双曲线M:x2a2−y2b2=1(a>0, b>0),其焦点F(±c, 0)(c>0),右顶点A(a, 0)到双曲线M的一条渐近线距离为125,以点A为圆心,c为半径的圆在y轴所截弦长为8,则双曲线M的方程为()A.x29−y216=1 B.x216−y29=1C.x2−y2=9D.x2−y2=1610. 如图,在直四棱柱ABCD−A1B1C1D1中,四边形ABCD为梯形,AD // BC,AA1= 3,AB=BC=CD=√3,∠BCD=120∘,则直线A1B与B1C所成的角的余弦值为()A.7 8B.58C.√38D.√6811. 定义在R上的连续函数f(x),其导函数f′(x)为奇函数,且f(2)=1,f(x)≥0;当x>0时,xf′(x)+f(x)<0恒成立,则满足不等式f(x−2)≤1的解集为()A.[−2, 2]B.[0, 4]C.(−∞, −2]∪[2, +∞)D.(−∞, 0]∪[4, +∞)12. 函数f(x)=asinωx+bcosωx=Asin(ωx+φ)(a,b∈R,A>0,ω>0,|φ|<π2)的一个对称中心为(−π6,0),且f′(x)的一条对称轴为x=π3,当ω取得最小值时,aba2+b2=()A.1B.√3C.√34D.√32二、填空题:本大题共4小题,每小题5分,满分20分.请将答案填在答题卡相应位置.设向量a →=(1,3m),b →=(2,−m),满足(a →+b →)∗(a →−b →)=0,则m =________.已知α,β均为锐角,cosβ=√63,cos(α+β)=12,则cosα=________.过点M(1, 1)作斜率为−13的直线l 与椭圆C:x 2a +y 2b =1(a >b >0)相交于A ,B 两点,若M 是线段AB 的中点,则椭圆C 的离心率为________.在△ABC 中,角A,B,C 所对边的边长分别为a,b,c ,若|CA →−CB →|=3,CA →⋅CB →=6,则△ABC 面积的最大值为________.三、解答题:本题共有5个小题,满分60分.解答应写出文字说明、证明过程.已知数列{a n }的前n 项和为S n ,满足a 1=2,S n+1−2S n =2. (1)求数列{a n }的通项a n ;(2)令b n =nS n +2,求数列{b n }的前n 项和T n .某兴趣小组进行“野岛生存”实践活动,他们设置了200个取水敞口箱.其中100个采用A 种取水法,100个采用B 种取水法.如图甲为A 种方法一个夜晚操作一次100个水箱积取淡水量频率分布直方图,图乙为B 种方法一个夜晚操作一次100个水箱积取淡水量频率分布直方图.(1)设两种取水方法互不影响,设M 表示事件“A 法取水箱水量不低于1.0kg ,B 法取水箱水量不低于1.1kg ”,以样本估计总体,以频率分布直方图中的频率为概率,估计M 的概率;(2)填写下面2×2列联表,并判断是否有99%的把握认为箱积水量与取水方法有关.附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)AB,AB=16,PA=PB=10,AD=如图,四棱锥P−ABCD中,CD // AB,CD=12BD=4√13,PD=6√3,点E为PD中点.(1)求证:PD⊥CD;(2)求直线BE与平面PCD所成角的正弦值.已知抛物线C1:y2=2px(p>0),圆C2:x2+y2=4,直线l:y=kx+b与抛物线C1相切于点M,与圆C2相切于点N.(1)若直线l的斜率k=1,求直线l和抛物线C1的方程;(2)设F为抛物线C1的焦点,设△FMN,△FON的面积分别为s1,s2,若s1=λs2,求λ的取值范围.函数f(x)=axe x+lnx+x(a∈R).(1)若a≥0,试讨论函数f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.选考题:共10分.请考生在22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:极坐标与参数方程]在平面直角坐标系xOy 中,直线l 的参数方程为{x =−4+√22t y =√22t(t 为参数).若以原点O为极点,x 轴的非负半轴为极轴建立极坐标系,则曲线C 的极坐标方程为2ρ2cos 2θ=3−ρ2.(1)写出曲线C 和直线l 的直角坐标方程;(2)求曲线C 上的点到直线l 距离的最大值. [选修4-5:不等式选讲]已知函数f(x)=|x +1|.(1)解不等式2f(x)<4−|x −2|;(2)已知m +n =2(m >0, n >0),若不等式|x −a|−f(x)≤1m +1n 恒成立,求实数a 的取值范围.参考答案与试题解析2018年广东省珠海市高考数学一模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请在答题卡上填涂相应选项.1.【答案】D【考点】虚数单位i及其性质复数的运算复数的模复数的基本概念【解析】利用复数的运算法则即可得出.【解答】复数2−ii =−i(2−i)−i∗i=−1−2i,2.【答案】D【考点】命题的否定【解析】根据特称命题的否定是全称命题,写出该命题的否定命题即可.【解答】根据特称命题的否定是全称命题,得:命题“∃x0∈N+,使得2x0(x0+1)>1”的否定是“∀x∈N+,使得2x(x+1)≤1”.3.【答案】A【考点】等比数列的前n项和【解析】根据题意,设等比数列{a n}的公比为q,结合题意可得a3+a3q+a3q2=26,即18+18q+18q2=26,解可得q的值,结合数列{a n}为正项等比数列,可得q的值,由等比数列的通项公式计算可得答案.【解答】根据题意,设等比数列{a n}的公比为q,若a3=18,S3=26,则有a3+a3q+a3q2=26,即18+18q +18q2=26,解可得:q=3或q=−34,又由数列{a n }为正项等比数列,则q =3,则a 1=a 3q 2=189=2;4.【答案】 B【考点】由三视图求体积 【解析】由三视图还原原几何体,把原几何体分割为一个长方体与一个三棱柱求解. 