北师大版数学七年级上册2.1 有理数 同步练习(word版含答案)
北师大版七年级数学上册章节同步练习题(全册-共57页)
北师⼤版七年级数学上册章节同步练习题(全册-共57页)北师⼤版七年级数学上册章节同步练习题(全册,共57页)⽬录第⼀章丰富的图形世界1 ⽣活中的⽴体图形2 展开与折叠3 截⼀个⼏何体4 从三个⽅向看物体的形状单元测验第⼆章有理数及其运算1 有理数2 数轴3 绝对值4 有理数的加法5 有理数的减法6 有理数加减混合运算7 有理数的乘法 8 有理数的除法9 有理数的乘⽅ 10 科学记数法11 有理数的混合运算 12 ⽤计算器进⾏运算单元测验第三章整式及其加减1 字母表⽰数2 代数式3 整式4 整式的加减5 探索与表达规律单元测验第四章基本平⾯图形1 线段射线直线2 ⽐较线段的长短3 ⾓ 4⾓的⽐较5 多边形和圆的初步认识单元测验第五章⼀元⼀次⽅程1 认识⼀元⼀次⽅程2 求解⼀元⼀次⽅程3 应⽤⼀元⼀次⽅程——⽔箱变⾼了4 应⽤⼀元⼀次⽅程——打折销售5 应⽤⼀元⼀次⽅程——“希望⼯程”义演6 应⽤⼀元⼀次⽅程——追赶⼩明单元测验第六章数据的收集与整理1 数据的收集2 普查和抽样调查3 数据的表⽰4 统计图的选择第⼀章丰富的图形世界1.1⽣活中的⽴体图形(1)基础题:1.如下图中为棱柱的是()2.⼀个⼏何体的侧⾯是由若⼲个长⽅形组成的,则这个⼏何体是()A.棱柱 B.圆柱 C.棱锥 D.圆锥3.下列说法错误的是()A.长⽅体、正⽅体都是棱柱 B.三棱柱的侧⾯是三⾓形C.直六棱柱有六个侧⾯、侧⾯为矩形 D.球体和圆是不同的图形4.数学课本类似于,⾦字塔类似于,西⽠类似于,⽇光灯管类似于。
5.⼋棱柱有个⾯,个顶点,条棱。
6.⼀个漏⽃可以看做是由⼀个________和⼀个________组成的。
7.如图是⼀个正六棱柱,它的底⾯边长是3cm,⾼是5cm.(1)这个棱柱共有个⾯,它的侧⾯积是。
(2)这个棱柱共有条棱,所有棱的长度是。
提⾼题:⼀只⼩蚂蚁从如图所⽰的正⽅体的顶点A沿着棱爬向有蜜糖的点B,它只能经过三条棱,请你数⼀数,⼩蚂蚁有种爬⾏路线。
北师大版七年级数学上册第二章《有理数及其运算》练习题含答案解析 (3)
一、选择题1.有理数a,b,c在数轴上的位置如图所示,则式子∣a∣+∣b∣+∣a+b∣−∣b−c∣化简结果为( )A.2a+b−c B.2a+b+c C.b+c D.3b−c2.如图,点A,B在数轴上,点O为原点,OA=OB.按如图所示方法用圆规在数轴上截取BC=AB,若点A表示的数是a,则点C表示的数是( )A.2a B.−3a C.3a D.−2a3.一个点在数轴上距原点3个单位长度开始,先向右移动4个单位长度,再向左移动1个单位长度,这时它表示的数是( )A.6B.0C.−6D.0或64.已知a,b,c为有理数,且a+b+c=0,b≥−c>∣a∣,且a,b,c与0的大小关系是( )A.a<0,b>0,c<0B.a>0,b>0,c<0C.a≥0,b<0,c>0D.a≤0,b>0,c<05.当式子∣x+2∣+∣x−5∣取得最小值时,x的取值范围为( )A.−2≤x<5B.−2<x≤5C.x=2D.−2≤x≤56.在数轴上有两个点,分别表示数x和y,已知∣x∣=1,且x>0,∣y+1∣=4,那么这两个点之间距离为( )A.2或6B.5或3C.2D.37.如果∣a∣a +∣b∣b+∣c∣c=−1,那么ab∣ab∣+bc∣bc∣+ac∣ac∣+abc∣abc∣的值为( )A.−2B.−1C.0D.不确定8.我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:指数运算21=222=423=8⋯新运算log 22=1log 24=2log 28=3⋯指数运算31=332=933=27⋯新运算log 33=1log 39=2log 327=3⋯根据上表规律,某同学写出了三个式子:①log 216=4,② log 525=5,③ log 212=−1,其中正确的是 ( ) A .①② B .①③ C .②③ D .①②③9. 【例 9−2 】已知 ∠AOB =60∘,∠AOC =13∠AOB ,射线 OD 平分 ∠BOC ,则 ∠COD 的度数为( ) A . 20∘ B . 40∘ C . 20∘ 或 30∘ D . 20∘ 或 40∘10. 下面四个数中,最大的数为 ( ) A . (−1)2021B . −∣−2∣C . (−2)3D . −12二、填空题11. 若 a +b +c >0,且 abc <0 则 a ,b ,c ,中有 个正数.12. 电子跳蚤落在数轴上的某点 k 0,第一步从 k 0 向左跳 1 个单位到 k 1,第二步由 k 1 向右跳 2个单位到 k 2,第三步由 k 2 向左跳 3 个单位到 k 3,第四步由 k 3 向右跳 4 个单位到 k 4,⋯,按以上规律跳了 140 步时,电子跳蚤落在数轴上的点 k 140 所表示的数恰是 2019.则电子跳蚤的初始位置 k 0 点所表示的数是 .13. 现定义某种运算“∗”,对给定的两个有理数 a ,b (a ≠0),有 a ∗b =a −a b ,则 (−3)∗2= .14. 如图所示是计算机程序计算,若开始输入 x =−1,则最后输出的结果是 .15. 已知实数 a ,b ,定义运算:a ⋇b ={a b ,a >b 且 a ≠0b a,a ≤b 且 a ≠0,若 a ⋇(a −3)=1,则 a = .16. 观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,⋯根据你发现的规律写出272019的末位数字是.17.如图所示的运算程序中,若开始输入的x值为16,我们发现第一次输出的结果为8,第二次输出的结果为4,⋯,则第2017输出的结果为.三、解答题18.阅读下面材料:如图,点A,B在数轴上分别表示有理数a,b,则A,B两点之间的距离可以表示为∣a−b∣.根据阅读材料与你的理解回答下列问题:(1) 数轴上表示3与−2的两点之间的距离是.(2) 数轴上有理数x与有理数7所对应两点之间的距离用绝对值符号可以表示为.(3) 代数式∣x+8∣可以表示数轴上有理数x与有理数所对应的两点之间的距离;若∣x+8∣=5,则x=.(4) 求代数式∣x+1008∣+∣x+504∣+∣x−1007∣的最小值.19.计算下列各式的值.(1) −3−(−8)−(+7)+5.(2) 49÷74×(−47)÷(−16).(3) 7−(156−23−34)÷124.(4) −32÷(−3)2+3×(−2)+∣−1∣.20.如图,已知数轴上有A,B,C三点,分别表示有理数−26,−10,10,动点P从点A出发,以每秒1个单位的速度向终点C移动,当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,(1) Q点出发3秒后所到的点表示的数为;此时P,Q两点的距离为.(2) 问当点Q从A点出发几秒钟时,能追上点P?(3) 问当点Q从A点出发几秒钟时,点P和点Q相距2个单位长度?直接写出此时点Q在数轴上表示的有理数.21.已知两点A,B在数轴上,AB=9,点A表示的数是a,且a与(−1)3互为相反数.(1) 写出点B表示的数;(2) 如图1,当点A,B位于原点O的同侧时,动点P,Q分别从点A,B处在数轴上同时相向而行,动点P的速度是动点Q的速度的2倍,3秒后两动点相遇,当动点Q到达点4时,运动停止.在整个运动过程中,当PQ=2时,求点P,Q所表示的数;(3) 如图2,当点A,B位于原点O的异侧时,动点P,Q分别从点A,B处在数轴上向右运动,动点Q比动点P晚出发1秒;当动点Q运动2秒后,动点P到达点C处,此时动点P立即掉头以原速向左运动3秒恰与动点Q相遇;相遇后动点P又立即掉头以原速向右运动5秒,此时动点P到达点M处,动点Q到达点N处,当∣OM−ON∣=2时,求动点P,Q运动的速度.22.【背景知识】数轴上A点,B点表示的数为a,b,则A,B两点之间的距离AB=∣a−b∣,.若a>b,则可简化为AB=a−b,线段AB的中点M表示的数为a+b2【问题情境】已知数轴上有A,B两点,分别表示的数为−10,8,点P,Q分别从A,B同时出发,点P以每秒5个单位长度的速度沿数轴向右匀速运动,点Q以每秒3个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒(t>0).【综合运用】(1) A,B两点的距离为,线段AB的中点C所表示的数;(2) 点P所在的位置的点表示的数为,点Q所在位置的点表示的数为(用含t的代数式表示);(3) P,Q两点经过多少秒会相遇?23.探究规律,完成相关题目.定义“∗”运算:(+2)∗(+4)=+(22+42),(−4)∗(−7)=+[(−4)2+(−7)2],(−2)∗(+4)=−[(−2)2+(+4)2],(+5)∗(−7)=−[(+5)2+(−7)2],0∗(−5)=+(−5)∗0=(−5)2,(+3)∗0=0∗(+3)=(+3)2,0∗0=02+02=0.归纳∗运算的法则(用文字语言叙述):(1) 两数进行∗运算时,.特别地,0和任何数进行∗运算,或任何数和0进行∗运算,.(2) 计算:(−3)∗[0∗(+2)]=.(3) 是否存在有理数m,n,使得(m+1)∗(n−2)=0,若存在,求出m,n的值,若不存在,请说明理由.24.若有理数x,y满足∣x∣=5,∣y∣=2,且∣x+y∣=x+y,求x−y的值.25.数学是一门充满思维乐趣的学科,现有3×3的数阵A,数阵每个位置所对应的数都是1,2或3.定义a∗b为数阵中第a行第b列的数.例如,数阵A第3行第2列所对应的数是3,所以3∗2=3.(1) 对于数阵A,2∗3的值为.若2∗3=2∗x,则x的值为.(2) 若一个3×3的数阵对任意的a,b,c均满足以下条件:条件一:a∗a=a;条件二:(a∗b)∗c=a∗c.则称此数阵是“有趣的”.①请判断数阵A是否是“有趣的”你的结论:(填“是”或“否”).②已知一个“有趣的”数阵满足1∗2=2,试计算2∗1的值.③是否存在“有趣的”数阵,对任意的a,b满足交换律a∗b=b∗a?若存在,请写出一个满足条件的数阵;若不存在,请说明理由.答案一、选择题1. 【答案】D【解析】观察数轴可得:−1<a<0<b<c,∣a∣<∣b∣<∣c∣,∴∣a∣+∣b∣+∣a+b∣−∣b−c∣=−a+b+a+b−(c−b)=3b−c.【知识点】绝对值的化简、利用数轴比较大小2. 【答案】B【解析】∵OA=OB,点A表示的数是a,∴点B表示的数为−a,AB=−2a,∵BC=AB,∴点C表示的数是−3a.【知识点】数轴的概念3. 【答案】D【解析】∵该点距离原点3个单位,∴该点表示的数是3或−3,①若该点表示的数是3,先向右移动4个单位长度,再向左移动1个单位长度,这时它表示的数是:3+4−1=6;②若该点表示的数是−3,先向右移动4个单位长度,再向左移动1个单位长度,这时它表示的数是:3+4−1=0;故选D.【知识点】绝对值的几何意义4. 【答案】D【解析】∵∣a∣≥0,则b≥−c>∣a∣≥0,b>0,−c>0,即c<0,a+b+c=0,即a+b=−c≤b,即a≤0,∴a≤0,b>0,c<0.【知识点】绝对值的几何意义、利用数轴比较大小、有理数的加法法则及计算5. 【答案】D【解析】利用数轴,设A点表示的数为−2,B点表示的数为5,P点表示的数为x,则∣x+2∣+∣x−5∣=PA+PB,∴当P在A,B之间时,PA+PB最小,∴当−2≤x≤5时,∣x+2∣+∣x−5∣取得最小值.【知识点】绝对值的几何意义6. 【答案】A【解析】∵∣x∣=1,且x>0,∴x=1,∵∣y+1∣=4,∴y=−5或3,∴这两个点之间距离为1−(−5)=6或3−1=2.【知识点】绝对值的几何意义7. 【答案】C【解析】∣a∣a +∣b∣b+∣c∣c=−1,所以a,b,c中有一个正数,二个负数,假设a>0,b<0,c<0,则ab∣ab∣+bc∣bc∣+ac∣ac∣+abc∣abc∣=−1+1−1+1=0.【知识点】绝对值的性质与化简8. 【答案】B【知识点】有理数的乘方9. 【答案】D【解析】当OC在∠AOB内时,如图1,则∠BOC=∠AOB−∠AOC=60∘−13×60∘=40∘,∴∠COD=12∠BOC=20∘;当OC在∠AOB外时,如图2,则∠BOC=∠AOB+∠AOC=60∘+13×60∘=80∘,∴∠COD=12∠BOC=40∘.综上,∠COD=20∘或40∘.故选:D.【知识点】角的计算10. 【答案】D【解析】 (−1)2021=−1;−∣−2∣=−2;(−2)3=−8;且 −8<−∣−2∣<(−1)2021<−12, ∴ 最大的数是 −12,故选D .【知识点】有理数的乘方、绝对值的化简二、填空题 11. 【答案】 2【解析】 ∵ 有理数 a ,b ,c 满足 a +b +c >0,且 abc <0, ∴a ,b ,c 中负数有 1 个,正数有 2 个. 【知识点】有理数的加法法则及计算、有理数的乘法12. 【答案】 1949【解析】由题意可知:k 140=k 0−1+2−3+4−⋯−139+140=2019, 即 k 0+(−1+2)+(−3+4)+⋯+(−139+140)=2019, k 0+1+1+⋯+1⏟70 个 1=2019,∴k 0+70=2019,解得:k 0=1949.则电子跳蚤的初始位置 k 0 点所表示的数是 1949. 【知识点】有理数的加法法则及计算13. 【答案】 −12【解析】 ∵a ∗b =a −a b , ∴(−3)∗2=(−3)−(−3)2=(−3)−9=−12.【知识点】有理数的乘方14. 【答案】−22【解析】把x=−1代入计算程序中得:(−1)×6−(−2)=−6+2=−4>−5,把x=−4代入计算程序中得:(−4)×6−(−2)=−24+2=−22<−5,则最后输出的结果是−22.【知识点】有理数的乘法15. 