【配套K12】2019版一轮创新思维文数(人教版A版)练习:第三章 第七节 正弦定理和余弦定理 Wo
【配套K12】2019版一轮创新思维文数(人教版A版)练习:第七章 第四节 空间中的平行关系 Wor
课时规范练A组基础对点练1.设m,n是不同的直线,α,β是不同的平面,且m,n⊂α,则“α∥β”是“m∥β且n∥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:若m,n⊂α,α∥β,则m∥β且n∥β;反之若m,n⊂α,m∥β且n∥β,则α与β相交或平行,即“α∥β”是“m∥β且n∥β”的充分不必要条件.答案:A2.设α,β是两个不同的平面,m,n是平面α内的两条不同直线,l1,l2是平面β内的两条相交直线,则α∥β的一个充分不必要条件是()A.m∥l1且n∥l2B.m∥β且n∥l2C.m∥β且n∥βD.m∥β且l1∥α解析:由m∥l1,m⊂α,l1⊂β,得l1∥α,同理l2∥α,又l1,l2相交,所以α∥β,反之不成立,所以m∥l1且n∥l2是α∥β的一个充分不必要条件.答案:A3.设α,β是两个不同的平面,m是直线且m⊂α,“m∥β”是“α∥β”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:若m⊂α且m∥β,则平面α与平面β不一定平行,有可能相交;而m⊂α且α∥β一定可以推出m∥β,所以“m∥β”是“α∥β”的必要而不充分条件.答案:B4.(2018·江西赣中南五校联考)已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是()A.若α⊥γ,α⊥β,则γ∥βB.若m∥n,m⊂α,n⊂β,则α∥βC.若m∥n,m⊥α,n⊥β,则α∥βD.若m∥n,m∥α,则n∥α解析:对于A,若α⊥γ,α⊥β,则γ∥β或γ与β相交;对于B,若m∥n,m⊂α,n⊂β,则α∥β或α与β相交;易知C正确;对于D,若m∥n,m∥α,则n∥α或n在平面α内.故选C.答案:C5.已知正方体ABCD A 1B 1C 1D 1,下列结论中,正确的结论是________(只填序号). ①AD 1∥BC 1;②平面AB 1D 1∥平面BDC 1;③AD 1∥DC 1;④AD 1∥平面BDC 1.解析:连接AD 1,BC 1,AB 1,B 1D 1,C 1D 1,BD ,因为AB 綊C 1D 1,所以四边形AD 1C 1B 为平行四边形,故AD 1∥BC 1,从而①正确;易证BD ∥B 1D 1,AB 1∥DC 1,又AB 1∩B 1D 1=B 1,BD ∩DC 1=D ,故平面AB 1D 1∥平面BDC 1,从而②正确;由图易知AD 1与DC 1异面,故③错误;因AD 1∥BC 1,AD 1⊄平面BDC 1,BC 1⊂平面BDC 1,故AD 1∥平面BDC 1,故④正确. 答案:①②④6.如图所示,在四面体ABCD 中,M ,N 分别是△ACD ,△BCD 的重心,则四面体的四个面所在平面中与MN 平行的是________.解析:连接AM 并延长,交CD 于E ,连接BN ,并延长交CD 于F ,由重心性质可知,E ,F 重合为一点,且该点为CD 的中点E ,连接MN ,由EM MA =EN NB =12,得MN ∥AB .因此,MN ∥平面ABC 且MN ∥平面ABD . 答案:平面ABC 、平面ABD7.(2018·咸阳模拟)如图所示,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,∠ABC =π4,OA ⊥底面ABCD ,OA =2,M 为OA的中点,N 为BC 的中点. (1)求四棱锥O -ABCD 的体积; (2)证明:直线MN ∥平面OCD .解析:(1)∵OA ⊥底面ABCD ,∴OA 是四棱锥O -ABCD 的高.∵四棱锥O -ABCD 的底面是边长为1的菱形,∠ABC =π4,∴底面面积S 菱形ABCD =22.∵OA =2,∴体积V O -ABCD =23. (2)证明:取OB 的中点E ,连接ME ,NE (图略).∵ME ∥AB ,AB ∥CD ,∴ME ∥CD .又∵NE ∥OC ,ME ∩EN =E ,CD ∩OC =C , ∴平面MNE ∥平面OCD .∵MN ⊂平面MNE ,∴MN ∥平面OCD .8.如图,四棱锥P ABCD 中,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD =DC =2,点E ,F 分别为AD ,PC 的中点.(1)证明:DF ∥平面PBE ; (2)求点F 到平面PBE 的距离.解析:(1)证明:取PB 的中点G ,连接EG ,FG ,则FG ∥BC ,且FG =12BC ,∵DE ∥BC 且DE =12BC ,∴DE ∥FG 且DE =FG ,∴四边形DEGF 为平行四边形,∴DF ∥EG ,又DF ⊄平面PBE ,EG ⊂平面PBE ,∴DF ∥平面PBE .(2)由(1)知DF ∥平面PBE ,∴点D 到平面PBE 的距离与F 到平面PBE 的距离是相等的,故转化为求点D 到平面PBE 的距离,设为d .连接BD .∵V DPBE =V P BDE ,∴13S △PBE ·d =13S △BDE ·PD , 由题意可求得PE =BE =5,PB =23, ∴S △PBE =12×23×(5)2-⎝⎛⎭⎫2322=6,又S △BDE =12DE ·AB =12×1×2=1,∴d =63. 9.(2018·昆明七校模拟)一个正方体的平面展开图及该正方体直观图的示意图如图所示,在正方体中,设BC 的中点为M ,GH 的中点为N .(1)请将字母F ,G ,H 标记在正方体相应的顶点处(不需说明理由); (2)证明:直线MN ∥平面BDH ;(3)过点M ,N ,H 的平面将正方体分割为两部分,求这两部分的体积比. 解析:(1)点F ,G ,H 的位置如图所示.(2)证明:连接BD ,设O 为BD 的中点,连接OM ,OH ,AC ,BH ,MN . ∵M ,N 分别是BC ,GH 的中点, ∴OM ∥CD ,且OM =12CD ,NH ∥CD ,且NH =12CD ,∴OM ∥NH ,OM =NH ,则四边形MNHO 是平行四边形, ∴MN ∥OH ,又MN ⊄平面BDH ,OH ⊂平面BDH , ∴MN ∥平面BDH .(3)由(2)知OM ∥NH ,OM =NH ,连接GM ,MH ,过点M ,N ,H 的平面就是平面GMH ,它将正方体分割为两个同高的棱柱,高都是体积比等于底面积之比,即3∶1.B组能力提升练1.已知直线a,b,平面α,则以下三个命题:①若a∥b,b⊂α,则a∥α;②若a∥b,a∥α,则b∥α;③若a∥α,b∥α,则a∥b.其中真命题的个数是()A.0 B.1C.2 D.3解析:对于①,若a∥b,b⊂α,则应有a∥α或a⊂α,所以①是假命题;对于②,若a∥b,a∥α,则应有b∥α或b⊂α,因此②是假命题;对于③,若a∥α,b∥α,则应有a∥b或a与b相交或a与b异面,因此③是假命题.综上,在空间中,以上三个命题都是假命题.答案:A2.已知直线a,b异面,给出以下命题;①一定存在平行于a的平面α使b⊥α;②一定存在平行于a的平面α使b∥α;③一定存在平行于a的平面α使b⊂α;④一定存在无数个平行于a的平面α与b交于一定点.则其中正确的是()A.①④B.②③C.①②③D.②③④解析:对于①,若存在平面α使得b⊥α,则有b⊥a,而直线a,b未必垂直,因此①不正确;对于②,注意到过直线a,b外一点M分别引直线a,b的平行线a1,b1,显然由直线a1,b1可确定平面α,此时平面α与直线a,b均平行,因此②正确;对于③,注意到过直线b 上的一点B作直线a2与直线a平行,显然由直线b与a2可确定平面α,此时平面α与直线a平行,且b⊂α,因此③正确;对于④,在直线b上取一定点N,过点N作直线c与直线a 平行,经过直线c的平面(除由直线a与c所确定的平面及直线c与b所确定的平面之外)均与直线a平行,且与直线b相交于一定点N,而N在b上的位置任意,因此④正确.综上所述,②③④正确.答案:D3.(2018·温州十校联考)如图,点E为正方形ABCD边CD上异于点C,D的动点,将△ADE 沿AE翻折成△SAE,使得平面SAE⊥平面ABCE,则下列三种说法中正确的个数是()①存在点E使得直线SA⊥平面SBC;②平面SBC内存在直线与SA平行;③平面ABCE内存在直线与平面SAE平行.A.0B.1C.2 D.3解析:由题图,得SA⊥SE,若存在点E使得直线SA⊥平面SBC,则SA⊥SB,SA⊥SC,则SC,SB,SE三线共面,则点E与点C重合,与题设矛盾,故①错误;因为SA与平面SBC相交,所以在平面SBC内不存在直线与SA平行,故②错误;显然,在平面ABCE内,存在直线与AE平行,由线面平行的判定定理得平面ABCE内存在直线与平面SAE平行,故③正确.故选B.答案:B4.下列命题中,错误的是()A.一条直线与两个平行平面中的一个相交,则必与另一个平面相交B.平行于同一平面的两个不同平面平行C.如果平面α不垂直平面β,那么平面α内一定不存在直线垂直于平面βD.若直线l不平行平面α,则在平面α内不存在与l平行的直线解析:A中,如果假定直线与另一个平面不相交,则有两种情形:在平面内或与平面平行,不管哪种情形都得出这条直线与第一个平面不能相交,出现矛盾,故A正确;B是两个平面平行的一种判定定理,B正确;C中,如果平面α内有一条直线垂直于平面β,则平面α垂直于平面β(这是面面垂直的判定定理),故C正确;D是错误的,事实上,直线l不平行平面α,可能有l⊂α,则α内有无数条直线与l平行.答案:D5.(2018·唐山统一考试)在三棱锥P ABC中,PB=6,AC=3,G为△P AC的重心,过点G 作三棱锥的一个截面,使截面平行于直线PB和AC,则截面的周长为________.解析:过点G作EF∥AC,分别交P A、PC于点E、F,过E、F分别作EN∥PB、FM∥PB,分别交AB 、BC 于点N 、M ,连接MN (图略),则四边形EFMN 是平行四边形,所以EF 3=23,即EF =MN =2,FM PB =FM 6=13,即FM =EN =2,所以截面的周长为2×4=8.答案:86.正方体ABCD A 1B 1C 1D 1的棱长为1 cm ,过AC 作平行于体对角线BD 1的截面,则截面面积为________cm 2.解析:如图所示,截面ACE ∥BD 1,平面BDD 1∩平面ACE =EF ,其中F 为AC 与BD 的交点,∴E 为DD 1的中点,∴S △ACE =12×2×32=64(cm 2).答案:647.如图,四棱锥P ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明MN ∥平面P AB ; (2)求四面体N -BCM 的体积.解析:(1)证明:由已知得AM =23AD =2,取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC , TN =12BC =2.又AD ∥BC ,故TN 綊AM ,故四边形AMNT 为平行四边形,于是MN ∥AT .因为AT ⊂平面P AB ,MN ⊄平面P AB , 所以MN ∥平面P AB .(2)因为P A ⊥平面ABCD ,N 为PC 的中点, 所以N 到平面ABCD 的距离为12P A .取BC 的中点E ,连接AE . 由AB =AC =3得AE ⊥BC ,AE =AB 2-BE 2= 5.由AM ∥BC 得M 到BC 的距离为5, 故S △BCM =12×4×5=2 5.所以四面体N -BCM 的体积V N -BCM =13·S △BCM ·P A 2=453. 8.如图,四棱锥P ABCD 的底面是边长为8的正方形,四条侧棱长均为217 .点G ,E ,F ,H 分别是棱 PB ,AB ,CD ,PC 上共面的四点,平面GEFH ⊥ 平面ABCD ,BC ∥ 平面GEFH .(1)证明:GH ∥EF ;(2)若EB =2,求四边形GEFH 的面积.解析:(1)证明:因为BC ∥平面GEFH ,BC ⊂平面PBC ,且平面PBC ∩平面GEFH =GH ,所以GH ∥BC .同理可证EF ∥BC ,因此GH ∥EF .(2)如图,连接AC ,BD 交于点O ,BD 交EF 于点K ,连接OP ,GK .因为P A =PC ,O 是AC 的中点,所以PO ⊥AC ,同理可得PO ⊥BD . 又BD ∩AC =O ,且AC ,BD 都在底面内,所以PO ⊥底面ABCD .又平面GEFH ⊥平面ABCD ,且PO ⊄平面GEFH ,所以PO ∥平面GEFH . 因为平面PBD ∩平面GEFH =GK , 所以PO ∥GK ,且GK ⊥底面ABCD , 从而GK ⊥EF ,所以GK 是梯形GEFH 的高.由AB =8,EB =2,得EB ∶AB =KB ∶DB =1∶4, 从而KB =14DB =12OB ,即K 为OB 的中点.由PO ∥GK 得GK =12PO ,即G 是PB 的中点,且GH =12BC =4.由已知可得OB =42, PO =PB 2-OB 2=68-32=6,所以GK =3.故四边形GEFH 的面积S =GH +EF 2·GK =4+82×3=18.。
【配套K12】2019版一轮创新思维文数(人教版A版)练习:第二章 第一节 函数及其表示 Word版
课时规范练 A 组 基础对点练1.函数y =lg (x +1)x -2的定义域是( )A .(-1,+∞)B .[-1,+∞)C .(-1,2)∪(2,+∞)D .[-1,2)∪(2,+∞)解析:由题意知,要使函数有意义,需⎩⎪⎨⎪⎧x -2≠0x +1>0,即-1<x <2或x >2,所以函数的定义域为(-1,2)∪(2,+∞).故选C. 答案:C 2.函数f (x )=1log 2x -1的定义域为( )A .(0,2)B .(0,2]C .(2,+∞)D .[2,+∞)解析:由题意可知x 满足log 2x -1>0,即log 2x >log 22,根据对数函数的性质得x >2,即函数f (x )的定义域是(2,+∞). 答案:C3.设f (x )=⎩⎨⎧1-x ,x ≥0,2x ,x <0,则f (f (-2))=( )A .-1 B.14 C.12D.32解析:∵f (-2)=2-2=14,∴f (f (-2))=f ⎝⎛⎭⎫14=1-14=12,故选C. 答案:C4.f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫13x (x ≤0),log 3x (x >0),则f ⎣⎡⎦⎤f ⎝⎛⎭⎫19=( ) A .-2 B .-3 C .9D .-9解析:∵f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫13x (x ≤0),log 3x (x >0),∴f ⎝⎛⎭⎫19=log 319=-2,∴f ⎣⎡⎦⎤f ⎝⎛⎭⎫19=f (-2)=⎝⎛⎭⎫13-2=9.故选C.答案:C5.已知函数f (x )=⎩⎪⎨⎪⎧0,x >0,π,x =0,π2+1,x <0,则f (f (f (-1)))的值等于( )A .π2-1B .π2+1C .πD .0解析:由函数的解析式可得f (f (f (-1)))=f (f (π2+1))=f (0)=π.故选C. 答案:C6.设函数f (x )=⎩⎪⎨⎪⎧3x -b ,x <1,2x ,x ≥1.若f ⎝⎛⎭⎫f ⎝⎛⎭⎫56=4,则b =( ) A .1 B.78 C.34D.12解析:f ⎝⎛⎭⎫f ⎝⎛⎭⎫56=f ⎝⎛⎭⎫3×56-b =f ⎝⎛⎭⎫52-b .当52-b <1,即b >32时,3×⎝⎛⎭⎫52-b -b =4,解得b =78(舍).当52-b ≥1,即b ≤32时,252b -=4,解得b =12.故选D. 答案:D7.已知函数f (x )=⎩⎪⎨⎪⎧2x,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于( )A .-3B .-1C .1D .3解析:由题意知f (1)=21=2.∵f (a )+f (1)=0, ∴f (a )+2=0.①当a >0时,f (a )=2a,2a +2=0无解; ②当a ≤0时,f (a )=a +1,∴a +1+2=0, ∴a =-3. 答案:A8.函数f (x )=1-2x +1x +3的定义域为( ) A .(-3,0]B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1]解析:由题意得⎩⎪⎨⎪⎧1-2x≥0x +3>0,所以-3<x ≤0.答案:A9.已知函数f (x )=2x +1(1≤x ≤3),则( ) A .f (x -1)=2x +2(0≤x ≤2) B .f (x -1)=2x -1(2≤x ≤4) C .f (x -1)=2x -2(0≤x ≤2) D .f (x -1)=-2x +1(2≤x ≤4)解析:因为f (x )=2x +1,所以f (x -1)=2x -1.因为函数f (x )的定义域为[1,3],所以1≤x -1≤3,即2≤x ≤4,故f (x -1)=2x -1(2≤x ≤4). 答案:B10.设x ∈R ,则f (x )与g (x )表示同一函数的是( ) A .f (x )=x 2,g (x )=x 2 B .f (x )=(x )2x ,g (x )=x(x )2C .f (x )=1,g (x )=(x -1)0D .f (x )=x 2-9x +3,g (x )=x -3解析:对于A ,f (x )=x 2(x ∈R),与g (x )=x 2=|x |(x ∈R)的对应关系不同,所以不是同一函数;对于B ,f (x )=(x )2x =1(x >0),与g (x )=x(x )2=1(x >0)的定义域相同,对应关系也相同,所以是同一函数;对于C ,f (x )=1(x ∈R),与g (x )=(x -1)0=1(x ≠1)的定义域不同,所以不是同一函数;对于D ,f (x )=x 2-9x +3=x -3(x ≠-3),与g (x )=x -3(x ∈R)的定义域不同,所以不是同一函数.故选B. 答案:B11.已知函数f (x )=⎩⎪⎨⎪⎧log 2x -1,x >0,f (2-x ),x ≤0,则f (0)=( )A .-1B .0C .1D .3解析:f (0)=f (2-0)=f (2)=log 22-1=0. 答案:B12.已知实数a <0,函数f (x )=⎩⎪⎨⎪⎧x 2+2a ,x <1,-x ,x ≥1,若f (1-a )≥f (1+a ),则实数a 的取值范围是( )A .(-∞,-2]B .[-2,-1]C .[-1,0)D .(-∞,0)解析:当a <0时,1-a >1,1+a <1,所以f (1-a )=-(1-a )=a -1,f (1+a )=(1+a )2+2a =a 2+4a +1, 由f (1-a )≥f (1+a )得a 2+3a +2≤0,解得-2≤a ≤-1,所以a ∈[-2,-1].故选B. 答案:B13.若函数f (x )=2x +3,g (x +2)=f (x ),则函数g (x )的表达式为________.解析:令x +2=t ,则x =t -2.因为f (x )=2x +3,所以g (x +2)=f (x )=2x +3,所以g (t )=2(t -2)+3=2t -1.故函数g (x )的表达式为g (x )=2x -1. 答案:g (x )=2x -114.(2018·唐山一中测试)已知函数f (x )=ax 5-bx +|x |-1,若f (-2)=2,则f (2)=________. 解析:因为f (-2)=2,所以-32a +2b +2-1=2,即32a -2b =-1,则f (2)=32a -2b +2-1=0. 答案:015.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x +1,x ≤0,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫14的值是__________. 解析:由题意可得f ⎝⎛⎭⎫14=log 214=-2, ∴f ⎝⎛⎭⎫f ⎝⎛⎭⎫14=f (-2)=3-2+1=109. 答案:10916.设函数f (x )=⎩⎪⎨⎪⎧x 13,x ≥8,2e x -8,x <8,则使得f (x )≤3成立的x 的取值范围是__________.解析:当x ≥8时,x 13≤3,x ≤27,即8≤x ≤27;当x <8时,2e x -8≤3恒成立. 综上,x ∈(-∞,27]. 答案:(-∞,27]B 组 能力提升练1.(2018·郑州教学质量监测)若函数y =f (x )的定义域是[0,2 016],则函数g (x )=f (x +1)x -1的定义域是( ) A .[-1,2 015] B .[-1,1)∪(1,2 015] C .[0,2 016]D .[-1,1)∪(1,2 016]解析:要使函数f (x +1)有意义,则0≤x +1≤2 016,解得-1≤x ≤2 015,故函数f (x +1)的定义域为[-1,2 015],所以函数g (x )有意义的条件是⎩⎪⎨⎪⎧-1≤x ≤2 015x -1≠0,故函数g (x )的定义域为[-1,1)∪(1,2 015]. 答案:B2.(2018·大同质检)已知f (x )是一次函数,且f [f (x )]=x +2,则f (x )=( ) A .x +1 B .2x -1 C .-x +1D .x +1或-x -1解析:设f (x )=kx +b ,则由f [f (x )]=x +2,可得k (kx +b )+b =x +2,即k 2x +kb +b =x +2,∴k 2=1,kb +b =2.解得k =1,b =1,则f (x )=x +1.故选A. 答案:A3.(2018·天津模拟)设函数f (x )满足f ⎝ ⎛⎭⎪⎫1-x 1+x =1+x ,则f (x )的表达式为( )A.21+x B.21+x 2 C.1-x 21+x 2D.1-x 1+x解析:令1-x 1+x =t ,则x =1-t 1+t ,代入f ⎝ ⎛⎭⎪⎫1-x 1+x =1+x ,得f (t )=1+1-t 1+t =21+t ,故选A. 答案:A4.(2018·郑州质检)设函数f :R →R 满足f (0)=1,且对任意 x ,y ∈R 都有f (xy +1)=f (x )f (y )-f (y )-x +2,则f (2 017)=( ) A .0 B .1 C .2 017D .2 018解析:令x =y =0,则f (1)=f (0)f (0)-f (0)+2=1×1-1+2=2;令y =0,则f (1)=f (x )f (0)-f (0)-x +2,将f (0)=1,f (1)=2代入,可得f (x )=1+x ,所以f (2 017)=2 018.故选D.答案:D5.已知函数f (x )=⎩⎪⎨⎪⎧f (x -4),x >2e x,-2≤x ≤2f (-x ),x <-2,则f (-2 017)=( )A .1B .e C.1eD .e 2解析:由已知可得,当x >2时,f (x )=f (x -4),故其周期为4,f (-2 017)=f (2 017)=f (2 016+1)=f (1)=e. 答案:B6.函数f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3(x 2-1),x ≥2,则不等式f (x )>2的解集为( ) A .(-2,4)B .(-4,-2)∪(-1,2)C .(1,2)∪(10,+∞)D .(10,+∞)解析:令2e x -1>2(x <2),解得1<x <2;令log 3(x 2-1)>2(x ≥2),解得x >10,故选C. 答案:C7.已知函数f (x )=⎩⎪⎨⎪⎧f (x +2),x <2,⎝⎛⎭⎫13x ,x ≥2,则f (-1+log 35)的值为( )A.115 B.53 C .15D.23解析:∵-1+log 35<2,∴f (-1+log 35)=f (-1+log 35+2)=f (1+log 35)=f (log 315)=⎝⎛⎭⎫133log 15=115,故选A. 答案:A8.设函数f (x )=⎩⎨⎧x2-1,x ≥0,1x ,x <0,若f (f (a ))=-12,则实数a =( )A . 4B .-2C .4或-12D .4或-2答案:C9.已知函数f (x )=⎩⎪⎨⎪⎧2e x -1,x <1x 3+x ,x ≥1,则f (f (x ))<2的解集为( )A .(1-ln 2,+∞)B .(-∞,1-ln 2)C .(1-ln 2,1)D .(1,1+ln 2)解析:因为当x ≥1时,f (x )=x 3+x ≥2,当x <1时,f (x )=2e x -1<2,所以f (f (x ))<2等价于f (x )<1,即2e x -1<1,解得x <1-ln 2,所以f (f (x ))<2的解集为(-∞,1-ln 2),故选B. 答案:B10.已知函数f (x )=⎩⎪⎨⎪⎧x ln (1+x )+x 2,x ≥0-x ln (1-x )+x 2,x <0,若f (-a )+f (a )≤2f (1),则实数a 的取值范围是( )A .(-∞,-1]∪[1,+∞)B .[-1,0]C .[0,1]D .[-1,1]解析:若x >0,则-x <0,f (-x )=x ln(1+x )+x 2=f (x ),同理可得x <0时,f (-x )=f (x ),且x =0时,f (0)=f (0),所以f (x )为偶函数.当x ≥0时,易知f (x )=x ln(1+x )+x 2为增函数,所以不等式f (-a )+f (a )≤2f (1)等价于2f (a )≤2f (1),即f (a )≤f (1),亦即f (|a |)≤f (1),则|a |≤1,解得-1≤a ≤1,故选D. 答案:D11.已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为( )A .-32B .-34C .-32或-34D.32或-34解析:当a >0时,1-a <1,1+a >1.由f (1-a )=f (1+a )得2-2a +a =-1-a -2a ,解得a =-32,不合题意;当a <0时,1-a >1,1+a <1,由f (1-a )=f (1+a )得-1+a -2a =2+2a +a ,解得a =-34,所以a 的值为-34,故选B. 答案:B12.给出定义:若m -12<x ≤m +12(其中m 为整数),则m 叫作离实数x 最近的整数,记作{x },即{x }=m .现给出下列关于函数f (x )=|x -{x }|的四个命题: ①f ⎝⎛⎭⎫-12=12; ②f (3.4)=-0.4; ③f ⎝⎛⎭⎫-14=f ⎝⎛⎭⎫14; ④y =f (x )的定义域为R ,值域是⎣⎡⎦⎤-12,12. 其中真命题的序号是( ) A .①② B .①③ C .②④D .③④解析:①∵-1-12<-12≤-1+12,∴⎩⎨⎧⎭⎬⎫-12=-1, ∴f ⎝⎛⎭⎫-12=⎪⎪⎪⎪-12-⎩⎨⎧⎭⎬⎫-12=⎪⎪⎪⎪-12+1=12,∴①正确. ②∵3-12<3.4≤3+12,∴{3,4}=3,∴f (3.4)=|3.4-{3.4}|=|3.4-3|=0.4, ∴②错误.③∵0-12<-14≤0+12,∴⎩⎨⎧⎭⎬⎫-14=0,∴f ⎝⎛⎭⎫-14=⎪⎪⎪⎪-14-0=14.∵0-12<14≤0+12,∴⎩⎨⎧⎭⎬⎫14=0,∴f ⎝⎛⎭⎫14=⎪⎪⎪⎪14-0=14, ∴f ⎝⎛⎭⎫-14=f ⎝⎛⎭⎫14, ∴③正确.④y =f (x )的定义域为R ,值域是⎣⎡⎦⎤0,12,∴④错误.故选B. 答案:B13.若函数f (2x )的定义域是[-1,1],则函数f (2x -1)+f (2x +1)的定义域是________. 解析:因为函数f (2x )的定义域是[-1,1],所以-2≤2x ≤2,所以函数f (x )的定义域为[-2,2],所以f (2x -1)+f (2x +1)的定义域应满足的条件为-2≤2x -1≤2且-2≤2x +1≤2,即-12≤x ≤32且-32≤x ≤12,所以-12≤x ≤12,所以函数f (2x -1)+f (2x +1)的定义域是⎣⎡⎦⎤-12,12. 答案:⎣⎡⎦⎤-12,1214.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1, x ≤0,-(x -1)2, x >0,则不等式f (x )≥-1的解集是________.解析:由题意得⎩⎪⎨⎪⎧x ≤0,x 2+1≥-1或⎩⎪⎨⎪⎧x >0,-(x -1)2≥-1,解得-4≤x ≤0或0<x ≤2,即-4≤x ≤2,即不等式的解集为[-4,2]. 答案:[-4,2]15.已知函数f (x )的定义域为实数集R ,∀x ∈R ,f (x -90)=⎩⎪⎨⎪⎧lg x ,x >0,-x ,x ≤0,则f (10)-f (-100)的值为__________.解析:令t =x -90,得x =t +90,则f (t )=⎩⎪⎨⎪⎧lg (t +90),t >-90,-(t +90),t ≤-90,f (10)=lg 100=2,f (-100)=-(-100+90)=10,所以f (10)-f (-100)=-8. 答案:-816.(2018·郑州质检)若函数f (x )满足:∀a ,b ∈R ,都有3f ⎝⎛⎭⎫a +2b 3=f (a )+2f (b ),且f (1)=1,f (4)=7,则f (2 017)=__________. 解析:由已知得f ⎝⎛⎭⎪⎫a +2b 3=f (a )+2f (b )3. 取f (x )=kx +m ,易验证f (x )=kx +m 满足f ⎝ ⎛⎭⎪⎫a +2b 3=f (a )+2f (b )3.由f (1)=1,f (4)=7得⎩⎪⎨⎪⎧k +m =14k +m =7,由此解得k =2,m =-1,故f (x )=2x -1,f (2 017)=2×2017-1=4 033. 答案:4 033。
