七年级数学上册知识点大全

合集下载

七年级上册数学知识点归纳总结

七年级上册数学知识点归纳总结

七年级上册数学知识点归纳总结一、知识点:1. 代数式:用运算符号把数与字母连起来的式子叫做代数式。

单独的一个数或一个字母也叫做代数式。

2. 单项式:只含有数与字母的积的代数式叫做单项式。

3. 系数:单项式中的数字因数叫做这个单项式的系数。

4. 次数:一个单项式中,所有字母的指数之和叫做这个单项式的次数。

5. 整式:只含有字母的积的式子叫做整式。

6. 多项式:几个单项式的和叫做多项式。

7. 项:在多项式中,每个单项式叫做多项式的项。

8. 常数项:不含字母的项叫做常数项。

9. 升幂排列与降幂排列:从左向右,指数由小到大是升幂排列;从左向右,指数由大到小是降幂排列。

10. 平行线:在同一平面内,不相交的两条直线叫做平行线。

11. 同位角、内错角、同旁内角:两条直线被第三条直线所截,如果两个角都在两直线的同侧,并且在第三条直线的两侧,那么这样的一对角叫做同旁内角;如果两个角都在两直线的同侧,并在第三条直线的同旁,那么这样的一对角叫做同位角;如果两个角都在两直线的异侧,并且都在第三条直线的同旁,那么这样的一对角叫做内错角。