【解答】由三视图还原原几何体如图, 图形为多面体ABCD −EFGH ,分别过F 、G 作FM ⊥AE ,作GN ⊥DH ,则多面体的体积V =V ABCD−MFGN +V EMG−HNG =3×4×3+12×2×3×4=48. 5.【答案】 B【考点】 简单线性规划 【解析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案. 【解答】由约束条件{2x +y −2≥0x −y +2≥04x −y −4≤0 作出可行域如图,联立{x −y +2=04x −y −4=0 ,解得A(2, 4), 化目标函数z =x −2y 为y =x2−z2,由图可知,当直线y =x2−z 2过A 时,直线在y 轴上的截距最大,z 有最小值为−6. 6.【答案】 C【考点】 进位制 【解析】进位制是人们利用符号进行计数的科学方法,对于任何一种X 进制, 就表示某一位置上的数运算时逢X 进一位,由此求出结果. 【解答】13=1×32+1×31+1×30, ∴ ${13= 111_{(3)}}$. 7.【答案】C【考点】排列、组合及简单计数问题【解析】根据题意,分2步进行分析:①、先将5个小球分成4组,②,将分好的4组全排列,放入4个盒子,由分步计数原理计算可得答案.【解答】根据题意,将5个不同的球放入4个不同的盒子中,每个盒子至少放一个球,则必须有2个小球放入1个小盒,其余的小球各单独放入一个盒子,分2步进行分析:①、先将5个小球分成4组,有C52=10种分法;②,将分好的4组全排列,放入4个盒子,有A44=24种情况,则不同放法有10×24=240种;8.【答案】B【考点】程序框图【解析】执行程序框图,依次写出每次循环得到的s,a,k值,当k=5时程序终止得出s的值.【解答】模拟程序的运行,可得a=1,s=0,k=1满足条件k≤4,执行循环体,s=−1,a=2,k=2满足条件k≤4,执行循环体,s=−5,a=6,k=3满足条件k≤4,执行循环体,s=−23,a=42,k=4满足条件k≤4,执行循环体,s=−191,a=1806,k=5不满足条件k≤4,退出循环,输出s的值为−191.9.【答案】A【考点】双曲线的特性【解析】由题意画出图形,由点到直线的距离公式求出A到渐近线的距离,再由以点A为圆心,c为半径的圆在y轴所截弦长为8得答案.【解答】如图,依题意可得AM=c,OA=a,∴OM=b=4∵右顶点A(a, 0)到双曲线M的一条渐近线bx−ay=0距离为125,∴22=125,结合a2+b2=c2,解得a=3,∴则双曲线M的方程为x29−y216=1.10.【答案】A【考点】异面直线及其所成的角 【解析】以D 为原点,DA ,DD 1分别为x 轴和z 轴正方向建立空间直角坐标系,由此利用向量法能求出平面α与底面ABCD 所成二面角的大小. 【解答】以A 为原点,在平面ABCD 中,过A 人AD 的垂线为x 轴,AD 为y 轴,AA 1为z 轴, 建立空间直角坐标系,A 1(0, 0, 3),B(32, √32, 0),B 1(32,√32, 3),C(32, 3√32, 0), A 1B →=(32,√32, −3),B 1C →=(0, √3, −3),设直线A 1B 与B 1C 所成的角为θ, 则cosθ=|A 1B →∗B 1C →||A 1B →|∗|B 1C →|=32+9√94+34+9∗√3+9=21212=78.11.【答案】 D【考点】利用导数研究函数的单调性 【解析】求出函数y =f(x)的单调性以及奇偶性,去掉对应法则f ,得到关于x 的不等式,解出即可. 【解答】∵ f(x)≥0;当x >0时,xf ′(x)+f(x)<0恒成立, ∴ xf′(x)<0,当x >0时,f′(x)<0,f(x)递减, x <0时,f′(x)>0,f(x)递增, 由f ′(x)为奇函数,且f(2)=1, 得f(x)是偶函数,∴ f(x −2)≤1=f(2), 故|x −2|≥2,解得:x ≥4或x ≤0, 12.【答案】 C【考点】两角和与差的三角函数 【解析】利用辅助角公式化积,由已知可得−π6ω+φ=k 1π,k 1∈Z ,π3ω+φ=k 2π,k 2∈Z ,结合|φ|<π2,ω>0,求得ω=2,进一步求得φ值,则aba +b 可求. 【解答】由f(x)=asinωx +bcosωx =√a 2+b 2sin(ωx +φ)=Asin(ωx +φ), 可得A =√a 2+b 2,tanφ=ba ,∵ f(x)的一个对称中心为(−π6,0), ∴ −π6ω+φ=k 1π,k 1∈Z ,① f′(x)=ωAcos(ωx +φ), ∴ f′(x)的一条对称轴为x =π3, ∴ π3ω+φ=k 2π,k 2∈Z ,② ∵ |φ|<π2,ω>0, 由①得,φ=k 1π+π6ω, 由②得,φ=k 2π−π3ω, 则k 1π+π6ω=k 2π−π3ω,可得ω=2(k 2−k 1),则ω的最小值为2. ∴ φ=π3. 此时ab a 2+b 2=√a 2+b 2√a 2+b 2=sinφcosφ=sin π3cos π3=√32×12=√34. 二、填空题:本大题共4小题,每小题5分,满分20分.请将答案填在答题卡相应位置. 【答案】±√64【考点】平面向量数量积的性质及其运算律 【解析】利用向量的坐标表示向量,通过向量的数量积求解即可. 【解答】 向量a →=(1,3m),b →=(2,−m),a →+b →=(3, 2m),a →−b →=(−1, 4m), 满足(a →+b →)∗(a →−b →)=0,可得−3+8m 2=0, 解得m =±√64.【答案】√6+36【考点】两角和与差的三角函数 两角和与差的余弦公式三角函数的化简求值 【解析】由已知求得sinβ,sin(α+β)的值,再由cosα=cos[(α+β)−β],展开两角差的余弦求解. 