二次函数的增减性及最值问题.doc(6月25日)
二次函数与几何的动点及最值、存在性问题(解析版)-2024中考数学
二次函数与几何的动点及最值、存在性问题目录题型01平行y轴动线段最大值与最小值问题题型02抛物线上的点到某一直线的距离问题题型03已知点关于直线对称点问题题型04特殊角度存在性问题题型05将军饮马模型解决存在性问题题型06二次函数中面积存在性问题题型07二次函数中等腰三角形存在性问题题型08二次函数中直角三角形存在性问题题型09二次函数中全等三角形存在性问题题型10二次函数中相似三角形存在性问题题型11二次函数中平行四边形存在性问题题型12二次函数中矩形存在性问题题型13二次函数中菱形存在性问题题型14二次函数中正方形存在性问题二次函数常见存在性问题:(1)等线段问题:将动点坐标用函数解析式以“一母式”的结构表示出来,再利用点到点或点到直线的距离公式列出方程或方程组,然后解出参数的值,即可以将线段表示出来.【说明】在平面直角坐标系中该点在某一函数图像上,设该点的横坐标为m,则可用含m字母的函数解析式来表示该点的纵坐标,简称“设横表纵”或“一母式”.(2)平行y轴动线段最大值与最小值问题:将动点坐标用函数解析式以“一母式”的结构表示出来,再用纵坐标的较大值减去较小值,再利用二次函数的性质求出动线段的最大值或最小值.(3)求已知点关于直线对称点问题:先求出直线解析式,再利用两直线垂直的性质(两直线垂直,斜率之积等于-1)求出已知点所在直线的斜率及解析式,最后用中点坐标公式即可求出对称点的坐标.(4)“抛物线上是否存在一点,使其到某一直线的距离为最值”的问题:常常利用直线方程与二次函数解析式联立方程组,求出切点坐标,运用点到直线的距离公式进行求解.(5)二次函数与一次函数、特殊图形、旋转及特殊角度综合:图形或一次函数与x 轴的角度特殊化,利用与角度有关知识点求解函数图像上的点,结合动点的活动范围,求已知点与动点是否构成新的特殊图形.2.二次函数与三角形综合(1)将军饮马问题:本考点主要分为两类:①在定直线上是否存在点到两定点的距离之和最小;②三角形周长最小或最大的问题,主要运用的就是二次函数具有对称性.(2)不规则三角形面积最大或最小值问题:利用割补法将不规则三角形分割成两个或以上的三角形或四边形,在利用“一母式”将动点坐标表示出来,作线段差,用线段差来表示三角形的底或高,用面积公式求出各部分面积,各部分面积之和就是所求三角形的面积.将三角形的面积用二次函数的结构表示出来,再利用二次函数的性质求出面积的最值及动点坐标.(3)与等腰三角形、直角三角形的综合问题:对于此类问题,我们可以利用两圆一线或两线一圆的基本模型来进行计算.问题分情况找点画图解法等腰三角形已知点A ,B 和直线l ,在l 上求点P ,使△PAB 为等腰三角形以AB为腰分别以点A ,B 为圆心,以AB 长为半径画圆,与已知直线的交点P 1,P 2,P 4,P 5即为所求分别表示出点A ,B ,P 的坐标,再表示出线段AB ,BP ,AP 的长度,由①AB =AP ;②AB =BP ;③BP =AP 列方程解出坐标以AB 为底作线段AB 的垂直平分线,与已知直线的交点P 3即为所求分别表示出点A ,B ,P 的坐标,再表示出线段AB ,BP ,AP 的长度,由①AB =AP ;②AB =BP ;③BP =AP 列方程解出坐标问题分情况找点画图解法直角三角形已知点A ,B 和直线l ,在l 上求点P ,使△PAB 为直角三角形以AB为直角边分别过点A ,B 作AB 的垂线,与已知直线的交点P 1,P 4即为所求分别表示出点A ,B ,P 的坐标,再表示出线段AB ,BP ,AP 的长度,由①AB 2=BP 2+AP 2;②BP 2=AB 2+AP 2;③AP 2=AB 2+BP 2列方程解出坐标以AB 为斜边以AB 的中点Q 为圆心,QA 为半径作圆,与已知直线的交点P 2,P 3即为所求注:其他常见解题思路有:①作垂直,构造“三垂直”模型,利用相似列比例关系得方程求解;②平移垂线法:若以AB 为直角边,且AB 的一条垂线的解析式易求(通常为过原点O 与AB 垂直的直线),可将这条直线分别平移至过点A 或点B 得到相应解析式,再联立方程求解.(4)与全等三角形、相似三角形的综合问题:在没有指定对应点的情况下,理论上有六种情况需要讨论,但在实际情况中,通常不会超过四种,要注意边角关系,积极分类讨论来进行计算.情况一探究三角形相似的存在性问题的一般思路:解答三角形相似的存在性问题时,要具备分类讨论思想及数形结合思想,要先找出三角形相似的分类标准,一般涉及动态问题要以静制动,动中求静,具体如下:①假设结论成立,分情况讨论.探究三角形相似时,往往没有明确指出两个三角形的对应点(尤其是以文字形式出现求证两个三角形相似的题目),或者涉及动点问题,因动点问题中点的位置的不确定,此时应考虑不同的对应关系,分情况讨论;②确定分类标准.在分类时,先要找出分类的标准,看两个相似三角形是否有对应相等的角,若有,找出对应相等的角后,再根据其他角进行分类讨论来确定相似三角形成立的条件;若没有,则分别按三种角对应来分类讨论;③建立关系式,并计算.由相似三角形列出相应的比例式,将比例式中的线段用所设点的坐标表示出来(其长度多借助勾股定理运算),整理可得一元一次方程或者一元二次方程,解方程可得字母的值,再通过计算得出相应的点的坐标.情况二探究全等三角形的存在性问题的思路与探究相似三角形的存在性问题类似,但是除了要找角相等外,还至少要找一组对应边相等.3.二次函数与四边形的综合问题特殊四边形的探究问题解题步骤如下:①先假设结论成立;②设出点坐标,求边长;③建立关系式,并计算.若四边形的四个顶点位置已确定,则直接利用四边形边的性质进行计算;若四边形的四个顶点位置不确定,需分情况讨论:a.探究平行四边形:①以已知边为平行四边形的某条边,画出所有的符合条件的图形后,利用平行四边形的对边相等进行计算;②以已知边为平行四边形的对角线,画出所有的符合条件的图形后,利用平行四边形对角线互相平分的性质进行计算;③若平行四边形的各顶点位置不确定,需分情况讨论,常以已知的一边作为一边或对角线分情况讨论.b.探究菱形:①已知三个定点去求未知点坐标;②已知两个定点去求未知点坐标,一般会用到菱形的对角线互相垂直平分、四边相等的性质列关系式.c.探究正方形:利用正方形对角线互相垂直平分且相等的性质进行计算,一般是分别计算出两条对角线的长度,令其相等,得到方程再求解.d.探究矩形:利用矩形对边相等、对角线相等列等量关系式求解;或根据邻边垂直,利用勾股定理列关系式求解.题型01平行y轴动线段最大值与最小值问题1(2023·广东东莞·一模)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,OA=OC =3,顶点为D.(1)求此函数的关系式;(2)在AC 下方的抛物线上有一点N ,过点N 作直线l ∥y 轴,交AC 与点M ,当点N 坐标为多少时,线段MN 的长度最大?最大是多少?(3)在对称轴上有一点K ,在抛物线上有一点L ,若使A ,B ,K ,L 为顶点形成平行四边形,求出K ,L 点的坐标.(4)在y 轴上是否存在一点E ,使△ADE 为直角三角形,若存在,直接写出点E 的坐标;若不存在,说明理由.【答案】(1)y =x 2+2x -3(2)当N 的坐标为-32,-154 ,MN 有最大值94(3)K -1,4 ,L -1,-4 或K -1,12 ,L -5,12 或K -1,12 ,L 3,12(4)存在,点E 的坐标为0,32 或0,-72或0,-1 或0,-3【分析】(1)由OA =OC =3求得A -3,0 ,C 0,-3 ,再分别代入抛物线解析式y =x 2+bx +c ,得到以b ,c 为未知数的二元一次方程组,求出b ,c 的值即可;(2)求出直线AC 的解析式,再设出M 、N 的坐标,把MN 表示成二次函数,配方即可;(3)根据平行四边形的性质,以AB 为边,以AB 为对角线,分类讨论即可;(4)设出E 的坐标,分别表示出△ADE 的平分,再分每一条都可能为斜边,分类讨论即可.【详解】(1)∵抛物线y =x 2+bx +c 经过点A ,点C ,且OA =OC =3,∴A -3,0 ,C 0,-3 ,∴将其分别代入抛物线解析式,得c =-39-3b +c =0,解得b =2c =-3 .故此抛物线的函数表达式为:y =x 2+2x -3;(2)设直线AC 的解析式为y =kx +t ,将A -3,0 ,C 0,-3 代入,得t =-3-3k +t =0 ,解得k =-1t =-3 ,∴直线AC 的解析式为y =-x -3,设N 的坐标为n ,n 2+2n -3 ,则M n ,-n -3 ,∴MN =-n -3-n 2+2n -3 =-n 2-3n =-n +32 +94,∵-1<0,∴当n =-32时,MN 有最大值,为94,把n =-32代入抛物线得,N 的坐标为-32,-154,当N 的坐标为-32,-154 ,MN 有最大值94;(3)①当以AB 为对角线时,根据平行四边形对角线互相平分,∴KL 必过-1,0 ,∴L 必在抛物线上的顶点D 处,∵y =x 2+2x -3=x +1 2-4,∴K -1,4 ,L -1,-4②当以AB 为边时,AB =KL =4,∵K 在对称轴上x =-1,∴L 的横坐标为3或-5,代入抛物线得L -5,12 或L 3,12 ,此时K 都为-1,12 ,综上,K -1,4 ,L -1,-4 或K -1,12 ,L -5,12 或K -1,12 ,L 3,12 ;(4)存在,由y =x 2+2x -3=x +1 2-4,得抛物线顶点坐标为D -1,-4 ∵A -3,0 ,∴AD 2=-3+1 2+0+4 2=20,设E 0,m ,则AE 2=-3-0 2+0-m 2=9+m 2,DE 2=-1-0 2+-4-m 2=17+m 2+8m ,①AE 为斜边,由AE 2=AD 2+DE 2得:9+m 2=20+17+m 2+8m ,解得:m =-72,②DE 为斜边,由DE 2=AD 2+AE 2得:9+m 2+20=17+m 2+8m ,解得:m =32,③AD 为斜边,由AD 2=ED 2+AE 2得:20=17+m 2+8m +9+m 2,解得:m =-1或-3,∴点E 的坐标为0,32 或0,-72或0,-1 或0,-3 .【点睛】本题主要考查待定系数法求二次函数解析式,二次函数图象与性质,平行四边形的判定与性质以及勾股定理等知识,会运用待定系数法列方程组,两点间距离公式求MN 的长,由平行四边形的性质判定边相等,运用勾股定理列方程.2(2023·河南南阳·统考一模)如图,抛物线与x 轴相交于点A 、B (点A 在点B 的左侧),与y 轴的交于点C 0,-4 ,点P 是第三象限内抛物线上的一个动点,设点P 的横坐标为m ,过点P 作直线PD ⊥x 轴于点D ,作直线AC 交PD 于点E .已知抛物线的顶点P 坐标为-3,-254.