Graph-DTP Graph-Based Algorithm for Solving Disjunctive Temporal Problems

合集下载

软件测试术语中英文对照

软件测试术语中英文对照
data corruption:数据污染
data definition C-use pair:数据定义C-use使用对
data definition P-use coverage:数据定义P-use覆盖
data definition P-use pair:数据定义P-use使用对
data definition:数据定义
data definition-use coverage:数据定义使用覆盖
data definition-use pair :数据定义使用对
data definition-use testing:数据定义使用测试
Check In :检入
Check Out :检出
Closeout : 收尾
code audit :代码审计
Code coverage : 代码覆盖
Code Inspection:代码检视
Core team : 核心小组
corrective maintenance:故障检修
correctness :正确性
coverage :覆盖率
coverage item:覆盖项
crash:崩溃
Beta testing : β测试
Black Box Testing:黑盒测试
Blocking bug : 阻碍性错误
Bottom-up testing : 自底向上测试
boundary value coverage:边界值覆盖
boundary value testing:边界值测试
Bug bash : 错误大扫除
bug fix : 错误修正
Bug report : 错误报告

模糊云资源调度的CMAPSO算法

模糊云资源调度的CMAPSO算法

模糊云资源调度的CMAPSO算法作者:李成严,宋月,马金涛来源:《哈尔滨理工大学学报》2022年第01期摘要:针对多目标云资源调度问题,以优化任务的总完成时间和总执行成本为目标,采用模糊数学的方法,建立了模糊云资源调度模型。

利用协方差矩阵能够解决非凸性问题的优势,采取协方差进化策略对种群进行初始化,并提出了一种混合智能优化算法CMAPSO算法(covariance matrix adaptation evolution strategy particle swarm optimization,CMAPSO ),并使用该算法对模糊云资源调度模型进行求解。

使用Cloudsim仿真平台随机生成云计算资源调度的数据,对CMAPSO算法进行测试,实验结果证明了CMAPSO算法对比PSO算法(particle wwarm optimization),在寻优能力方面提升28%,迭代次数相比提升20%,并且具有良好的负载均衡性能。

关键词:云计算;任务调度;粒子群算法; 协方差矩阵进化策略DOI:10.15938/j.jhust.2022.01.005中图分类号: TP399 文献标志码: A 文章编号: 1007-2683(2022)01-0031-09CMAPSO Algorithm for Fuzzy Cloud Resource SchedulingLI Chengyan,SONG Yue,MA Jintao(School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080,China)Abstract:Aiming at the multiobjective cloud resource scheduling problem, with the goal of optimizing the total completion time and total execution cost of the task, a fuzzy cloud resource scheduling model is established using the method of fuzzy mathematics. Utilizing the advantage of the covariance matrix that can solve the nonconvexity problem, adopting the covariance evolution strategy to initialize the population, a hybrid intelligent optimization algorithm CMAPSO algorithm (covariance matrix adaptation evolution strategy particle swarm optimization,CMAPSO) is proposed to solve the fuzzy cloud resource scheduling model. The Cloudsim simulation platform was used to randomly generate cloud computing resource scheduling data, and the CMAPSO algorithm was tested. The experimental results showed that compared with the PSO algorithm (particle swarm optimization), the optimization capability of CMAPSO algorithm is increased by 28%, the number of iterations of CMAPSO algorithm is increased by 20%, and it has good load balancing performance.Keywords:cloud computing; task scheduling; particle swarm algorithm; covariance matrix adaptation evolution strategy0引言云計算是一种商业计算的模型和服务模式[1],而云计算资源调度的主要目的是将网络上的资源进行统一的管理和调式,再给予用户服务调用。

graph matching problem:图匹配问题

graph matching problem:图匹配问题


Biology data Documents Program flow
Image
2021/4/26
SOC@NUS
4
Thesis defense by Xiaoli Wang
Real application: social reading systems
Book duplicate detection problem
GED bound computation
GED computation
candidates
100,000
5% scan
100
index
answers 50
Inverted index based on the star decomposition The graph is decomposed into smaller stars Inverted index is designed to store the reference between graphs and stars Efficient CA-based search framework is proposed
2021/4/26
SOC@NUS
9
Thesis defense by Xiaoli Wang
Objectives
Building a 3-in-1 unified indexing system Design a unified and effective indexing mechanism Support similarity search on various complex structures
Waste resource to re-design various storage systems

软件测试中英文对照

软件测试中英文对照

Acceptance testing | 验收测试Acceptance Testing|可接受性测试Accessibility test |软体适用性测试actual outcome|实际结果Ad hoc testing | 随机测试Algorithm analysis |算法分析algorithm|算法Alpha testing | α测试analysis|分析anomaly|异常application software|应用软件Application under test (AUT)|所测试的应用程序Architecture |构架Artifact |工件ASQ|自动化软件质量(Automated Software Quality)Assertion checking |断言检查Association |关联Audit | 审计audit trail|审计跟踪Automated Testing|自动化测试Backus—Naur Form|BNF范式baseline|基线Basic Block|基本块basis test set|基本测试集Behaviour |行为Bench test | 基准测试benchmark|标杆/指标/基准Best practise |最佳实践Beta testing | β测试Black Box Testing|黑盒测试Blocking bug |阻碍性错误Bottom—up testing |自底向上测试boundary value coverage|边界值覆盖boundary value testing|边界值测试Boundary values |边界值Boundry Value Analysis|边界值分析branch condition combination coverage|分支条件组合覆盖branch condition combination testing|分支条件组合测试branch condition coverage|分支条件覆盖branch condition testing|分支条件测试branch condition|分支条件Branch coverage |分支覆盖branch outcome|分支结果branch point|分支点branch testing|分支测试branch|分支Breadth Testing|广度测试Brute force testing| 强力测试Buddy test | 合伙测试Buffer | 缓冲Bug |错误Bug bash | 错误大扫除bug fix | 错误修正Bug report |错误报告Bug tracking system|错误跟踪系统bug|缺陷Build | 工作版本(内部小版本)Build Verfication tests(BVTs)| 版本验证测试Build-in |内置Capability Maturity Model (CMM)| 能力成熟度模型Capability Maturity Model Integration (CMMI)|能力成熟度模型整合capture/playback tool|捕获/回放工具Capture/Replay Tool|捕获/回放工具CASE|计算机辅助软件工程(computer aided software engineering)CAST|计算机辅助测试cause—effect graph|因果图certification |证明change control|变更控制Change Management |变更管理Change Request |变更请求Character Set |字符集Check In |检入Check Out |检出Closeout |收尾code audit |代码审计Code coverage |代码覆盖Code Inspection|代码检视Code page | 代码页Code rule | 编码规范Code sytle |编码风格Code Walkthrough|代码走读code-based testing|基于代码的测试coding standards|编程规范Common sense | 常识Compatibility Testing|兼容性测试complete path testing |完全路径测试completeness|完整性complexity |复杂性Component testing |组件测试Component|组件computation data use|计算数据使用computer system security|计算机系统安全性Concurrency user |并发用户Condition coverage |条件覆盖condition coverage|条件覆盖condition outcome|条件结果condition|条件configuration control|配置控制Configuration item |配置项configuration management|配置管理Configuration testing | 配置测试conformance criterion| 一致性标准Conformance Testing|一致性测试consistency |一致性consistency checker|一致性检查器Control flow graph | 控制流程图control flow graph|控制流图control flow|控制流conversion testing|转换测试Core team |核心小组corrective maintenance|故障检修correctness |正确性coverage |覆盖率coverage item|覆盖项crash|崩溃criticality analysis|关键性分析criticality|关键性CRM(change request management)|变更需求管理Customer-focused mindset | 客户为中心的理念体系Cyclomatic complexity |圈复杂度data corruption|数据污染data definition C—use pair|数据定义C—use使用对data definition P-use coverage|数据定义P-use覆盖data definition P-use pair|数据定义P-use使用对data definition|数据定义data definition—use coverage|数据定义使用覆盖data definition-use pair |数据定义使用对data definition—use testing|数据定义使用测试data dictionary|数据字典Data Flow Analysis |数据流分析data flow analysis|数据流分析data flow coverage|数据流覆盖data flow diagram|数据流图data flow testing|数据流测试data integrity|数据完整性data use|数据使用data validation|数据确认dead code|死代码Debug |调试Debugging|调试Decision condition|判定条件Decision coverage | 判定覆盖decision coverage|判定覆盖decision outcome|判定结果decision table|判定表decision|判定Defect | 缺陷defect density |缺陷密度Defect Tracking |缺陷跟踪Deployment |部署Depth Testing|深度测试design for sustainability |可延续性的设计design of experiments|实验设计design—based testing|基于设计的测试Desk checking |桌前检查desk checking|桌面检查Determine Usage Model | 确定应用模型Determine Potential Risks | 确定潜在风险diagnostic|诊断DIF(decimation in frequency)|按频率抽取dirty testing|肮脏测试disaster recovery|灾难恢复DIT (decimation in time)| 按时间抽取documentation testing |文档测试domain testing|域测试domain|域DTP DETAIL TEST PLAN详细确认测试计划Dynamic analysis |动态分析dynamic analysis|动态分析Dynamic Testing|动态测试embedded software|嵌入式软件emulator|仿真End—to—End testing|端到端测试Enhanced Request |增强请求entity relationship diagram|实体关系图Encryption Source Code Base|加密算法源代码库Entry criteria | 准入条件entry point |入口点Envisioning Phase |构想阶段Equivalence class |等价类Equivalence Class|等价类equivalence partition coverage|等价划分覆盖Equivalence partition testing |等价划分测试equivalence partition testing|参考等价划分测试equivalence partition testing|等价划分测试Equivalence Partitioning|等价划分Error |错误Error guessing |错误猜测error seeding|错误播种/错误插值error|错误Event-driven | 事件驱动Exception handlers |异常处理器exception|异常/例外executable statement|可执行语句Exhaustive Testing|穷尽测试exit point|出口点expected outcome|期望结果Exploratory testing |探索性测试Failure | 失效Fault |故障fault|故障feasible path|可达路径feature testing|特性测试Field testing |现场测试FMEA|失效模型效果分析(Failure Modes and Effects Analysis)FMECA|失效模型效果关键性分析(Failure Modes and Effects Criticality Analysis) Framework |框架FTA|故障树分析(Fault Tree Analysis)functional decomposition|功能分解Functional Specification |功能规格说明书Functional testing |功能测试Functional Testing|功能测试G11N(Globalization) | 全球化Gap analysis |差距分析Garbage characters | 乱码字符glass box testing|玻璃盒测试Glass—box testing |白箱测试或白盒测试Glossary | 术语表GUI(Graphical User Interface)| 图形用户界面Hard—coding | 硬编码Hotfix | 热补丁I18N(Internationalization)| 国际化Identify Exploratory Tests –识别探索性测试IEEE|美国电子与电器工程师学会(Institute of Electrical and Electronic Engineers)Incident 事故Incremental testing | 渐增测试incremental testing|渐增测试infeasible path|不可达路径input domain|输入域Inspection |审查inspection|检视installability testing|可安装性测试Installing testing | 安装测试instrumentation|插装instrumenter|插装器Integration |集成Integration testing |集成测试interface | 接口interface analysis|接口分析interface testing|接口测试interface|接口invalid inputs|无效输入isolation testing|孤立测试Issue |问题Iteration | 迭代Iterative development|迭代开发job control language|工作控制语言Job|工作Key concepts |关键概念Key Process Area | 关键过程区域Keyword driven testing |关键字驱动测试Kick—off meeting |动会议L10N(Localization) |本地化Lag time | 延迟时间LCSAJ|线性代码顺序和跳转(Linear Code Sequence And Jump)LCSAJ coverage|LCSAJ覆盖LCSAJ testing|LCSAJ测试Lead time |前置时间Load testing | 负载测试Load Testing|负载测试Localizability testing| 本地化能力测试Localization testing |本地化测试logic analysis|逻辑分析logic—coverage testing|逻辑覆盖测试Maintainability |可维护性maintainability testing|可维护性测试Maintenance |维护Master project schedule |总体项目方案Measurement |度量Memory leak | 内存泄漏Migration testing |迁移测试Milestone |里程碑Mock up |模型,原型modified condition/decision coverage|修改条件/判定覆盖modified condition/decision testing |修改条件/判定测试modular decomposition|参考模块分解Module testing |模块测试Monkey testing | 跳跃式测试Monkey Testing|跳跃式测试mouse over|鼠标在对象之上mouse leave|鼠标离开对象MTBF|平均失效间隔实际(mean time between failures)MTP MAIN TEST PLAN主确认计划MTTF|平均失效时间 (mean time to failure)MTTR|平均修复时间(mean time to repair)multiple condition coverage|多条件覆盖mutation analysis|变体分析N/A(Not applicable) | 不适用的Negative Testing |逆向测试, 反向测试, 负面测试negative testing|参考负面测试Negative Testing|逆向测试/反向测试/负面测试off by one|缓冲溢出错误non—functional requirements testing|非功能需求测试nominal load|额定负载N-switch coverage|N切换覆盖N-switch testing|N切换测试N-transitions|N转换Off—the—shelf software | 套装软件operational testing|可操作性测试output domain|输出域paper audit|书面审计Pair Programming |成对编程partition testing|分类测试Path coverage | 路径覆盖path coverage|路径覆盖path sensitizing|路径敏感性path testing|路径测试path|路径Peer review |同行评审Performance | 性能Performance indicator|性能(绩效)指标Performance testing |性能测试Pilot |试验Pilot testing |引导测试Portability |可移植性portability testing|可移植性测试Positive testing |正向测试Postcondition |后置条件Precondition | 前提条件precondition|预置条件predicate data use|谓词数据使用predicate|谓词Priority | 优先权program instrumenter|程序插装progressive testing|递进测试Prototype |原型Pseudo code |伪代码pseudo-localization testing|伪本地化测试pseudo—random|伪随机QC|质量控制(quality control)Quality assurance(QA)| 质量保证Quality Control(QC) |质量控制Race Condition|竞争状态Rational Unified Process(以下简称RUP)|瑞理统一工艺Recovery testing |恢复测试recovery testing|恢复性测试Refactoring |重构regression analysis and testing|回归分析和测试Regression testing |回归测试Release |发布Release note |版本说明release|发布Reliability |可靠性reliability assessment|可靠性评价reliability|可靠性Requirements management tool|需求管理工具Requirements—based testing |基于需求的测试Return of Investment(ROI)|投资回报率review|评审Risk assessment |风险评估risk|风险Robustness | 强健性Root Cause Analysis(RCA)| 根本原因分析safety critical|严格的安全性safety|(生命)安全性Sanity testing | 健全测试Sanity Testing|理智测试Schema Repository | 模式库Screen shot |抓屏、截图SDP|软件开发计划(software development plan)Security testing | 安全性测试security testing|安全性测试security.|(信息)安全性serviceability testing|可服务性测试Severity | 严重性Shipment |发布simple subpath|简单子路径Simulation |模拟Simulator | 模拟器SLA(Service level agreement)|服务级别协议SLA|服务级别协议(service level agreement)Smoke testing |冒烟测试Software development plan(SDP)| 软件开发计划Software development process|软件开发过程software development process|软件开发过程software diversity|软件多样性software element|软件元素software engineering environment|软件工程环境software engineering|软件工程Software life cycle | 软件生命周期source code|源代码source statement|源语句Specification |规格说明书specified input|指定的输入spiral model |螺旋模型SQAP SOFTWARE QUALITY ASSURENCE PLAN 软件质量保证计划SQL|结构化查询语句(structured query language)Staged Delivery|分布交付方法state diagram|状态图state transition testing |状态转换测试state transition|状态转换state|状态Statement coverage |语句覆盖statement testing|语句测试statement|语句Static Analysis|静态分析Static Analyzer|静态分析器Static Testing|静态测试statistical testing|统计测试Stepwise refinement | 逐步优化storage testing|存储测试Stress Testing |压力测试structural coverage|结构化覆盖structural test case design|结构化测试用例设计structural testing|结构化测试structured basis testing|结构化的基础测试structured design|结构化设计structured programming|结构化编程structured walkthrough|结构化走读stub|桩sub-area|子域Summary| 总结SVVP SOFTWARE Vevification&Validation PLAN| 软件验证和确认计划symbolic evaluation|符号评价symbolic execution|参考符号执行symbolic execution|符号执行symbolic trace|符号轨迹Synchronization | 同步Syntax testing |语法分析system analysis|系统分析System design | 系统设计system integration|系统集成System Testing | 系统测试TC TEST CASE 测试用例TCS TEST CASE SPECIFICATION 测试用例规格说明TDS TEST DESIGN SPECIFICATION 测试设计规格说明书technical requirements testing|技术需求测试Test |测试test automation|测试自动化Test case | 测试用例test case design technique|测试用例设计技术test case suite|测试用例套test comparator|测试比较器test completion criterion|测试完成标准test coverage|测试覆盖Test design | 测试设计Test driver |测试驱动test environment|测试环境test execution technique|测试执行技术test execution|测试执行test generator|测试生成器test harness|测试用具Test infrastructure | 测试基础建设test log|测试日志test measurement technique|测试度量技术Test Metrics |测试度量test procedure|测试规程test records|测试记录test report|测试报告Test scenario | 测试场景Test Script|测试脚本Test Specification|测试规格Test strategy | 测试策略test suite|测试套Test target | 测试目标Test ware | 测试工具Testability | 可测试性testability|可测试性Testing bed | 测试平台Testing coverage |测试覆盖Testing environment | 测试环境Testing item |测试项Testing plan |测试计划Testing procedure | 测试过程Thread testing |线程测试time sharing|时间共享time—boxed |固定时间TIR test incident report 测试事故报告ToolTip|控件提示或说明top—down testing|自顶向下测试TPS TEST PEOCESS SPECIFICATION 测试步骤规格说明Traceability | 可跟踪性traceability analysis|跟踪性分析traceability matrix|跟踪矩阵Trade—off | 平衡transaction|事务/处理transaction volume|交易量transform analysis|事务分析trojan horse|特洛伊木马truth table|真值表TST TEST SUMMARY REPORT 测试总结报告Tune System | 调试系统TW TEST WARE |测试件Unit Testing |单元测试Usability Testing|可用性测试Usage scenario | 使用场景User acceptance Test |用户验收测试User database |用户数据库User interface(UI) | 用户界面User profile | 用户信息User scenario |用户场景V&V (Verification & Validation) | 验证&确认validation |确认verification |验证version |版本Virtual user | 虚拟用户volume testing|容量测试VSS(visual source safe)|VTP Verification TEST PLAN验证测试计划VTR Verification TEST REPORT验证测试报告Walkthrough | 走读Waterfall model | 瀑布模型Web testing | 网站测试White box testing |白盒测试Work breakdown structure (WBS) |任务分解结构Zero bug bounce (ZBB)|零错误反弹。