【答案】3或±1【解析】∵a>a−3,a⋇(a−3)=1,根据题中的新定义得:a a−3=1,∴a−3=0或a=1或a=−1,∴a=3或±1.【知识点】有理数的乘方16. 【答案】3【解析】272019=(33)2019=36057,末位的循环为3,9,7,1,6057÷4=1514⋯1,所以末位为3.【知识点】有理数的乘方17. 【答案】1【解析】根据题意,x=16,第一次输出结果为:8,第二次输出结果为:4,第三次输出结果为:2,第四次输出结果为:1,第五次输出结果为:4,第六次输出结果为:2,第7次输出结果为:1,第8次输出结果为:4,由上规律可知:从第二次输出结果开始,每3次输出后重复一次,故(2017−1)÷3=672,故输出结果为:1.【知识点】有理数的加法法则及计算、有理数的乘法三、解答题18. 【答案】(1) 5(2) ∣x−7∣(3) −8;−3或−13(4) 如图,∣x+1008∣+∣x+504∣+∣x−1007∣的最小值即∣1007−(−1008)∣=2015.【解析】(1) ∣3−(−2)∣=5.【知识点】绝对值的几何意义、有理数的减法法则及计算19. 【答案】(1) 原式=−3+8−7+5=5−7+5=−2+5=3.(2) 原式=49×47×47×116=1.(3) 原式=7−(116−23−34)×24=7−(116×24−23×24−34×24) =7−(44−16−18)=7−10=−3.(4) 原式=−9÷9+(−6)+1 =−1−6+1=−6.【知识点】有理数的除法、有理数的加减乘除乘方混合运算、有理数的乘法20. 【答案】(1) −17;10(2) Q点出发时,PQ两点距离为(−10)−(−26)=16,Q点速度比P点速度快(3−1)=2个单位/秒,162=8秒,∴当Q从A出发8秒钟时,能追上点P.(3) 设A点出发t秒,点P和Q相距2个单位长度,当Q点还没追上P点时,Q,P速度差为2,∴2t=−10−(−26)−2=14,解得t=7,Q点在数轴上表示的数为−26+3×7=−5,当Q点超过P点时,Q,P速度差为2,∴2t=−10−(−26)+2=18,解得:t=9,−26+3×9=1.故Q点在数轴上表示的有理数为1.综上所得,当Q从A出发7或9秒时,点P和点Q相距2个单位长度,此时Q表示数轴的有理数为−5或1.【解析】(1) P到B点时,Q从A出发,Q点速度为每秒3个单位长度,3秒运动距离为3×3=9,−26+9=−17,∴Q点出发3秒后所到的点表示为−17,3秒钟P点运动距离为3×1=3,又−10+3=−7,PQ两点距离为−7−(−17)=10,∴Q点出发3秒后所到点表示数为−17,此时P,Q两点的距离为10.【知识点】数轴的概念21. 【答案】(1) ∵a与(−1)3互为相反数,∴a=1,∵AB=9,∴①当点A、点B在原点的同侧时,点B所表示的数为1+9=10,如图1所示;②当点A、点B在原点的异侧时,点B所表示的数为1−9=−8,如图2所示.故点B所表示的数为10或−8.(2) 当点A,B位于原点O的同侧时,点B表示的数是10.设点Q的运动速度为x,则点P的速度为2x.∵3秒后两动点相遇,∴3(x+2x)=9,解得:x=1.∴点Q的运动速度为1,则点P的速度为2.运动t秒后PQ=2有两种情形:①相遇前,由题意有:2t+2+t=9,解得:t=73;∴点P表示的数为:1+2×73=173,点Q表示的数为:10−73=233;②相遇后,再运动y秒,P,Q两点相距2,由题意有:y+2y=2,解得:y=23.∴点P表示的数为:1+3×2+23×2=253,点Q表示的数为:10−3×1−23×1=193.(3) 根据题意得,点P和点Q在点A处相遇,此时点Q运动5秒,运动9个单位长度.∴点Q的运动速度为:9÷5=1.8.设点P的速度为v,∵∣OM−ON∣=2,∴∣9+1−(5v+1)∣=2,解得:v=75或115.∴点P的速度为75或115.【知识点】数轴的概念、相遇问题22. 【答案】(1) 18;−1(2) −10+5t;8−3t(3) 依题意有5t+3t=18,解得t=94.故P,Q两点经过94秒会相遇.【解析】(1) A,B两点的距离为8−(−10)=18,线段AB的中点C所表示的数[8+(−10)]÷2=−1.(2) 点P所在的位置的点表示的数为−10+5t,点Q所在位置的点表示的数为8−3t(用含t的代数式表示).【知识点】绝对值的几何意义23. 【答案】(1) 同号得正、异号得负,并把两数的平方相加;等于这个数得平方(2) −25(3) ∵(m+1)∗(n−2)=0,∴±[(m+1)2+(n−2)2]=0,∴m+1=0,n−2=0,解得m=−1,n=2,即m=−1,n=2即为所求.【解析】(1) 由题意可得:两数进行∗运算时,同号得正,异号得负,并把两数的平方相加0和任何数进行运算,或任何数和0迸行∗运算,等于这个数的平方.(2) (−3)∗[0∗(+2)]=(−3)∗(+2)2=(−3)∗(+4)=−[(−3)2+(+4)2]=−25.【知识点】有理数的乘方24. 【答案】∵∣x∣=5,∴x=±5,又∣y∣=2,∴y=±2,又∵∣x+y∣=x+y,∴x+y≥0,∴x=5,y=±2,当x=5,y=2时,x−y=5−2=3,当x=5,y=−2时,x−y=5−(−2)=7.【知识点】有理数的减法法则及计算25. 【答案】(1) 2;1或2或3(2) ①是.② ∵1∗2=2∴2∗1=(1∗2)∗1,∵(a∗b)∗c=a∗c,∴(1∗2)∗1=1∗1,∵a∗a=a,∴1∗1=1,∴2∗1=1.③方法一:不存在理由如下:若存在满足交换律的"有趣的”数阵,依题意,对任意的a,b,c有:a∗c=(a∗b)∗c=(b∗a)∗c=b∗c,这说明数阵每一列的数均相同.∵1∗1=1,2∗2=2,3∗3=3,∴此数阵第一列数均为1,第二列数均为2,第三列数均为3,∴1∗2=2;2∗1=1,与交换律相矛盾,因此,不存在满足交换律的“有趣的”数阵.【解析】(1) 由题意可知:2∗3表示数阵,第2行第3列所对应的数是2,∴2∗3=2.∵2∗3=2∗x,∴2∗x=2,由题意可知:数阵第1行中3列数均为1,∴x=1,2,3.(2) 方法二:不存在理由如下:由条件二可知,a∗b只能取1,2或3,由此可以考虑a∗b取值的不同情形.例如考虑1∗2:情形一:1∗2=1.若满足交换律,则2∗1=1,再次计算1∗2可知:1∗2=(2∗1)∗2=2∗2=2,矛盾.情形二:1∗2=2,由(2)可知,2∗1=1,1∗2≠2∗1,不满足交换律,矛盾.情形三:1∗2=3,若满足交换律,即2∗1=3,再次计算2∗2可知:2∗2=(2∗1)∗2=3∗2=(1∗2)∗2=1∗2=3,与2∗2=2矛盾.综上,不存在满足交换律的“有趣的”数阵.【知识点】有理数的乘法。
北师大版数学七年级上册 第二章 有理数及其运算 练习题(有答案)
北师大版数学七年级上册 第二章 有理数及其运算 练习题(有答案)2.1 有理数基础题知识点1 认识正数与负数1.(连云港中考)下列各数中;为正数的是(A)A .3B .-12C .-2D .02.(临沂中考)四个数-3;0;1;2;其中负数是(A)A .-3B .0C .1D .2 3.在-1;0;1;2这四个数中;既不是正数也不是负数的是(B) A .-1 B .0 C .1 D .24.下列各数:-101.2;+18;0.002;-60;0;-45;+3.2;属于正数的有+18;0.002;+3.2;属于负数的有-101.2;-60;-45.知识点2 用正、负数表示具有相反意义的量5.(咸宁中考)冰箱冷藏室的温度零上5 ℃;记作+5 ℃;保鲜室的温度零下7 ℃;记作(B) A .7 ℃ B .-7 ℃ C .2 ℃ D .-12 ℃ 6.下列不具有相反意义的是(C) A .前进5 m 和后退5 m B .节约3 t 和浪费3 tC .身高增加2 cm 和体重减少2 kgD .超过5 g 和不足5 g7.若火箭发射点火前5秒记作-5秒;则火箭发射点火后10秒应记作(D) A .-10秒 B .-5秒 C .+5秒 D .+10秒8.如果+80 m 表示向东走80 m;那么-60 m 表示向西走60__m . 知识点3 有理数的概念及分类9.在0;1;-2;-3.5这四个数中;为负整数的是(C) A .0 B .1 C .-2 D .-3.510.有理数可按正、负性质分类;也可按整数、分数分类: ①按正、负性质分类: ②按整数、分数分类:有理数⎩⎪⎨⎪⎧正有理数⎩⎪⎨⎪⎧正整数正分数0负有理数⎩⎪⎨⎪⎧负整数负分数有理数⎩⎪⎨⎪⎧整数⎩⎪⎨⎪⎧正整数0负整数分数⎩⎪⎨⎪⎧正分数负分数 11.下列各数:3;-5;-12;0;2;0.97;-0.21;-6;9;23;85;1;其中正数有7个;负数有4个;正分数有2个;负分数有2个.12.如图是数学果园里的一棵“有理数”知识树;请仔细辨别分类;把各类数填在它所属的相应横线上.中档题13.在数-5;3;0;-32;100;0.4中;非负数有(A)A .4个B .3个C .2个D .1个 14.下列说法正确的是(D) A .+2是正数;但3不是正数 B .一个数不是正数就是负数 C .含有负号的数就是负数 D .-0.25是负分数15.请按要求填出相应的两个有理数:(1)既是正数也是分数:212;34(答案不唯一);(2)既不是负数也不是分数:2;0(答案不唯一). 16.“一只闹钟;一昼夜误差不超过±12秒.”这句话的含义是:闹钟走一天的时间比标准时间最多慢12秒或最多快12秒.17.下面是几个家庭五月份用电支出比上月支出变化情况: 赵力减少25% 肖刚增加10% 王辉减少17% 李玉增加5% 田红增加8% 陈佳减少12%分别用正、负数写出这几家五月用电支出比上月支出的增长率. 解:这六家五月用电支出比上月支出的增长率分别为:赵力-25%;肖刚+10%;王辉-17%;李玉+5%;田红+8%;陈佳-12%.18.请用两种不同的分类标准将下列各数分类:-15;+6;-2;-0.9;1;35;0;314;0.63;-4.95.解:分类一:整数:-15;+6;-2;1;0;分数:-0.9;35;314;0.63;-4.95.分类二:正数:+6;1;35;314;0.63;0;负数:-15;-2;-0.9;-4.95.19.小米家住黄河边的某市;黄河大堤高出某市区20米;另有铁塔高约58米;是该市的一大景观;小米和好朋友小华、玲玲出去玩;小米站在黄河大堤上;玲玲站在地面放风筝;顽皮的小华则爬上了铁塔顶;小米说:“以大堤为基准;记为0米;则玲玲所在的位置高为-20米;小华所在位置高为+58米.”小华说:“以铁塔顶为基准;记为0米;则玲玲所在的位置高为-58米;小米所在的位置高为-38米.”玲玲说:“小华的位置比我高58米.”他们谁说得对?解:小华和玲玲说得对.理由:用正、负数表示具有相反意义的量时;由于“基准”(0米点)的选法不同;表示的结果也不同;小米以大堤为基准;玲玲所在的位置高为-20米;小华所在位置高为38米.综合题20.将一串有理数按下列规律排列;回答下列问题:(1)在A处的数是正数还是负数?(2)负数排在A、B、C、D中的什么位置?(3)第2 017个数是正数还是负数?排在对应于A、B、C、D中的什么位置?解:(1)在A处的数是正数.(2)B和D位置是负数.(3)第2 017个数是负数;排在对应于B的位置.2.2 数轴基础题知识点1 认识数轴1.关于数轴;下列说法最准确的是(D) A .一条直线B .有原点、正方向的一条直线C .有单位长度的一条直线D .规定了原点、正方向、单位长度的直线 2.下列各图中;所画数轴正确的是(D)知识点2 在数轴上表示数 3.如图;在数轴上点A 表示(A)A .-2B .2C .±2D .04.在如图的数轴上;表示-2.75的点是(D)A .点EB .点FC .点GD .点H5.在数轴上表示数-3;0;5;2;-1的点中;在原点右边的有(C) A .0个 B .1个 C .2个 D .3个6.在数轴上;表示-2的点在原点的左侧;它到原点的距离是2个单位长度. 7.画数轴;并在数轴上表示下列各数:2;-2.5;0;13;-4.解:如图:知识点3 利用数轴比较有理数的大小 8.如图;下列说法中正确的是(B)A .a >bB .b >aC .a >0D .b >09.(成都中考)在-3;-1;1;3四个数中;比-2小的数是(A)A .-3B .-1C .1D .310.已知有理数x;y 在数轴上的位置如图所示;则下列结论正确的是(C)A .x>0>yB .y>x>0C .x<0<yD .y<x<011.把下列各数在数轴上表示出来;并用“<”把各数连接起来:-212;4;-4;0;412.解:如图;大小关系为:-4<-212<0<4<412.中档题12.下列语句中;错误的是(B)A .数轴上;原点位置的确定是任意的B .数轴上;正方向可以是从原点向右;也可以是从原点向左C .数轴上;单位长度可根据需要任意选取D .数轴上;与原点的距离等于8的点有两个13.(济宁中考)在0;-2;1;12这四个数中;最小的数是(B)A. 0 B .-2 C. 1 D.1214.数轴上的点A;B;C;D 分别表示a;b;c;d 四个数;已知A 在B 的左侧;C 在A;B 之间;D 在B 的右侧;则下列式子成立的是(A)A .a<c<b<dB .a<b<c<dC .a<d<c<bD .a<c<d<b15.将一刻度尺如图所示放在数轴上(数轴的单位长度是1 cm);刻度尺上的“0 cm ”和“15 cm ”分别对应数轴上的-3.6和x;则(C)A .9<x <10B .10<x <11C .11<x <12D .12<x <1316.若数轴上的点A 表示+3;点B 表示-4.2;点C 表示-1;则点A 和点B 中离点C 较远的是点A . 17.如图所示;数轴上的点A 向左移动2个单位长度得到点B;则点B 表示的数是-1.18.