(1)求抛物线的解析式;(2)求点A 、B 的坐标和直线AC 的解析式;(3)求当线段CP =CE 时m 的值;(4)连接BC ,过点P 作直线l ∥BC 交y 轴于点F ,试探究:在点P 运动过程中是否存在m ,使得CE =DF ,若存在直接写出m 的值;若不存在,请说明理由.【答案】(1)y =14x 2+32x -4(2)A -8,0 ,B 2,0 ,y =-12x -4(3)-4(4)存在,m =2-25或m =-4【分析】(1)运用待定系数法即可求得抛物线的解析式;(2)令y =0,解方程即可求得点A 、B 的坐标,再运用待定系数法即可求得直线AC 的解析式;(3)过点C 作CF ⊥PE 于点F ,根据等腰三角形的性质可得点F 是PE 的中点,设P m ,14m 2+32m -4 ,则E m ,-12m -4 ,可得F m ,18m 2+12m -4 ,再由点F 与点C 的纵坐标相同建立方程求解即可;(4)过C 作CH ⊥PD 于H ,设P m ,14m 2+32m -4 ,由PF ∥BC ,可得直线PF 解析式为y =2x +14m 2-12m -4,进而可得OF =14m 2-12m -4 ,再证得Rt △CHE ≅Rt △DOF HL ,得出∠HCE =∠FDO ,进而推出∠FDO =∠CAO ,即tan ∠FDO =tan ∠CAO ,据此建立方程求解即可.【详解】(1)解:∵抛物线的顶点坐标为-3,-254∴设抛物线的解析式为y =a x +3 2-254,把点C 0,-4 代入,得:-4=9a -254,解得:a =14,∴y =14x +3 2-254=14x 2+32x -4,∴该抛物线的解析式为y =14x 2+32x -4.(2)解:令y =0,得14x 2+32x -4=0,解得:x 1=-8,x 2=2,∴A -8,0 ,B 2,0 ,,设直线AC 的解析式为y =kx +b ,则-8k +b =0b =-4 ,解得:k =-12b =-4 ,∴直线AC 的解析式为y =-12x -4.(3)解:如图,过点C 作CF ⊥PE 于点F ,∵CP =CE ,∴EF =PF ,即点F 是PE 的中点,设P m ,14m 2+32m -4 ,则E m ,-12m -4 ,∴F m ,18m 2+12m -4 ,∵PE ∥y 轴,CF ⊥PE ,∴CF ∥x 轴,∴18m 2+12m -4=-4,解得:m =-4或m =0(不符合题意,舍去),∴m =-4.(4)解:存在m ,使得CE =DF ,理由如下:如图:过C 作CH ⊥PD 于H ,设P m,14m2+32m-4,由B2,0,C0,-4,由待定系数法可得直线BC解析式为y=2x-4,根据PF∥BC,设直线PF解析式为y=2x+c,将P m,14m2+32m-4代入得:1 4m2+32m-4=2m+c,∴c=14m2-12m-4,∴直线PF解析式为y=2x+14m2-12m-4,令x=0得y=14m2-12m-4,∴F0,14m2-12m-4,∴OF=14m2-12m-4,∵∠CHD=∠PDO=∠COD=90°,∴四边形CODH是矩形,∴CH=OD,∵CE=DF,∴Rt△CHE≅Rt△DOF HL,∴∠HCE=∠FDO,∵∠HCE=∠CAO,∴∠FDO=∠CAO,∴tan∠FDO=tan∠CAO,∴OF OD =OCOA,即14m2-12m-4-m=48=12,∴1 4m2-12m-4=-12m或14m2-12m-4=12m,解得:m=-4或m=4或m=2-25或m=2+25,∵P在第三象限,∴m=2-25或m=-4.【点睛】本题属于二次函数综合题,主要考查了待定系数法求函数解析式、二次函数综合应用、等腰三角形性质、矩形判定及性质、相似三角形判定及性质、解直角三角形等知识点,解题的关键是用含m的代数式表示相关点坐标和相关线段的长度.3(2023·山东聊城·统考三模)抛物线y=-x2+bx+c与x轴交于点A3,0,与y轴交于点C0,3,点P 为抛物线上的动点.(2)若P 为直线AC 上方抛物线上的动点,作PH ∥x 轴交直线AC 于点H ,求PH 的最大值;(3)点N 为抛物线对称轴上的动点,是否存在点N ,使直线AC 垂直平分线段PN ?若存在,请直接写出点N 的纵坐标;若不存在,请说明理由.【答案】(1)b =2,c =3(2)PH 取得最大值为94(3)存在,2-2或2+2【分析】(1)将坐标代入解析式,构建方程求解;(2)设PH 交y 轴于点M ,P m ,-m 2+2m +3 ,则PM =m ;待定系数法确定直线AC 的解析式为y =-x +3,从而确定PH =m -m 2-2m =-m 2+3m =-m -32 2+94,解得PH 最大值为94;(3)如图,设PN 与AC 交于点G ,可设直线PN 的解析式为y =x +p ,设点N (1,n ),求得y =x +(n -1);联立y =-x +3y =x +(n -1) ,解得x =-n 2+2y =n 2+1,所以点P 的横坐标为2×-n 2+2 -1=-n +3,纵坐标为2×n2+1 -n =2,由二次函数解析式构建方程-(-n +3)2+2(-n +3)+3=2,解得n =2±2;【详解】(1)∵抛物线y =-x 2+bx +c 与x 轴交于点A 3,0 ,与y 轴交于点C 0,3 ,∴-9+3b +c =0c =3,解得:b =2c =3 ,∴b =2,c =3;(2)设PH 交y 轴于点M ,P m ,-m 2+2m +3 ,∴PM =m ,∵PH ∥x 轴,∴点H 的纵坐标为-m 2+2m +3,设直线AC 的解析式为y =kx +n ,∴3k +n =0n =3 ,解得:k =-1n =3 ,∴直线AC 的解析式为y =-x +3.∴-m 2+2m +3=-x +3,∴x =m 2-2m ,∴H m 2-2m ,-m 2+2m +3 ,∴PH =m -m 2-2m =-m 2+3m =-m -322+94,∴当m =32时,PH 取得最大值为94(3)存在点N ,使直线AC 垂直平分线段PN ,点N 的纵坐标为2-2或2+2如图,设PN 与AC 交于点G ,∵AC 垂直平分PN ,直线AC 的解析式为y =-x +3∴可设直线PN 的解析式为y =x +p 设点N (1,n ),则n =1+p ∴p =n -1,∴y =x +(n -1)联立y =-x +3y =x +(n -1) ,解得x =-n 2+2y =n 2+1∴点P 的横坐标为2×-n 2+2 -1=-n +3,纵坐标为2×n 2+1 -n =2∴-(-n +3)2+2(-n +3)+3=2,解得n =2±2∴点N 的纵坐标为2-2或2+2.【点睛】本题考查利用二次函数解析式及点坐标求待定参数、待定系数法确定函数解析式、二次函数极值及其它二次函数综合问题,利用直线间的位置关系、点线间的位置关系,融合方程的知识求解坐标是解题的关键.题型02抛物线上的点到某一直线的距离问题1(2023·广东梅州·统考二模)探究求新:已知抛物线G 1:y =14x 2+3x -2,将抛物线G 1平移可得到抛物线G 2:y =14x 2.(1)求抛物线G 1平移得到抛物线G 2的平移路径;(2)设T 0,t ,直线l :y =-t ,是否存在这样的t ,使得抛物线G 2上任意一点到T 的距离等于到直线l 的距离?若存在,求出t 的值;若不存在,试说明理由;(3)设H 0,1 ,Q 1,8 ,M 为抛物线G 2上一动点,试求QM +MH 的最小值.参考公式:若点M x 1,y 1 ,N x 2,y 2 为平面上两点,则有MN =x 1-x 22+y 1-y 2 2.【答案】(1)将G 1向左平移-6个单位,向上平移11个单位(2)存在,1(3)9【分析】(1)设G 1向左平移a 个单位,向上平移b 个单位得到函数G 2,列方程组即可求解;(2)设P x 0,x 204为抛物线G 2上的一点,根据题意列方程即可;(3)点H 坐标与(2)中t =1时的T 点重合,过点M 作MA ⊥l ,垂足为A ,如图所示,则有MH =MA ,当且仅当Q ,M ,A 三点共线时QM +MA 取得最小值.【详解】(1).解:设G 1向左平移a 个单位,向上平移b 个单位得到函数G 2,由平移法则可知14(x +a )2+3(x +a )-2+b =14x 2,整理可得14x 2+3+12a x +14a 2+3a -2+b =14x 2,可得方程组3+12a =014a 2+3a -2+b =0,解得a =-6b =11 ;∴平移路径为将G 1向左平移-6个单位,向上平移11个单位;(2)解:存在这样的t ,且t =1时满足条件,设P x 0,x 204为抛物线G 2上的一点,则点P 到直线l 的距离为x 204+t ,点P 到点T 距离为(x 0-0)2+x 204-t2,联立可得:x 204+t =(x 0-0)2+x 204-t2,两边同时平方合并同类项后可得x 20-x 20t =0解得:t =1;(3)解:点H 坐标与(2)中t =1时的T 点重合,作直线l :y =-1,过点M 作MA ⊥直线l ,垂足为A ,如图所示,则有MH =MA ,此时QM +MH =QM +MA ,当且仅当Q ,M ,A 三点共线时QM +MA 取得最小值即QM +MA =QA =8-(-1)=9∴QM +MH 的最小值为9;【点睛】本题考查二次函数综合题,涉及到线段最小值、平移性质等,灵活运用所学知识是关键.2(2023·湖北宜昌·统考一模)如图,已知:点P 是直线l :y =x -2上的一动点,其横坐标为m (m 是常数),点M 是抛物线C :y =x 2+2mx -2m +2的顶点.(1)求点M 的坐标;(用含m 的式子表示)(2)当点P 在直线l 运动时,抛物线C 始终经过一个定点N ,求点N 的坐标,并判断点N 是否是点M 的最高位置?(3)当点P 在直线l 运动时,点M 也随之运动,此时直线l 与抛物线C 有两个交点A ,B (A ,B 可以重合),A ,B 两点到y 轴的距离之和为d .①求m 的取值范围;②求d 的最小值.【答案】(1)M -m ,-m 2-2m +2(2)N (1,3),点N 是点M 的最高位置(3)①m ≤-52或m ≥32;②d 取得最小值为2【分析】(1)将抛物线解析式写成顶点式即可求解;(2)根据解析式含有m 项的系数为0,得出当x =1时,y =3,即N (1,3),根据二次函数的性质得出-m 2-2m +2=-m +1 2+3的最大值为3,即可得出点N 是点M 的最高位置;(3)①根据直线与抛物线有交点,联立方程,根据一元二次方程根的判别式大于等于0,求得m 的范围,即可求解;②设A ,B 的坐标分别为x 1,y 1 ,x 2,y 2 ,其中x 1<x 2,由①可知x 1,x 2是方程x 2+2mx -x -2m +4=0的两根,根据x 1+x 2=-2m +1,分情况讨论,求得d 是m 的一次函数,进而根据一次函数的性质即可求解.