软件检验中英文对照

软件检验中英文对照

Acceptance testing | 验收测试Acceptance Testing|可接受性测试Accessibility test | 软体适用性测试actual outcome|实际结果Ad hoc testing | 随机测试Algorithm analysis | 算法分析algorithm|算法Alpha testing | α测试analysis|分析anomaly|异常application software|应用软件Application under test (AUT) | 所测试的应用程序Architecture | 构架Artifact | 工件ASQ|自动化软件质量(Automated Software Quality)Assertion checking | 断言检查Association | 关联Audit | 审计audit trail|审计跟踪Automated Testing|自动化测试Backus-Naur Form|BNF范式baseline|基线Basic Block|基本块basis test set|基本测试集Behaviour | 行为Bench test | 基准测试benchmark|标杆/指标/基准Best practise | 最佳实践Beta testing | β测试Black Box Testing|黑盒测试Blocking bug | 阻碍性错误Bottom-up testing | 自底向上测试boundary value coverage|边界值覆盖boundary value testing|边界值测试Boundary values | 边界值Boundry Value Analysis|边界值分析branch condition combination coverage|分支条件组合覆盖branch condition combination testing|分支条件组合测试branch condition coverage|分支条件覆盖branch condition testing|分支条件测试branch condition|分支条件Branch coverage | 分支覆盖branch outcome|分支结果branch point|分支点branch testing|分支测试branch|分支Breadth Testing|广度测试Brute force testing| 强力测试Buddy test | 合伙测试Buffer | 缓冲Bug | 错误Bug bash | 错误大扫除bug fix | 错误修正Bug report | 错误报告Bug tracking system| 错误跟踪系统bug|缺陷Build | 工作版本(内部小版本)Build Verfication tests(BVTs)| 版本验证测试Build-in | 内置Capability Maturity Model (CMM)| 能力成熟度模型Capability Maturity Model Integration (CMMI)| 能力成熟度模型整合capture/playback tool|捕获/回放工具Capture/Replay Tool|捕获/回放工具CASE|计算机辅助软件工程(computer aided software engineering)CAST|计算机辅助测试cause-effect graph|因果图certification |证明change control|变更控制Change Management |变更管理Change Request |变更请求Character Set | 字符集Check In |检入Check Out |检出Closeout | 收尾code audit |代码审计Code coverage | 代码覆盖Code Inspection|代码检视Code page | 代码页Code rule | 编码规范Code sytle | 编码风格Code Walkthrough|代码走读code-based testing|基于代码的测试coding standards|编程规范Common sense | 常识Compatibility Testing|兼容性测试complete path testing |完全路径测试completeness|完整性complexity |复杂性Component testing | 组件测试Component|组件computation data use|计算数据使用computer system security|计算机系统安全性Concurrency user | 并发用户Condition coverage | 条件覆盖condition coverage|条件覆盖condition outcome|条件结果condition|条件configuration control|配置控制Configuration item | 配置项configuration management|配置管理Configuration testing | 配置测试conformance criterion| 一致性标准Conformance Testing| 一致性测试consistency | 一致性consistency checker| 一致性检查器Control flow graph | 控制流程图control flow graph|控制流图control flow|控制流conversion testing|转换测试Core team | 核心小组corrective maintenance|故障检修correctness |正确性coverage |覆盖率coverage item|覆盖项crash|崩溃criticality analysis|关键性分析criticality|关键性CRM(change request management)| 变更需求管理Customer-focused mindset | 客户为中心的理念体系Cyclomatic complexity | 圈复杂度data corruption|数据污染data definition C-use pair|数据定义C-use使用对data definition P-use coverage|数据定义P-use覆盖data definition P-use pair|数据定义P-use使用对data definition|数据定义data definition-use coverage|数据定义使用覆盖data definition-use pair |数据定义使用对data definition-use testing|数据定义使用测试data dictionary|数据字典Data Flow Analysis | 数据流分析data flow analysis|数据流分析data flow coverage|数据流覆盖data flow diagram|数据流图data flow testing|数据流测试data integrity|数据完整性data use|数据使用data validation|数据确认dead code|死代码Debug | 调试Debugging|调试Decision condition|判定条件Decision coverage | 判定覆盖decision coverage|判定覆盖decision outcome|判定结果decision table|判定表decision|判定Defect | 缺陷defect density | 缺陷密度Defect Tracking |缺陷跟踪Deployment | 部署Depth Testing|深度测试design for sustainability |可延续性的设计design of experiments|实验设计design-based testing|基于设计的测试Desk checking | 桌前检查desk checking|桌面检查Determine Usage Model | 确定应用模型Determine Potential Risks | 确定潜在风险diagnostic|诊断DIF(decimation in frequency) | 按频率抽取dirty testing|肮脏测试disaster recovery|灾难恢复DIT (decimation in time)| 按时间抽取documentation testing |文档测试domain testing|域测试domain|域DTP DETAIL TEST PLAN详细确认测试计划Dynamic analysis | 动态分析dynamic analysis|动态分析Dynamic Testing|动态测试embedded software|嵌入式软件emulator|仿真End-to-End testing|端到端测试Enhanced Request |增强请求entity relationship diagram|实体关系图Encryption Source Code Base| 加密算法源代码库Entry criteria | 准入条件entry point |入口点Envisioning Phase | 构想阶段Equivalence class | 等价类Equivalence Class|等价类equivalence partition coverage|等价划分覆盖Equivalence partition testing | 等价划分测试equivalence partition testing|参考等价划分测试equivalence partition testing|等价划分测试Equivalence Partitioning|等价划分Error | 错误Error guessing | 错误猜测error seeding|错误播种/错误插值error|错误Event-driven | 事件驱动Exception handlers | 异常处理器exception|异常/例外executable statement|可执行语句Exhaustive Testing|穷尽测试exit point|出口点expected outcome|期望结果Exploratory testing | 探索性测试Failure | 失效Fault | 故障fault|故障feasible path|可达路径feature testing|特性测试Field testing | 现场测试FMEA|失效模型效果分析(Failure Modes and Effects Analysis)FMECA|失效模型效果关键性分析(Failure Modes and Effects Criticality Analysis)Framework | 框架FTA|故障树分析(Fault Tree Analysis)functional decomposition|功能分解Functional Specification |功能规格说明书Functional testing | 功能测试Functional Testing|功能测试G11N(Globalization) | 全球化Gap analysis | 差距分析Garbage characters | 乱码字符glass box testing|玻璃盒测试Glass-box testing | 白箱测试或白盒测试Glossary | 术语表GUI(Graphical User Interface)| 图形用户界面Hard-coding | 硬编码Hotfix | 热补丁I18N(Internationalization)| 国际化Identify Exploratory Tests –识别探索性测试IEEE|美国电子与电器工程师学会(Institute of Electrical and Electronic Engineers)Incident 事故Incremental testing | 渐增测试incremental testing|渐增测试infeasible path|不可达路径input domain|输入域Inspection | 审查inspection|检视installability testing|可安装性测试Installing testing | 安装测试instrumentation|插装instrumenter|插装器Integration |集成Integration testing | 集成测试interface | 接口interface analysis|接口分析interface testing|接口测试interface|接口invalid inputs|无效输入isolation testing|孤立测试Issue | 问题Iteration | 迭代Iterative development| 迭代开发job control language|工作控制语言Job|工作Key concepts | 关键概念Key Process Area | 关键过程区域Keyword driven testing | 关键字驱动测试Kick-off meeting | 动会议L10N(Localization) | 本地化Lag time | 延迟时间LCSAJ|线性代码顺序和跳转(Linear Code Sequence And Jump)LCSAJ coverage|LCSAJ覆盖LCSAJ testing|LCSAJ测试Lead time | 前置时间Load testing | 负载测试Load Testing|负载测试Localizability testing| 本地化能力测试Localization testing | 本地化测试logic analysis|逻辑分析logic-coverage testing|逻辑覆盖测试Maintainability | 可维护性maintainability testing|可维护性测试Maintenance | 维护Master project schedule |总体项目方案Measurement | 度量Memory leak | 内存泄漏Migration testing | 迁移测试Milestone | 里程碑Mock up | 模型,原型modified condition/decision coverage|修改条件/判定覆盖modified condition/decision testing |修改条件/判定测试modular decomposition|参考模块分解Module testing | 模块测试Monkey testing | 跳跃式测试Monkey Testing|跳跃式测试mouse over|鼠标在对象之上mouse leave|鼠标离开对象MTBF|平均失效间隔实际(mean time between failures)MTP MAIN TEST PLAN主确认计划MTTF|平均失效时间(mean time to failure)MTTR|平均修复时间(mean time to repair)multiple condition coverage|多条件覆盖mutation analysis|变体分析N/A(Not applicable) | 不适用的Negative Testing | 逆向测试, 反向测试, 负面测试negative testing|参考负面测试Negative Testing|逆向测试/反向测试/负面测试off by one|缓冲溢出错误non-functional requirements testing|非功能需求测试nominal load|额定负载N-switch coverage|N切换覆盖N-switch testing|N切换测试N-transitions|N转换Off-the-shelf software | 套装软件operational testing|可操作性测试output domain|输出域paper audit|书面审计Pair Programming | 成对编程partition testing|分类测试Path coverage | 路径覆盖path coverage|路径覆盖path sensitizing|路径敏感性path testing|路径测试path|路径Peer review | 同行评审Performance | 性能Performance indicator| 性能(绩效)指标Performance testing | 性能测试Pilot | 试验Pilot testing | 引导测试Portability | 可移植性portability testing|可移植性测试Positive testing | 正向测试Postcondition | 后置条件Precondition | 前提条件precondition|预置条件predicate data use|谓词数据使用predicate|谓词Priority | 优先权program instrumenter|程序插装progressive testing|递进测试Prototype | 原型Pseudo code | 伪代码pseudo-localization testing|伪本地化测试pseudo-random|伪随机QC|质量控制(quality control)Quality assurance(QA)| 质量保证Quality Control(QC) | 质量控制Race Condition|竞争状态Rational Unified Process(以下简称RUP)|瑞理统一工艺recovery testing|恢复性测试Refactoring | 重构regression analysis and testing|回归分析和测试Regression testing | 回归测试Release | 发布Release note | 版本说明release|发布Reliability | 可靠性reliability assessment|可靠性评价reliability|可靠性Requirements management tool| 需求管理工具Requirements-based testing | 基于需求的测试Return of Investment(ROI)| 投资回报率review|评审Risk assessment | 风险评估risk|风险Robustness | 强健性Root Cause Analysis(RCA)| 根本原因分析safety critical|严格的安全性safety|(生命)安全性Sanity Testing|理智测试Schema Repository | 模式库Screen shot | 抓屏、截图SDP|软件开发计划(software development plan)Security testing | 安全性测试security testing|安全性测试security.|(信息)安全性serviceability testing|可服务性测试Severity | 严重性Shipment | 发布simple subpath|简单子路径Simulation | 模拟Simulator | 模拟器SLA(Service level agreement)| 服务级别协议SLA|服务级别协议(service level agreement)Smoke testing | 冒烟测试Software development plan(SDP)| 软件开发计划Software development process| 软件开发过程software development process|软件开发过程software diversity|软件多样性software element|软件元素software engineering environment|软件工程环境software engineering|软件工程Software life cycle | 软件生命周期source code|源代码source statement|源语句Specification | 规格说明书specified input|指定的输入spiral model |螺旋模型SQAP SOFTWARE QUALITY ASSURENCE PLAN 软件质量保证计划SQL|结构化查询语句(structured query language)Staged Delivery|分布交付方法state diagram|状态图state transition testing |状态转换测试state transition|状态转换state|状态Statement coverage | 语句覆盖statement testing|语句测试statement|语句Static Analysis|静态分析Static Analyzer|静态分析器Static Testing|静态测试statistical testing|统计测试Stepwise refinement | 逐步优化storage testing|存储测试Stress Testing | 压力测试structural coverage|结构化覆盖structural test case design|结构化测试用例设计structural testing|结构化测试structured basis testing|结构化的基础测试structured design|结构化设计structured programming|结构化编程structured walkthrough|结构化走读stub|桩sub-area|子域Summary| 总结SVVP SOFTWARE Vevification&Validation PLAN| 软件验证和确认计划symbolic evaluation|符号评价symbolic execution|参考符号执行symbolic execution|符号执行symbolic trace|符号轨迹Synchronization | 同步Syntax testing | 语法分析system analysis|系统分析System design | 系统设计system integration|系统集成System Testing | 系统测试TC TEST CASE 测试用例TCS TEST CASE SPECIFICATION 测试用例规格说明TDS TEST DESIGN SPECIFICATION 测试设计规格说明书technical requirements testing|技术需求测试Test | 测试test automation|测试自动化Test case | 测试用例test case design technique|测试用例设计技术test case suite|测试用例套test comparator|测试比较器test completion criterion|测试完成标准test coverage|测试覆盖Test design | 测试设计Test driver | 测试驱动test environment|测试环境test execution technique|测试执行技术test execution|测试执行test generator|测试生成器test harness|测试用具Test infrastructure | 测试基础建设test log|测试日志test measurement technique|测试度量技术Test Metrics |测试度量test procedure|测试规程test records|测试记录test report|测试报告Test scenario | 测试场景Test Script|测试脚本Test Specification|测试规格Test strategy | 测试策略test suite|测试套Test target | 测试目标Test ware | 测试工具Testability | 可测试性testability|可测试性Testing bed | 测试平台Testing coverage | 测试覆盖Testing environment | 测试环境Testing item | 测试项Testing plan | 测试计划Testing procedure | 测试过程Thread testing | 线程测试time sharing|时间共享time-boxed | 固定时间TIR test incident report 测试事故报告ToolTip|控件提示或说明top-down testing|自顶向下测试TPS TEST PEOCESS SPECIFICATION 测试步骤规格说明Traceability | 可跟踪性traceability analysis|跟踪性分析traceability matrix|跟踪矩阵Trade-off | 平衡transaction|事务/处理transaction volume|交易量transform analysis|事务分析trojan horse|特洛伊木马truth table|真值表TST TEST SUMMARY REPORT 测试总结报告Tune System | 调试系统TW TEST WARE |测试件Unit Testing |单元测试Usability Testing|可用性测试Usage scenario | 使用场景User acceptance Test | 用户验收测试User database |用户数据库User interface(UI) | 用户界面User profile | 用户信息User scenario | 用户场景V&V (Verification & Validation) | 验证&确认validation |确认verification |验证version |版本Virtual user | 虚拟用户volume testing|容量测试VSS(visual source safe) |VTP Verification TEST PLAN验证测试计划VTR Verification TEST REPORT验证测试报告Walkthrough | 走读Waterfall model | 瀑布模型Web testing | 网站测试White box testing | 白盒测试Work breakdown structure (WBS) | 任务分解结构Zero bug bounce (ZBB) | 零错误反弹。