【精品】人教版A版2019版一轮创新思维文科数学练习:第三章第三节三角函数的图象与性质
课时规范练A 组 基础对点练1.下列函数中,最小正周期为π且图象关于原点对称的函数是( ) A .y =cos ⎝ ⎛⎭⎪⎫2x +π2 B .y =sin ⎝ ⎛⎭⎪⎫2x +π2C .y =sin 2x +cos 2xD .y =sin x +cos x解析:y =cos ⎝ ⎛⎭⎪⎫2x +π2=-sin 2x ,最小正周期T =2π2=π,且为奇函数,其图象关于原点对称,故A 正确;y =sin ⎝ ⎛⎭⎪⎫2x +π2=cos 2x ,最小正周期为π,且为偶函数,其图象关于y 轴对称,故B 不正确;C ,D 均为非奇非偶函数,其图象不关于原点对称,故C ,D 不正确. 答案:A2.已知函数y =sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤0,π2上为增函数,且图象关于点(3π,0)对称,则ω的取值集合为( )A.⎩⎨⎧⎭⎬⎫13,23,1 B.⎩⎨⎧⎭⎬⎫16,13 C.⎩⎨⎧⎭⎬⎫13,23 D.⎩⎨⎧⎭⎬⎫16,23 解析:由题意知⎩⎪⎨⎪⎧π2ω≥π2,3ωπ=k π,即⎩⎪⎨⎪⎧0<ω≤1,ω=k 3,其中k ∈Z ,则ω=13,ω=23或ω=1,即ω的取值集合为⎩⎨⎧⎭⎬⎫13,23,1.答案:A3.(2018·西安八校联考)若函数y =cos ⎝⎛⎭⎪⎫ωx +π6(ω∈N *)图象的一个对称中心是⎝ ⎛⎭⎪⎫π6,0,则ω的最小值为( )A .1B .2C .4D .8解析:πω6+π6=k π+π2(k ∈Z),∴ω=6k +2(k ∈Z),∴ωmin =2,故选B. 答案:B4.(2018·长春调研)函数f (x )=(sin x +cos x )2图象的一条对称轴方程是( ) A .x =π4B .x =π3C . x =π2D .x =π解析:f (x )=(sin x +cos x )2=sin 2x +cos 2x +2sin x cos x =1+sin 2x ,将各选项代入验证可知,当x =π4时,f (x )取得最值,故选A.答案:A5.函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( ) A.⎣⎢⎡⎦⎥⎤k π2-π12,k π2+5π12(k ∈Z) B.⎝⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z) C.⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z)D ⎝⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z) 解析:由k π-π2<2x -π3<k π+π2(k ∈Z),得k π2-π12<x <k π2+5π12(k ∈Z),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z).答案:B6.函数f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x 的最大值为( )A .4B .5C .6D .7解析:f (x )=1-2sin 2x +6sin x =-2⎝ ⎛⎭⎪⎫sin x -322+112,因为sin x ∈[-1,1],所以当sin x =1时,f (x )取得最大值,且f (x )max =5. 答案:B7.函数y =2sin ⎝ ⎛⎭⎪⎫π3-2x 的单调递增区间为( )A.⎣⎢⎡⎦⎥⎤k π-π12,k π+512π,k ∈ZB.⎣⎢⎡⎦⎥⎤k π+512π,k π+1112π,k ∈ZC.⎣⎢⎡⎦⎥⎤k π-π3,k π+π6,k ∈Z D.⎣⎢⎡⎦⎥⎤k π+π6,k π+23π,k ∈Z 解析:y =2sin ⎝⎛⎭⎪⎫π3-2x =-2sin ⎝⎛⎭⎪⎫2x -π3,令π2+2k π≤2x -π3≤3π2+2k π,k ∈Z ,得k π+512π≤x ≤k π+1112π,k ∈Z.答案:B8.函数y =(sin x +cos x )2-1是( ) A .最小正周期为2π的奇函数 B .最小正周期为2π的偶函数 C .最小正周期为π的奇函数 D .最小正周期为π的偶函数解析:y =sin 2x +2sin x cos x +cos 2x -1=sin 2x ,故选C. 答案:C9.函数f (x )=2sin(ωx +φ)(ω>0)对任意x 都有f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,则f ⎝ ⎛⎭⎪⎫π6等于( ) A .2或0 B .-2或2 C .0D .-2或0解析:因为函数f (x )=2sin(ωx +φ)对任意x 都有f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,所以该函数图象关于直线x =π6对称,因为在对称轴处对应的函数值为最大值或最小值,所以选B.答案:B10.已知命题p :函数f (x )=sin x cos x 的最小正周期为π;命题q :函数g (x )=sin ⎝⎛⎭⎪⎫x +π2的图象关于原点对称.则下列命题中为真命题的是( ) A .p ∧q B .p ∨q C .綈pD .(綈p )∨q解析:函数f (x )=sin x cos x =12sin 2x ,其最小正周期为T =2π2=π,故命题p 为真命题;函数g (x )=sin ⎝⎛⎭⎪⎫x +π2=cos x ,其图象关于y 轴对称,故命题q 为假命题,所以p ∨q 为真命题. 答案:B11.(2018·长沙模拟)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,其中图象最高点和最低点的横坐标分别为π12和7π12,图象在y 轴上的截距为3,给出下列四个结论:①f (x )的最小正周期为π;②f (x )的最大值为2;③f ⎝ ⎛⎭⎪⎫π4=1;④f ⎝⎛⎭⎪⎫x -π6为奇函数.其中正确结论的个数是( ) A .1 B .2 C .3D .4解析:由图知,周期T =2⎝⎛⎭⎪⎫7π12-π12=π,则ω=2,由2×π12+φ=π2,得φ=π3.由f (0)=3,得A sin π3=3,即A =2.所以f (x )=2sin ⎝⎛⎭⎪⎫2x +π3, 则f ⎝ ⎛⎭⎪⎫π4=2sin ⎝ ⎛⎭⎪⎫π2+π3=2cos π3=1,f ⎝⎛⎭⎪⎫x -π6=2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π6+π3=2sin 2x 为奇函数.所以四个结论都正确.答案:D12.已知x ∈(0,π],关于x 的方程2sin ⎝⎛⎭⎪⎫x +π3=a 有两个不同的实数解,则实数a 的取值范围为__________.解析:令y 1=2sin ⎝ ⎛⎭⎪⎫x +π3,x ∈(0,π],y 2=a ,作出y 1的图象如图所示.若2sin ⎝⎛⎭⎪⎫x +π3=a 在(0,π]上有两个不同的实数解,则y 1与y 2应有两个不同的交点,所以3<a <2. 答案:(3,2)13.若函数f (x )=sin(x +φ)+cos(x +φ)⎝ ⎛⎭⎪⎫|φ|<π2为偶函数,则φ=__________.解析:由题意可知f (x )=2sin ⎝⎛⎭⎪⎫x +φ+π4⎝ ⎛⎭⎪⎫|φ|<π2为偶函数,所以φ+π4=π2+k π(k ∈Z).又由|φ|<π2,得φ=π4.答案:π414.当函数y =sin x -3cos x (0≤x <2π)取得最大值时,x =________.解析:由已知条件可得y =2sin ⎝ ⎛⎭⎪⎫x -π3,又由0≤x <2π得-π3≤x -π3<5π3,当x -π3=π2时y 取得最大值,此时x =5π6. 答案:5π6B 组 能力提升练1.函数y =tan x +sin x -|tan x -sin x |在区间⎝⎛⎭⎪⎫π2,3π2内的图象是( )解析:y =tan x +sin x -|tan x -sin x |=⎩⎪⎨⎪⎧2tan x ,x ∈⎝ ⎛⎦⎥⎤π2,π,2sin x ,x ∈⎝⎛⎭⎪⎫π,3π2,对比选项,可知选D. 答案:D2.已知函数f (x )=-2sin(2x +φ)(|φ|<π),若f ⎝ ⎛⎭⎪⎫π8=-2,则f (x )的一个单调递增区间可以是( )A.⎣⎢⎡⎦⎥⎤-π8,3π8B.⎣⎢⎡⎦⎥⎤5π8,9π8C.⎣⎢⎡⎦⎥⎤-3π8,π8 D.⎣⎢⎡⎦⎥⎤π8,5π8 解析:∵f ⎝ ⎛⎭⎪⎫π8=-2,∴-2sin ⎝ ⎛⎭⎪⎫π4+φ=-2,即sin ⎝ ⎛⎭⎪⎫π4+φ=1.∴π4+φ=π2+2k π,又∵|φ|<π,∴φ=π4,∴f (x )=-2sin ⎝ ⎛⎭⎪⎫2x +π4.由2k π+π2≤2x +π4≤2k π+3π2,k ∈Z ,得k π+π8≤x ≤k π+5π8,k ∈Z.当k =0时,得π8≤x ≤5π8.即f (x )的一个单调递增区间可以是⎣⎢⎡⎦⎥⎤π8,5π8.答案:D3.若函数y =tan ωx (ω∈N *)的图象的一个对称中心是⎝ ⎛⎭⎪⎫π6,0,则ω的最小值是( ) A .2 B .3 C .6D .9解析:因为正切函数f (x )=tan x 图象的对称中心为⎝⎛⎭⎪⎫k π2,0(k ∈Z),且函数y =tanωx (ω∈N *)的一个对称中心是⎝ ⎛⎭⎪⎫π6,0,所以πω6=k π2(k ∈Z),因此ω=3k (k ∈Z).因为ω∈N *,所以当k =1时,ω取得最小值3,故选B. 答案:B4.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0)的图象与直线y =b (0<b <A )相交,其中一个交点P 的横坐标为4,若与P 相邻的两个交点的横坐标为2,8,则f (x )的单调递减区间为( )A .[6k π,6k π+3],k ∈ZB .[6k -3,6k ],k ∈ZC .[6k,6k +3],k ∈ZD .[6k π-3,6k π],k ∈Z解析:根据题设中提供的数据信息可知周期T =6,结合f (x )=A sin(ωx +φ)(A >0,ω>0)的图象可知f (x )在区间[6k -3,6k ],k ∈Z 上是单调递减的,故选B. 答案:B5.若函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π6(ω>0)的图象的相邻两条对称轴之间的距离为π2,且该函数图象关于点(x 0,0)成中心对称,x 0∈⎣⎢⎡⎦⎥⎤0,π2,则x 0=( )A.5π12 B.π4 C.π3D.π6解析:由题意得T 2=π2,T =π,则ω=2.由2x 0+π6=k π(k ∈Z),得x 0=k π2-π12(k ∈Z),又x 0∈⎣⎢⎡⎦⎥⎤0,π2,所以x 0=5π12. 答案:A6.下列函数中最小正周期为π且图象关于直线x =π3对称的是( )A .y =2sin ⎝⎛⎭⎪⎫2x +π3 B .y =2sin ⎝⎛⎭⎪⎫2x -π6C .y =2sin ⎝ ⎛⎭⎪⎫x 2+π3D .y =2sin ⎝⎛⎭⎪⎫2x -π3 解析:由函数的最小正周期为π,可排除C.由函数图象关于直线x =π3对称知,该直线过函数图象的最高点或最低点,对于A ,因为sin ⎝⎛⎭⎪⎫2×π3+π3=sin π=0,所以选项A不正确.对于B ,sin ⎝ ⎛⎭⎪⎫2×π3-π6=sin π2=1,所以选项B 正确,故选B.答案:B7.设函数f (x )=⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫x +π3(x ∈R),则f (x )( ) A .在区间⎣⎢⎡⎦⎥⎤-π,-π2上是减函数 B .在区间⎣⎢⎡⎦⎥⎤2π3,7π6上是增函数 C .在区间⎣⎢⎡⎦⎥⎤π8,π4上是增函数 D .在区间⎣⎢⎡⎦⎥⎤π3,5π6上是减函数解析:由f (x )=⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫x +π3可知,f (x )的最小正周期为π.由k π≤x +π3≤π2+k π(k∈Z),得-π3+k π≤x ≤π6+k π(k ∈Z),即f (x )在⎣⎢⎡⎦⎥⎤-π3+k π,π6+k π(k ∈Z)上单调递增;由π2+k π≤x +π3≤π+k π(k ∈Z),得π6+k π≤x ≤2π3+k π(k ∈Z),即f (x )在⎣⎢⎡⎦⎥⎤π6+k π,2π3+k π(k ∈Z)上单调递减.将各选项逐项代入验证,可知B 正确.答案:B8.若函数f (x )同时具有以下两个性质:①f (x )是偶函数;②对任意实数x ,都有f ⎝⎛⎭⎪⎫π4+x =f ⎝ ⎛⎭⎪⎫π4-x .则f (x )的解析式可以是( )A .f (x )=cos xB .f (x )=cos ⎝ ⎛⎭⎪⎫2x +π2C .f (x )=sin ⎝⎛⎭⎪⎫4x +π2D .f (x )=cos 6x解析:由题意可得,函数f (x )是偶函数,且它的图象关于直线x =π4对称.因为f (x )=cos x 是偶函数,f ⎝ ⎛⎭⎪⎫π4=22,不是最值,故不满足图象关于直线x =π4对称,故排除A.因为函数f (x )=cos ⎝⎛⎭⎪⎫2x +π2=-sin 2x 是奇函数,不满足条件①,故排除B.因为函数f (x )=sin ⎝⎛⎭⎪⎫4x +π2=cos 4x 是偶函数,且f ⎝ ⎛⎭⎪⎫π4=-1,是最小值,故满足图象关于直线x =π4对称,故C 满足条件.因为函数f (x )=cos 6x 是偶函数,f ⎝ ⎛⎭⎪⎫π4=0,不是最值,故不满足图象关于直线x =π4对称,故排除D.答案:C9.已知f (x )=sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2图象相邻对称轴间的距离为π2,f (0)=12,则g (x )=2cos(ωx +φ)在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为( )A .- 3B .-2C .-1D .1解析:由题意得函数f (x )的最小正周期为π,则ω=2,由f (0)=12,可得φ=π6,所以g (x )=2cos(ωx +φ)即为g (x )=2cos ⎝ ⎛⎭⎪⎫2x +π6.因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以2x +π6∈⎣⎢⎡⎦⎥⎤π6,76π,得-1≤cos ⎝ ⎛⎭⎪⎫2x +π6≤32,则g (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为-2.答案:B10.函数y =A sin(ωx +φ)的部分图象如图所示,则( )A .y =2sin ⎝ ⎛⎭⎪⎫2x -π6B .y =2sin ⎝⎛⎭⎪⎫2x -π3 C .y =2sin ⎝⎛⎭⎪⎫x +π6D .y =2sin ⎝⎛⎭⎪⎫x +π3解析:由题图可知A =2,T 2=π3-⎝ ⎛⎭⎪⎫-π6=π2,则T =π,所以ω=2, 则y =2sin(2x +φ),因为题图经过点⎝ ⎛⎭⎪⎫π3,2, 所以2sin ⎝ ⎛⎭⎪⎫2×π3+φ=2, 所以2π3+φ=2k π+π2,k ∈Z ,即φ=2k π-π6,k ∈Z ,当k =0时,φ=-π6,所以y =2sin ⎝ ⎛⎭⎪⎫2x -π6,故选A. 答案:A11.函数y =tan ⎝⎛⎭⎪⎫2x +π4的图象与x 轴交点的坐标是__________.解析:由2x +π4=k π(k ∈Z)得,x =k π2-π8(k ∈Z).∴函数y =tan ⎝ ⎛⎭⎪⎫2x +π4的图象与x轴交点的坐标是⎝ ⎛⎭⎪⎫k π2-π8,0,k ∈Z.答案:⎝⎛⎭⎪⎫k π2-π8,0,k ∈Z12.设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3=-f ⎝ ⎛⎭⎪⎫π6,则f (x )的最小正周期为__________.解析:由f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=-f ⎝ ⎛⎭⎪⎫π6知,f (x )有对称中心⎝ ⎛⎭⎪⎫π3,0,由f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫23π知f (x )有对称轴x =12⎝ ⎛⎭⎪⎫π2+23π=712π.记f (x )的最小正周期为T ,则12T ≥π2-π6,即T ≥23π.故712π-π3=π4=T4,解得T =π. 答案:π13.函数y =cos 2x +sin x ⎝ ⎛⎭⎪⎫|x |≤π4的值域为________.解析:函数变为y =1-sin 2x +sin x . 设t =sin x ,⎝ ⎛⎭⎪⎫|x |≤π4,∴t ∈⎣⎢⎡⎦⎥⎤-22,22.函数变为f (t )=-t 2+t +1=-⎝ ⎛⎭⎪⎫t -122+54,∴当t =12,即sin x =12,x =π6时,y max =54;当t =-22,即x =-π4时,y min =1-22. 答案:⎣⎢⎡⎦⎥⎤1-22,54 14.已知函数f (x )=3sin ⎝⎛⎭⎪⎫ωx -π6(ω>0)和g (x )=3cos(2x +φ)的图象的对称中心完全相同,若x ∈⎣⎢⎡⎦⎥⎤0,π2,则f (x )的取值范围是__________.解析:由两三角函数图象的对称中心完全相同,可知两函数的周期相同,故ω=2,所以f (x )=3sin ⎝⎛⎭⎪⎫2x -π6,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,-π6≤2x -π6≤5π6,所以-12≤sin ⎝⎛⎭⎪⎫2x -π6≤1,故f (x )∈⎣⎢⎡⎦⎥⎤-32,3. 答案:⎣⎢⎡⎦⎥⎤-32,3。
【精品】人教版A版2019版一轮创新思维文科数学练习:第三章第三节三角函数的图象与性质
课时规范练A 组 基础对点练1.下列函数中,最小正周期为π且图象关于原点对称的函数是( ) A .y =cos ⎝ ⎛⎭⎪⎫2x +π2 B .y =sin ⎝ ⎛⎭⎪⎫2x +π2C .y =sin 2x +cos 2xD .y =sin x +cos x解析:y =cos ⎝ ⎛⎭⎪⎫2x +π2=-sin 2x ,最小正周期T =2π2=π,且为奇函数,其图象关于原点对称,故A 正确;y =sin ⎝ ⎛⎭⎪⎫2x +π2=cos 2x ,最小正周期为π,且为偶函数,其图象关于y 轴对称,故B 不正确;C ,D 均为非奇非偶函数,其图象不关于原点对称,故C ,D 不正确. 答案:A2.已知函数y =sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤0,π2上为增函数,且图象关于点(3π,0)对称,则ω的取值集合为( )A.⎩⎨⎧⎭⎬⎫13,23,1 B.⎩⎨⎧⎭⎬⎫16,13 C.⎩⎨⎧⎭⎬⎫13,23 D.⎩⎨⎧⎭⎬⎫16,23 解析:由题意知⎩⎪⎨⎪⎧π2ω≥π2,3ωπ=k π,即⎩⎪⎨⎪⎧0<ω≤1,ω=k 3,其中k ∈Z ,则ω=13,ω=23或ω=1,即ω的取值集合为⎩⎨⎧⎭⎬⎫13,23,1.答案:A3.(2018·西安八校联考)若函数y =cos ⎝⎛⎭⎪⎫ωx +π6(ω∈N *)图象的一个对称中心是⎝ ⎛⎭⎪⎫π6,0,则ω的最小值为( )A .1B .2C .4D .8解析:πω6+π6=k π+π2(k ∈Z),∴ω=6k +2(k ∈Z),∴ωmin =2,故选B. 答案:B4.(2018·长春调研)函数f (x )=(sin x +cos x )2图象的一条对称轴方程是( ) A .x =π4B .x =π3C . x =π2D .x =π解析:f (x )=(sin x +cos x )2=sin 2x +cos 2x +2sin x cos x =1+sin 2x ,将各选项代入验证可知,当x =π4时,f (x )取得最值,故选A.答案:A5.函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( ) A.⎣⎢⎡⎦⎥⎤k π2-π12,k π2+5π12(k ∈Z) B.⎝⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z) C.⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z)D ⎝⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z) 解析:由k π-π2<2x -π3<k π+π2(k ∈Z),得k π2-π12<x <k π2+5π12(k ∈Z),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z).答案:B6.函数f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x 的最大值为( )A .4B .5C .6D .7解析:f (x )=1-2sin 2x +6sin x =-2⎝ ⎛⎭⎪⎫sin x -322+112,因为sin x ∈[-1,1],所以当sin x =1时,f (x )取得最大值,且f (x )max =5. 答案:B7.函数y =2sin ⎝ ⎛⎭⎪⎫π3-2x 的单调递增区间为( )A.⎣⎢⎡⎦⎥⎤k π-π12,k π+512π,k ∈ZB.⎣⎢⎡⎦⎥⎤k π+512π,k π+1112π,k ∈ZC.⎣⎢⎡⎦⎥⎤k π-π3,k π+π6,k ∈Z D.⎣⎢⎡⎦⎥⎤k π+π6,k π+23π,k ∈Z 解析:y =2sin ⎝⎛⎭⎪⎫π3-2x =-2sin ⎝⎛⎭⎪⎫2x -π3,令π2+2k π≤2x -π3≤3π2+2k π,k ∈Z ,得k π+512π≤x ≤k π+1112π,k ∈Z.答案:B8.函数y =(sin x +cos x )2-1是( ) A .最小正周期为2π的奇函数 B .最小正周期为2π的偶函数 C .最小正周期为π的奇函数 D .最小正周期为π的偶函数解析:y =sin 2x +2sin x cos x +cos 2x -1=sin 2x ,故选C. 答案:C9.函数f (x )=2sin(ωx +φ)(ω>0)对任意x 都有f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,则f ⎝ ⎛⎭⎪⎫π6等于( ) A .2或0 B .-2或2 C .0D .-2或0解析:因为函数f (x )=2sin(ωx +φ)对任意x 都有f ⎝ ⎛⎭⎪⎫π6+x =f ⎝ ⎛⎭⎪⎫π6-x ,所以该函数图象关于直线x =π6对称,因为在对称轴处对应的函数值为最大值或最小值,所以选B.答案:B10.已知命题p :函数f (x )=sin x cos x 的最小正周期为π;命题q :函数g (x )=sin ⎝⎛⎭⎪⎫x +π2的图象关于原点对称.则下列命题中为真命题的是( ) A .p ∧q B .p ∨q C .綈pD .(綈p )∨q解析:函数f (x )=sin x cos x =12sin 2x ,其最小正周期为T =2π2=π,故命题p 为真命题;函数g (x )=sin ⎝⎛⎭⎪⎫x +π2=cos x ,其图象关于y 轴对称,故命题q 为假命题,所以p ∨q 为真命题. 