【解答】解:∵ 0<α<π2,0<β<π2, ∴ 0<α+β<π,又cosβ=√63,cos(α+β)=12,∴ sinβ=√1−cos 2β=√33,sin(α+β)=√1−cos 2(α+β)=√32, ∴ cosα=cos[(α+β)−β]=cos(α+β)cosβ+sin(α+β)sinβ =12×√63+√32×√33=√6+36. 故答案为:√6+36.【答案】 √63【考点】椭圆的定义 椭圆的应用直线与椭圆的位置关系 【解析】利用点差法,结合M 是线段AB 的中点,斜率为−13,即可求出椭圆C 的离心率. 【解答】设A(x 1, y 1),B(x 2, y 2), 则x 12a 2+y 12b 2=1 ①,x 22a 2+y 22b 2=1 ②,∵ M 是线段AB 的中点,∴ 12(x 1+x 2)=1,12(y 1+y 2)=1, ∵ 直线AB 的方程是y =−13(x −1)+1, ∴ y 1−y 2=−13(x 1−x 2),①②两式相减可得:1a 2(x 12−x 22)+1b 2(y 12−y 22)=0, ∴ 1a 2(x 1−x 2)(x 1+x 2)+1b 2(y 1−y 2)(y 1+y 2)=0,∴2×1a2(x1−x2)+2×1b2(y1−y2)=0,∴b2a2=13,∴e2=1−b2a =23,∴e=√63【答案】3√334【考点】平面向量数量积的性质及其运算律【解析】此题暂无解析【解答】解:∵|CA→−CB→|=3,∴|AB→|=3.∵CA→⋅CB→=6,∴abcosC=6,∴cosC=6ab.由余弦定理得9=a2+b2−2abcosC=a2+b2−12≥2ab−12,∴ab≤212,当且仅当a=b时等号成立,∴S=12absinC=12ab√1−cos2C=12ab√1−36a b=12√a2b2(1−36a2b2)=12√a2b2−36≤12√(212)2−36=3√334故答案为:3√334.三、解答题:本题共有5个小题,满分60分.解答应写出文字说明、证明过程. 【答案】∵S n+1−2S n=2……①,∴S n+2−2S n+1=2……②,②-①得a n+2=2a n+1,∵a1=2,∴S2−2S1=a1+a2−2a1=a2−2=2,∴a2=4,∴n∈N+时,a2a1=2,a n+2a n+1=2,即n∈N+时,a n+1a n=2,∴数列{a n}是2为首项,2为公比的等比数列,∴a n=2n.S n=2(2n−1)2−1=2n+1−2,则b n=n2n+1,∴T n=b1+b2+b3+...+b n=122+223+324+⋯+n2n+1……③,∴2T n=12+222+323+⋯+n2n……④,④-③得T n=12+122+123+⋯+12n−n2n+112(1−12n)1−12−n2n+1=1−n+22n+1.【考点】数列的求和【解析】(1)利用数列的递推关系式,推出数列是等比数列,然后求数列{a n}的通项a n;(2)求出数列的和,化简数列的通项公式,利用错位相减法求解数列的和即可.【解答】∵S n+1−2S n=2……①,∴S n+2−2S n+1=2……②,②-①得a n+2=2a n+1,∵a1=2,∴S2−2S1=a1+a2−2a1=a2−2=2,∴a2=4,∴n∈N+时,a2a1=2,a n+2a n+1=2,即n∈N+时,a n+1a n=2,∴数列{a n}是2为首项,2为公比的等比数列,∴a n=2n.S n=2(2n−1)2−1=2n+1−2,则b n=n2,∴T n=b1+b2+b3+...+b n=122+223+324+⋯+n2n+1……③,∴2T n=12+222+323+⋯+n2n……④,④-③得T n=12+122+123+⋯+12n−n2n+112(1−12n)1−12−n2n+1=1−n+22n+1.【答案】设“A法取水箱水量不低于1.0kg”为事件E,“B法取水箱水量不低于1.1kg”为事件F,则P(E)=(2+1+0.3)×0.1=0.33,P(F)=(5+3+0.2+0.1)×0.1=0.83,P(M)=P(EF)=P(E)×P(F)=0.33×0.83=0.2739,故M发生的概率为0.2739;填写2×2列联表如下:计算K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)=200×(87×83−13×17)2(87+17)(13+83)(67+17)(33+83)≈98.157>6.635,∴P(K2=98.157>6.635)<0.01,∴有99%的把握认为箱积水量与取水方法有关.【考点】独立性检验古典概型及其概率计算公式【解析】(1)设“A法取水箱水量不低于1.0kg”为事件E,“B法取水箱水量不低于1.1kg”为事件F,求出P(E)、P(F),再计算P(M)的值;(2)填写2×2列联表,计算K2,对照临界值得出结论.【解答】设“A法取水箱水量不低于1.0kg”为事件E,“B法取水箱水量不低于1.1kg”为事件F,则P(E)=(2+1+0.3)×0.1=0.33,P(F)=(5+3+0.2+0.1)×0.1=0.83,P(M)=P(EF)=P(E)×P(F)=0.33×0.83=0.2739,故M发生的概率为0.2739;填写2×2列联表如下:计算K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)=200×(87×83−13×17)2(87+17)(13+83)(67+17)(33+83)≈98.157>6.635,∴P(K2=98.157>6.635)<0.01,∴有99%的把握认为箱积水量与取水方法有关.【答案】证明:取AB中点F,连接PF、FD,∵PA=PB=10,AD=BD=4√13,∴AB⊥PF,AB⊥FD,∵PF∩FD=F,∴AB⊥平面PFD,PD⊂平面PFD,∴AB⊥PD,又∵CD // AB,∴PD⊥CD.过P做PO⊥FD于O,∵AB⊥平面PFD,PO⊂平面PFD,∴AB⊥PO,∵AB∩FD=F,∴PO⊥平面ABCD.过O做OG // AB交BC于G,则PO、OF、OG两两垂直,以OF、OG、OP分别为x、y、z轴建立如图所示空间直角坐标系o−xyz,∵AB=16,PA=PB=10,AD=BD=4√13,PD=6√3,点E为PD中点,∴PF=6,FD=12,∴PF2+PD2=FD2,∴PF⊥PD,∴PO=3√3,OF=3,OD=9.