电脑与信息技术英语翻译常用专业词汇

电脑与信息技术英语翻译常用专业词汇

电脑与信息技术英语翻译常用专业词汇AAAIMS(An Analytical Information Management System)分析信息管理系统Abacus 算盘Access security 存取安全Access time 存取时间Active 有源的Ada programming language Ada 程序设计语言Adapter 适配器Adapter card 转接卡Add-on 外接式附件Address 地址ADSL(Asymmetric Digital Subscriber Line) 非对称数字客户线路After-image record 残留影像记录Algorithm 算法Alpha testing ɑ测试3Alteration switch 变换开关ALU(Arithmetic/Logic Unit)运算器Amplitude 幅度Analog data 模拟数据Analog cellular 模拟移动电话Analog signal 模拟信号Analysis block 分析块Animation 动画制作ANSL(American National Standards Label)美国国家标准标号Answerback memory 应答存储器Anti-noise coding 反噪声编码Antivirus software 反病毒软件APL(A Programming Language) APL 语言Application development cycle 应用开发周期Application program 应用程序4Application software 应用软件Arithmetic operation 算术运算ARP(Automatic Receive Program)自动同意程序Artificial network 仿真网络ASCII(American standard Code for Information Interchange)美国信息交换用标准代码Assembler 汇编程序Assembly language 汇编语言Asynchronous 异步的Asynchronous transmission 异步传输ATM(Asynchronous Transfer Mode) 异步传输模式ATM(Automated Teller Machine)自动出纳机Attribute 属性Auctions on the web 网上拍卖Audio board 声板5Audio file 声音文件Audio input device 声音输入装置Audio-player 播放Audit program 审查程序Auditing system 审查系统Authoring system 写作系统6BBackbone system 主干系统Backup file 备份文件Backward compatibility 反向兼容性Backward recovery 向后恢复Band printer 带式打印机Bandwidth 带宽Bandwidth limitation 带宽限制Bar code 条形码Bar-code reader 条形码读出器Basic exchange format 基本交换格式BASIC programming language BASIC 程序设计语言Batch processing 批处理Beeper 传呼机7Be ta testing β测试Binary digit 二进制数字Binary file 二进制文件Binary number system 二进制数字系统Binary system 二进制BIOS(Basic Input/Output System)基本输入/输出系统Bit 量,位Bit(binary digit)位,二进制位,比特Bit-mapped display screen 位映像显示器Block check 块检验Blocking software 封锁软件Bookmark 书签Bootleg version 盗版BPS(Business Professional System) 商业专用系统Bridge 网桥8Broadcast image 广播图象Browser 浏览程序Building blocks 组件Built-in function 内部功能Bus 总线Bus network 总线网络Bus slot 总线槽Business terminal equipment 商务终端设备Button 按扭Byte 字节,位组9CC programming language C 程序设计语言C++ programming language C++程序设计语言Cable length 电缆长度Cable modem 电缆调制解调器Cache memory 超高速缓冲存储器CAD(Computer-Aided Design) 计算机辅助设计CADD(Compute-Aided Design and Drafting) 计算机辅助设计与制图Call-back system 回叫系统CAM(Computer-Aided Manufacturing) 计算机辅助生产Capacity 容量Carrier wave 载波Cartridge tape 盒式磁带CASE(Computer-Aided Software Engineering) 计算机辅助软件工程10CBT(Computer-Based Training) 利用计算机的训练CCD(Charge Coupled Device)电荷藕合器件CD writer 刻录机CDC(Code-Directing Character) 代码引导字符CDP(Certified Data Processor)合格数据处理程序Cell 单元,细胞,信元Cell address 单元地址Cell pointer 单元指示器CEO(Chip Enable Output) 芯片启动输出CERT(Character Error Rate Tester) 字符出错率测试程序Chain printer 链式打印机Channel command 通道命令Character 字符Character-recognition 字符识别Chat room 聊天室11Check bit 校验位,检验位Child record 子记录Chip 芯片,晶片Circuit switching 电路转接,线路交换CIS(Communication Information System) 通信信息(情报)系统Clear entry 消除输入Click 点击Client 客户,委托程序,委托进程,客户机Client-server 客户服务器Clipboard 剪贴板Clouds 云Cluster 簇,束,线束,群集Coaxial tree network 同轴树状网络COBOL programming language COBOL 程序设计语言Coding 编码,编程序12Collision 冲突Color display screen 彩色显示屏Communication 通信Communication parties 传输单元Communications channel 通信信道Communications controller 通信操纵器Communications hardware 通信硬件Communications network 通信网络Communications satellites 通信卫星Communications server 通信服务器Communications service 通信业务Communications software 通信软件Communications technology 通信技术Compatibility 兼容性,一致性,互换性Compiler 编译程序13Component 分量,成分,元件,组件,部件Compression 压缩Computer 计算机Computer-based information system 计算机信息系统Computer crime 计算机犯罪Computer industry 计算机行业Computer literacy 计算机扫盲Computer online service 计算机联机服务Computer professional 计算机专业人员Computer programmer 计算机程序设计员Concentration 集中Concentrator 集中器,集线器Concurrent-use license 并行使用许可证Connection 连接Connectivity 连通性,连接性14Connectivity diagram 连通图表Contact 接触点Control structure 操纵结构Control unit 操纵器,操纵部件Controller card 操纵器插件Coprocessor 协同处理程序,协同处理机Copy command 复制命令Copyright 版权Copyright protection 版权保护Counterfeit software 盗版软件Courseware 课件CPU(Central Processing Unit) 中央处理机Cracker 黑客CRT(Cathode Ray Tube) 阴极射线管CTS(Clear To Send) 清除发送15Cursor 光标Cursor-movement key 光标移动键Custom software 客户软件Cut command 剪切命令Cyberculture 计算机文化,操纵论优化Cybernation 计算机操纵化16DDaisy chain 菊链DAT(Data Acquisition Test) 数据采集测试Data access method 数据存取法Data acquisition 数据采集Data compression 数据压缩Data dictionary 数据字典Data file 数据文件Data flow diagram 数据流程图Data integrity 数据完整性Data manipulation language 数据操纵语言Data mining 数据开采Data recovery 数据恢复Data redundancy 数据冗余Data storage hierarchy 数据存储层次17Data transmission 数据传输Data transmission factor 数据传输系数Data warehouse 数据仓库Database 数据库Database server 数据库服务器Database software 数据库软件DBA(Data Base Administrator) 数据库管理程序DBMS(Data Base Management System) 数据库管理系统Debugging 调试Decision making system 判定系统,决策系统Decision table 判定表Dedicated computer 专用计算机Default value 缺省值,系统设定值Delete 删除Democratic network 共同操纵网络18Design 设计Desk checking 桌面检验Desktop accessory 桌面附件Desktop publication system 桌面出版系统Developing information system 信息开发系统Dialog box 对话框Dial-up connection 拨号上网Dial-up Internet communication 拨号网间通信Digital 数码的Digital camera 数码照相机Digital cellular phone 数字移动电话Digital signal 数字信号Digital signal processor 数字信号处理器Digital signature 数字签名Digitized speech 数字化语音19DIMS(Data Information and Manufacturing system) 数据信息与制造系统Direct access storage 直接存取存储器,直接访问存储器Direct file organization 直接文件组织Direct implementation 直接实现Direct synchronous multiplexing 直接同步复用Directory 目录,号码表Disk 磁盘Disk drive 磁盘驱动器Diskette 软磁盘,软盘Display 显示Display screen 显示屏幕Disrupt 使混乱,破坏,分裂,瓦解Distance learning 远程学习Distributed database 分布式数据库Disturbance 干扰20DM(Data Memory) 数据存储器DNS(Domain Naming System) 域命名系统Document 文件,资料,文献,文卷Document file 资料文件Documentation 文件编制,资料,文档DOS(Disk Operating System) 磁盘操作系统Dot 点Dot-matrix printer 点阵打印机Download 下载Downsizing 规模缩小化Downward compatibility 向下兼容性Draft-quality 粗劣的印刷质量,草稿字体印刷质量DRAM(Dynamic Random Access Memory) 动态随机存取存储器Drawing program 绘图程序Driver 驱动器21Drum printer 鼓式打印机Drum scanner 鼓形扫描器DSS(Decision Support System) 决策支援系统DTP(Data Transmission Protocol) 数据传送协议Dumb terminal 哑终端,简易终端DVP(Data Validation Program) 数据验证程序Dynamic linking 动态链接22EEBCDIC(Extended Binary Coded Decimal Interchange) 扩充的二-十进制交换码E-cash 电子货币E-commerce 电子商务EDI(Electronic Data Interchange) 电子数据交换EEPROM(Electrically Erasable Read Only Memory) 电可擦只读存储器EIC(External Interface Control) 外部借口操纵EIS(External Interrupt Support) 外部中断支援Electroluminescent display 电致发光显示屏Electromagnetic spectrum 电磁光谱Electronic conference 电子会议Electronic image 电子图象Electronic network 电子网络23Electronic secretary 电子秘书Electronic ticketing machine 电子售票机Electronic tutor 电子教学装置Electrostatic plotter 静电绘图机Elementary field 基本字段ELF(Extensible Language Facility) 可扩充的语言功能E-mail 电子邮件Embedded computer 嵌入式计算机Emulation 仿真,仿效Encapsulation 封闭,封装,密封Encryption 加密,编密码End-to-end delay 端到端的时延End-to-end digital connectivity 端到端的数字连接End-user 终端用户ENIAC(Electronic Numerical Integrator and Calculator) 电子数字积分24器与计算器Enter key 输入键EPL(Encoder Programming Language) 编码器程序设计语言EPROM(Erasable Programmable Read Only Memory) 可擦可编程只读存储器EPSS(Error Processing Sub-system) 错误处理子系统Ergonomics 人类工程学Error correction 纠错法ESS(Electronic Switching System) 电子交换系统Evaluation system 评价系统Even parity 偶数奇偶校验Exchange service 交换业务Executable 可执行文件Execution cycle 执行周期Execution program 执行程序Expansion bus 扩展总线25Expansion card 扩充插件卡Expansion slot 扩展槽Expert system 专家系统External hard disk drive 外部硬盘驱动器External modem 外部调制解调器26FFAT(File Allocation Table) 文件分配表Fault freedom 容错性能Fault tolerant system 容错系统Fax 传真Fax machine 传真机FCB(File Control Block) 文件操纵块Feasibility study 可行性研究,可能性研究FEC(Forward Error Correction) 向前纠错Fiber-optic cable 光缆Field 字段,场,域Field protect 字段保护Fifth-generation programming language 第五代程序设计语言File 文件27File extension 文件扩充File management system 文件管理系统File name 文件名File server 文件服务程序File virus 文件病毒Filter 过滤,滤波Financial planning system 财务规划系统Find command 查找命令Finder 寻找程序,定位程序,录像器Fingerprint security system 指纹安全系统Firewall 防火墙Firmware 固件Fixed disk drive 固定磁盘驱动器Flatbed plotter 平板绘图仪Flatbed scanner 平板扫描仪28Flat-panel display 平面显示器Flat-panel technique 平面技术Flexible telecommunication networking 灵活的通信联网Floppy disk 软磁盘FLOPS(Floating-point Operations Per Second) 每秒浮点运算次数Flowchart 流程图Font 字型,字体Format selection 格式选择Formatting 格式化,格式编排Formula 公式FORTH programming language FORTH 程序设计语言Forward recovery 正向恢复Fourth-generation programming language 第四代程序设计语言Fragmenting 分割29Frame grabber 帧同意器,帧捕获器Free ware 免费软件Frequency 频率Front-end processor 前端处理机FTP(File Transfer Protocol)文件传送协议Full-duplex 全双工Function 功能,函数,作用Function key 功能键Fuzzy logic 模糊逻辑30GGame port 博弈端口Garbage 无用信息Gateway 关口,网间连接GDS(Group Display System) 群显示系统Genealogy 家谱学,系统GES(General Edit System) 通用逻辑系统GIS(Geographic Information System) 几何图形信息系统Global communication 全球通信GPS(Global Positioning System) 全球定位系统Grammar checker 语法检验程序Graphics 图形学,制图技术Graphics accelerator 图形加速器Graphics coprocessor 图形协同处理程序31Grid 网格,坐标网络Gross index 粗索引Groupware 群件GUI(Graphical User Interface) 图形用户接口32HHacker 黑客Half-duplex transmission 半双工传输Handheld scanner 手持式扫描仪Handshaking 信号交换,接续Hard disk 硬磁盘Hard return 硬回车Hard-copy terminal 硬拷贝终端Hardware 硬件Hardware compatibility 硬件兼容性HDTV(High Definition Television) 高分辨率电视Help menu 求助菜单,求助项目单Head-mounted display 头盔式显示器Hidden computer 隐式计算机33Hierarchical database 分级数据库Hierarchy 分级,分层,层次Hierarchy chart 分级图表High resolution 高分辨率High-level programming language 高级程序设计语言Hold 握住Home directory 主目录Home network 本地网络Home record 引导记录,起始记录Host 主机Host adaptation 主机习惯性Host computer 主计算机Host operating system 主操作系统Host-to-host 主机到主机HTML(Hyper text Markup Language) 超文本标记语言34Hybrid network 混合式网络Hyperlink 超级链接Hypertext 超文本35IIcon 图符Identification system 识别系统Image file 映像文件Imaging system 成像系统IML(Initial Micro-code Load) 初始微码装入Impact 影响,冲击Impact printer 击打式打印机Importing file 输入文件Incremental backup 增量备份法Indexed file organization 索引文件组织Inference engine 推理机Information 信息,情报Information capacity 信息容量36Information function 信息函数Information management 信息管理Information overload 信息超载Information system 信息系统Information technology 信息技术Information transmission system 信息传输系统Information unit 信息单位Information utility 有用程序,信息应用程序,信息公用设施Inheritance 继承Initialize 初始化Ink-jet plotter 喷墨绘图仪Ink-jet printer 喷墨印刷机Input control 输入操纵器Input device 输入设备Input hard ware 输入硬件37Inquiry and communication system 查询与通信系统Insert 插入Insertion point 插入点Install 安装,建立Instruction cycle 指令周期Integrated circuit 集成电路Integrated software package 组合软件包Intellectual property 知识产权Intelligent robot 智能机器人Intelligent terminal 智能终端Interactive presentation 交互式演示Inter activity 交互性Interface 接口Intermediate node 中间网点Internal bus 内部总线38Internal hard disk drive 内部硬盘驱动器Internal modem 内部调制解调器International standard interface 国际标准接口Internet 互联网,信息网络实体Interpreter 解释程序,翻译机,转换机ISAM(Indexed Sequential Access Method) 索引顺序存取法ISDN(Integrated Services Digital Network) 综合服务数字网络Isolation 隔离,绝缘ISP(Internally Stored Program) 内部存储程序ISP(Internet Service Provider) 因特网服务提供商39JJAD(Joint Application Design) 联合应用程序设计Jerk 乱窜Jitter 抖动Job file 作业文件Job management 作业管理程序Junk mail 垃圾邮件Justification range 调整范围40KKey field 关键字字段Key search 关键字查找Keyboard 键盘Keyboard console 键盘操纵台Kilobyte 千字节Knowledge base 知识库Knowledge engineer 知识工程师Knowledge engineering 知识工程Knowledge system 知识系统41LLanguage translator 语言翻译程序Large-scale integrated circuit 大规模集成电路Laser 激光,激光器Laser communication 激光通信系统Laser printer 激光打印机Latency 延迟,执行时间Latent image 潜像Law 法律Layer 分层LCD(Liquid Crystal Display) 液晶显示器LEO(Low Earth Orbit) 近地轨道License 许可证Light pen 光笔Line printer 行式打印机42Line terminal multiplexer 终端复用器Linear 线性的,一次的Link 连接,连线,链接Linkage instruction 连接命令LISP programming language LISP 程序设计语言Live conversation 实际的对话Load 装入,加载Load server 加载服务器Local-area network 局域网Logic bomb 逻辑炸弹(病毒)Logic error 逻辑错误Logical operation 逻辑操作LOGO programming language LOGO 程序设计语言Look through 搜寻43Loop 循环,回路,环路Loss less 无损耗Lossy 有损耗的,有缺失的44MMAC(Memory access Controller) 存储器存取操纵器Machine cycle 机器周期Machine language 机器语言Macintosh (苹果公司生产的一种型号的)计算机Macro 宏,宏指令,宏定Macro virus 宏病毒Magnetic tape 磁带Magneto optical disk 磁光盘Mail server 邮件服务器Mailing list 邮件列表Main memory 主存储器Mainframe computer 主计算机Maintenance 保护,维修MAN(Maintenance Alert Network) 保护警报网45Manager 管理程序,管理人员Manipulate 操纵,操纵Manipulation 操纵,操纵,处理,操作Manual function 手动功能,人工功能Manufacturing support system 制造支持系统Marker 标记符Marketing model 市场销售模型Mark-recognition device 标记识别装置Master file 主文件Mathematic characterization of continuous image 连续图象的数学表征MDA(Multi-Dimensional Analysis) 多维分析MDT(Modified Data Tag) 修改过的数据标志Meeting software 会议软件Mega 兆Memory cycle 存储周期46Mega byte 兆字节Megahertz 兆赫Member record 成员记录Memory 经历存储,存储器Memory expansion card 存储器扩充卡Memory module 存储模块Menu bar 菜单条Menu-driven program generator 菜单驱动程序生成程序MED(Micro-Electronic Device) 微电子器件Meta-data 元数据MICR(Magnetic Ink Character Recognition) 磁性墨水字符识别Microcomputer 微型计算机Micro controller 微操纵器Microprocessor 微处理器Microwave 微波47Middleware communication model 媒件通信模型MIDI(Music Instrument Digital Interface) 乐器数字接口Miniaturization 小型化MIPS(Million Instructions Per Second) 每秒百万条指令Mirror 镜像MIS(Management Information System) 信息管理系统MMX technology MMX 技术Model 模型,机样,型号Modem 调制解调器Module design 模块设计Monitor 监视器,监督Monitor mode 监控方式Monochrome display 单色显示Mouse 鼠标Mouse pointer 鼠标指示器48Moving pictures 活动图象MPP(Massively Parallel Processor) 巨型并行处理器Multifunction device 多功能装置Multimedia 多媒体Multimedia environment 多媒体环境Multipartite virus 复合性病毒Multiplexer 多路转接器Multiplexing 多路转换Multipoint line 多点线路Multi-port 多端口Multiprocessing 多重处理Multiprogramming 多道程序设计(操纵)Multitasking 多任务Multi-user platform 多用户平台49NNarrow band services 窄带业务Nationwide network 全国范围的网络Natural language 自然语言Natural language processing 自然语言处理NC language processor NC 语言处理器Necessary bandwidth 必要带宽Net ware 网件Network 网络Network adapter 网络适配器Network computer 网络计算机Network database 网络数据库Network facilities resources 网络设备资源Network harms 网络损害50Network information resources 网络信息资源Network interface card (NIC) 网络接口卡Network piracy 网络盗版Network server 网络服务程序,网络服务器Networked hypertext protocol 网络超文本协议Neural network 神经网络Node 节点,网点Non-interacting control system 非交互式操纵系统Non-procedural language 非过程语言Non-volatile chain 非易失链NOS(Network Operating System) 网络操作系统Null set 空集Numeric key 数字键51OOAS(Office Automation System) 办公自动化系统Object 目标,对象,结果,物体Object code 目标代码OCR(Optical Character Recognition) 光符识别Odd parity 奇数奇偶校Off-line equipment 脱机设备Off-line storage 脱机存储器Off-the-shelf software 现成的软件OLE(Object Linking and Embedding) 对象的链接与嵌入OMR(Optical Mark Recognition) 光标记识别Onboard 板载的One-level code 一级代码One-to-many 一对多的52Online processing 联机处理Online storage 联机存储器OODBS(Object Oriented Data Base System) 面向目标的数据库系统OOO(Out Of Order) 发生故障,次序混乱Open network 开放式网络Operating environment 操作环境,运行环境Operating system 操作系统Operation control 操作操纵Operator 运算符,操作员Optical card 光卡Optical disk 光盘Optical Ethernet 光以太网Optimization 优化Optoelectronic receiver 光电子接收机Organization 机构,组织,结构,体系53Organization chart 组织图,结构图OS/360(Operating System/360) 360 型操作系统OSI(Open System Interconnection) 开放系统互连Output 输出Owner record 主记录,自由记录54PPackage 分组Packaged software 封装式软件包Packet 包,数据包,分组报文Packet switching 包交换Pager 页面调度程序Painting 涂色Parallel data transmission 并行数据传输Parallel implementation 并行执行Parallel port 并行端口Parallel processing 并行处理Parent record 母记录Parity bit 奇偶校验位Parity scheme 奇偶校验方案55PASCAL programming language PASCAL 程序设计语言Passive 无源的Passive network 无源网络Password 口令Path 路径PBX(Private Branch Exchange) 专用交换分机,用户交换机PC(Personal Computer) 个人计算机PC application software 个人计算机应用软件PC host operating system 个人计算机主机操作系统PCI(peripheral Component Interconnect)外围部件互连PCMCIA(Personal Computer Memory Card International Association) 个人电脑内存储卡国际协会PDA(Personal Digital Assistant) 个人数字助理PDL(Picture Description Language) 画面描述语言Peak 峰值56Peer-to-peer 层间,层到层PEM(Processing Element Memory) 处理单元存储器Perception system 感知系统Peripheral device 外围设备Personal finance software 个人财务软件Personal identification code 个人识别代码PERT chart editing PERT 图编辑PGP(Programmable Graphics Processor) 可编辑图形处理机Phonetic keyboard 语音键盘Photo-digital store 光数字存储器Photolithographic mask layer 光刻掩蔽层Physical storage 物理存储器PIM(Processor Interface Module) 处理程序接口模块PIN(Personal Identification Number) 个人识别号码Pixel store 像素存储器57PL/1 programming language PL/1 程序设计语言Platform position computer 平台位置计算机Plotter 绘图仪Plug and play system 即插即用系统Plug-in card 插件Pointing device 指示装置Point-of-sale terminal 销售点终端Point-to-point line 点对点线路,专用线Polymorphism 多形性,多机组合形势Pop-up menu 弹出选项单Port 端口,进出口Portable operating system 可移植操作系统Portable terminal 便携式终端POST(Power-on Self Test) 通电自检Power supply 电源,供电58PPP(Parallel Pattern Processor) 并行模式处理程序Precision 精确度Preliminary design 初步设计Presentation layer 表示层Presentation graphic 表示图形Presentation software 显示软件Preventive maintenance 预防性保护Previewing 预检,预览Primary storage 主存储器Print server 打印服务程序Printer 打印机Printing document 打印文档Privacy 保密性Procedural error 过程错误Procedural language 过程型语言59Procedure 过程,程序,步骤Process 处理,进程Process model 过程模型Processing 处理,加工Processing hardware 处理硬件Processor 处理程序,处理机Production language compiler 产生式语言编译程序Productivity 生产率Productivity tool 生产率工具Professional programmer 专业程序设计员Program 程序,计划,规划,方案Program file 程序文件Program flowchart 程序流程图Program independence 程序独立性Programmer 程序设计人员,编程器60Programming 程序设计,编程Programming language 程序设计语言Programming procedure 程序设计过程Project management software 工程项目管理,计划管理Project management software 工程项目管理软件PROLOG programming language PROLOG 程序设计语言Proprietary software 专有软件Proprietary system 专用系统Protocol 协议Prototype 样机,原型Prototyping 原型开发,样机研究Pseudo-code 伪代码Public communication carriers 公共通信载体Public domain 公用域Pull-down menu 下拉菜单61Pulse code modulation 脉冲码调制62QQBE(Query By Example) 仿效实例询问QIC(Quality Insurance Chain) 质量保证链Query 询问,查询Query facility 询问功能软件Query language 询问语言Query-and-reporting processor 询问与报告处理程序Quiet code 静止代码QWERTY keyboard QWERTY 键盘63RRAD(Rapid Access Device) 快速存取设备RAM(Random Access Memory) 随机存取存储器,内存Random access storage 随机存取存储器Random file organization 随机文件结构Raster graphics 光栅图形Reading 读,读取Real-time processing 实时处理Reasoning 推理,推论,推导Recalculation 重算Receiving entity 接收实体Receiving system 接收系统Record 记录Reference mark 参考标记64Reference model 参考模型Reference software 参考软件Refresh rate 更新率,刷新率Refreshable program 可刷新程序Regenerate 再生Register 寄存器Relational database 关系数据库Relational model 关系模型Release 释放Reliable 可靠的Reliability 可靠性Remote-control 遥控Remote device 远程设备Remote terminal 远程终端Removable hard disk 可移动硬盘65Repeater 中继器Repeater spacing 中继距离Replace command 替换命令Report generator 报告生成程序Resistor 电阻器Resolution 分辨率Retrieval performance 检索性能Return key 返回键RFI(Read Frequency Input) 读频率输入RGB monitor 红、绿、蓝显示器RIB(Resource Information Block) 资源信息块Ring network 环形网络RISC microprocessor RISC 微处理机Robot 机器人,自动仪Robotics 机器人学,机器人技术66Rollback 重新运行,重算ROM BIOS (Read-Only Basic Input/Output System) 只读存储器基本输入/输出系统Root record 根记录Router 发送程序,路由确定程序,路由器Row 行RPG(Report Program Generator) 报表程序生成程序RPS(Random Pattern Search) 随机模式搜索RS(Record Separator) 记录分隔符Run 运行Rupture 裂断,破裂67SSampling rate 取样率SAR(Source Address Register) 源地址寄存器Satellite 卫星,人造地球卫星Save 存储,储存Save area 储存区Scan 扫描Scanning device 扫描设备,扫描装置Scheduling software 调度软件Screen 屏幕Scrolling 卷动,滚动Scrubbing 除掉,刷去SCSI(Small Computer System Interface) 小型计算机系统接口SDL(System Development Language) 系统开发语言68Search 检索,查找Search command 查找命令Search engine 查找机Searching tool 搜寻工具Second-generation programming language 第二代程序设计语言Secondary application 辅助应用程序Secondary storage 辅助存储器,二级存储器Secondary storage sub system 辅助存储子系统Section overhead 段开销Sector 扇区,分段Security 安全性,保密性,安全措施Security system 安全系统Seek time 查找时间,定位时间Selection control 选择操纵Semiconductor 半导体69Semiconductor memory 半导体存储器Semi-structured information 半结构化问题Sender 发送器Sensor 传感器Sequence control 顺序操纵Sequential file organization 顺序文件组织Sequential storage 顺序存储器Serial 串行的Serial data transmission 串行数据传输Serial port 串行端口Serial processing 串行处理Server 服务器Service-independent network 与业务无关的网络Session layer 会话层Shared database 共享数据库70Sharing resource 共享资源SHELL software system SHELL 软件系统Shrink-wrapped multiprocessing operating system 精缩围绕多处理操作系统Silicon 硅SIMM(Single in-line Memory Module) 单列直插式存储模块Simplex transmission 单项传输Simulation programming language 模拟程序设计语言Simulator 模拟程序,模拟器Single user 用户Smalltalk programming language Smalltalk 程序设计语言Smart card 智能卡,收费卡Softcopy 软拷贝Software 软件,软设备Software engineer 软件工程师Software engineering 软件工程71Software license 软件许可证Software package 软件包,程序包Software piracy 软件非法翻印,软件侵犯版权Software suite 软件套件Software tool 软件工具Solid error 固定错误Sorting database 分类数据库Sound 声音Sound card 声卡Sound output 声音输出Source code 源代码Source date entry 源数据录入Source program file 源程序文件SPA(Signal Processing Auxiliary) 信号处理辅助设备Speech recognition system 语音识别系统72Speech synthesis 语音合成Speed 速度Speed up 加速Spelling checker 拼法检验程序Split 分发,分散Spreadsheet 电子数据表SQL(Structured Query Language) 结构化查询语言Squeeze 压缩Standardized port 标准化的端口Star network 星形网络STM(Short Term Memory) 短期存储器Storage 存储,存储器Storage hardware 存储硬件Strategic decision 战略性决策Streaming audio 流式音频73Streaming video 流式视频Stress 应力Structure chart 结构图Structured information 结构化信息Structured programming 结构化程序设计Structured walkthrough 结构化普查Subprogram 辅程序,子程序Supercomputer 巨型计算机Superconductor 超导体Supervisor 管理程序,主管人SVDF(Segmented Virtual Display File) 分段虚拟显示文件Swapping 交互,调动Switch 打开,开关,交换机Switching technique 交换技术Synchronous DXC 同步数字交叉连接74Synchronous transmission 同步传输Synchronous transmission system 同步传输系统Syntax 语法,句法Syntax error 语法错误System 系统,体制,装置System analysis 系统分析System analyst 系统分析员System clock 系统时钟System design 系统设计System development 系统开发System engineer 系统工程师System flowchart 系统流程图System implementation 系统实现方法System maintenance 系统保护System recovery 系统恢复75System software 系统软件System testing 系统测试System unit 系统单元76TTabulating machine 制机表Target variable 目标变量Task management 任务管理程序TCT(Terminal Control Table) 终端操纵表Telecommunication 远程通信,电信Teleconference 电信会议Telemedicine 电视医疗Telephone network 电话网Telephony 电话学Telex network 用户电报网Tel net 电信网,远程通信网络Terminal 终端Terminal address 终端地址77Terminal emulation 终端仿真Test 测试,检验Test equipment 测试设备Text 正文,文本Text segment 正文段Textual messages 文本信息Thesaurus 主题词表,同义词汇Third-generation programming language 第三腮程序设计语言Through-mode fashion 贯穿方式Time slicing 时间分片Time-sharing 分时,时间分配Tong-haul telecommunication system 长途通信系统Top-down program design 自顶向下程序设计Top management 主管,主控Touch screen 触屏78TPI(Target Position Indicator) 目标位置指示器TPS(Transaction Processing System) 事务处理系统TPT(Time Priority Table) 时间优先表Track 磁道,轨道,声道Trackball 跟踪球Traffic segregation 流量隔离Transaction 事项,事务处理,交易Transaction file 细目文件,事项文件Transient error 瞬时错误Transmission 传输,发送,传送Transmission unit 传输单元Translate 转换Tributary signals 支路信号Trojan horse 特洛伊木马True color 真彩色79Tuple 元组,字节组Turing test 图灵测试Twisted-pair wire 绞合线Typeface 字样80UUndo command 作废命令Unexpected halt 意外停机Unicode 单一代码UNIVAC(Universal Automatic Computer) 通用自动计算机Universal access 统一的接入Universal product code 通用产品代码Universally 普遍地,通用地UNIX operating system UNIX 操作系统Unprotected field 非保护字段Unstructured file 非结构文件Unstructured information 非结构信息UPS(Uninterruptible Power Supply) 不间断供电电源Upward compatibility 向上兼容性81URL(User Requirements Language) 用户要求语言USE(User System Evaluator) 用户系统评价程序User 用户,使用者User interface 用户接口Utility control console 有用操纵台Utility program 有用程序Utility unit 有用设备82VValue 值,算式Variable format 可变格式Varying bandwidth 可变宽带Vector graphics 向量图Version 文本,版本Very-high-level programming language 超高级程序设计语言Video compression 视频压缩Video computer system 可视计算机系统Video conference 视频会议Video file 可见文件Video memory 视频存储器Video scan 视频扫描Virtual classroom 虚拟教室83Virtual container 虚容器Virtual memory 虚拟机存储器Virtual office 虚拟办公室Virus 病毒Visual 图象的Visual programming 直观程序设计VLSI(Very-large-scale Integration) 超大规模集成电路Voice encoding techniques 语音编码技术Voice mail 声音邮件Voice output device 声音输出装置Voice recognition system 声音识别系统Volatile file 易变文件Volatile memory 易失性存储器VR(Virtual Reality) 虚拟现实VRAM(Video Random Access Memory) 视频随机存取存储器84VRM(Virtual Resource Manager) 虚拟资源管理程序VSAM(Virtual Sequential Access Method) 虚拟顺序存取法85WWait state 等待状态WAN(Wide Area Network) 广域网络Web browser 网页浏览器Web business 网上商务Web site 网站Wideband subscriber loop system 宽带用户环路系统Window mode 窗口方式Windows operating system Windows 操作系统Wired communication 有线通信Wireless communication 无线通信。