小红在做作业时;不小心将墨水洒在一个数轴上;如图所示;根据图中标出的数值;判断被墨迹盖住的整数共有多少个?解:因为-13<-12.6<-12;-8<-7.4<-7;所以此段整数有-12;-11;-10;-9;-8共5个;同理10<10.6<11;17<17.8<18;所以此段整数有11;12;13;14;15;16;17共7个;所以被墨迹盖住的整数共有5+7=12(个).19.如图;点A 表示的数是-4.(1)在数轴上表示出原点O ; (2)指出点B 所表示的数;(3)在数轴上找一点C;它与点B 的距离为2个单位长度;那么点C 表示什么数? 解:(1)如图. (2)点B 表示3. (3)点C 表示1或5.综合题20.(1)借助数轴;回答下列问题.①从-1到1有3个整数;分别是-1、0、1;②从-2到2有5个整数;分别是-2、-1、0、1、2;③从-3到3有7个整数;分别是-3、-2、-1、0、1、2、3; ④从-200到200有401个整数;⑤从-n 到n(n 为正整数)有(2n +1)个整数;(2)根据以上规律;直接写出:从-2.9到2.9有5个整数;从-10.1到10.1有21个整数;(3)在单位长度是1厘米的数轴上随意画出一条长为1 000厘米的线段AB;求线段AB 盖住的整点的个数.解:1 000个或1 001个.2.3 绝对值基础题知识点1 相反数的概念1.(河南中考)-13的相反数是(B)A .-13 B.13C .-3D .32.相反数等于本身的数为(C)A .正数B .负数C .0D .非负数 3.下列各组数中互为相反数的是(D) A .2与-3B .-3与-13C .2 016与-2 015D .-0.25与144.下列说法中正确的是(C) A .一个数的相反数是负数 B .0没有相反数C .只有一个数的相反数等于它本身D .表示相反数的两个点;可以在原点的同一侧 5.16和-16互为相反数;-2 017的相反数是2__017;1的相反数是-1. 知识点2 绝对值的意义及计算6.在数轴上表示-2的点到原点的距离等于(A) A .2 B .-2 C .±2 D .4 7.(安徽中考)-2的绝对值是(B)A .-2B .2C .±2 D.128.若|-a|=5;则a 的值是(D)A .-5B .5 C.15D .±59.-3的绝对值是3;-|-2.5|=-2.5;绝对值是6的数是±6. 10.计算:|4|+|0|-|-3|=1. 知识点3 绝对值的性质11.任何一个有理数的绝对值一定(D) A .大于0 B .小于0 C .不大于0 D .不小于0 12.在有理数中;绝对值等于它本身的数有(D) A .一个 B .两个 C .三个 D .无数个 13.(1)①正数:|+5|=5;|12|=12; ②负数:|-7|=7;|-15|=15; ③零:|0|=0;(2)根据(1)中的规律发现:不论正数、负数和零;它们的绝对值一定是非负数;即|a|≥0. 知识点4 利用绝对值比较有理数的大小 14.下列各式中正确的是(D)A .|-3|>|-4|B .-2>|-5|C .0>|-0.000 1|D .|-89|>-91015.用“>”或“<”填空: (1)-7<-6.5; (2)-3>-4;(3)-5<-4.中档题16.如果a 与1互为相反数;那么|a|等于(C) A .2 B .-2 C .1 D .-1 17.下列说法正确的是(D) A .-|a|一定是负数B .只有两个数相等时它们的绝对值才相等C .若|a|=|b|;则a 与b 相等D .若一个数小于它的绝对值;则这个数为负数18.(南京中考)数轴上点A;B 表示的数分别是5;-3;它们之间的距离可以表示为(D) A .-3+5 B .-3-5 C .|-3+5| D .|-3-5|19.如果a>0;b<0;a<|b|;那么a 、b 、-a 、-b 的大小顺序是(A) A .-b>a>-a>b B .a>b>-a>-b C .-b>a>b>-a D .b>a>-b>-a20.绝对值小于6的整数有11个;它们分别是±5;±4;±3;±2;±1;0;绝对值大于3且小于6的整数是±5;±4.21.(河北中考改编)若有理数m;n 满足|m -2|+|2 017-n|=0;则m +n =2__019. 22.比较下列各对数的大小: (1)0和|-2|; 解:0<|-2|.(2)-45和-23;解:-45<-23.(3)-(-4)和|-4|. 解:-(-4)=|-4|.23.计算:(1)|+223|×|-9|;解:原式=83×9=24.(2)|-34|÷|-178|.解:原式=34×815=25.24.光明奶粉每袋质量为500克;在质量检测中;若质量超出标准质量2克记作+2克;若质量低于标准质量3克以上;(1)这10(2)质量最大的是哪袋?它的实际质量是多少? 解:(1)第4袋和第6袋不合格.(2)质量最大的是第9袋;实际质量是505克.综合题25.已知a;b;c为有理数;且它们在数轴上的位置如图所示.(1)试判断a;b;c的正负性;(2)在数轴上分别标出a;b;c的相反数的位置;(3)根据数轴化简:①|a|=-a;②|b|=b;③|c|=c;④|-a|=-a;⑤|-b|=b;⑥|-c|=c.(4)若|a|=5.5;|b|=2.5;|c|=7;求a;b;c的值.解:(1)a为负;b为正;c为正.(2)如图.(4)a=-5.5;b=2.5;c=7.小专题(一) 绝对值的应用类型1 利用绝对值比较大小 1.比较下面各对数的大小: (1)-0.1与-0.2;解:因为|-0.1|=0.1;|-0.2|=0.2;且0.1<0.2;所以-0.1>-0.2.(2)-45与-56;解:因为|-45|=45=2430;|-56|=56=2530;且2430<2530; 所以-45>-56.2.比较下列各对数的大小:(1)-821与-|-17|;解:-|-17|=-17;因为|-821|=821;|-17|=17=321;且821>17;所以-821<-|-17|.(2)-2 0152 016与-2 0162 017.解:因为⎪⎪⎪⎪⎪⎪-2 0152 016=2 0152 016;⎪⎪⎪⎪⎪⎪-2 0162 017=2 0162 017;且2 0152 016<2 0162 017; 所以-2 0152 016>-2 0162 017.类型2 巧用绝对值的性质求字母的值3.已知|x -3|+|y -5|=0;求x +y 的值. 解:由|x -3|+|y -5|=0;得 x -3=0;y -5=0. 解得x =3;y =5. 所以x +y =3+5=8.4.若x 的相反数是-3;|y|=5;且x <y;求y -x 的值. 解:因为x 的相反数是-3;所以x =3. 因为|y|=5;所以y =±5. 因为x <y;所以x =3;y =5. 所以y -x =5-3=2.类型3 绝对值在生活中的应用5.司机小李某天下午的营运全是在南北走向的鼓楼大街进行的.假定向南为正;向北为负;他这天下午行车里程如下(单位:千米):+15;-3;+14;-11;+10;+4;-26.若汽车耗油量为0.1 L/km;这天下午汽车共耗油多少升?解:0.1×(|+15|+|-3|+|+14|+|-11|+|+10|+|+4|+|-26|)=8.3(L).6.在活动课上;有6名学生用橡皮泥做了6个乒乓球;直径可以有0.02毫米的误差;超过规定直径的毫米数记(1)(2)指出哪个同学做的乒乓球质量最好;哪个同学做的质量最差?(3)请你对6名同学做的乒乓球质量按照最好到最差排名;(4)用学过的绝对值知识来说明以上问题.解:(1)张兵、蔡伟.(2)蔡伟做的乒乓球质量最好、李明做的乒乓球质量最差.(3)蔡伟、张兵、余佳、赵平、王敏、李明.(4)这是绝对值在实际生活中的应用;对误差来说绝对值越小越好.小专题(二) 三种方法比较有理数的大小方法1 利用数轴比较大小1.如图;在数轴上有a;b;c;d 四个点;则下列说法正确的是(C)A .a>bB .c<0C .b<cD .-1>d2.有理数a 在数轴上对应的点如图所示;则a;-a;-1的大小关系是(C)A .-a<a<-1B .-a<-1<aC .a<-1<-aD .a<-a<-1 3.大于-2.5而小于3.5的整数共有(A) A .6个 B .5个 C .4个 D .3个4.在数轴上表示下列各数;并把这些数用“>”连接起来.3.5;3.5的相反数;-12;绝对值等于3的数;最大的负整数.解:各数分别为:3.5;-3.5;-12;±3;-1.在数轴上表示如图:这些数由大到小用“>”连接为:3.5>3>-12>-1>-3>-3.5.5.点A 、B 在数轴上的位置如图所示;它们分别表示数a 、b.(1)请将a;b;1;-1四个数按从小到大的顺序排列起来;(2)若将点B 向右移动3个单位长度;请将a 、b 、-1三个数按从小到大的顺序排列起来. 解:(1)b<-1<a<1. (2)-1<a<b.方法2 利用比较大小的法则比较大小 6.下列各式成立的是(B)A .-1>0B .3>-2C .-2<-5D .1<-27.(安徽中考)在-4;2;-1;3这四个数中;比-2小的数是(A) A .-4 B .2 C .-1 D .38.(西双版纳中考)若a =-78;b =-58;则a;b 的大小关系是a <b(填“>”“<”或“=”).9.已知数:0;-2;1;-3;5. (1)用“>”把各数连接起来; 解:5>1>0>-2>-3.(2)用“<”把各数的相反数连接起来; 解:-5<-1<0<2<3.(3)用“>”把各数的绝对值连接起来. 解:|5|>|-3|>|-2|>|1|>|0|. 方法3 利用特殊值比较大小10.如图;数轴上的点表示的有理数是a;b;则下列式子正确的是(B)A .-a <bB .a <bC .|a|<|b|D .-a <-b11.a;b 两数在数轴上的对应点的位置如图;下列各式正确的是(D)A.b>a B.-a<bC.|a|>|b| D.b<-a<a<-b2.4 有理数的加法第1课时 有理数的加法法则基础题知识点1 有理数的加法法则1.下列各式的结果;符号为正的是(C)A .(-3)+(-2)B .(-2)+0C .(-5)+6D .(-5)+5 2.(天津中考)计算(-3)+(-9)的结果是(B) A .12 B .-12 C .6 D .-6 3.(梅州中考)计算(-3)+4的结果是(C) A .-7 B .-1 C .1 D .7 4.已知a;b 两数互为相反数;则a +b =(C) A .2a B .2b C .0 D .1 5.下列结论不正确的是(D) A .若a>0;b>0;则a +b>0 B .若a<0;b<0;则a +b<0C .若a>0;b<0;且|a|>|b|;则a +b>0D .若a<0;b>0;且|a|>|b|;则a +b>06.在每题的横线上填写和的符号或结果. (1)(+3)+(+5)=+(3+5)=8; (2)(-3)+(-5)=-(3+5)=-8; (3)(-16)+6=-(16-6)=-10; (4)(-6)+8=+(8-6)=2; (5)(-2 015)+0=-2__015. 7.计算:(1)(-4)+(-6); 解:原式=-10.(2)(-12)+5; 解:原式=-7.(3)0+(-12);解:原式=-12.(4)(-2.5)+(-3.5). 解:原式=-6.知识点2 有理数加法的应用8.小明家冰箱冷冻室的温度为-5 ℃;调高4 ℃后的温度为(C) A .4 ℃ B .9 ℃ C .-1 ℃ D .-9 ℃9.一个物体在数轴上做左右运动;规定向右为正;按下列方式运动;列出算式表示其运动后的结果: (1)先向左运动2个单位长度;再向右运动7个单位长度.列式:-2+7; (2)先向左运动5个单位长度;再向左运动7个单位长度.列式:-5+(-7). 10.某人某天收入265元;支出200元;则该天节余65元.11.已知飞机的飞行高度为10 000 m;上升3 000 m 后;又上升了-5 000 m;此时飞机的高度是8__000m.中档题12.(玉林、防城港中考)下面的数中;与-2的和为0的是(A) A .2 B .-2 C.12 D .-1213.有理数a 、b 在数轴上对应的位置如图所示;则a +b 的值(A)A .大于0B .小于0C .小于aD .大于b 14.如果两个数的和是正数;那么(D) A .这两个数都是正数 B .一个为正;一个为零C .这两个数一正一负;且正数的绝对值较大D .必属上面三种情况之一15.一个数是25;另一个数比25的相反数大-7;则这两个数的和为(B) A .7 B .-7 C .57 D .-5716.若x 是-3的相反数;|y|=5;则x +y 的值为(D) A .2 B .8C .-8或2D .8或-217.已知A 地的海拔高度为-53米;而B 地比A 地高30米;则B 地的海拔高度为-23米. 18.如图;三个小球上的有理数之和等于-2.19.计算: (1)32+(-32); 解:原式=0.(2)116+(-4);解:原式=-256.(3)715+(-235);解:原式=+(715-235)=435.(4)-8.75+(-314).解:原式=-(8.75+314)=-12.20.已知有理数a;b;c 在数轴上的位置如图所示;请根据有理数的加法法则判断下列各式的正负性:①a ;②b ;③-c ;④a +b ;⑤a +c ;⑥b +c ;⑦a +(-b). 解:①③⑦为正;②④⑤⑥为负.综合题21.若|a -2|与|b +5|互为相反数;求a +b 的值.解:因为|a-2|与|b+5|互为相反数; 所以|a-2|+|b+5|=0.所以a=2;b=-5.所以a+b=2+(-5)=-3.第2课时 有理数的加法运算律基础题知识点1 有理数的加法运算律1.计算314+(-235)+534+(-825)时;用运算律最为恰当的是(B)A .[314+(-235)]+[534+(-825)]B .(314+534)+[(-235)+(-825)]C .[314+(-825)]+[(-235)+534]D .[(-235)+534]+[314+(-825)]2.计算512+(+4.71)+712+(-6.71)的结果为(D)A .-2B .3C .-3D .-13.在下面的计算过程后面填上运用的运算律. 计算:(-2)+(+3)+(-5)+(+4).解:原式=(-2)+(-5)+(+3)+(+4)(加法交换律) =[(-2)+(-5)]+[(+3)+(+4)](加法结合律) =(-7)+(+7) =0.4.在计算323+(-2.53)+(-235)+3.53+(-23)时;比较简便的计算方法是先计算323+(-23)和(-2.53)+3.53. 5.计算:(1)(-0.8)+1.2+(-0.7)+(-2.1) =[(-0.8)+(-0.7)+(-2.1)]+1.2 =-3.6+1.2=-2.4; (2)32.5+46+(-22.5)=[32.5+(-22.5)]+46=10+46=56. 6.运用加法的运算律计算下列各题: (1)24+(-15)+7+(-20);解:原式=(24+7)+[(-15)+(-20)] =31+(-35) =-4.(2)18+(-12)+(-18)+12;解:原式=[18+(-18)]+[(-12)+12] =0+0 =0.(3)137+(-213)+247+(-123).解:原式=(137+247)+[(-213)+(-123)]=4+(-4) =0.知识点2 有理数加法运算律的应用7.李老师的银行卡中有5 500元;取出1 800元;又存入1 500元;又取出2 200元;这时银行卡中还有3__000元钱.。