【详解】(1)解:y =x 2+2mx -2m +2=x +m 2-m 2-2m +2,∴顶点M -m ,-m 2-2m +2 ,(2)解:∵y =x 2+2mx -2m +2=x 2+2+2m x -1 ,∴当x =1时,y =3,抛物线C 始终经过一个定点1,3 ,即N (1,3);∵M -m ,-m 2-2m +2 ,-m 2-2m +2=-m +1 2+3,∴M 的纵坐标最大值为3,∴点N 是点M 的最高位置;(3)解:①联立y =x -2y =x 2+2mx -2m +2 ,得x 2+2mx -x -2m +4=0,∵直线l 与抛物线C 有两个交点A ,B (A ,B 可以重合),∴Δ=b 2-4ac =2m -1 2-4-2m +4 ,=4m 2+4m -15≥0,∵4m 2+4m -15=0,解得m 1=-52,m 2=32,∴当4m 2+4m -15≥0时,m ≤-52或m ≥32,②设A ,B 的坐标分别为x 1,y 1 ,x 2,y 2 ,其中x 1<x 2,由①可知x 1,x 2是方程x 2+2mx -x -2m +4=0的两根,∴x1+x 2=-2m +1,当m =-3时,如图所示,y A =0,当-3≤m ≤-52时,y 1≥0,y 2≥0,则d =x 1+x 2 =-2m +1 ,∵-2<0,∴当m =-52时,d 取得最小值为-2×-52 +1=5+1=6,当m ≥32时,d =-x 1+x 2 =--2m +1 =2m -1,∴当m =32时,d 取得最小值为2×32-1=2,综上所述,d 取得最小值为2.【点睛】本题考查了二次函数的性质,一元二次方程与二次函数的关系,熟练掌握二次函数的性质是解题的关键.3(2023·云南楚雄·统考一模)抛物线y =x 2-2x -3交x 轴于A ,B 两点(A 在B 的左边),C 是第一象限抛物线上一点,直线AC 交y 轴于点P .(1)直接写出A ,B 两点的坐标;(2)如图①,当OP =OA 时,在抛物线上存在点D (异于点B ),使B ,D 两点到AC 的距离相等,求出所有满足条件的点D 的横坐标;(3)如图②,直线BP 交抛物线于另一点E ,连接CE 交y 轴于点F ,点C 的横坐标为m ,求FP OP 的值(用含m 的式子表示).【答案】(1)A (-1,0),B (3,0)(2)0或3-41或3+41(3)13m 【分析】(1)令y =0,解方程可得结论;(2)分两种情形:①若点D 在AC 的下方时,过点B 作AC 的平行线与抛物线交点即为D 1.②若点D 在AC 的上方时,点D 1关于点P 的对称点G (0,5),过点G 作AC 的平行线交抛物线于点D 2,D 3,D 2,D 3符合条件.构建方程组分别求解即可;(3)设E 点的横坐标为n ,过点P 的直线的解析式为y =kx +b ,由y =kx +b y =x 2-2x -3 ,可得x 2-(2+k )x -3-b =0,设x 1,x 2是方程x 2-(2+k )x -3-b =0的两根,则x 1x 2=-3-b ,推出x A ⋅x C =x B ⋅x E =-3-b 可得n =-1-b 3,设直线CE 的解析式为y =px +q ,同法可得mn =-3-q 推出q =-mn -3,推出q =-(3+b )-1-b 3 -3=13b 2+2b ,推出OF =13b 2+b ,可得结论.【详解】(1)解:令y =0,得x 2-2x -3=0,解得:x =3或-1,∴A (-1,0),B (3,0);(2)∵OP =OA =1,∴P (0,1),∴直线AC 的解析式为y =x +1.①若点D 在AC 的下方时,过点B 作AC 的平行线与抛物线交点即为D 1.∵B (3,0),BD 1∥AC ,∴直线BD 1的解析式为y =x -3,由y =x -3y =x 2-2x -3,解得x =3y =0 或x =0y =-3 ,∴D 1(0,-3),∴D 1的横坐标为0.②若点D 在AC 的上方时,点D 1关于点P 的对称点G (0,5),过点G 作AC 的平行线l 交抛物线于点D 2,D 3,D 2,D 3符合条件.直线l 的解析式为y =x +5,由y =x +5y =x 2-2x -3 ,可得x 2-3x -8=0,解得:x =3-412或3+412,∴D 2,D 3的横坐标为3-412,3+412,综上所述,满足条件的点D 的横坐标为0,3-412,3+412.(3)设E 点的横坐标为n ,过点P 的直线的解析式为y =kx +b ,由y =kx +b y =x 2-2x -3,可得x 2-(2+k )x -3-b =0,设x 1,x 2是方程x 2-(2+k )x -3-b =0的两根,则x 1x 2=-3-b ,∴x A ⋅x C =x B ⋅x E =-3-b∵x A =-1,∴x C =3+b ,∴m =3+b ,∵x B =3,∴x E =-1-b 3,∴n =-1-b 3,设直线CE 的解析式为y =px +q ,同法可得mn =-3-q∴q =-mn -3,∴q =-(3+b )-1-b 3 -3=13b 2+2b ,∴OF =13b 2+2b ,∴FP OP=13b +1=13(m -3)+1=13m .【点睛】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,一元二次方程的根与系数的关系等知识,解题的关键是学会构建一次函数,构建方程组确定交点坐标,学会利用参数解决问题,属于中考压轴题.题型03已知点关于直线对称点问题1(2023·辽宁阜新·统考中考真题)如图,在平面直角坐标系中,二次函数y =-x 2+bx -c 的图象与x 轴交于点A (-3,0)和点B (1,0),与y 轴交于点C .(1)求这个二次函数的表达式.(2)如图1,二次函数图象的对称轴与直线AC :y =x +3交于点D ,若点M 是直线AC 上方抛物线上的一个动点,求△MCD 面积的最大值.(3)如图2,点P 是直线AC 上的一个动点,过点P 的直线l 与BC 平行,则在直线l 上是否存在点Q ,使点B 与点P 关于直线CQ 对称?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)y =-x 2-2x +3;(2)S △MCD 最大=98;(3)Q 1-5,-5 或1+5,5 .【分析】(1)根据抛物线的交点式直接得出结果;(2)作MQ ⊥AC 于Q ,作ME ⊥AB 于F ,交AC 于E ,先求出抛物线的对称轴,进而求得C ,D 坐标及CD 的长,从而得出过M 的直线y =x +m 与抛物线相切时,△MCD 的面积最大,根据x +m =-x 2-2x +3的△=0求得m 的值,进而求得M 的坐标,进一步求得CD 上的高MQ 的值,进一步得出结果;(3)分两种情形:当点P 在线段AC 上时,连接BP ,交CQ 于R ,设P (t ,t +3),根据CP =CB 求得t 的值,可推出四边形BCPQ 是平行四边形,进而求得Q 点坐标;当点P 在AC 的延长线上时,同样方法得出结果.【详解】(1)解:由题意得,y =-(x +3)(x -1)=-x 2-2x +3;(2)解:如图1,作MQ ⊥AC 于Q ,作ME ⊥AB 于F ,交AC 于E ,∵OA =OC =3,∠AOC =90°,∴∠CAO =∠ACO =45°,∴∠MEQ =∠AEF =90°-∠CAO =45°,抛物线的对称轴是直线:x =-3+12=-1,∴y =x +3=-1+3=2,∴D (1,2),∵C (0,3),∴CD =2,故只需△MCD 的边CD 上的高最大时,△MCD 的面积最大,设过点M 与AC 平行的直线的解析式为:y =x +m ,当直线y =x +m 与抛物线相切时,△MCD 的面积最大,由x +m =-x 2-2x +3得,x 2+3x +(m -3)=0,由△=0得,32-4(m -3)=0得,m -3=94,∴x 2+3x +94=0,∴x 1=x 2=-32,∴y =--32 2-2×-32 +3=154,y =x +3=-32+3=32,∴ME =154-32=94,∴MQ =ME ⋅sin ∠MEQ =ME ⋅sin45°=94×22=928,∴S △MCD 最大=12×2×928=98;(3)解:如图2,当点P 在线段AC 上时,连接BP ,交CQ 于R ,∵点B 和点Q 关于CQ 对称,∴CP =CB ,设P (t ,t +3),由CP 2=CB 2得,2t 2=10,∴t 1=-5,t 2=5(舍去),∴P -5,3-5 ,∵PQ ∥BC ,∴CR =BR =1,∴CR =QR ,∴四边形BCPQ 是平行四边形,∵1+(-5)-0=1-5,0+(3-5)-3=-5,∴Q 1-5,-5 ;如图3,当点P 在AC 的延长线上时,由上可知:P 5,3+5 ,同理可得:Q 1+5,5 ,综上所述:Q 1-5,-5 或1+5,5 .【点睛】本题考查了二次函数及其图象的性质,一元二次方程的解法,平行四边形的判定和性质,轴对称的性质等知识,解决问题的关键是分类讨论.2(2023·四川甘孜·统考中考真题)已知抛物线y =x 2+bx +c 与x 轴相交于A -1,0 ,B 两点,与y 轴相交于点C 0,-3 .(1)求b ,c 的值;(2)P 为第一象限抛物线上一点,△PBC 的面积与△ABC 的面积相等,求直线AP 的解析式;(3)在(2)的条件下,设E 是直线BC 上一点,点P 关于AE 的对称点为点P ,试探究,是否存在满足条件的点E ,使得点P 恰好落在直线BC 上,如果存在,求出点P 的坐标;如果不存在,请说明理由.【答案】(1)b =-2,c =-3.(2)y =x +1(3)存在,点P 的坐标为1+21,-2+21 或1-21,-2-21【分析】(1)由待定系数法即可求解;(2)S △PBC =S △ABC 得到AP ∥BC ,即可求解;(3)由题意的:∠AEP =∠AEP ,P E =PE ,即可求解.【详解】(1)由题意,得1-b +c =0,c =-3.∴b =-2,c =-3.(2)由(1)得抛物线的解析式为y =x 2-2x -3.令y =0,则x 2-2x -3=0,得x 1=-1,x 2=3.∴B 点的坐标为3,0 .∵S △PBC =S △ABC ,∴AP ∥BC .∵B 3,0,C 0,-3 ,∵AP∥BC,∴可设直线AP的解析式为y=x+m.∵A(-1,0)在直线AP上,∴0=-1+m.∴m=1.∴直线AP的解析式为y=x+1.(3)设P点坐标为m,n.∵点P在直线y=x+1和抛物线y=x2-2x-3上,∴n=m+1,n=m2-2m-3.∴m+1=m2-2m-3.解得m1=4,m2=-1(舍去).∴点P的坐标为4,5.由翻折,得∠AEP=∠AEP ,P E=PE.∵AP∥BC,∴∠PAE=∠AEP '.∴∠PAE=∠PEA.∴PE=PA=4+12=52.2+5-0设点E的坐标为t,t-3,则PE2=t-42.2+t-3-52=52∴t=6±21.当t=6+21时,点E的坐标为6+21,3+21.