12. 对顶角:两个角的两边分别对应垂直,则这两个角叫做对顶角。

13. 垂直:两条直线相交成直角时,这两条直线互相垂直。

14. 垂线与垂足:从直线外一点向直线引垂线,这点和垂足之间的线段叫做垂线段。

连接直线外一点与直线上各点的所有线段中,垂线段最短。

15. 两点之间的所有连线中,线段最短。

简单说成:两点之间线段最短。

16. 三角形:由不在同一条直线上的三条线段首尾顺次连接得到的图形叫做三角形。

17. 三角形的边、顶点、内角:三角形是由三条边、三个顶点、三条高组成的。

三条边分别叫做三角形的三边;三个顶点分别叫做三角形的三个顶点;三个内角分别叫做三角形的三个内角;其中最大的内角叫做最大角,它也是三角形的外角。

18. 三角形的基本性质:三角形任意两边的和大于第三边;三角形三个内角和等于180°;三角形具有稳定性。

七年级上册数学重点知识

七年级上册数学重点知识

七年级上册数学重点知识包括以下几个方面:
1. 有理数:了解正数、负数和零的概念,掌握有理数的加、减、乘、除运算规则,以及整数和分数的转换。

2. 一元一次方程:学会解一元一次方程,理解方程的解的概念,掌握解方程的方法。

3. 几何图形:了解线段、射线和直线的概念,掌握角的概念及角的度量,学会画图和识图。

4. 三角形:理解三角形的定义和性质,掌握三角形的三边关系、三角形内角和定理、三角形外角性质等。

5. 多边形:了解多边形的定义和性质,掌握多边形的内角和公式、外角和定理,以及多边形对角线的概念。

6. 几何图形的变换:掌握平移、旋转、轴对称等几何变换的概念和方法。

7. 数据分析:学会收集、整理、分析数据,掌握条形图、折线图、饼图等统计图表的绘制方法。

8. 逻辑推理:培养逻辑思维能力,掌握简单的逻辑推理方法。

以上就是七年级上册数学的重点知识,需要在学习过程中加以重视和掌握。

完整版)七年级上册数学知识点大全

完整版)七年级上册数学知识点大全

完整版)七年级上册数学知识点大全2)异号两数相加,取绝对值大的符号,并把绝对值相减;3)加数与被加数的顺序可以交换,即满足交换律;4)加法结合律成立,即(a+b)+c=a+(b+c);5)0是加法的零元素,即a+0=a;6)有理数加法满足可逆律,即对于任意有理数a,都有相反数-b,使得a+b=0.8.有理数减法法则:1)a-b=a+(-b);2)减数与被减数的顺序不能交换,即不满足交换律;3)减法不满足结合律,即(a-b)-c≠a-(b-c);4)减法没有零元素;5)有理数减法也满足可逆律,即对于任意有理数a,都有相反数-b,使得a-b=a+(-b)=0.9.有理数乘法法则:1)同号两数相乘,积为正数;2)异号两数相乘,积为负数;3)0乘以任何数都等于0;4)1是乘法的单位元素,即a×1=a;5)乘法满足交换律,即a×b=b×a;6)乘法满足结合律,即(a×b)×c=a×(b×c);7)有理数乘法满足可逆律,即对于任意非零有理数a,都有倒数1/a,使得a×1/a=1.10.有理数除法法则:1)a÷b=a×1/b;2)被除数为0时,无法进行除法运算;3)除数为0时,无意义;4)除法不满足交换律,即a÷b≠b÷a;5)除法不满足结合律,即(a÷b)÷c≠a÷(b÷c);6)有理数除法满足可逆律,即对于任意非零有理数a,都有倒数1/a,使得a×1/a=1.11.分数:1)分数由分子和分母组成,分母不能为0;2)分数可以化为最简分数,即分子和分母没有公因数;3)分数可以比大小,比较分数大小时,可以通分,然后比较分子大小;4)分数可以加减乘除,加减法通分后再进行运算,乘法直接将分子和分母相乘,除法将除数取倒数后再乘以被除数.12.小数:1)小数是有理数的一种表示形式;2)小数可以化为分数,分母为10的正整数的分数;3)小数的加减乘除法与分数的运算法则相同;4)小数可以用数轴表示,小数点左边的数表示整数部分,右边的数表示小数部分;5)小数可以化为百分数,即乘以100,化为千分数即乘以1000等.1.有理数的基本概念:有理数包括正有理数、负有理数和零,可以表示成分数形式,分母不为零。

初中数学七年级上册知识点总结(最新最全)

初中数学七年级上册知识点总结(最新最全)

提分数学七年级上知识清单第一章 有理数一.正数和负数⒈正数和负数的概念负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数注意:①字母a 可以表示任意数,当a 表示正数时,-a 是负数;当a 表示负数时,-a 是正数;当a 表示0时,-a 仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a 就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数: 比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。

3.0表示的意义⑴0表示“ 没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

二.有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

2. (1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ①按正、负分类: ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②按有理数的意义来分:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数三.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

七年级上册数学要点

七年级上册数学要点

七年级上册数学要点
1. 正负数:正数是大于0的数,负数是小于0的数。

0既不是正数也不是负数。

2. 有理数:有理数是可以表示为两个整数之比的数,包括整数和分数。

整数包括正整数、0和负整数,分数包括正分数和负分数。

3. 数轴:数轴是一条直线,可以用来表示所有的有理数。

数轴上的每一个点都对应一个有理数,反之亦然。

数轴上的点有原点(表示0的点)、正方向和单位长度。

在数轴上,右边的数总比左边的数大。

4. 相反数和绝对值:只有符号不同的两个数互为相反数。

正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

5. 倒数:乘积为1的两个数互为倒数。

0没有倒数。

6. 直线、射线和线段:直线可以向两侧无限延伸,没有端点。

射线有一个端点,可以向一侧无限延伸。

线段有两个端点,长度有限。

7. 角:角是由有公共端点的两条射线组成的图形。

这个公共端点是角的顶点,两条射线是角的两边。

角的度、分、秒是60进制的,即1度等于60分,1分等于60秒。

七年级上册数学知识点大全

七年级上册数学知识点大全

人教版七年级数学上册知识点大全1.有理数: (1)凡能写成)0p q ,p (pq≠为整数且形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;不是有理数; (2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数 0和正整数; a >0 a 是正数; a <0 a 是负数;a ≥0 a 是正数或0 a 是非负数; a ≤ 0 a 是负数或0 a 是非正数.;2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ; (3)相反数的和为0 a+b=0 a 、b 互为相反数. (4)相反数的商为-1. (5)相反数的绝对值相等 4.绝对值:!(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ;(3)0a 1aa >⇔= ;0a 1aa <⇔-=;(4) |a|是重要的非负数,即|a|≥0; 5.有理数比大小:(1)正数永远比0大,负数永远比0小; (2)正数大于一切负数;'(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,,以上数据表示与标准质量的差, 绝对值越小,越接近标准。

七年级数学上册知识点大全

七年级数学上册知识点大全

七年级数学上册知识点汇总1.有理数:(1)凡能写成分数形式的数,都是有理数,整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ( a 是非负数); a ≤ 0 ⇔ a 是负数或0(a 是非正数).(4)最大的负整数是-1,最小的正整数是12.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;如1.5的相反数是-1.5,-12的相反数是12,a 的相反数是-a,0的相反数还是0;(2)注意:3.14-π 的相反数是π-3.14;a-b 的相反数是b-a ;a+b 的相反数是-a-b ;(3)相反数的和为0, 即: a+b=0 ⇔ a 、b 互为相反数.(4)相反数的商为-1(除0外). (5)相反数的绝对值相等。