国内外遥感核心期刊

国内外遥感核心期刊

国内外遥感核心期刊中国科技论文统计源期刊-中国科技核心期刊:科技部中信所评价期刊学术质量和影响得出,用于科研绩效评估。

中国科学引文索引数据库:中科院编制,偏重于基础科学领域的期刊中文核心期刊:北京大学图书馆编制,指导图书馆的文献采购中国核心期刊遴选数据库:万方数据公司制作的科技期刊资源数据库,不用于评价中国学术期刊(光盘版)/中国期刊全文数据库/中国学术期刊综合评价数据库:清华大学制作的科技期刊资源数据库,不用于评价中文核心期刊:------------------------------------------------------------------------------- 遥感学报地理与地理信息科学地理研究计算机工程与应用微计算机信息计算机应用研究中国图像图形学报计算机应用与软件测绘学报武汉大学学报信息科学版测绘通报地图遥感学报大地测量与地球动力学测绘科学测绘学院学报安徽农业科学中国科技核心期刊:---------------------------------------------------------遥感技术与应用遥感信息地球科学信息世界地质国土资源遥感环境保护科学测绘工程普通期刊:-------------------------------------------------------------地理空间信息国外遥感类相关杂志与投稿1. 期刊名称:GPS SOLUTIONSISSN: 1080-5370出版频率: Quarterly出版社: SPRINGER HEIDELBERG, TIERGARTENSTRASSE 17, HEIDELBERG, GERMANY, D-69121 影响因子:主题范畴: REMOTE SENSING变更情况: 2005New2. 期刊名称:SURVEY REVIEWISSN: 0039-6265出版频率: Quarterly出版社: COMMONWEALTH ASSOC SURVEYING LAND ECONOMY, C A S L E, UNIV WEST ENGLAND,C/O FACULTY BUILT ENVIRONMENT,FRENCHAY CAMPUS, COLDHARBOUR LBRISTOL, ENGLAND, BS16 1QY 期刊网址:/影响因子: 0.102(2002)主题范畴: GEOSCIENCES, MULTIDISCIPLINARY; REMOTE SENSING; ENGINEERING, CIVIL 3. 期刊名称:PHOTOGRAMMETRIC RECORDISSN: 0031-868X出版频率: Quarterly出版社: PHOTOGRAMMETRIC SOC, UNIV COLL LONDON, DEPT GEOMATIC ENGINEERING,GOWER ST, LONDON, ENGLAND, WC1E 6BT出版社网址:/期刊网址:/publications/publicationsFrameset.htm影响因子: 0.353(2001); 0.633(2002)主题范畴: GEOGRAPHY, PHYSICAL; GEOSCIENCES, MULTIDISCIPLINARY; REMOTE SENSING; PATHOLOGY4. 期刊名称:INTERNATIONAL JOURNAL OF REMOTE SENSINGISSN: 0143-1161版本: SCI-CDE出版频率: Semimonthly出版社: TAYLOR & FRANCIS LTD, 4 PARK SQUARE, MILTON PARK, ABINGDON, ENGLAND, OX14 4RN出版社网址:/期刊网址:/journals/tf/01431161.html影响因子: 0.827(2001),1.154(2002)主题范畴: REMOTE SENSING; IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY5. 期刊名称:PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSINGISSN: 0099-1112版本: SCI-CDE出版频率: Monthly出版社: AMER SOC PHOTOGRAMMETRY, 5410 GROSVENOR LANE, SUITE 210, BETHESDA, MD, 20814-2160出版社网址:/期刊网址:/publications.html影响因子: 0.841(2001);1.176(2002)主题范畴: GEOGRAPHY, PHYSICAL; GEOSCIENCES, MULTIDISCIPLINARY; REMOTE SENSING; PATHOLOGY6. 期刊名称:JOURNAL OF GEODESYISSN: 0949-7714版本: SCI-CDE出版频率: Monthly出版社: SPRINGER-VERLAG, 175 FIFTH AVE, NEW YORK, NY, 10010出版社网址:/期刊网址:/app/ ... gpublicationresults,id:100435,1 影响因子: 0.960(2001),0.726(2002)主题范畴: GEOCHEMISTRY & GEOPHYSICS; REMOTE SENSING7. 期刊名称:ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSINGISSN: 0924-2716出版频率: Quarterly出版社: ELSEVIER SCIENCE BV, PO BOX 211, AMSTERDAM, NETHERLANDS, 1000 AE出版社网址:http://www.elsevier.nl期刊网址:http://www.elsevier.nl/locate/isprsjprs影响因子: 0.963(2001),0.389(2002)主题范畴: GEOGRAPHY, PHYSICAL; GEOSCIENCES, MULTIDISCIPLINARY; REMOTE SENSING; IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY8. 期刊名称:RADIO SCIENCEISSN: 0048-6604版本: SCI-CDE出版频率: Bimonthly出版社: AMER GEOPHYSICAL UNION, 2000 FLORIDA AVE NW, WASHINGTON, DC, 20009出版社网址:/期刊网址:/journals/rs/影响因子: 1.139(2001),0.796(2002)主题范畴: GEOCHEMISTRY & GEOPHYSICS; METEOROLOGY & ATMOSPHERIC SCIENCES; REMOTE SENSING; TELECOMMUNICATIONS; INSTRUMENTS & INSTRUMENTATION9. 期刊名称:IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSINGISSN: 0196-2892版本: SCI-CDE出版频率: Bimonthly出版社: IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 345 E 47TH ST, NEW YORK, NY, 10017-2394出版社网址:/portal/index.jsp期刊网址:/soc/grss/tgars.html影响因子: 1.605(2001),1.603(2002)主题范畴: GEOCHEMISTRY & GEOPHYSICS; REMOTE SENSING; ENGINEERING, ELECTRICAL & ELECTRONIC10. 期刊名称:REMOTE SENSING OF ENVIRONMENTISSN: 0034-4257版本: SCI-CDE出版频率: Monthly出版社: ELSEVIER SCIENCE INC, 360 PARK AVE SOUTH, NEW YORK, NY, 10010-1710出版社网址:http://www.elsevier.nl/期刊网址:http://www.elsevier.nl/inca/publications/store/5/0/5/7/3/3/index.htt 影响因子: 1.697(2001),1.992(2002)主题范畴: REMOTE SENSING; ENVIRONMENTAL SCIENCES; IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY11. 期刊名称:CANADIAN JOURNAL OF REMOTE SENSINGISSN: 0703-8992出版频率: Bimonthly出版社: CANADIAN AERONAUTICS SPACE INST, 1685 RUSSELL RD, UNIT 1-R, OTTAWA, CANADA, K1G 0N1出版社网址:http://www.casi.ca/期刊网址:http://www.casi.ca/index.php?pg=cjrs影响因子: no主题范畴: REMOTE SENSING12. 期刊名称:IEE Proceedings -- Radar, Sonar & Navigation (已经更名:IET Radar, Sonar & Navigation)ISSN: 1350-2395版本: SCIE出版频率: Bimonthly出版社: IEE-INST ELEC ENG, MICHAEL FARADAY HOUSE SIX HILLS WAY STEVENAGE, HERTFORD, ENGLAND, SG1 2AY出版社网址:期刊网址:/IP-RSN影响因子: no主题范畴: radar, radio location, radio navigation and surveillance purposes. Examples of the fields of application include radar, sonar, electronic warfare, avionic and navigation systems. Processing directed towards the above application areas includes advances in matched filters and wideband signal correlation for radar and sonar systems; algorithms and processor designs for adaptive array; bearing estimation; range/Doppler radar and acoustic image processing operations for SAR, sonar, target identification functions, etc13. 期刊名称:IEEE Transactions on Image ProcessingISSN: 1057-7149版本: SCI出版频率: Monthly出版社: IEEE Signal Processing Society出版社网址:期刊网址:/servlet/opac?punumber=83影响因子: no主题范畴: Signal-processing aspects of image processing, imaging systems, and image scanning, display, and printing. Includes theory, algorithms, andarchitectures for image coding, filtering, enhancement, restoration, segmentation, and motion estimation; image formation in tomography, radar, sonar, geophysics, astronomy, microscopy, and crystallography; image scanning, digital half-toning and display, andcolor reproduction.14. 期刊名称:Geophysical Research LettersISSN: 0094-8276版本: SCI出版频率: Semimonthly出版社: AMER GEOPHYSICAL UNION, 2000 FLORIDA AVE NW, WASHINGTON, USA, DC, 20009 出版社网址:期刊网址:/journals/gl/影响因子: 2.491(2005)主题范畴: focus on a specific discipline or apply broadly to the geophysical science community15. 期刊名称: IEEE Transactions on Geoscience and Remote Sensing Letter ISSN: 0196-2892版本:出版频率:出版社: TGARS Manuscript Reivew Assistant, GEOSCIENCE AND REMOTE SENSING LETTERS,IEEE Periodicals,445 Hoes Lane Piscataway, NJ 08855 USA出版社网址:期刊网址:/menu.taf?menu=publications&detail=GRSL影响因子:主题范畴: GEOCHEMISTRY & GEOPHYSICS; REMOTE SENSING; ENGINEERING, ELECTRICAL & ELECTRONIC16. 期刊名称:IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMSISSN: 0018-9251版本: sci出版频率: Quarterly出版社: Aerospace & Electronic Systems Society出版社网址:期刊网址:/servlet/opac?punumber=7影响因子:主题范畴: the equipment, procedures, and techniques applicable to the organization, installation, and operation of functional systems designed to meet the high performance requirements of earth and space systems17. 期刊名称:Pattern Recognition LettersISSN: 0167-8655版本: SCIE出版频率: Subscriptions for the year 2007, Volume 28, 16 issues出版社: ELSEVIER SCIENCE BV, PO BOX 211, AMSTERDAM, NETHERLANDS, 1000 AE出版社网址:期刊网址:/wps/find/journaldescription.cws_home/505619/descr iption#description影响因子: 2005: 1.138主题范畴: ? statistical, structural, syntactic pattern recognition;? neural networks, machine learning, data mining;? discrete geometry, algebraic, graph-based techniques for pattern recognition;? signal analysis, image coding and processing, shape and texture analysis;? computer vision, robotics, remote sensing;? document processing, text and graphics recognition, digital libraries;? speech recognition, music analysis, multimedia systems;? natural language analysis, information retri;? biometrics, biomedical pattern analysis and information systems;? scientific, engineering, social and economical applications of pattern recognition;? special hardware architectures, software packages for pattern recognition.18. 期刊名称:Multidimensional Systems and Signal ProcessingISSN: 0923-6082 (Print) 1573-0824 (Online)版本:出版频率: Monthly出版社: Springer Netherlands出版社网址:期刊网址:/site/catalog/Journal/1582.jsp?top=2&mid=3&bottom=7&su bsection=12影响因子: 0.722 (2005)主题范畴: While the subject of multidimensional systems is concerned with mathematical issues designed to tackle a broad range of models, its applications in signal processing have been known to cover spatial and temporal signals of diverse physical origin. The current problem faced, due to the widely scattered nature of publications in this area, will be circumvented through the unity of theme in thisjournal, so that research is facilitated and expected with much reduced duplication of effort and much enhanced communication.19. 期刊名称:International Journal of Applied Earth Observation and Geoinformation ISSN: 0303-2434版本: SCIE出版频率: Quarterly出版社: ELSEVIER出版社网址:期刊网址:/wps/find/journaldescription.cws_home/622741/descr iption#description影响因子:主题范畴: The International Journal of Applied Earth Observation and Geoinformation publishes original papers that apply earth observation data to inventory and management of natural resources and the environment. In this context, earth observation data are normally those acquired from remote sensing platforms such as satellites and aircraft, complemented and supplemented by surface and subsurface measurements and mapping. Natural resources include forests, agricultural land, soils, water resources, mineral deposits, and land itself as a foundation for infrastructure and housing. Environmental issues include biodiversity, land degradation, industrial pollution and natural hazards such as earthquakes, floods and landslides. The focus, which can be either conceptual or data driven, includes all major themes in geoinformation, like capturing, databasing, visualization and interpretation of data, but also issues of data quality and spatialuncertainty. Since the scope is large, contributions should be of the highest quality. Some will convey important recommendations for environmental management and policy, and we encourage 'Discussion' articles that stimulate dialogue between earth observation studies and managers in a statistically sound way. Papers addressing these topics in the context of the social fabric and economic constraints of developing countries are particularly welcome.20. 期刊名称:Computers & GeosciencesISSN: 0098-3004版本: SCIE出版频率: Subscriptions for the year 2007, Volume 33, 10 issues出版社: ELSEVIER出版社网址:期刊网址:/wps/find/journaldescription.cws_home/398/descript ion#description影响因子: 2005: 0.779主题范畴: spatial analysis, geomathematics, modelling, simulation, statistical and artificial intelligence methods, e-geoscience, geoinformatics, geomatics, geocomputation, image analysis, remote sensing, and geographical information science.21. 期刊名称:SIGNAL PROCESSINGISSN: 0165-1684版本: SCIE出版频率: Monthly出版社: ELSEVIER出版社网址:期刊网址:/wps/find/journaldescription.cws_home/505662/descr iption#description影响因子: 2005: 0.694主题范畴: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Speech Processing; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications22. 期刊名称:Journal of Quantitative Spectroscopy & Radiative TransferISSN: 0022-4073版本: SCIE出版频率: Subscriptions for the year 2007, Volumes 103-108, 18 issues出版社: ELSEVIER出版社网址:期刊网址:/wps/find/journaldescription.cws_home/272/description#description影响因子: 2005: 1.685主题范畴:· Theoretical and experimental aspects of the spectra of atoms, molecules, ions, and plasmas. · Spectral lineshape studies including models and computational algorithms. · Atmospheric spectroscopy. · Theoretical and experimental aspects of light scattering. · Application of light scattering in particle characterization and remote sensing. · Application of light scattering in biological sciences and medicine. · Radiative transfer in absorbing, emitting, and scattering media. · Radiative transfer in stochasticmedia. · Electromagnetic energy transfer with near-field, nano-scale, and coherent effects. · Planetary, atmospheric, and environmental radiative transfer. · Radiative transfer in high-temperature environments, combustion systems, and fires. · Radiant energy emission from plasmas.。

一种基于图生成最优加法链的新方法(IJMSC-V3-N2-4)

一种基于图生成最优加法链的新方法(IJMSC-V3-N2-4)

I.J.Mathematical Sciences and Computing,2017, 2, 37-54Published Online April 2017 in MECS ()DOI: 10.5815/ijmsc.2017.02.04Available online at /ijmscA New Method of Generating Optimal Addition Chain Based onGraphK. Mani a, M. Viswambari ba Nehru Memorial College, Puthanampatti, Trichy, TamilNadu, India-621 007b Nehru Memorial College, Puthanampatti, Trichy, TamilNadu, India-621 007AbstractIn many number theoretic cryptographic algorithms, encryption and decryption is of the form x n mod p, where n and p are integers. Exponentiation normally takes more time than any arithmetic operations. It may be performed by repeated multiplication which will reduce the computational time. To reduce the time further fewer multiplications are performed in computing the same exponentiation operation using addition chain. The problem of determining correct sequence of multiplications requires in performing modular exponentiation can be elegantly formulated using the concept of addition chains. There are several methods available in literature in generating the optimal addition chain. But novel graph based methods have been proposed in this paper to generate the optimal addition chain where the vertices of the graph represent the numbers used in the addition chain and edges represent the move from one number to another number in the addition chain. Method 1 termed as GBAPAC which generates all possible optimum addition chains for the given integer n by considering the edge weight of all possible numbers generated from every number in addition chain. Method 2 termed as GBMAC which generates the minimum number of optimum addition chains by considering mutually exclusive edges starting from every number. Further, the optimal addition chain generated for an integer using the proposed methods are verified with the conjectures which already existed in the literature with respect to addition chains.Index Terms: Optimal Addition Chain, Graph, Conjectures, All Possible Addition Chain, Minimal Addition Chain.© 2017 Published by MECS Publisher. Selection and/or peer review under responsibility of the Research Association of Modern Education and Computer Science1.IntroductionAn addition chain is a finite sequence of positive integers called elements, 1= a0 ≤ a1≤ a2 ≤ …≤ a r = n with the property that for all i>0 there exist a,j, k with a i=a j+a k and r ≥ i ≥ j ≥ k ≥ 0. This is called an addition chain * Corresponding author. +917502334348E-mail address: viswa1391@of length r for the target n. An optimal addition chain is the one which has the shortest possible length denoted by l(n)and it is a strictly increasing sequence as duplicate chain elements could be removed to shorten the chain [14].In addition chain, t he first number is always one, every subsequent number is obtained by adding two early numbers and n occurs at end of the chain. For the given exponent, it is possible to generate several addition chains, and the least length is better. If the shortest addition chain is found, then it will be useful to reduce the number of multiplications. Finding the optimal addition chain is very difficult and not necessarily unique. But it is enough to find optimal addition chain. Though, for the given integer, finding at least one of the shortest addition chains is an NP-hard problem. Based on the shortest addition chain, modular exponentiation is performed very fast. For example, when n=170, all possible optimum addition chains are1-2-3-5-10-20-40-45-85-170 1-2-3-5-10-20-40-80-85-170 1-2-3-5-10-20-40-80-90-1701-2-3-5-10-20-40-80-160-170 1-2-4-5-10-20-40-45-85-170 1-2-4-5-10-20-40-80-85-1701-2-4-5-10-20-40-80-90-170 1-2-4-5-10-20-40-80-160-170 1-2-4-6-10-20-40-80-90-1701-2-4-6-10-20-40-80-160-170 1-2-4-8-9-17-34-51-85-170 1-2-4-8-9-17-34-68-85-1701-2-4-8-9-17-34-68-102-170 1-2-4-8-9-17-34-68-136-170 1-2-4-8-10-20-40-80-90-1701-2-4-8-10-20-40-80-160-170 1-2-4-8-16-17-34-51-85-170 1-2-4-8-16-17-34-68-85-1701-2-4-8-16-17-34-68-102-170 1-2-4-8-16-17-34-68-136-170 1-2-4-8-16-18-34-68-102-1701-2-4-8-16-18-34-68-136-170 1-2-4-8-16-32-34-68-102-170 1-2-4-8-16-32-34-68-136-170This is because the element 5 in the addition chains can be formed as (5= 2+3, 5= 4+1), 10 can be formed as (10= 5+5, 10= 8+2, 10= 6+4), 17 can be formed as (17= 8+9, 17= 16+1). Then, 34 can be given as (34=17+17, 34=18+16), 85 can be formed as (85= 45+40, 85= 80+5, 85= 51+34, 85= 68+17). Finally, for 170 it can be formed as (170= 85+85, 170= 90+80, 170= 160+10, 170= 102+68, 170=136+34).It is a known fact that larger the size of the field utilized, harder the problem of optimizing the computation of the field exponentiation. This is because a heuristic strategy is normally used to find the optimal addition chain for hard optimization problems. Since these problems have huge search spaces, they do not provide the guarantee on the quality of the solutions. Normally, a heuristic method starts from a non-optimal solution (partial solution) and iteration. After performing some iteration, it improves the solution until a reasonable valid solution could be achieved. Thus, to improve the partial solution which is considered at the initial stage, either deterministic or probabilistic search criteria is used [18].Many methods already exist in the literature to generate the optimal addition chain. They are classified into two types viz.; deterministic and evolutionary algorithms. In deterministic, the optimal addition chain may not be obtained at all time. This is because everything is predetermined. Binary method, factor method, window method, sliding window method etc., are some examples of deterministic type. Evolutionary algorithms are inspired by the idea of either natural evolution or social behaviour of insects or birds. Though they may produce optimal addition chains for an integer, they are not obtained by a single run which eventually takes more time. Genetic Algorithm (GA), Artificial Immune System (AIS), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO) etc., are some evolutionary algorithms.The rest of the paper is organized as follows. Section 2 illustrates the work related to the addition chain. Section 3 describes some basic definitions commonly used in the literature of addition chain. The proposed methods for generating addition chain based on graphical representation and the working principle of the said methods are shown in section 4. Section 5 discusses the experimental results and their significance. Finally, section 6 ends with conclusion.2.Related WorkThis section shows various related work that were done in the available literature in generating the addition chain and their usefulness in the proposed work.Edward G. Thurber [2] has described the computational aspects of generating minimal length of addition chains for integer n. In that, Search time for such chains was cut down using various pruning techniques. To increase the efficiency of the search further, the author introduced slant bounds. Also proved Scholz-Brauer Conjecture was true if n includes an l0-chain among its minimal chains. In [3], Noboru Kunihiro and et. al. have proposed two methods called run-length method and hybrid method to generate the addition chain. And the performance of these two methods are analysed and finally proved that the hybrid method is efficient than the other methods. The method reduces the addition chain length by 8% compared to other methods. This method works especially for numbers with large hamming weight.Peter Tummeltshammer and James C. Hoe and Markus Puschel [4] have proposed a circuit based approach which combines the addition chains with constants. In this they have also proposed an algorithm which generates all the constants in the given set. They evaluated the quality of circuit using standard cell library. Also they compared the latency and efficiency of the addition chain based approach with the full multiplier. The method generates an algorithm which provides the multiplication logic using a multiplication circuit. Daniel J. Bernstein [6] has presented two new constructive upper bounds on the cost of two- dimensional addition chains. He also proposed a new binary chain to compute and used three additions per exponent bit in order to help protect against side-channel attacks. In [7] Younho Lee et. al., have proposed an algorithm to find addition/ subtraction chain and reduced the number of windows by subtraction which was based on small window method, and proved that the proposed algorithm found the shorter addition/ subtraction chain compared with previous algorithms.In [8], Nareli cruz-cortes et.al. have explained the use of artificial immune system (AIS) for generating addition chain. They proposed a method for finding addition chains for hard exponents and the shortest addition chain for exponents of size less than 20 bits. The usage of probabilistic heuristic