∵CD // AB,CD=12AB,∴CD // OG // FB,CD=FB,∴四边形FBCD是矩形,CD=OG=FB=8,∴P(0,0,3√3),D(−9, 0, 0),B(3, 8, 0),C(−9, 8, 0),∵E为PD中点,∴E(−92,0,3√32),∴EB→=(152,8,−3√32),PD→=(−9,0,−3√3),CD→=(0,−8,0).设平面PCD的法向量n→=(x0,y0,z0),由{n →∗PD →=−9x 0−3√3z 0=0n →∗CD →=−8y 0=0 ,得{z 0=−√3x 0y 0=0 , 令x 0=1,得z 0=−√3,则n →=(1,0,−√3),则n →与EB →所成角设为α,其余角就是直线BE 与平面PCD 所成角,设为β,sinβ=cosα=n →∗EB→|n →|∗|EB →|=6√127127, ∴ 直线BE 与平面PCD 所成角的正弦值为6√127127.【考点】用空间向量求直线与平面的夹角 两条直线垂直的判定 【解析】(1)取AB 中点F ,连接PF 、FD ,证明AB ⊥PF ,AB ⊥FD ,推出AB ⊥平面PFD ,说明AB ⊥PD ,然后证明PD ⊥CD .(2)过P 做PO ⊥FD 于O ,过O 做OG // AB 交BC 于G ,则PO 、OF 、OG 两两垂直,以OF 、OG 、OP 分别为x 、y 、z 轴建立如图所示空间直角坐标系o −xyz ,求出EB →=(152,8,−3√32),平面PCD 的法向量n →,然后利用空间向量的数量积求解直线BE 与平面PCD 所成角的正弦值即可.【解答】证明:取AB 中点F ,连接PF 、FD ,∵ PA =PB =10,AD =BD =4√13, ∴ AB ⊥PF ,AB ⊥FD , ∵ PF ∩FD =F ,∴ AB ⊥平面PFD ,PD ⊂平面PFD , ∴ AB ⊥PD ,又∵ CD // AB , ∴ PD ⊥CD .过P 做PO ⊥FD 于O ,∵ AB ⊥平面PFD ,PO ⊂平面PFD ,∴ AB ⊥PO ,∵ AB ∩FD =F ,∴ PO ⊥平面ABCD . 过O 做OG // AB 交BC 于G ,则PO 、OF 、OG 两两垂直,以OF 、OG 、OP 分别为x 、y 、z 轴建立如图所示空间直角坐标系o −xyz ,∵ AB =16,PA =PB =10,AD =BD =4√13,PD =6√3,点E 为PD 中点, ∴ PF =6,FD =12,∴ PF 2+PD 2=FD 2, ∴ PF ⊥PD ,∴ PO =3√3,OF =3,OD =9. ∵ CD // AB ,CD =12AB ,∴ CD // OG // FB ,CD =FB ,∴ 四边形FBCD 是矩形,CD =OG =FB =8,∴ P(0,0,3√3),D(−9, 0, 0),B(3, 8, 0),C(−9, 8, 0), ∵ E 为PD 中点, ∴ E(−92,0,3√32),∴ EB →=(152,8,−3√32),PD →=(−9,0,−3√3),CD →=(0,−8,0).设平面PCD 的法向量n →=(x 0,y 0,z 0),由{n →∗PD →=−9x 0−3√3z 0=0n →∗CD →=−8y 0=0 ,得{z 0=−√3x 0y 0=0 , 令x 0=1,得z 0=−√3,则n →=(1,0,−√3),则n →与EB →所成角设为α,其余角就是直线BE 与平面PCD 所成角,设为β,sinβ=cosα=n →∗EB→|n →|∗|EB →|=6√127127, ∴ 直线BE 与平面PCD 所成角的正弦值为6√127127.【答案】由题设知l:x −y +b =0,且b >0,由l 与C 2相切知,C 2(0, 0)到l 的距离d =√2=2,得b =2√2, ∴ l:x −y +2√2=0.将l 与C 1的方程联立消x 得y 2−2py +4p √2=0, 其△=4p 2−16√2p =0得p =4√2, ∴ C 1:y 2=8√2x .综上,l:x −y +2√2=0,C 1:y 2=8√2x .不妨设k >0,根据对称性,k >0得到的结论与k <0得到的结论相同. 此时b >0,又知p >0,设M(x 1, y 1),N(x 2, y 2), 由{y =kx +by 2=2px消y 得k 2x 2+2(kb −p)x +b 2=0, 其△=4(kb −p)2−4k 2b 2=0得p =2kb ,从而解得M(p 2k 2,pk ),由l 与C 2切于点N 知C 2(0, 0)到l:kx −y +b =0的距离d =2=2,得b =2√1+k 2则p =4k√1+k 2,故M(2√1+k 2k,4√1+k 2).由{y =kx +b x 2+y 2=4 得√1+k 2√1+k 2), 故|MN|=2|x M −x N |=√1+k 2|2√1+k 2k+√1+k2=4k 2+2k.F(p2,0)到l:kx −y +b =0的距离为d pk 2+b √1+k 2=2k 2+2,∴ s 1=s △FMN =12|MN|d 0=2(2k 2+1)(k 2+1)k,又s 2=s △FON =12|OF|∗|y N |=2k , ∴ λ=s1s 2=(2k 2+1)(k 2+1)k =(1k +2)(k 2+1)=2k 2+1k +3≥2√2+3.当且仅当2k 2=1k 2即k =√24时取等号,与上同理可得,k <0时亦是同上结论. 综上,λ的取值范围是[3+2√2,+∞). 【考点】 圆锥曲线直线与抛物线的位置关系 【解析】(1)由题设知l:x −y +b =0,且b >0,由l 与C 2相切知,C 2(0, 0)到l 的距离求出b ,然后求解p ,得到抛物线方程.(2)不妨设k >0,根据对称性,k >0得到的结论与k <0得到的结论相同.