4.绝对值:(1)正数的绝对值等于它本身,例如:|5|=5, |π-3.14|=π-3.140的绝对值是0,负数的绝对值等于它的相反数;例如: |-5|=5, |3.14-π|=-(3.14-π)注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ; (3) 0a 1a a>⇔= ; 0a 1a a<⇔-=; (4) |a|是重要的非负数,即|a|≥0;5.有理数比大小:(1)正数永远比0大,负数永远比0小; (2)正数大于一切负数;(3)两个负数,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;6.倒数:乘积为1的两个数互为倒数;例如:1.2的倒数是5/6,-4/7的倒数是-7/4注意:0没有倒数;若ab=1⇔ a、b互为倒数;等于本身的数汇总:(1)相反数等于本身的数:0(2)倒数等于本身的数:1,-1 (3)绝对值等于本身的数:正数和0(4)平方等于本身的数:0,1 (5)立方等于本身的数:0,1,-1.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;例如:-2-1=-3,(-2-1可理解为+号省略读作-2,-1的和,也可读作-2减1 )(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;例如:-1+2=1, -2+1=-1, 7-9=-2(7-9读为7与-9的和)(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;例如4-(-5)=4+5.10 有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个不为零因数连乘,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。

七年级上册数学知识点总结归纳

七年级上册数学知识点总结归纳

七年级上册数学知识点总结归纳一、正数和负数1.数和负数的概念负数:比0小的数正数:比0大的数 0既不是正数,也不是负数。

注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a 表示负数时,-a是正数;当a表示0时,-a仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a 就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

若正数表示某种意义的量,则负数可以表示具有及该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.数字0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数;(3)0表示一个确切的量。

如:0℃,或在有些题目中的基准,比如以海平面为基准,则0米就表示海平面。

二、有理数⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

③整数也能化成分数,也是有理数注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8也是偶数,-1,-3,-5也是奇数。

三、数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。

⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。

⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数及数轴上的点不是一一对应关系。

七年级数学上册知识点重点归纳整理

七年级数学上册知识点重点归纳整理

七年级数学上册知识点重点归纳整理一起来看看七年级数学上册知识点重点归纳,欢迎查阅!七年级数学知识点总结大全一元一次方程1、方程是含有未知数的等式。

2、方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程。

注意:判断一个方程是否是一元一次方程要抓住三点:1)未知数所在的式子是整式(方程是整式方程);2)化简后方程中只含有一个未知数;3)经整理后方程中未知数的次数是1.3、解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。

4、等式的性质:1)等式两边同时加(或减)同一个数(或式子),结果仍相等;2)等式两边同时乘同一个数,或除以同一个不为0的数,结果仍相等。

注意:运用性质时,一定要注意等号两边都要同时变;运用性质2时,一定要注意0这个数.初一数学知识点总结一、初一数学上册知识点:代数初步知识。

1.代数式:用运算符号“+-×÷……”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)2.列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写;(2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a.二、初一数学上册知识点:几个重要的代数式(m、n表示整数)。

(1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2;(2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;(3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1;(4)若b0,则正数是:a2+b,负数是:-a2-b,非负数是:a2,非正数是:-a2.三、初一数学上册知识点:有理数。

七年级上册数学知识点 (全册)

七年级上册数学知识点 (全册)

七年级上册数学知识点 (全册)单元一:数的概念和认识
- 自然数、整数、有理数、无理数的概念及其表示方法- 数轴的认识和使用
- 数的比较和大小的判断方法
- 数的分类和性质
单元二:整数的加减法
- 整数的加法和减法运算规则
- 整数的加减法计算方法
- 整数加减法的应用
单元三:小数的认识和运算
- 小数的概念和表示方法
- 小数和分数的转换
- 小数的加减乘除运算法则
- 小数的应用问题
单元四:比例与相等
- 比例的概念和性质
- 比例的表示方法和比例的简化- 比例的相等和比例的应用
单元五:百分数
- 百分数的概念和表示方法
- 百分数与比例的关系
- 百分数的转化和运算法则
- 百分数的应用问题
单元六:图形的认识
- 几何图形的基本概念和性质- 点、线、面、体的认识
- 常见平面图形的名称和特征
- 三角形的分类和性质
单元七:平面图形的性质和计算
- 四边形的分类和性质
- 平行四边形的性质和判定方法
- 直角、等腰和等边三角形的性质
- 平面图形的周长和面积的计算方法
单元八:数据的收集和整理
- 数据的收集方法和调查问题的设计
- 数据的整理和分类
- 数据的统计和分析
- 数据的应用和解读
以上是七年级上册数学的主要知识点,通过学习这些内容,你可以打下坚实的数学基础。

希望你在学习中能够发现数学的乐趣,不断提升自己的数学能力。

加油!。

七年级数学上册知识点大全(整理好,直接打印)

七年级数学上册知识点大全(整理好,直接打印)