2021年北师大版七年级数学上册《2.1有理数》假期自主学习同步基础达标训练(附答案)
2021年北师大版七年级数学上册《2.1有理数》假期自主学习同步基础达标训练(附答案) 1.下列说法正确的是( )A .0是正数B .﹣3是负数,但不是整数C .13是分数,但不是正数D .﹣0.7是负分数 2.在7-,0,3-,9100+,0.27-中,负数有( )A .0个B .1个C .2个D .3个3.下列具有相反意义的量的是( )A .上升1米与下降2℃B .盈利2万元与亏损3万元C .气温升高3℃与气温为-3℃D .体重增加与体重减少4.如果某超市“盈利8%”记作+8%,那么“亏损6%”应记作( )A .-14%B .-6%C .+6%D .+2%5.下面结论错误的是( )A .零是整数B .零不是整数C .零是自然数D .零是有理数 6.如果汽车向南行驶30米记作+30米,那么-50米表示( )A .向东行驶50米B .向西行驶50米C .向南行驶50米D .向北行驶50米 7.慈客隆超市出售的三种品牌的大米袋上,分别标有质量为(50±0.2),(50±0.3), (50±0.25)的字样,从超市中任意拿出两袋大米,它们的质量最多相差( ) A .0.4 B .0.5 C .0.55 D .0.68.下列说法:①所有的整数都是正数;②在有理数中,除了正数就是负数;③0是非负数;④0.5既不是整数,也不是分数;⑤有理数包括整数、0和分数.其中正确的有( ) A .0个 B .1个 C .2个 D .3个9.如果规定向南走30米,记作+30米,那么向北走10米,记作________米.10.某天上午的温度是5℃,中午又上升了3℃,下午由于冷空气南下,到夜间又下降了9℃,则这天夜间的温度是_________℃.这天的温差是_________℃.11.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入1300元记作1300+元,那么800-元表示_________. 12.若超出标准质量0.05克记作+0.05克,则低于标准质量0.03克记作_____克.13.一辆汽车沿着一条南北走向的笔直的公路来回行驶,若早晨从A 地出发,中午停在B 地,如果约定向北行驶为正方向,当天的行车记录如下(单位为千米):15+,22-,26+,11-,9+,13-,8-,12+,15-,则在这段时间内汽车一共跑了_____千米,A 、B 两地间的距离是____千米.14.下列各数中:127,-3.1416,0,58-,10%,17,••3.21-,-89,分数有_____个;非负整数有_______个.15.如果-4米表示一个物体向西运动4米,那么向东运动9米表示___________; 16.如果把中午12:00记作0时,下午14:00记作2+时,那么上午11:00应记作_____时. 17.一辆大货车在一条南北朝向的公路上来回行驶,某一天早晨从A 地出发,晚上到达B 地,约定向北为正方向,向南为负方向,当天行驶记录如下(单位:千米):+18.3,-9.5,+7.1,-14,-6.2,+13,-6.8,-8.5.请你根据计算回答下列问题:(1)B 地在A 地何方,相距多少千米?(2)汽车这一天共行驶多少千米?(3)若汽车行驶时每千米耗油1.35升,那么这一天共耗油多少升?18.七年级一班某次数学测验的平均成绩为80分,数学老师以平均成绩为基准,记作0,把小龙、小聪、小梅、小莉、小刚这五位同学的成绩简记为+10,–15,0,+20,–2.问这五位同学的实际成绩分别是多少分?19.请把下列各数分别填在相应的集合中.132-,0.3,0, 3.4-,12,9-,142,2- 正数集合:{________________________________}正整数集合:{________________________________}负分数集合:{________________________________}负数集合:{________________________________}整数集合:{________________________________}20.一次数学测验后,王老师把某一小组10名同学的成绩以平均成绩为基准,并以高于平均成绩记为“+”,分别记为+10分,-5分,0分,+8分,-3分,+6分,-5分,-3分,+4分,-12分,通过计算知道这10名同学的平均成绩是80分.(1)这一小组成绩最高分与最低分相差多少分?(2)如果成绩不低于80分为优秀,那么这10名同学在这次数学测验中优秀率是百分之几?21.小红家、学校、邮局、图书馆坐落在一条东西走向的大街上,依次记为A,B,C,D,学校位于小红家西150m,邮局位于小红家东100m,图书馆位于小红家西400m.(1)用数轴表示A,B,C,D的位置;(以小红家为原点)(2)一天小红从家中去邮局寄信后,以每分钟25m的速度往图书馆方向走了16分钟,这时小红距图书馆和学校各多少米?22.有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:(1)20筐白菜中,最重的一筐比最轻的一筐多重多少千克?(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.8元,则出售这20筐白菜可卖多少元?参考答案9.-10解:∵规定向南走30米,记作+30米,∴向北走10米,记作-10米,故答案为:-10.10. -1 9解:根据正数与负数具有相反意义的量,可以规定温度上升为正,温度下降为负,然后列式计算,因此这天夜间的温度是:5+3+(-9)=-1,这天的温差是:8-(-1)=9.11.支出800元解:根据题意得,如果收入1300元记作+1300元,那么-800表示支出800元. 故答案为:支出800元.12.-0.03解:超出标准质量0.05克记作+0.05克,则低于标准质量0.03克记作-0.03克.13.131 7解:汽车一共跑了=15+22+26+11+9+13+8+12+15=131,A 、B 两地间的距离=15—22+26—11+9—13—8+12—15=714.5 2解:由下列各数中:127,-3.1416,0,58-,10%,17,••3.21-,-89,分数有127,-3.1416,58-,10%,••3.21-,共5个;非负整数有0,17,共2个; 故答案为5,2.15.+9米.解:东、西两个相反方向,如果-4米表示一个物体向西运动4米,那么向东运动9米表示+9米;故答案为:+9米.16.-1解:∵把中午12:00记作0时,下午14:00记作+2时,∴各个时间点相当于在一个以12:00为原点,单位长为1小时的数轴上,∴上午11:00应记作:-1时.故答案为:-117.(1)在南方,6.6Km ;(2)83.4千米;(3)112.59升.解:(1) +18.3-9.5+7.1-14-6.2+13-6.8-8.5=-6.6,约定向北为正方向,向南为负方向, 故B 地在A 地南方,BA 两地相距6.6千米.(2) +18.3+|-9.5|+7.1+|-14|+|-6.2|+13+|-6.8|+|-8.5|=83.4,故汽车这一天共行驶83.4千米.(3) 83.4⨯13.5=112.59升,故汽车一天共耗油112.59升.18.90,65,80,100,78;解:用基准分加上这五位同学的成绩简记即可得到这五位同学的实际成绩. 19.解:正数集合:{0.3,12,142,…} 正整数集合:{12,…}负分数集合:{132-, 3.4-,…} 负数集合:{132-, 3.4-,9-,2-,…} 整数集合:{0,12,9-,2-,…}20.(1)22;(2)50%解:(1)()101222--=(2)5100%50%10⨯= 21.解:(1)根据题意,可设从西向东方向为正方向,小红家所在位置为原点, 则用数轴表示上述A 、B 、C 、D 的位置如下:(2)25×16=400(米),100﹣400=﹣300,﹣300﹣(﹣400)=100(米),﹣150﹣(﹣300)=150(米).故小红距图书馆100米,距学校150米.22.(1)5.5;(2)超过8kg ;(3)1422.4元.解:(1)根据题意可得最重的一筐重:25+2.5=27.5(千克)最轻的一筐重:25-3=22(千克)∴最重的一筐比最轻的一筐重:27.5-22=5.5(千克);(2)1×(-3)+4×(-2)+2×(-1.5)+3×0+2×1+8×2.5=8答:与标准重量比较,20筐白菜总计超过8千克;(3)2.8×(25×20+8)=1422.4(元)答:出售这20筐白菜可卖1422.4元.。
北师大版七年级数学上册2.1 有理数课时同步练习(含答案)
2.1 有理数一、填空题.(每空格2分,共46分)1. 在-3和2之间的整数有 .2. )10(--的相反数是 .3. 数轴上的A 点与表示-2的点距离3个单位长度,则A 点表示的数为 .4. 比较大小:71- 61-;332 1338. 5.常熟市某天上午的温度是5℃,中午又上升了3℃,下午由于冷空气南下,到夜间又下降了9℃,则这天夜间的温度是 ℃。
6.绝对值大于1而不大于3的整数有 ,它们的和是 。
7.有理数-3,0,20,-1.25,143, -12- ,-(-5) 中,正整数是 ,负整数是 , 正分数是 , 非负数是 。
8.观察下面一列数,根据规律写出横线上的数, -11;21;-31;41; ; ;……;第2003个数是 。
9.321-的倒数是 ,321-的相反数是 ,321-的绝对值是 , 10.已知|a|=4,那么a = 。
11.最小的正整数是 ;绝对值最小的有理数是 。
绝对值等于3的数是 。
绝对值等于本身的数是二、选择题.(每小题3分,共18分)1. 温度从C 05下降C 08后为( )A .C 03B .C 013 C .C 03-D .C 013-2. 对-1的叙述正确的是( )A .是最小的负数B .是最大的负数C .是最小的整数D .是最大的负整数3. 下列说法中:(1)0是最小的自然数;(2)0是最小的正数;(3)0是最大的负整数;(4)0属于整数集合;(5)0既非正数也非负数.正确的是( )A .(1)(2)(4)B .(4)(5)C .(1)(4)(5)D .(1)(2)(5)4.校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米,张明同学从家里出发,向北走了50米,接着又向北走了-70米,此时张明的位置在 ( )A. 在家B. 在学校C. 在书店D. 不在上述地方5.下列判断中,正确的是( )(A)正整数和负整数统称为整数 (B)正数和负数统称为有理数(C)整数和分数统称为有理数 (D)自然数和负数统称为有理数6.零是( )(A)奇数 (B)偶数 (C)质数 (D)正数三、解答题:(每小题9分,共36分)1.把下列各数填在相应的大括号内:1.2-,3,1,41,0,-14.3,101-,6.20,25-,1056,-7. 正分数集合:{ …}; 非负数集合:{ …}; 正整数集合:{ …}; 负整数集合:{ …}.2.一条笔直的公路旁边建有3个公路养护站,已知A 距C 站10千米,B 站距C 站4千米,请你用数轴的知识分析一下A 站和B 站的距离可能是多少?3.画出数轴,在数轴上表示下列各数,并用“<”连接:5+ ,5.3-,21,211-,4,0,5.24.一名足球守门员练习折返跑,从球门的位置出发,向前记作正数,返回记作负数,他的记录如下(单位:米):+5,-3,+10,-8,-6,+12,-10.(1)守门员是否回到了原来的位置?(2)守门员离开球门的位置最远是多少?(3)守门员一共走了多少路程?二.及时讲评,分析解答情况,小结测试情况。
2.1 有理数 北师大版数学七年级上册同步作业(含答案)
2.1 有理数一.选择题。