based on AIS search engine for large exponents was proposed. Raveen R. Goundar et al. [9] has proposed a new strategy to find an efficient doubling- free short addition-subtraction chain for an arbitrary integer by utilizing a precise golden ratio. They showed that Golden Ratio Addition Subtraction chain (GRASC) method has attained 12% to 28% reduction in average chain length compared to other methods.Raveen R. Goundar et. al. [10] has proposed an efficient SPA resistant elliptic curve scalar multiplication algorithm over odd prime fields. They also proposed an explicit algorithm short addition-subtraction chain by utilizing golden ratio and named it as Golden Ratio Addition Chain (GRAC). The proposed method has attained 3% to 18% reduction in the average chain length. In [11] Fabien et al., have proposed a method to modify a key generation using small Euclidean addition chain which secure against side-channel attacks. Two different ways to generate Euclidean addition chains was proposed. One was analysis of the size and another was distribution of obtained keys. A new scheme in the context of fixed base point scalar multiplication was proposed.Maurice Mignotte and Amadou Tall [12] have presented the binary method which is optimal for any integer of hamming weight 1 or 2 and also showed that there are exactly four types of addition chains possible for those kind of integers. They proved that binary method is not optimal for integers of hamming weight 3. In [13], Saul Dominguez-Isidro presented Evolutionary Programming (EP) to minimize the length of addition chains. Also, four experiments were designed to test the performance of EP algorithm. This requires less evaluation per run with respect to some state-of-the-art nature-inspired algorithms. Neill Michael Clift [14] described a new algorithm for calculating optimal addition chain. For this, pre-computed values are not needed. This algorithm was faster to calculate ranges of optimal addition chain. In [15], Amadou Tall has proposed Lucas addition-subtraction chains. They also proved that Lucas addition chain gives minimal addition chains for all even integers.M. A. Mohamed and K. A. Mohd Atan [16] have described a new method called composition method in which it is based on the generalization of decomposition method in which the optimal nearer addition chain is almost obtained. In composition method a single rule is used whereas in decomposition method, it uses dedicated rule for each prime from decomposed n. Amadou Tall and Ali Yassin [17] presented a new way of computing the shortest addition chains using generalized continued fractions and Euclidean algorithm. YaraElias and Pierre McKenzie [19] have established the results for arbitrary fixed g and adapted methods for constructing g- addition chains when g=2 to the case g>2.In [20] MA Mohamed and MR MD SAID, have proposed an idea of non-adjacent form into decomposition method at prime layer and named the new hybrid method as signed decomposition method (SDM). And proposed SDM produces shorter addition subtraction chain than older methods. Sajal Chakroborty and Babul Hasan [21] have proposed a technique for scenario based multi-period stochastic programming problems. They developed the technique on decomposition based pricing method. A model was also developed by collecting data from super market and analyzed the profit.3.Basic DefinitionsThis section describes the basic definitions related to addition chains which are useful in understanding the proposed methodology.3.1. Basic steps in addition chainThe construction [14] of each element of an addition chain is called a step. For an addition chain 1 = a0≤ a1≤· · · ≤ a r = n, the following steps are involved.Doubling step: a i = 2a i−1, i > 0Non-doubling step: a i = a j + a k , i > j > k ≥ 0The steps of the form a i = 2a j, j ≤ i −2 are defined as non-doubling steps.Big step: λ(a i) = λ(a i-1) +1Small step: λ(a i) = λ(a i-1)Thus, the length of the addition chain l(n) can be split into two components asl(n) = λ(n)+S(n)It is noted that, not all doubling steps are big steps but big steps are always doubling [14]. Because λ(n) is fixed for a given positive integer, finding optimal addition chains amounts to minimizing the number of small steps across all possible chains. Once the addition chain is generated it must be proved or disproved with various conjectures which already exist in the literature.As Knuth observed [1], either λ(ai) = λ(ai-1) or λ(ai) = λ(ai-1) + 1. In the former case, step i is called a small step and is called a big step otherwise. There are exactly λ(n) big steps in any chain for n. The number of steps, r, in an addition chain for n can be expressed as r = λ(n) +N(n), where N(n) denotes the number of small steps in the chain. It should be noted that N(n) is chain dependent. Minimizing N(n) will result in a minimal length addition chain for n. If j = i -1, then step i is called a star step. An addition chain that consists entirely of star steps is called a star chain. If j = k = i- 1, then step i is called a doubling [2].3.2. Conjectures in addition chainThe various existing conjectures in the addition chain proposed in the literature [12] are∙For any integer n>2k with kϵN, if l(n)=k+1, then n=2k+2j for some j≤k.∙l(2n) = l(n)+1.∙l(2n)≥ l(n).∙If p is a prime, show that, n=2p-1 is also prime (Mersenne prime.), then l(n)= max {l(m); m≤n}, 2≤p≤7.∙l(2n-1) ≤ n-1+l(n).l(n) ≤ log2 (n)+ S2 (n) -1.4.Proposed MethodologyA graph based addition chain has been proposed in this paper. It is noted that a graph denoted as G = (V, E) consists of the set of vertices V = {v1, v2,…,v n} and the set of edges E = {e1, e2,…,e n}. But in the proposed graph based addition chain V represents the set of intermediate numbers which are being used in the addition chain. E represents the edges to connect two numbers in the addition chain. The weight of edge denoted as w(e) is a non-negative integer. Initially, w(e) is assigned 1 and it is incremented by 1 when the same edge is used in generating the addition chain. Without loss of generality, let v1 =1, v i =2, vj= m, 3 ≤ j< l, where m is a non-negative integer except 1, 2and n, and v l=n, where l is the last vertex in which addition chain is to be terminated.A multi-digraph G is a finite non-empty set of objects called vertices denoted by V with a multi-set of ordered vertex pairs called arcs denoted by E. Duplicate elements are allowed in a multi-set. An edge goes from a vertex u ∈V to a vertex v ∈V if (u, v) ∈E [14]. A directed multi-digraph (V, E) consists of vertices V and edges E and a function f: E→ V × V = {(u, v)|u, v ∈V}.In the proposed graph based addition chain, to generate the addition chain acyclic multi digraph is used. This is because minimum two numbers can be generated from a particular number by adding the current number to the previous number or doubling the current number itself.Formally for an addition chain A of length r we have a multi-digraph G A = (V, E, α, ω) where V is the set of vertices, E is the set of edges and α, ω are mappings that take an edge to its start and end vertex respectively. This gives V = {v i: 0 ≤ i ≤ r} and E = {(vγ (i), vi), (vδ(i), vi) : 1 ≤ i ≤ r}, α, ω : E → V, (v1, v2) α → v1, (v1, v2) ω → v2. We label each vertex with its numerical value from the addition chain. In a graph with directed edges, the in-degree of a vertex v, denoted as deg−(v), is the number of edges with v as their terminal vertex. The out-degree of a vertex v, denoted as deg+ (v), is the number of edges with v as their initial vertex. Thus, for each vertex, the d+and d-are minimum two except the first. The vertex would have represented an element calculated in the chain that was not used in the construction of the target.4.1. Proposed Method 1: Graph Based All Possible Addition Chain (GBAPAC)In the proposed GBAPAC method, the first two numbers are always 1 and 2 and the last number is always n, where n is the number for which addition chain is to be formed. To generate the next number in the addition chain from 2, the possibilities are 3 and 4. They are obtained by addition and doubling steps respectively and their corresponding edge weight of 2-3, 2-4 is 1. As 3 and 4 are generated simultaneously from 2, any one of them is considered as next number in the addition chain.Suppose 3 is selected as next number, the other possible numbers from 3 are 4, 5, 6, where 4, 5 are obtained by addition step and 6 is by doubling step. As three numbers are generated from 3, the weight of edge 2-3 is 4 (1+ 3=4) but the edge weight for 3-4, 3-5, 3-6 is 1, since those edges are newly generated. Similarly, if 4 is taken as the next number in addition chain the weight of edge 2-4 is 4 (1+3) with the possibilities from 4 are 5, 6 and 8. Correspondingly the edge weight for 4-5, 4-6, 4-8 is 1. Likewise, taking 5 as next number, 5 can be generated from both 3 and 4. If 5 is obtained from 3, then the other possible numbers from 5 are 6, 7, 8 and10. At the same time edge weight for 2-3 is 6 and 3-5 is 5 but the edge for 5-6, 5-7, 5-8, 5-10 is 1 because they are newly created edges. On the other hand, if 5 is obtained from 4, then the other possibilities are 6, 8, 9 and 10 and their corresponding edge weight is 1. But the edge weight of 2-4 and 4-5 is incremented by one every time when a new possibility is generated. Thus, the edge weight for 2-4 is 6 and 4-5 is 5. The process is terminated when n is reached.In general, let i=1; v i=1 and v i+1=2. The corresponding edge weight w(e i(v i, v i+1))=1. To generate the next number, i=i+1; v i← v i+1, where v i+1is computed as v i+1 ← {v i+v j , 1≤j≤i} , w(e i(v i, v i+1))=1, w(e i(v i, v i-1))= w(e i(v i-1, v i))+ d+(v i). As v i+1 has sometime more than one possibility depending on j, at a time any one value ofv i+1 will be taken as the next number randomly. From that, other possible numbers are generated using addition and doubling. The edge weight will be increased based on the numbers which occur previously in the addition chain. Similar process can also be performed for other possibilities of v i+1. The process is repeated till it reaches n and the optimal addition chain is one which has maximum edge weight between numbers starting from 1 to n or the length of the addition chain for the given integer n is accepted as input. The proposed GBAPAC method is shown in algorithm 1.Algorithm 1 GBAPAC(n)//This algorithm is used to find the optimal addition chain for the given integer n//opac – optimal addition chain, lopac – length of opacInput n, wOutput opac (n), lopac (n)BeginStep 1: Initialization of required variablesi ← 1; c1← 1; c2← 2;Step 2: Outputting the first edge of addition chainPrint C1‘-‘ C2Step 3: Switching to the next number of addition chaine1 (i) ← c1|| c2w1 (i) ← 1; e2 (i) ← c2|| c3; w2 (i) ← 1opac (i) ← e1 (i) ; lopac (i) ← 1pac (i) ← e1 (i) || e2 (i)lpac (i) ← w1 (i) + w2 (i)Step 4: Repeat the following till the optimal addition chain is reacheddo{i++if (i≥ 2){t ← c3c1← c2; c2← t; e1 (i) ← c1|| c2w1 (i) ← w1 (i-1) + d+(v i) *e2 (i) ← c2|| c3; w2 (i) ← 1opac (i) ← pac (i-1); lopac (i) ← w1 (i)opac (i) ← opac || C3; lpac (i) ← lpac (i) + 1i++;}}while (lopac ≤ w && c3 == n)Algorithm 2 GBMAC(n)All the steps involved in algorithm 1 GBAPAC are also used in algorithm 2 GBMAC except w 1 (i) ← w 1 (i-1)+14.1.1. The working principle of GBAPAC algorithmThe working principle of the proposed GBAPAC algorithm is shown in Table 1. In order to understand the proposed method, the following notations are used.{ac- Addition chain; c 1- previous number in ac; c 2-current number in ac; c 3-next number in ac e(c i , c j ): edge between i th and j th number; w(e):weight of edge e; l(ac)- length of addition chain; opac -optimal addition chain; l(opac)-length of opac; apac: possible addition chain; l(apac)-length of apac}.Table 1. Working Principle of GBAPAC4.1.2. Proposed Method 1 – An ExampleTo generate the addition chain for an integer n=12. The length of the addition chain given as input is 4. As the addition chain always starts with 1, i.e., v 1=1 and the next number should be 2 i.e., v 2=2 which is obtained either by adding 1 to itself or doubling it. Since 1 and 2 are must in generating the addition chain for 12, the edge weight is not considered. It is shown in fig.1.c 1 c 2 c 3 e 1(c 1,c 2) w(e 1) e 2(c 1,c 2) w(e 2) opac (c 2) l(opac (c 2)) apac(e 2) l(apac(e 2)) 1 2 3 4 1-2 1-2 1 1 2-3 2-4 1 1 1-2 1-2 1 1 1-2-3 1-2-4 2 2 23 4 5 6 2-3 2-3 2-3 2 2 2 3-4 3-5 3-6 1 1 1 1-2-3 1-2-3 1-2-3 2 2 2 1-2-3-4 1-2-3-5 1-2-3-6 3 3 3 45 6 8 2-4 2-4 2-4 3 3 3 4-5 4-6 4-8 1 1 1 1-2-4 1-2-4 1-2-4 2 2 2 1-2-4-5 1-2-4-5 1-2-4-5 3 3 3 3 4 7 3-4 2 4-7 1 1-2-3-4 3 1-2-3-4-7 4 4 56 7 9 10 4-5 4-5 4-5 4-5 2 2 2 2 5-6 5-7 5-9 5-10 1 1 1 1 1-2-4-5 1-2-4-5 1-2-4-5 1-2-4-5 3 3 3 3 1-2-4-5-6 1-2-4-5-7 1-2-4-5-9 1-2-4-5-10 4 4 4 4 67 8 10 12 4-6 4-6 4-6 4-6 2 2 2 2 6-7 6-8 6-10 6-12 1 1 1 1 1-2-4-6 1-2-4-6 1-2-4-6 1-2-4-6 3 3 3 3 1-2-4-5-7 1-2-4-5-8 1-2-4-5-10 1-2-4-5-12 4 4 4 4 45 8 4-5 2 5-8 1 1-2-3-4-5 4 1-2-3-4-8 56 9 11 4-6 4-6 2 2 6-9 6-11 1 1 1-2-3-4-6 1-2-3-4-5-6 4 5 1-2-3-4-6-9 1-2-3-4-5-6-11 5 6 78 9 10 11 14 4-7 4-7 4-7 4-7 4-7 2 2 2 2 2 7-8 7-9 7-10 7-11 7-14 1 1 1 1 1 1-2-3-4-7 1-2-3-4-7 1-2-3-4-7 1-2-3-4-7 1-2-3-4-7 4 4 4 4 4 1-2-3-4-7-8 1-2-3-4-7-9 1-2-3-4-7-10 1-2-3-4-7-11 1-2-3-4-7-14 5 5 5 5 5 89 10 12 16 11 4-8 4-8 4-8 4-8 4-8 2 2 2 2 2 8-9 8-10 8-12 8-16 8-11 1 1 1 1 1 1-2-4-8 1-2-4-8 1-2-4-8 1-2-4-81-2-3-4-8 4 4 4 4 4 1-2-4-8-9 1-2-4-8-10 1-2-4-8-12 1-2-4-8-161-2-3-4-8-11 4 4 4 4 5Fig.1. GBAPAC for 2After switching to v2, the next number in the addition chain is v3= {3, 4} where 3 and 4 are obtained either by adding 1 to 2 or doubling 2 itself respectively. Correspondingly, (w(e(v2,v3)=1)) It is shown in fig. 2.Fig.2. GBAPAC from 2Suppose the next number in the addition chain generated is v3=3, from v3 the other numbers v4= {4, 5, 6} are generated using addition or doubling steps and w(e(v3, {v4})) =1. But at the same time w(e(v2, v3)) = w(e(v2, v3)) + d+(v3)=1+3=4. It is noted that the optimal addition chain is found for every starting number at each stage. Thus, the optimal addition chain for 3 is 1-2-3, because 3 is the starting number and it has the maximum edge weight from the previous number 2. It is shown in fig. 3.Fig.3. GBAPAC from 3Fig.4. GBAPAC from 4 where the Previous Number is 2.Fig.5. GBAPAC from 4 where the Previous Number is 3On the other hand if 4 is taken as the starting number in the addition chain v3= 4 then the other numbers generated from 4 are v4 = {5, 6, 8} and they are obtained either by addition or doubling steps and (w(e(v3,{v4})) =1. But at the same time w(e(v2,v3))=w(e(v2,v4))+ d+(v3)=1+3=4. It is shown in fig. 4. If 3 and 4 is connected then v3=3 and v4 = {4, 5, 6}. Thus, w(e(v2, v3)) = e(v2, v3) + d+(v3) = 1+3=4. It is shown in fig.5. As 4 is the starting number, it is obtained in two different ways 1-2-3-4 and 1-2-4, the addition chain 1-2-4 is selected as optimum addition chain for 4 because its length is 2. But the addition chain 1-2-3-4 is not considered as the optimum addition chain even though the edge2-3 has maximum weight.Let the next number taken in the addition chain is v4=5 where 5 is obtained either from v3=3 or 4. Correspondingly the optimum addition chain for 3, 4 is 1-2-3, 1-2-4 respectively. From v4 the other numbers generated are v5= {6, 7, 8,10} or v5={6,7, 9,10} are generated using addition or doubling steps if v3=3 or 4 respectively. Then w(e(v4,{v5})) =1, w(e(v3,v4))= (e(v3,v4))+d+(v5)=1+4=5 and w(e(v2, v3)) = w(e(v2, v3))+ w(e(v3, v4))=2+4=6. As 5 is the starting number at this stage, there are two different optimal addition chains for 5 viz., 1-2-3-5 or 1-2-4-5. It is shown in fig.6 and fig.7 respectively.Let the next number taken in the addition chain is v5=6 where 6 is obtained either from v3=3 or v4=5. Correspondingly the optimum addition chain using 3, 4 is 1-2-3, 1-2-4, {1-2-3-5, 1-2-4-5} respectively. From v5the other numbers generated are v5={7, 9, 10, 12} or v5={{7, 9,10, 11,12},{7,8,10,11,12}}. They are generated using addition or doubling steps if v3=3 or v4=5 respectively. Then w(e(v5,{v6})) =1, w(e(v3,v4))=w(e(v3,v4))+4=5 if v3=3, w(e(v3, v4))= w(e(v3, v4))+w(e(v4,v5))+5, w(e(v2,v3))=w(e(v2,v3))+w(e(v3, v4)) if v4=6, as 6 is the starting number at this stage, there are two different optimal addition chain for 6 viz., 1-2-3-6 or 1-2-4-6. Further, 12 is obtained from doubling of 6, the optimal addition chain for 12 is 1-2-3-6-12 and its length is 4 which is same as the length obtained as input and hence the process is stopped. It is shown in fig.8. The other possible optimal addition chain for 12 is 1-2-4-8-12 and it is traced in similar manner. It is shown in fig.9.Fig.6. GBAPAC from 3 where the Previous Number is 2Fig.7. GBAPAC from 4 where the Previous Number is 2Fig.8. GBAPAC from 6 where the Previous Number is 3Fig.9. GBAPAC from 6 where the Previous Number is 44.2. Proposed Method 2: Graph Based Minimal Addition Chain (GBMAC)The main difference between GBAPAC and GBMAC is that, in GBMAC not all possible numbers are generated from the particular number in forming addition chain. This is because they are mutually exclusive. That is, only one number is generated by doubling step and the rest of the numbers are generated using addition step. As any one of the step is taken in generating the next number from the current number, the edge weight of current number and previous numbers is incremented by 1 where the previous numbers are numbers from which addition chain is obtained for the current number. It is noted that, the edge weight is not increasedconsiderably as in GBAPAC because all possible edges are not taken into account. From the current number either the number obtained by doubling step or any one of the number which is obtained by the addition step is taken. The process is repeated till the optimal addition chain is found.In general, let i=1; v i = 1 and v i+1 = 2. The corresponding edge weight w(e i(v i, v i+1)) =1. To move to the next number, i = i+1; v i←v i+1, v i← v i+1, where v i+1is computed as v i+1 ← {v i+v j , 1≤j≤i} , w(e i(v i, v i+1))=1or v i+1=2(vi). As v i+1 has the number which are obtained either addition or doubling steps but only one number is taken as they are mutually exclusive and hence w(e i(v i, v i-1))= w(e i(v i-1, v i))+ 1. Similar process can also be performed for other possibilities of v i+1 but the edge weight of current and previous numbers are incremented by 1. The process is repeated till it reaches n and the length of the addition chain l(n) is found. This l(n) is compared with w1 which is accepted as input and it is considered as the optimal weight. The optimal addition chain is one which has maximum edge weight between the numbers starting from 1 to n and l(n) should not exceed w1. The proposed algorithm is shown in algorithm 2.4.2.1. The working principle of GBAPAC algorithmThe working principle of the proposed GBMAC algorithm in generating the addition chain for the integer 12 is shown in Table 2. It is seen from the Table 3 that if 2 is the current number, the number 3 is obtained by addition step (2+1) and 4 is obtained from doubling step (2+2). Since they are mutually exclusive at this stage (i.e. 3 and 4 cannot be the 3rd number in any addition chain) any one of the number is taken. In this case 4 is taken as the next number. From 4, the numbers 5, 6 are obtained using addition step and 8 is obtained using doubling step. Even though 5 and 6 are obtained using addition step, they are also mutually exclusive and any one of the number is taken in the next stage for further processing. In general, only one number is considered in generating the next number w(e(vi, vj)= w(e(vi, vj)+1 where i=2,,.,j, and i≠j.Table 2. Working Principle of GBMAC4.2.2. Proposed Method 2 – An ExampleIt is noted that to generate the addition chain for n=12, the graph shown in fig.2 using GBAPAC is similar to GBMAC in generating numbers 3 and 4. As 3 and 4 are mutually exclusive, 3 and 4 are obtained by addition and doubling steps respectively from the same number. The next number chosen in addition chain is either 3 or 4.Let the next number be taken in addition chain is 3. To obtain the next numbers from 3, the numbers 4 and 5 are obtained using addition step and 6 is obtained using doubling step correspondingly the edge weight of 3-4, 3-5 and 3-6 are 1. Suppose 4 or 5 or 6 are taken as the next number from 3, the previous edge weight of 2-3 is 3. It is shown in fig. 10.。