七年级数学上册知识点汇总有理数1.有理数:(1)整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;(2) 有理数的分类:① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3) 自然数⇔0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ( a 是非负数); a ≤ 0 ⇔ a 是负数或0(a 是非正数). (4)最大的负整数是-1,最小的正整数是12.数轴:数轴是规定了原点、正方向、单位长度的直线. 3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;如1.5的相反数是-1.5,-12的相反数是12,a 的相反数是-a,0的相反数还是0;(2)注意:3.14-π 的相反数是π-3.14;a-b 的相反数是b-a ; a+b 的相反数是-a-b ;(3)相反数的和为0,即:a+b=0 ⇔ a 、b 互为相反数. (4)相反数的商为-1(除0外). (5)相反数的绝对值相等。

4.绝对值:(1)正数的绝对值等于它本身,例如:|5|=5, |π-3.14|=π-3.140的绝对值是0,负数的绝对值等于它的相反数;例如|-5|=5,3.14-π|=-(3.14-π) 注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ;(3)0a 1aa >⇔= ;0a 1aa <⇔-=;(4) |a|是重要的非负数,即|a|≥0; 5.有理数比大小:(1)正数永远比0大,负数永远比0小; (2)正数大于一切负数;(3)两个负数,绝对值大的反而小;|-5|>|-4|则 -5<-4 (4)数轴上的两个数,右边的数总比左边的数大;6.倒数:乘积为1的两个数互为倒数;例如:1.2的倒数是5/6,-4/7的倒数是-7/4注意:0没有倒数;若ab=1⇔ a、b互为倒数;等于本身的数汇总:(1)相反数等于本身的数:0(2)倒数等于本身的数:1,-1(3)绝对值等于本身的数:正数和0(4)平方等于本身的数:0,1(5)立方等于本身的数:0,1,-1.7. 有理数加法法则:(1)同号两数相加,取两数相同的正负号,并把绝对值相加;例如:-2-1=-3,(-2-1可理解为-2,-1的和,也可读作-2减1 )(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;例如:-1+2=1,-2+1=-1,7-9 =-2(7-9读为7与-9的和)(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;如6-5=-5+6(2)加法的结合律:(a+b)+c=a+(b+c).(4-3)+2=4+(-3+2)9.有理数减法法则:减去一个数,等于加上这个数的相反数;例如4-(-5)=4+5.10 有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个不为零的因数连乘,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。

七年级上册数学知识点提纲

七年级上册数学知识点提纲

七年级上册数学知识点提纲
一、数的概念
1.自然数、整数、有理数、无理数、实数的概念及各自的性质
2.数的分类与比较
3.数轴的概念
二、整数的运算
1.带符号的整数加减法和乘法
2.整数的混合运算
3.解一元一次方程
三、平面图形
1.二维坐标系的概念
2.平面图形的分类及性质
3.平面图形的计算:周长、面积、体积
四、相似与全等
1.相似的概念及判定
2.相似三角形的性质
3.全等三角形的定义和判定
五、比例与比例关系
1.比例的定义及性质
2.比例的化简与扩大
3.比例关系的应用
六、数据的统计
1.统计量的概念
2.频数表、频率表和频率分布直方图的制作
3.平均数、中位数和众数的计算
七、解析几何初步
1.坐标系的建立及其基本性质
2.直线的解析式
3.平面图形的解析式
总之,七年级上册数学包含了数的概念、整数的运算、平面图形、相似与全等、比例与比例关系、数据的统计以及解析几何初步等知识点。

只要掌握了这些基本的知识,就可以为后面的数学学习打下牢固的基础。

七年级数学上册知识点归纳

七年级数学上册知识点归纳

七年级数学上册知识点归纳一、数与代数1. 整数- 整数 classification- 整数 operations (addition, subtraction, multiplication, division)- 绝对值和有理数- 正数和负数的概念2. 有理数- 有理数的定义- 有理数的运算 (addition, subtraction, multiplication, division)- 有理数的比较大小- 分数的简化和最简形式3. 代数表达式- 代数表达式的构成- 单项式和多项式- 合并同类项- 代数式的简化4. 一元一次方程- 方程的建立和解法- 方程的解的定义- 解一元一次方程的应用问题5. 比例和百分比- 比例的概念和性质- 百分比的计算- 比例和百分比的实际应用二、几何1. 平面图形- 点、线、面的基本性质- 直线、射线、线段- 角的概念和分类 (锐角、直角、钝角)- 平行线的性质和判定2. 三角形- 三角形的基本性质- 三角形的分类 (等边、等腰、直角三角形) - 三角形的内角和外角性质- 三角形的面积计算3. 四边形- 四边形的基本性质- 矩形、正方形、平行四边形的性质和计算 - 四边形的面积计算4. 圆- 圆的基本性质- 圆的半径、直径、弦、弧、切线- 圆的面积和周长计算三、统计与概率1. 统计- 数据的收集和整理- 频数和频率- 条形图、折线图、饼图的绘制和解读2. 概率- 随机事件的概念- 概率的初步认识- 简单事件的概率计算四、解题技巧与策略1. 问题解决步骤- 理解问题- 制定解题计划- 执行解题计划- 检查和验证答案2. 策略选择- 画图辅助解题- 转化和化归思想- 分类讨论方法3. 常见错误分析- 计算错误- 概念理解错误- 解题方法选择错误以上是七年级数学上册的主要知识点归纳。