设P (s,s-3),由P E=AP,P E=PE=52得:s-6-212,2=522+s-3-3-21解得:s=1+21,则点P 的坐标为1+21,-2+21.当t=6-21时,同理可得,点P 的坐标为1-21,-2-21.综上所述,点P 的坐标为1+21,-2+21.或1-21,-2-21【点睛】本题是二次函数的综合题,主要考查了用待定系数法求一次函数、二次函数的解析式,二次函数的性质,此题题型较好,综合性比较强,用的数学思想是分类讨论和数形结合的思想.3(2023·江苏连云港·连云港市新海实验中学校考二模)如图,“爱心”图案是由抛物线y=-x2+m的一部分及其关于直线y=-x的对称图形组成,点E、F是“爱心”图案与其对称轴的两个交点,点A、B、C、D是该图案与坐标轴的交点,且点D的坐标为6,0.(1)求m 的值及AC 的长;(2)求EF 的长;(3)若点P 是该图案上的一动点,点P 、点Q 关于直线y =-x 对称,连接PQ ,求PQ 的最大值及此时Q 点的坐标.【答案】(1)m =6,AC =6+6(2)52(3)2542,Q -234,-12【分析】(1)用待定系数法求得m 与抛物线的解析式,再求出抛物线与坐标轴的交点坐标,进而求得A 的坐标,根据对称性质求得B ,C 的坐标,即可求得结果;(2)将抛物线的解析式与直线EF 的解析式联立方程组进行求解,得到E ,F 的坐标,即可求得结果;(3)设P (m ,-m 2+6),则Q (m 2-6,-m ),可得PQ =2×m -12 2-252 ,即求m -12 2-252的最值,根据二次函数的最值,即可得到m 的值,即可求得.【详解】(1)把D 6,0 代入y =-x 2+m 得0=-6+m解得m =6∴抛物线的解析式为:y =-x 2+6∴A 0,6根据对称性可得B -6,0 ,C 0,-6∴AC =AO +OC =6+6(2)联立y =-x y =-x 2+6解得x =3y =-3 或x =-2y =2 ∴E -2,2 ,F 3,-3∴EF =-2-3 2+2+3 2=52(3)设P (m ,-m 2+6),则Q (m 2-6,-m )∴PQ =m -m 2-6 2+-m 2+6--m 2整理得PQ =2×m -12 2-254 ∵m -12 2≥0∴当m -12 2=0时,即m =12时,m -12 2-254 有最大值为254∴PQ 的最大值为2542∴12 2-6=-234故Q -234,-12【点睛】本题考查二次函数综合应用,涉及待定系数法求函数解析式,两点间的距离公式,求抛物线与一次函数的交点坐标,二次函数的最值等知识,解题的关键是掌握关于直线y =-x 对称的点坐标的关系.题型04特殊角度存在性问题1(2023·山西忻州·统考模拟预测)如图,抛物线y =18x 2+34x -2与x 轴交于A ,B 两点,与y 轴交于点C .P 是直线AC 下方抛物线上一个动点,过点P 作直线l ∥BC ,交AC 于点D ,过点P 作PE ⊥x 轴,垂足为E ,PE 交AC 于点F .(1)直接写出A ,B ,C 三点的坐标,并求出直线AC 的函数表达式;(2)当线段PF 取最大值时,求△DPF 的面积;(3)试探究在拋物线的对称轴上是否存在点Q ,使得∠CAQ =45°?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)A -8,0 ,B 2,0 ,C 0,-2 .y =-14x -2(2)85(3)存在,-3,3 或-3,-253【分析】(1)对于直线y =18x 2+34x -2,当x =0时,y =-2,即点C 0,-2 ,令18x 2+34x -2=0,则x =2或-8,则点A ,B 的坐标分别为-8,0 ,2,0 即求出三个点的坐标,设直线AC 的表达式为y =kx +b ,利用待定系数法求解即可;(2)设点P 的横坐标为m ,则P m ,18m 2+34m -2 ,F m ,-14m -2 ,表示出PF =-18m 2-m ,求出PF max =2,再表示出点D 到直线PF 的距离d =85,利用S △DPF =12⋅PF ⋅d 进行求解即可;(3)由抛物线的表达式知,其对称轴为x =-3,当点Q 在x 轴上方时,设抛物线的对称轴交x 轴于点N ,交AC 于H ,故点Q 作QT ⊥AC 于点T ,在△AQH 中,∠CAQ =45°,tan ∠QHA =4,用解直角三角形的方法求出QH =174,即可求出Q 点坐标,当点Q Q 在x 轴上方时,直线AQ 的表达式为y =35x +8 ,当∠CAQ =45°时,AQ ⊥AQ ,即可求解.【详解】(1)解:对于抛物线y =18x 2+34x -2,当x =0时,y =-2,即点C 0,-2 ,令18x 2+34x -2=0,则x =2或-8,则点A ,B 的坐标分别为-8,0 ,2,0 ,即点A ,B ,C 三点的坐标分别为-8,0 ,2,0 ,0,-2 ,设直线AC 的表达式为y =kx +b ,则-8k +b =0b =-2 ,解得k =-14b =-2 ,∴直线AC 的函数表达式为y =-14x -2;(2)设点P 的横坐标为m ,则P m ,18m 2+34m -2 ,F m ,-14m -2 ,PF =-14m -2 -18m 2+34m -2 =-18m 2-m ,当m =--12×-18 =-4时,PF 最大,PF max =-18×(-4)2--4 =2,此时,P -4,-3 ,由B 2,0 ,C 0,-2 ,可得直线BC 的函数表达式为y =x -2,设直线l 的函数表达式为y =x +p ,将P -4,-3 代入可得p =1,∴直线l 的函数表达式为y =x +1,由y =-14x -2y =x +1 ,解得x =-125y =-75,∴D -125,-75 ,点D 到直线PF 的距离d =-125--4 =85,∴S △DPF =12⋅PF ⋅d =12×2×85=85.(3)存在,理由:由抛物线的表达式知,其对称轴为x =-3,当点Q 在x 轴上方时,如下图:设抛物线的对称轴交x 轴于点N ,交AC 于H ,故点Q 作QT ⊥AC 于点T ,则∠ACO =∠QHA ,则tan ∠ACO =tan ∠QHA =4,当x =3时,y =-14x -2=-54,则点H -3,-54 ,由点A ,H 的坐标得,AH =5174,在△AQH 中,∠CAQ =45°,tan ∠QHA =4,设TH =x ,则QT =4x ,则QH =17x ,则AH =AT +TH =5x =5174,则x =174,则QH =17x =174,则174-54=3,则点Q -3,3 ;当点Q Q 在x 轴上方时,直线AQ 的表达式为y =35x +8 ,当∠CAQ =45°时,AQ ⊥AQ ,则直线AQ 的表达式为y =-53x +8 ,当x =-3时,y =-5x +8 =-25,。
最全二次函数区间的最值问题(中考数学必考题型)
二次函数的最值问题二次函数的最值问题,是每年中考的必考题,也是考试难点,经常出现在压轴题的位置,解决二次函数的最值问题,特别是含参数的二次函数,一定要考虑二次函数的三个要素:开口方向,对称轴,自变量的取值范围,对于二次函数能够分析出三要素,二次函数的问题就迎刃而解了。
例1.对于二次函数342+-=x x y(1)求它的最小值和最大值.(2)当1≤x ≤4时,求它的最小值和最大值.(3)当-2≤x ≤1时,求它的最小值和最大值.(4)二次函数的最值与哪些因素有关?对于给定的范围,最值可能出现在哪些位置?练习1.二次函数y =x 2+2x ﹣5有( )A .最大值﹣5B .最小值﹣5C .最大值﹣6D .最小值﹣6练习2.在二次函数y =x 2﹣2x ﹣3中,当0≤x ≤3时,y 的最大值和最小值分别是( )A .0,﹣4B .0,﹣3C .﹣3,﹣4D .0,0练习3若抛物线y =﹣x 2+4x +k 的最大值为3,则k = .练习4(多元消参,利用平方的性质确定自变量的取值范围)若实数a 、b 满足a +b 2=2,则a 2+5b 2的最小值为 .练习5如图,P 是抛物线y =x 2﹣2x ﹣3在第四象限的一点,过点P 分别向x 轴和y 轴作垂线,垂足分别为A 、B ,求四边形OAPB 周长的最大值及点P 的横坐标练习6.(回归教材)如图,一张正方形纸板的边长为8cm ,将它割去一个正方形,留下四个全等的直角三角形(图中阴影部分).设AE =BF =CG =DH =x (cm ),阴影部分的面积为y (cm 2).(1)求y 关于x 的函数解析式并写出x 的取值范围;(2)当x 取何值时,阴影部分的面积最大,最大面积是多少.一、对开口方向(二次项前面系数)进行讨论例2.当 41≤≤x 时,二次函数a ax ax y 342+-= 的最大值等于6.求二次项系数a 的值练习1已知二次函数y =mx 2+2mx ﹣1(m >0)的最小值为﹣5,则m 的值为( )A .﹣4B .﹣2C .2D .4练习2已知二次函数y =mx 2+(m 2﹣3)x +1,当x =﹣1时,y 取得最大值,则m = . 练习3已知二次函数y =mx 2+2mx +1(m ≠0)在﹣2≤x ≤2时有最小值﹣2,求m 的值二、对二次函数的对称轴的位置进行讨论例3.当 12≤≤x -时,二次函数a ax x y 342+-= 的最小值等于-1.求a 的值.变式1当﹣2≤x ≤1时,二次函数y =﹣(x ﹣m )2+m 2+1有最大值4,求实数m 的值.变式2当﹣1≤x ≤1时,函数y =﹣x 2﹣2mx +2n +1的最小值是﹣4,最大值是0,求m 、n 的值.三、对二次函数的x 取值范围进行讨论例4.当 2+≤≤a x a 时,二次函数a x x y 342+-= 的最大值等于-6.求a 的值.练习1.当a ﹣1≤x ≤a 时,函数y =x 2﹣2x +1的最小值为1,求a 的值.练习2.若t ≤x ≤t +2时,二次函数y =2x 2+4x +1的最大值为31,求t 的值练习3.已知二次函数y =﹣x 2+6x ﹣5.当t ≤x ≤t +3时,函数的最大值为m ,最小值为n ,若m ﹣n =3,求t 的值.练习4.设a ,b 是任意两个不等实数,我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于任何一个二次函数,它在给定的闭区间上都有最小值.求函数y =x 2﹣4x ﹣4在区间[t ﹣2,t ﹣1](t 为任意实数)上的最小值y min 的解析式.练习5.若关于x 的函数y ,当t ﹣≤x ≤t +时,函数y 的最大值为M ,最小值为N ,令函数h =,我们不妨把函数h 称之为函数y 的“共同体函数”.若函数y =﹣x 2+4x +k ,是否存在实数k ,使得函数y 的最大值等于函数y 的“共同体函数“h 的最小值.若存在,求出k 的值;若不存在,请说明理由.拓展:C 2的解析式为:y =a (x +2)2﹣3(a >0),当a ﹣4≤x ≤a ﹣2时,C 2的最大值与最小值的差为2a ,求a 的值.作业:1.