1.在0,﹣1,﹣2,﹣3,53,8,﹣1,这8个有理数中,负数的个数是( )A.1B.2C.3D.42.下列各数:﹣3,,0,π,0.25,,其中有理数的个数为( )A.3B.4C.5D.63.《九章算术》中有注:“今两算得失相反,要令正负以名之.”意思是:“今有两数若其意义相反,则分别叫做正数和负数.”如果水位升高5米记为+5米,那么水位下降3米应记为( )A.﹣5米 B.+5米 C.﹣2米 D.﹣3米4下列不是具有相反意义的量是( )A.前进5米和后退5米B.收入30元和支出10元C.超过5克和不足2克D.向东走10米和向北走10米5.下列说法中,正确的是( )A.在有理数中,零的意义表示没有B.正有理数和负有理数组成全体有理数C.0.7既不是整数也不是分数,因此它不是有理数D.0是最小的非负整数,它既不是正数,也不是负数6.用﹣a表示的数一定是( )A.负数B.正数或负数C.0或负数D.以上全不对7.在防治新型冠状病毒的例行体温检查中,检查人员将高出37℃的部分记作正数,将低于37℃的部分记作负数,体温正好是37℃时记作“0”.记录一被测人员在一周内的体温测量结果分别为+0.1,﹣0.3,﹣0.5,+0.1,﹣0.6,+0.2,﹣0.4,那么,该被测者这一周中测量体温的平均值是( )A.37.1℃B.37.31℃C.36.8℃D.36.69℃8.如图所示的是图纸上一个零件的标注,Φ30±表示这个零件直径的标准尺寸是30mm,实际合格产品的直径最小可以是29.98mm,最大可以是( )A.30mmB.30.03mmC.30.3mmD.30.04mm9.纽约与北京的时差为﹣13小时(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数),当北京10月11日9时,纽约的时间是( )A.10月10日6时B.10月10日20时C.10月11日20时D.10月11日22时二.填空题。
北师大版 七年级(上)数学 2.11有理数的混合运算 同步练习卷(含答案)
2.11 有理数的混合运算同步练习一.选择题(共10小题).1.下列运算正确的是()A.0﹣3=﹣3B.C.D.(﹣2)×(﹣3)=﹣62.计算(﹣1)2019+(﹣1)2020的结果是()A.2B.﹣1C.0D.13.计算:得()A.B.C.D.4.算式(﹣5)4表示()A.(﹣5)×4B.﹣5×5×5×5C.(﹣5)+(﹣5)+(﹣5)+(﹣5)D.(﹣5)×(﹣5)×(﹣5)×(﹣5)5.下列运算中正确的个数有()①(﹣5)+5=0,②﹣3+2=﹣1,⑧﹣6÷3×=﹣6,④74﹣22÷70=1A.1个B.2个C.3个D.4个6.计算8﹣6÷(﹣)的结果是()A.﹣4B.5C.13D.207.计算5﹣3+7﹣9+12=(5+7+12)+(﹣3﹣9)是应用了()A.加法交换律B.加法交换律和结合律C.乘法分配律D.乘法结合律8.如图,按图中的程序进行计算,如果输入的数是﹣2,那么输出的数是()A.﹣50B.50C.﹣250D.2509.下列计算结果错误的是()A.12.7÷(﹣)×0=0B.﹣2÷×3=﹣2C.﹣+﹣=﹣D.(﹣)×6=﹣110.定义一种对正整数n的“F”运算:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为;(其中k是使为奇数的正整数),并且运算可以重复进行,例如,取n=26.则:若n=49,则第449次“F运算”的结果是()A.98B.88C.78D.68二.填空题11.计算:(﹣3)2﹣|﹣2|=.12.计算:﹣2=.13.计算:35×()=.14.已知a、b互为相反数,c、d互为倒数,x的绝对值是2,求3x﹣(a+b+cd)x=.15.如果运算法则用公式表示为=a×d﹣b×c,依此法则计算:=.三.解答题16.计算题:(1)|﹣|÷(﹣)﹣×(﹣4)2;(2)﹣×[(﹣)÷(0.75﹣1)+(﹣2)5].17.为纪念五四运动一百周年,学校成立了宣传队,按人数从八,九两个年级共选取60人,已知八年级和九年级的人数比是7:8,求八年级参加宣传队的有多少人?18.有一个公路管理局计划修一条长为15.5千米的公路,第一个月修了全长的,第二个月由于天气的原因,只修了第一个月所修的一半,剩下的计划在第三个月修完,问第二、三个月分别修了多少千米?参考答案一.选择题1.A.2.C.3.B.4.D.5.B.6.D.7.B.8.A.9.B.10.A.二.填空题11.7.12..13.﹣6.14.±4.15.13.三.解答题16.解:(1)原式=÷﹣×16=×﹣=﹣=﹣;(2)原式=﹣×(÷0.25﹣32)=﹣×(2﹣32)=﹣×(﹣30)=24.17.解:60×=60×=28(人),答:八年级参加宣传队的有28人.18.解:二月份修了:15.5×=3.1(千米),三月份修了:15.5﹣15.5×﹣3.1=6.2(千米),答:二月份修了3.1千米,三月份修了6.2千米.。
21--22学年北师大版七年级上册 2、1-2、3:有理数、数轴与绝对值 一课一练(含答案)
《有理数、数轴与绝对值 》习题2一、选择题1.在0,1-,3,12,﹣0.1,0.08中,负数的个数是( ) A .1 B .2 C .3 D .42.在下列数﹣56,+1,6.7,﹣15,0,722,﹣1,25%中,属于整数的有( ) A .2个 B .3个 C .4个 D .5个3.下列各数:78,1.010010001,,0,, 2.626626662,0.12,433π---其中有理数的个数是 ( )A .3B .4C .5D .64.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a >﹣2B .a <﹣3C .a >﹣bD .a <﹣b5.如图所示,a 、b 、c 表示有理数,则a 、b 、c 的大小顺序是( )A .a b c <<B .a c b <<C .b a c <<D .c b a <<6.a 、b 两数在数轴上位置如图所示,将a 、b 、﹣a 、﹣b 用“<”连接,其中正确的是( )A .a <﹣a <b <﹣bB .﹣b <a <﹣a <bC .﹣a <b <﹣b <aD .﹣b <a <b <﹣a7.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .n m ->C .m n ->D .m n <8.一个机器人从数轴原点出发,沿数轴正方向,以每前进3步后退2步的程序运动。
设该机器人每秒钟前进或后退1步,并且每步的距离是1个单位长,n x 表示第n 秒时机器人在数轴上的位置所对应的数。
给出下列结论:①33x =;②51x =;③108104x x <;④20182019x x >。
其中,正确的结论的序号是( )A .①③B .②③C .①②③D .①②④9.一个点从数轴上的原点开始,先向右移动3个单位,再向左移动7个单位长度,这时点所对应的数是( )A .3B .1C .﹣2D .﹣410.下列各组数中,互为相反数的是( )A .﹣2与|﹣2|B .﹣2与﹣|﹣2|C .﹣2与﹣12 D .2与|﹣2|11.如图,数轴上有 A ,B ,C ,D 四个点,其中到原点距离相等的两个点是( )A .点B 与点 D B .点 A 与点C C .点 A 与点D D .点 B 与点 C12.下列各组数中,互为相反数的是( )A .(2)--和2B .(5)--和(5)+-C .12和2- D .(6)+-和(6)-+13.如图表示互为相反数的两个点是( )A .点A 与点B B .点A 与点DC .点C 与点BD .点C 与点D14.下列各组数中,互为相反数的一组是( )A .3-和-3B .3和13C .-3和13 D .3-和315.数轴上点A ,B 表示的数分别是5,-2,它们之间的距离可以表示为() A .|25|-- B .25-- C .25+- D .||25+-16.若x 与3的绝对值相等,则x ﹣1等于( )A .2B .﹣2C .﹣4D .2或﹣417.数轴上有A 、B 、C 、D 四个点,其中绝对值等于2的点是( )A .点AB .点BC .点CD .点D18.已知下列说法:①符号相反的两个数互为相反数;②符号相反且绝对值相等的两个数互为相反数;③一个数的绝对值越大,表示它的点在数轴上越靠右;④一个数的绝对值越大,表示它的点在数轴上离原点越远;⑤一个数的绝对值等于它的相反数,则这个数一定是负数.其中正确的说法有( )个.A .1B .2C .3D .419.如图,实数3-,x ,3,y 在数轴上的对应点分别为M ,N ,P ,Q ,那么这四个数中绝对值最小的数对应的点是( )A .点MB .点NC .点PD .点Q20.如图,数轴上A ,B ,C ,D 四个点所表示的实数分别为a ,b ,c ,d 在这四个数中绝对值最小的数是( )A .aB .bC .cD .d21.设x 为有理数,若|x|=x ,则( )A .x 为正数B .x 为负数C .x 为非正数D .x 为非负数22.若|x+2|+|y ﹣3|=0,则|x+y|的值为( )A .1B .﹣1C .1或﹣1D .以上都不对23.若|m|=5,|n|=7,m+n <0,则m ﹣n 的值是( )A .﹣12或﹣2B .﹣2或12C .12或2D .2或﹣1224.已知15a -=,则a 的值为( )A .6B .-4C .6或-4D .-6或425.若3,a =5b =,则a b -=( )A .2B .78C .8-D .2或8二、填空题1.如图,在数轴上有三个点A 、B 、C ,请回答下列问题.(1)A 、B 、C 三点分别表示 、 、 ;(2)将点B 向左移动3个单位长度后,点B 所表示的数是 ;(3)将点A 向右移动4个单位长度后,点A 所表示的数是 .2.|﹣34|的相反数是_____. 3.已知2x+4与3x ﹣2互为相反数,则x=_____.4.已知a 与b 的和为2,b 与c 互为相反数,若c =1,则a=__________.5.33x x -=-,则x 的取值范围是______.6.若210x y -++=,则2x y -的值为_______________.7.已知()2231a b +++取最小值,则a ab b+=____________。
北师大版七年级数学上册第二章 有理数及其运算 计算题专题练习题(含答案)
北师大版七年级数学上册第二章 有理数及其运算 计算题专题练习题专题(一) 有理数的加减运算1、计算:(-2)+3+1+(-3)+2+(-4).解:原式=[(-2)+2]+[3+(-3)]+1+(-4)=0+0+1+(-4)=-3.2、计算:(+9)-(+10)+(-2)-(-8)+3.解:原式=9-10-2+8+3=(9+8+3)-(10+2)=20-12=8.3、计算:(1)-23-35+78-13-25+18; 解:原式=(-23-13)+(-35-25)+(78+18) =-1-1+1=-1.(2)-479-(-315)-(+229)+(-615). 解:原式=[-479-(+229)]+[-(-315)+(-615)] =-7-3=-10.4、计算:|-0.75|+(-3)-(-0.25)+|-18|+78. 解:原式=0.75-3+0.25+18+78=(0.75+0.25)+(18+78)-3 =1+1-3=-1.5、计算:-156+(-523)+2434+312. 解:原式=(-1-56)+(-5-23)+(24+34)+(3+12) =[(-1)+(-5)+24+3]+[(-56)+(-23)+34+12] =21+(-14) =2034. 6、计算:634+313-514-312+123. 解:原式=6+34+3+13-5-14-3-12+1+23=(6+3-5-3+1)+(34+13-14-12+23) =2+1=3.7、计算:(1)(-7)-(+5)+(-4)-(-10);解:原式=-7-5-4+10=-6.(2)3.5-4.6+3.5-2.4;解:原式=(3.5+3.5)+(-2.4-4.6)=7-7=0.(3)-9+6-(+11)-(-15);解:原式=-9+6-11+15=(-9-11)+(6+15)=-20+21=1.(4)12+(-23)+45+(-12)+(-13); 解:原式=[12+(-12)]+[(-23)+(-13)]+45=0+(-1)+45=-15.(5)-478-(-512)+(-412)-318;解:原式=-478+512-412-318=(-478-318)+(512-412) =-8+1=-7.(6)0.25+112+(-23)-14+(-512); 解:原式=14+112+(-23)-14+(-512) =(14-14)+[112+(-23)+(-512)] =-1.(7)|-12|-(-2.5)-(-1)-|0-212|; 解:原式=12+2.5+1-212=(12+1)+(2.5-212) =112.(8)-205+40034+(-20423)+(-112); 解:原式=(-205)+400+34+(-204)+(-23)+(-1)+(-12) =(400-205-204-1)+(34-23-12)=-10+(-512) =-10512.(9)0+1-[(-1)-(-37)-(+5)-(-47)]+|-4|; 解:原式=1-[(-1)+37-5+47]+4 =1-[(-1+37+47)-5]+4 =10.(10)-12-16-112-120-130-142-156-172; 解:原式=-(12+16+112+120+130+142+156+172) =-(1-12+12-13+13-14+14-15+15-16+16-17+17-18+18-19) =-(1-19) =-89.(11)1-2-3+4+5-6-7+8+…+97-98-99+100.解:原式=(1-2)+(-3+4)+(5-6)+(-7+8)+…+(97-98)+(-99+100) =-1+1-1+1-…-1+1=0.8、观察下列各式:12=11×2=1-12,16=12×3=12-13,112=13×4=13-14,…,根据规律完成下列各题.(1)19×10=19-110; (2)计算12+16+112+120+…+19 900的值为99100.