在实际教学过程中,教师应根据学生的具体情况和学习进度,适当调整教学内容和难度,确保学生能够扎实掌握基础知识,提高解题能力和数学思维能力。

最全面七年级数学上册知识点总结(精华版)

最全面七年级数学上册知识点总结(精华版)

提分数学七年级上知识清单第一章有理数一.正数和负数1 .正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,是负数;当a表示负数时,是正数;当a表示0 时,-a仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a 就不能做出简单判断)②正数有时也可以在前面加“ +”,有时省略不写。

所以省略“ +”的正数的符号是正号。

2 .具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8c表示为:・8 °C支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数:比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。

3 .0表示的意义⑴0表示“没有。

如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

二,有理数1 .有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①H是无限不循环小数,不能写成分数形式,不是有理数。

②有小数和无限循环小数都可化成分数,都是有理数。

注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,・4,・6,-8 也是偶数,也是奇数。

2.(1)凡能写成9 (P, q为整数且H0)形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负P 分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;不一定是负数,+a也不一定是正数;正是有理数;「匚右刑物f正整数正有理数I正分数⑵有理数的分类:①按正、负分类:有理数{零负有理数[ [■正整数整数彳零②按有理数的意义来分:有理数出整数分数年分数分数一分数■总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数⑶注意:有理数中,1、0、・1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域, 这四个区域的数也有自己的特性;(4)自然数U 0和正整数;a>0 U a是正数;a< 0 a是负数;a20 = a是正数或0 u a是非负数;aW 0 = a是负数或0 u a是非正数.三.数轴1 .数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

七年级数学上册知识点

七年级数学上册知识点

七年级数学上册知识点第一章有理数(一)正负数1.正数:大于0的数。

2.负数:小于0的数。

3.0即不是正数也不是负数。

4.正数大于0,负数小于0,正数大于负数。

(二)有理数1.有理数:由整数和分数组成的数。

包括:正整数、0、负整数,正分数、负分数。

可以写成两个整数之比的形式。

(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。

如:π)2.整数:正整数、0、正数整数,泛称整数。

3.分数:正分数、负分数。

(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。

(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。

)2.数轴的三要素:原点、正方向、单位长度。

3.相反数:只有符号不同的两个数叫做互为相反数。

0的相反数还是0。

4.绝对值:正数的绝对值就是它本身,负数的绝对值就是它的相反数;0的绝对值就是0,两个负数比较大小,绝对值小的反而大。

(四)有理数的加减法1.先定符号,再算绝对值。

2.加法运算法则:同号相加,取相同符号,并把绝对值相加。

异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

一个数同0相加减,仍得这个数。

3.乘法交换律:a+b= b+ a 两个数相乘,互换加数的边线,和维持不变。

4.加法结合律:(a+b)+ c = a +(b+ c )三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

5. ab = a +(b)乘以一个数,等同于提这个数的相反数。

(五)有理数乘法(先定积的符号,再定积的大小)1.同号得正,异号得负,并把绝对值相加。

任何数同0相加,都得0。

2.乘积是1的两个数互为倒数。

3.乘法交换律:ab= ba4.乘法结合律:(ab)c = a (b c)5.乘法分配律:a(b +c)= a b+ ac(六)有理数除法1.先将乘法化为乘法,然后的定符号,最后谋结果。

七年级上册数学所有知识点

七年级上册数学所有知识点

一、算数与式子。

1.加减乘除,理解计算机的运算原则;
2.练习应用常用算法;
3.掌握正确的表达和计算顺序,如先乘除后加减;
4.掌握顺序计算、列式、竖式等求解方法;
5.加减乘除的正负数运算;
6.四则运算中借位、退位的处理;
7.分数的定义、分式的化简;
8.常用方程的解法。

二、几何。

1.理解几何图形的基本概念,如:点、线、面等;
2.理解直角三角形、等腰三角形等,掌握其各自的属性,及相应的计算公式;
3.理解等比例,掌握等比比例的计算过程;
4.理解四边形、正多边形的属性及其计算;
5.了解立体几何的概念,理解立体图形的各类属性;
6.掌握正方体、长方体、球体、圆柱体的表面积与体积公式;
7.理解图形之间的关系及相应的构图与结论判断;
8.了解用直线线段、圆弧、圆锥、圆柱棱等来构成几何图形;
9.了解坐标系及其特性,掌握直线方程和圆的方程;
三、概率。