答案:B11.(2018·长沙模拟)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,其中图象最高点和最低点的横坐标分别为π12和7π12,图象在y 轴上的截距为3,给出下列四个结论:①f (x )的最小正周期为π;②f (x )的最大值为2;③f ⎝ ⎛⎭⎪⎫π4=1;④f ⎝⎛⎭⎪⎫x -π6为奇函数.其中正确结论的个数是( ) A .1 B .2 C .3D .4解析:由图知,周期T =2⎝⎛⎭⎪⎫7π12-π12=π,则ω=2,由2×π12+φ=π2,得φ=π3.由f (0)=3,得A sin π3=3,即A =2.所以f (x )=2sin ⎝⎛⎭⎪⎫2x +π3, 则f ⎝ ⎛⎭⎪⎫π4=2sin ⎝ ⎛⎭⎪⎫π2+π3=2cos π3=1,f ⎝⎛⎭⎪⎫x -π6=2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π6+π3=2sin 2x 为奇函数.所以四个结论都正确.答案:D12.已知x ∈(0,π],关于x 的方程2sin ⎝⎛⎭⎪⎫x +π3=a 有两个不同的实数解,则实数a 的取值范围为__________.解析:令y 1=2sin ⎝ ⎛⎭⎪⎫x +π3,x ∈(0,π],y 2=a ,作出y 1的图象如图所示.若2sin ⎝⎛⎭⎪⎫x +π3=a 在(0,π]上有两个不同的实数解,则y 1与y 2应有两个不同的交点,所以3<a <2. 答案:(3,2)13.若函数f (x )=sin(x +φ)+cos(x +φ)⎝ ⎛⎭⎪⎫|φ|<π2为偶函数,则φ=__________.解析:由题意可知f (x )=2sin ⎝⎛⎭⎪⎫x +φ+π4⎝ ⎛⎭⎪⎫|φ|<π2为偶函数,所以φ+π4=π2+k π(k ∈Z).又由|φ|<π2,得φ=π4.答案:π414.当函数y =sin x -3cos x (0≤x <2π)取得最大值时,x =________.解析:由已知条件可得y =2sin ⎝ ⎛⎭⎪⎫x -π3,又由0≤x <2π得-π3≤x -π3<5π3,当x -π3=π2时y 取得最大值,此时x =5π6. 答案:5π6B 组 能力提升练1.函数y =tan x +sin x -|tan x -sin x |在区间⎝⎛⎭⎪⎫π2,3π2内的图象是( )解析:y =tan x +sin x -|tan x -sin x |=⎩⎪⎨⎪⎧2tan x ,x ∈⎝ ⎛⎦⎥⎤π2,π,2sin x ,x ∈⎝⎛⎭⎪⎫π,3π2,对比选项,可知选D. 答案:D2.已知函数f (x )=-2sin(2x +φ)(|φ|<π),若f ⎝ ⎛⎭⎪⎫π8=-2,则f (x )的一个单调递增区间可以是( )A.⎣⎢⎡⎦⎥⎤-π8,3π8B.⎣⎢⎡⎦⎥⎤5π8,9π8C.⎣⎢⎡⎦⎥⎤-3π8,π8 D.⎣⎢⎡⎦⎥⎤π8,5π8 解析:∵f ⎝ ⎛⎭⎪⎫π8=-2,∴-2sin ⎝ ⎛⎭⎪⎫π4+φ=-2,即sin ⎝ ⎛⎭⎪⎫π4+φ=1.∴π4+φ=π2+2k π,又∵|φ|<π,∴φ=π4,∴f (x )=-2sin ⎝ ⎛⎭⎪⎫2x +π4.由2k π+π2≤2x +π4≤2k π+3π2,k ∈Z ,得k π+π8≤x ≤k π+5π8,k ∈Z.当k =0时,得π8≤x ≤5π8.即f (x )的一个单调递增区间可以是⎣⎢⎡⎦⎥⎤π8,5π8.答案:D3.若函数y =tan ωx (ω∈N *)的图象的一个对称中心是⎝ ⎛⎭⎪⎫π6,0,则ω的最小值是( ) A .2 B .3 C .6D .9解析:因为正切函数f (x )=tan x 图象的对称中心为⎝⎛⎭⎪⎫k π2,0(k ∈Z),且函数y =tanωx (ω∈N *)的一个对称中心是⎝ ⎛⎭⎪⎫π6,0,所以πω6=k π2(k ∈Z),因此ω=3k (k ∈Z).因为ω∈N *,所以当k =1时,ω取得最小值3,故选B. 答案:B4.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0)的图象与直线y =b (0<b <A )相交,其中一个交点P 的横坐标为4,若与P 相邻的两个交点的横坐标为2,8,则f (x )的单调递减区间为( )A .[6k π,6k π+3],k ∈ZB .[6k -3,6k ],k ∈ZC .[6k,6k +3],k ∈ZD .[6k π-3,6k π],k ∈Z解析:根据题设中提供的数据信息可知周期T =6,结合f (x )=A sin(ωx +φ)(A >0,ω>0)的图象可知f (x )在区间[6k -3,6k ],k ∈Z 上是单调递减的,故选B. 答案:B5.若函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π6(ω>0)的图象的相邻两条对称轴之间的距离为π2,且该函数图象关于点(x 0,0)成中心对称,x 0∈⎣⎢⎡⎦⎥⎤0,π2,则x 0=( )A.5π12 B.π4 C.π3D.π6解析:由题意得T 2=π2,T =π,则ω=2.由2x 0+π6=k π(k ∈Z),得x 0=k π2-π12(k ∈Z),又x 0∈⎣⎢⎡⎦⎥⎤0,π2,所以x 0=5π12. 答案:A6.下列函数中最小正周期为π且图象关于直线x =π3对称的是( )A .y =2sin ⎝⎛⎭⎪⎫2x +π3 B .y =2sin ⎝⎛⎭⎪⎫2x -π6C .y =2sin ⎝ ⎛⎭⎪⎫x 2+π3D .y =2sin ⎝⎛⎭⎪⎫2x -π3 解析:由函数的最小正周期为π,可排除C.由函数图象关于直线x =π3对称知,该直线过函数图象的最高点或最低点,对于A ,因为sin ⎝⎛⎭⎪⎫2×π3+π3=sin π=0,所以选项A不正确.对于B ,sin ⎝ ⎛⎭⎪⎫2×π3-π6=sin π2=1,所以选项B 正确,故选B.答案:B7.设函数f (x )=⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫x +π3(x ∈R),则f (x )( ) A .在区间⎣⎢⎡⎦⎥⎤-π,-π2上是减函数 B .在区间⎣⎢⎡⎦⎥⎤2π3,7π6上是增函数 C .在区间⎣⎢⎡⎦⎥⎤π8,π4上是增函数 D .在区间⎣⎢⎡⎦⎥⎤π3,5π6上是减函数解析:由f (x )=⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫x +π3可知,f (x )的最小正周期为π.由k π≤x +π3≤π2+k π(k∈Z),得-π3+k π≤x ≤π6+k π(k ∈Z),即f (x )在⎣⎢⎡⎦⎥⎤-π3+k π,π6+k π(k ∈Z)上单调递增;由π2+k π≤x +π3≤π+k π(k ∈Z),得π6+k π≤x ≤2π3+k π(k ∈Z),即f (x )在⎣⎢⎡⎦⎥⎤π6+k π,2π3+k π(k ∈Z)上单调递减.将各选项逐项代入验证,可知B 正确.答案:B8.若函数f (x )同时具有以下两个性质:①f (x )是偶函数;②对任意实数x ,都有f ⎝⎛⎭⎪⎫π4+x =f ⎝ ⎛⎭⎪⎫π4-x .则f (x )的解析式可以是( )A .f (x )=cos xB .f (x )=cos ⎝ ⎛⎭⎪⎫2x +π2C .f (x )=sin ⎝⎛⎭⎪⎫4x +π2D .f (x )=cos 6x解析:由题意可得,函数f (x )是偶函数,且它的图象关于直线x =π4对称.因为f (x )=cos x 是偶函数,f ⎝ ⎛⎭⎪⎫π4=22,不是最值,故不满足图象关于直线x =π4对称,故排除A.因为函数f (x )=cos ⎝⎛⎭⎪⎫2x +π2=-sin 2x 是奇函数,不满足条件①,故排除B.因为函数f (x )=sin ⎝⎛⎭⎪⎫4x +π2=cos 4x 是偶函数,且f ⎝ ⎛⎭⎪⎫π4=-1,是最小值,故满足图象关于直线x =π4对称,故C 满足条件.因为函数f (x )=cos 6x 是偶函数,f ⎝ ⎛⎭⎪⎫π4=0,不是最值,故不满足图象关于直线x =π4对称,故排除D.答案:C9.已知f (x )=sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2图象相邻对称轴间的距离为π2,f (0)=12,则g (x )=2cos(ωx +φ)在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为( )A .- 3B .-2C .-1D .1解析:由题意得函数f (x )的最小正周期为π,则ω=2,由f (0)=12,可得φ=π6,所以g (x )=2cos(ωx +φ)即为g (x )=2cos ⎝ ⎛⎭⎪⎫2x +π6.因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以2x +π6∈⎣⎢⎡⎦⎥⎤π6,76π,得-1≤cos ⎝ ⎛⎭⎪⎫2x +π6≤32,则g (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为-2.答案:B10.函数y =A sin(ωx +φ)的部分图象如图所示,则( )A .y =2sin ⎝ ⎛⎭⎪⎫2x -π6B .y =2sin ⎝⎛⎭⎪⎫2x -π3 C .y =2sin ⎝⎛⎭⎪⎫x +π6D .y =2sin ⎝⎛⎭⎪⎫x +π3解析:由题图可知A =2,T 2=π3-⎝ ⎛⎭⎪⎫-π6=π2,则T =π,所以ω=2, 则y =2sin(2x +φ),因为题图经过点⎝ ⎛⎭⎪⎫π3,2, 所以2sin ⎝ ⎛⎭⎪⎫2×π3+φ=2, 所以2π3+φ=2k π+π2,k ∈Z ,即φ=2k π-π6,k ∈Z ,当k =0时,φ=-π6,所以y =2sin ⎝ ⎛⎭⎪⎫2x -π6,故选A. 答案:A11.函数y =tan ⎝⎛⎭⎪⎫2x +π4的图象与x 轴交点的坐标是__________.解析:由2x +π4=k π(k ∈Z)得,x =k π2-π8(k ∈Z).∴函数y =tan ⎝ ⎛⎭⎪⎫2x +π4的图象与x轴交点的坐标是⎝ ⎛⎭⎪⎫k π2-π8,0,k ∈Z.答案:⎝⎛⎭⎪⎫k π2-π8,0,k ∈Z12.设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3=-f ⎝ ⎛⎭⎪⎫π6,则f (x )的最小正周期为__________.解析:由f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=-f ⎝ ⎛⎭⎪⎫π6知,f (x )有对称中心⎝ ⎛⎭⎪⎫π3,0,由f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫23π知f (x )有对称轴x =12⎝ ⎛⎭⎪⎫π2+23π=712π.记f (x )的最小正周期为T ,则12T ≥π2-π6,即T ≥23π.故712π-π3=π4=T4,解得T =π. 答案:π13.函数y =cos 2x +sin x ⎝ ⎛⎭⎪⎫|x |≤π4的值域为________.解析:函数变为y =1-sin 2x +sin x . 设t =sin x ,⎝ ⎛⎭⎪⎫|x |≤π4,∴t ∈⎣⎢⎡⎦⎥⎤-22,22.函数变为f (t )=-t 2+t +1=-⎝ ⎛⎭⎪⎫t -122+54,∴当t =12,即sin x =12,x =π6时,y max =54;当t =-22,即x =-π4时,y min =1-22. 答案:⎣⎢⎡⎦⎥⎤1-22,54 14.已知函数f (x )=3sin ⎝⎛⎭⎪⎫ωx -π6(ω>0)和g (x )=3cos(2x +φ)的图象的对称中心完全相同,若x ∈⎣⎢⎡⎦⎥⎤0,π2,则f (x )的取值范围是__________.解析:由两三角函数图象的对称中心完全相同,可知两函数的周期相同,故ω=2,所以f (x )=3sin ⎝⎛⎭⎪⎫2x -π6,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,-π6≤2x -π6≤5π6,所以-12≤sin ⎝⎛⎭⎪⎫2x -π6≤1,故f (x )∈⎣⎢⎡⎦⎥⎤-32,3. 答案:⎣⎢⎡⎦⎥⎤-32,3。
推荐2019版一轮创新思维文数(人教版A版)课件第七章 第一节 简单几何体的结构、三视图和直观图
解析 答案
考点三
考点一二
角度 2 已知三视图,判断几何体
[例 4] (2018·烟台模拟)若一个三棱锥的三
视图如图所示,其中三个视图都是直角三角
形,则在该三棱锥的四个面中,直角三角形
的个数为( )
A.1
B.2
C.3
D.4
解析 答案
考点三
考点一二
观察三视图,可得直观图如图所示.该三棱锥 A-BCD 的底面 BCD 是直角三角形,AB⊥平面 BCD,CD⊥BC,侧面 ABC, ABD 是直角三角形;由 CD⊥BC,CD⊥AB,知 CD⊥平面 ABC, CD⊥AC,侧面 ACD 也是直角三角形,故选 D. [答案] D
考点一
考点二三
[纠错训练]
给出下列命题:
①棱柱的侧棱都相等,侧面都是全等的平行四边形;②用一
个平面去截棱锥,棱锥底面与截面之间的部分是棱台;③若
三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;
④棱台的侧棱延长后交于一点,侧面是等腰梯形.
其中正确命题的序号是( )
A.①②③
B.②③
C.③
D.①②③④
(2)认识棱柱一般要从侧棱与底面的垂直与否和底面多边形的形状两
方面去分析,故①③都不正确,②中对等腰三角形的腰是否为侧棱
未作说明,故也不正确,④平行六面体的两个相对侧面也可能与底
面垂直且互相平行,故④也不正确.
[答案] (1)B (2)4
解析 答案
考点一
考点二三
[易错提醒] 1.明确各种空间几何体的概念及相关元素的特征. 2.善于构建、利用几何体模型. 3.通过反例对结构特征进行判断.
视图为( )
解析 答案
考点三
配套K122019版一轮创新思维文数(人教版A版)练习:第七章 第一节 简单几何体的结构、三视图和直
课时规范练 A 组 基础对点练1.一个几何体的三视图如图所示,其中俯视图为正三角形,则侧视图的面积为( )A .8B .4 3C .4 2D .4解析:由三视图可知,该几何体是一个正三棱柱,高为4,底面是一个边长为2的正三角形.因此,侧视图是一个长为4,宽为3的矩形,其面积S =3×4=4 3. 答案:B2.如图是一个空间几何体的三视图,其中正视图、侧视图都是由边长为4和6的矩形以及直径等于4的圆组成,俯视图是直径等于4的圆,该几何体的体积是( )A.41π3B.62π3C.83π3D.104π3解析:由题意得,此几何体为球与圆柱的组合体,其体积V =43π×23+π×22×6=104π3.答案:D3.某空间几何体的三视图如图所示,则该几何体的表面积为( )A .12+4 2B .18+8 2C .28D .20+8 2解析:由三视图可知该几何体是底面为等腰直角三角形的直三棱柱,如图.则该几何体的表面积为S =2×12×2×2+4×2×2+22×4=20+82,故选D.答案:D4.已知某锥体的正视图和侧视图如图所示,其体积为233,则该锥体的俯视图可能是( )解析:由正视图得该锥体的高是h =22-12=3,因为该锥体的体积为233,所以该锥体的底面面积是S =23313h =23333=2,A 项的正方形的面积是2×2=4,B 项的圆的面积是π×12=π,C 项的大三角形的面积是12×2×2=2,D 项不可能是该锥体的俯视图,故选C.答案:C5.已知四棱锥P ABCD 的三视图如图所示,则四棱锥P ABCD 的四个侧面中面积最大的是( )A .3B .2 5C .6D .8解析:四棱锥如图所示,取AD 的中点N ,BC 的中点M ,连接PM ,PN ,则PN =5,PM =3,S △P AD =12×4×5=25,S △P AB =S △PDC =12×2×3=3,S △PBC =12×4×3=6.答案:C6.某几何体的三视图如图所示,则该几何体的体积为( )A .16+8πB .8+8πC .16+16πD .8+16π解析:由三视图复原的几何体是一个长方体与半个圆柱的组合体,如图.其中长方体的长、宽、高分别是4,2,2,半个圆柱的底面半径为2,母线长为4.∴长方体的体积V 1=4×2×2=16, 半个圆柱的体积V 2=12×22×π×4=8π.∴这个几何体的体积是16+8π. 答案:A7.一个半径为2的球体经过切割之后所得几何体的三视图如图所示,则该几何体的表面积为( )A .16πB .12πC .14πD .17π解析:根据三视图可知几何体是一个球体切去四分之一,则该几何体的表面是四分之三球面和两个截面(半圆). 由题意知球的半径是2,∴该几何体的表面积S =34×4π×22+π×22=16π.答案:A8.已知一个正方体的所有顶点在一个球面上,若球的体积为9π2,则正方体的棱长为________.解析:设正方体棱长为a ,球半径为R ,则43πR 3=9π2,∴R =32,∴3a =3,∴a = 3.答案: 39.某空间几何体的三视图如图所示,则该几何体的体积为________.解析:由题意得到几何体的直观图如图,即从四棱锥P ABCD 中挖去了一个半圆锥.其体积V =13×2×2×2-12×13×π×12×2=8-π3. 答案:8-π310.某零件的正(主)视图与侧(左)视图均是如图所示的图形(实线组成半径为2 cm 的半圆,虚线是等腰三角形的两腰),俯视图是一个半径为2 cm 的圆(包括圆心),则该零件的体积是________.解析:依题意得,零件可视为从一个半球中挖去一个小圆锥所剩余的几何体,其体积为12×4π3×23-13×π×22×1=4π(cm 3).答案:4π cm 3B 组 能力提升练1.已知圆锥的表面积为a ,且它的侧面展开图是一个半圆,则这个圆锥的底面直径是( ) A.a 2 B.3πa3πC.23πa 3πD.23a 3π解析:设圆锥的底面半径为r ,母线长为l ,由题意知2πr =πl ,∴l =2r ,则圆锥的表面积S 表=πr 2+12π(2r )2=a ,∴r 2=a 3π,∴2r =23πa 3π. 答案:C2.一个几何体的三视图如图所示,则该几何体的体积为( )A.163 B.203 C.152D.132解析:该几何体可视为正方体截去两个三棱锥所得,如图所示,所以其体积为23-13×12×2×2×2-13×12×1×1×1=132.故选D.答案:D3.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( ) A .6 B .9 C .12D .18解析:由三视图可知该几何体是一个三棱锥,其底面是斜边为6的等腰直角三角形,高为3,则体积为13×12×6×3×3=9.答案:B4.下图是一个几何体的三视图,则该几何体任意两个顶点间距离的最大值是( )A .4B .5C .3 2D .3 3解析:作出直观图如图所示,通过计算可知AF 最长且|AF |=|BF |2+|AB |2=3 3.答案:D5.高为4的直三棱柱被削去一部分后得到一个几何体,它的直观图和三视图中的侧视图、俯视图如图所示,则该几何体的体积是原直三棱柱的体积的( ) A.34 B.14 C.12D.38解析:由侧视图、俯视图知该几何体是高为2、底面积为12×2× (2+4)=6的四棱锥,其体积为4.易知直三棱柱的体积为8,则该几何体的体积是原直三棱柱的体积的48=12,故选C.答案:C6.一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的外接球的表面积为( )A.16π3B.8π3 C .4 3D .23π解析:由题意可得该几何体是有一个侧面P AC 垂直于底面ABC ,高为3,底面是一个等腰直角三角形的三棱锥,如图.则这个几何体的外接球的球心O 在高线PD 上,且是等边三角形P AC 的外心.这个几何体的外接球的半径R =23PD =233.则这个几何体的外接球的表面积S =4πR 2=4π×⎝⎛⎭⎫2332=16π3.答案:A7.(2018·郑州质量预测)如图是一个四面体的三视图,这三个视图均是腰长为2的等腰直角三角形,正视图和俯视图中的虚线是三角形的中线,则该四面体的体积为( )A.23B.43C.83D .2解析:由三视图可知,此四面体如图所示,其高为2,底面三角形的一边长为1,对应的高为2,所以其体积V =13×12×2×1×2=23,故选A.答案:A8.(2018·天津测试)若一个几何体的表面积和体积相同,则称这个几何体为“同积几何体”.已知某几何体为“同积几何体”,其三视图如图所示,则a =( )A.14+223B.8+223C.12+223D .8+2 2解析:根据几何体的三视图可知该几何体是一个四棱柱,如图所示,可得其体积为12(a +2a )·a ·a =32a 3,其表面积为12·(2a +a )·a ·2+a 2+a 2+2a ·a+2a ·a =7a 2+2a 2,所以7a 2+2a 2=32a 3,解得a =14+223,故选A. 答案:A9.在三棱锥A BCD 中,侧棱AB ,AC ,AD 两两垂直,△ABC ,△ACD ,△ADB 的面积分别为22,32,62,则该三棱锥外接球的表面积为________. 解析:设相互垂直的三条侧棱AB ,AC ,AD 分别为a ,b ,c ,则12ab =22,12bc =32,12ac=62,解得a =2,b =1,c = 3. 所以三棱锥A BCD 的外接球的直径2R =a 2+b 2+c 2=6,则其外接球的表面积S =4πR 2=6π. 答案:6π10.一个直三棱柱被削去一部分后的几何体ABCDE 及其侧视图、俯视图如图所示,其中侧视图是直角梯形,俯视图是等腰直角三角形.设M 是BD 的中点,点N 在棱DC 上,且MN ⊥平面BDE ,则CN =______________________________________________________.解析:由题意可得,DC ⊥平面ABC ,所以DC ⊥CB .若MN ⊥平面BDE ,则MN ⊥BD .又因为∠MDN =∠CDB ,所以△DMN ∽△DCB ,所以DN DB =DM DC ,故DN 26=64,解得DN =3,所以CN =CD-DN=1. 答案:1。
【配套K12】2019版一轮创新思维文数(人教版A版)练习:第二章 第七节 函数图象 Word版含解
课时规范练 A 组 基础对点练1.如图的曲线是幂函数y =x n 在第一象限内的图象.已知n 分别取±2,±12四个值,与曲线C 1,C 2,C 3,C 4相应的n 依次为( )A .2,12,-12,-2B .2,12,-2,-12C .-12,-2,2,12D .-2,-12,12,2解析:C 1,C 2对应的n 为正数,且C 1的n 应大于1; 当x =2时,C 4对应的值小,应为-2. 答案:A2.如图,在不规则图形ABCD 中,AB 和CD 是线段,AD 和BC 是圆弧,直线l ⊥AB 于E ,当l 从左至右移动(与线段AB 有公共点)时,把四边形ABCD 分成两部分,设AE =x ,左侧部分面积为y ,则y 关于x 的大致图象为( )解析:直线l 在AD 圆弧段时,面积y 的变化率逐渐增大,l 在DC 段时,y 随x 的变化率不变;l 在CB 段时,y 随x 的变化率逐渐变小,故选D. 答案:D3.函数y =xa x|x |(0<a <1)的图象的大致形状是( )解析:函数定义域为{x |x ∈R ,x ≠0},且y =xax|x |=⎩⎪⎨⎪⎧a x ,x >0,-a x,x <0.当x >0时,函数是一个指数函数,其底数0<a <1,所以函数递减;当x <0时,函数递增,所以应选D. 答案:D4.函数f (x )=ln ⎝⎛⎭⎫x -1x 的图象是( )解析:自变量x 满足x -1x =x 2-1x>0,当x >0时可得x >1,当x <0时可得-1<x <0,即函数f (x )的定义域是(-1,0)∪(1,+∞),据此排除选项A 、D 中的图象.当x >1时,函数x -1x 单调递增,故f (x )=ln ⎝⎛⎭⎫x -1x 单调递增. 答案:B5.(2018·武昌调研)已知函数f (x )的部分图象如图所示,则f (x )的解析式可以是( ) A .f (x )=2-x 22xB .f (x )=cos xx 2C .f (x )=-cos 2xxD .f (x )=cos xx解析:A 中,当x →+∞时,f (x )→-∞,与题图不符,故不成立;B 为偶函数,与题图不符,故不成立;C 中,当x →0+时,f (x )<0,与题图不符,故不成立.选D. 答案:D6.函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x 关于y 轴对称,则f (x )=( ) A .e x +1B .e x -1C .e-x +1D .e-x -1解析:与曲线y =e x 关于y 轴对称的图象对应的函数为y =e -x ,将函数y =e -x 的图象向左平移1个单位长度即得y =f (x )的图象,∴f (x )=e -(x +1)=e -x -1,故选D. 答案:D7.函数f (x )=2ln x 的图象与函数g (x )=x 2-4x +5的图象的交点个数为( ) A .3 B .2 C .1D .0解析:在同一直角坐标系下画出函数f (x )=2ln x 与函数g (x )=x 2-4x +5=(x -2)2+1的图象,如图所示.∵f (2)=2ln 2>g (2)=1,∴f (x )与g (x )的图象的交点个数为2.故选B. 答案:B8.如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2(x +1)的解集是( )A .{x |-1<x ≤0}B .{x |-1≤x ≤1}C .{x |-1<x ≤1}D .{x |-1<x ≤2}解析:作出函数y =log 2(x +1)的图象,如图所示:其中函数f (x )与y =log 2(x +1)的图象的交点为D (1,1),结合图象可知f (x )≥log 2(x +1)的解集为{x |-1<x ≤1},故选C. 答案:C 9.若函数y =2-x +1+m 的图象不经过第一象限,则m 的取值范围是________.解析:由y =2-x +1+m ,得y =⎝⎛⎫12x -1+m ;函数y =⎝⎛⎫12x -1的图象如所示,则要使其图象不经过第一象限,则m ≤-2. 答案:(-∞,-2]10.函数f (x )=⎩⎪⎨⎪⎧ax +b ,x ≤0,log c ⎝⎛⎭⎫x +19,x >0的图象如图所示,则a +b +c =________.