矩形的周长等于40,则此矩形面积的最大值是2.若实数x ,y 满足x +y 2=3,设s =x 2+8y 2,则s 的取值范围是 .3.已知二次函数y =ax 2+4x +a ﹣1的最小值为2,则a 的值为 .4.已知实数满足x 2+3x ﹣y ﹣3=0,则x +y 的最小值是 .5.若二次函数y =﹣x 2+mx 在﹣2≤x ≤1时的最大值为5,则m 的值为6.当a ≤x ≤a +1时,函数y =x 2﹣2x +1的最小值为1,则a 的值为7.已知二次函数y =122+-ax ax ,当30≤≤x 时,y 的最大值为2,则a 的值为8.如图,在Rt △ABC 中,∠B =90°,AB =6cm ,BC =8cm ,点P 从A 点开始沿AB 边向点B 以1cm /s 的速度移动,点Q 从B 点开始沿BC 边向点C 以2cm /s 的速度移动,则P 、Q 分别从A 、B 同时出发,经过多少秒钟,使△PBQ 的面积最大.9.设a、b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m,n]上的“闭函数”.若二次函数y=x2﹣x﹣是闭区间[a,b]上的“闭函数”,求实数a,b的值.10.抛物线y=x2+bx+3的对称轴为直线x=1.(1)b=;(2)若关于x的一元二次方程x2+bx+3﹣t=0(t为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是.11.已知关于x的二次函数y1=x2+bx+c(实数b,c为常数).(1)若二次函数的图象经过点(0,4),对称轴为x=1,求此二次函数的表达式;(2)若b2﹣c=0,当b﹣3≤x≤b时,二次函数的最小值为21,求b的值;(3)记关于x的二次函数y2=2x2+x+m,若在(1)的条件下,当0≤x≤1时,总有y2≥y1,求实数m的最小值.12.已知抛物线y=﹣2x2+(b﹣2)x+(c﹣2020)(b,c为常数).(1)若抛物线的顶点坐标为(1,1),求b,c的值;(2)若抛物线上始终存在不重合的两点关于原点对称,求c的取值范围.(3)在(1)的条件下,存在正实数m,n(m<n),当m≤x≤n时,恰好,求m,n的值.。
高一二次函数解题技巧及方法
高一二次函数解题技巧一、掌握二次函数的概念:1、二次函数是指未知数是二次的函数,形式为y=ax²+bx+c,其中中a、b、c是常数,且a≠0。
2、在二次函数中,自变量x的取值范围通常为全体实数。
二、理解二次函数的表达式:1、二次函数的表达式通常由一元二次方程给出,这个方程可以用来描述二次函数的性质。
2、例如,二次函数的顶点式y=a(x-h)²+k可以表示出函数的顶点坐标(h,k)。
三、掌握二次函数的图形特征:1、二次函数的图形是一个抛物线,其顶点坐标为(h,k),对称轴为x=h,开口方向由a的符号决定。
2、当a>0时,抛物线开口向上,当a<0时,抛物线开口向下。
四、掌握二次函数的对称轴及顶点:1、二次函数的对称轴是x=h,顶点坐标是(h,k)。
2、在解题时,可以根据对称轴和顶点坐标快速找到函数的最值或单调区间。
五、了解二次函数的增减性及最值:1、二次函数的增减性取决于a的符号。
2、当a>0时,开口向上,在对称轴的左侧,y随x的增大而减小;在对称轴的右侧,y随x的增大而增大。
3、当a<0时,开口向下,在对称轴的左侧,y随x的增大而增大;在对称轴的右侧,y随x的增大而减小。
4、最值是指函数在某个区间内的最大值或最小值。
5、对于一般形式的二次函数y=ax²+bx+c,当x=-b/2a时,取得最值(4ac-b²)/4a。
六、掌握二次函数的交点及与X轴的交点坐标:1、二次函数的交点是指与x轴交点的横坐标。
2、当函数与x轴相交时,交点的横坐标就是方程ax²+bx+c=0的根。
3、注意判别式b²-4ac的符号,当b²-4ac>0时,与x轴有两个交点;当b²-4ac=0时,与x轴有一个交点;当b²-4ac<0时,与x轴没有交点。
七、熟悉二次函数的平移规则:1、平移规则是指通过平移抛物线来改变其形状和位置。
高中数学中的二次函数与最值问题
高中数学中的二次函数与最值问题二次函数是高中数学中的重要内容之一,其与最值问题的关系更是难以忽视。
本文将系统地介绍二次函数的定义、性质以及如何利用二次函数求解最值问题。
一、二次函数的定义与性质二次函数是形如y=ax^2+bx+c的函数,其中a、b和c是实数且a不等于0。
二次函数的图像通常是一个抛物线,可以是开口向上或开口向下的形态。
以下是二次函数的一些重要性质:1. 零点:二次函数的零点是其对应的抛物线与x轴相交的点,即使得函数值为0的x值。
零点的求解可以通过因式分解、配方法或求根公式来实现。
2. 頂点坐标:二次函数的顶点是抛物线的最高点(当a小于0时)或最低点(当a大于0时)。
顶点的x坐标可以通过公式x=-b/2a来计算,y坐标则可将x值代入二次函数中得到。
3. 对称轴:二次函数的对称轴是通过抛物线的顶点并平行于y轴的线。
对称轴的方程形式为x=-b/2a。
4. 单调性:当a大于0时,抛物线开口向上,函数值随x的增大而增大;当a小于0时,抛物线开口向下,函数值随x的增大而减小。
二、二次函数求解最值问题的方法在实际问题中,我们常常需要求解二次函数的最大值或最小值。
这些问题可能涉及到经济、物理、几何等领域。
以下是求解二次函数最值问题的常用方法:1. 完成平方:通过将二次函数表示成平方项的和来求解最值问题。
对于一般形式的二次函数,可以通过配方法来实现。
例如,对于函数y=ax^2+bx+c,可以通过将x^2+bx视为一个完全平方进行变形,从而得到最小值或最大值。
2. 求导数:利用导数的性质,求解二次函数的导数,并找到导数为0的点。
这些点即为原函数的最值点。
求导数的方法可以通过一阶导数、二阶导数等进行,具体视题目要求而定。
3. 利用顶点坐标:如果已知二次函数的顶点坐标,则直接取顶点的y值即为函数的最值。
4. 利用最值问题的性质:根据二次函数的几何特性,当a大于0时,函数有最小值;当a小于0时,函数有最大值。
二次函数图像的性质与解析
二次函数图像的性质与解析一、二次函数的定义与标准形式1.二次函数的定义:一般地,形如y=ax^2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数。
2.二次函数的标准形式:y=a(x-h)2+k,其中顶点式y=a(x-h)2+k的图像为抛物线,a为抛物线的开口方向和大小,h、k为顶点坐标。
二、二次函数图像的性质1.开口方向:由a的符号决定,a>0时,开口向上;a<0时,开口向下。
2.对称性:二次函数图像关于y轴对称,即若点(x,y)在图像上,则点(-x,y)也在图像上。
3.顶点:二次函数图像的顶点为抛物线的最高点或最低点,顶点式y=a(x-h)^2+k中,(h,k)为顶点坐标。
4.轴:二次函数图像与x轴的交点为方程ax^2+bx+c=0的根,与y轴的交点为c/a。
5.增减性:当a>0时,二次函数图像在顶点左侧单调递减,在顶点右侧单调递增;当a<0时,二次函数图像在顶点左侧单调递增,在顶点右侧单调递减。
三、二次函数图像的解析1.求顶点:根据顶点式y=a(x-h)^2+k,直接得出顶点坐标为(h,k)。
2.求对称轴:对称轴为x=h。
3.求开口大小:开口大小由a的绝对值决定,绝对值越大,开口越大。
4.求与坐标轴的交点:与x轴的交点为方程ax^2+bx+c=0的根,与y轴的交点为c/a。
5.判断增减性:根据a的符号,判断二次函数图像在顶点两侧的单调性。
四、二次函数图像的应用1.实际问题:利用二次函数图像解决实际问题,如抛物线与坐标轴的交点问题、最值问题等。
2.几何问题:利用二次函数图像研究几何图形的性质,如求解三角形面积、距离等问题。
3.物理问题:利用二次函数图像研究物理现象,如抛物线运动、振动等。
五、二次函数图像的变换1.横向变换:对二次函数y=ax2+bx+c进行横向变换,如向左平移h个单位,得到y=a(x+h)2+k;向右平移h个单位,得到y=a(x-h)^2+k。
二次函数及其性质
二次函数及其性质一、什么是二次函数二次函数是指数学中的一种特殊函数形式,它的表达式为f(x) = ax²+ bx + c,其中a、b、c是实数且a≠0。
它的图像是一条开口向上或向下的抛物线。
二、二次函数的性质1. 函数图像:二次函数的图像是一条抛物线。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
2. 零点:二次函数的零点是指函数值等于零时的横坐标,也就是使得f(x) = 0的x的值。
二次函数的零点可以有0个、1个或2个。
根据判别式Δ=b²-4ac的值可以判断二次函数的零点情况:- 当Δ>0时,有两个不相等的实根;- 当Δ=0时,有两个相等的实根;- 当Δ<0时,没有实根,但有两个共轭复根。
3. 对称轴:二次函数的对称轴是指函数图像关于某直线对称。
对称轴的方程为x = -b/2a。
对称轴与抛物线的顶点重合。
4. 顶点:二次函数的顶点是指抛物线的最高点或最低点。
顶点的横坐标为对称轴的横坐标,纵坐标为函数值。
5. 零点与系数关系:二次函数的零点与系数之间存在着一定的关系。
对于f(x) = ax² + bx + c:- 若x₁、x₂是二次函数的两个零点,则有x₁ + x₂ = -b/a,x₁ *x₂ = c/a。
6. 函数增减性:二次函数的增减性由系数a的正负决定。
当a>0时,二次函数在对称轴的左侧是递减的,在对称轴的右侧是递增的;当a<0时,二次函数在对称轴的左侧是递增的,在对称轴的右侧是递减的。
7. 最值:二次函数的最值即是抛物线的最高点(最大值)或最低点(最小值)。
当a>0时,最值为最低点;当a<0时,最值为最高点。
最值的纵坐标为顶点的纵坐标。
三、二次函数的应用由于二次函数在数学中具有重要的地位,它在各个领域有广泛的应用。
以下是二次函数的一些常见应用:1. 物体运动的模型:二次函数可以用来模拟抛物线轨迹的物体运动,比如抛体运动、自由落体运动等。
二次函数的最值与应用学习二次函数的最值性质及其在实际问题中的应用
二次函数的最值与应用学习二次函数的最值性质及其在实际问题中的应用二次函数的最值与应用二次函数是高中数学中一个非常重要的概念,在学习二次函数的最值性质及其在实际问题中的应用之前,我们首先需要了解二次函数的基本形式和性质。
二次函数的一般形式为y=ax^2+bx+c,其中a、b、c为常数且a不等于0,x、y为变量。
在此基础上,我们将深入探讨二次函数的最值及其在实际问题中的应用。
一、二次函数的最值性质二次函数的图像是一个抛物线,其开口方向由二次项的系数a的正负决定。
当a大于0时,抛物线开口向上;当a小于0时,抛物线开口向下。
对于一个二次函数而言,其最值即为函数的最大值和最小值。
1. 最值存在性对于二次函数y=ax^2+bx+c,当抛物线开口向上时,函数存在最小值;当抛物线开口向下时,函数存在最大值。
即最值存在性与a的正负相关。