1.理解概率的概念;
2.熟悉面积比相关的概率计算;
3.掌握抛硬币试验、抛骰子试验等实际概率事件的计算;
4.理解机械计算概率的方式;。

七年级上册数学知识点 (全册)

七年级上册数学知识点 (全册)

七年级上册数学知识点 (全册)第一章:数的认识1.1 整数1.1.1 整数的定义与性质- 整数包括正整数、0 和负整数。

- 整数具有加法、减法、乘法和除法等基本运算性质。

1.1.2 整数的分类- 自然数:正整数和0。

- 整数:包括自然数、负整数和0。

1.2 分数1.2.1 分数的定义与性质- 分数是整数比上整数,形式为 a/b,其中 a 和 b 是整数,b 不为0。

- 分数具有加法、减法、乘法和除法等基本运算性质。

1.2.2 分数的分类- 正分数:分子大于分母的分数。

- 负分数:分子小于分母的分数。

- 零分数:分子等于分母的分数。

1.3 小数1.3.1 小数的定义与性质- 小数是十进制数的一种,由整数部分和小数部分组成,用小数点分隔。

- 小数具有加法、减法、乘法和除法等基本运算性质。

1.3.2 小数的分类- 有限小数:小数部分有限的小数。

- 无限小数:小数部分无限的小数。

第二章:代数式2.1 代数式的定义与性质2.1.1 代数式的定义- 代数式是由数字、变量和运算符组成的表达式。

2.1.2 代数式的性质- 代数式具有加法、减法、乘法和除法等基本运算性质。

2.2 变量2.2.1 变量的定义与性质- 变量是代数式中的未知数,用字母表示。

- 变量可以取不同的数值。

2.3 代数式的运算2.3.1 代数式的加减法- 同类项:变量和它们的指数相同的代数式。

- 代数式的加减法:同类项之间进行加减运算。

2.3.2 代数式的乘除法- 代数式的乘除法:将代数式与数字相乘或相除。

第三章:一元一次方程3.1 一元一次方程的定义与性质3.1.1 一元一次方程的定义- 一元一次方程是形如 ax + b = 0 的方程,其中 a 和 b 是常数,x 是变量。

3.1.2 一元一次方程的性质- 一元一次方程的解是使方程成立的变量 x 的值。

3.2 一元一次方程的解法3.2.1 解法概述- 一元一次方程的解法有代入法、移项法、消元法等。

七年级上册数学书知识点

七年级上册数学书知识点

七年级上册数学书知识点七年级上册数学书知识点1一、正数与负数1.在实际中表示意义相反的量上升5米记为5米; -8米则表示下降8米。

2.正数:大于0的数。

3.负数:在正数的前面加上“-”。

4.0的含义:①既不是正数也不是负数;②0在计数时表示没有,比如0元;③0表示某种量的基准,比如0℃表示温度的基准5.有理数的分类分数概念(1)小学学的分数,百分数,有限小数,无限循环小数都可以转化为分数,现统称分数;(2)无限不循环小数不属于有理数,如:π=3.141592... 2.010010001...“非”的概念非负数:正数和0非正分数:负分数非正数:负数和0非负分数:正分数非负整数:正整数和0非正整数:负整数和0二、数轴1.三要素:原点、正方向、单位长度。

通常原点用“O”表示,向右的方向为正方向,单位长度为1.2.如何画数轴①画直线(一般画成水平的),定原点,标出原点“O”;②取原点向右的方向为正方向,并标出箭头;③选适当的长度为单位长度,并标出-3,-2,-1,1,2,3各点。

3.数轴上的点与有理数:(1)数轴上的点与有理数一一对应(2)左边的数<右边的数三、相反数①只有符号不同的两个数,叫做互为相反数。

0的相反数是0。

②a的相反数-a③a与b互为相反数:a+b=0④a-b的相反数是:-a+b或b-a⑤a+b的相反数是:-a-b⑥求一个数的相反数方法:在这个数的前面加“-”号.⑦在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。

四、绝对值1.几何意义:从数轴上表示a的点到原点的距离即为|a|2. ①一个正数的绝对值等于它本身;当a是正数时,|a|=a;②一个负数的绝对值等于它的相反数;当a是负数时,|a|=-a;③0的绝对值等于0。