解析:由图象可求得直线的方程为y =2x +2.又函数y =log c ⎝⎛⎭⎫x +19的图象过点(0,2),将其坐标代入可得c =13,所以a +b +c =2+2+13=133. 答案:13311.(2018·枣庄一中模拟)已知函数f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=x 2-2x ,如果函数g (x )=f (x )-m (m ∈R)恰有4个零点,则m 的取值范围是________. 解析:f (x )的图象如图所示,g (x )=0即f (x )=m , y =m 与y =f (x )有四个交点, 故m 的取值范围为(-1,0). 答案:(-1,0)12.若函数f (x )=⎩⎨⎧ 1x,x <0,⎝⎛⎭⎫13x,x ≥0,则不等式-13≤f (x )≤13的解集为__________.解析:函数f (x )=⎩⎨⎧1x ,x <0,⎝⎛⎭⎫13x,x ≥0和函数g (x )=±13的图象如图所示.当x <0时,是区间(-∞,-3],当x ≥0时,是区间[1,+∞),故不等式-13≤f (x )≤13的解集为(-∞,-3]∪[1,+∞).答案:(-∞,-3]∪[1,+∞)B 组 能力提升练1.(2018·临沂模拟)已知a 是常数,函数f (x )=13x 3+12·(1-a )x 2-ax +2的导函数y =f ′(x )的图象如图所示,则函数g (x )=|a x -2|的图象可能是( )解析:∵f (x )=13x 3+12(1-a )x 2-ax +2,∴f ′(x )=x 2+(1-a )x -a ,由函数y =f ′(x )的图象可知-1-a2>0,∴a >1,则函数g (x )=|a x -2|的图象是由函数y =a x 的图象向下平移2个单位,然后将x 轴下方的图象翻折到x 轴上方得到的,故选D. 答案:D2.函数f (x )=ax 3+bx 2+cx +d 的图象如图所示,则下列结论成立的是( )A .a >0,b <0,c >0,d >0B .a >0,b <0,c <0,d >0C .a <0,b <0,c >0,d >0D .a >0,b >0,c >0,d <0解析:∵函数f (x )的图象在y 轴上的截距为正值,∴d >0.∵f ′(x )=3ax 2+2bx +c ,且函数f (x )=ax 3+bx 2+cx +d 在(-∞,x 1)上单调递增,(x 1,x 2)上单调递减,(x 2,+∞)上单调递增,∴f ′(x )<0的解集为(x 1,x 2),∴a >0,又x 1,x 2均为正数,∴c 3a >0,-2b3a >0,可得c >0,b<0. 答案:A3.函数y =ln|x |-x 2的图象大致为( )解析:令f (x )=ln|x |-x 2,定义域为(-∞,0)∪(0,+∞),且f (-x )=ln|x |-x 2=f (x ),故函数y =ln|x |-x 2为偶函数,其图象关于y 轴对称,排除B ,D ;当x >0时,y =ln x -x 2,则y ′=1x -2x ,当x ∈⎝⎛⎭⎫0,22时,y ′=1x -2x >0,y =ln x -x 2单调递增,排除C.选A. 答案:A4.已知函数f (x )=-2x 2+1,函数g (x )=⎩⎪⎨⎪⎧log 12x ,x >02x ,x ≤0,则函数y =|f (x )|-g (x )的零点的个数为( ) A .2 B .3 C .4D .5解析:函数y =|f (x )|-g (x )的零点的个数,即|f (x )|-g (x )=0的根的个数,可得|f (x )|=g (x ),画出函数|f (x )|,g (x )的图象如图所示,观察函数的图象,则它们的交点为4个,即函数y =|f (x )|-g (x )的零点个数为4,选C.答案:C5.在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A -BCD 中,AB ⊥平面BCD ,且BD ⊥CD ,AB =BD =CD ,点P 在棱AC 上运动,设CP 的长度为x ,若△PBD 的面积为f (x ),则f (x )的图象大致是( )解析:如图,作PQ ⊥BC 于Q ,作QR ⊥BD 于R ,连接PR ,则由鳖臑的定义知PQ ∥AB ,QR ∥CD .设AB =BD =CD =1,则CP AC =x 3=PQ 1,即PQ =x3,又QR 1=BQ BC =APAC =3-x 3,所以QR =3-x 3,所以PR =PQ 2+QR 2=⎝⎛⎭⎫x 32+⎝ ⎛⎭⎪⎫3-x 32=332x 2-23x +3,所以f (x )=362x 2-23x +3=66⎝⎛⎭⎫x -322+34,故选A.答案:A6.若关于x 的不等式4a x -1<3x -4(a >0,且a ≠1)对于任意的x >2恒成立,则a 的取值范围为( )A.⎝⎛⎭⎫0,12B.⎝⎛⎦⎤0,12 C .[2,+∞)D .(2,+∞)解析:不等式4a x -1<3x -4等价于a x -1<34x -1.令f (x )=a x -1,g (x )=34x -1,当a >1时,在同一坐标系中作出两个函数的图象,如图1所示,由图知不满足条件;当0<a <1时,在同一坐标系中作出两个函数的图象,如图2所示,则f (2)≤g (2),即a 2-1≤34×2-1,即a ≤12,所以a 的取值范围是⎝⎛⎦⎤0,12,故选B.答案:B7.已知函数f (x )=x 2-2(a +2)x +a 2,g (x )=-x 2+2(a -2)x -a 2+8.设H 1(x )=max{f (x ),g (x )},H 2(x )=min{f (x ),g (x )}(max{p ,q }表示p ,q 中的较大值,min{p ,q }表示p ,q 中的较小值).记H 1(x )的最小值为A ,H 2(x )的最大值为B ,则A -B =( ) A .a 2-2a -16 B .a 2+2a -16 C .-16D .16解析:f (x )=g (x ),即x 2-2(a +2)x +a 2=-x 2+2(a -2)x -a 2+8,即x 2-2ax +a 2-4=0,解得x =a +2或x =a -2.f (x )与g (x )的图象如图.由图及H 1(x )的定义知H 1(x )的最小值是f (a +2), H 2(x )的最大值为g (a -2),A -B =f (a +2)-g (a -2)=(a +2)2-2(a +2)2+a 2+(a -2)2-2(a -2)·(a -2)+a 2-8=-16. 答案:C8.若函数f (x )=(2-m )xx 2+m 的图象如图所示,则m 的取值范围为( )A .(-∞,- 1)B .(-1,2)C .(0,2)D .[1,2)解析:根据题图可知,函数图象过原点,即f (0)=0,所以m ≠0.当x >0时,f (x )>0,所以2-m >0,即m <2.函数f (x )在[-1,1]上是单调递增的,所以f ′(x )≥0在[-1,1]上恒成立, 则f ′(x )=(2-m )(x 2+m )-2x (2-m )x (x 2+m )2=(m -2)(x 2-m )(x 2+m )2≥0, ∵m -2<0,(x 2+m )2>0,∴只需x 2-m ≤0在[-1,1]上恒成立即可,∴m ≥(x 2)max , ∴m ≥1.综上所述:1≤m <2,故选D. 答案:D9.设函数f (x )=⎩⎪⎨⎪⎧2-x -1, x ≤0,x 12, x >0.若f (x 0)>1,则x 0的取值范围是________.解析:在同一直角坐标系中,作出函数y =f (x )的图象和直线y =1,它们相交于(-1,1)和(1,1)两点,由f (x 0)>1,得x 0<-1或x 0>1.答案:(-∞,-1)∪(1,+∞)10.定义在R 上的函数f (x )=⎩⎪⎨⎪⎧lg|x |,x ≠0,1, x =0,关于x 的方程y =c (c 为常数)恰有三个不同的实数根x 1,x 2,x 3,则x 1+x 2+x 3=________.解析:函数f (x )的图象如图,方程f (x )=c 有三个根,即y =f (x )与y =c 的图象有三个交点,易知c =1,且一根为0,由lg|x |=1知另两根为-10和10, ∴x 1+x 2+x 3=0.答案:011.(2018·咸阳模拟)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x ,x ≤0,关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是________.解析:方程f (x )+x -a =0有且只有一个实根,等价于函数y =f (x )与y =-x +a 的图象有且只有一个交点.结合下面函数图象可知a >1.答案:(1,+∞)12.(2018·湖北百所重点学校联考)设函数f (x )对任意实数x 满足f (x )=-f (x +1),且当0≤x ≤1时,f (x )=x (1-x ),若关于x 的方程f (x )=kx 有3个不同的实数根,则k 的取值范围是__________.解析:因f (x )=-f (x +1),故f (x +2)=f (x ),即函数f (x )是周期为2的周期函数,画出函数y =f (x ),x ∈[0,1]的图象,再借助函数满足的条件f (x )=-f (x +1)及周期性,画出函数y =f (x )的图象如图,易知仅当直线y =kx 位于l 1与l 2之间(不包括l 1、l 2)或与l 3重合时满足题意,对y =x (1-x )求导得y ′=1-2x ,y ′|x =0=1,∴l 2的斜率为1.以下求l 3的斜率:当1≤x ≤2时,易得f (x )=-f (x -1)=-(x -1)[1-(x -1)]=x 2-3x +2,令x 2-3x +2-kx =0,得x 2-(3+k )x +2=0,令Δ=(3+k )2-8=0,解得k =-3±22,由此易知l 3的斜率为-3+2 2.同理,由2≤x ≤3时,f (x )=-x 2+5x -6,可得l 1的斜率为5-2 6.综上,5-26<k <1或k =-3+2 2,故应填(5-26,1)∪{-3+22}.小初高试卷教案类答案:(5-26,1)∪{-3+22} K12小学初中高中。
【配套K12】2019版一轮创新思维文数(人教版A版)练习:第二章 第九节 函数模型及应用 Word
课时规范练 A 组 基础对点练1.下列函数中随x 的增大而增长速度最快的是( ) A .v =1100·e xB .v =100ln xC .v =x 100D .v =100×2x答案:A2.(2018·开封质检)用长度为24(单位:米)的材料围成一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为( ) A .3米 B .4米 C .6米D .12米 解析:设隔墙的长为x (0<x <6)米,矩形的面积为y 平方米,则y =x ×24-4x 2=2x (6-x )=-2(x -3)2+18,所以当x =3时,y 取得最大值. 答案:A3.已知A ,B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,把汽车离开A 地的距离x 表示为时间t (小时)的函数表达式是( ) A .x =60t B .x =60t +50tC .x =⎩⎪⎨⎪⎧60t (0≤t ≤2.5),150-50t (t >3.5)D .x =⎩⎪⎨⎪⎧60t (0≤t ≤2.5),150(2.5<t ≤3.5),150-50(t -3.5)(3.5<t ≤6.5)解析:当0≤t ≤2.5时,x =60t ;当2.5<t ≤3.5时,x =150;当3.5<t ≤6.5时,x =150-50(t -3.5). 答案:D4.在某个物理实验中,测量得变量x 和变量y 的几组数据,如下表:则对x ,y A .y =2xB .y =x 2-1C.y=2x-2 D.y=log2x解析:根据x=0.50,y=-0.99,代入各选项计算,可以排除A;根据x=2.01,y=0.98,代入各选项计算,可以排除B,C;将各数据代入函数y=log2x,可知满足题意.故选D. 答案:D5.某商场销售A型商品,已知该商品的进价是每件3元,且销售单价与日均销售量的关系如表所示:件)应为()A.4 B.5.5C.8.5 D.10解析:由题意可设定价为x元/件,利润为y元,则y=(x-3)[400-40(x-4)]=40(-x2+17x -42),故当x=8.5时,y有最大值,故选C.答案:C6.(2018·济南模拟)某种动物繁殖量y只与时间x年的关系为y=a log3(x+1),设这种动物第2年有100只,到第8年它们将发展到()A.200只B.300只C.400只D.500只解析:∵繁殖数量y只与时间x年的关系为y=a log3(x+1),这种动物第2年有100只,∴100=a log3(2+1),∴a=100,∴y=100log3(x+1),∴当x=8时,y=100 log3(8+1)=100×2=200.故选A.答案:A7.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x,y应为()A .x =15,y =12B .x =12,y =15C .x =14,y =10D .x =10,y =14解析:由三角形相似得24-y 24-8=x20,得x =54(24-y ),由0<x ≤20得,8≤y <24,所以S =xy =-54(y -12)2+180,所以当y =12时,S 有最大值,此时x =15. 答案:A8.世界人口在过去40年翻了一番,则每年人口平均增长率约是(参考数据lg 2≈0.301 0,100.0075≈1.017)( )A .1.5%B .1.6%C .1.7%D .1.8%解析:由题意得(1+x )40=2,∴40lg(1+x )=lg 2,∴lg(1+x )≈0.007 5, ∴1+x =100.007 5,∴x ≈0.017=1.7%. 故选C. 答案:C9.当生物死亡后,其体内原有的碳14的含量大约每经过5 730年衰减为原来的一半,这个时间称为“半衰期”.当死亡生物体内的碳14含量不足死亡前的千分之一时,用一般的放射性探测器就测不到了.若某死亡生物体内的碳14用该放射性探测器探测不到,则它经过的“半衰期”个数至少是( ) A .8 B .9 C .10D .11解析:设该死亡生物体内原有的碳14的含量为1,则经过n 个“半衰期”后的含量为⎝⎛⎭⎫12n , 由⎝⎛⎭⎫12n <11 000,得n ≥10,所以,若某死亡生物体内的碳14用该放射性探测器探测不到,则它至少需要经过10个“半衰期”.故选C. 答案:C10.某大型民企为激励创新,计划逐年加大研发资金投入.若该民企2016年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该民企全年投入的研发资金开始超过200万元的年份是(参考数据:lg 1.12=0.05,lg 1.3=0.11,lg 2=0.30)( ) A .2017年 B .2018年 C .2019年D .2020年解析:设2016年后的第n 年,该公司全年投入的研发资金开始超过200万元,由130(1+12%)n>200,得1.12n>2013,两边取对数,得n >lg 2-lg 1.3lg 1.12≈0.30-0.110.05=195,∴n ≥4,∴从2020年开始,该公司全年投入的研发资金开始超过200万元. 答案:D11.某种病毒每经过30分钟由1个病毒可分裂成2个病毒,经过x 小时后,病毒个数y 与时间x (小时)的函数关系式为________,经过5小时,1个病毒能分裂成________个. 解析:设原有1个病毒,经过1个30分钟有2=21个病毒; 经过2个30分钟有2×2=4=22个病毒; 经过3个30分钟有4×2=8=23个病毒; ……经过60x30个30分钟有22x =4x 个病毒,∴病毒个数y 与时间x (小时)的函数关系式为y =4x . ∴经过5小时,1个病毒能分裂成45=1 024个. 答案:y =4x 1 02412.(2018·南昌模拟)某电信公司推出两种手机收费方式:A 种方式是月租20元,B 种方式是月租0元.一个月的本地网内通话时间t (分钟)与电话费S (元)的函数关系如图所示,当通话150分钟时,这两种方式的电话费相差__________.解析:依题意可设S A (t )=20+kt ,S B (t )=mt . 又S A (100)=S B (100),∴100k +20=100m ,得k -m =-0.2, 于是S A (150)-S B (150)=20+150k -150m=20+150×(-0.2)=-10,即两种方式的电话费相差10元. 答案:10元13.某商家一月份至五月份累计销售额达3 860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、八月份销售总额相等.若一月份至十月份销售总额至少达7 000万元,则x 的最小值是________.解析:七月份的销售额为500(1+x %),八月份的销售额为500(1+x %)2,则一月份到十月份的销售总额是3 860+500+2[500(1+x %)+500(1+x %)2],根据题意有3 860+500+2[500(1+x %)+500(1+x %)2]≥7 000,即25(1+x %)+25(1+x %)2≥66,令t =1+x %,则25t 2+25t -66≥0,解得t ≥65或者t ≤-115(舍去),故1+x %≥65,解得x ≥20.答案:2014.某市用37辆汽车往灾区运送一批救灾物资,假设以v km/h 的速度直达灾区,已知某市到灾区公路线长400 km ,为了安全起见,两辆汽车的间距不得小于(v20)2km ,那么这批物资全部到达灾区的最少时间是________h(车身长度不计).解析:设全部物资到达灾区所需时间为t h ,由题意可知,t 相当于最后一辆车行驶了(36×⎝⎛⎭⎫v202+400) km 所用的时间,因此,t =36×⎝⎛⎭⎫v202+400v ≥12,当且仅当36v 400=400v ,即v =2003时取“=”.故这些汽车以2003 km/h 的速度匀速行驶时,所需时间最少,最少时间为12 h.答案:12B 组 能力提升练1.(2018·重庆巴蜀中学模拟)某市近郊有一块大约500米×500米的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,要建设如图所示的一个总面积为3 000平方米的矩形场地,其中阴影部分为通道,通道宽度为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S 平方米. (1)分别用x 表示y 和S 的函数关系式,并给出定义域;(2)怎样设计能使S 取得最大值,并求出最大值.解析:(1)由已知xy =3 000,得y =3 000x ,其定义域是(6, 500).S =(x -4)a +(x -6)a =(2x -10)a , ∵2a +6=y ,∴a =y 2-3=1 500x-3,∴S =(2x -10)·⎝⎛⎭⎫1 500x -3=3 030-⎝⎛⎭⎫15 000x +6x ,其定义域是(6,500). (2)S =3 030-⎝⎛⎭⎫15 000x +6x ≤3 030-26x ·15 000x=3 030-2×300=2 430,当且仅当15 000x =6x ,即x =50∈(6,500)时,等号成立,此时,x =50,y =60,S max =2 430.∴设计x =50米,y =60米,a =27米时,运动场地面积最大,最大值为2 430米. 2.为了降低能源损耗,某体育馆的外墙需要建造隔热层.体育馆要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C 万元与隔热层厚度x 厘米满足关系:C (x )=k3x +5(0≤x ≤10,k 为常数),若不建隔热层,每年能源消耗费用为8万元.设f (x )为隔热层建造费用与20年的能源消耗费用之和. (1)求k 的值及f (x )的表达式;(2)隔热层修建多厚时,总费用f (x )达到最小?并求最小值. 解析:(1)当x =0时,C =8,∴k =40,∴C (x )=403x +5.∴f (x )=6x +20×403x +5=6x +8003x +5(0≤x ≤10).(2)f (x )=2(3x +5)+8003x +5-10,设3x +5=t ,t ∈[5,35], ∴y =2t +800t-10≥22t ·800t-10=70,当且仅当2t =800t ,即t =20时等号成立,这时x =5,f (x )的最小值为70,即隔热层修建5 cm 厚时,总费用f (x )达到最小,最小值为70万元.3.某工厂生产某种产品,每日的成本C (单位:万元)与日产量x (单位:吨)满足函数关系式C =3+x ,每日的销售额S (单位:万元)与日产量x 的函数关系式S =⎩⎪⎨⎪⎧3x +k x -8+5(0<x <6),14(x ≥6),已知每日的利润L =S -C ,且当x =2时,L =3. (1)求k 的值;(2)当日产量为多少吨时,每日的利润可以达到最大,并求出最大值. 解析:(1)由题意可得,L =⎩⎨⎧2x +kx -8+2,0<x <6,11-x ,x ≥6,因为x =2时,L =3,所以3=2×2+k2-8+2.解得k =18.(2)当0<x <6时,L =2x +18x -8+2,所以L =2(x -8)+18x -8+18=-⎣⎢⎡⎦⎥⎤2(8-x )+188-x +18≤-22(8-x )·188-x+18=6.当且仅当2(8-x )=188-x ,即x =5时取得等号.当x ≥6时,L =11-x ≤5. 所以当x =5时,L 取得最大值6.所以当日产量为5吨时,每日的利润可以达到最大值6万元.4.随着中国一带一路的深入发展,中国某陶瓷厂为了适应发展,制定了以下生产计划,每天生产陶瓷的固定成本为14 000元,每生产一件产品,成本增加210元.已知该产品的日销售量f (x )(单位:件)与产量x (单位:件)之间的关系式为f (x )=⎩⎪⎨⎪⎧1625x 2(0≤x ≤400)x -144(400<x <500),每件产品的售价g (x )(单位:元)与产量x 之间的关系式为g (x )=⎩⎪⎨⎪⎧-58x +750(0≤x ≤400)-x +900(400<x <500).(1)写出该陶瓷厂的日销售利润Q (x )(单位:元)与产量x 之间的关系式;(2)若要使得日销售利润最大,则该陶瓷厂每天应生产多少件产品,并求出最大利润. 解析:(1)设总成本为c (x )(单位:元),则c (x )=14 000+210x ,所以日销售利润Q (x )=f (x )g (x )-c (x )=⎩⎪⎨⎪⎧-11 000x 3+65x 2-210x -14 000(0≤x ≤400),-x 2+834x -143 600(400<x <500).(2)由(1)知,当0≤x ≤400时, Q ′(x )=-31 000x 2+125x -210.令Q ′(x )=0,解得x =100或x =700(舍去). 易知当x ∈[0,100)时,Q ′(x )<0; 当x ∈(100,400]时,Q ′(x )>0. 所以Q (x )在区间[0,100)上单调递减, 在区间(100,400]上单调递增.因为Q (0)=-14 000,Q (400)=30 000,所以Q (x )在x =400时取到最大值,且最大值为30 000. 当400<x <500时,Q (x )=-x 2+834x -143 600. 当x =-8342×(-1)=417时,Q (x )取得最大值,最大值为Q (x )max =-4172+834×417-143 600=30 289.综上所述,若要使得日销售利润最大,则该陶瓷厂每天应生产417件产品,其最大利润为30 289元.。
2019版一轮创新思维语文(人教版)练习:板块三 专题二 辨析并修改病句 Word版含解析
2019版一轮创新思维语文(人教版)练习:板块三专题二辨析并修改病句 Word版含解析规范练(一)1.下列各句中,没有语病的一项是()A.今天外国小朋友远道而来参加联谊活动,同学们都热情地在学校里与他们交流,带着他们领略中国传统文化的魅力。
B.随着互联网的高速发展,网络募捐成为慈善领域的一种创新和尝试,但其存在的漏洞也易被不法分子利用。
C.今后四年,北京市将重点培养新型职业农民,通过职业培训掌握现代农业技术,满足都市现代农业发展的需要。
D.目前半导体、无线通信设备和计算机仍然是中国出口韩国的主要产品,而食品和其他消费品在韩国正迅速扩大。
解析:A 项语序不当,“热情地”应移至“交流”之前。
C项中途易辙,“通过职业培训掌握现代农业技术”的主语是农民。
D 项搭配做状语,把原先的主语淹没了,导致整句话缺少主语。
C项,“原因”和“是由于”语义重复。
可以去掉其中一个。
D项,“一部”放在“解放后我国最早出版的”后面。
答案:B3.下列各句中,没有语病的一句是() A.由于特朗普此前的一系列政策引发巨大争议和政治动荡,把这次演讲看得很重,认为这是美国新总统集中阐述施政纲领、缓解国会种种顾虑的一次难得机会。
B.中国网络直播行业得到迅猛发展,在经历了近一年的行业爆发式增长之后,随着互联网巨头纷纷加入,行业监管趋严,我国的网络直播行业进入平稳增长。
C.在马云看来,浙商是当今中国最有影响力的商帮。
制定浙商的规矩、树立浙商的形象,能帮助浙江的民营企业家走好经济发展的长远道路,适应现代商业的规则。
D.《Lion》这部影片反映印度走失儿童现象,表现出人道主义精神,影片将落脚点放在普世化的亲情描述上,深刻的内涵使其成为一部优秀的叙事片。
解析:A项主语残缺,需在“把这次演讲看得很重”前添加主语“其支持者”;B项搭配不当,应为“进入平稳增长期”或“开始平稳增长”;C项语序不当,将“适应现代商业的规则”提到“走好经济发展的长远道路”前,以对应前文中“制定浙商的规矩、树立浙商的形象”的语序。
【配套K12】2019版一轮创新思维语文(人教版)练习:板块三 专题三 语言表达得体
规范练1.下列交际用语使用不得体的一项是()A.先生说得有道理,领教领教!B.拙作奉上,甚感惶恐,望哂笑之余,不吝赐教。
C.非常感谢贵校师生对我的热情款待。
D.认真阅读完你的文稿,对其中不妥当的几处,我斗胆加以斧正。
解析:“斧正”为敬辞,表示请别人修改文章,这里是交际用语使用不当。
答案:D2.下列句中表达不得体的一项是()A.给朋友写信,末尾用了“夏安”。
B.学生给一位刚刚病愈后的老师写的信,最后的致敬语是:敬祝痊安。