2. 最值点的横坐标对于二次函数y=ax^2+bx+c,最值点的横坐标可以通过计算二次函数的自变量x的取值来确定。
最值点的横坐标为二次函数的顶点,顶点的横坐标为-x轴的对称轴,即x=-b/2a。
3. 最值点的纵坐标最值点的纵坐标可通过将最值点的横坐标代入二次函数中求得。
将x=-b/2a代入二次函数y=ax^2+bx+c中,可以求出最值点的纵坐标。
二、二次函数最值的应用二次函数的最值性质在实际问题中具有广泛的应用。
下面将介绍二次函数最值的几个常见应用场景。
1. 最值问题通过研究二次函数的最值性质,可以解决许多涉及最值问题的实际情况。
例如,我们要抛掷一个物体,求出其最高点的高度以及达到最高点时的时间。
可以建立一个关于时间的二次函数模型,然后通过最值性质计算出最高点的高度和达到最高点的时间。
2. 优化问题在实际生活中,许多问题可以通过优化函数来解决。
例如,我们要制造一个容积为V的长方体包装盒,为了节省材料成本,我们想使包装盒的表面积最小。
可以建立一个关于长方体各边长的二次函数模型,然后通过最值性质求解出使表面积最小的边长。
二次函数的性质总结
二次函数的性质总结二次函数是数学中重要的一类函数,其一般形式为y = ax^2 + bx + c,其中a、b和c为常数,并且a不等于零。
在本文中,我们将总结二次函数的几个主要性质。
1. 对称性:二次函数的图像关于一个对称轴对称。
该对称轴是一个垂直于x轴的直线,其方程可通过求解二次函数的顶点坐标得到。
具体而言,对于函数y = ax^2 + bx + c,对称轴的方程为x = -b/2a。
2. 开口方向:二次函数的开口方向由二次系数a的正负决定。
当a > 0时,二次函数的图像开口向上;当a < 0时,二次函数的图像开口向下。
3. 零点:二次函数的零点是函数图像与x轴的交点,即使得y = 0的x值。
二次函数的零点可以通过求解二次方程ax^2 + bx + c = 0获得。
若二次方程有实数解,则函数与x轴有两个交点;若二次方程有两个相等的实数解,则函数与x轴有一个切点;若二次方程无实数解,则函数与x轴没有交点。
4. 极值点:二次函数的极值点是函数图像的最高点或最低点,又称顶点。
二次函数的顶点的x坐标为 -b/2a,y坐标为二次函数在该点的函数值。
当二次函数的开口向上时,顶点为函数的最小值;当二次函数的开口向下时,顶点为函数的最大值。
5. 函数增减性:二次函数在开口的两侧具有不同的增减性。
当二次函数的开口向上时,函数在顶点左侧递减,在顶点右侧递增;当二次函数的开口向下时,函数在顶点左侧递增,在顶点右侧递减。
6. 对称轴划分:对称轴将二次函数的图像分为两个对称部分。
通过对称性质,我们可以根据其中一部分的特征来得到另一部分的性质。
7. 图像与平移:对于给定的二次函数y = ax^2 + bx + c,通过平移可以得到一族相关的二次函数。
平移的方式包括上下平移和左右平移,改变二次函数的顶点位置和图像的位置。
综上所述,二次函数具有对称性、开口方向、零点、极值点、函数增减性、对称轴划分和图像与平移等性质。
利用二次函数求最值应注意的两个问题-最新文档
利用二次函数求最值应注意的两个问题在北师大版九年级数学下册教材第二章中有两节《何时获得最大利润》《最大面积是多少》,都涉及利用二次函数求最大值的问题,在实际应用中我们发现学生存在以下几个误区。
误区一:二次函数的顶点纵坐标为最大值在二次函数的实际应用中,二次函数的顶点纵坐标并不一定为最大值,我们应具体问题具体分析,如下题:例1.如下图,某鸡场要建一个矩形的养鸡场ABCD,鸡场的一边靠墙,(墙长20米),另三边用木栏围成,木栏长100米,设AB=x米,矩形的面积为S平方米,那么x为多少时,S的值最大?错解:∵AB=x ∴BC=100-2x∴S=AB?BC=x(100-2x)=-2x2+100x=-2(x-25)2+1250∵a=-225S随x的增大而减小∴当x=40时,Smax=-2(40-25)2+1250=800点评:很多学生在学习中经常犯这样的错误,他们认为利用二次函数求最大值,只要求出二次函数表达式,并将之化为顶点式,顶点纵坐标即为最大值,而没有考虑自变量的取值范围,此题中的顶点就不在自变量范围内,因此最大面积就不会取到1250,又由于自变量x的范围全部在对称轴x=25左侧,根据二次函数的增减性,我们可知当x=40时,S会有最大值。
误区二:二次函数开口向上没有最大值例2.根据市场调查与预测,种植树木的利润y1与投资量x 成正比例关系,如图(1)所示,种植花卉的利润y2与投资量x 成二次函数关系,如图(2)所示(注:利润与投资量的单位:万元)。
(1)分别求出利润y1与y2关于投资量x的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获得的最大利润是多少?图(1)图(2)解:(1)设y1=kx(x≥0),设y2=ax2(x≥0)则由题意可得:2=k,2=4a 解得:k=2,a=0.5 ∴y1=2x,y2=0.5x2(2)设这位专业户种植树木和花卉能获得的利润为w万元,其中投资x万元种植树木,则投资(8-x)万元种植花卉,由题意可得:w=y1+y2=2(8-x)+0.5x2=0.5x2-2x+16=0.5(x-2)2+14 ∵a=0.5>0,∴当x=2时,wmin=14∵0≤x≤8,在w=0.5(x-2)2+14中,当0≤x≤2时,w随x的增大而减小,∴当x=0时,wmax=(0-2)2+14=16当2≤x≤8时,w随x的增大而增大,∴当x=8时,wmax=(8-2)2+14=32 ∵32>12,∴这位专业户能获得的最大利润是32万元。
二次函数的最值问题与问题求解技巧的探讨
二次函数的最值问题与问题求解技巧的探讨二次函数是高中数学中的重要内容之一,而求解二次函数的最值问题也是数学学习中的一大难点。
本文将探讨二次函数的最值问题,以及解决这类问题的技巧和方法。
一、二次函数的最值问题二次函数的一般形式为f(x) = ax^2 + bx + c,其中a、b、c为常数,且a≠0。
我们主要关注的是a>0的情况,即二次函数开口向上的情形。
对于这样的二次函数,它的最值问题即是要求函数的最大值或最小值。
二次函数的最值问题与实际生活中的许多情况密切相关。
比如,当我们研究一座桥的拱形时,可以通过二次函数来描述拱形的形状,并进一步求解拱顶的最高点,即二次函数的最大值。
同样地,当我们研究某个物体的运动轨迹时,也可以通过二次函数来描述其运动趋势,求解物体达到最高点或最低点的时间或距离。
二、求解二次函数的最值问题的技巧和方法1. 平方完成对于一般形式的二次函数f(x) = ax^2 + bx + c,可以通过平方完成的方法将其变形为f(x) = a(x - h)^2 + k的形式。
其中,(h, k)为顶点坐标,即二次函数的极值点。
2. 导数法对于二次函数f(x) = ax^2 + bx + c,可以通过求导数的方法求出它的导函数f'(x) = 2ax + b。
当导函数的值为零时,即f'(x) = 0,就可以得到二次函数的极值点x0。
进一步带入原函数,就可以求出二次函数的最值。
3. 轴对称性二次函数的图像关于其对称轴对称。
对于y = ax^2 + bx + c,其对称轴的方程为x = -b/(2a)。
根据这个特性,我们可以直接得到二次函数的极值点。
三、实例分析为了更好地理解和应用上述的求解技巧和方法,我们来举一个实例。
假设有一个二次函数f(x) = 2x^2 - 5x + 3,我们要求解它的最小值。
首先,我们可以通过平方完成将其变形为f(x) = 2(x - 5/4)^2 - 1/8的形式。
中考数学二次函数知识点难题
中考数学二次函数知识点难题关键信息项1、二次函数的定义与表达式一般式:____________________________顶点式:____________________________交点式:____________________________2、二次函数的图象与性质开口方向:____________________________对称轴:____________________________顶点坐标:____________________________增减性:____________________________3、二次函数与一元二次方程的关系根的判别式:____________________________交点坐标:____________________________4、二次函数的最值问题顶点处取得最值的条件:____________________________给定区间内的最值求解方法:____________________________5、二次函数的实际应用问题常见的实际应用场景:____________________________解题思路与步骤:____________________________11 二次函数的定义二次函数是形如 y = ax²+ bx + c(a ≠ 0)的函数。
其中,a 决定了函数图象的开口方向和大小,b 决定了对称轴的位置,c 是函数图象与 y 轴的交点纵坐标。
111 一般式一般式为 y = ax²+ bx + c(a ≠ 0),它是最常见的二次函数表达式形式。
通过给定 a、b、c 的值,可以确定函数的图象和性质。
112 顶点式顶点式为 y = a(x h)²+ k(a ≠ 0),其中(h,k)为函数图象的顶点坐标。
顶点式可以直接看出函数的顶点,对于求解函数的最值等问题非常方便。
113 交点式交点式为 y = a(x x₁)(x x₂)(a ≠ 0),其中 x₁和 x₂是函数图象与 x 轴交点的横坐标。
二次函数的图象和性质——增减性和最值高一数学总结练习含答案解析D
2.(2014河南安阳模拟,★★☆)已知某商品的价格上涨x%,销售的数量就减少mx%,其中m为正的常数.
(1)当m= 时,该商品的价格上涨多少,就能使销售的总金额最大?
(2)如果适当地涨价能使销售总金额增加,求m的取值范围.
A.1B.3
C.5D.-1
2.(2015四川雅安中学期末,★☆☆)函数f(x)=(m-1)x2+2mx+3的图象关系y轴对称,则f(-1)、f(- )、f( )的大小关系是( )
A.f(-1)<f(- )<f( )
B.f( )<f(- )<f(-1)
C.f(- )<f( )<f(-1)
D.f(-1)<f( )<f(- )
∴6-2a=a,5-a2=1,∴a=2.
∴- =0,即m=0,
∴f(x)=-x2+3,
∴f(x)在(-∞,0)上为增函数,
∵- <- <-1,
∴f(- )<f(- )<f(-1).
∵f(x)=-x2+3,
∴f( )=f(- ),
∴f( )<f(- )<f(-1).
3.B 由-x2+x+2≥0得-1≤x≤2.又f(x)=-x2+x+2的图象的对称轴为直线x= ,所以y= 的递减区间为 ,故选B.
3.(2013重庆南开中学期中,★★☆)函数y= 的单调递减区间是( )