当a=0时,|a|=0。

3.互为相反数的两个数的绝对值相等。

五、有理数的大小比较1.正数>0>负数;2.两个负数比较①右边的点表示的数比左边的点表示的数大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学上册知识点汇总1、有理数:(1)凡能写成分数形式的数,都就是有理数,整数与分数统称有理数、注意:0即不就是正数,也不就是负数;-a 不一定就是负数,+a 也不一定就是正数;π不就是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)自然数⇔ 0与正整数; a >0 ⇔ a 就是正数; a <0 ⇔ a 就是负数;a ≥0 ⇔ a 就是正数或0 ( a 就是非负数); a ≤ 0 ⇔ a 就是负数或0(a 就是非正数)、(4)最大的负整数就是-1,最小的正整数就是12.数轴:数轴就是规定了原点、正方向、单位长度的一条直线、3.相反数:(1)只有符号不同的两个数,我们说其中一个就是另一个的相反数;如1、5的相反数就是-1、5,-12的相反数就是12,a 的相反数就是-a,0的相反数还就是0;(2)注意:3、14-π 的相反数就是π-3、14;a-b 的相反数就是b-a ;a+b 的相反数就是-a-b ;(3)相反数的与为0, 即: a+b=0 ⇔ a 、b 互为相反数、(4)相反数的商为-1(除0外)、 (5)相反数的绝对值相等。

4、绝对值:(1)正数的绝对值等于它本身,例如:|5|=5, |π-3、14|=π-3、140的绝对值就是0,负数的绝对值等于它的相反数;例如: |-5|=5, |3、14-π|=-(3、14-π)注意:绝对值的意义就是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ; (3) 0a 1a a>⇔= ; 0a 1a a<⇔-=; (4) |a|就是重要的非负数,即|a|≥0;5、有理数比大小:(1)正数永远比0大,负数永远比0小; (2)正数大于一切负数;(3)两个负数,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;6、倒数:乘积为1的两个数互为倒数;例如:1、2的倒数就是5/6,-4/7的倒数就是-7/4注意:0没有倒数; 若ab=1⇔ a 、b 互为倒数;等于本身的数汇总: (1)相反数等于本身的数:0(2)倒数等于本身的数:1,-1 (3)绝对值等于本身的数:正数与0(4)平方等于本身的数:0,1 (5)立方等于本身的数:0,1,-1、7、 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;例如:-2-1=-3,(-2-1可理解为+号省略读作-2,-1的与,也可读作-2减1 )(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;例如:-1+2=1, -2+1=-1, 7-9=-2(7-9读为7与-9的与)(3)一个数与0相加,仍得这个数、8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c)、9.有理数减法法则:减去一个数,等于加上这个数的相反数;例如4-(-5)=4+5、10 有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个不为零因数连乘,积的符号由负因式的个数决定、奇数个负数为负,偶数个负数为正。

4×(-6)×(-8)×12×(-9)=-4×6×8×12×911 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac 、(简便运算)12.有理数除法法则:(1)除以一个数等于乘以这个数的倒数;例如:7÷(-4/5)=7×(-5/4)(2)两数相除,同号得正,异号得负,并把绝对值相除;0除以任何非零数都得0。

(注意:零不能做除数,)13.有理数的乘方:(1)求n个相同因数a的积的运算,叫做乘方;即a n=a、a、、、、、a(2)乘方中,相同的因数a叫做底数,相同因数的个数n叫做指数,乘方的结果叫做幂;(3)|a|,a2就是非负数,即|a|,a2≥0;若(a-2)2+|b+4|=0 a-2=0,b+4=0(即a=2,b=-4);(4)正数的任何次幂都就是正数;例如:1n =1(5)负数的奇次幂就是负数; 例如:(-1)2n+1=-1 负数的偶次幂就是正数;(-1)2n=1(6)(-3)2 与-32的区别: (-3)2=(-3)×(-3)=9; -32=-3×3、=-914.科学记数法:把一个大于10的数记成a×10n的形式,其中a就是整数数位只有一位的数,这种记数法叫科学记数法、15、近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位例如:23、4精确到0、1或精确到十分位,5、78×104(5、78万)精确到百位。

16、有效数字:从左边第一个不为零的数字起,到末位数字止,所有数字,都叫这个近似数的有效数字、例如:0、0403有三个有效数字:4,0,3、17、混合运算法则:先乘方,再乘除,后加减;如果有括号,先算括号,同一级运算,从左到右进行、注意:不省过程,不跳步骤。