C.有位海外游子给其祖父写的信,落款是:××顿首。
D.有位长辈给侄儿写信说:“此事望你钧裁。
”解析:D项“钧裁”是对上级或尊长的敬辞。
答案:D3.下面表达得体的一项是()A.当朋友向你请教问题时,你说:“有何见教?请说吧。
”B.当朋友邀请你看球赛时,你说:“都快中考了,没空!”C.当老师到你家家访时,你说:“您是无事不登三宝殿啊!”D.当你骑车碰了一下别人的车时,你说:“对不起,没碰坏哪里吧?”解析:A项“见教”表示对自己的教导,不符合“向你请教问题”的语境;B项“没空”,太生硬;C项“无事不登三宝殿”有讽刺意味。
答案:D4.选出下列语言得体的一项()A.多年不见的老乡捎来了家乡的土产,我推辞不了,最后只好笑纳了。
B.尽管只是绵薄之力,但他费了很大的劲,我们应该感谢。
C.我因临时有急事要办,不能光临贵校座谈会,深表歉意。
D.这种陈词滥调的报告恐怕是没有人愿意恭听的。
解析:A项“笑纳”是敬称;B项“绵薄之力”是谦称;C项“光临”是敬称,都不得体。
答案:D5.下列各句中表达得体的一句是()A.你赠送的这张照片十分珍贵,我一定好好惠存。
B.他的设计方案我看过了,其中不妥之处我已斧正。
C.吴阶平、杨乐、何祚庥等专家纷纷颔首允诺,忝列其间。
D.令郎不愧是丹青世家子弟,他画的马栩栩如生。
解析:A项“惠存”,敬辞,请保存(多用于送人相片、书籍等纪念品时所题的上款);B项“斧正”敬辞,用于请人改文章;C项,“忝”是谦辞,表示辱没他人,自己有愧。
人教A版2019高考文科数学创新思维练习(58份含答案)【DOC范文整理】
人教A版2019高考文科数学创新思维练习(58份含答案)课时规范练A组基础对点练.直线y=bax+3与双曲线x2a2-y2b2=1的交点个数是A.1B.2c.1或2D.0解析:因为直线y=bax+3与双曲线的渐近线y=bax 平行,所以它与双曲线只有1个交点.答案:A.抛物线y2=4x的焦点为F,准线为l,经过F且斜率为3的直线与抛物线在x轴上方的部分相交于点A,A⊥l,垂足为,则△AF的面积是A.4B.33c.43D.8解析:∵y2=4x,∴F,l:x=-1,过焦点F且斜率为3的直线l1:y=3,与y2=4x联立,解得x=3或x=13,故A,∴A=4,∴S△AF=12×4×23=43.故选c.答案:c.已知直线l:y=2x+3被椭圆c:x2a2+y2b2=1截得的弦长为7,则下列直线中被椭圆c截得的弦长一定为7的有①y=2x-3;②y=2x+1;③y=-2x-3;④y=-2x+3.A.1条B.2条c.3条D.4条解析:直线y=2x-3与直线l关于原点对称,直线y =-2x-3与直线l关于x轴对称,直线y=-2x+3与直线l关于y轴对称,故有3条直线被椭圆c截得的弦长一定为7.答案:c.过点P作直线l与圆o:x2+y2=1交于A、B两点,o为坐标原点,设∠AoB=θ,且θ∈0,π2,当△AoB的面积为34时,直线l的斜率为A.33B.±33c.3D.±3解析:∵△AoB的面积为34,∴12×1×1×sinθ=34,∴sinθ=32.∵θ∈0,π2,∴θ=π3,∴圆心到直线l的距离为32.设直线l的方程为y=,即x-y+3=0,∴32=|3|1+2,∴=±33.答案:B.已知过定点的直线与抛物线x2=y相交于不同的A,B 两点,则=________.解析:设过定点的直线的方程为y=,代入抛物线方程x2=y得x2-x+=0,故x1+x2=,x1x2=,因此=x1x2-+1=1.答案:1.已知双曲线x2a2-y2b2=1的焦距为2c,右顶点为A,抛物线x2=2py的焦点为F.若双曲线截抛物线的准线所得线段长为2c,且|FA|=c,则双曲线的渐近线方程为______________.解析:抛物线x2=2py的准线方程为y=-p2,与双曲线的方程联立得x2=a2,根据已知得a2=c2①.由|AF|=c,得p24+a2=c2②.由①②可得a2=b2,即a=b,所以所求双曲线的渐近线方程是y=±x.答案:y=±x.过双曲线x2-y22=1的右焦点作直线l交双曲线于A、B两点,若使得|AB|=λ的直线l恰有3条,则λ=________.解析:∵使得|AB|=λ的直线l恰有3条.∴根据对称性,其中有一条直线与实轴垂直.此时A,B的横坐标为3,代入双曲线方程,可得y=±2,故|AB|=4.∵双曲线的两个顶点之间的距离是2,小于4,∴过双曲线的焦点一定有两条直线使得交点之间的距离等于4,综上可知|AB|=4时,有三条直线满足题意.∴λ=4.答案:4.设椭圆E的方程为x2a2+y2b2=1,点o为坐标原点,点A的坐标为,点B的坐标为,点在线段AB上,满足|B|=2|A|,直线o的斜率为510.求E的离心率e;设点c的坐标为,N为线段Ac的中点,点N关于直线AB的对称点的纵坐标为72,求E的方程.解析:由题设条件知,点的坐标为23a,13b,又o=510,从而b2a=510,进而得a=5b,c=a2-b2=2b,故e=ca=255.由题设条件和的计算结果可得,直线AB的方程为x5b +yb=1,点N的坐标为52b,-12b.设点N关于直线AB的对称点S的坐标为x1,72,则线段NS的中点T的坐标为54b+x12,-14b+74.又点T在直线AB上,且NS·AB=-1,从而有5b4+x125b+-14b+74b=1,72+12bx1-52b =5,解得b=3.所以a=35,故椭圆E的方程为x245+y29=1.已知中心在坐标原点,焦点在x轴上的椭圆过点P,且它的离心率e=12.求椭圆的标准方程;与圆2+y2=1相切的直线l:y=x+t交椭圆于,N两点,若椭圆上一点c满足o→+oN→=λoc→,求实数λ的取值范围.解析:设椭圆的标准方程为x2a2+y2b2=1,由已知得:4a2+3b2=1,ca=12,c2=a2-b2,解得a2=8b2=6,所以椭圆的标准方程为x28+y26=1.因为直线l:y=x+t与圆2+y2=1相切,所以|t+|1+2=1⇒2=1-t2t,把y=x+t代入x28+y26=1并整理得:x2+8tx+=0,设,N,则有x1+x2=-8t3+42,y1+y2=x1+t+x2+t=+2t=6t3+42,因为λoc→=,所以c-8t3+42λ,6t3+42λ,又因为点c在椭圆上,所以,2t23+422λ2+6t23+422λ2=1⇒λ2=2t23+42=21t22+1t2+1,因为t2>0,所以1t22+1t2+1>1,所以02,又y202,所以20,∴b>-14.设,N,则x1+x2=-1,y1+y22=-x1+x22+b=12+b,由-12,12+b在直线y=x+3上,即12+b=-12+3,解得b=2,联立得y=-x+2,y=x2,解得x1=-2,y1=4,x2=1,y2=1.答案:,.过抛物线y2=4x的焦点F的直线交该抛物线于A,B 两点.若|AF|=3,则|BF|=________.解析:抛物线y2=4x的准线为x=-1,焦点为F,设A,B.由抛物线的定义可知|AF|=x1+1=3,所以x1=2,所以y1=±22,由抛物线关于x轴对称,假设A,由A,F,B三点共线可知直线AB的方程为y-0=22,代入抛物线方程消去y得2x2-5x+2=0,求得x=2或12,所以x2=12,故|BF|=32.答案:32.定义:在平面内,点P到曲线Γ上的点的距离的最小值称为点P到曲线Γ的距离.在平面直角坐标系xoy中,已知圆:2+y2=12及点A,动点P到圆的距离与到点A的距离相等,记P点的轨迹为曲线.求曲线的方程;过原点的直线l与曲线交于不同的两点c,D,点E在曲线上,且cE⊥cD,直线DE与x轴交于点F,设直线DE、cF 的斜率分别为1、2,求12.解析:由题意知:点P在圆内且不为圆心,易知|PA|+|P|=23>22=|A|,所以P点的轨迹为以A、为焦点的椭圆,设椭圆方程为x2a2+y2b2=1,则2a=23,2c=22⇒a=3,c=2.所以b2=1,故曲线的方程为x23+y2=1.设c,E,则D,则直线cD的斜率为cD=y1x1,又cE⊥cD,所以直线cE的斜率是cE=-x1y1,记-x1y1=,设直线cE的方程为y=x+,由题意知≠0,≠0,由y=x+,x23+y2=1得x2+6x+32-3=0,∴x1+x2=-61+32,∴y1+y2=+2=21+32,由题意知x1≠x2,∴1=DE=y2+y1x2+x1=-13=y13x1,∴直线DE的方程为y+y1=y13x1,令y=0,得x=2x1,即F.可得2=-y1x1.∴12=-13..已知点A,B是抛物线y2=4x上相异两点,且满足x1+x2=2.若AB的中垂线经过点P,求直线AB的方程;若AB的中垂线交x轴于点,求△AB的面积的最大值及此时直线AB的方程.解析:当AB垂直于x轴时,显然不符合题意,所以可设直线AB的方程为y=x+b,代入方程y2=4x,得:2x2+x+b2=0,∴x1+x2=4-2b2=2,得b=2-,∴直线AB的方程为y=+2,∵AB中点的横坐标为1,∴AB中点的坐标为1,2,∴AB的中垂线方程为y=-1+2=-1x+3.∵AB的中垂线经过点P,故3=2,得=32,∴直线AB的方程为y=32x-16.由可知AB的中垂线方程为y=-1x+3,∴点的坐标为,∵直线AB的方程为2x-y+2-2=0,∴到直线AB的距离d=|32+2-2|4+2=22+1||,由2x-y+2-2=0,y2=4x得24y2-y+2-2=0,y1+y2=4,y1·y2=8-422,|AB|=1+12|y1-y2|=41+22-12.∴S△AB=41+121-12,设1-12=t,则0<t<1,S=4t=-4t3+8t,S′=-12t2+8,由S′=0,得t=63,即=±3时,Sax=1669,此时直线AB的方程为3x±3y-1=0.。
[配套K12]2019高考英语一轮基础自练题 Unit 3 Inventors and inventions(含解析)新人教版选修8
Unit 3 Inventors and inventions李仕才***阅读理解。
Can exercise during childhood protect you against memory loss many decades later? Exercise early in life seems to have lifelong benefits for the brain,in rats at least.“This is an animal study,but it shows that physical activity at a young age is very important—not just for physical development,but for the whole lifelong track of cognitive(认知的)development during ageing,”says Martin Wojtowicz of the University of Toronto,Canada. “In humans,it may delay the appearance of Alzheimer's disease(阿尔茨海默病),possibly to the point of preventing it.”Wojtowicz's team divided 80 young male rats into two equal groups,and placed running wheels in the cages of one group for a period of six weeks.Around four months later—when the rats had reached middle age—the team taught all the rats to connect an electric shock with being in a specific box.When placed in the box,they froze with fear.Two weeks later,the team tested the rats in three situations:exactly the same box in the same room,the same box with the room arranged differently,and a completely different box in a different room.The rats without access to a running wheel when they were young now froze the same percentage of times in each of these situations,suggesting they couldn't remember which one was dangerous.But those that had been able to run in their youth froze 40 to 50 percent less in both changed box settings.“The results suggest the amount of physical activity when we're young,at least for rats,has influence on the brain and cognitive health—in the form of better memories—when we're older,” says Arthur Kramer of Northeastern University in Boston,who has found that,in humans,exercise promotes the growth of new brain cells.1.The study shows that ________.A.physical activity is important for physical healthB.using the running wheels is of benefit to the rats' growthC.physical activity can prevent humans' Alzheimer's diseaseD.the more exercise a rat has when young,the better memory it will possess when older2.How are Paragraph 3 and 4 mainly developed?A.By analyzing causes.B.By giving an example.C.By describing the process.D.By showing differences.3.What does the underlined word “it” in Paragraph 2 refer to?A.Exercise. B.Development.C.Benefit. D.Study.4.What is the author's attitude towards the animal study?A.Negative. B.Objective.C.Critical. D.Doubtful.【解题导语】本文为说明文,介绍了一项科学研究,从而得出早期锻炼对大脑终身有好处的结论。
教育最新K122019版一轮创新思维文数(人教版A版)练习:第二章 第三节 函数的奇偶性与周期性 Word版含解析
课时规范练 A 组 基础对点练1.下列函数为奇函数的是( ) A .y =x B .y =|sin x | C .y =cos xD .y =e x -e -x解析:因为函数y =x 的定义域为[0,+∞),不关于原点对称,所以函数y =x 为非奇非偶函数,排除A ;因为y =|sin x |为偶函数,所以排除B ;因为y =cos x 为偶函数,所以排除C ;因为y =f (x )=e x -e -x ,f (-x )=e -x -e x =-(e x -e -x )=-f (x ),所以函数y =e x -e -x 为奇函数,故选D. 答案:D2.下列函数中为偶函数的是( ) A .y =x 2sin x B .y =x 2cos x C .y =|ln x |D .y =2-x解析:A 选项,记f (x )=x 2sin x ,定义域为R ,f (-x )=(-x )2sin(-x )=-x 2sin x =-f (x ),故f (x )为奇函数;B 选项,记f (x )=x 2cos x ,定义域为R ,f (-x )=(-x )2cos(-x )=x 2cos x =f (x ),故f (x )为偶函数;C 选项,函数y =|ln x |的定义域为(0,+∞),不关于原点对称,故为非奇非偶函数;D 选项,记f (x )=2-x ,定义域为R ,f (-x )=2-(-x )=2x =1f (x ),故f (x )为非奇非偶函数,选B. 答案:B3.下列函数中,既不是奇函数,也不是偶函数的是( ) A .y =1+x 2 B .y =x +1xC .y =2x +12xD .y =x +e x解析:选项A 中的函数是偶函数;选项B 中的函数是奇函数;选项C 中的函数是偶函数;只有选项D 中的函数既不是奇函数也不是偶函数. 答案:D4.下列函数中,既是偶函数又存在零点的是( ) A .y =ln x B .y =x 2+1 C .y =sin xD .y =cos x解析:A 项中的函数是非奇非偶函数;B 项中的函数是偶函数但不存在零点;C 项中的函数是奇函数;D 项中的函数既是偶函数又存在零点. 答案:D5.定义域为R 的四个函数y =x 3,y =2x ,y =x 2+1,y =2sin x 中,奇函数的个数是( ) A .4 B .3 C .2D .1解析:由奇函数的概念可知,y =x 3,y =2sin x 是奇函数. 答案:C6.下列函数为偶函数的是( ) A .f (x )=x -1 B .f (x )=x 2+x C .f (x )=2x -2-xD .f (x )=4x +4-x答案:D7.设f (x )=x +sin x (x ∈R),则下列说法错误的是( ) A .f (x )是奇函数 B .f (x )在R 上单调递增 C .f (x )的值域为RD .f (x )是周期函数解析:因为f (-x )=-x +sin(-x )=-(x +sin x )=-f (x ),所以f (x )为奇函数,故A 正确;因为f ′(x )=1+cos x ≥0,所以函数f (x )在R 上单调递增,故B 正确;因为f (x )在R 上单调递增,所以f (x )的值域为R ,故C 正确;f (x )不是周期函数,故选D. 答案:D8.下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是( ) A .y =1xB .y =|x |-1C .y =lg xD .y =⎝⎛⎭⎫12ln|x |解析:A 项,y =1x 是奇函数,且在(0,+∞)上单调递减,故A 错误;易知B 正确;C 项,y=lg x 是非奇非偶函数,故C 错误;D 项,y =⎝⎛⎭⎫12ln|x |是递减的. 答案:B9.f (x )是R 上的奇函数,当x ≥0时,f (x )=x 3+ln(1+x ),则当x <0时,f (x )=( ) A .-x 3-ln(1-x ) B .x 3+ln(1-x ) C .x 3-ln(1-x )D .-x 3+ln(1-x )解析:当x <0时,-x >0,f (-x )=(-x )3+ln(1-x ),∵f (x )是R 上的奇函数,∴当x <0时,f (x )=-f (-x )=-[(-x )3+ln(1-x )]=x 3-ln(1-x ). 答案:C10.已知定义在R 上的函数f (x )满足:y =f (x -1)的图象关于点(1,0)对称,且当x ≥0时,恒有f (x +2)=f (x ),当x ∈[0,2)时,f (x )=e x -1,则(2 018)+f (-2 017)=( ) A .1-e B .e -1 C .-1-eD .e +1解析:∵y =f (x -1)的图象关于点(1,0)对称,∴y =f (x )的图象关于原点对称,∴f (-x )=-f (x ),又当x ≥0时,f (x +2)=f (x ),∴f (2 018)+f (-2 017)=f (0)-f (1)=0-(e -1)=1-e ,故选A. 答案:A11.x 为实数,[x ]表示不超过x 的最大整数,则函数f (x )=x -[x ]在R 上为( ) A .奇函数 B .偶函数 C .增函数D .周期函数解析:函数f (x )=x -[x ]在R 上的图象如下图:选D. 答案:D12.已知f (x )是定义在R 上的偶函数,且满足f (x +4)=f (x ),当x ∈[-2,0]时,f (x )=-2x ,则f (1)+f (4)等于( ) A.32 B .-32C .-1D .1解析:由f (x +4)=f (x )知f (x )是周期为4的周期函数,又f (x )是定义在R 上的偶函数,故f (4)=f (0)=-1,f (1)=f (-1),又-1∈[-2,0],所以f (-1)=-2-1=-12,所以f (1)=-12,f (1)+f (4)=-32,选B.答案:B13.函数f (x )=(x +1)(x +a )x 3为奇函数,则a =________.解析:由题意知,g (x )=(x +1)(x +a )为偶函数,∴a =-1. 答案:-114.设函数f (x )=(x +1)2+sin xx 2+1的最大值为M ,最小值为m ,则M +m =________.解析:f (x )=x 2+1+2x +sin x x 2+1=1+2x +sin x x 2+1,令g (x )=2x +sin xx 2+1,则g (x )为奇函数,有g (x )max+g (x )min =0,故M +m =2. 答案:215.已知函数f (x )是周期为2的奇函数,当x ∈(0,1]时,f (x )=lg(x +1),则f ⎝⎛⎭⎫2 0165+lg 18=__________.解析:由函数f (x )是周期为2的奇函数得f ⎝⎛⎭⎫2 0165=f ⎝⎛⎭⎫65=f ⎝⎛⎭⎫-45=-f ⎝⎛⎭⎫45=-lg 95=lg 59, 故f ⎝⎛⎭⎫2 0165+lg 18=lg 59+lg 18=lg 10=1. 答案:116.已知定义在R 上的偶函数f (x )在[0,+∞)上单调递增,且f (1)=0,则不等式f (x -2)≥0的解集是__________.解析:由已知可得x -2≥1或x -2≤-1,解得x ≥3或x ≤1,∴所求解集是(-∞,1]∪[3,+∞).答案:(-∞,1]∪[3,+∞)B 组 能力提升练1.下列函数为奇函数的是( ) A .y =x 3+3x 2B .y =e x +e -x2C .y =x sin xD .y =log 23-x3+x解析:依题意,对于选项A ,注意到当x =-1时,y =2;当x =1时,y =4,因此函数y =x 3+3x 2不是奇函数.对于选项B ,注意到当x =0时,y =1≠0,因此函数y =e x +e-x 2不是奇函数.对于选项C ,注意到当x =-π2时,y =π2;当x =π2时,y =π2,因此函数y =x sin x 不是奇函数.对于选项D ,由3-x 3+x >0得-3<x <3,即函数y =log 23-x3+x的定义域是(-3,3),该数集是关于原点对称的集合,且log 23-(-x )3+(-x )+log 23-x 3+x=log 21=0,即log 23-(-x )3+(-x )=-log 23-x 3+x ,因此函数y =log 23-x3+x 是奇函数.综上所述,选D.答案:D2.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=( ) A .2 B .-2 C .-98D .98解析:因为f (x +4)=f (x ),所以函数f (x )的周期T =4,又f (x )在R 上是奇函数,所以f (7)=f (-1)=-f (1)=-2. 答案:B3.已知函数f (x )=sin(2x +φ)满足f (x )≤f (a )对x ∈R 恒成立,则函数( ) A .f (x -a )一定为奇函数 B .f (x -a )一定为偶函数 C .f (x +a )一定为奇函数 D .f (x +a )一定为偶函数解析:由条件可知f (a )=1,即x =a 是f (x )图象的一条对称轴.又y =f (x +a )的图象是由y =f (x )的图象向左平移a 个单位得到的,所以y =f (x +a )的图象关于x =0对称, 即y =f (x +a )为偶函数.故选D. 答案:D4.奇函数f (x )的定义域为R.若f (x +2)为偶函数,且f (1)=1,则f (8)+f (9)=( ) A .-2 B .-1 C .0D .1解析:由f (x +2)是偶函数可得f (-x +2)=f (x +2),又由f (x )是奇函数得f (-x +2)=-f (x -2),所以f (x +2)=-f (x -2),f (x +4)=-f (x ),f (x +8)=f (x ),故f (x )是以8为周期的周期函数,所以f (9)=f (8+1)=f (1)=1,又f (x )是定义在R 上的奇函数,所以f (8)=f (0)=0,∴f (8)+f (9)=1. 答案:D5.已知函数f (x )=a sin x +b 3x +4,若f (lg 3)=3,则f ⎝⎛⎭⎫lg 13=( ) A.13 B .-13C .5D .8解析:由f (lg 3)=a sin(lg 3)+b 3lg 3+4=3得a sin(lg 3)+b 3lg 3=-1,而f ⎝⎛⎭⎫lg 13=f (-lg 3)=-a sin(lg 3)-b 3lg 3+4=-[a sin(lg 3)+b 3lg 3]+4=1+4=5.故选C. 答案:C6.若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R ,有f (x 1+x 2)=f (x 1)+f (x 2)+1,则下列说法一定正确的是( ) A .f (x )-1为奇函数 B .f (x )-1为偶函数 C .f (x )+1为奇函数D .f (x )+1为偶函数解析:∵对任意x 1,x 2∈R 有f (x 1+x 2)=f (x 1)+f (x 2)+1,∴令x 1=x 2=0,得f (0)=-1.令x 1=x ,x 2=-x ,得f (0)=f (x )+f (-x )+1.