A. B.
C.[2,+∞)D.(-∞,-1)
4.(2013重庆西南大学附中期中,★★☆)如果二次函数f(x)=3x2+mx+1在区间 上是减函数,在区间 上是增函数,则函数f(x)在区间[-1,1]上的最大值是( )
二次函数的图像与性质
二次函数的图像与性质二次函数是一种重要的函数形式,在数学中被广泛应用。
它的一般形式可以表示为y=ax²+bx+c,其中a、b、c为常数,且a≠0。
二次函数在平面直角坐标系中的图像常常是一个开口向上或向下的拱形,它的图像特征和性质对于学习数学有着非常重要的作用。
本文将介绍二次函数的图像及其性质。
一、二次函数的图像二次函数的图像是一个拱形,它的开口方向由二次项系数a的符号决定。
当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。
同时,二次函数的图像在坐标系中的位置取决于它的顶点坐标。
顶点坐标可以通过求解函数y=ax²+bx+c的导数y'=2ax+b=0得出,即x=-b/2a,从而得出y的值。
因此二次函数的图像可以确定它的开口方向和顶点位置。
二、二次函数的极值二次函数的和常常需要寻找它的极值,即函数的最大值或最小值。
对于一个开口向上的二次函数,它的最小值为它的顶点值,即当x=-b/2a时,y的值最小。
而对于一个开口向下的二次函数,它的最大值同样也在顶点处,即当x=-b/2a时,y的值最大。
因此,确定二次函数的顶点坐标对于求解函数的极值非常重要。
三、二次函数的对称轴二次函数的对称轴是一个非常重要的性质。
它是指二次函数图像上的一条线,使得函数图像关于这条线对称。
对称轴垂直于函数图像的开口,过函数图像的顶点,即它的方程为x=-b/2a。
对称轴将函数图像分成两个对称的部分,使得函数图像的左右部分完全一致。
四、二次函数的零点二次函数的零点是指函数图像和x轴相交的点,即函数值y=0时的x值。
求解二次函数的零点可以使用因式分解方法,也可以使用求根公式根据b²-4ac的值求出。
如果b²-4ac≥0,则存在两个实数解,如果b²-4ac<0,则没有实数解。
二次函数的零点在函数图像上是它与x轴的交点,它们之间也可以确定二次函数的性质。
二次函数增减性与最值
题型一 对称轴为常数(确定)
• 练习:已知二次函数y=x2-2x-3,当 m≤x≤m+1 的最小为5,求m
二,对称轴为未知数(不定)
• 二次函数y=(x-h)2 +1,在自变量x满足 • 1≤x≤3的情况下,函数值y有最小值5,求h
二,对称轴为未知数(不定)
• 当-2≤x≤1,二次函数y=-(x-m)2 +m2 +1 有最大值4,求m的值
二次函数增减性与最值
热身练习
• 若A(-4,y1),B(3,y2),C(3,y3)为二 次函数y=(x+1)2+k的 图象上的三点,则 y1,y2.,y3,的大小关系 为
y3
-3 -4
y1
3 y2
题型一 对称轴为常数(确定)
• 二次函数y=-x2-2x+c在-3≤x≤2的范围内有最 小值-5,则c的值为多少
三,区间为未知数
• 已知二次函数y=x2-2x-3,当m≤x≤m+1的最小 值为5,求m
三,区间为未知数
关于x的二次函数y=x2+bx+b2在b≤x≤b+3 范围内,函数有最小值21,求b
三,区间为未知数
பைடு நூலகம்二次函数y=x2+bx+b2在b≤x≤b+3范围内,函 数的最小值为21,求b
四,综合思考(双未知数)
1,二次函数y=x2-2hx+h,当自变量x在-1≤x≤1 的范围内有最小值n,则n的最大值为多少
2,已知二次函数y=-x2+(m-1)x+m图形的 顶点为n,则n的取值范围是多少
3,已知二次函数y=-(x-1)2+5,当m≤x≤n,且 mn<0时,y的最小值为2m,最大值为2n,求 m+n的值
二次函数的图象和性质__增减性和最值课件
2a=2,
∴2b=4,
2a+2c=0,
a=1,
∴b=2,
c=-1,
∴f(x)=x2+2x-1.
要点二 二次函数的增减性 例2 f(x)=4x2-mx+5在区间[-2,+∞)上是递增函数,求
m的取值范围. 解 函数的顶点横坐标为 x=m8, 又函数在区间[-2,+∞)上是递增函数, ∴m8 ≤-2,即 m≤-16, 故m的取值范围是{m|m≤-16}.
)叫作二次函数
图象的顶点.
要点一 求二次函数的解析式 例1 已知二次函数f(x)满足f(2)=-1,f(-1)=-1,且f(x)的 最大值是8,试确定此二次函数解析式. 解 方法一 利用二次函数一般式. 设f(x)=ax2+bx+c(a≠0).
4a+2b+c=-1,①
则a-b+c=-1,②
4ac-b2
谢谢!
(3)当x∈[t,t+1]时,求f(x)的最小值g(t).
t2-2t+2,t>1 解 g(t)=1,0≤t≤1
t2+1,t<0.
1234
1.若f(x)=(m-1)x2+(m+1)x-1是二次函数,则( B )
A.m为任意实数
B.m≠1
C.m≠-1
D.m≠1且m≠-1
解析 由m-1≠0,得m≠1,故选B.
[预习导引]
二次函数f(x)=ax2+bx+c(a≠0,x∈R),当a>0(a<0)时,
在区间(-∞,- 2ba ]上递减(递增),在[- 2ba,+∞)上递增(递
减),图象曲线开口向 上(下) ,在x=,这里Δ=b2-4ac.点(-2ba,-
Δ 4a
又根据题意函数有最大值为n=8, ∴y=f(x)=a(x-12)2+8,
∵f(2)=-1,∴a(2-12)2+8=-1. 解之得a=-4. ∴f(x)=-4(x-12)2+8=-4x2+4x+7.
22.1《二次函数在自变量范围内的增减性与最值》课件++2023-2024学年人教版九年级数学上册
考题归纳
题型1 二次函数已知,x的取值范围确定求最值 1.二次函数y=x2-2x+2的图象如图.
(2)若2≤x≤3,则y随x的增大而__增__大__; 当x=___2___时,y有最小值为__2____; 当x=___3___时,y有最大值为__5____.
y=-x2-6x -3
y
8 7
6 5
4
3
2
1 –6 –5 –4 –3 –2 –1 O
–1
x 123
–2 –3
–4
–5
–6
考题归纳
5.(绍兴)已知函数y=-x2+bx+c(b,c为常数)的图象经过点
(0,-3),(-6,-3).
(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值. y 6 8 -4
期末复习专题3
二次函数在自变量取值范围内 的增减性与最值
九年级上册
专题目录
考点解读 已知二次函数y=ax2+bx+c,自变量的取值范围是p≤x≤q.(以a>0为例 )
当x=p时,y有最大值; 当x=q时,y有最小值, 如图.
考点解读 已知二次函数y=ax2+bx+c,自变量的取值范围是p≤x≤q.(以a>0为例 )
7
6
5 4
-m2-6m-3=-4
3
2
1 x
–6 –5 –4 –3 –2 –1 O 1 2 3 –1
–2
–3
–4
还有第2种情况哦!
–5
–6
考题归纳
5.(绍兴)已知函数y=-x2+bx+c(b,c为常数)的图象经过点
二次函数的图象和性质——增减性和最值 专题训练卷(含答案详解)
1.2.7二次函数的图象和性质——增减性和最值1.函数f(x)=(x-3)(x+5)的单调递减区间是().A.(-∞,-1] B.[-1,+∞)C.(-∞,1] D.[1,+∞)2.二次函数y=-2(x+1)2+8的最值情况是().A.最小值是8,无最大值B.最大值是-2,无最小值C.最大值是8,无最小值D.最小值是-2,无最大值3.若抛物线y=x2+6x+c的顶点恰好在x轴上,则c的值为().A.0 B.3 C.6 D.94.函数f(x)=x2+4ax+2在(-∞,6)内是递减函数,则实数a的取值范围是().A.[3,+∞) B.(-∞,3]C.[-3,+∞) D.(-∞,-3]5.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销量m(件)与每件的售价x(元)满足一次函数:m=162-3x.若要每天获得最大的销售利润,每件商品的售价应定为().A.30元B.42元C.54元D.越高越好6.已知f(x)=ax2+2x-6,且f(1)=-5,则f(x)的递增区间是__________.7.若函数f(x)=x2+mx+3的最小值是-1,则f(m)的值为__________.8.某公司在甲乙两地同时销售一种品牌车,利润(单位:万元)分别为L1=-x2+20x和L2=2x,其中销售量单位:辆.若该公司在两地共销售15辆,则能获得的最大利润为__________.9.已知二次函数y=-4x2+8x-3.(1)画出它的图象,并指出图象的开口方向、对称轴方程、顶点坐标;(2)求函数的最大值;(3)写出函数的单调区间.10.某汽车租赁公司拥有汽车100辆,当每辆汽车的月租金为3 000元时,可全部租出;当每辆汽车的月租金每增加50元时,未租出的汽车将会增加一辆.租出的汽车每辆每月需要维护费150元,未租出的汽车每辆每月需要维护费50元.(1)当每辆汽车的月租金定为3 600元时,能租出多少辆汽车?(2)当每辆汽车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?参考答案1. 答案:A解析:f (x )=(x -3)(x +5)=x 2+2x -15,12b a -=-,所以f (x )的递减区间是(-∞,-1],选A .2. 答案:C3. 答案:D解析:∵y =x 2+6x +c =(x +3)2+c -9,∴c -9=0,c =9.4. 答案:D解析:f (x )=x 2+4ax +2=(x +2a )2+2-4a 2,∵f (x )在(-∞,6)内是递减函数,∴-2a ≥6,∴a ≤-3.5. 答案:B解析:设日销售利润为y 元,则y =(x -30)(162-3x ),30≤x ≤54,将上式配方后得y =-3(x -42)2+432,当x =42时,y 取得最大值.故每件商品的售价定为42元时,每天才能获得最大的销售利润.6. 答案:(-∞,1]解析:由f (1)=-5得a +2-6=-5,所以a =-1.这时f (x )=-x 2+2x -6. 又212(1)-=⨯-, 所以f (x )的递增区间是(-∞,1].7. 答案:35解析:由已知得2413141m ⨯⨯-=-⨯, 所以m 2=16,m =±4.当m =4时,f (m )=f (4)=35;当m =-4时,f (m )=f (-4)=35.8. 答案:111万元解析:设在甲地销售x 辆,则在乙地销售(15-x )辆.在甲、乙两地的销售利润分别为L 1=-x 2+20x 和L 2=2(15-x )=30-2x .于是销售总利润y =L 1+L 2=-x 2+20x +30-2x =-x 2+18x +30.因此当1892(1)x=-=⨯-时,y取最大值f(9)=-92+18×9+30=111(万元).9.解:(1)图象如图所示,该图象开口向下;对称轴为x=1;顶点坐标为(1,1).(2)∵f(x)=-4(x-1)2+1,∴x=1时,f(x)max=1.(3)函数在(-∞,1]上是递增函数,在[1,+∞)上是递减函数.10.解:(1)当每辆汽车月租金为3 600元时,未租出的汽车辆数为360030001250-=,所以这时租出了88辆汽车.(2)设每辆汽车的月租金定为x元,则公司月收益为f(x)=300010050x-⎛⎫-⎪⎝⎭(x-150)-300050x-×50,整理得f(x)=150-x2+162x-21 000=150-(x-4 050)2+307 050(x>150).∴当x=4 050时,f(x)最大,最大值为307 050.即每辆汽车的月租金定为4 050元时,汽车租赁公司的月收益最大,最大月收益是307 050元.。
第03讲 二次函数的增减性与最值问题(原卷版)