专题(二) 有理数的混合运算1、计算:531×(-29)×(-2115)×(-412). 解:原式=-531×29×3115×92=-(531×3115)×(29×92) =-13×1 =-13.2、计算:(14-16+124)×(-48). 解:原式=14×(-48)-16×(-48)+124×(-48) =-12+8-2=-6.3、计算:4×(-367)-3×(-367)-6×367. 解:原式=-367×(4-3+6) =-27.4、计算:(16-27+23)÷(-542). 解:原式=(16-27+23)×(-425) =16×(-425)-27×(-425)+23×(-425) =-75+125-285=-235.5、计算:(能用简便方法的尽量用简便方法计算)(1)-0.75×(-112)÷(-214); 解:原式=-34×(-32)×(-49)=-12.(2)-(3-5)×32÷(-1)3;解:原式=-(-2)×9÷(-1)=-2×9÷1=-18.(3)(-1.5)×45÷(-25)×34; 解:原式=32×45×52×34=94.(4)-14+16÷(-2)3×(-3-1);解:原式=-1+16÷(-8)×(-4)=-1+8=7.(5)(-5)÷(-127)×(-214)÷7; 解:原式=-5×79×94×17=-54.(6)0.7×1949+234×(-14)+0.7×59+14×(-14); 解:原式=0.7×(1949+59)-14×(234+14) =0.7×20-14×3=-28.(7)391314×(-14); 解:原式=(40-114)×(-14)=40×(-14)-114×(-14) =-560+1=-559.(8)1318÷(-7); 解:原式=1318×(-17) =(14-78)×(-17) =-2+18=-178.(9)12.5×6.787 5×18+1.25×678.75×0.125+0.125×533.75×18; 解:原式=(12.5×6.787 5+1.25×678.75+0.125×533.75)×18=[125×(0.678 75+6.787 5+0.533 75)]×18=125×8×18=125.(10)(-5)-(-5)×110÷110×(-5); 解:原式=(-5)-(-5)×110×10×(-5)=-5-25=-30.(11)(-42)÷(223)2+512×(-16)-(-0.5)2; 解:原式=(-16)÷649-1112-14=-94-1112-14=-4112.(12)148÷(38-56+14); 解:因为(38-56+14)÷148=(38-56+14)×48 =38×48-56×48+14×48 =18-40+12=-10,所以148÷(38-56+14)=-110.(13)(-12)÷(-4)-27÷(-3)×(-13); 解:原式=3-9×13=3-3=0.(14)(-2)3-16×(38-1)+2÷(12―14―16). 解:原式=-8-16×38+16+2÷(612-312-212) =-8-6+16+2÷112=2+24=26.。
北师大版七年级上册数学 有理数单元试卷(word版含答案)
一、初一数学有理数解答题压轴题精选(难)1.数轴上两点间的距离等于这两个点所对应的数的差的绝对值.例:点A、B在数轴上对应的数分别为a、b,则A、B两点间的距离表示为AB=|a﹣b|.根据以上知识解题:(1)点A在数轴上表示3,点B在数轴上表示2,那么AB=________.(2)在数轴上表示数a的点与﹣2的距离是3,那么a=________.(3)如果数轴上表示数a的点位于﹣4和2之间,那么|a+4|+|a﹣2|=________.(4)对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值.如果没有.请说明理由.【答案】(1)1(2)1或-5(3)6(4)解:∵|a-3|+|a﹣6|表示a到3与a到6的距离的和,∴当3≤a≤6时,|a-3|+|a-6|= =3,当a>6或a<3时,|a-3|+|a﹣6|>3,∴|a-3|+|a﹣6|有最小值,最小值为3.【解析】【解答】(1)AB= =1,故答案为:1( 2 )∵数轴上表示数a的点与﹣2的距离是3,∴ =3,∴-2-a=3或-2-a=-3,解得:a=1或a=-5,故答案为:1或-5( 3 )数a位于﹣4与2之间,|a+4|+|a﹣2|表示a到-4与a到2的距离的和,∴|a+4|+|a﹣2|= =6,故答案为:6【分析】(1)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值即可算出答案;(2)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值列出方程,求解即可;(3)根据题意可知:此题其实质就是求数轴上表示数a的点到表示数字-4的点的距离与数轴上表示数a的点到表示数字2的点的距离的和,又数轴上表示数a的点位于-4与2之间,故该距离等于数轴上表示数字-4与表示数字2的点之间的距离,从而即可得出答案;(4)此题其实质就是求数轴上表示数a的点到表示数字3的点的距离与数轴上表示数a 的点到表示数字6的点的距离的和,从而分当3≤a≤6时,当a>6或a<3时三种情况考虑即可得出答案.2.如图,在数轴上,点A表示﹣5,点B表示10.动点P从点A出发,沿数轴正方向以每秒1个单位的速度匀速运动;同时,动点Q从点B出发,沿数轴负方向以每秒2个单位的速度匀速运动,设运动时间为t秒:(1)当t为________秒时,P、Q两点相遇,求出相遇点所对应的数________;(2)当t为何值时,P、Q两点的距离为3个单位长度,并求出此时点P对应的数.【答案】(1)5;0(2)解:若P、Q两点相遇前距离为3,则有t+2t+3=10-(-5),解得:t=4,此时P点对应的数为:-5+t=-5+4=-1;若P、Q两点相遇后距离为3,则有t+2t-3=10-(-5),解得:t=6,此时P点对应的数为:-5+t=-5+6=1;综上可知,当t为4或6时,P,Q两点的距离为3个单位长度,此时点P对应的数分别为-1或1.【解析】【解答】(1)解:由题意可知运动t秒时P点表示的数为-5+t,Q点表示的数为10-2t;若P,Q两点相遇,则有-5+t=10-2t,解得:t=5,-5+t=-5+5=0,即相遇点所对应的数为0,故答案为5;相遇点所对应的数为0;【分析】(1)由题意可知运动t秒时P点表示的数为-5+t,Q点表示的数为10-2t,若P、Q相遇,则P、Q两点表示的数相等,由此可得关于t的方程,解方程即可求得答案;(2)分相遇前相距3个单位长度与相遇后相距3个单位长度两种情况分别求解即可得.3.阅读下面的材料:如图1,在数轴上A点衰示的数为a,B点表示的数为b,则点A到点B的距离记为AB.线段AB的长可以用右边的数减去左边的数表示,即AB﹣b﹣a.请用上面的知识解答下面的问题:如图2,一个点从数轴上的原点开始,先向左移动1cm到达A点,再向左移动2cm到达B 点,然后向右移动7cm到达C点,用1个单位长度表示1cm.(1)请你在数轴上表示出A.B.C三点的位置:(2)点C到点人的距离CA=________cm;若数轴上有一点D,且AD=4,则点D表示的数为________;(3)若将点A向右移动xcm,则移动后的点表示的数为________;(用代数式表示)(4)若点B以每秒2cm的速度向左移动,同时A.C点分别以每秒1cm、4cm的速度向右移动.设移动时间为t秒,试探索:CA﹣AB的值是否会随着t的变化而改变?请说明理由.【答案】(1)解:如图所示:(2)5;﹣5或3(3)﹣1+x(4)解:CA﹣AB的值不会随着t的变化而变化,理由如下:根据题意得:CA=(4+4t)﹣(﹣1+t)=5+3t,AB=(﹣1+t)﹣(﹣3﹣2t)=2+3t,∴CA﹣AB=(5+3t)﹣(2+3t)=3,∴CA﹣AB的值不会随着t的变化而变化【解析】【解答】(2)CA=4﹣(﹣1)=4+1=5(cm);设D表示的数为a,∵AD=4,∴|﹣1﹣a|=4,解得:a=﹣5或3,∴点D表示的数为﹣5或3;故答案为5,﹣5或3;( 3 )将点A向右移动xcm,则移动后的点表示的数为﹣1+x;故答案为﹣1+x;【分析】(1)根据题意容易画出图形;(2)由题意容易得出CA的长度;设D表示的数为a,由绝对值的意义容易得出结果;(3)将点A向右移动xcm,则移动后的点表示的数为-1+x;(4)表示出CA和AB,再相减即可得出结论.4.如图,数轴的单位长度为1.(1)如果点B,D表示的数互为相反数,那么图中点A、点D表示的数分别是________、________;(2)当点B为原点时,在数轴上是否存在点M,使得点M到点A的距离是点M到点D 的距离的2倍,若存在,请求出此时点M所表示的数;若不存在,说明理由;(3)在(2)的条件下,点A、点C分别以2个单位长度/秒和0.5个单位长度同时向右运动,同时点P从原点出发以3个单位长度/秒的速度向左运动,当点A与点C之间的距离为3个单位长度时,求点P所对应的数是多少?【答案】(1)-4;2(2)解:存在,如图:当点M在A,D之间时,设M表示的数为x,则x﹣(﹣2)=2(4﹣x)解得:x=2,当点M在A,D右侧时,则x﹣(﹣2)=2(x﹣4),解得:x=10,所以点M 所表示的数为2或10(3)解:设当点A与点C之间的距离为3个单位长度时,运动时间为t,A点运动到:﹣2+2t,C点运动到:3+0.5t,①﹣2+2t﹣(3+0.5t)=3,解得:t=6,所以P点对应运动的单位长度为:3×6=18,所以点P表示的数为﹣18.②3+0.5t﹣(﹣2+2t)=3,解得:t= ,所以P点对应运动的单位长度为:3× =4,所以点P表示的数为﹣4.答:点P表示的数为﹣18或﹣4.【解析】【解答】解:(1)∵点B,D表示的数互为相反数,∴点B为﹣2,D为2,∴点A为﹣4,故答案为:﹣4,2;【分析】(1)由数轴上表示的互为相反数的两个数,分别位于原点的两侧,并且到原点的距离相等得出BD的中点就是原点,进而即可得出点A,C所表示的数;(2)存在,如图:分类讨论:当点M在A,D之间时,设M表示的数为x ,则AM=x-(-2),DM=4-x,根据AM=2DM列出方程,求解即可;当点M在A,D右侧时,AM=x-(-2),DM=x-4,根据AM=2DM列出方程,求解即可;(3)设当点A与点C之间的距离为3个单位长度时,运动时间为t,A点运动到:﹣2+2t,C点运动到:3+0.5t,① 追击前根据两点间的距离公式列出方程3+0.5t﹣(﹣2+2t)=3 求解算出t的值,进而根据即可算出点P所表示的数;② 追击后根据两点间的距离公式列出方程﹣2+2t﹣(3+0.5t)=3求解算出t的值,进而根据即可算出点P所表示的数,综上所述即可得出答案。
北师大版七年级数学上册第二章有理数及其运算练习题及答案全套
北师大版七年级数学上第二章有理数及其运算同步练习1.数怎么不够用了一、选择题1.下面说法中正确的是().A.一个数前面加上“-”号,这个数就是负数B.0既不是正数,也不是负数C.有理数是由负数和0组成D.正数和负数统称为有理数2.如果海平面以上200米记作+200米,则海平面以上50米应记作().A.-50米B.+50米C.可能是+50米,也可能是-50米D.以上都不对3.下面的说法错误的是().A.0是最小的整数B.1是最小的正整数C.0是最小的自然数D.自然数就是非负整数二、填空题1.如果后退10米记作-10米,则前进10米应记作________;2.如果一袋水泥的标准重量是50千克,如果比标准重量少2千克记作-2千克,则比标准重量多1千克应记为________;3.车轮如果逆时针旋转一周记为+1,则顺时针旋转两周应记为______.三、判断题1.0是有理数.()2.有理数可以分为正有理数和负有理数两类.()3.一个有理数前面加上“+”就是正数.()4.0是最小的有理数.()四、解答题1.写出5个数(不许重复),同时满足下面三个条件.(1)其中三个数是非正数;(2)其中三个数是非负数;(3)5个数都是有理数.2.如果我们把海平面以上记为正,用有理数表示下面问题.一架飞机飞行高于海平面9630米;(2)潜艇在水下60米深.3.如果每年的12月海南岛的气温可以用正数去表示,则这时哈尔滨的气温应该用什么数来表示?4.某种上市股票第一天跌0.71%,第二天涨1.25%,各应怎样表示?5.如果海平面以上我们规定为正,地面的高度是否都可以用正数为表示?6.一学生参加一次智力竞赛,其中考五个题,记分标准是这样定的,如果答对一题得1分,答错或不答都扣1分,该生得了3分,问其答对了几个题?2.数轴一、选择题1.一个数的相反数是它本身,则这个数是()A.正数B.负数C.0 D.没有这样的数2.数轴上有两点E和F,且E在F的左侧,则E点表示的数的相反数应在F点表示的数的相反数的()A.左侧B.右侧C.左侧或者右侧D.以上都不对3.如果一个数大于另一个数,则这个数的相反数()A.小于另一个数的相反数B.大于另一个数的相反数C.等于另一个数的相反数D.大小不定二、填空题1.如果数轴上表示某数的点在原点的左侧,则表示该数相反数的点一定在原点的________侧;2.任何有理数都可以用数轴上的________表示;3.与原点的距离是5个单位长度的点有_________个,它们分别表示的有理数是_______和_______;4.在数轴上表示的两个数左边的数总比右边的数___________.三、判断题1.在数轴离原点4个单位长度的数是4.()2.在数轴上离原点越远的数越大.()3.数轴就是规定了原点和正方向的直线.()4.表示互为相反数的两个点到原点的距离相等.()四、解答题1.写出符合下列条件的数(1)大于而小于1的整数;(2)大于-4的负整数;(3)大于-0.5的非正整数.2.