Finding community structure in networks using the eigenvectors of matrices

Finding community structure in networks using the eigenvectors of matrices
Finding community structure in networks using the eigenvectors of matrices
M. E. J. Newman
Department of Physics and Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI 48109–1040
We consider the problem of detecting communities or modules in networks, groups of vertices with a higher-than-average density of edges connecting them. Previous work indicates that a robust approach to this problem is the maximization of the benefit function known as “modularity” over possible divisions of a network. Here we show that this maximization process can be written in terms of the eigenspectrum of a matrix we call the modularity matrix, which plays a role in community detection similar to that played by the graph Laplacian in graph partitioning calculations. This result leads us to a number of possible algorithms for detecting community structure, as well as several other results, including a spectral measure of bipartite structure in neteasure that identifies those vertices that occupy central positions within the communities to which they belong. The algorithms and measures proposed are illustrated with applications to a variety of real-world complex networks.

基于激光点云数据的单木骨架三维重构浔

基于激光点云数据的单木骨架三维重构浔

第40卷第1期2024年1月森㊀林㊀工㊀程FOREST ENGINEERINGVol.40No.1Jan.,2024doi:10.3969/j.issn.1006-8023.2024.01.015基于激光点云数据的单木骨架三维重构赵永辉,刘雪妍,吕勇,万晓玉,窦胡元,刘淑玉∗(东北林业大学计算机与控制工程学院,哈尔滨150040)摘㊀要:针对树木三维重构过程中面临的处理速度慢㊁重构精度低等问题,提出一种采用激光点云数据的单木骨架三维重构方法㊂首先,根据点云数据类型确定组合滤波方式,以去除离群点和地面点;其次,采用一种基于内部形态描述子(ISS )和相干点漂移算法(CPD )的混合配准算法(Intrinsic Shape -Coherent Point Drift ,IS -CPD ),以获取单棵树木的完整点云数据;最后,采用Laplace 收缩点集和拓扑细化相结合的方法提取骨架,并通过柱体构建枝干模型,实现骨架三维重构㊂试验结果表明,相比传统CPD 算法,研究设计的配准方案精度和执行速度分别提高50%和95.8%,最终重构误差不超过2.48%㊂研究结果证明可有效地重构单棵树木的三维骨架,效果接近树木原型,为构建林木数字孪生环境和林业资源管理提供参考㊂关键词:激光雷达;树木点云;关键点提取;树木骨架;几何模型中图分类号:S792.95;TN958.98㊀㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1006-8023(2024)01-0128-073D Reconstruction of Single Wood Skeleton Based on Laser Point Cloud DataZHAO Yonghui,LIU Xueyan,LYU Yong,WAN Xiaoyu,DOU Huyuan,LIU Shuyu ∗(College of Computer and Control Engineering,Northeast Forestry University,Harbin 150040,China)Abstract :In response to the slow processing speed and low reconstruction accuracy encountered during the 3D reconstruction of trees,a method for 3D reconstruction of single -tree skeletons using laser point cloud data is proposed.Firstly,a combination filtering method is determined based on the point cloud data type to remove outliers and ground points.Secondly,a hybrid registration algorithm based on ISS (Intrinsic Shape Descriptor)and CPD (Coherent Point Drift algorithm),called IS -CPD (Intrinsic Shape -Coherent Point Drift),is employed to obtain complete point cloud data for individual trees.Finally,a method combining Laplace contraction of point sets and topological refinement is used to obtain the skeleton,and branch models are constructed using cylinders to achieve 3D skeleton reconstruction.Experimental results show that compared to traditional CPD algorithm,the proposed registration scheme im-proves accuracy and execution speed by 50%and 95.8%respectively,with a final reconstruction error of no more than 2.48%.The research demonstrates the effective reconstruction of the 3D skeleton of individual trees,with results close to the original trees,provi-ding a reference for building digital twin environments of forest trees and forestry resource management.Keywords :LiDAR;tree point cloud;key point extraction;tree skeleton;geometry model收稿日期:2023-02-10基金项目:国家自然科学基金(31700643)㊂第一作者简介:赵永辉,硕士,工程师㊂研究方向为物联网与人工智能㊂E-mail:hero9968@∗通信作者:刘淑玉,硕士,讲师㊂研究方向为通信与信号处理㊂E -mail:1000002605@引文格式:赵永辉,刘雪妍,吕勇,等.基于激光点云数据的单木骨架三维重构[J].森林工程,2024,40(1):128-134.ZHAO Y H,LIU X Y,LYU Y,et al.3D reconstruction of sin-gle wood skeleton based on laser point cloud data[J].Forest En-gineering,2024,40(1):128-134.0㊀引言激光雷达可用于获取目标稠密点云数据,是实现自动驾驶和三维重建的重要手段㊂使用机载或地基激光雷达可以获取树高㊁胸径和冠层等量化信息,用于树木的三维重建,为推断树木的生态结构参数和碳储量反演提供依据,也可为林业数字孪生提供数据支撑㊂主流的点云数据去噪方法主要有基于密度㊁基于聚类和基于统计3种[1]㊂分离地面点和非地面点是点云数据处理的第一步,学者提出多种算法用于地面点分离㊂然而,即使是最先进的滤波算法,也需要设置许多复杂的参数才能实现㊂Zhang 等[2]提出了一种新颖的布料模拟滤波算法(Cloth Simu-lation Filter,CSF),该算法只需调整几个参数即可实现地面点的过滤,但该算法对于点云噪声非常敏感㊂在点云配准方面,经典的算法是Besl 等[3]提出的迭代最近点算法(Iterative Closest Point,ICP),但易出现局部最优解,从而限制了该算法的应用㊂因此,许多学者采用概率统计方法进行点云配准,典型的方法是相干点漂移算法(Coherent Point Drift,CPD)[4-5]等,但该方法存在运行时间长和计算复杂的问题㊂石珣等[6]结合曲率特征与CPD 提出了一第1期赵永辉,等:基于激光点云数据的单木骨架三维重构种快速配准方法,速度大大提高,但细节精确度有所下降㊂陆军等[7]㊁夏坎强[8]㊁史丰博等[9]对基于关键点特征匹配的点云配准方法进行了深入研究㊂三维树木几何重建从传统的基于规则㊁草图和影像重建,发展到如今借助激光雷达技术,可以构建拓扑正确的三维树木几何形态㊂翟晓晓等[10]以点云数据进行树木重建,由于受激光雷达视场角的约束,难以获得树冠结构的信息,因此仅重建了树干㊂Lin 等[11]㊁You 等[12]涉及点云骨架提取的研究,构建了树的几何和拓扑结构,但重构模型的真实感不够强㊂Cao 等[13]使用基于Laplace 算子的建模方法提取主要枝干的几何信息,拓扑连接正确,并保留了部分细枝㊂曹伟等[14]对点云树木建模的发展和前景进行了综述,但在结合点云数据提取骨架并重建等方面研究不足㊂本研究提出一种基于骨架的方法,旨在准确地从单木的点云数据中重建三维模型㊂原始点云数据经过CSF 算法和K 维树(Kd -Tree)近邻搜素法的组合滤波后,提取了准确的单木数据㊂同时,基于树木特征点云的混合配准算法(Intrinsic Shape -Co-herent Point Drift,IS -CPD),可显著提高配准效率㊂最后,通过提取单棵树木的骨架点,构造连接性,并用圆柱拟合枝干,实现了单木的三维建模㊂1㊀数据采集及预处理1.1㊀数据获取数据采集自山东省潍坊市奎文区植物园内一株高约8.5m㊁树龄约20a 的银杏树㊂使用Ro-boSense 雷达从2个不同角度进行点云数据采集,雷达高为1.5m,与树木水平距离约为10m㊂通过对来自树木正东方向和正北方向的2组点云数据进行采集,如图1所示㊂(a )角度1点云数据(正东方向)(a )Angle 1 point cloud data (East direction )(b )角度2点云数据(正北方向)(b )Angle 2 point cloud data (North direction)图1㊀2组点云的最初扫描结果Fig.1Initial scan results of two sets of point clouds1.2㊀点云预处理为了提高后续处理点云数据的准确性和时效性,需要对数据进行预处理㊂首先,利用CSF 滤波算法去除冗余的地面背景信息,该算法参数较少,分离速度快㊂通过使用落在重力下的布来获取地形的物理表示,单木点云可以被分离出来㊂由于扫描环境和激光雷达硬件误差的影响,可能会出现离群点㊂因此,采用Kd -Tree 算法对提取的点云进行降噪处理,提高单个树木数据的精度,以备在后续的算法使用中得到更准确的结果㊂通过搜索待滤波点云p i (x i ,y i ,z i )中每个点的空间邻近点p j (x j ,y j ,z j ),计算之间的平均距离(d i )㊁全局均值(μ)以及标准差(σ)㊂筛选符合范围(μ-αˑσɤd i ɤμ+αˑσ)的点并过滤掉离群值(α为决定点云空间分布的参数),d i ㊁μ㊁σ的计算公式如下㊂d i =ðkj =1x i -y j k μ=ðn i =1d i n σ=ðni =1(d i -μ)2n ìîíïïïïïïïïïïïï㊂(1)921森㊀林㊀工㊀程第40卷式中:k 为决定点云密集度的参数;n 为点云数量㊂通过试验发现,最终选定参数k =20,α=1.2时,对点云数据进行处理结果最优,滤噪结果如图2所示,基本去除了离群噪声点和地面点同时又确保对点云模型轮廓的保护㊂2㊀单木骨架重构方法单木骨架重构方法的过程主要包括以下几个步骤,如图3所示㊂首先,对预处理的2组点云数据进行特征提取,并进行精确的配准;其次,对点云进行几何收缩,获取零体积点集,并通过拓扑细化将点集细化成一维曲线,得到与点云模型基本吻合的骨架线;最后,基于骨架线对树木枝干进行圆柱拟合,以构建枝干的三维模型㊂图2㊀2组点云滤噪结果图Fig.2Two sets of point cloud filtering and denoisingresults图3㊀单木骨架重构方法过程图Fig.3Process diagram of single wood skeleton reconstruction method2.1㊀三维点云配准CPD 配准是一种基于概率的点集配准算法,在对点集进行配准时,一组点集作为高斯混合模型(Gaussian Mixture Model,GMM)的质心,假设模板点集坐标为X M ˑD =(y 1,y 2, ,y M )T ,另一组点集作为混合高斯模型的数据集,假设目标点集坐标为X N ˑD =(x 1,x 2, ,x N )T ,N ㊁M 分别代表2组点的数目,D 为Z 组的维度,T 为矩阵转置㊂通过GMM 的最大后验概率得到点集之间的匹配对应关系㊂GMM 概率密度函数如下㊂p (x )=ω1N +(1-ω)ðMm =11M p (x m )㊂(2)式中:p x |m ()=1(2πσ2)D 2exp (-x -y m 22σ2),;p (x )是概率密度函数;ω(0ɤωɤ1)为溢出点的权重参数;m 为1 M 中的任何一个数㊂GMM 质心的位置通过调整变换参数(θ)的值进行改变,而变换参数的值可以通过最小化-log 函数来求解㊂E θ,σ2()=-ðN n -1log ðMm -1p (m )p (x n |m )㊂(3)式中,x n 与y m 之间的匹配关系可以由GMM 质心的后验概率p (m x n )=p (m )p (x n m )来定义㊂采用期望最大值算法进行迭代循环,从而对最大似然估计进行优化,当收敛时迭代停止㊂得到θ和σ2的解,即完成模板网格点集向目标网格点集的配准㊂扫描设备采集的点云数据通常数量庞大,因此并非所有点云信息都对配准有效㊂此外,CPD 算法的计算复杂度较高,匹配速度较慢㊂因此,本研究采用ISS(Intrinsic Shape Signaturs)算法[15]提取关键点,以降低几何信息不显著点的数量㊂通过对这些特征点进行精确配准,可以提高点云配准的效率㊂图4给出了IS -CPD 配准过程㊂31第1期赵永辉,等:基于激光点云数据的单木骨架三维重构图4㊀基于特征点提取的配准过程图Fig.4Registration process diagram based on feature point extraction ㊀㊀IS-CPD点云配准算法流程如下㊂(1)选择2个视角点云重叠区域㊂(2)采用ISS算法提取特征点集㊂设点云数据有n个点,(x i,y i,z i),i=0,1, ,n-1㊂记P i=(x i,y i,z i)㊂①针对输入点云的每个点构建一个半径为r的球形邻域,并根据式(4)计算每个点的权重㊂W ij=1||p i-p j||,|p i-p j|<r㊂(4)②根据式(5)计算各点的协方差矩阵cov及其特征值{λ1i,λ2i,λ3i},并按从小到大的次序进行排列㊂cov(p i)=ð|p i-p j|<r w ij(P i-P j)(P i-P j)Tð|P i-P j|<r w ij㊂(5)③设置阈值ε1与ε2,满足λ1iλ2i ≪ε1㊁λ2iλ3i≪ε2的点即为关键点㊂(3)初始化CPD算法参数㊂(4)求出相关概率矩阵与后验概率p(m|x n)㊂(5)利用最小负对数似然函数求出各参数的值㊂(6)判断p的收敛性,若不收敛,则重复步骤(4)直到收敛㊂(7)在点集数据中,利用所得到的转换矩阵,完成配准㊂2.2㊀点云枝干重建传统的构建枝干的方法是直接在点云表面上进行重构,这种方法会导致大量畸变结构㊂因此,本研究先提取单木骨架线,再通过拟合圆柱来构建几何模型㊂图5为骨架提取并重建枝干的过程㊂为精确提取树干和树枝,采用Laplace收缩法提取骨架㊂首先,对点云模型进行顶点邻域三角化,得到顶点的单环邻域关系㊂然后,计算相应的余切形式的拉普拉斯矩阵,并以此为依据收缩点云,直至模型收缩比例占初始体积的1%,再通过拓扑细化将点集细化成一维曲线㊂采用最远距离点球对收缩点进行采样,利用一环邻域相关性将采样点连接成初始骨架,折叠不必要的边,直到不存在三角形,得到与点云模型基本吻合的骨架线㊂为准确地模拟树枝的几何形状,采用圆柱拟合方法㊂在树基区域,使用优化方法来获得主干的几何结构[16]㊂由于靠近树冠和树枝尖端的小树枝的点云数据较为杂乱,使用树木异速生长理论来控制枝干半径㊂最终,拟合圆柱体来得到树木点云的3D 几何模型[17],原理如图6所示㊂以粗度R为半径,以上端点M和下端点N为圆心生成多个圆截面,并沿着骨架线连接圆周点绘制出圆柱体,以此代表每个树枝,最终完成整棵树的枝干的绘制㊂131森㊀林㊀工㊀程第40卷图5㊀构建枝干模型流程图Fig.5Flow chart for building branch model(a)圆柱模型示例(a)Example of a cylindrical model(b)绘制局部树枝示例(b)Example of drawing a partial tree branchNMR图6㊀绘制树干几何形状原理Fig.6Principle of drawing tree trunk geometry3㊀试验结果与分析3.1㊀点云配准结果与分析为验证IS-CPD配准算法的有效性,对滤波后的点云进行试验,比较该算法与原始CPD算法及石珣等[6]提出的方法在同一数据下的运行时间及均方根误差(RMSE,式中记为R MSE),其表达式见式(6),值越小表示配准效果越精确㊂图7及表1给出了3种配准算法的对比结果㊂R MSE=㊀ðn i-1(x i-x︿i)2n㊂(6)式中:n为点云数量;x i和x︿i分别为配准前后对应点之间欧氏距离㊂经过配准结果图7和表1的分析,石珣等[5]算法虽提高了配准速度,但其细节精度下降,配准结果不佳㊂相比之下,CPD和IS-CPD算法均能成功地融合2个不同角度的点云,达到毫米级的精度,2种方法可视为效果近乎一致㊂相比之下,本研究算法的时间复杂度要小得多㊂此外,由表2可知,配准时间缩短至10.77s,平均配准精度相较CPD提高了约50%㊂3.2㊀点云枝干重建结果与分析在几何重建部分(图8),采用基于Laplace收缩的骨架提取方法,仅需不到5次迭代,就可以将点收缩到较好的位置,如图8(b)所示㊂对收缩后的零体231第1期赵永辉,等:基于激光点云数据的单木骨架三维重构图7㊀点云配准可视化对比Fig.7Point cloud registration visualization comparison表1㊀点云配准结果对比Tab.1Comparison of point cloud registration results配准算法Registration algorithm 点云总数/个Total number of point clouds角度1Angle 1角度2Angle 2历时/s Time 均方根误差/mRMSE CPD石珣等[6]Shi xun et al [6]本算法Proposed algorithm3795637647261.748.3ˑ10-386.58 1.6ˑ10-210.774.1ˑ10-3㊀㊀注:IS -CPD 算法提取关键点所需的时间可以忽略不计㊂Note:The time required for the IS -CPD algorithm to extract key points can beignored.积点集进行拓扑细化,得到与点云模型基本吻合的骨架线,如图8(c)所示㊂随后,对枝干进行圆柱拟合㊂至此,树木点云重建工作全部完成㊂图8(d)为树木骨架几何重建的最终结果㊂本研究使用单棵树木的树高和胸径作为重建模型的精度评价指标㊂首先,采用树干点拟合圆柱的方法来将点云投影至圆柱轴向方向,通过求取该轴向投影的最大值和最小值来获取树高信息㊂同时,(a )输入点云(a )Input point cloud(b )点云收缩(b )Point cloud shrinkage (c )连接骨架线(c )Connecting skeleton lines(d )树木点云的几何模型(d )Geometric model of treepoint cloud图8㊀单木几何重建过程Fig.8Single wood geometry reconstruction process在Pitkanen 等[18]研究方法的基础上,对树干点云进行分层切片处理,将二维平面上的分层点云进行投影,再通过圆拟合方法得到更为精确的胸径尺寸㊂为验证该算法重建模型的准确性,进行20次试验,并将其与Nurunnabi 等[16]的重建方法进行了比较㊂表2为2种方法分别获得的树高和胸径的平均值,并将其与真实测量值进行了对比㊂结果表明,该算法相较于Nurunnabi 等[16]的重建方法具有更高的精度,胸径平均误差仅为2.48%,树高平均误差仅为1.64%㊂表2㊀树木重构精度分析Tab.2Tree reconstruction accuracy analysis评估方法Evaluation method胸径/m DBH 树高/m Height 平均误差(%)Average error胸径DBH 树高Height Nurunnabi 等[16]Nurunnabi et al [16]2.13ˑ10-18.26 5.973.17本算法Proposed algorithm1.96ˑ10-18.392.48 1.64实测值Measured value2.01ˑ10-18.53331森㊀林㊀工㊀程第40卷4㊀结论本研究讨论了激光雷达重建单棵树木的流程,分析并改进了关键问题㊂充分发挥CSF滤波和Kd-Tree算法的优势,从而精准地分离出了单棵树木的数据,提高了处理速度㊂提出IS-CPD配准算法,可将点云配准的效率提高约95.8%㊂通过精确配准后的点云数据,成功提取骨架树,最终重构误差控制在2.48%以内㊂试验结果表明,研究方法在树木点云数据滤波㊁配准和骨架提取方面具有可行性,树木枝干结构重建效果良好,且重构模型可为评估农林作物㊁森林生态结构健康等提供支持㊂ʌ参㊀考㊀文㊀献ɔ[1]鲁冬冬,邹进贵.三维激光点云的降噪算法对比研究[J].测绘通报,2019(S2):102-105.LU D D,ZOU J parative research on denoising al-gorithms of3D laser point cloud[J].Survey and Mapping Bulletin,2019(S2):102-105.[2]ZHANG W,QI J,WAN P,et al.An easy-to-use air-borne LiDAR data filtering method based on cloth simula-tion[J].Remote Sensing,2016,8(6):501. [3]BESL P J,MCKAY H D.A method for registration of3-D shapes[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(2):239-256. [4]MYRONENKO A,SONG X.Point set registration:coherent point drift[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(12):2262-2275. [5]王爱丽,张宇枭,吴海滨,等.基于集成卷积神经网络的LiDAR数据分类[J].哈尔滨理工大学学报,2021, 26(4):138-145WANG A L,ZHANG Y X,WU H B,et al.LiDAR data classification based on ensembled convolutional neural net-works[J].Journal of Harbin University of Science and Technology,2021,26(4):138-145.[6]石珣,任洁,任小康.等.基于曲率特征的漂移配准方法[J].激光与光电子学进展,2018,55(8):248-254. SHI X,REN J,REN X K,et al.Drift registration based on curvature characteristics[J].Laser&Optoelectronics Progress,2018,55(8):248-254.[7]陆军,邵红旭,王伟.等.基于关键点特征匹配的点云配准方法[J].北京理工大学学报,2020,40(4):409-415. LU J,SHAO H X,WANG W,et al.Point cloud registra-tion method based on key point extraction with small over-lap[J].Transactions of Beijing Institute of Technology, 2020,40(4):409-415.[8]夏坎强.基于ISS特征点和改进描述子的点云配准算法研究[J].软件工程,2022,25(1):1-5.XIA K Q.Research on point cloud algorithm based on ISS feature points and improved descriptor[J].Software Engi-neering,2022,25(1):1-5.[9]史丰博,曹琴,魏军.等.基于特征点的曲面点云配准方法[J].北京测绘,2022,36(10):1345-1349.SHI F B,CAO Q,WEI J,et al.Surface point cloud reg-istration method based on feature points[J].Beijing Sur-veying and Mapping,2022,36(10):1345-1349. [10]翟晓晓,邵杰,张吴明.等.基于移动LiDAR点云的树木三维重建[J].中国农业信息,2019,31(5):84-89.ZHAI X X,SHAO J,ZHANG W M,et al.Three-di-mensional reconstruction of trees using mobile laser scan-ning point cloud[J].China Agricultural Information,2019,31(5):84-89.[11]LIN G,TANG Y,ZOU X,et al.Three-dimensional re-construction of guava fruits and branches using instancesegmentation and geometry analysis[J].Computers andElectronics in Agriculture,2021,184:106107. [12]YOU A,GRIMM C,SILWAL A,et al.Semantics-guided skeletonization of upright fruiting offshoot trees forrobotic pruning[J].Computers and Electronics in Agri-culture,2022,192:106622.[13]CAO J J,TAGLIASACCJI A,OLSON M,et al.Pointcloud skeletons via Laplacian based contraction[C]//Proceedings of the Shape Modeling International Confer-ence.Los Alamitos:IEEE Computer Society Press,2010:187-197.[14]曹伟,陈动,史玉峰.等.激光雷达点云树木建模研究进展与展望[J].武汉大学学报(信息科学版),2021,46(2):203-220.CAO W,CHEN D,SHI Y F,et al.Progress and pros-pect of LiDAR point clouds to3D tree models[J].Geo-matics and Information Science of Wuhan University,2021,46(2):203-220.[15]YU Z.Intrinsic shape signatures:A shape descriptor for3D object recognition[C]//IEEE International Confer-ence on Computer Vision Workshops.IEEE,2010. [16]NURUNNABI A,SADAHIRO Y,LINDENBERGH R,etal.Robust cylinder fitting in laser scanning point clouddata[J].Measurement,2019,138:632-651. [17]GUO J W,XU S B,YAN D M,et al.Realistic proce-dural plant modeling from multiple view images[J].IEEE Transactions on Visualization and Computer Graph-ics,2020,26(2):1372-1384.[18]PITKANEN T P,RAUMONEN P,KANGAS A.Measur-ing stem diameters with TLS in boreal forests by comple-mentary fitting procedure[J].ISPRS Journal of Photo-grammetry and Remote Sensing,2019,147:294-306.431。

软件测拭英语术语

软件测拭英语术语

软件测试中英文词汇汇总表2008-04-03 09:36作者:csdn出处:天极网责任编辑:孙蓬阳Acceptance testing : 验收测试Acceptance Testing:可接受性测试Accessibility test : 软体适用性测试actual outcome:实际结果Ad hoc testing : 随机测试Algorithm analysis : 算法分析algorithm:算法Alpha testing : α测试analysis:分析anomaly:异常application software:应用软件Application under test (AUT) : 所测试的应用程序Architecture : 构架Artifact : 工件ASQ:自动化软件质量(Automated Software Quality)Assertion checking : 断言检查Association : 关联Audit : 审计audit trail:审计跟踪Automated Testing:自动化测试Backus-Naur Form:BNF范式baseline:基线Basic Block:基本块basis test set:基本测试集Behaviour : 行为Bench test : 基准测试benchmark:标杆/指标/基准Best practise : 最佳实践Beta testing : β测试Black Box Testing:黑盒测试Blocking bug : 阻碍性错误Bottom-up testing : 自底向上测试boundary value coverage:边界值覆盖boundary value testing:边界值测试Boundary values : 边界值Boundry Value Analysis:边界值分析branch condition combination coverage:分支条件组合覆盖branch condition combination testing:分支条件组合测试branch condition coverage:分支条件覆盖branch condition testing:分支条件测试branch condition:分支条件Branch coverage : 分支覆盖branch outcome:分支结果branch point:分支点branch testing:分支测试branch:分支Breadth Testing:广度测试Brute force testing: 强力测试Buddy test : 合伙测试Buffer : 缓冲Bug : 错误Bug bash : 错误大扫除bug fix : 错误修正Bug report : 错误报告Bug tracking system: 错误跟踪系统bug:缺陷Build : 工作版本(内部小版本)Build Verfication tests(BVTs): 版本验证测试Build-in : 内置Capability Maturity Model (CMM): 能力成熟度模型Capability Maturity Model Integration (CMMI): 能力成熟度模型整合capture/playback tool:捕获/回放工具Capture/Replay Tool:捕获/回放工具CASE:计算机辅助软件工程(computer aided software engineering)CAST:计算机辅助测试cause-effect graph:因果图certification :证明change control:变更控制Change Management :变更管理Change Request :变更请求Character Set : 字符集Check In :检入Check Out :检出Closeout : 收尾code audit :代码审计Code coverage : 代码覆盖Code Inspection:代码检视Code page : 代码页Code rule : 编码规范Code sytle : 编码风格Code Walkthrough:代码走读code-based testing:基于代码的测试coding standards:编程规范Common sense : 常识Compatibility Testing:兼容性测试complete path testing :完全路径测试completeness:完整性complexity :复杂性Component testing : 组件测试Component:组件computation data use:计算数据使用computer system security:计算机系统安全性Concurrency user : 并发用户Condition coverage : 条件覆盖condition coverage:条件覆盖condition outcome:条件结果condition:条件configuration control:配置控制Configuration item : 配置项configuration management:配置管理Configuration testing : 配置测试conformance criterion:一致性标准Conformance Testing:一致性测试consistency :一致性consistency checker:一致性检查器Control flow graph : 控制流程图control flow graph:控制流图control flow:控制流conversion testing:转换测试Core team : 核心小组corrective maintenance:故障检修correctness :正确性coverage :覆盖率coverage item:覆盖项crash:崩溃criticality analysis:关键性分析criticality:关键性CRM(change request management): 变更需求管理Customer-focused mindset : 客户为中心的理念体系Cyclomatic complexity : 圈复杂度data corruption:数据污染data definition C-use pair:数据定义C-use使用对data definition P-use coverage:数据定义P-use覆盖data definition P-use pair:数据定义P-use使用对data definition:数据定义data definition-use coverage:数据定义使用覆盖data definition-use pair :数据定义使用对data definition-use testing:数据定义使用测试data dictionary:数据字典Data Flow Analysis : 数据流分析data flow analysis:数据流分析data flow coverage:数据流覆盖data flow diagram:数据流图data flow testing:数据流测试data integrity:数据完整性data use:数据使用data validation:数据确认dead code:死代码Debug : 调试Debugging:调试Decision condition:判定条件Decision coverage : 判定覆盖decision coverage:判定覆盖decision outcome:判定结果decision table:判定表decision:判定Defect : 缺陷defect density : 缺陷密度Defect Tracking :缺陷跟踪Deployment : 部署Depth Testing:深度测试design for sustainability :可延续性的设计design of experiments:实验设计design-based testing:基于设计的测试Desk checking : 桌前检查desk checking:桌面检查Determine Usage Model : 确定应用模型Determine Potential Risks : 确定潜在风险diagnostic:诊断DIF(decimation in frequency) : 按频率抽取dirty testing:肮脏测试disaster recovery:灾难恢复DIT (decimation in time): 按时间抽取documentation testing :文档测试domain testing:域测试domain:域DTP DETAIL TEST PLAN详细确认测试计划Dynamic analysis : 动态分析dynamic analysis:动态分析Dynamic Testing:动态测试embedded software:嵌入式软件emulator:仿真End-to-End testing:端到端测试Enhanced Request :增强请求entity relationship diagram:实体关系图Encryption Source Code Base:加密算法源代码库Entry criteria : 准入条件entry point :入口点Envisioning Phase : 构想阶段Equivalence class : 等价类Equivalence Class:等价类equivalence partition coverage:等价划分覆盖Equivalence partition testing : 等价划分测试equivalence partition testing:参考等价划分测试equivalence partition testing:等价划分测试Equivalence Partitioning:等价划分Error : 错误Error guessing : 错误猜测error seeding:错误播种/错误插值error:错误Event-driven : 事件驱动Exception handlers : 异常处理器exception:异常/例外executable statement:可执行语句Exhaustive Testing:穷尽测试exit point:出口点expected outcome:期望结果Exploratory testing : 探索性测试Failure : 失效Fault : 故障fault:故障feasible path:可达路径feature testing:特性测试Field testing : 现场测试FMEA:失效模型效果分析(Failure Modes and Effects Analysis)FMECA:失效模型效果关键性分析(Failure Modes and Effects Criticality Analysis) Framework : 框架FTA:故障树分析(Fault Tree Analysis)functional decomposition:功能分解Functional Specification :功能规格说明书Functional testing : 功能测试Functional Testing:功能测试G11N(Globalization) : 全球化Gap analysis : 差距分析Garbage characters : 乱码字符glass box testing:玻璃盒测试Glass-box testing : 白箱测试或白盒测试Glossary : 术语表GUI(Graphical User Interface): 图形用户界面Hard-coding : 硬编码Hotfix : 热补丁I18N(Internationalization): 国际化Identify Exploratory Tests –识别探索性测试IEEE:美国电子与电器工程师学会(Institute of Electrical and Electronic Engineers)Incident 事故Incremental testing : 渐增测试incremental testing:渐增测试infeasible path:不可达路径input domain:输入域Inspection : 审查inspection:检视installability testing:可安装性测试Installing testing : 安装测试instrumentation:插装instrumenter:插装器Integration :集成Integration testing : 集成测试interface : 接口interface analysis:接口分析interface testing:接口测试interface:接口invalid inputs:无效输入isolation testing:孤立测试Issue : 问题Iteration : 迭代Iterative development: 迭代开发job control language:工作控制语言Job:工作Key concepts : 关键概念Key Process Area : 关键过程区域Keyword driven testing : 关键字驱动测试Kick-off meeting : 动会议L10N(Localization) : 本地化Lag time : 延迟时间LCSAJ:线性代码顺序和跳转(Linear Code Sequence And Jump)LCSAJ coverage:LCSAJ覆盖LCSAJ testing:LCSAJ测试Lead time : 前置时间Load testing : 负载测试Load Testing:负载测试Localizability testing: 本地化能力测试Localization testing : 本地化测试logic analysis:逻辑分析logic-coverage testing:逻辑覆盖测试Maintainability : 可维护性maintainability testing:可维护性测试Maintenance : 维护Master project schedule :总体项目方案Measurement : 度量Memory leak : 内存泄漏Migration testing : 迁移测试Milestone : 里程碑Mock up : 模型,原型modified condition/decision coverage:修改条件/判定覆盖modified condition/decision testing :修改条件/判定测试modular decomposition:参考模块分解Module testing : 模块测试Monkey testing : 跳跃式测试Monkey Testing:跳跃式测试mouse over:鼠标在对象之上mouse leave:鼠标离开对象MTBF:平均失效间隔实际(mean time between failures)MTP MAIN TEST PLAN主确认计划MTTF:平均失效时间(mean time to failure)MTTR:平均修复时间(mean time to repair)multiple condition coverage:多条件覆盖mutation analysis:变体分析N/A(Not applicable) : 不适用的Negative Testing : 逆向测试, 反向测试, 负面测试negative testing:参考负面测试Negative Testing:逆向测试/反向测试/负面测试off by one:缓冲溢出错误non-functional requirements testing:非功能需求测试nominal load:额定负载N-switch coverage:N切换覆盖N-switch testing:N切换测试N-transitions:N转换Off-the-shelf software : 套装软件operational testing:可操作性测试output domain:输出域paper audit:书面审计Pair Programming : 成对编程partition testing:分类测试Path coverage : 路径覆盖path coverage:路径覆盖path sensitizing:路径敏感性path testing:路径测试path:路径Peer review : 同行评审Performance : 性能Performance indicator: 性能(绩效)指标Performance testing : 性能测试Pilot : 试验Pilot testing : 引导测试Portability : 可移植性portability testing:可移植性测试Positive testing : 正向测试Postcondition : 后置条件Precondition : 前提条件precondition:预置条件predicate data use:谓词数据使用predicate:谓词Priority : 优先权program instrumenter:程序插装progressive testing:递进测试Prototype : 原型Pseudo code : 伪代码pseudo-localization testing:伪本地化测试pseudo-random:伪随机QC:质量控制(quality control)Quality assurance(QA): 质量保证Quality Control(QC) : 质量控制Race Condition:竞争状态Rational Unified Process(以下简称RUP):瑞理统一工艺Recovery testing : 恢复测试recovery testing:恢复性测试Refactoring : 重构regression analysis and testing:回归分析和测试Regression testing : 回归测试Release : 发布Release note : 版本说明release:发布Reliability : 可靠性reliability assessment:可靠性评价reliability:可靠性Requirements management tool: 需求管理工具Requirements-based testing : 基于需求的测试Return of Investment(ROI): 投资回报率review:评审Risk assessment : 风险评估risk:风险Robustness : 强健性Root Cause Analysis(RCA): 根本原因分析safety critical:严格的安全性safety:(生命)安全性Sanity testing : 健全测试Sanity Testing:理智测试Schema Repository : 模式库Screen shot : 抓屏、截图SDP:软件开发计划(software development plan)Security testing : 安全性测试security testing:安全性测试security.:(信息)安全性serviceability testing:可服务性测试Severity : 严重性Shipment : 发布simple subpath:简单子路径Simulation : 模拟Simulator : 模拟器SLA(Service level agreement): 服务级别协议SLA:服务级别协议(service level agreement)Smoke testing : 冒烟测试Software development plan(SDP): 软件开发计划Software development process: 软件开发过程software development process:软件开发过程software diversity:软件多样性software element:软件元素software engineering environment:软件工程环境software engineering:软件工程Software life cycle : 软件生命周期source code:源代码source statement:源语句Specification : 规格说明书specified input:指定的输入spiral model :螺旋模型SQAP SOFTWARE QUALITY ASSURENCE PLAN 软件质量保证计划SQL:结构化查询语句(structured query language)Staged Delivery:分布交付方法state diagram:状态图state transition testing :状态转换测试state transition:状态转换state:状态Statement coverage : 语句覆盖statement testing:语句测试statement:语句Static Analysis:静态分析Static Analyzer:静态分析器Static Testing:静态测试statistical testing:统计测试Stepwise refinement : 逐步优化storage testing:存储测试Stress Testing : 压力测试structural coverage:结构化覆盖structural test case design:结构化测试用例设计structural testing:结构化测试structured basis testing:结构化的基础测试structured design:结构化设计structured programming:结构化编程structured walkthrough:结构化走读stub:桩sub-area:子域Summary:总结SVVP SOFTWARE Vevification&Validation PLAN:软件验证和确认计划symbolic evaluation:符号评价symbolic execution:参考符号执行symbolic execution:符号执行symbolic trace:符号轨迹Synchronization : 同步Syntax testing : 语法分析system analysis:系统分析System design : 系统设计system integration:系统集成System Testing : 系统测试TC TEST CASE 测试用例TCS TEST CASE SPECIFICATION 测试用例规格说明TDS TEST DESIGN SPECIFICATION 测试设计规格说明书technical requirements testing:技术需求测试Test : 测试test automation:测试自动化Test case : 测试用例test case design technique:测试用例设计技术test case suite:测试用例套test comparator:测试比较器test completion criterion:测试完成标准test coverage:测试覆盖Test design : 测试设计Test driver : 测试驱动test environment:测试环境test execution technique:测试执行技术test execution:测试执行test generator:测试生成器test harness:测试用具Test infrastructure : 测试基础建设test log:测试日志test measurement technique:测试度量技术Test Metrics :测试度量test procedure:测试规程test records:测试记录test report:测试报告Test scenario : 测试场景Test Script.:测试脚本Test Specification:测试规格Test strategy : 测试策略test suite:测试套Test target : 测试目标Test ware : 测试工具Testability : 可测试性testability:可测试性Testing bed : 测试平台Testing coverage : 测试覆盖Testing environment : 测试环境Testing item : 测试项Testing plan : 测试计划Testing procedure : 测试过程Thread testing : 线程测试time sharing:时间共享time-boxed : 固定时间TIR test incident report 测试事故报告ToolTip:控件提示或说明top-down testing:自顶向下测试TPS TEST PEOCESS SPECIFICATION 测试步骤规格说明Traceability : 可跟踪性traceability analysis:跟踪性分析traceability matrix:跟踪矩阵Trade-off : 平衡transaction:事务/处理transaction volume:交易量transform. analysis:事务分析trojan horse:特洛伊木马truth table:真值表TST TEST SUMMARY REPORT 测试总结报告Tune System : 调试系统TW TEST WARE :测试件Unit Testing :单元测试Usability Testing:可用性测试Usage scenario : 使用场景User acceptance Test : 用户验收测试User database :用户数据库User interface(UI) : 用户界面User profile : 用户信息User scenario : 用户场景V&V (Verification & Validation) : 验证&确认validation :确认verification :验证version :版本Virtual user : 虚拟用户volume testing:容量测试VSS(visual source safe):VTP Verification TEST PLAN验证测试计划VTR Verification TEST REPORT验证测试报告Walkthrough : 走读Waterfall model : 瀑布模型Web testing : 网站测试White box testing : 白盒测试Work breakdown structure (WBS) : 任务分解结构Zero bug bounce (ZBB) : 零错误反弹。