∴f (x )+1=-f (-x )-1=-[f (-x )+1],∴f (x )+1为奇函数.故选C. 答案:C7.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f ⎝⎛⎭⎫13的x 的取值范围是( ) A.⎝⎛⎭⎫13,23 B.⎣⎡⎭⎫13,23 C.⎝⎛⎭⎫12,23D.⎣⎡⎭⎫12,23解析:法一:偶函数满足f (x )=f (|x |),根据这个结论, 有f (2x -1)<f ⎝⎛⎭⎫13⇔f (|2x -1|)<f ⎝⎛⎭⎫13, 进而转化为不等式|2x -1|<13,解这个不等式即得x 的取值范围是⎝⎛⎭⎫13,23.故选A.法二:设2x -1=t ,若f (t )在[0,+∞)上单调递增,则f (x )在(-∞,0)上单调递减,如图, ∴f (t )<f ⎝⎛⎭⎫13,有-13<t <13,即-13<2x -1<13, ∴13<x <23,故选A. 答案:A8.已知定义在R 上的奇函数满足f (x +4)=-f (x ),且在区间[0,2]上是增函数,则( ) A .f (-25)<f (11)<f (80) B .f (80)<f (11)<f (-25) C .f (11)<f (80)<f (-25) D .f (-25)<f (80)<f (11) 解析:∵f (x +4)=-f (x ), ∴f (x +8)=-f (x +4), ∴f (x +8)=f (x ), ∴f (x )的周期为8,∴f (-25)=f (-1),f (80)=f (0),f (11)=f (3)=f (-1+4)=-f (-1)=f (1), 又∵奇函数f (x )在区间[0,2]上是增函数, ∴f (x )在区间[-2,2]上是增函数, ∴f (-25)<f (80)<f (11),故选D. 答案:D9.设奇函数f (x )在(0,+∞)上是增函数,且f (1)=0,则不等式x [f (x )-f (-x )]<0的解集为( ) A .{x |-1<x <0,或x >1} B .{x |x <-1,或0<x <1} C .{x |x <-1,或x >1} D .{x |-1<x <0,或0<x <1}解析:∵奇函数f (x )在(0,+∞)上是增函数,f (-x )=-f (x ),x [f (x )-f (-x )]<0,∴xf (x )<0,又f (1)=0,∴f(-1)=0,从而有函数f(x)的图象如图所示:则有不等式x[f(x)-f(-x)]<0的解集为{x|-1<x<0或0<x<1},选D.答案:D10.定义在R上的函数f(x)满足f(x+6)=f(x),当-3≤x<-1时,f(x)=-(x+2)2;当-1≤x <3时,f(x)=x.则f(1)+f(2)+f(3)+…+f(2 017)等于()A.336 B.337C.1 678 D.2 018解析:∵f(x+6)=f(x),∴T=6,当-3≤x<-1时,f(x)=-(x+2)2,当-1≤x<3时,f(x)=x.∴f(1)=1,f(2)=2,f(3)=f(-3)=-1,f(4)=f(-2)=0,f(5)=f(-1)=-1,f(6)=f(0)=0,∴f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=1,由周期可得f(1)+f(2)+…+f(6)=f(7)+f(8)+…+f(12)=…=f(2 011)+f(2 012)+…+f(2 016)=1,而f(2 017)=f(6×336+1)=f(1)=1,∴f(1)+f(2)+…+f(2 017)=336×1+1=337.故选B.答案:B11.对任意的实数x都有f(x+2)-f(x)=2f(1),若y=f(x-1)的图象关于x=1对称,且f(0)=2,则f(2 015)+f(2 016)=()A.0 B.2C.3 D.4解析:y=f(x-1)的图象关于x=1对称,则函数y=f(x)的图象关于x=0对称,即函数f(x)是偶函数,令x=-1,则f(-1+2)-f(-1)=2f(1),即f(1)-f(1)=2f(1)=0,即f(1)=0,则f(x+2)-f(x)=2f(1)=0,即f (x +2)=f (x ),则函数的周期是2,又f (0)=2,则f (2 015)+f (2 016)=f (1)+f (0)=0+2=2.故选B. 答案:B12.(2017·潍坊模拟)设函数y =f (x )(x ∈R)为偶函数,且∀x ∈R ,满足f ⎝⎛⎭⎫x -32=f ⎝⎛⎭⎫x +12,当x ∈[2,3]时,f (x )=x ,则当x ∈[-2,0]时,f (x )=( ) A .|x +4| B .|2-x | C .2+|x +1|D .3-|x +1|解析:∵∀x ∈R ,满足f ⎝⎛⎭⎫x -32=f ⎝⎛⎭⎫x +12, ∴∀x ∈R ,满足f ⎝⎛⎭⎫x +32-32=f ⎝⎛⎭⎫x +32+12, 即f (x )=f (x +2),若x ∈[0,1],则x +2∈[2,3], f (x )=f (x +2)=x +2, 若x ∈[-1,0],则-x ∈[0,1], ∵函数y =f (x )(x ∈R)为偶函数, ∴f (-x )=-x +2=f (x ), 即f (x )=-x +2,x ∈[-1,0]; 若x ∈[-2,-1],则x +2∈[0,1], 则f (x )=f (x +2)=x +2+2=x +4, x ∈[-2,-1].综上,f (x )=⎩⎪⎨⎪⎧x +4,-2≤x <-1,-x +2,-1≤x ≤0,故选D.答案:D13.(2018·保定调研)已知函数f (x )为R 上的奇函数,当x ≥0时,f (x )=x (x +1),若f (a )=-2,则实数a =________.解析:x ≥0时,f (x )=x (x +1)=⎝⎛⎭⎫x +122-14的最小值为0,所以f (a )=-2时,a <0,因为f (x )为R 上的奇函数,当x <0时,-x >0,f (-x )=-x (-x +1)=x 2-x =-f (x ),所以x <0时,f (x )=-x 2+x ,则f (a )=-a 2+a =-2,所以a =-1. 答案:-114.偶函数y =f (x )的图象关于直线x =2对称,f (3)=3,则f (-1)=________.解析:因为f (x )的图象关于直线x =2对称,所以f (x )=f (4-x ),f (-x )=f (4+x ),又f (-x )=f (x ),所以f (x )=f (4+x ),则f (-1)=f (4-1)=f (3)=3. 答案:315.函数f (x )=e x +3x (x ∈R)可表示为奇函数h (x )与偶函数g (x )的和,则g (0)=________. 解析:由题意可知h (x )+g (x )=e x +3x ①,用-x 代替x 得h (-x )+g (-x )=e -x -3x ,因为h (x )为奇函数,g (x )为偶函数,所以-h (x )+g (x )=e -x -3x ②. 由(①+②)÷2得g (x )=e x +e -x 2,所以g (0)=e 0+e 02=1.答案:116.设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0,⎪⎪⎪⎪25-x ,0≤x <1,其中a ∈R.若f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫92,则f (5a )的值是________. 解析:由题意可得f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫-12=-12+a ,f ⎝⎛⎭⎫92=f ⎝⎛⎭⎫12=⎪⎪⎪⎪25-12=110,则-12+a =110,a =35,故f (5a )=f (3)=f (-1)=-1+35=-25.答案:-25。
【配套K12】2019版一轮创新思维文数(人教版A版)练习:第二章 第十一节 第一课时 函数的导数与
课时规范练 A 组 基础对点练1.函数f (x )的导函数f ′(x )的图象是如图所示的一条直线l ,l 与x 轴的交点坐标为(1,0),则f (0)与f (3)的大小关系为( ) A .f (0)<f (3) B .f (0)>f (3) C .f (0)=f (3) D .无法确定解析:由题意知f (x )的图象是以x =1为对称轴,且开口向下的抛物线,所以f (0)=f (2)>f (3).选B. 答案:B2.已知函数y =f (x )的图象是下列四个图象之一,且其导函数y =f ′(x )的图象如图所示,则该函数的图象是( )解析:在(-1,0)上f ′(x )单调递增,所以f (x )图象的切线斜率呈递增趋势;在(0,1)上f ′(x )单调递减,所以f (x )图象的切线斜率呈递减趋势.故选B. 答案:B3.若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( ) A .(-∞,-2] B .(-∞,-1] C .[2,+∞)D .[1,+∞)解析:依题意得f ′(x )=k -1x ≥0在(1,+∞)上恒成立,即k ≥1x 在(1,+∞)上恒成立,∵x >1,∴0<1x <1,∴k ≥1,故选D.答案:D4.(2018·辽宁大连高三双基测试)已知函数f (x )=e x -2x -1(其中e 为自然对数的底数),则y =f (x )的图象大致为( )解析:依题意得f ′(x )=e x -2.当x <ln 2时,f ′(x )<0,f (x )是减函数,f (x )>f (ln 2)=1-2ln 2;当x >ln 2时,f ′(x )>0,f (x )是增函数,因此对照各选项知选C. 答案:C5.已知函数f (x )=e x -(x +1)2(e 为2.718 28…),则f (x )的大致图象是( )解析:对f (x )=e x -(x +1)2求导得f ′(x )=e x -2x -2,显然x →+∞时,导函数f ′(x )>0,函数f (x )是增函数,排除A ,D ;x =-1时,f ′(-1)≠0,所以x =-1不是函数的极值点,排除B ,故选C. 答案:C6.(2018·江淮十校联考)设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a的取值范围是( ) A .1<a ≤2 B .a ≥4 C .a ≤2D .0<a ≤3解析:易知函数f (x )的定义域为(0,+∞),f ′(x )=x -9x ,由f ′(x )=x -9x<0,解得0<x <3.因为函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,所以⎩⎪⎨⎪⎧a -1>0,a +1≤3,解得1<a ≤2,选A. 答案:A7.已知f (x )=ln xx ,则( )A .f (2)>f (e)>f (3)B .f (3)>f (e)>f (2)C .f (3)>f (2)>f (e)D .f (e)>f (3)>f (2)解析:f (x )的定义域是(0,+∞),f ′(x )=1-ln xx 2,令f ′(x )=0,得x =e.∴当x ∈(0,e)时,f ′(x )>0,f (x )单调递增,当x ∈(e ,+∞)时,f ′(x )<0,f (x )单调递减,故x =e 时,f (x )max =f (e)=1e ,而f (2)=ln 22=ln 86,f (3)=ln 33=ln 96,所以f (e)>f (3)>f (2),故选D.答案:D8.(2018·四川成都模拟)f (x )是定义域为R 的函数,对任意实数x 都有f (x )=f (2-x )成立.若当x ≠1时,不等式(x -1)·f ′(x )<0成立,若a =f (0.5),b =f ⎝⎛⎭⎫43,c =f (3),则a ,b ,c 的大小关系是( ) A .b >a >c B .a >b >c C .c >b >aD .a >c >b解析:因为对任意实数x 都有f (x )=f (2-x )成立,所以函数f (x )的图象关于直线x =1对称,又因为当x ≠1时,不等式(x -1)·f ′(x )<0成立,所以函数f (x )在(1,+∞)上单调递减,所以f ⎝⎛⎭⎫43>f (0.5)=f ⎝⎛⎭⎫32>f (3),即b >a >c . 答案:A9.(2018·九江模拟)已知函数f (x )=12x 2+2ax -ln x ,若f (x )在区间⎣⎡⎦⎤13,2上是增函数,则实数a 的取值范围为________.解析:由题意知f ′(x )=x +2a -1x ≥0在⎣⎡⎦⎤13,2上恒成立,即2a ≥-x +1x 在⎣⎡⎦⎤13,2上恒成立, ∵⎝⎛⎭⎫-x +1x max =83,∴2a ≥83,即a ≥43. 答案:⎣⎡⎭⎫43,+∞10.设f ′(x )是奇函数f (x )(x ∈R)的导函数,f (-2)=0,当x >0时,xf ′(x )-f (x )>0,则使得f (x )>0成立的x 的取值范围是________. 解析:令g (x )=f (x )x ,则g ′(x )=xf ′(x )-f (x )x 2,∴当x >0时,g ′(x )>0,即g (x )在(0,+∞)上单调递增,∵f (x )为奇函数,f (-2)=0,∴f (2)=0,∴g (2)=f (2)2=0,结合奇函数f (x )的图象知,f (x )>0的解集为(-2,0)∪(2,+∞),故填(-2,0)∪(2,+∞). 答案:(-2,0)∪(2,+∞)11.(2018·荆州质检)设函数f (x )=13x 3-a2x 2+bx +c ,曲线y =f (x )在点(0,f (0))处的切线方程为y =1.(1)求b ,c 的值;(2)若a >0,求函数f (x )的单调区间. 解析:(1)f ′(x )=x 2-ax +b ,由题意得⎩⎪⎨⎪⎧ f (0)=1,f ′(0)=0,即⎩⎪⎨⎪⎧c =1,b =0.(2)由(1)得,f ′(x )=x 2-ax =x (x -a )(a >0), 当x ∈(-∞,0)时,f ′(x )>0; 当x ∈(0,a )时,f ′(x )<0; 当x ∈(a ,+∞)时,f ′(x )>0.所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞),单调递减区间为(0,a ). 12.已知函数f (x )=e x ln x -a e x (a ∈R).(1)若f (x )在点(1,f (1))处的切线与直线y =1e x +1垂直,求a 的值;(2)若f (x )在(0,+∞)上是单调函数,求实数a 的取值范围. 解析:(1)f ′(x )=e x ln x +e x ·1x -a e x =⎝⎛⎭⎫1x -a +ln x e x , f ′(1)=(1-a )e ,由(1-a )e·1e =-1,得a =2.(2)由(1)知f ′(x )=⎝⎛⎭⎫1x -a +ln x e x , 若f (x )为单调递减函数,则f ′(x )≤0在x >0时恒成立. 即1x -a +ln x ≤0在x >0时恒成立. 所以a ≥1x +ln x 在x >0时恒成立.令g (x )=1x+ln x (x >0),则g ′(x )=-1x 2+1x =x -1x2(x >0),由g ′(x )>0,得x >1; 由g ′(x )<0,得0<x <1.故g (x )在(0,1)上为单调递减函数,在(1,+∞)上为单调递增函数,此时g (x )的最小值为g (1)=1,但g (x )无最大值(且无趋近值). 故f (x )不可能是单调递减函数. 若f (x )为单调递增函数, 则f ′(x )≥0在x >0时恒成立, 即1x-a +ln x ≥0在x >0时恒成立, 所以a ≤1x +ln x 在x >0时恒成立,由上述推理可知此时a ≤1.故实数a 的取值范围是(-∞,1].B 组 能力提升练1.已知x ∈(0,2),若关于x 的不等式x e x <1k +2x -x 2恒成立,则实数k 的取值范围为( )A .[0,e +1)B .[0,2e -1)C .[0,e)D .[0,e -1)解析:依题意,知k +2x -x 2>0,即k >x 2-2x 对任意x ∈(0,2)恒成立,从而k ≥0,所以由xe x<1k +2x -x2可得k <e x x +x 2-2x .令f (x )=e x x +x 2-2x .则f ′(x )=e x(x -1)x 2+2(x -1)=(x -1)⎝⎛⎭⎫e xx 2+2. 令f ′(x )=0,得x =1,当x ∈(1,2)时,f ′(x )>0,函数f (x )在(1,2)上单调递增,当x ∈(0,1)时,f ′(x )<0,函数f (x )在(0,1)上单调递减,所以k <f (x )min =f (1)=e -1,故实数k 的取值范围是[0,e -1). 答案:D2.已知函数f (x )=ax 2+bx -ln x (a >0,b ∈R),若对任意x >0,f (x )≥f (1),则( ) A .ln a <-2b B .ln a ≤-2b C .ln a >-2bD .ln a ≥-2b解析:f ′(x )=2ax +b -1x ,由题意可知f ′(1)=0,即2a +b =1,由选项可知,只需比较ln a+2b 与0的大小,而b =1-2a ,所以只需判断ln a +2-4a 的符号.构造一个新函数g (x )=2-4x +ln x ,则g ′(x )=1x -4,令g ′(x )=0,得x =14,当x <14时,g (x )为增函数,当x>14时,g (x )为减函数,所以对任意x >0有g (x )≤g ⎝⎛⎭⎫14=1-ln 4<0,所以有g (a )=2-4a +ln a =2b +ln a <0⇒ln a <-2b ,故选A. 答案:A3.已知f (x )=x 3-6x 2+9x -abc ,a <b <c ,且f (a )=f (b )=f (c )=0.现给出如下结论:①f (0)f (1)>0;②f (0)f (1)<0;③f (0)f (3)>0;④f (0)f (3)<0. 其中正确结论的序号是( ) A .①③ B .①④ C .②③D .②④解析:∵f ′(x )=3x 2-12x +9=3(x -1)(x -3).由f ′(x )<0,得1<x <3,由f ′(x )>0,得x <1或x >3,∴f (x )在区间(1,3)上是减函数,在区间(-∞,1),(3,+∞)上是增函数. 又a <b <c ,f (a )=f (b )=f (c )=0,∴y 极大值=f (1)=4-abc >0,y 极小值=f (3)=-abc <0,∴0<abc <4. ∴a ,b ,c 均大于零,或者a <0,b <0,c >0.又x =1,x =3为函数f (x )的极值点,后一种情况不可能成立,如图. ∴f (0)<0,∴f (0)f (1)<0,f (0)f (3)>0,∴正确结论的序号是②③. 答案:C4.已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( ) A .(2,+∞) B .(-∞,-2) C .(1,+∞)D .(-∞,-1)解析:当a =0时,显然f (x )有两个零点,不符合题意. 当a ≠0时,f ′(x )=3ax 2-6x ,令f ′(x )=0,解得x 1=0,x 2=2a.当a >0时,2a >0,所以函数f (x )=a x 3-3x 2+1在(-∞,0)与⎝⎛⎭⎫2a ,+∞上为增函数,在⎝⎛⎭⎫0,2a上为减函数,因为f (x )存在唯一零点x 0,且x 0>0,则f (0)<0,即1<0,不成立. 当a <0时,2a <0,所以函数f (x )=ax 3-3x 2+1在⎝⎛⎭⎫-∞,2a 和(0,+∞)上为减函数,在⎝⎛⎭⎫2a ,0上为增函数,因为f (x )存在唯一零点x 0,且x 0>0,则f ⎝⎛⎭⎫2a >0,即a ·8a 3-3·4a 2+1>0,解得a >2或a <-2,又因为a <0,故a 的取值范围为(-∞,-2).选B. 答案:B5.已知函数f (x )=ln x -ax 2+x 有两个不同零点,则实数a 的取值范围是( ) A .(0,1) B .(-∞,1) C.⎝⎛⎭⎫-∞,1+e e 2D.⎝⎛⎭⎫0,1+e e 2解析:令g (x )=ln x ,h (x )=ax 2-x , 将问题转化为两个函数图象交点的问题.当a ≤0时,g (x )和h (x )的图象只有一个交点,不满足题意; 当a >0时,由ln x -ax 2+x =0,得a =x +ln xx2.令r (x )=x +ln xx2,则r ′(x )=⎝⎛⎭⎫1+1x ·x 2-(ln x +x )·2x x 4=1-x -2ln x x 3,当0<x <1时,r ′(x )>0,r (x )是单调增函数,当x >1时,r ′(x )<0,r (x )是单调减函数,且x +ln xx 2>0,∴0<a <1.∴a 的取值范围是(0,1).故选A. 答案:A6.已知函数f (x )=-12x 2-3x +4ln x 在(t ,t +1)上不单调,则实数t 的取值范围是________.解析:∵函数f (x )=-12x 2-3x +4ln x (x >0),∴f ′(x )=-x -3+4x,∵函数f (x )=-12x 2-3x +4ln x 在(t ,t +1)上不单调,∴f ′(x )=-x -3+4x=0在(t ,t +1)上有解,∴x 2+3x -4x=0在(t ,t +1)上有解,∴x 2+3x -4=0在(t ,t +1)上有解,由x 2+3x -4=0得x =1或x =-4(舍去), ∴1∈(t ,t +1),∴t ∈(0,1),故实数t 的取值范围是(0,1). 答案:(0,1)7.已知y =f (x )为R 上的连续可导函数,且xf ′(x )+f (x )>0,则函数g (x )=xf (x )+1(x >0)的零点个数为________.解析:因为g (x )=xf (x )+1(x >0),g ′(x )=xf ′(x )+f (x )>0,所以g (x )在(0,+∞)上单调递增,又g (0)=1,y =f (x )为R 上的连续可导函数,所以g (x )为(0,+∞)上的连续可导函数,又g (x )>g (0)=1,所以g (x )在(0,+∞)上无零点. 答案:08.已知函数g (x )满足g (x )=g ′(1)e x -1-g (0)x +12x 2,且存在实数x 0使得不等式2m -1≥g (x 0)成立,则m 的取值范围为__________.解析:g ′(x )=g ′(1)e x -1-g (0)+x ,当x =1时,g (0)=1,由g (0)=g ′(1)e 0-1,解得g ′(1)=e ,所以g (x )=e x -x +12x 2,则g ′(x )=e x -1+x ,当x <0时,g ′(x )<0,当x >0时,g ′(x )>0,所以当x =0时,函数g (x )取得最小值g (0)=1,根据题意将不等式转化为2m -1≥g (x )min =1,所以m ≥1. 答案:[1,+∞)9.已知函数f (x )=x 2-(2t +1)x +t ln x (t ∈R).(1)若t =1,求曲线y =f (x )在点(1,f (1))处的切线方程以及f (x )的极值;(2)设函数g (x )=(1-t )x ,若存在x 0∈[1,e],使得f (x 0)≥g (x 0)成立,求实数t 的最大值. 解析:(1)依题意,函数f (x )的定义域为(0,+∞),当t =1时,f (x )=x 2-3x +ln x ,f ′(x )=2x -3+1x =(2x -1)(x -1)x.由f ′(1)=0,f (1)=-2,得曲线y =f (x )在点(1,f (1))处的切线方程为y =-2. 令f ′(x )=0,解得x =12或x =1,f ′(x ),f (x )随x 的变化情况如下:由表格知,f (x )极大值=f ⎝⎛⎭⎫12=-54+ln 12,f (x )极小值=f (1)=-2. (2)由题意知,不等式f (x )≥g (x )在区间[1,e]上有解, 即x 2-2x +t (ln x -x )≥0在区间[1,e]上有解.∵当x ∈[1,e]时,ln x ≤1≤x (不同时取等号),∴ln x -x <0,∴t ≤x 2-2xx -ln x 在区间[1,e]上有解.令h (x )=x 2-2xx -ln x ,则h ′(x )=(x -1)(x +2-2ln x )(x -ln x )2. ∵x ∈[1,e],∴x +2>2≥2ln x ,∴h ′(x )≥0,h (x )单调递增,∴x ∈[1,e]时,h (x )max =h (e)=e (e -2)e -1.∴t ≤e (e -2)e -1,∴实数t 的最大值是e (e -2)e -1.10.已知函数f (x )=12x 2+(1-a )x -a ln x .(1)讨论f (x )的单调性;(2)设a <0,若对∀x 1,x 2∈(0,+∞),|f (x 1)-f (x 2)|≥4|x 1-x 2|,求a 的取值范围. 解析:(1)f (x )的定义域为(0,+∞).求导,得f ′(x )=x +1-a -a x =x 2+(1-a )x -a x =(x +1)(x -a )x.若a ≤0,则f ′(x )>0,此时f (x )在(0,+∞)上单调递增. 若a >0,则由f ′(x )=0,得x =a .当0<x <a 时, f ′(x )<0;当x >a 时,f ′(x )>0.此时f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增.(2)不妨设x 1≤x 2,而a <0,由(1)知,f (x )在(0,+∞)上单调递增,∴f (x 1)≤f (x 2).从而对∀x 1,x 2∈(0,+∞), |f (x 1)-f (x 2)|≥4|x 1-x 2|等价于 对∀x 1,x 2∈(0,+∞),4x 1-f (x 1)≥4x 2-f (x 2).①令g (x )=4x -f (x ),则g ′(x )=4-f ′(x )=4-⎝⎛⎭⎫x +1-a -a x =ax -x +3+a .①等价于g (x )在(0,+∞)上单调递减,∴g ′(x )=ax-x +3+a ≤0对∀x ∈(0,+∞)恒成立,∴a ≤x 2-3xx +1对∀x ∈(0,+∞)恒成立,∴a ≤⎝ ⎛⎭⎪⎫x 2-3x x +1min .又x 2-3x x +1=x +1+4x +1-5≥2(x +1)·4x +1-5=-1,当且仅当x +1=4x +1,即x =1时,等号成立. ∴a ≤-1.故a 的取值范围为(-∞,-1].。