第3讲 二次函数的增减性与最值问题考点一:二次函数的最值【知识点睛】❖ 无区间范围的二次函数最值由a 与定点纵坐标共同决定对于二次函数y =ax 2+bx +c (a ≠0):对称轴:直线ab x 2-=;顶点坐标:)442(2a b ac a b --,; 开口向上⇔ a >0⇔二次函数有最小值ab ac 442-; 开口向下⇔a <0⇔二次函数有最大值ab ac 442-; ❖ 区间范围内的二次函数最值通常需要分类讨论区间范围内由二次函数最值求参数字母值问题的解题步骤:①找对称轴画抛物线简图(不需要画平面直角坐标系);②分类讨论:让对称轴分别在对应取值范围的左边、中间、右边;结合抛物线的增减性找到最值时的等量关系列方程求解③判断所求出的参数字母的值是否在对应分类讨论的取值范围内,不在则舍去。
【类题训练】1.已知二次函数的图象(0≤x ≤4)如图,关于该函数在所给自变量的取值范围内,下列说法正确的是( )A .有最大值2,有最小值﹣2.5B .有最大值2,有最小值1.5C .有最大值1.5,有最小值﹣2.5D .有最大值2,无最小值2.已知函数y =x 2﹣6x +2,当﹣1<x <4时,则y 的取值范围为 .3.设二次函数y =a (x ﹣m )(x ﹣m ﹣k )(a >0,m ,k 是实数),则( )A .当k =2时,函数y 的最小值为﹣aB .当k =2时,函数y 的最小值为﹣2aC .当k =4时,函数y 的最小值为﹣aD .当k =4时,函数y 的最小值为﹣2a4.已知抛物线y =(x ﹣b )2+c 经过A (1﹣n ,y 1),B (n ,y 2),C (n +3,y 3)三点,y 1=y 3.当1﹣n ≤x≤n时,二次函数的最大值与最小值的差为16,则n的值为()A.﹣5B.3C.D.45.已知函数y=ax2+2ax+1在﹣3≤x≤2上有最大值9,则常数a的值是()A.1B.C.或﹣8D.1或﹣86.二次函数y=﹣x2+bx+c的图象经过点(1,0),(2,3),在a≤x≤6范围内有最大值为4,最小值为﹣5,则a的取值范围是()A.a≥6B.3≤a≤6C.0≤a≤3D.a≤07.在平面直角坐标系中,过点P(0,p)的直线AB交抛物线y=x2于A,B两点,已知A(a,b),B(c,a),且a<c,则下列说法正确的是()A.当ac>0且a+c=1时,p有最小值B.当ac>0且a+c=1时,p有最大值C.当ac<0且c﹣a=1时,p有最小值D.当ac<0且c﹣a=1时,p有最大值8.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或﹣5B.﹣1或5C.1或﹣3D.1或39.如图,抛物线y=x2+bx+c(b,c为常数)经过点A(1,0),点B(0,3),点P在该抛物线上,其横坐标为m,若该抛物线在点P左侧部分(包括点P)的最低点的纵坐标为2﹣m.则m的值为()A.m=3B.C.D.m=3或10.已知点P(m,n)在二次函数y=x2+4的图象上,则m﹣n的最大值等于.11.当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为4,则a的值为.12.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A .﹣B .或﹣C .2或﹣D .2或﹣或﹣13.当a ﹣1≤x ≤a 时,二次函数y =x 2﹣4x +3的最小值为8,则a 的值为( )A .﹣1 或5B .0或6C .﹣1或6D .0或514.已知二次函数y =ax 2+bx +c 的图象的顶点坐标是(1,﹣3),且过点(2,﹣).(1)求该二次函数的表达式.(2)若该二次函数图象与直线y =m (m 是常数)交于点A 、B ,AB =6,则m = .(3)当﹣3<x <3时,y 的取值范围是 .15.在平面直角坐标系中,一次函数y =kx +b (k ≠0)的图象与x 轴,y 轴分别相交于A (﹣3,0)、B (0,﹣3),二次函数y =x 2+mx +n 的图象经过点A .(1)求一次函数y =kx +b 的表达式;(2)若二次函数y =x 2+mx +n 图象与y 轴交点为(0,3),请判断此二次函数的顶点是否在直线y =kx +b (k ≠0)的图象上?(3)当n >0,m ≤5时,二次函数y =x 2+mx +n 的最小值为t ,求t 的取值范围.考点二:二次函数的增减性【知识点睛】❖ 常规问题需要由a 与对称轴共同确定,且抛物线的增减性必须有对应的范围对于二次函数y =ax 2+bx +c (a ≠0):a >0时,图象开口向上; 当ab x 2-≤时,y 随x 的增大而减小,反之则y 随x 的增大而增大; a <0 时,图象开口向下; 当ab x 2-≤时,y 随x 的增大而增大,反之则y 随x 的增大而减小; ❖ y 1、y 2比较大小问题规律总结:若点A (x 1,y 1)、B (x 2,y 2)是抛物线y =ax 2+bx +c (a ≠0)图象上的两个点,则:当a >0时,A 、B 两点谁离对称轴越近,谁的纵坐标越小;当a <0时,A 、B 两点谁离对称轴越近,谁的纵坐标越大;【类题训练】1.关于抛物线y =﹣x 2+2,下列说法正确的是( )A .开口向上B.对称轴是y轴C.有最小值D.当x<0时,函数y随x的增大而减小2.二次函数y=ax2+bx的图象如图所示,当﹣1<x<m时,y随x的增大而增大,则m的取值范围是()A.m>1B.﹣1<m≤1C.m>0D.﹣1<m<23.已知二次函数y=(x+m﹣1)(x﹣m)+1,点A(x1,y1),B(x2,y2)(x1<x2)是其图象上两点,下列判断正确的是()A.若x1+x2>﹣1,则y1>y2B.若x1+x2<﹣1,则y1>y2C.若x1+x2>1,则y1>y2D.若x1+x2<1,则y1>y24.已知关于x的二次函数y=ax2﹣2ax+a2+1,当x≤﹣1时,y随x的增大而增大,且2≤x≤3时,y的最大值为10,则a的值为()A.﹣3B.3C.D.±35.已知抛物线y=﹣x2+2x+c,若点(0,y1)(1,y2)(3,y3)都在该抛物线上,则y1、y2、y3的大小关系是()A.y3>y1>y2B.y3<y2<y1C.y3>y2>y1D.y3<y1<y26.已知二次函数y=a(x﹣1)2+4的图象开口向上,若点A(﹣2,y1),B(﹣1,y2),C(5,y3)都在该函数图象上,则y1,y2,y3三者之间的大小关系是()A.y1<y2<y3B.y1<y3<y2C.y2<y1<y3D.y3<y1<y27.已知a﹣b+c=0,9a+3b+c=0,若b>0,则二次函数y=ax2+bx+c图象的顶点可能在()A.第一象限B.第二象限C.第三象限D.第四象限8.已知点A(m,n)、B(m+1,n)是二次函数y=x2+bx+c图象上的两个点,若当x≤2时,y随x的增大而减小,则m的取值范围是()A.B.C.D.9.已知二次函数y=x2+(m﹣1)x+1,当x>1时,y随x的增大而增大,而m的取值范围是()A.m=﹣1B.m=3C.m≤﹣1D.m≥﹣110.若点P(m,n)在二次函数y=x2+2x+2的图象上,且点P到y轴的距离小于2,则n的取值范围是.11.已知二次函数y=﹣x2+2mx+1,当x>4时,函数值y随x的增大而减小,则m的取值范围是.12.已知:二次函数y=ax2﹣2ax+3a﹣1.(1)求这个二次函数图象的对称轴;(2)若该二次函数图象抛物线开口向上,当0≤x≤4时,y的最小值是3,求当0≤x≤4时,y的最大值;(3)若点A(n+1,y1),B(n﹣1,y2)在抛物线y=ax2﹣2ax+3a﹣1(a<0)上,且y1<y2,求n的取值范围.13.在平面直角坐标系xOy中,已知点(﹣1,m),(2,n)在二次函数y=x2+bx﹣3 的图象上.(1)当m=n时,求b的值;(2)在(1)的条件下,当﹣3<x<2时,求y的取值范围;(3)若﹣1≤x≤2时,函数的最小值为﹣5,求m+n的值.14.在平面直角坐标系xOy中,点(1,m)和点(3,n)在抛物线y=ax2+bx(a>0)上.(1)若m=3,n=15,求该抛物线的对称轴;(2)已知点(﹣1,y1),(2,y2),(4,y3)在该抛物线上.若mn<0,比较y1,y2,y3的大小,并说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《二次函数的增减性及最值问题》是一节复习课。
它是人教版九年级上册《二次函数》的章节复习课第三课时。
下面我将从教材的地位与作用、教学任务,教学重难点,学生起点状况,教法学法,教学思想,教学过程设计6个方面来具体说明我对这节课的理解。
一教材的地位与作用
《二次函数的增减性及最值问题》是人教版九年级上册《二次函数》的章节复习课第三课时。
二次函数函数的增减性及最值问题是初中数学的重要知识点,在学习有关性质的基础上深入理解函数值与自变量的一对多的问题;同时,二次函数的增减性与最值问题是高中重要的衔接内容。
二教学任务分析
我根据《新课标》,结合学生认知水平,将本节课目标制定如下:
教学目标
:知识目标:理解并掌握以代数为主干的综合题中有关二次函数的增减性及最值问题。
能力目标:培养学生对于含字母的式子的计算能力及用数形结合分析解决函数问题的能力。
提高学生将复杂问题基本化,陌生问题熟悉化
的能力。
三教学重难点分析
重点:二次函数增减性及最值问题;带字母的计算
难点:带字母的计算;二次函数中函数值与自变量之间一对多的问题
四学生起点状况分析
在此之前,学生已经掌握二次函数图像的性质,并会利用二次函数性质求最值;而且,对于抛物线中的动点问题学生已经掌握较好;同时,对于抛物线中的含动点的三角形面积问题也已经作为专题讲解过。
在此基础上,对于典例中以代数为主的综合题,就可以将重点放在二次函数的性质的综合运用上,不会因为动态三角形面积的计算花过多时间与精力,才能突出本节课重点,同时便于突破难点。
五教法与学法分析
教法分析:在学生探究,讨论的基础上,教师充分利用多媒体进行动画演示,适时讲解点拨,学法分析:探究,交流,动画感知,数形结合,知识升华
六数学思想方法分析
本节课在教学中向学生渗透的数学思想主要有:转化思想、函数思想、数形结合思想等
七教学过程设计
基于以上对教材特点和学生情况的分析,为能更好的达成教学目标,我在本节课主要安排以下四个环节。
第一环节:铺垫导入,动画感知;第二环节:自主探究,典例剖析;第三环节:合作交流,动画演示;第四环节:知识小结,知识升华。
第一环节铺垫导入,动画感知(用ppt)
在这里我设计了两类知识铺垫:一类题一,已知自变量取值范围求函数值的取值范围,自变量的取值范围包括自变量在对称轴一侧及把对称轴包含进去,在学生回答题目的基础上,让学生归纳求最值方法:开口,对称轴,增减性,数形结合,最后动画演示,进一步感知随着自变量的变化二次函数值得变化规律;第二类,看题二,在题一中,给定一个函数值求自变量的值,学生在代数计算的基础上初步明白虽然一个函数值可能有两个自变量对应,但是由于自变量的范围的不同,也就会影响自变量的取值。
在此基础上,教师利用动画从图形上感知平行于y轴的直线与抛物线的交点个数进一步明白题二中解的个数。
从数到形,以
及从形到数的灵活转换。
第二个题正是为了突破难点而设置,动画的演示就是让学生明白点的个数与不同解的个数的关系,从而将几何问题转化为代数问题。
这才能很好运用二次函数的增减性解决最值问题。
第二环节:自主探究,典例剖析
出示典例
这是一个综合性题,求抛物线的解析式时字母较多,二次函数中动点三角形面积的计算。
开始我在想直接把二次函数解析式给出来,直接切入主题。
但是我发现二次函数问题必须是一个综合问题,必须培养学生克服望而生畏的情绪,让他们逐渐有成就感。
而且计算能力的培养是数学教学中的首要目标。
实际教学中学生在计算中并不顺利,教师可以在学生计算中通过学生交流适时点拨强化平时强调的原则:逐渐减少式子中的字母个数。
若有必要教师可以引导计算,从中发现技巧。
让学生明白教师是在一定原则下再尝试,结果自然而然就出来了。
当然重点是第三问
二次函数中动点三角形面积的计算。
学生很容易将第三问理解成一个纯粹的几何问题,但是往往计算量大,思维不严密的,结果不正确;但是若想到面积可以得到一个二次函数就可以运用二次函数的增减性及最值解决这个问题,但是学生一般不这样想。
通过学生讨论,逐渐感受。