在数轴上表示下列各数,并把各数用“<”连结起来.(1)7,-3.5,0,-4.5,5,-2,3.5;(2)-500,-250,0,300,450;(3)0.1,,0.9,,1,0.3.找出下列各数的相反数(1)-0.05(2)(3)(4)-10004.如图,说出数轴上A、B、C、D四点分别表示的数的相反数,并把它们分别用标在数轴上.5.在数轴上,点A表示的数是-1,若点B也是数轴上的点,且AB的长是4个单位长度,则点B表示的数是多少?3.绝对值:一、选择题1.如果,则()A.B.C.D.2.下面说法中正确的是()A.若,则B.若,则C.若,则D.若,则3.下面说法中正确的是()A.若和都是负数,且有,则B.若和都是负数,且有,则C.若,且,则D.若都是正数,且且,则4.数轴上有一点到原点的距离是5,则()A.这一点表示的数的相反数是5 B.这一点表示的数的绝对值是5C.这一点表示的数是5 D.这一点表示的数是-5二、填空题1.已知某数的绝对值是,则是______或_______;2.绝对值最小的有理数是________;3.一个数的相反数是8,则这个数的绝对值是_________;4.已知数轴上有一点到原点的距离是3,则这点所表示的数的绝对值是________,这点所表示的数是________.三、判断题1.有理数的绝对值总是正数.()2.有理数的绝对值就等于这个有理数的相反数.()3.两个有理数,绝对值大的数反而小.()4.两个正有理数,绝对值大的数较小.()5.()四、解答题1.求下列各数的绝对值,并把它们用“<”连起来-2.37,0,,-385.7.2.把下列一组数用“>”连起来-999,,,0.01,.3.计算下列各式的值(1);(2);(3);(4)4.如图,比较和的绝对值的大小.5.计算下面各式的值(1)-(-2);(2)-(+2).4.有理数的加法:一、选择题1.两个有理数的和()A.一定大于其中的一个加数B.一定小于其中的一个加数C.和的大小由两个加数的符号而定D.和的大小由两个加数的绝对值而定2.下面计算错误的是()A.B.(-2)+(+2)=4C.D.(-71)+0=-713.如图,下列结论中错误的是()A.B.C.D.二、填空题1.两个负数相加其和为___________数.2.互为相反数的两个数的和是___________.3.绝对值不等的异号两个数相加,其和的符号与绝对值__________的加数的符号相同.三、解答题1.如图,请用表示与的和.2.计算(1);(2)(-0.19)+(-3.12);(3);(4);(5).3.计算(1)(-12.56)+(-7.25)+3.01+(-10.01)+7.25;(2)0.47+(-0.09)+0.39+(-0.3)+1.53;(3);(4)23+(-72)+(-22)+57+(-16);(5);(6)(7)4.一名外地民工10天的收支情况如下(收入为正):30元,-17元,21元,-5元,-3元,18元,-21元,45元,-10元,28元.这10天内这名外地民工净收入多少钱?5.一小商店一周的盈亏情况如下(亏为负):单位:元(1)计算出小商店一周的盈亏情况;(2)指出盈利最多一天的盈利额.6.在-49,-48,-47,…,2003这一串数中(1)前99个连续整数的和是多少?(2)前100个连续整数的和是多少?5.有理数的减法:一、选择题1.下面说法中正确的是()A.在有理数的减法中,被减数一定要大于减数B.两个负数的差一定是负数C.正数减去负数差是正数D.两个正数的差一定是正数2.下面说法中错误的是()A.减去一个数等于加上这个数的相反数B.减去一个数等于减去这个数的相反数C.零减去一个数就等于这个数的相反数D.一个数减去零仍得这个数3.甲数减乙数差大于零,则()A.甲数大于乙数B.甲数大于零,乙数也大于零C.甲数小于零,乙数也小于零D.以上都不对二、填空题1.比-3比2的数是__________,比-3少2的数是__________;2.;3..三、判断题1.若,则;()2.若成立,则;()3.若,则()四、解答题1.请举例说明两个数的差不一定小于被减数.2.如图,根据图中与的位置确定下面计算结果的正负.(1);(2);(3);(4)3.计算(1)2.7-(-3.1);(2)0.15-0.26;(3)(-5)-(-3.5);(4);(5);(6)4.1998年4月2日,长春等5个城市的最高气温与最低气温记录如下表,哪个城市的温差最大?哪个城市的温差最小?5.求数轴上表示两个数的两点间的距离.(1)表示的点与表示的点.(2)当时,表示数的点与表示的点.6.有理数的加减混合运算:一、选择题1.在1.17-32-23中把省略的“+”号填上应得到()A.1.17+32+23B.-1.17+(-32)+(-23)C.1.17+(-32)+(-23)D.1.17-(+32)-(+23)2.下面说法中正确的是()A.-2-1-3可以说是-2,-1,-3的和B.-2-1-3可以说是2,-1,-3的和C.-2-1-3是连减运算不能说成和D.-2-1-3=-2+3-13.下面说法中错误的是()A.有理数的加减混合运算都可以写成有理数的加法运算B.-5-(-6)-7不能应用加法的结合律和交换律C.如果和都是的相反数,则D.有理数的加减混合运算都可以写成有理数的减法运算二、填空题1.把下列式子变成只含有加法运算的式子.(1)-9-(-2)+(-3)-4=___________ ;(2).2.把下列各式写成省略加号的形式.(1)-7-(-15)+(-3)-(-4)=____________;(2)3.计算:(1)-5+7-15-4+2=_______________;(2)-0.5+4.3-9.6-1.8=_____________;(3)三、解答题:1.计算(1);(2);(3);(4)2.计算(1);(2);(3);(4)3.计算:(1);(2)-1999+2000-2001+2002-2003.4.小胖去年年末称体重是75千克,今年一月份小胖开始减肥,下面是小胖今年上半年体重的变化情况:负数表示比上月减少,正数表示比上月增加(1)小胖1~6月中哪个月的体重最重,是多少?(2)小胖1~6月中哪个月的体重最轻,是多少?(3)小胖6月份的体重较比去年年末是增加了还是减少了,是多少?5.存折中有2676元,取出1082元,又存入600元,在不考虑利息的情况下,你能算出存折中还有多少元钱吗?6.某校初一抽出5名同学测量体重,小明体重是55千克,其他4名同学的体重和小明体重的差数如下表:比小明重记为正,比小明轻记为负(1)哪几名同学的体重比小明重,重多少?(2)哪几名同学的体重比小明轻,轻多少?(3)写出最重和最轻的两个同学的体重,并说明这两名同学之间的体重相差多少?7.某百货商场的某种商品预计在今年平均每月售出500千克,一月份比预计平均月售出额多10千克记为+10千克,以后每月销售量和其前一个月销售量比较,其变化如下表(前11个月):(1)每月的销售量是多少?(2)前11个月的平均销售是多少?(3)要达到预计的月平均销售量,12月份还需销售多少千克?8.有理数的乘法:一、选择题1.下面说法中正确的是()A.因为同号相乘得正,所以(-2)×(-3)×(-1)=6 B.任何数和0相乘都等于0C.若,则D.以上说法都不正确2.已知,其中有三个负数,则()A.大于0B.小于0C.大于或等于0D.小于或等于03.若,其a、b、c()A.都大于0B.都小于0C.至少有一个大于0D.至少有一个小于0二、填空题1.两个数相乘,同号得___________,异号得_________,并把_________相乘;2.一个数和任何数相乘都得0,则这个数是_________;3.若干个有理数相乘,其积是负数,则积中负因数的个数是_________数.4.先填空,然后补写一个有同样特点的式子.(1)1×(-7)-1=_________,(2)9×(-9)+1=___________,12×(-7)-2=_________,98×(-9)+2=_________,123×(-7)-3=_________.987×(-9)+3=_________.__________________________.__________________________.9.有理数的除法:一、填空题1.0.25的倒数是___________-,-0.125的倒数是________,_________的倒数是;2.倒数与本身相等的数有____________.3.4.5.6.(4、5、6填“>,<,=”号)二、解答题1.计算:(1)(2)2.计算:3.在下面不正确的算式中添加负号与括号,使等式成立.(1)8×3+12÷4=-30(2)8×3+12÷4=-94.计算(1);(2)(-12)÷(-4)÷(-3)÷(-3);(3);(4)10.有理数的乘方;一、填空题1.把(-5)×(-5)×(-5)写成幂的形式是_________,底数是__________,指数是__________;2.平方等于它本身的数是_________;3.4.________的立方等于64,_________的平方等于64;5.一个数的平方等于它的绝对值,这个数是_________;6.二、判断题1.因为,所以()2.( )3.因为,所以有任何有理数的平方都是正数.()4.(n是正整数)()三、解答题: 1.计算题(1)(2)(3)2.任何整数的平方的个位数都不可能是哪些数字?3.若a是正数,请设计一个问题,使计算的结果是.4.计算1+3,1+3+5,1+3+5+7,…并找出规律,利用这个规律求1+3+5+…+19的值.5.把一个木棍第一次折成两节,第二次同时折这两节就得到四节,……,依次这样进行下去,当折十次时,将得到多少节木棍?11.有理数的混合运算: 一、选择题1.若,,则有( ) .A.B.C.D.2.已知,当时,,当时,的值是( ) .A.B.44 C.28 D.173.如果,那么的值为( ) A.0 B.4 C.-4 D.2 4.代数式取最小值时,值为( ) .A.B.C.D.无法确定5.六个整数的积,互不相等,则( ) A.0 B.4 C.6 D.86.计算所得结果为( ) .A.2 B.C.D.二、填空题1.有理数混合运算的顺序是__________________________.2.已知为有理数,则____0,____0,____0.(填“>”、“<”或“≥”=)3.平方得16的有理数是_________,_________的立方等于-8.4.__________.5.一个负数减去它的相反数后,再除以这个负数的绝对值,所得商为__________.6.1-(-2)×(-3)÷3=____________;7.1-(-2)÷(-3)×3=____________.三、解答题:1.计算(1);(2);(3);(4);(5);(6).2.计算:3.当n为奇数时,计算的值.4.试设计一个问题,使问题的计算结果是.5.某户搬入新楼,为了估计一下该月的用水量(按30天计算).对该月的头6天水表的显示数进行了记录,如下表:而在搬家之前由于搞房屋装修等已经用了15吨水.问:(1)这6在每天的用水量;(2)这6天的平均日用水量;(3)这个月大约需要用多少吨水.B组6.判断题(1)有理数和,如果,且,则.()(2)有理数和,如果,且,则()(3)表示数和的位置由下图所确定,若使,则表示数c的点的位置应在原点的右侧.()2.如图是2002年6月的日历.用一个长方形框四个数,请你认真观察框的四个数之间存在的关系..3.分别表示数和的点在数轴上的位置如图所示.(1);(2)表示数的点在数轴上运动时,将发生怎样的变化..。
北师大版七年级数学上册《有理数》同步练习2(含答案)
2.1《有理数》同步练习一、随堂检测1、521,76,106,14.3,732.1,34,5.2,0,1----+-中,正数有 , 负数有 。
2、如果水位升高5m 时水位变化记作 +5m ,那么水位下降3m 时水位变化记作 m ,水位不升不降时水位变化记作 m 。
3、在同一个问题中,分别用正数与负数表示的量具有 的意义。
二、拓展提高1、下列说法正确的是( )A 、零是正数不是负数B 、零既不是正数也不是负数C 、零既是正数也是负数D 、不是正数的数一定是负数,不是负数的数一定是正数2、向东行进-30米表示的意义是( )A 、向东行进30米B 、向东行进-30米C 、向西行进30米D 、向西行进-30米3、甲、乙两人同时从A 地出发,如果向南走48m,记作+48m ,则乙向北走32m ,记为 这时甲乙两人相距 m.4、某种药品的说明书上标明保存温度是(20±2)℃,由此可知在 ℃~ ℃范围内保存才合适。
5、如果把一个物体向右移动5m 记作移动-5m ,那么这个物体又移动+5m 是什么意思?这时物体离它两次移动前的位置多远?6、某老师把某一小组五名同学的成绩简记为:+10,-5,0,+8,-3,又知道记为0的成绩表示90分,正数表示超过90分,则五名同学的平均成绩为多少分?7、某地一天中午12时的气温是7℃,过5小时气温下降了4℃,又过7小时气温又下降了4℃,第二天0时的气温是多少?三、体验中考1、零上13℃记作+13℃,零下2℃可记作()A、2B、-2C、2℃D、-2℃2、某市2009年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高()A、-10℃B、-6℃C、6℃D、10℃参考答案一、随堂检测:1、;106,34,5.2 521,76,14.3,732.1,1----- 根据是正负数的定义。
2、-3, 0. 根据正负数所表示的意义。
3、相反二、拓展提高:1、B 根据正、负数和零的概念2、C 根据正负数所表示的意义3、-32m ,80根据正负数所表示的意义4、18~22℃ 根据正负数所表示的意义5、由于正数和负数表示具有相反意义的量,所以根据题意,+5m 表示向左移动5米,这时物体离它两次前的位置有0米,即它回到原处。