此时b >0,又知p >0,设M(x 1, y 1),N(x 2, y 2),联立{y =kx +b y 2=2px ,求出M(p 2k 2,pk ),利用由l与C 2切于点N 知C 2(0, 0)到l:kx −y +b =0的距离为2,推出M ,然后求出N ,转化求解三角形的面积,通过s 1=λs 2,利用基本不等式,求解λ的取值范围. 【解答】由题设知l:x −y +b =0,且b >0,由l 与C 2相切知,C 2(0, 0)到l 的距离d =√2=2,得b =2√2, ∴ l:x −y +2√2=0.将l 与C 1的方程联立消x 得y 2−2py +4p √2=0, 其△=4p 2−16√2p =0得p =4√2, ∴ C 1:y 2=8√2x .综上,l:x −y +2√2=0,C 1:y 2=8√2x .不妨设k >0,根据对称性,k >0得到的结论与k <0得到的结论相同. 此时b >0,又知p >0,设M(x 1, y 1),N(x 2, y 2), 由{y =kx +by 2=2px消y 得k 2x 2+2(kb −p)x +b 2=0, 其△=4(kb −p)2−4k 2b 2=0得p =2kb ,从而解得M(p 2k 2,pk ),由l 与C 2切于点N 知C 2(0, 0)到l:kx −y +b =0的距离d =√1+k 2=2,得b =2√1+k 2则p =2,故M(2√1+k 2k ,4√1+k 2).由{y =kx +b x 2+y 2=4 得√1+k 2√1+k 2), 故|MN|=√1+k 2|x M −x N |=√1+k 2|2√1+k 2k+√1+k2=4k 2+2k.F(p2,0)到l:kx −y +b =0的距离为d pk 2+b √1+k 2=2k 2+2,∴ s 1=s △FMN =12|MN|d 0=2(2k 2+1)(k 2+1)k,又s 2=s △FON =12|OF|∗|y N |=2k , ∴ λ=s 1s 2=(2k 2+1)(k 2+1)k 2=(1k 2+2)(k 2+1)=2k 2+1k 2+3≥2√2+3.当且仅当2k 2=1k 2即k =√24时取等号,与上同理可得,k <0时亦是同上结论. 综上,λ的取值范围是[3+2√2,+∞). 【答案】若a ≥0,则f ′(x)>0在x >0时恒成立, ∴ f(x)的增区间是(0, +∞).①若a≥0,由(1)知f(x)在(0, +∞)上单增,故f(x)不可能有两个零点.②若a<0,令g(x)=axe x+1(x>0),则g′(x)=a(x+1)e x<0,∴g(x)在(0, +∞)上单减,∵g(0)=1>0,g(−1a)=−e−1a+1<0,∴∃x0∈(0,−1a),使得g(x0)=ax0e x0+1=0,即ax0e x0=−1,当0<x<x0时,g(x)>0,即f′(x)>0;当x>x0时,g(x)<0,即f′(x)<0.故f(x)在(0, x0)上单增,在(x0, +∞)上单减,∴f(x)max=f(x0)=ax0e x0+lnx0+x0=lnx0+x0−1.若f(x)有两个零点,首先须f(x)max=f(x0)=ax0e x0+lnx0+x0=lnx0+x0−1>0,令ℎ(x)=lnx+x−1(0<x<−1a ),则ℎ(x)在(0,−1a)上单增,∵ℎ(1)=0,∴须1<x0<−1a 即e<e x0<e−1a,∴e<x0e x0=−1a<−1ae−1a且1<−1a,得到−1e<a<0,此时,1)0<−a<1e<1<x0,∴ln(−a)<−1,∴f(−a)=−a2e−a+ln(−a)−a<−a2e−a−1−a<0.取b>x0且b>ln(−2a),则e b>b>x0,f(e b)=ae b e e b+b+e b<a(e b)2+2e b= e b(ae b+2)<e b(ae ln(−2a)+2)=0,∴f(x)在(0, x0)和(x0, +∞)各一个零点,综上,f(x)有两个零点,a的取值范围是(−1e,0).【考点】函数的零点与方程根的关系利用导数研究函数的单调性【解析】(1)若a≥0,求出函数的导数,利用导函数的符号,判断函数f(x)的单调性;(2)利用(1)的结论,通过a分类讨论函数的单调性以及函数的最值的符号,利用f(x)有两个零点,求a的取值范围.【解答】若a≥0,则f′(x)>0在x>0时恒成立,∴f(x)的增区间是(0, +∞).①若a≥0,由(1)知f(x)在(0, +∞)上单增,故f(x)不可能有两个零点.②若a<0,令g(x)=axe x+1(x>0),则g′(x)=a(x+1)e x<0,∴g(x)在(0, +∞)上单减,∵g(0)=1>0,g(−1a)=−e−1a+1<0,∴∃x0∈(0,−1a),使得g(x0)=ax0e x0+1=0,即ax0e x0=−1,当0<x<x0时,g(x)>0,即f′(x)>0;当x>x0时,g(x)<0,即f′(x)<0.故f(x)在(0, x0)上单增,在(x0, +∞)上单减,∴f(x)max=f(x0)=ax0e x0+lnx0+x0=lnx0+x0−1.若f(x)有两个零点,首先须f(x)max=f(x0)=ax0e x0+lnx0+x0=lnx0+x0−1>0,令ℎ(x)=lnx+x−1(0<x<−1a ),则ℎ(x)在(0,−1a)上单增,∵ℎ(1)=0,∴须1<x0<−1a 即e<e x0<e−1a,∴e<x0e x0=−1a<−1ae−1a且1<−1a,得到−1e<a<0,此时,1)0<−a<1e<1<x0,∴ln(−a)<−1,∴f(−a)=−a2e−a+ln(−a)−a<−a2e−a−1−a<0.取b>x0且b>ln(−2a),则e b>b>x0,f(e b)=ae b e e b+b+e b<a(e b)2+2e b= e b(ae b+2)<e b(ae ln(−2a)+2)=0,∴f(x)在(0, x0)和(x0, +∞)各一个零点,综上,f(x)有两个零点,a的取值范围是(−1e,0).选考题:共10分.请考生在22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:极坐标与参数方程]【答案】直线l的直角坐标方程为x−y+4=0,曲线C的直角坐标方程为x2+y23=1.