【K12教育学习资料】2019版一轮创新思维文数(人教版A版)练习:第三章 第七节 正弦定理和余弦定
课时规范练 A 组 基础对点练1.在△ABC 中,若sin A a =cos Bb ,则B 的值为( )A .30°B .45°C .60°D .90°解析:由正弦定理知,sin A sin A =cos Bsin B ,∴sin B =cos B ,∴B =45°.答案:B2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a =5,c =2,cos A =23,则b =( )A. 2B. 3 C .2D .3解析:由余弦定理,得4+b 2-2×2b cos A =5,整理得3b 2-8b -3=0,解得b =3或b =-13(舍去),故选D. 答案:D3.已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c,23cos 2A +cos 2A =0,a =7,c =6,则b =( ) A .10 B .9 C .8D .5解析:化简23cos 2A +cos 2A =0,得23cos 2A +2cos 2A -1=0,解得cos A =15.由余弦定理,知a 2=b 2+c 2-2bc cos A ,代入数据,解方程,得b =5. 答案:D4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a sin A +b sin B <c sin C ,则△ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .不确定解析:根据正弦定理可得a 2+b 2<c 2.由余弦定理得cos C =a 2+b 2-c 22ab <0,故C 是钝角.即△ABC 是钝角三角形. 答案:C5.已知在△ABC 中,sin A ∶sin B ∶sin C =3∶5∶7,那么这个三角形的最大内角的大小为__________.解析:由sin A ∶sin B ∶sin C =3∶5∶7知,三角形的三边之比a ∶b ∶c =3∶5∶7,最大的角为C .由余弦定理得cos C =-12,∴C =120°.答案:120°6.在△ABC 中,A =2π3,a =3c ,则bc =________.解析:∵a =3c ,∴sin A =3sin C ,∵A =2π3,∴sin A =32,∴sin C =12,又C 必为锐角, ∴C =π6,B =π6,∴b =c .∴b c =1. 答案:17.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知△ABC 的面积为315,b -c =2,cos A =-14,则a 的值为__________.解析:在△ABC 中,由cos A =-14可得sin A =154,所以有⎩⎪⎨⎪⎧12bc ×154=315,b -c =2,a 2=b 2+c 2-2bc ×⎝⎛⎭⎫-14,解得⎩⎪⎨⎪⎧a =8,b =6,c =4.答案:88.△ABC 中,D 是BC 上的点,AD 平分∠BAC ,BD =2DC . (1)求sin B sin C;(2)若∠BAC =60°,求∠B . 解析:(1)由正弦定理得AD sin B =BD sin ∠BAD ,AD sin C =DCsin ∠CAD .因为AD 平分∠BAC ,BD =2DC , 所以sin B sin C =DC BD =12.(2)因为∠C =180°-(∠BAC +∠B ),∠BAC =60°, 所以sin C =sin(∠BAC +∠B )=32cos B +12sin B. 由(1)知2sin B =sin C ,所以tan B =33,即∠B =30°. 9.(2018·河北三市联考)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且a sin B =-b sin ⎝⎛⎭⎫A +π3. (1)求A ;(2)若△ABC 的面积S =34c 2,求sin C 的值. 解析:(1)∵a sin B =-b sin ⎝⎛⎭⎫A +π3, ∴由正弦定理得sin A sin B =-sin B ·sin ⎝⎛⎭⎫A +π3,则sin A =-sin ⎝⎛⎭⎫A +π3,即sin A =-12sin A -32cos A , 化简得tan A =-33, ∵A ∈(0,π),∴A =5π6.(2)∵A =5π6,∴sin A =12,由S =12bc sin A =14bc =34c 2,得b =3c ,∴a 2=b 2+c 2-2bc cos A =7c 2,则a =7c , 由正弦定理得sin C =c sin A a =714.B 组 能力提升练1.△ABC 中,角A ,B ,C 的对边分别是a ,b ,c .已知b =c ,a 2=2b 2(1-sin A ),则A =( ) A.3π4 B.π3 C.π4D.π6解析:由余弦定理得a 2=b 2+c 2-2bc cos A =2b 2-2b 2cos A ,所以2b 2(1-sin A )=2b 2(1-cos A ),所以sin A =cos A ,即tan A =1,又0<A <π,所以A =π4.答案:C2.已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,若cos A cos B =ba =2,则该三角形的形状是( ) A .直角三角形 B .等腰三角形 C .等边三角形D .钝角三角形解析:因为cos A cos B =b a ,由正弦定理得cos A cos B =sin B sin A ,所以sin 2A =sin 2B .由ba =2,可知a ≠b ,所以A ≠B .又A ,B ∈(0,π),所以2A =180°-2B ,即A +B =90°,所以C =90°,于是△ABC 是直角三角形.故选A. 答案:A3.在△ABC 中,若sin C sin A =3,b 2-a 2=52ac ,则cos B 的值为( )A.13 B.12 C.15D.14解析:由题意知,c =3a ,b 2-a 2=52ac =c 2-2ac cos B ,所以cos B =c 2-52ac 2ac =9a 2-152a 26a 2=14. 答案:D4.在△ABC 中,B =π4,BC 边上的高等于13BC ,则cos A =( )A.31010B.1010C .-1010D .-31010解析:设△ABC 中角A ,B ,C 的对边分别是a ,b ,c ,由题意可得13a =c sin π4=22c ,则a=322c .在△ABC 中,由余弦定理可得b 2=a 2+c 2-2ac =92c 2+c 2-3c 2=52c 2,则b =102c .由余弦定理,可得cos A =b 2+c 2-a 22bc =52c 2+c 2-92c 22×102c ×c=-1010,故选C.答案:C5.(2018·山西忻州一中联考)已知在△ABC 中,B =2A ,∠ACB 的平分线CD 把三角形分成面积比为4∶3的两部分,则cos A =________.解析:在△ADC 中,由正弦定理得ACsin ∠ADC =47AB sin ∠ACD ⇒AC 47AB =sin ∠ADC sin ∠ACD,同理,在△BCD 中,有BCsin ∠BDC =37AB sin ∠BCD ⇒BC 37AB =sin ∠BDCsin ∠BCD ,又sin ∠ADC =sin ∠BDC ,sin ∠ACD =sin ∠BCD ,所以有AC 47AB =BC 37AB ⇒AC =43BC ,由正弦定理得sin B =43sin A ,又B =2A ,所以sin B =2sin A cos A ,所以cos A =23.答案:236.已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sin C . (1)若a =b ,求cos B ;(2)设B =90°,且a =2,求△ABC 的面积. 解析:(1)由题设及正弦定理可得b 2=2ac . 又a =b ,可得b =2c ,a =2c . 由余弦定理可得cos B =a 2+c 2-b 22ac =14.(2)由(1)知b 2=2ac .因为B =90°,由勾股定理得a 2+c 2=b 2. 故a 2+c 2=2ac ,得c =a = 2. 所以△ABC 的面积为1.7.(2018·郑州模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos 2C -cos 2A =2sin ⎝⎛⎭⎫π3+C ·sin ⎝⎛⎭⎫π3-C . (1)求角A 的值;(2)若a =3且b ≥a ,求2b -c 的取值范围.解析:(1)由已知得2sin 2A -2sin 2C =2⎝⎛34cos 2C⎭⎫-14sin 2C ,化简得sin A =32,故A =π3或2π3. (2)由题知,若b ≥a ,则A =π3,又a =3,所以由正弦定理可得b sin B =c sin C =asin A=2,得b =2sin B ,c =2sin C ,故2b -c =4sin B -2sin C =4sin B -2sin ⎝⎛⎭⎫2π3-B =3sin B -3cos B =23sin ⎝⎛⎭⎫B -π6. 因为b ≥a ,所以π3≤B <2π3,π6≤B -π6<π2,所以23sin ⎝⎛⎭⎫B -π6∈[3,23).即2b -c 的取值范围为[3,23).。
2019版一轮创新思维文数(人教版A版)练习:第三章 第七节 正弦定理和余弦定理 含解析
课时规范练 A 组 基础对点练1.在△ABC 中,若sin A a =cos Bb ,则B 的值为( )A .30°B .45°C .60°D .90°解析:由正弦定理知,sin A sin A =cos Bsin B ,∴sin B =cos B ,∴B =45°.答案:B2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a =5,c =2,cos A =23,则b =( )A. 2B. 3 C .2D .3解析:由余弦定理,得4+b 2-2×2b cos A =5,整理得3b 2-8b -3=0,解得b =3或b =-13(舍去),故选D. 答案:D3.已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c,23cos 2A +cos 2A =0,a =7,c =6,则b =( ) A .10 B .9 C .8D .5解析:化简23cos 2A +cos 2A =0,得23cos 2A +2cos 2A -1=0,解得cos A =15.由余弦定理,知a 2=b 2+c 2-2bc cos A ,代入数据,解方程,得b =5. 答案:D4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a sin A +b sin B <c sin C ,则△ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .不确定解析:根据正弦定理可得a 2+b 2<c 2.由余弦定理得cos C =a 2+b 2-c 22ab <0,故C 是钝角.即△ABC 是钝角三角形. 答案:C5.已知在△ABC 中,sin A ∶sin B ∶sin C =3∶5∶7,那么这个三角形的最大内角的大小为__________.解析:由sin A ∶sin B ∶sin C =3∶5∶7知,三角形的三边之比a ∶b ∶c =3∶5∶7,最大的角为C .由余弦定理得cos C =-12,∴C =120°.答案:120°6.在△ABC 中,A =2π3,a =3c ,则bc =________.解析:∵a =3c ,∴sin A =3sin C ,∵A =2π3,∴sin A =32,∴sin C =12,又C 必为锐角, ∴C =π6,B =π6,∴b =c .∴b c =1. 答案:17.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知△ABC 的面积为315,b -c =2,cos A =-14,则a 的值为__________.解析:在△ABC 中,由cos A =-14可得sin A =154,所以有⎩⎨⎧12bc ×154=315,b -c =2,a 2=b 2+c 2-2bc ×⎝⎛⎭⎫-14,解得⎩⎪⎨⎪⎧a =8,b =6,c =4.答案:88.△ABC 中,D 是BC 上的点,AD 平分∠BAC ,BD =2DC . (1)求sin B sin C;(2)若∠BAC =60°,求∠B . 解析:(1)由正弦定理得AD sin B =BD sin ∠BAD ,AD sin C =DCsin ∠CAD . 因为AD 平分∠BAC ,BD =2DC , 所以sin B sin C =DC BD =12.(2)因为∠C =180°-(∠BAC +∠B ),∠BAC =60°, 所以sin C =sin(∠BAC +∠B )=32cos B +12sin B. 由(1)知2sin B =sin C ,所以tan B =33,即∠B =30°.9.(2018·河北三市联考)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且a sin B =-b sin ⎝⎛⎭⎫A +π3. (1)求A ;(2)若△ABC 的面积S =34c 2,求sin C 的值. 解析:(1)∵a sin B =-b sin ⎝⎛⎭⎫A +π3, ∴由正弦定理得sin A sin B =-sin B ·sin ⎝⎛⎭⎫A +π3,则sin A =-sin ⎝⎛⎭⎫A +π3,即sin A =-12sin A -32cos A , 化简得tan A =-33, ∵A ∈(0,π),∴A =5π6.(2)∵A =5π6,∴sin A =12,由S =12bc sin A =14bc =34c 2,得b =3c ,∴a 2=b 2+c 2-2bc cos A =7c 2,则a =7c , 由正弦定理得sin C =c sin A a =714.B 组 能力提升练1.△ABC 中,角A ,B ,C 的对边分别是a ,b ,c .已知b =c ,a 2=2b 2(1-sin A ),则A =( ) A.3π4 B.π3 C.π4D.π6解析:由余弦定理得a 2=b 2+c 2-2bc cos A =2b 2-2b 2cos A ,所以2b 2(1-sin A )=2b 2(1-cos A ),所以sin A =cos A ,即tan A =1,又0<A <π,所以A =π4.答案:C2.已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,若cos A cos B =ba =2,则该三角形的形状是( ) A .直角三角形 B .等腰三角形 C .等边三角形D .钝角三角形解析:因为cos A cos B =b a ,由正弦定理得cos A cos B =sin B sin A ,所以sin 2A =sin 2B .由ba =2,可知a ≠b ,所以A ≠B .又A ,B ∈(0,π),所以2A =180°-2B ,即A +B =90°,所以C =90°,于是△ABC是直角三角形.故选A. 答案:A3.在△ABC 中,若sin C sin A =3,b 2-a 2=52ac ,则cos B 的值为( )A.13 B.12 C.15D.14解析:由题意知,c =3a ,b 2-a 2=52ac =c 2-2ac cos B ,所以cos B =c 2-52ac 2ac =9a 2-152a 26a 2=14. 答案:D4.在△ABC 中,B =π4,BC 边上的高等于13BC ,则cos A =( )A.31010B.1010C .-1010D .-31010解析:设△ABC 中角A ,B ,C 的对边分别是a ,b ,c ,由题意可得13a =c sin π4=22c ,则a=322c .在△ABC 中,由余弦定理可得b 2=a 2+c 2-2ac =92c 2+c 2-3c 2=52c 2,则b =102c .由余弦定理,可得cos A =b 2+c 2-a 22bc =52c 2+c 2-92c22×102c ×c=-1010,故选C.答案:C5.(2018·山西忻州一中联考)已知在△ABC 中,B =2A ,∠ACB 的平分线CD 把三角形分成面积比为4∶3的两部分,则cos A =________.解析:在△ADC 中,由正弦定理得AC sin ∠ADC =47AB sin ∠ACD ⇒AC 47AB =sin ∠ADCsin ∠ACD,同理,在△BCD中,有BC sin ∠BDC =37AB sin ∠BCD ⇒BC 37AB =sin ∠BDCsin ∠BCD,又sin ∠ADC =sin ∠BDC ,sin ∠ACD =sin ∠BCD ,所以有AC 47AB =BC 37AB ⇒AC =43BC ,由正弦定理得sin B =43sin A ,又B =2A ,所以sin B =2sin A cos A ,所以cos A =23.答案:236.已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sin C . (1)若a =b ,求cos B ;(2)设B =90°,且a =2,求△ABC 的面积. 解析:(1)由题设及正弦定理可得b 2=2ac . 又a =b ,可得b =2c ,a =2c . 由余弦定理可得cos B =a 2+c 2-b 22ac =14.(2)由(1)知b 2=2ac .因为B =90°,由勾股定理得a 2+c 2=b 2. 故a 2+c 2=2ac ,得c =a = 2. 所以△ABC 的面积为1.7.(2018·郑州模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos 2C -cos 2A =2sin ⎝⎛⎭⎫π3+C ·sin ⎝⎛⎭⎫π3-C . (1)求角A 的值;(2)若a =3且b ≥a ,求2b -c 的取值范围. 解析:(1)由已知得2sin 2A -2sin 2C =2⎝⎛34cos 2C⎭⎫-14sin 2C ,化简得sin A =32,故A =π3或2π3. (2)由题知,若b ≥a ,则A =π3,又a =3,所以由正弦定理可得b sin B =c sin C =asin A=2,得b =2sin B ,c =2sin C ,故2b -c =4sin B -2sin C =4sin B -2sin ⎝⎛⎭⎫2π3-B =3sin B -3cos B =23sin ⎝⎛⎭⎫B -π6. 因为b ≥a ,所以π3≤B <2π3,π6≤B -π6<π2,所以23sin ⎝⎛⎭⎫B -π6∈[3,23).即2b -c 的取值范围为[3,23).。
人教版A版2019版一轮创新思维文数练习:第七章第一节简单几何体的结构、三视图和直观图
课时规范练 A 组 基础对点练1.一个几何体的三视图如图所示,其中俯视图为正三角形,则侧视图的面积为( )A .8B .4 3C .4 2D .4解析:由三视图可知,该几何体是一个正三棱柱,高为4,底面是一个边长为2的正三角形.因此,侧视图是一个长为4,宽为3的矩形,其面积S =3×4=4 3. 答案:B2.如图是一个空间几何体的三视图,其中正视图、侧视图都是由边长为4和6的矩形以及直径等于4的圆组成,俯视图是直径等于4的圆,该几何体的体积是( )A.41π3B.62π3 C.83π3D.104π3解析:由题意得,此几何体为球与圆柱的组合体,其体积V =43π×23+π×22×6=104π3.答案:D3.某空间几何体的三视图如图所示,则该几何体的表面积为( )A .12+4 2B .18+8 2C .28D .20+8 2解析:由三视图可知该几何体是底面为等腰直角三角形的直三棱柱,如图.则该几何体的表面积为S =2×12×2×2+4×2×2+22×4=20+82,故选D.答案:D4.已知某锥体的正视图和侧视图如图所示,其体积为233,则该锥体的俯视图可能是( )解析:由正视图得该锥体的高是h =22-12=3,因为该锥体的体积为233,所以该锥体的底面面积是S =23313h =23333=2,A 项的正方形的面积是2×2=4,B 项的圆的面积是π×12=π,C 项的大三角形的面积是12×2×2=2,D 项不可能是该锥体的俯视图,故选C. 答案:C5.已知四棱锥P ABCD 的三视图如图所示,则四棱锥PABCD 的四个侧面中面积最大的是( )A .3B .2 5C .6D .8解析:四棱锥如图所示,取AD 的中点N ,BC 的中点M ,连接PM ,PN ,则PN =5,PM =3,S △PAD =12×4×5=25,S △PAB =S △PDC =12×2×3=3,S △PBC=12×4×3=6. 答案:C6.某几何体的三视图如图所示,则该几何体的体积为( )A .16+8πB .8+8πC .16+16πD .8+16π解析:由三视图复原的几何体是一个长方体与半个圆柱的组合体,如图.其中长方体的长、宽、高分别是4,2,2,半个圆柱的底面半径为2,母线长为4.∴长方体的体积V 1=4×2×2=16, 半个圆柱的体积V 2=12×22×π×4=8π.∴这个几何体的体积是16+8π. 答案:A7.一个半径为2的球体经过切割之后所得几何体的三视图如图所示,则该几何体的表面积为( )A .16πB .12πC .14πD .17π解析:根据三视图可知几何体是一个球体切去四分之一,则该几何体的表面是四分之三球面和两个截面(半圆). 由题意知球的半径是2,∴该几何体的表面积S =34×4π×22+π×22=16π.答案:A8.已知一个正方体的所有顶点在一个球面上,若球的体积为9π2,则正方体的棱长为________.解析:设正方体棱长为a ,球半径为R ,则43πR 3=9π2,∴R =32,∴3a =3,∴a = 3.答案: 39.某空间几何体的三视图如图所示,则该几何体的体积为________.解析:由题意得到几何体的直观图如图,即从四棱锥P ABCD 中挖去了一个半圆锥.其体积V =13×2×2×2-12×13×π×12×2=8-π3. 答案:8-π310.某零件的正(主)视图与侧(左)视图均是如图所示的图形(实线组成半径为2 cm 的半圆,虚线是等腰三角形的两腰),俯视图是一个半径为2 cm 的圆(包括圆心),则该零件的体积是________.解析:依题意得,零件可视为从一个半球中挖去一个小圆锥所剩余的几何体,其体积为12×4π3×23-13×π×22×1=4π(cm 3). 答案:4π cm 3B 组 能力提升练1.已知圆锥的表面积为a ,且它的侧面展开图是一个半圆,则这个圆锥的底面直径是( ) A.a2 B.3πa3π C.23πa 3πD.23a3π解析:设圆锥的底面半径为r ,母线长为l ,由题意知2πr =πl ,∴l =2r ,则圆锥的表面积S 表=πr 2+12π(2r )2=a ,∴r 2=a 3π,∴2r =23πa 3π.答案:C2.一个几何体的三视图如图所示,则该几何体的体积为( )A.163 B.203 C.152D.132解析:该几何体可视为正方体截去两个三棱锥所得,如图所示,所以其体积为23-13×12×2×2×2-13×12×1×1×1=132.故选D.答案:D3.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( ) A .6 B .9 C .12D .18解析:由三视图可知该几何体是一个三棱锥,其底面是斜边为6的等腰直角三角形,高为3,则体积为13×12×6×3×3=9.答案:B4.下图是一个几何体的三视图,则该几何体任意两个顶点间距离的最大值是( )A .4B .5C .3 2D .3 3解析:作出直观图如图所示,通过计算可知AF 最长且|AF |=|BF |2+|AB |2=3 3.答案:D5.高为4的直三棱柱被削去一部分后得到一个几何体,它的直观图和三视图中的侧视图、俯视图如图所示,则该几何体的体积是原直三棱柱的体积的( ) A.34 B.14 C.12D.38解析:由侧视图、俯视图知该几何体是高为2、底面积为12×2× (2+4)=6的四棱锥,其体积为4.易知直三棱柱的体积为8,则该几何体的体积是原直三棱柱的体积的48=12,故选C. 答案:C6.一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的外接球的表面积为( )A.16π3B.8π3C .4 3D .23π解析:由题意可得该几何体是有一个侧面PAC 垂直于底面ABC ,高为3,底面是一个等腰直角三角形的三棱锥,如图.则这个几何体的外接球的球心O 在高线PD 上,且是等边三角形PAC 的外心.这个几何体的外接球的半径R =23PD =233.则这个几何体的外接球的表面积S =4πR 2=4π×⎝ ⎛⎭⎪⎫2332=16π3. 答案:A7.(2018·郑州质量预测)如图是一个四面体的三视图,这三个视图均是腰长为2的等腰直角三角形,正视图和俯视图中的虚线是三角形的中线,则该四面体的体积为( )A.23B.43C.83D .2解析:由三视图可知,此四面体如图所示,其高为2,底面三角形的一边长为1,对应的高为2,所以其体积V =13×12×2×1×2=23,故选A.答案:A8.(2018·天津测试)若一个几何体的表面积和体积相同,则称这个几何体为“同积几何体”.已知某几何体为“同积几何体”,其三视图如图所示,则a =( )A.14+223B.8+223C.12+223D .8+2 2解析:根据几何体的三视图可知该几何体是一个四棱柱,如图所示,可得其体积为12(a +2a )·a ·a =32a 3,其表面积为12·(2a +a )·a ·2+a2+a 2+2a ·a +2a ·a =7a 2+2a 2,所以7a 2+2a 2=32a 3,解得a =14+223,故选A. 答案:A9.在三棱锥A BCD 中,侧棱AB ,AC ,AD 两两垂直,△ABC ,△ACD ,△ADB 的面积分别为22,32,62,则该三棱锥外接球的表面积为________. 解析:设相互垂直的三条侧棱AB ,AC ,AD 分别为a ,b ,c ,则12ab =22,12bc =32,12ac=62,解得a =2,b =1,c = 3. 所以三棱锥A BCD 的外接球的直径2R =a 2+b 2+c 2=6,则其外接球的表面积S =4πR 2=6π. 答案:6π10.一个直三棱柱被削去一部分后的几何体ABCDE 及其侧视图、俯视图如图所示,其中侧视图是直角梯形,俯视图是等腰直角三角形.设M 是BD 的中点,点N 在棱DC 上,且MN ⊥平面BDE ,则CN =______________________________________________________.解析:由题意可得,DC ⊥平面ABC ,所以DC ⊥CB .若MN ⊥平面BDE ,则MN ⊥BD .又因为∠MDN =∠CDB ,所以△DMN ∽△DCB ,所以DN DB =DM DC ,故DN 26=64,解得DN =3,所以CN =CD-DN=1. 答案:1。