18、特殊值法:就是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明、常用于填空,选择。

整式的加减19.单项式:表示数与字母的乘积的式子,单独的一个数或字母也叫单项式。

例如:单项式:3xy, a, -3ab/2, 0, -7, 不就是单项式:a/c, (m+n)/2, ab+ac20.单项式的系数与次数:单项式中的数字因数,称单项式的系数;例如:-32xy, a, -3ab/2,πa2b的系数分别就是-32,1,-3/2,π单项式中所有字母指数的与,叫单项式的次数、例如:-32xy, a, πa2b的次数分别就是2,1,321.多项式:几个单项式的与叫多项式、22.多项式的项数与次数:多项式中所含单项式的个数就就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;例如:-x2y+5xy-2x-1就是三次四项式,其中,三次项就是-x2y,三次项系数就是-1 ,二次项就是5xy,二次项系数就是5,一次项就是-2x, 一次项系数就是-2, 常数项就是-123.单项式与多项式统称整式、24.同类项:所含字母相同,并且相同字母的指数也相同的单项式就是同类项、25.合并同类项法则:系数相加,字母与字母的指数不变、不就是同类项不能合并。

26.去(添)括号法则:把括号与括号前面的符号去掉若括号前边就是“+”号,括号里的各项都不变号;+(a-b+c)=a-b+c若括号前边就是“-”号,括号里的各项都要变号、 -(a-b+c)=-a+b-c27.整式的加减:一找(同类项):(划线);二加(系数相加)三合(字母部分不变)28、多项式的升幂与降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列)、经典例题透析类型一:用字母表示数量关系1.填空题:(1)香蕉每千克售价3元,m千克售价____________元。

(2)温度由5℃上升t℃后就是__________℃。

(3)每台电脑售价x元,降价10%后每台售价为____________元。

(4)某人完成一项工程需要a天,此人的工作效率为__________。

思路点拨:用字母表示数量关系,关键就是理解题意,抓住关键词句,再用适当的式子表达出来。

举一反三:[变式] 某校学生给“希望小学”邮寄每册元的图书240册,若每册图书的邮费为书价的5%,则共需邮费______________元。

类型二:整式的概念2.指出下列各式中哪些就是整式,哪些不就是。

(1)x+1;(2)a=2;(3)π;(4)S=πR2;(5);(6)总结升华:判断就是不就是整式,关键就是了解整式的概念,注意整式与等式、不等式的区别,等式含有等号,不等式含有不等号,而整式不能含有这些符号。

举一反三:[变式]把下列式子按单项式、多项式、整式进行归类。

x2y, a-b, x+y2-5, , -29, 2ax+9b-5, 600xz, axy, xyz-1, 。

分析:本题的实质就就是识别单项式、多项式与整式。

单项式中数与字母、字母与字母之间必须就是相乘的关系,多项式必须就是几个单项式的与的形式。

答案:单项式有:x2y,-,-29,600xz,axy多项式有:a-b,x+y2-5,2ax+9b-5,xyz-1整式有:x2y,a-b,x+y2-5,-,-29,2ax+9b-5,600xz,axy,xyz-1。

类型三:同类项3.若与就是同类项,那么a,b的值分别就是( )(A)a=2, b=-1。

(B)a=2, b=1。

(C)a=-2, b=-1。

(D)a=-2, b=1。

思路点拨:解决此类问题的关键就是明确同类项定义,即字母相同且相同字母的指数相同,要注意同类项与系数的大小没有关系。

解析:由同类项的定义可得:a-1=-b,且2a+b=3,解得a=2, b=-1,故选A。

举一反三:[变式]在下面的语句中,正确的有()①-a2b3与a3b2就是同类项;②x2yz与-zx2y就是同类项;③-1与就是同类项;④字母相同的项就是同类项。

A、1个B、2个C、3个D、4个解析:①中-a2b3与a3b2所含的字母都就是a,b,但a的次数分别就是2,3,b的次数分别就是3,2,所以它们不就是同类项;②中所含字母相同,并且相同字母的指数也相同,所以x2yz与-zx2y就是同类项;不含字母的项(常数项)都就是同类项,③正确,根据①可知④不正确。

故选B。

类型四:整式的加减4.化简m-n-(m+n)的结果就是( )(A)0。

(B)2m。

(C)-2n。

(D)2m-2n。

思路点拨:按去括号的法则进行计算,括号前面就是“-”号,把括号与它前面的“-”号去掉,括号里各项都改变符号。

解析: 原式=m-n-m-n=-2n,故选(C)。

举一反三:[变式] 计算:2xy+3xy=_________。

分析:按合并同类项的法则进行计算,把系数相加所得的结果作为系数,字母与字母的指数不变。

注意不要出现5x2y2的错误。

答案:5xy。

5.(化简代入求值法)已知x=-,y=-,求代数式(5x2y-2xy2-3xy)-(2xy+5x2y-2xy2)思路点拨:此题直接把x、y的值代入比较麻烦,应先化简再代入求值。

相关文档
最新文档