设曲线C上的任一点P(cosθ,√3sinθ),P到直线l的距离为d=√3sinθ+4|√2=|2sin(θ−π6)−4|√2,当sin(θ−π6)=−1时,d得到最大值3√2.∴曲线C上的点到直线l距离的最大值为3√2.【考点】圆的极坐标方程参数方程与普通方程的互化【解析】(1)利用极坐标与直角坐标的互化公式可得直线l的普通方程、曲线C的普通方程.(2)由点到直线的距离公式、两角和的正弦公式,及正弦函数的有界性求得点P到直线l的距离的最大值.【解答】直线l的直角坐标方程为x−y+4=0,曲线C的直角坐标方程为x2+y23=1.设曲线C上的任一点P(cosθ,√3sinθ),P到直线l的距离为d=√3sinθ+4|√2=|2sin(θ−π6)−4|√2,当sin(θ−π6)=−1时,d得到最大值3√2.∴曲线C上的点到直线l距离的最大值为3√2.[选修4-5:不等式选讲]【答案】2f(x)<4−|x−2|等价于2|x+1|+|x−2|<4,当x≥2时原不等式转化为2(x+1)+(x−2)<4,即x<43,此时空集;当−1<x<2时原不等式转化为2(x+1)−(x−2)<4,即x<0,此时−1<x<0;当x≤−1时原不等式转化为−2(x+1)−(x−2)<4,即x>−43,此时−43<x≤−1.综上可得,原不等式解集为{x|−43<x<0}.|x−a|−f(x)=|x−a|−|x+1|≤|a+1|.又m+n=2(m>0, n>0)由柯西不等式,得12(1m+1n)(m+n)≥12(1+1)2=2,由题意知|a+1|≤2,解得−3≤a≤1.【考点】绝对值不等式的解法与证明不等式恒成立的问题【解析】(1)2f(x)<4−|x−2|等价于2|x+1|+|x−2|<4,通过x的范围,去掉绝对值符号求解即可.(2)化简|x−a|−f(x)=|x−a|−|x+1|≤|a+1|.由柯西不等式,求解即可.【解答】2f(x)<4−|x−2|等价于2|x+1|+|x−2|<4,当x≥2时原不等式转化为2(x+1)+(x−2)<4,即x<43,此时空集;当−1<x<2时原不等式转化为2(x+1)−(x−2)<4,即x<0,此时−1<x<0;当x≤−1时原不等式转化为−2(x+1)−(x−2)<4,即x>−43,此时−43<x≤−1.综上可得,原不等式解集为{x|−43<x<0}.|x−a|−f(x)=|x−a|−|x+1|≤|a+1|.又m+n=2(m>0, n>0)由柯西不等式,得12(1m+1n)(m+n)≥12(1+1)2=2,由题意知|a+1|≤2,解得−3≤a≤1.试卷第21页,总21页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海珠区2017-2018学年高三综合测试(一)数学(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合}12|),{(},4|),{(22+===+=x y y x B y x y x A ,则B A ⋂中元素的个数为( )A .3B .2C .1D .0 2.设复数z 满足i z i 2)1(=-,则=||z ( )A .2B .22C .21D .23.下列说法中正确的是( )①相关系数r 用来衡量两个变量之间线性关系的强弱,||r 越接近于1,相关性越弱; ②回归直线a bx y +=一定经过样本点的中心),(y x ;③随机误差e 满足0)(=e E ,其方差)(e D 的大小用来衡量预报的精确度; ④相关指数2R 用来刻画回归的效果,2R 越小,说明模型的拟合效果越好. A .①② B .③④ C .①④ D .②③4.已知向量b a ,的夹角为2|2|2||60=-=b a a,,,则=||b ( )A .4B .2 C.2 D .15.已知B A ,为抛物线x y 22=上两点,且A 与B 的纵坐标之和为4,则直线AB 的斜率为( ) A .21 B .21- C. 2- D .2 6.已知等差数列}{n a 的公差为2,若431,,a a a 成等比数列,则}{n a 前6项的和为( ) A .20- B .18- C. 16- D .14- 7. 6)2)((y x y x -+的展开式中34y x 的系数为( )A .80-B .40- C. 40 D .808.已知圆锥的底面半径为4,高为8,则该圆锥的外接球的表面积为( ) A .π10 B .π64 C. π100 D .3500π9.设函数)32cos()(π-=x x f ,则下列结论错误的是( )A .)(x f 的一个周期为π-B .)(x f y =的图像关于直线32π=x 对称 C. )2(π+x f 的一个零点为3π-=x D .)(x f 在区间]2,3[ππ上单调递减10.执行如图所示的程序框图,如果输出94=S ,则输入的=n ( )A .3B .4 C. 5 D .611.已知双曲线)0,0(1:2222>>=-b a by a x C 的两条渐近线均与圆05622=+-+x y x 相切,且双曲线的右焦点为该圆的圆心,则C 的离心率为( ) A .36 B .26 C. 553 D .2512.已知函数)(ln )(ax x x x f -=有两个极值点,则实数a 的取值范围是( ) A .)21,0( B .)1,0( C. )0,(-∞ D .)21,(-∞第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知}{n a 是各项都为正数的等比数列,则前n 项和为n S ,且15,342==S S ,则=3a .14.若y x ,满足约束条件⎪⎩⎪⎨⎧≥+≥+-≤02011y x y x x ,则22y x z +=的最小值为 .15.设函数⎩⎨⎧≥-<+=0,0,)(22x x x x x x f ,若2))((≤a f f ,则实数a 的取值范围是 . 16.