2019版一轮创新思维文数(人教版A版)练习:第三章 第五节 两角和与差的正弦、余弦和正切公式 含解析
课时规范练 A 组 基础对点练1.已知sin ⎝⎛⎭⎫π2+α=12,-π2<α<0,则cos ⎝⎛⎭⎫α-π3的值是( ) A.12 B.23 C .-12D .1解析:由已知得cos α=12,sin α=-32,所以cos ⎝⎛⎭⎫α-π3=12cos α+32sin α=-12. 答案:C2.计算sin 110°sin 20°cos 2155°-sin 2155°的值为( )A .-12B.12C.32D .-32解析:sin 110°sin 20°cos 2155°-sin 2155°=sin 70°sin 20°cos 310°=cos 20°sin 20°cos 50°=12sin 40°sin 40°=12.答案:B3.若tan α=13,tan(α+β)=12,则tan β=( )A.17 B.16 C.57D.56解析:tan(α+β)=tan α+tan β1-tan αtan β=13+tan β1-13tan β=12,解得tan β=17.答案:A4.(2018·西安质量检测)sin 45°cos 15°+cos 225°sin 165°=( ) A .1B.12C.32 D .-12解析:sin 45°cos 15°+cos 225°sin 165°=sin 45°cos 15°+(-cos 45°)·sin 15°=sin(45°-15°)=sin 30°=12.答案:B5.(2018·江西新余三校联考)已知cos ⎝⎛⎭⎫π3-2x =-78,则sin ⎝⎛⎭⎫x +π3的值为( ) A.14 B.78 C .±14D .±78解析:因为cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π3-2x =cos ⎝⎛⎭⎫2x +2π3=78,所以有sin 2⎝⎛⎭⎫x +π3=12⎣⎡⎦⎤1-cos ⎝⎛⎭⎫2x +2π3=12⎝⎛⎭⎫1-78=116,从而求得sin ⎝⎛⎭⎫x +π3的值为±14,故选C. 答案:C6.已知cos ⎝⎛⎭⎫x -π6=-33,则cos x +cos ⎝⎛⎭⎫x -π3=( ) A .-233B .±233C .-1D .±1解析:∵cos ⎝⎛⎭⎫x -π6=-33,∴cos x +cos ⎝⎛⎭⎫x -π3=cos x +cos x cos π3+sin x sin π3=32cos x +32sin x =3⎝⎛⎭⎫32cos x +12sin x =3cos ⎝⎛⎭⎫x -π6=3×⎝⎛⎭⎫-33=-1. 答案:C7.已知sin 2α=13,则cos 2⎝⎛⎭⎫α-π4=( ) A .-13B.13 C .-23D.23解析:依题意得cos 2⎝⎛⎭⎫α-π4=⎝⎛⎭⎫cos αcos π4+sin αsin π42=12(cos α+sin α)2=12(1+sin 2α)=23. 答案:D8.已知sin 2α=23,则cos 2(α+π4)=( )A.16B.13C.12D.23解析:cos(α+π4)=22cos α-22sin α,所以cos 2(α+π4)=12(cos α-sin α)2=12(1-2sin αcos α)=12(1-sin 2α)=16. 答案:A9.若sin ⎝⎛⎭⎫π3-α=14,则cos ⎝⎛⎭⎫π3+2α=( ) A .-78B .-14C.14D.78解析:cos ⎝⎛⎭⎫π3+2α=cos ⎣⎡⎦⎤π-⎝⎛⎭⎫23π-2α=-cos ⎝⎛⎭⎫23π-2α=-⎣⎡⎦⎤1-2sin 2⎝⎛⎭⎫π3-α=-⎣⎡⎦⎤1-2×⎝⎛⎭⎫142=-78.答案:A10.已知α∈R ,sin α+2cos α=102,则tan 2α=( ) A.43 B.34 C .-34D .-43解析:两边平方,再同时除以cos 2α,得3tan 2α-8tan α-3=0,解得tan α=3或tan α=-13,代入tan 2α=2tan α1-tan 2α,得到tan 2α=-34.答案:C11.若tan θ+1tan θ=4,则sin 2θ=( )A.15B.14C.13D.12解析:∵tan θ+1tan θ=1+tan 2θtan θ=4,∴4tan θ=1+tan 2 θ,∴sin 2θ=2sin θcos θ=2sin θcos θsin 2θ+cos 2θ=2tan θ1+tan 2θ=2tan θ4tan θ=12.答案:D12.cos 2π8-sin 2π8=________.解析:由二倍角公式,得cos 2 π8-sin 2π8=cos(2×π8)=22.答案:2213.已知 tan α=-2,tan(α+β)=17,则tan β的值为________.解析:tan β=tan [(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=17+21-27=3.答案:314.函数f (x )=sin ⎝⎛⎭⎫2x -π4-22sin 2x 的最小正周期是__________. 解析:∵f (x )=22sin 2x -22cos 2x -2(1-cos 2x )=22sin 2x +22cos 2x -2=sin ⎝⎛⎭⎫2x +π4-2,∴f (x )的最小正周期T =2π2=π.答案:π15.已知sin ⎝⎛⎭⎫π3+α+sin α=435,则sin ⎝⎛⎭⎫α+7π6的值是__________. 解析:∵sin ⎝⎛⎭⎫π3+α+sin α=435, ∴sin π3cos α+cos π3sin α+sin α=435,∴32sin α+32cos α=435, 即32sin α+12cos α=45, 故sin ⎝⎛⎭⎫α+7π6=sin αcos 7π6+cos αsin 7π6 =-⎝⎛⎭⎫32sin α+12cos α=-45.答案:-45B 组 能力提升练1.(2018·肇庆模拟)已知sin α=35且α为第二象限角,则tan ⎝⎛⎭⎫2α+π4=( )A .-195B .-519C .-3117D .-1731解析:由题意得cos α=-45,则sin 2α=-2425,cos 2α=2cos 2α-1=725.∴tan 2α=-247,∴tan ⎝⎛⎭⎫2α+π4=tan 2α+tan π41-tan 2αtan π4=-247+11-⎝⎛⎭⎫-247×1=-1731. 答案:D2.(2018·吉林大学附中检测)若α∈(π2,π),且3cos 2α=sin ⎝⎛⎭⎫π4-α,则sin 2α的值为( ) A .-356 B .-16C .-3518D .-1718解析:∵3cos 2α=sin(π4-α),∴3(cos 2α-sin 2α)=22(sin α-cos α),易知sin α≠cos α,故cos α+sin α=-26,1+sin 2α=118,sin 2α=-1718,故选D. 答案:D3.已知锐角α,β满足sin α-cos α=16,tan α+tan β+3·tan αtan β=3,则α,β的大小关系是( ) A .α<π4<βB .β<π4<αC.π4<α<β D.π4<β<α 解析:∵α为锐角,sin α-cos α=16,∴α>π4.又tan α+tan β+3tan αtan β=3,∴tan(α+β)=tan α+tan β1-tan αtan β=3,∴α+β=π3,又α>π4,∴β<π4<α. 答案:B4.在斜三角形ABC 中,sin A =-2cos B ·cos C ,且tan B ·tan C =1-2,则角A 的值为( )A.π4B.π3C.π2D.3π4解析:由题意知,sin A =-2cos B ·cos C =sin(B +C )=sin B ·cos C +cos B ·sin C ,在等式-2cos B ·cos C =sin B ·cos C +cos B ·sin C 两边同除以cos B ·cos C 得tan B +tan C =-2,又 tan β·tan C =1-2,所以tan(B +C )=tan B +tan C1-tan B tan C =-1.由已知,有tan A =-tan(B +C ),则tan A =1,所以A =π4.答案:A5.(2018·安徽十校联考)已知α为锐角,且7sin α=2cos 2α,则sin ⎝⎛⎭⎫α+π3=( ) A.1+358B.1+538C.1-358D.1-538解析:由7sin α=2cos 2α得7sin α=2(1-2sin 2α),即4sin 2α+7sin α-2=0,∴sin α=-2(舍去)或sin α=14,∵α为锐角,∴cos α=154,∴sin ⎝⎛⎭⎫α+π3=14×12+154×32=1+358,故选A. 答案:A6.(2018·贵阳监测)已知sin(π6-α)=13,则cos[2(π3+α)]的值是( )A.79 B.13 C .-13D .-79解析:∵sin(π6-α)=13,∴cos(π3-2α)=cos[2(π6-α)]=1-2sin 2(π6-α)=79,∴cos[2(π3+α)]=cos(2π3+2α)=cos[π-(π3-2α)]=-cos(π3-2α)=-79.答案:D7.已知sin ⎝⎛⎭⎫α-π4=7210,cos 2α=725,则sin α=( ) A.45 B .-45C.35D .-35解析:由sin ⎝⎛⎭⎫α-π4=7210得sin α-cos α=75, ① 由cos 2α=725得cos 2α-sin 2α=725,所以(cos α-sin α)·(cos α+sin α)=725, ② 由①②可得cos α+sin α=-15,③由①③可得sin α=35.答案:C8.已知sin(π6-α)=cos(π6+α),则cos 2α=( )A .1B .-1 C.12D .0解析:∵sin(π6-α)=cos(π6+α),∴12cos α-32sin α=32cos α-12sin α,即(12-32)sin α=-(12-32)cos α,∴tan α=sin αcos α=-1,∴cos 2α=cos 2 α-sin 2α=cos 2 α-sin 2αsin 2α+cos 2α=1-tan 2αtan 2α+1=0. 答案:D9.(2018·石家庄模拟)已知函数f (x )=sin ⎝⎛⎭⎫2x +π12,f ′(x )是f (x )的导函数,则函数y =2f (x )+f ′(x )的一个单调递减区间是( ) A.⎣⎡⎦⎤π12,7π12 B.⎣⎡⎦⎤-5π12,π12 C.⎣⎡⎦⎤-π3,2π3 D.⎣⎡⎦⎤-π6,5π6 解析:由题意,得f ′(x )=2cos ⎝⎛⎭⎫2x +π12,所以y =2f (x )+f ′(x )=2sin ⎝⎛⎭⎫2x +π12+2cos ⎝⎛⎭⎫2x +π12=22sin ⎝⎛⎭⎫2x +π12+π4=22·sin ⎝⎛⎭⎫2x +π3.由2k π+π2≤2x +π3≤2k π+3π2(k ∈Z),得k π+π12≤x ≤k π+7π12(k ∈Z),所以函数y =2f (x )+f ′(x )的一个单调递减区间为⎣⎡⎦⎤π12,7π12,故选A. 答案:A10.若tan α=2tan π5,则cos ⎝⎛⎭⎫α-3π10sin ⎝⎛⎭⎫α-π5=( )A .1B .2C .3D .4解析:cos ⎝⎛⎭⎫α-3π10sin ⎝⎛⎭⎫α-π5=sin ⎝⎛⎭⎫α-3π10+π2sin ⎝⎛⎭⎫α-π5=sin ⎝⎛⎭⎫α+π5sin ⎝⎛⎭⎫α-π5=sin αcos π5+cos αsin π5sin αcos π5-cos αsin π5=sin αcos αcos π5+sin π5sin αcos αcos π5-sin π5=2·sinπ5cos π5cos π5+sinπ52·sin π5cos π5cos π5-sinπ5=3sin π5sin π5=3,故选C. 答案:C11.若tan α=3,则sin ⎝⎛⎭⎫2α+π4的值为( ) A .-210B.210C.5210D.7210 解析:sin 2α=2sin αcos α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1=35,cos 2α=cos 2α-sin 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α=-45,∴sin ⎝⎛⎭⎫2α+π4=22sin 2α+22cos 2α=22×⎣⎡⎦⎤35+⎝⎛⎭⎫-45=-210. 答案:A12.已知1+sin θ+cos θ1+sin θ-cos θ=12,则tan θ=( )A.43B.34 C .-34D .-43解析:因为1+sin θ+cos θ1+sin θ-cos θ=2sin θ2cos θ2+2cos 2θ22sin θ2cos θ2+2sin2θ2=2cos θ2⎝⎛⎭⎫sin θ2+cos θ22sin θ2⎝⎛⎭⎫cos θ2+sin θ2=1tan θ2=12,所以tan θ2=2,于是tan θ=2tanθ21-tan 2θ2=-43.答案:D13.已知cos 4α-sin 4α=23,且α∈⎝⎛⎭⎫0,π2,则cos ⎝⎛⎭⎫2α+π3 =__________.解析:∵α∈⎝⎛⎭⎫0,π2,cos 4α-sin 4α=(sin 2α+cos 2α)·(cos 2α-sin 2α)=cos 2α=23>0, ∴2α∈⎝⎛⎭⎫0,π2,∴sin 2α=1-cos 22α=53, ∴cos ⎝⎛⎭⎫2α+π3=12cos 2α-32sin 2α=12×23-32×53=2-156.答案:2-15614.已知tan α,tan β是方程x 2+33x +4=0的两根,且α,β∈⎝⎛⎭⎫-π2,π2,则α+β=__________. 解析:由题意得tan α+ tan β=-33<0,tan α·tan β=4>0,∴tan(α+β)=tan α+tan β1-tan αtan β=3,且tan α<0,tan β<0,又α,β∈⎝⎛⎭⎫-π2,π2,故α,β∈⎝⎛⎭⎫-π2,0,∴α+β∈(-π,0),∴α+β=-2π3. 答案:-2π315.(2018·邢台摸底考试)已知tan(3π-α)=-12,tan(β-α)=-13,则tan β=________.解析:依题意得tan α=12,tan β=tan [(β-α)+α]=tan (β-α)+tan α1-tan (β-α)·tan α=17.答案:1716.(2018·吉林东北师大附中联考)已知0<θ<π,tan ⎝⎛⎭⎫θ+π4=17,那么sin θ+cos θ=________. 解析:由tan ⎝⎛⎭⎫θ+π4=tan θ+11-tan θ=17,解得tan θ=-34,即sin θcos θ=-34,∴cos θ=-43sin θ,∴sin 2θ+cos 2θ=sin 2θ+169sin 2θ=259sin 2θ=1,∵0<θ<π,∴sin θ=35,∴cos θ=-45,∴sin θ+cos θ=-15.答案:-15。
2020版一轮创新思维文数(人教版A版)课件:第三章 第七节 正弦定理和余弦定理 .ppt
B.等边三角形
C.直角三角形
D.钝角三角形
解析 答案
第三章
考点一
第七节 正弦定理和余弦定理
回顾教材·夯实基础 典例剖析·突破考点 真题感悟·体验考场
考点二
考点三
课时规范练
判断三角形的形状|易错突破
[例 2] 已知△ABC 中,内角 A、B、C 成等差数列,其对边
为 a、b、c,若 a、b、c 成等比数列,则△ABC 的形状为( )
解析 答案
第三章
考点一
第七节 正弦定理和余弦定理
回顾教材·夯实基础 典例剖析·突破考点 真题感悟·体验考场
考点二
考点三
课时规范练
3.将本例(1)变为在△ABC 中,AB= 6,∠A=75°,∠B =45°,则 AC=___2_____.
因为∠A=75°,∠B=45°,所以∠C=60°,由正弦定理可 得sinAC45°=sin 660°,解得 AC=2.
课时规范练
1.将本例(4)变为:已知△ABC 中,角 A,B,C 的对边分
别为 a,b,c,若 a=c= 6+ 2,且 A=75°,则 b=( A )
A.2
B.4+2 3
C.4-2 3
D. 6- 2
在△ABC 中,易知 B=30°,由余弦定理 b2=a2+c2-2accos 30°=4. ∴b=2.
第三章 三角函数、解三角形
考纲解读 1.利用正、余弦定理求解三角形的边、 角或面积;2.利用正、余弦定理判断三角形的形 状;3.利用正、余弦定理解决四边形及三角形实 际应用问题.
第三章
第七节 正弦定理和余弦定理
回顾教材·夯实基础 典例剖析·突破考点 真题感悟·体验考场
课时规范练
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时规范练 A 组 基础对点练1.在△ABC 中,若sin A a =cos Bb ,则B 的值为( )A .30°B .45°C .60°D .90°解析:由正弦定理知,sin A sin A =cos Bsin B ,∴sin B =cos B ,∴B =45°.答案:B2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a =5,c =2,cos A =23,则b =( )A. 2B. 3 C .2D .3解析:由余弦定理,得4+b 2-2×2b cos A =5,整理得3b 2-8b -3=0,解得b =3或b =-13(舍去),故选D. 答案:D3.已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c,23cos 2A +cos 2A =0,a =7,c =6,则b =( ) A .10 B .9 C .8D .5解析:化简23cos 2A +cos 2A =0,得23cos 2A +2cos 2A -1=0,解得cos A =15.由余弦定理,知a 2=b 2+c 2-2bc cos A ,代入数据,解方程,得b =5. 答案:D4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a sin A +b sin B <c sin C ,则△ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .不确定解析:根据正弦定理可得a 2+b 2<c 2.由余弦定理得cos C =a 2+b 2-c22ab<0,故C 是钝角.即△ABC 是钝角三角形. 答案:C5.已知在△ABC 中,sin A ∶sin B ∶sin C =3∶5∶7,那么这个三角形的最大内角的大小为__________.解析:由sin A ∶sin B ∶sin C =3∶5∶7知,三角形的三边之比a ∶b ∶c =3∶5∶7,最大的角为C .由余弦定理得cos C =-12,∴C =120°.答案:120°6.在△ABC 中,A =2π3,a =3c ,则bc =________.解析:∵a =3c ,∴sin A =3sin C ,∵A =2π3,∴sin A =32,∴sin C =12,又C 必为锐角, ∴C =π6,B =π6,∴b =c .∴b c =1. 答案:17.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知△ABC 的面积为315,b -c =2,cos A =-14,则a 的值为__________.解析:在△ABC 中,由cos A =-14可得sin A =154,所以有⎩⎪⎨⎪⎧12bc ×154=315,b -c =2,a 2=b 2+c 2-2bc ×⎝⎛⎭⎫-14,解得⎩⎪⎨⎪⎧a =8,b =6,c =4.答案:88.△ABC 中,D 是BC 上的点,AD 平分∠BAC ,BD =2DC . (1)求sin B sin C;(2)若∠BAC =60°,求∠B . 解析:(1)由正弦定理得AD sin B =BD sin ∠BAD ,AD sin C =DCsin ∠CAD.因为AD 平分∠BAC ,BD =2DC , 所以sin B sin C =DC BD =12.(2)因为∠C =180°-(∠BAC +∠B ),∠BAC =60°, 所以sin C =sin(∠BAC +∠B )=32cos B +12sin B. 由(1)知2sin B =sin C ,所以tan B =33,即∠B =30°. 9.(2018·河北三市联考)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且a sin B =-b sin ⎝⎛⎭⎫A +π3. (1)求A ;(2)若△ABC 的面积S =34c 2,求sin C 的值. 解析:(1)∵a sin B =-b sin ⎝⎛⎭⎫A +π3, ∴由正弦定理得sin A sin B =-sin B ·sin ⎝⎛⎭⎫A +π3,则sin A =-sin ⎝⎛⎭⎫A +π3,即sin A =-12sin A -32cos A , 化简得tan A =-33, ∵A ∈(0,π),∴A =5π6.(2)∵A =5π6,∴sin A =12,由S =12bc sin A =14bc =34c 2,得b =3c ,∴a 2=b 2+c 2-2bc cos A =7c 2,则a =7c , 由正弦定理得sin C =c sin A a =714.B 组 能力提升练1.△ABC 中,角A ,B ,C 的对边分别是a ,b ,c .已知b =c ,a 2=2b 2(1-sin A ),则A =( ) A.3π4 B.π3 C.π4D.π6解析:由余弦定理得a 2=b 2+c 2-2bc cos A =2b 2-2b 2cos A ,所以2b 2(1-sin A )=2b 2(1-cosA ),所以sin A =cos A ,即tan A =1,又0<A <π,所以A =π4.答案:C2.已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,若cos A cos B =ba =2,则该三角形的形状是( ) A .直角三角形 B .等腰三角形 C .等边三角形D .钝角三角形解析:因为cos A cos B =b a ,由正弦定理得cos A cos B =sin B sin A ,所以sin 2A =sin 2B .由ba =2,可知a ≠b ,所以A ≠B .又A ,B ∈(0,π),所以2A =180°-2B ,即A +B =90°,所以C =90°,于是△ABC 是直角三角形.故选A. 答案:A3.在△ABC 中,若sin C sin A =3,b 2-a 2=52ac ,则cos B 的值为( )A.13 B.12 C.15D.14解析:由题意知,c =3a ,b 2-a 2=52ac =c 2-2ac cos B ,所以cos B =c 2-52ac 2ac =9a 2-152a 26a 2=14. 答案:D4.在△ABC 中,B =π4,BC 边上的高等于13BC ,则cos A =( )A.31010B.1010C .-1010D .-31010解析:设△ABC 中角A ,B ,C 的对边分别是a ,b ,c ,由题意可得13a =c sin π4=22c ,则a=322c .在△ABC 中,由余弦定理可得b 2=a 2+c 2-2ac =92c 2+c 2-3c 2=52c 2,则b =102c .由余弦定理,可得cos A =b 2+c 2-a 22bc =52c 2+c 2-92c 22×102c ×c=-1010,故选C.答案:C5.(2018·山西忻州一中联考)已知在△ABC 中,B =2A ,∠ACB 的平分线CD 把三角形分成面积比为4∶3的两部分,则cos A =________.解析:在△ADC 中,由正弦定理得AC sin ∠ADC =47AB sin ∠ACD ⇒AC 47AB =sin ∠ADCsin ∠ACD,同理,在△BCD 中,有BC sin ∠BDC =37AB sin ∠BCD ⇒BC 37AB =sin ∠BDC sin ∠BCD, 又sin ∠ADC =sin ∠BDC ,sin ∠ACD =sin ∠BCD ,所以有AC 47AB =BC 37AB ⇒AC =43BC ,由正弦定理得sin B =43sin A ,又B =2A ,所以sin B =2sin A cos A ,所以cos A =23.答案:236.已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sin C . (1)若a =b ,求cos B ;(2)设B =90°,且a =2,求△ABC 的面积. 解析:(1)由题设及正弦定理可得b 2=2ac . 又a =b ,可得b =2c ,a =2c . 由余弦定理可得cos B =a 2+c 2-b 22ac =14.(2)由(1)知b 2=2ac .因为B =90°,由勾股定理得a 2+c 2=b 2. 故a 2+c 2=2ac ,得c =a = 2. 所以△ABC 的面积为1.7.(2018·郑州模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos 2C -cos 2A =2sin ⎝⎛⎭⎫π3+C ·sin ⎝⎛⎭⎫π3-C . (1)求角A 的值;(2)若a =3且b ≥a ,求2b -c 的取值范围. 解析:(1)由已知得2sin 2A -2sin 2C =2⎝⎛34cos 2C⎭⎫-14sin 2C ,化简得sin A =32,故A =π3或2π3. (2)由题知,若b ≥a ,则A =π3,又a =3,所以由正弦定理可得b sin B =c sin C =asin A=2,得b =2sin B ,c =2sin C ,故2b -c =4sin B -2sin C =4sin B -2sin ⎝⎛⎭⎫2π3-B =3sin B -3cos B =23sin ⎝⎛⎭⎫B -π6. 因为b ≥a ,所以π3≤B <2π3,π6≤B -π6<π2,所以23sin ⎝⎛⎭⎫B -π6∈[3,23).即2b -c 的取值范围为[3,23).。