(完整word版)导数单元测试(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数单元测试

【检测试题】 一、选择题

1. 设函数()y f x =可导,则0(1)(1)

lim 3x f x f x

∆→+∆-∆等于( ).

A .'(1)f

B .3'(1)f

C .1

'(1)3

f D .以上都不对

2. 已知函数f (x )=ax 2

+c ,且(1)f '=2,则a 的值为( )

A.1

B.2

C.-1

D. 0

3 .()f x 与()g x 是定义在R 上的两个可导函数,若()f x ,()g x 满足'

'

()()f x g x =,则

()f x 与()g x 满足( )

A ()f x =2()g x

B ()f x -()g x 为常数函数

C ()f x =()0g x =

D ()f x +()g x 为常数函数 4.三次函数x ax y +=3

在()+∞∞-∈,x 内是增函数,则 ( )

A . 0>a

B .0

C .1=a

D .3

1=

a 5.已知函数y =x 3

-3x+c 的图像与x 恰有两个公共点,则c =( ) (A )-2或2 (B )-9或3 (C )-1或1 (D )-3或1 6.0'()f x =0是可导函数y =f(x)在点x =x 0处有极值的 ( )

A .充分不必要条件

B .必要不充分条件

C .充要条件

D .非充分非必要条件

7.曲线3

()2f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为( )

A (1,0)

B (2,8)

C (1,0)和(1,4)--

D (2,8)和(1,4)--

8.设函数()f x 在R 上可导,其导函数为,()f x ,且函数)(')1(x f x y -=的图

像如题(8)图所示,则下列结论中一定成立的是( ) (A )函数()f x 有极大值(2)f 和极小值(1)f (B )函数()f x 有极大值(2)f -和极小值(1)f (C )函数()f x 有极大值(2)f 和极小值(2)f - (D )函数()f x 有极大值(2)f -和极小值(2)f

9.已知函数()y f x =, ()y g x =的导函数的图象如下左图,那么()y f x =, ()y g x =的图象可能是( )

10 . 抛物线2

2x y =上两点),(11y x A 、),(22y x B 关于直线m x y +=对称,且2

121-=⋅x x ,则m 等

于( )

A .23

B .2

C .2

5

D .3 11. 设点P 在曲线1

2

x y e =上,点Q 在曲线ln(2)y x =上,则PQ 最小值为( )

()A 1ln 2- ()B

2(1ln 2)- ()C 1ln 2+ ()D 2(1ln 2)+

12. 已知函数()f x =3

2

31ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为( )

A .(2,+∞)

B .(-∞,-2)

C .(1,+∞)

D .(-∞,-1)

二、填空题

13.函数32

y x x x =--的单调区间为_____________________________.

14.已知函数3

()f x x ax =+在R 上有两个极值点,则实数a 的取值范围是 .

15.已知函数()ln f x ax x =-,若()1f x >在区间(1,)+∞内恒成立,则实数a 的范围为______________. 16. f (x )=ax 3

-3x +1对x ∈[-1,1]总有f (x )≥0成立,则a = . 三、解答题:

17.如图,一矩形铁皮的长为8cm ,宽为5cm ,在四个角上截去

四个相同的小正方形,制成一个无盖的小盒子,问小正方形的边长 为多少时,盒子容积最大?

18.已知函数323

()(2)632

f x ax a x x =-

++- (1)当2a >时,求函数()f x 极小值; (2)试讨论曲线()y f x =与x 轴公共点的个数。

19.已知函数32

()f x x ax bx c =+++在2

3

x =-与1x =时都取得极值 (1)求,a b 的值与函数()f x 的单调区间

(2)若对[1,2]x ∈-,不等式2

()f x c <恒成立,求c 的取值范围

20.已知函数2

()sin cos f x x x x x =++.

(Ⅰ)若曲线()y f x =在点(,())a f a 处与直线y b =相切,求a 与b 的值; (Ⅱ)若曲线()y f x =与直线y b =有两个不同交点,求b 的取值范围.

21. 设函数2

()ln f x x m x =-,2

()g x x x a =-+.

⑴当0a =时,)()(x g x f ≥在(1,)+∞上恒成立,求实数m 的取值范围;

⑵当2m =时,若函数()()()h x f x g x =-在[1,3]上恰有两个不同零点,求实数a 取值范围; ⑶是否存在实数m ,使函数()f x 和()g x 在其公共定义域上具有相同的单调性,若存在,求出m 的值;若不存在,请说明理由.

相关文档
最新文档