如图,正方体1111D C B A ABCD -的棱长为1,P 为BC 的中点,Q 为线段1CC 上的动点,过点Q P A ,,的平面截该正方体所得截面记为S ,则下列命题正确的是 . ①当210≤<CQ 时,S 为四边形; ②当43=CQ 时,S 为五边形; ③当143<<CQ 时,S 为六边形; ④当1=CQ 时,S 为菱形.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知ABC ∆中的内角C B A ,,的对边分别为c b a ,,,若A C b a 2,6,4===. (1)求c 的值; (2)求ABC ∆的面积.18. 如图,四棱锥ABCD P -中,侧面PAD 为等边三角形且垂直于底面ABCD ,,22==BC AD 90=∠=∠ABC BAD .(1)证明:BC PC ⊥;(2)若直线PC 与平面PAD 所成角为30,求二面角D PC B --的余弦值.19. 某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量)(g y 与尺寸)(mm x 之间近似满足关系式b ax y =(b a ,为大于0的常数),现随机抽取6件合格产品,测得数据如下:对数据作了初步处理,相关统计量的值如下表:(1)根据所给数据,求y 关于x 的回归方程;(2)按照某项指标测定,当产品质量与尺寸的比在区间)7,9(ee 内时为优等品,现从抽取的6件合格产品中再任选3件,记ξ为取到优等品的件数,试求随机变量ξ的分布列和期望.附:对于一组数据),),...(,(),,(2211n n v v v μμμ,其回归直线v βαμ+=的斜率和截距的最小二乘估计分别为v v n vv n v ini ii ni βμαμμβˆˆ,,ˆ2211-=-⋅-=∑∑==. 20. 已知椭圆)0(1:2222>>=+b a by a x C 的焦距为62,且过点)1,2(A .(1)求椭圆C 的方程;(2)若不经过点A 的直线m kx y l +=:与C 交于Q P ,两点,且直线AP 与直线AQ 的斜率之和为0,证明:直线PQ 的斜率为定值. 21. 已知函数xa x x f +=ln )(. (1)若函数)(x f 有零点,求实数a 的取值范围; (2)证明:当ea 2≥时,x e x f ->)(. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直线坐标系xoy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的参数方程为⎪⎩⎪⎨⎧+==3sin 23cos ππt y t x (t 为参数),曲线C 的极坐标方程为)4cos(22πθρ-=.(1)直线l 的普通方程和曲线C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l 垂直,求D 的直角坐标. 23.选修4-5:不等式选讲 已知|12||32|)(--+=x x x f . (1)求不等式2)(<x f 的解集;(2)若存在R x ∈,使得|23|)(->a x f 成立,求实数a 的取值范围.试卷答案一、选择题1-5:BADDA 6-10:BDCCB 11、12:CA二、填空题13. 4 14.5415. ]2,(-∞ 16. ①②④ 三、解答题17.解:(1)因为A C 2=,所以A A A C cos sin 22sin sin ==, 由正弦定理C c A a sin sin =,得acA 2cos =, 由余弦定理bca cb A 2cos 222-+=,得2222)(bc a c b a =-+,由6,4==b a ,可得102=c .(2)由余弦定理412cos 222=-+=ab c b a C , 又π<<=+C C C 0,1cos sin 22,得415sin =C , 所以ABC ∆的面积153sin 21==C ab S . 18.解:(1)取AD 的中点为O ,连接CO PO ,,PAD ∆ 为等边三角形,AD PO ⊥∴.底面ABCD 中,可得四边形ABCO 为矩形,AD CO ⊥∴,⊥∴=⋂AD CO PO ,0 平面POC , ⊂PC 平面PC AD POC ⊥,.又BC AD //,所以PC AD ⊥.(2)由面⊥PAD 面AD PO ABCD ⊥,知,⊥∴PO 平面ABCD ,OC OD OP ,,两两垂直,直线PC 与平面PAD 所成角为30,即30=∠CPO ,由2=AD ,知3=PO ,得1=CO .分别以→→→OP OD OC ,,的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系xyz O -,则),3,0,0(P),0,1,0(D )0,1,1(),0,0,1(-B C ,),0,1,0(=→BC )0,1,1(),3,0,1(-=-=→→CD PC ,设平面PBC 的法向量为),,(z y x n =.⎩⎨⎧=-=∴030z x y ,则)1,0,3(=n, 设平面PDC 的法向量为),,(z y x m =,⎩⎨⎧=-=-∴030z x y x ,则)1,3,3(=m, 772724||||,cos ==⋅>=<n m n m n m, ∴由图可知二面角C SB A --的余弦值772-.19.解:(1)对)0,(>=b a ax y b,两边取自然对数得a x b y ln ln ln +=, 令i i i i y u x v ln ,ln ==,得a bv u ln +=,2154.027.0)66.24(64.10163.1866.2463.75,ˆ22211==⨯-⨯⨯-=--=∑∑==v n v uv n u v bi ni i i ni ,166.242163.18ˆˆln =⨯-=-=v b u a,得e a =ˆ, 故所求回归方程为21ex y =.(2)由)7,9(2121e e x e x ex x y ∈==,解得78,68,58,8149=<<x x ,即优等品有3件. 