基于邻居信息聚合的子图同构匹配算法

基于邻居信息聚合的子图同构匹配算法

2021⁃01⁃10计算机应用,Journal of Computer Applications 2021,41(1):43-47ISSN 1001⁃9081CODEN JYIIDU http ://基于邻居信息聚合的子图同构匹配算法徐周波,李珍,刘华东*,李萍(广西可信软件重点实验室(桂林电子科技大学),广西桂林541004)(∗通信作者电子邮箱ldd@ )摘要:图匹配在现实中被广泛运用,而子图同构匹配是其中的研究热点,具有重要的科学意义与实践价值。

现有子图同构匹配算法大多基于邻居关系来构建约束条件,而忽略了节点的局部邻域信息。

对此,提出了一种基于邻居信息聚合的子图同构匹配算法。

首先,将图的属性和结构导入到改进的图卷积神经网络中进行特征向量的表示学习,从而得到聚合后的节点局部邻域信息;然后,根据图的标签、度等特征对匹配顺序进行优化,以提高算法的效率;最后,将得到的特征向量和优化的匹配顺序与搜索算法相结合,建立子图同构的约束满足问题(CSP )模型,并结合CSP 回溯算法对模型进行求解。

实验结果表明,与经典的树搜索算法和约束求解算法相比,该算法可以有效地提高子图同构的求解效率。

关键词:子图同构;约束满足问题;图卷积神经网络;信息聚合;图匹配中图分类号:TP391文献标志码:ASubgraph isomorphism matching algorithm based on neighbor informationaggregationXU Zhoubo ,LI Zhen ,LIU Huadong *,LI Ping(Guangxi Key Laboratory of Trusted Software (Guilin University of Electronic Technology ),Guilin Guangxi 541004,China )Abstract:Graph matching is widely used in reality ,of which subgraph isomorphic matching is a research hotspot and has important scientific significance and practical value.Most existing subgraph isomorphism algorithms build constraints based on neighbor relationships ,ignoring the local neighborhood information of nodes.In order to solve the problem ,a subgraph isomorphism matching algorithm based on neighbor information aggregation was proposed.Firstly ,the aggregated local neighborhood information of the nodes was obtained by importing the graph attributes and structure into the improved graph convolutional neural network to perform the representation learning of feature vector.Then ,the efficiency of the algorithm was improved by optimizing the matching order according to the characteristics such as the label and degree of the graph.Finally ,the Constraint Satisfaction Problem (CSP )model of subgraph isomorphism was established by combining the obtained feature vector and the optimized matching order with the search algorithm ,and the model was solved by using the CSP backtracking algorithm.Experimental results show that the proposed algorithm significantly improves the solving efficiency of subgraph isomorphism compared with the traditional tree search algorithm and constraint solving algorithm.Key words:subgraph isomorphism;Constraint Satisfaction Problem (CSP);graph convolutional neural network;information aggregation;graph matching0引言图匹配技术被广泛地应用于社交网络、网络安全、计算生物学和化学等领域[1]中。

基于周期采样的分布式动态事件触发优化算法

基于周期采样的分布式动态事件触发优化算法

第38卷第3期2024年5月山东理工大学学报(自然科学版)Journal of Shandong University of Technology(Natural Science Edition)Vol.38No.3May 2024收稿日期:20230323基金项目:江苏省自然科学基金项目(BK20200824)第一作者:夏伦超,男,20211249098@;通信作者:赵中原,男,zhaozhongyuan@文章编号:1672-6197(2024)03-0058-07基于周期采样的分布式动态事件触发优化算法夏伦超1,韦梦立2,季秋桐2,赵中原1(1.南京信息工程大学自动化学院,江苏南京210044;2.东南大学网络空间安全学院,江苏南京211189)摘要:针对无向图下多智能体系统的优化问题,提出一种基于周期采样机制的分布式零梯度和优化算法,并设计一种新的动态事件触发策略㊂该策略中加入与历史时刻智能体状态相关的动态变量,有效降低了系统通信量;所提出的算法允许采样周期任意大,并考虑了通信延时的影响,利用Lyapunov 稳定性理论推导出算法收敛的充分条件㊂数值仿真进一步验证了所提算法的有效性㊂关键词:分布式优化;多智能体系统;动态事件触发;通信时延中图分类号:TP273文献标志码:ADistributed dynamic event triggerring optimizationalgorithm based on periodic samplingXIA Lunchao 1,WEI Mengli 2,JI Qiutong 2,ZHAO Zhongyuan 1(1.College of Automation,Nanjing University of Information Science and Technology,Nanjing 210044,China;2.School of Cyber Science and Engineering,Southeast University,Nanjing 211189,China)Abstract :A distributed zero-gradient-sum optimization algorithm based on a periodic sampling mechanism is proposed to address the optimization problem of multi-agent systems under undirected graphs.A novel dynamic event-triggering strategy is designed,which incorporates dynamic variables as-sociated with the historical states of the agents to effectively reduce the system communication overhead.Moreover,the algorithm allows for arbitrary sampling periods and takes into consideration the influence oftime delay.Finally,sufficient conditions for the convergence of the algorithm are derived by utilizing Lya-punov stability theory.The effectiveness of the proposed algorithm is further demonstrated through numer-ical simulations.Keywords :distributed optimization;multi-agent systems;dynamic event-triggered;time delay ㊀㊀近些年,多智能体系统的分布式优化问题因其在多机器人系统的合作㊁智能交通系统的智能运输系统和微电网的分布式经济调度等诸多领域的应用得到了广泛的研究[1-3]㊂如今,已经提出各种分布式优化算法㊂文献[4]提出一种结合负反馈和梯度流的算法来解决平衡有向图下的无约束优化问题;文献[5]提出一种基于自适应机制的分布式优化算法来解决局部目标函数非凸的问题;文献[6]设计一种抗干扰的分布式优化算法,能够在具有未知外部扰动的情况下获得最优解㊂然而,上述工作要求智能体与其邻居不断地交流,这在现实中会造成很大的通信负担㊂文献[7]首先提出分布式事件触发控制器来解决多智能体系统一致性问题;事件触发机制的核心是设计一个基于误差的触发条件,只有满足触发条件时智能体间才进行通信㊂文献[8]提出一种基于通信网络边信息的事件触发次梯度优化㊀算法,并给出了算法的指数收敛速度㊂文献[9]提出一种基于事件触发机制的零梯度和算法,保证系统状态收敛到最优解㊂上述事件触发策略是静态事件触发策略,即其触发阈值仅与智能体的状态相关,当智能体的状态逐渐收敛时,很容易满足触发条件并将生成大量不必要的通信㊂因此,需要设计更合理的触发条件㊂文献[10]针对非线性系统的增益调度控制问题,提出一种动态事件触发机制的增益调度控制器;文献[11]提出一种基于动态事件触发条件的零梯度和算法,用于有向网络的优化㊂由于信息传输的复杂性,时间延迟在实际系统中无处不在㊂关于考虑时滞的事件触发优化问题的文献很多㊂文献[12]研究了二阶系统的凸优化问题,提出时间触发算法和事件触发算法两种分布式优化算法,使得所有智能体协同收敛到优化问题的最优解,并有效消除不必要的通信;文献[13]针对具有传输延迟的多智能体系统,提出一种具有采样数据和时滞的事件触发分布式优化算法,并得到系统指数稳定的充分条件㊂受文献[9,14]的启发,本文提出一种基于动态事件触发机制的分布式零梯度和算法,与使用静态事件触发机制的文献[15]相比,本文采用动态事件触发机制可以避免智能体状态接近最优值时频繁触发造成的资源浪费㊂此外,考虑到进行动态事件触发判断需要一定的时间,使用当前状态值是不现实的,因此,本文使用前一时刻状态值来构造动态事件触发条件,更符合逻辑㊂由于本文采用周期采样机制,这进一步降低了智能体间的通信频率,但采样周期过长会影响算法收敛㊂基于文献[14]的启发,本文设计的算法允许采样周期任意大,并且对于有时延的系统,只需要其受采样周期的限制,就可得到保证多智能体系统达到一致性和最优性的充分条件㊂最后,通过对一个通用示例进行仿真,验证所提算法的有效性㊂1㊀预备知识及问题描述1.1㊀图论令R表示实数集,R n表示向量集,R nˑn表示n ˑn实矩阵的集合㊂将包含n个智能体的多智能体系统的通信网络用图G=(V,E)建模,每个智能体都视为一个节点㊂该图由顶点集V={1,2, ,n}和边集E⊆VˑV组成㊂定义A=[a ij]ɪR nˑn为G 的加权邻接矩阵,当a ij>0时,表明节点i和节点j 间存在路径,即(i,j)ɪE;当a ij=0时,表明节点i 和节点j间不存在路径,即(i,j)∉E㊂D=diag{d1, ,d n}表示度矩阵,拉普拉斯矩阵L等于度矩阵减去邻接矩阵,即L=D-A㊂当图G是无向图时,其拉普拉斯矩阵是对称矩阵㊂1.2㊀凸函数设h i:R nңR是在凸集ΩɪR n上的局部凸函数,存在正常数φi使得下列条件成立[16]:h i(b)-h i(a)- h i(a)T(b-a)ȡ㊀㊀㊀㊀φi2 b-a 2,∀a,bɪΩ,(1)h i(b)- h i(a)()T(b-a)ȡ㊀㊀㊀㊀φi b-a 2,∀a,bɪΩ,(2) 2h i(a)ȡφi I n,∀aɪΩ,(3)式中: h i为h i的一阶梯度, 2h i为h i的二阶梯度(也称黑塞矩阵)㊂1.3㊀问题描述考虑包含n个智能体的多智能体系统,假设每个智能体i的成本函数为f i(x),本文的目标是最小化以下的优化问题:x∗=arg minxɪΩðni=1f i(x),(4)式中:x为决策变量,x∗为全局最优值㊂1.4㊀主要引理引理1㊀假设通信拓扑图G是无向且连通的,对于任意XɪR n,有以下关系成立[17]:X T LXȡαβX T L T LX,(5)式中:α是L+L T2最小的正特征值,β是L T L最大的特征值㊂引理2(中值定理)㊀假设局部成本函数是连续可微的,则对于任意实数y和y0,存在y~=y0+ω~(y -y0),使得以下不等式成立:f i(y)=f i(y0)+∂f i∂y(y~)(y-y0),(6)式中ω~是正常数且满足ω~ɪ(0,1)㊂2㊀基于动态事件触发机制的分布式优化算法及主要结果2.1㊀考虑时延的分布式动态事件触发优化算法本文研究具有时延的多智能体系统的优化问题㊂为了降低智能体间的通信频率,提出一种采样周期可任意设计的分布式动态事件触发优化算法,95第3期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀夏伦超,等:基于周期采样的分布式动态事件触发优化算法其具体实现通信优化的流程图如图1所示㊂首先,将邻居和自身前一触发时刻状态送往控制器(本文提出的算法),得到智能体的状态x i (t )㊂然后,预设一个固定采样周期h ,使得所有智能体在同一时刻进行采样㊂同时,在每个智能体上都配置了事件检测器,只在采样时刻检查是否满足触发条件㊂接着,将前一采样时刻的智能体状态发送至构造的触发器中进行判断,当满足设定的触发条件时,得到触发时刻的智能体状态x^i (t )㊂最后,将得到的本地状态x^i (t )用于更新自身及其邻居的控制操作㊂由于在实际传输中存在时延,因此需要考虑满足0<τ<h 的时延㊂图1㊀算法实现流程图考虑由n 个智能体构成的多智能体系统,其中每个智能体都能独立进行计算和相互通信,每个智能体i 具有如下动态方程:x ㊃i (t )=-1h2f i (x i )()-1u i (t ),(7)式中u i (t )为设计的控制算法,具体为u i (t )=ðnj =1a ij x^j (t -τ)-x ^i (t -τ)()㊂(8)㊀㊀给出设计的动态事件触发条件:θi d i e 2i (lh )-γq i (lh -h )()ɤξi (lh ),(9)q i (t )=ðnj =1a ij x^i (t -τ)-x ^j (t -τ)()2,(10)㊀㊀㊀ξ㊃i (t )=1h[-μi ξi (lh )+㊀㊀㊀㊀㊀δi γq i (lh -h )-d i e 2i (lh )()],(11)式中:d i 是智能体i 的入度;γ是正常数;θi ,μi ,δi 是设计的参数㊂令x i (lh )表示采样时刻智能体的状态,偏差变量e i (lh )=x i (lh )-x^i (lh )㊂注释1㊀在进行动态事件触发条件设计时,可以根据不同的需求为每个智能体设定不同的参数θi ,μi ,δi ,以确保其能够在特定的情境下做出最准确的反应㊂本文为了方便分析,选择为每个智能体设置相同的θi ,μi ,δi ,以便更加清晰地研究其行为表现和响应能力㊂2.2㊀主要结果和分析由于智能体仅在采样时刻进行事件触发条件判断,并在达到触发条件后才通信,因此有x ^i (t -τ)=x^i (lh )㊂定理1㊀假设无向图G 是连通的,对于任意i ɪV 和t >0,当满足条件(12)时,在算法(7)和动态事件触发条件(9)的作用下,系统状态趋于优化解x ∗,即lim t ңx i (t )=x ∗㊂12-β2φm α-τβ2φm αh -γ>0,μi+δi θi <1,μi-1-δi θi >0,ìîíïïïïïïïï(12)式中φm =min{φ1,φ2}㊂证明㊀对于t ɪ[lh +τ,(l +1)h +τ),定义Lyapunov 函数V (t )=V 1(t )+V 2(t ),其中:V 1(t )=ðni =1f i (x ∗)-f i (x i )-f ᶄi (x i )(x ∗-x i )(),V 2(t )=ðni =1ξi (t )㊂令E (t )=e 1(t ), ,e n (t )[]T ,X (t )=x 1(t ), ,x n (t )[]T ,X^(t )=x ^1(t ), ,x ^n (t )[]T ㊂对V 1(t )求导得V ㊃1(t )=1h ðni =1u i (t )x ∗-x i (t )(),(13)由于ðni =1ðnj =1a ij x ^j (t -τ)-x ^i (t -τ)()㊃x ∗=0成立,有V ㊃1(t )=-1hX T (t )LX ^(lh )㊂(14)6山东理工大学学报(自然科学版)2024年㊀由于㊀㊀X (t )=X (lh +τ)-(t -lh -τ)X ㊃(t )=㊀㊀㊀㊀X (lh )+τX ㊃(lh )+t -lh -τhΓ1LX^(lh )=㊀㊀㊀㊀X (lh )-τh Γ2LX^(lh -h )+㊀㊀㊀㊀(t -lh -τ)hΓ1LX^(lh ),(15)式中:Γ1=diag (f i ᶄᶄ(x ~11))-1, ,(f i ᶄᶄ(x ~1n ))-1{},Γ2=diag (f i ᶄᶄ(x ~21))-1, ,(f i ᶄᶄ(x ~2n))-1{},x ~1iɪ(x i (lh +τ),x i (t )),x ~2i ɪ(x i (lh ),x i (lh+τ))㊂将式(15)代入式(14)得㊀V ㊃1(t )=-1h E T (lh )LX ^(lh )-1hX ^T (lh )LX ^(lh )+㊀㊀㊀τh2Γ2X ^T (lh -h )L T LX ^(lh )+㊀㊀㊀(t -lh -τ)h2Γ1X ^T (lh )L T LX ^(lh )㊂(16)根据式(3)得(f i ᶄᶄ(x ~i 1))-1ɤ1φi,i =1, ,n ㊂即Γ1ɤ1φm I n ,Γ2ɤ1φmI n ,φm =min{φ1,φ2}㊂首先对(t -lh -τ)h2Γ1X ^T (lh )L T LX ^(lh )项进行分析,对于t ɪ[lh +τ,(l +1)h +τ),基于引理1和式(3)有(t -lh -τ)h2Γ1X ^T (lh )L T LX ^(lh )ɤβhφm αX ^T (lh )LX ^(lh )ɤβ2hφm αðni =1q i(lh ),(17)式中最后一项根据X^T (t )LX ^(t )=12ðni =1q i(t )求得㊂接着分析τh2Γ2X ^(lh -h )L T LX ^(lh ),根据引理1和杨式不等式有:τh2Γ2X ^T (lh -h )L T LX ^(lh )ɤ㊀㊀㊀㊀τβ2h 2φm αX ^T (lh -h )LX ^(lh -h )+㊀㊀㊀㊀τβ2h 2φm αX ^T (lh )LX ^(lh )ɤ㊀㊀㊀㊀τβ4h 2φm αðni =1q i (lh -h )+ðni =1q i (lh )[]㊂(18)将式(17)和式(18)代入式(16)得㊀V ㊃1(t )ɤβ2φm α+τβ4φm αh -12()1h ðni =1q i(lh )+㊀㊀㊀τβ4φm αh ðni =1q i (lh -h )+1h ðni =1d i e 2i(lh )㊂(19)根据式(11)得V ㊃2(t )=-ðni =1μih ξi(lh )+㊀㊀㊀㊀ðni =1δihγq i (lh -h )-d i e 2i (lh )()㊂(20)结合式(19)和式(20)得V ㊃(t )ɤ-12-β2φm α-τβ4φm αh ()1h ðni =1q i (lh )+㊀㊀㊀㊀τβ4φm αh 2ðn i =1q i (lh -h )+γh ðni =1q i (lh -h )-㊀㊀㊀㊀1h ðni =1(μi -1-δi θi)ξi (lh ),(21)因此根据李雅普诺夫函数的正定性以及Squeeze 定理得㊀V (l +1)h +τ()-V (lh +τ)ɤ㊀㊀㊀-12-β2φm α-τβ4φm αh()ðni =1q i(lh )+㊀㊀㊀τβ4φm αh ðni =1q i (lh -h )+γðni =1q i (lh -h )-㊀㊀㊀ðni =1(μi -1-δiθi)ξi (lh )㊂(22)对式(22)迭代得V (l +1)h +τ()-V (h +τ)ɤ㊀㊀-12-β2φm α-τβ2φm αh-γ()ðl -1k =1ðni =1q i(kh )+㊀㊀τβ4φm αh ðni =1q i (0h )-㊀㊀12-β2φm α-τβ4φm αh()ðni =1q i(lh )-㊀㊀ðlk =1ðni =1μi -1-δiθi()ξi (kh ),(23)进一步可得㊀lim l ңV (l +1)h -V (h )()ɤ㊀㊀㊀τβ4φm αh ðni =1q i(0h )-16第3期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀夏伦超,等:基于周期采样的分布式动态事件触发优化算法㊀㊀㊀ðni =1(μi -1-δi θi )ðl =1ξi (lh )-㊀㊀㊀12-β2φm α-τβ2φm αh-γ()ð l =1ðni =1q i(lh )㊂(24)由于q i (lh )ȡ0和V (t )ȡ0,由式(24)得lim l ң ðni =1ξi (lh )=0㊂(25)基于ξi 的定义和拉普拉斯矩阵的性质,可以得到每个智能体的最终状态等于相同的常数,即lim t ңx 1(t )= =lim t ңx n (t )=c ㊂(26)㊀㊀由于目标函数的二阶导数具有以下性质:ðni =1d f ᶄi (x i (t ))()d t =㊀㊀㊀㊀-ðn i =1ðnj =1a ij x ^j (t )-x ^i (t )()=㊀㊀㊀㊀-1T LX^(t )=0,(27)式中1=[1, ,1]n ,所以可以得到ðni =1f i ᶄ(x i (t ))=ðni =1f i ᶄ(x ∗i )=0㊂(28)联立式(26)和式(28)得lim t ңx 1(t )= =lim t ңx n (t )=c =x ∗㊂(29)㊀㊀定理1证明完成㊂当不考虑通信时延τ时,可由定理1得到推论1㊂推论1㊀假设通信图G 是无向且连通的,当不考虑时延τ时,对于任意i ɪV 和t >0,若条件(30)成立,智能体状态在算法(7)和触发条件(9)的作用下趋于最优解㊂14-n -1φm -γ>0,μi+δi θi <1,μi-1-δi θi >0㊂ìîíïïïïïïïï(30)㊀㊀证明㊀该推论的证明过程类似定理1,由定理1结果可得14-β2φm α-γ>0㊂(31)令λn =βα,由于λn 是多智能体系统的全局信息,因此每个智能体很难获得,但其上界可以根据以下关系来估计:λn ɤ2d max ɤ2(n -1),(32)式中d max =max{d i },i =1, ,n ㊂因此得到算法在没有时延情况下的充分条件:14-n -1φm -γ>0㊂(33)㊀㊀推论1得证㊂注释2㊀通过定理1得到的稳定性条件,可以得知当采样周期h 取较小值时,由于0<τ<h ,因此二者可以抵消,从而稳定性不受影响;而当采样周期h 取较大值时,τβ2φm αh项可以忽略不计,因此从理论分析可以得出允许采样周期任意大的结论㊂从仿真实验方面来看,当采样周期h 越大,需要的收剑时间越长,但最终结果仍趋于优化解㊂然而,在文献[18]中,采样周期过大会导致稳定性条件难以满足,即算法最终难以收敛,无法达到最优解㊂因此,本文提出的算法允许采样周期任意大,这一创新点具有重要意义㊂3㊀仿真本文对一个具有4个智能体的多智能体网络进行数值模拟,智能体间的通信拓扑如图2所示㊂采用4个智能体的仿真网络仅是为了初步验证所提算法的有效性㊂值得注意的是,当多智能体的数量增加时,算法的时间复杂度和空间复杂度会增加,但并不会影响其有效性㊂因此,该算法在更大规模的多智能体网络中同样适用㊂成本函数通常选择凸函数㊂例如,在分布式传感器网络中,成本函数为z i -x 2+εi x 2,其中x 表示要估计的未知参数,εi 表示观测噪声,z i 表示在(0,1)中均匀分布的随机数;在微电网中,成本函数为a i x 2+b i x +c i ,其中a i ,b i ,c i 是发电机成本参数㊂这两种情境下的成本函数形式不同,但本质上都是凸函数㊂本文采用论文[19]中的通用成本函数(式(34)),用于证明本文算法在凸函数上的可行性㊂此外,通信拓扑图结构并不会影响成本函数的设计,因此,本文的成本函数在分布式网络凸优化问题中具有通用性㊂g i (x )=(x -i )4+4i (x -i )2,i =1,2,3,4㊂(34)很明显,当x i 分别等于i 时,得到最小局部成本函数,但是这不是全局最优解x ∗㊂因此,需要使用所提算法来找到x ∗㊂首先设置重要参数,令φm =16,γ=0.1,θi =1,ξi (0)=5,μi =0.2,δi =0.2,26山东理工大学学报(自然科学版)2024年㊀图2㊀通信拓扑图x i (0)=i ,i =1,2,3,4㊂图3为本文算法(7)解决优化问题(4)时各智能体的状态,其中设置采样周期h =3,时延τ=0.02㊂智能体在图3中渐进地达成一致,一致值为全局最优点x ∗=2.935㊂当不考虑采样周期影响时,即在采样周期h =3,时延τ=0.02的条件下,采用文献[18]中的算法(10)时,各智能体的状态如图4所示㊂显然,在避免采样周期的影响后,本文算法具有更快的收敛速度㊂与文献[18]相比,由于只有当智能体i 及其邻居的事件触发判断完成,才能得到q i (lh )的值,因此本文采用前一时刻的状态值构造动态事件触发条件更符合逻辑㊂图3㊀h =3,τ=0.02时算法(7)的智能体状态图4㊀h =3,τ=0.02时算法(10)的智能体状态为了进一步分析采样周期的影响,在时延τ不变的情况下,选择不同的采样周期h ,其结果显示在图5中㊂对比图3可以看出,选择较大的采样周期则收敛速度减慢㊂事实上,这在算法(7)中是很正常的,因为较大的h 会削弱反馈增益并减少固定有限时间间隔中的控制更新次数,具体显示在图6和图7中㊂显然,当选择较大的采样周期时,智能体的通信频率显著下降,同时也会导致收敛速度减慢㊂因此,虽然采样周期允许任意大,但在收敛速度和通信频率之间需要做出权衡,以选择最优的采样周期㊂图5㊀h =1,τ=0.02时智能体的状态图6㊀h =3,τ=0.02时的事件触发时刻图7㊀h =1,τ=0.02时的事件触发时刻最后,固定采样周期h 的值,比较τ=0.02和τ=2时智能体的状态,结果如图8所示㊂显然,时延会使智能体找到全局最优点所需的时间更长,但由于其受采样周期的限制,最终仍可以对于任意有限延迟达成一致㊂图8㊀h =3,τ=2时智能体的状态36第3期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀夏伦超,等:基于周期采样的分布式动态事件触发优化算法4 结束语本文研究了无向图下的多智能体系统的优化问题,提出了一种基于动态事件触发机制的零梯度和算法㊂该机制中加入了与前一时刻智能体状态相关的动态变量,避免智能体状态接近最优值时频繁触发产生的通信负担㊂同时,在算法和触发条件设计中考虑了采样周期的影响,在所设计的算法下,允许采样周期任意大㊂对于有时延的系统,在最大允许传输延迟小于采样周期的情况下,给出了保证多智能体系统达到一致性和最优性的充分条件㊂今后拟将本算法向有向图和切换拓扑图方向推广㊂参考文献:[1]杨洪军,王振友.基于分布式算法和查找表的FIR滤波器的优化设计[J].山东理工大学学报(自然科学版),2009,23(5):104-106,110.[2]CHEN W,LIU L,LIU G P.Privacy-preserving distributed economic dispatch of microgrids:A dynamic quantization-based consensus scheme with homomorphic encryption[J].IEEE Transactions on Smart Grid,2022,14(1):701-713.[3]张丽馨,刘伟.基于改进PSO算法的含分布式电源的配电网优化[J].山东理工大学学报(自然科学版),2017,31(6):53-57.[4]KIA S S,CORTES J,MARTINEZ S.Distributed convex optimization via continuous-time coordination algorithms with discrete-time communication[J].Automatica,2015,55:254-264.[5]LI Z H,DING Z T,SUN J Y,et al.Distributed adaptive convex optimization on directed graphs via continuous-time algorithms[J]. IEEE Transactions on Automatic Control,2018,63(5):1434 -1441.[6]段书晴,陈森,赵志良.一阶多智能体受扰系统的自抗扰分布式优化算法[J].控制与决策,2022,37(6):1559-1566. [7]DIMAROGONAS D V,FRAZZOLI E,JOHANSSON K H.Distributed event-triggered control for multi-agent systems[J].IEEE Transactions on Automatic Control,2012,57(5):1291-1297.[8]KAJIYAMA Y C,HAYASHI N K,TAKAI S.Distributed subgradi-ent method with edge-based event-triggered communication[J]. IEEE Transactions on Automatic Control,2018,63(7):2248 -2255.[9]LIU J Y,CHEN W S,DAI H.Event-triggered zero-gradient-sum distributed convex optimisation over networks with time-varying topol-ogies[J].International Journal of Control,2019,92(12):2829 -2841.[10]COUTINHO P H S,PALHARES R M.Codesign of dynamic event-triggered gain-scheduling control for a class of nonlinear systems [J].IEEE Transactions on Automatic Control,2021,67(8): 4186-4193.[11]CHEN W S,REN W.Event-triggered zero-gradient-sum distributed consensus optimization over directed networks[J].Automatica, 2016,65:90-97.[12]TRAN N T,WANG Y W,LIU X K,et al.Distributed optimization problem for second-order multi-agent systems with event-triggered and time-triggered communication[J].Journal of the Franklin Insti-tute,2019,356(17):10196-10215.[13]YU G,SHEN Y.Event-triggered distributed optimisation for multi-agent systems with transmission delay[J].IET Control Theory& Applications,2019,13(14):2188-2196.[14]LIU K E,JI Z J,ZHANG X F.Periodic event-triggered consensus of multi-agent systems under directed topology[J].Neurocomputing, 2020,385:33-41.[15]崔丹丹,刘开恩,纪志坚,等.周期事件触发的多智能体分布式凸优化[J].控制工程,2022,29(11):2027-2033. [16]LU J,TANG C Y.Zero-gradient-sum algorithms for distributed con-vex optimization:The continuous-time case[J].IEEE Transactions on Automatic Control,2012,57(9):2348-2354. [17]LIU K E,JI Z J.Consensus of multi-agent systems with time delay based on periodic sample and event hybrid control[J].Neurocom-puting,2016,270:11-17.[18]ZHAO Z Y.Sample-baseddynamic event-triggered algorithm for op-timization problem of multi-agent systems[J].International Journal of Control,Automation and Systems,2022,20(8):2492-2502.[19]LIU J Y,CHEN W S.Distributed convex optimisation with event-triggered communication in networked systems[J].International Journal of Systems Science,2016,47(16):3876-3887.(编辑:杜清玲)46山东理工大学学报(自然科学版)2024年㊀。

利用高清影像地图精确计算输电线路工程人力运距

利用高清影像地图精确计算输电线路工程人力运距

利用高清影像地图精确计算输电线路工程人力运距张 鲲(中国电建集团贵州电力设计研究院有限公司,贵州 贵阳 550002)摘要:为了减小普通地形图计算输电线路人力运距精度不足引起的误差,提出了一种利用卫星地图精确计算输电线路人力运距的方法,并对该方法进行了详细阐述,给出了参考案例。

为了验证该算法的精确度,利用两条输电线路的卫星地图对人力运距进行了计算。

计算结果表明:与普通地图计算人力运距相比,利用卫星地图计算输电线路人力运距,可提高对地形划分的准确度,使人力运距计算结果更为精确。

利用该方法计算人力运距可提高计算结果的准确性,提升工程造价管理水平,减少工程本体费用,达到了工程成本控制目标,为建设环境友好、资源节约型绿色电网提供了坚实保障。

关键词:输电线路;地形划分;人力运距中图分类号:TM75 文献标志码:A 文章编号:1671-9913(2020)04-0057-06Accurate Calculation of Manpower Distance of TransmissionLine Engineering Using Satellite MapZHANG Kun(PowerChina Guizhou Electric Power Design &Research Institute Co., Ltd., Guiyang 550002, China)Abstract: In order to reduce the error caused by insufficient precision in calculating the human distance of transmission lines with ordinary topographic maps, a method for accurately calculating the human distance of transmission lines with satellite maps is proposed, and the method is elaborated in detail, and a reference case is given. In order to verify the accuracy of the algorithm, the human distance is calculated using satellite maps of two transmission lines. The calculation results show that, compared with ordinary maps, satellite maps can improve the accuracy of terrain division and make the calculation results more accurate. Using this method to calculate the distance of manpower transportation can improve the accuracy of calculation results, improve the level of project cost management, reduce the cost of the project itself, achieve the goal of project cost control, and provide a solid guarantee for the construction of an environment-friendly and resource-saving green power grid. Keywords: transmission line; terrain division; manpower distance* 收稿日期:2019-04-25作者简介:张鲲(1986-),男,贵州贵阳人,工程师,从事输电线路设计工作。

graph-based 方法

graph-based 方法

graph-based 方法
Graph-based 方法是一种基于图形模型的算法。

图是由“节点”和“边”组成的抽象结构。

在这种方法中,数据被表示为图形,其中节点代表数据点,边代表数据之间的关系。

Graph-based 方法通常用于分类、聚类、语义分割和图像分割等任务。

Graph-based 方法可以使用不同的图形模型,例如:基于图形分割的方法、基于图形聚类的方法、基于最小割的方法等。

其中,基于图形分割的方法是通常用于图像分割任务的一种技术,它将图像看作是节点和边的集合,基于最小割算法将图像分成若干部分,使得每一部分内的节点具有一定的相似性。

Graph-based 方法在数据密度低、数据量大、数据边关系复杂等情况下表现优秀。

同时,该方法可用于处理非线性问题,且不需要先验知识的支持。

因此,在数据挖掘、机器学习和计算机视觉等领域,Graph-based 方法已成为一种有前途的技术。

基于概率分布学习的高效树型点云生成网络

基于概率分布学习的高效树型点云生成网络

第 22卷第 12期2023年 12月Vol.22 No.12Dec.2023软件导刊Software Guide基于概率分布学习的高效树型点云生成网络许振楠1,沈洋2,许浩2,包艳霞2,刘江2(1.浙江理工大学计算机科学与技术学院,浙江杭州 310018;2.丽水学院工学院,浙江丽水 323000)摘要:针对TreeGAN生成点云产生的不均匀性及模型训练效率低等问题,设计一种基于点云概率分布学习的高效树结构生成对抗网络Probability-TreeGAN,用以改善点云位置的准确性。

该方法在生成器训练时分别学习了点云的概率分布信息以及树型生成网络中点云的特征信息,通过映射网络中学习的概率分布改变了点云的位置分布,不仅生成的点云分布更加均匀,而且点云的形状更具结构性。

通过改变映射网络中初始的潜码,可以改变生成点云的局部特征。

在ShapeNet Part数据集上的实验结果显示,该方法在飞机、椅子等单类及总体16类的JSD指标评估上均优于以往点云生成方法,与传统三维点云生成模型相比,生成的点云更加均匀,模型训练效率更高。

关键词:点云;生成对抗网络;概率分布;树型生成网络;映射网络DOI:10.11907/rjdk.222442开放科学(资源服务)标识码(OSID):中图分类号:TP391 文献标识码:A文章编号:1672-7800(2023)012-0215-08Efficient Tree Structured Point Cloud Generative Network Based onProbability Distribution LearningXU Zhennan1, SHEN Yang2, XU Hao2, BAO Yanxia2, LIU Jiang2(1.School of Computer Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China;2.School of Engineering, Lishui University, Lishui 323000, China)Abstract:Aiming at the non-uniformity of point cloud generation and the low efficiency of model training by TreeGAN (Tree Generative Ad‐versarial Networks), an efficient tree structure generative adversarial network probability-TreeGAN based on probability distribution learning of point clouds is designed to improve the accuracy of point cloud position. The method learns the probability distribution information of the point cloud and the feature information of the point cloud respectively during the model training, and changes the position distribution of the point cloud by mapping the probability distribution learned in the network.The generated point cloud is well distributed and have good struc‐ture.The local features of the generated point cloud can be changed by latent code. According to the experimental results on the ShapeNet Part data set, the method is better than the previous method in the evaluation of JSD (Jensen-Shannon Divergence) indicators, including aircraft,chair single category and overall 16 categories. Compared with traditional 3D point cloud generation models, our method can generate more uniform point cloud, and the model training is more efficient.Key Words:point cloud; generative adversarial network; probability distribution; tree structure generating network; mapping network0 引言三维点云的生成方法是计算机视觉领域关注的热点问题之一。

基于无向图所有生成树的网络重构遗传算法

基于无向图所有生成树的网络重构遗传算法

基于无向图所有生成树的网络重构遗传算法张剑;何怡刚【摘要】A genetic algorithm based on all spanning trees of the simplified graph of distribution network is proposed for its reconfiguration.The simplified graph of distribution network is searched to find all its spanning trees,which are subtracted from the simplified graph to obtain the connecting branches.Since only one of the switches in each connecting edge of a connecting branch could be open,a decimal coding method is proposed,which takes the switch quantity of each edge of a connecting branch as the base vector and the identification number of its opened switch as the optimization variable to significantly shorten the code length.With each spanning tree as a subpopulation,genetic operation is executed in parallel for each subpopulation and the obtained individuals satisfy the operational constraints of radial distribution network without islands automatically to avoid the numerous unfeasible solutions and low searching efficiency of conventional genetic algorithms.Case study shows that,the proposed method has high calculation speed and good performance.%提出一种基于配电网简化图所有生成树的网络重构遗传算法.搜索出配电网简化图的所有生成树,简化图减去生成树得到连支,连支的每条边上有且仅有一个开关打开;提出以连支每条边的开关数量为基向量、打开开关在边上的编号为优化变量的十进制编码方法,大幅缩短了编码长度;每棵生成树对应一个子种群,并行计算子种群中的遗传操作,得到的子代个体自动满足配电网辐射状、无孤岛运行的约束条件,避免了传统网络重构遗传算法产生大量不可行解、搜索效率低的弊端.算例表明所提方法具有计算速度快、性能好的特点.【期刊名称】《电力自动化设备》【年(卷),期】2017(037)005【总页数】6页(P136-141)【关键词】网络重构;遗传算法;并行计算;生成树;无向图;十进制编码;配电网【作者】张剑;何怡刚【作者单位】合肥工业大学电气与自动化工程学院,安徽合肥230009;合肥工业大学电气与自动化工程学院,安徽合肥230009【正文语种】中文【中图分类】TM730 引言为了提高供电可靠性,城市配电网一般设计为环网结构,为了减小短路电流以及便于继电保护的整定,一般采用开环运行方式。

一种基于Fibonacci数的有序线性表查找算法

一种基于Fibonacci数的有序线性表查找算法

第18卷第12期电脑开发与应用文章编号:1003—5850(2005)12—0029—03一种基于Fibonacci数的有序线性表查找算法AFibonacci—basedSearchingAlgorithmforOrdinaJLinearLjst詹炜1戴光明1郑蔚1罗治情1景春霞2(1中国地质大学武汉430074)(2沙市大学荆州434100)【摘要】在设计Fib。

nacci(菲波那契)查找算法的基础上定义了Fibonaccl查找判定树,并利用Fibonacci数的封闭型表达式推导出此种判定树的高度计算公式;证明了在查找成功时,Fibonacci查找的一个优点是总查找长度优于折半查找,Fibonacci查找的另一优点在于访问存放在外存储器上大量的有序表数据时,只需对有序表进行加减运算分割。

【关键词】Fibonacci查找,折半查找,查找判定树,查找长度中图分类号:TP3n.12文献标识码:AABSTRACT0nthehasisofdesignofFibo眦cisearchi“galgorjthm,thispaperdefinestheFibonaccisearchi“g【ree,anddeducestheheigbtoftreeb¨JslogtheclosedformulaoftheFibonacci}furthermore,ifthesearchi“gidsuccessfu】,thesearchingdista眦ofFlbonacclsearchl“gisshorterthanthatofbi眦ysearchl“g.An。

theradvantageofFlbonacci8earchl“gisthatltonlyneedspIusminusdividl“gop啪tion,whlchisveryusefulformassdatastor甜intheaccessorlalstorage.KEYWoRDSHbonaccisearchi“g,bmarysearching,Fibonacclsearchingtree折半查找是查找线性有序表的标准技术,是典型的分治思想,其算法总是通过比较有序表剩余部分的中间关键字与待查找关键字的大小来决定查找的走向,我们把上述折半查找法简称为BinarySearch”g(Fs)。

基于垂直二进制位图的频繁模式挖掘算法

基于垂直二进制位图的频繁模式挖掘算法
Abstract : The vertical bitmap transaction database is introduced to propose a new data structure of the NBFP2Tree based on it. A new algorithm , NBFP2mine , is also offered which is used to mine maximal frequent patterns . This method does not generate any candidate , which can query the maximal frequent patterns easily from the NBFP2Tree directly by once accessing depth2first ergod2 ic of this data structure. Finally , its high efficiency is proved theoretically and experimentally. Key words : vertical bitmap ; bit vector ; NBFP2Tree structure ; NBFP2mine algorithm
例 2 给定一事务数据库 D , T1 = { I1 , I2 , I5 } , T2 = { I2 , I4 } , T3 = { I2 , I3 } ,则项 I1 对应的二进制数 BVi 为 100 ; I2 对应的二进制数 BVi 为 111 ; I3 对应 的二进制数 BVi 为 001 ; I4 对应的二进制数 BVi 为 010 ; I5 对应的二进制数 BVi 为 100.
0 引言
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Graph-DTP:Graph-Based Algorithm for Solving Disjunctive Temporal
Problems
Yuechang Liu,Hong Qian and Yunfei Jiang
Software Research Institute
Sun Yat-Sen University
510275Guangzhou,P.R.China
ychangliu@,honggzb@,issjyf@
Abstract
We study an expressive quantitative temporal model: Disjunctive Temporal Problem(DTP),which wasfirst pro-posed only in1998[5].As extension of Temporal Con-straint Satisfaction Problem(TCSP)[1],DTP differs from TCSP in that two disjuncts in a same disjunctive constraint do not necessarily refer to same temporal variables.Tradi-tionally,most of the DTP algorithms in the literature solve DTPs by treating them as Constraint Satisfaction Prob-lems(CSPs),and searching for solutions using standard CSP techniques,e.g.backtracking,back-jumping,forward checking,semantic branching,removal of subsumed vari-ables,nogood recording[3,5,6],etc.
Those CSP techniques are powerful in solving DTPs. However,an evident drawback of viewing DTPs as general CSPs is that much semantic information encoded in DTPs is neglected.In fact we can mine rich semantic informa-tion that can be exploited to reduce search space for DTPs (more than semantic branching).
Through some topological analysis on the graphical rep-resentation of the problems,some techniques are developed to help to search solutions for other temporal models(e.g. TCSP),or to identify“crucial subproblems”for CSP[2]. However,little effort has been made to exploit the inherent topological information in solving DTPs.
Our idea runs on a graphical representation of DTPs–Disjunctive Temporal Network(DTN).We define DTN as an edge-labeled weighted digraph,on which some rele-vant concepts are identified.Then,we define the concept of equivalency between DTNs with respect to their consis-tency.For a given DTN,deciding its consistency is ascribed to check the consistency of a DTN which is equivalent to it and has less constraints(edges).We iteratively reduce a DTN to a simpler but equivalent one according to a set of designed reduction rules(which can be performed within polynomial time).It is hoped that when the DTN reaches afixed point under such reduction operation,the resulted DTN has minimal edges(which is like backdoor in SAT[4], or“near clique”in[2]).At last the resulted DTN(DTP)is transferred to CSP search phase,where we derive a special variable ordering strategy again through the DTN structure.
We shall describe the generation of DTN structure,the DTN reduction rules,the implementation of the complete Graph-DTP algorithm,and somefirst results of this ap-proach.
References
[1]R.Dechter,I.Meiri,and J.Pearl.Temporal constraint net-
works.Artificial Intelligence,49:61–95,1991.
[2]S.L.Epstein and R.J.Wallace.Finding crucial subproblems
to focus global search.In Proceedings of the18th IEEE In-ternational Conference on Tools with Artificial Intelligence (ICTAI-2006),pages151–162,2006.
[3] A.Oddi and A.Cesta.Incremental forward checking for the
disjunctive temporal problem.In Proceedings of ECAI2000, pages108–112,2000.
[4]S.T.T.W.P KIlby,J Slaney.Backbones and backdoors in
satisfiability.In Proceedings of the20th National conference on artificial intelligence and the17th innovative appllications of artificial intelligence conference,pages1368–1373,2005.
[5]K.Stergiou and M.Koubarakis.Backtracking algorithms for
disjunctions of temporal constraints.In Proceedings of the 15th National Conference on Artificial Intelligence(AAAI-
98),pages248–253,1998.
[6]I.Tsamardinos and M.E.Pollack.Efficient solution tech-
niques for disjunctive temporal reasoning problems.Artificial Intelligence,151(1-2):43–89,2003.
14th International Symposium on Temporal Representation and Reasoning (TIME'07
0-7695-2936-8/07 $20.00 © 2007。

相关文档
最新文档