所以ξ的可能取值是3,2,1,0.209)1(,201)0(362313363303======C C C P C C C P ξξ, 201)3(,209)3(360333361323======C C C P C C C P ξξ. 其分布列为:所以,2203202201200)(=⨯+⨯+⨯+⨯=ξE . 20.解:(1)因为椭圆C 的焦距为62,且过点)1,2(A , 所以622,11422==+c ba . 因为222c b a +=, 解得2,822==b a ,所以椭圆C 的方程为12822=+y x . (2)设点),(),,(2211y x Q y x P ,则m kx y m kx y +=+=2211,,由⎪⎩⎪⎨⎧=++=,128,22y x m kx y 消去y 得0848)14(222=-+++m kmx x k ,(*)则1484,1482221221+-=+-=+k m x x k km x x ,因为0=+PQ PA k k ,即21212211---=--x y x y , 化简得04)(2)(21211221=++-+-+y y x x y x y x . 即044))(21(22121=+-+--+m x x k m x kx .(**)代入得04414)21(814)84(2222=+-+---+-m k k m km k m k , 整理得0)12)(12(=-+-k m k , 所以21=k 或k m 21-=. 若k m 21-=,可得方程(*)的一个根为2,不合题意, 所以直线PQ 的斜率为定值,该值为21. 21.解:(1)函数xax x f +=ln )(的定义域为),0(+∞. 由x a x x f +=ln )(,得221)(x ax x a x x f -=-='.①当0≤a 时,0)(>'x f 恒成立,函数)(x f 在),0(+∞上单调递增, 又+∞→+∞→<=+=)(,,01ln )1(x f x a a f , 所以函数)(x f 在定义域),0(+∞上有1个零点.②当0>a 时,则),0(a x ∈时,),(;0)(+∞∈<'a x x f 时,0)(>'x f . 所以函数)(x f 在),0(a 上单调递减,在),(+∞a 上单调递增. 当1ln )]([min +==a x f a x .当01ln ≤+a ,即ea 10≤<时,又01ln )1(>=+=a a f , 所以函数)(x f 在定义域),0(+∞上有2个零点. 综上所述实数a 的取值范围为]1,(e-∞. 另解:函数xax x f +=ln )(的定义域为),0(+∞. 由xax x f +=ln )(,得x x a ln -=. 令x x x g ln )(-=,则)1(ln )(+-='x x g .当)1,0(e x ∈时,0)(>'x g ;当),1(+∞∈ex 时,0)(<'x g . 所以函数)(x g 在)1,0(e 上单调递增,在),1(+∞e上单调递减.故e x 1=时,函数)(x g 取得最大值ee e e g 11ln 1)1(=-=. 因+∞→+∞→)(,xf x ,两图像有交点得ea 1≤,综上所述实数a 的取值范围为]1,(e-∞.(2)要证明当e a 2≥时,x e x f ->)(,即证明当e a x 2,0≥>时,x e xa x ->+ln ,即xxe a x x ->+ln .令a x x x h +=ln )(,则1ln )(+='x x h .当e x 10<<时,0)(<'x f ;当ex 1>时,0)(>'x f . 所以函数)(x h 在)1,0(e 上单调递减,在),1(+∞e上单调递增.当e x 1=时,a ex h +-=1)]([min .于是,当e a 2≥时,ea e x h 11)(≥+-≥.①令xxe x -=)(ϕ,则)1()(x e xe ex x x x-=-='---ϕ.当10<<x 时,0)(>'x f ;当1>x 时,0)(<'x f . 所以函数)(x ϕ在)1,0(上单调递增,在),1(+∞上单调递减.当1=x 时,e x 1)]([min =ϕ. 于是,当0>x 时,ex 1)(≤ϕ.②显然,不等式①、②中的等号不能同时成立. 故当ea 2≥时,x e x f ->)(. 22.解:(1)由⎪⎩⎪⎨⎧+==3sin 23cos ππt y t x ,的⎪⎪⎩⎪⎪⎨⎧+==t y t x 23221,消去t 得直线l 的普通方程为23+=x y .由θθπθπθπθρsin 2cos 2)4sin sin 4cos (cos 22)4cos(22+=+=-=, 得θρθρρsin 2cos 22+=.将y x y x ==+=θρθρρsin ,cos ,222代入上式, 曲线C 的直角坐标方程为y x y x 2222+=+,即2)1()1(22=-+-y x . 得曲线C 的直角坐标方程为⎩⎨⎧+=+=ααsin 21cos 21y x (α为参数,πα20<≤)(2)设曲线C 上的点为)sin 21,cos 21(αα++D ,由(1)知C 是以)1,1(G 为圆心,半径为2的圆.因为C 在D 处的切线与直线l 垂直,所以直线GD 与l 的斜率相等, 60,3tan ==αα或者 240=α,故D 得直角坐标为)261,221(++D 或者)261,221(--D . 23.解:(1)不等式2)(<x f 等价于⎪⎩⎪⎨⎧<-++--<2)12()32(23x x x 或⎪⎩⎪⎨⎧<-++≤≤-2)12()32(2123x x x 或⎪⎩⎪⎨⎧<--+>2)12()32(21x x x , 解得23-<x 或023<≤-x , 所以不等式1)(<x f 的解集是)0,(-∞;(2)存在R x ∈,使得|23|)(->a x f 成立,故需求)(x f 的最大值.4|)12()32(||12||32|=--+≤--+x x x x ,所以4|23|<-a ,解得实数a 的取值范围是)2,32(-.。

相关文档
最新文档