2022年北师大版数学七上第二章《有理数及其运算》同步练习(附答案)2(2.1-2.6)
第二章 有理数及其运算周周测一、选择题1.计算:|-13|=( )A .3B .-3 C.13 D .-132.以下各数中,最小的数是( ) A .0 B.13C .-13D .-33.计算(-2)+3的结果是( )A .1B .-1C .-5D .-6 4.下面说法正确的选项是( )A .两数之和不可能小于其中的一个加数B .两数相加就是它们的绝对值相加C .两个负数相加,和取负号,绝对值相减D .不是互为相反数的两个数,相加不能得零5.哈市某天的最高气温为28 ℃,最低气温为21 ℃,那么这一天的最高气温与最低气温的差为( )A .5 ℃B .6 ℃C .7 ℃D .8 ℃ 6.以下各式中,其和等于4的是( ) A .(-114)+(-214)B .312-558-|-734|C .(-12)-(-34)+2D .(-34)+0.125-(-458)7.杨梅开始采摘啦!每筐杨梅以5千克为基准,超过的千克数记为正数,缺乏的千克数记为负数,记录如图.那么这4筐杨梅的总质量是( )千克 B .千克C .20.1千克D .千克8.有理数a ,b ,c 在数轴上的位置如图,那么以下结论错误的选项是( )A .c -a <0B .b +c <0C .a +b -c <0D .|a +b |=a +b 二、填空题9.如果将低于警戒线水位0.27 m 记作-0.27 m ,那么+0.42 m 表示________________________.10.按规定,食品包装袋上都应标明袋内装有食品多少克,下表是几种饼干的检验结果,“+〞“-〞号分别表示比标准重量多和少,用绝对值判断最符合标准的一种食品是________.威化 咸味 甜味 酥脆 +10(g)-8.5(g)+5(g)-3(g)11.从-5中减去-1,-3,2的和,所得的差是________.12.如果a 的相反数是最小的正整数,b 是绝对值最小的数,那么a +b =________,b -a =________.13.一只小虫从数轴上表示-1的点出发,先向左爬行2个单位长度,再向右爬行5个单位长度到点C ,那么点C 表示的数是________.14.现有一列数:2,34,49,516,…,那么第7个数为________.15.01=-x ,2=y ,那么x -y =________.16.33+=+x x ,猜猜看x 是什么数?________.三、解答题17.将以下各数填在相应的集合里: +6,-2,,-15,1,35,0,314,,-4.92.18.在数轴上表示以下各数:-12,|-2|,-(-3),0,52,-(+32),并用“<〞将它们连接起来.19.计算: (1)(-10)+(+7);(2)(+52)-(-13);(3)12-(-18)+(-7)-15;(4)12+(-23)-(-45)+(-12)-(+13).20.一个水利勘察队,第一天沿江向上游走了7千米,,,第四天沿江向上游走了10千米,第四天勘察队在出发点的上游还是下游?距出发点多少千米?21.某自行车厂本周方案每天生产100辆自行车,由于工人实行轮休,每天上班人数不一定相等,实际每天产量与方案产量比照方下表:(超出的辆数为正数,缺乏的辆数为负数)星期一二三四五六日增减-5 +4 -3 +4 +10 -2 -15(1)本周总产量与方案产量相比,增加(或减少)了多少辆?(2)日平均产量与方案产量相比,增加(或减少)了多少辆?依题意,可列方程为:=10;应选B.【点评】理清题意,找对等量关系是解答此类题目的关键;需注意的是此题中“每两人都握了一次手〞的条件,类似于球类比赛的单循环赛制.9.〔3分〕某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是〔〕A.50〔1+x〕2=182 B.50+50〔1+x〕+50〔1+x〕2=182C.50〔1+2x〕=182 D.50+50〔1+x〕+50〔1+2x〕2=182【考点】由实际问题抽象出一元二次方程.【专题】增长率问题;压轴题.【分析】主要考查增长率问题,一般增长后的量=增长前的量×〔1+增长率〕,如果该厂五、六月份平均每月的增长率为x,那么可以用x分别表示五、六月份的产量,然后根据题意可得出方程.【解答】解:依题意得五、六月份的产量为50〔1+x〕、50〔1+x〕2,∴50+50〔1+x〕+50〔1+x〕2=182.应选B.【点评】增长率问题,一般形式为a〔1+x〕2=b,a为起始时间的有关数量,b 为终止时间的有关数量.10.〔3分〕x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,那么b a的值是〔〕A.B.﹣C.4 D.﹣1【考点】根与系数的关系.【分析】根据根与系数的关系和x1+x2和x1•x2的值,可求a、b的值,再代入求值即可.【解答】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,解得a=2,b=﹣,∴b a=〔﹣〕2=.应选:A.【点评】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.11.〔3分〕定义运算:a⋆b=a〔1﹣b〕.假设a,b是方程x2﹣x+m=0〔m<0〕的两根,那么b⋆b﹣a⋆a的值为〔〕A.0 B.1 C.2 D.与m有关【考点】根与系数的关系.【专题】新定义.【分析】〔方法一〕由根与系数的关系可找出a+b=1,根据新运算找出b⋆b﹣a⋆a=b 〔1﹣b〕﹣a〔1﹣a〕,将其中的1替换成a+b,即可得出结论.〔方法二〕由根与系数的关系可找出a+b=1,根据新运算找出b⋆b﹣a⋆a=〔a﹣b〕〔a+b﹣1〕,代入a+b=1即可得出结论.【解答】解:〔方法一〕∵a,b是方程x2﹣x+m=0〔m<0〕的两根,∴a+b=1,∴b⋆b﹣a⋆a=b〔1﹣b〕﹣a〔1﹣a〕=b〔a+b﹣b〕﹣a〔a+b﹣a〕=ab﹣ab=0.〔方法二〕∵a,b是方程x2﹣x+m=0〔m<0〕的两根,∴a+b=1.∵b⋆b﹣a⋆a=b〔1﹣b〕﹣a〔1﹣a〕=b﹣b2﹣a+a2=〔a2﹣b2〕+〔b﹣a〕=〔a+b〕〔a﹣b〕﹣〔a﹣b〕=〔a﹣b〕〔a+b﹣1〕,a+b=1,∴b⋆b﹣a⋆a=〔a﹣b〕〔a+b﹣1〕=0.应选A.【点评】此题考查了根与系数的关系,解题的关键是找出a+b=1.此题属于根底题,难度不大,解决该题型题目时,根据根与系数的关系得出两根之积与两根之和是关键.12.〔3分〕使用墙的一边,再用13m的铁丝网围成三边,围成一个面积为20m2的长方形,求这个长方形的两边长.设墙的对边长为xm,可得方程〔〕A.x〔13﹣x〕=20 B.x•=20 C.x〔13﹣x〕=20 D.x•=20【考点】由实际问题抽象出一元二次方程.【专题】几何图形问题.【分析】根据铁丝网的总长度为13m,长方形的面积为20m2,来列出关于x的方程,由题意可知,墙的对边为xm,那么长方形的另一对边为m,那么可利用面积公式求出即可.【解答】解:设墙的对边长为x m,可得方程:x×=20.应选:B.【点评】此题主要考查长方形的周长和长方形的面积公式,得出矩形两边长是解题关键.二.填空题〔每题3分,共12分〕13.〔3分〕方程x2﹣3=0的根是x=±.【考点】解一元二次方程-直接开平方法.【专题】计算题;一次方程〔组〕及应用.【分析】方程变形后,利用平方根定义开方即可求出x的值.【解答】解:方程整理得:x2=3,开方得:x=±,故答案为:x=±【点评】此题考查了解一元二次方程﹣直接开平方法,熟练掌握平方根定义是解此题的关键.14.〔3分〕当k=0时,方程x2+〔k+1〕x+k=0有一根是0.【考点】一元二次方程的解.【专题】计算题.【分析】将x=0代入的方程中,得到关于k的方程,求出方程的解即可得到满足题意k的值.【解答】解:将x=0代入方程x2+〔k+1〕x+k=0得:k=0,那么k=0时,方程x2+〔k+1〕x+k=0有一根是0.故答案为:0【点评】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.15.〔3分〕设m,n分别为一元二次方程x2+2x﹣2021=0的两个实数根,那么m2+3m+n=2021.【考点】根与系数的关系.【专题】计算题.【分析】先利用一元二次方程根的定义得到m2=﹣2m+2021,那么m2+3m+n可化简为2021+m+n,再根据根与系数的关系得到m+n=﹣2,然后利用整体代入的方法计算.【解答】解:∵m为一元二次方程x2+2x﹣2021=0的实数根,∴m2+2m﹣2021=0,即m2=﹣2m+2021,∴m2+3m+n=﹣2m+2021+3m+n=2021+m+n,∵m,n分别为一元二次方程x2+2x﹣2021=0的两个实数根,∴m+n=﹣2,∴m2+3m+n=2021﹣2=2021.【点评】此题考查了根与系数的关系:假设x1,x2是一元二次方程ax2+bx+c=0〔a≠0〕的两根时,x1+x2=﹣,x1x2=.也考查了一元二次方程根的定义.16.〔3分〕写出以4,﹣5为根且二次项的系数为1的一元二次方程是x2+x ﹣20=0.【考点】根与系数的关系.【专题】计算题.【分析】先简单4与﹣5的和与积,然后根据根与系数的关系写出满足条件的方程.【解答】解:∵4+〔﹣5〕=﹣1,4×〔﹣5〕=﹣20,∴以4,﹣5为根且二次项的系数为1的一元二次方程为x2+x﹣20=0.故答案为x2+x﹣20=0.【点评】此题考查了一元二次方程ax2+bx+c=0〔a≠0〕的根与系数的关系:假设方程两个为x1,x2,那么x1+x2=﹣,x1•x2=.三.解答题〔此题有7小题,共52分〕17.〔10分〕解方程〔1〕x2﹣4x﹣5=0〔2〕3x〔x﹣1〕=2﹣2x.【考点】解一元二次方程-因式分解法.【分析】〔1〕根据因式分解法可以解答此题;〔2〕先移项,然后提公因式可以解答此方程.【解答】解:〔1〕x2﹣4x﹣5=0〔x﹣5〕〔x+1〕=0∴x﹣5=0或x+1=0,解得,x1=5,x2=﹣1;〔2〕3x〔x﹣1〕=2﹣2x3x〔x﹣1〕+2〔x﹣1〕=0〔3x+2〕〔x﹣1〕=0∴3x+2=0或x﹣1=0,解得,.【点评】此题考查解一元二次方程﹣因式分解法,解题的关键是根据方程的特点,选取适宜的因式分解法解答方程.18.〔5分〕试证明关于x的方程〔a2﹣8a+20〕x2+2ax+1=0无论a取何值,该方程都是一元二次方程.【考点】一元二次方程的定义.【专题】证明题.【分析】根据一元二次方程的定义,只需证明此方程的二次项系数a2﹣8a+20不等于0即可.【解答】证明:∵a2﹣8a+20=〔a﹣4〕2+4≥4,∴无论a取何值,a2﹣8a+20≥4,即无论a取何值,原方程的二次项系数都不会等于0,∴关于x的方程〔a2﹣8a+20〕x2+2ax+1=0,无论a取何值,该方程都是一元二次方程.【点评】一元二次方程有四个特点:〔1〕只含有一个未知数;〔2〕含未知数的项的最高次数是2;〔3〕是整式方程;〔4〕将方程化为一般形式ax2+bx+c=0时,应满足a≠0.要判断一个方程是否为一元二次方程,先看它是否为整式方程,假设是,再对它进行整理.如果能整理为ax2+bx+c=0〔a≠0〕的形式,那么这个方程就为一元二次方程.19.〔6分〕某村方案建造如下图的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保存3m宽的空地,其它三侧内墙各保存1m宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是288m2?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】此题有多种解法.设的对象不同那么列的一元二次方程不同.设矩形温室的宽为xm,那么长为2xm,根据矩形的面积计算公式即可列出方程求解.【解答】解:解法一:设矩形温室的宽为xm,那么长为2xm,根据题意,得〔x﹣2〕•〔2x﹣4〕=288,∴2〔x﹣2〕2=288,∴〔x﹣2〕2=144,∴x﹣2=±12,解得:x1=﹣10〔不合题意,舍去〕,x2=14,所以x=14,2x=2×14=28.答:当矩形温室的长为28m,宽为14m时,蔬菜种植区域的面积是288m2.解法二:设矩形温室的长为xm,那么宽为xm.根据题意,得〔x﹣2〕•〔x ﹣4〕=288.解这个方程,得x1=﹣20〔不合题意,舍去〕,x2=28.所以x=28,x=×28=14.答:当矩形温室的长为28m,宽为14m时,蔬菜种植区域的面积是288m2.【点评】解答此题,要运用含x的代数式表示蔬菜种植矩形长与宽,再由面积关系列方程.20.〔8分〕某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.〔1〕求该种商品每次降价的百分率;〔2〕假设该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?【考点】一元二次方程的应用;一元一次不等式的应用.【分析】〔1〕设该种商品每次降价的百分率为x%,根据“两次降价后的售价=原价×〔1﹣降价百分比〕的平方〞,即可得出关于x的一元二次方程,解方程即可得出结论;〔2〕设第一次降价后售出该种商品m件,那么第二次降价后售出该种商品〔100﹣m〕件,根据“总利润=第一次降价后的单件利润×销售数量+第二次降价后的单件利润×销售数量〞,即可得出关于m的一元一次不等式,解不等式即可得出结论.【解答】解:〔1〕设该种商品每次降价的百分率为x%,依题意得:400×〔1﹣x%〕2=324,解得:x=10,或x=190〔舍去〕.答:该种商品每次降价的百分率为10%.〔2〕设第一次降价后售出该种商品m件,那么第二次降价后售出该种商品〔100﹣m〕件,第一次降价后的单件利润为:400×〔1﹣10%〕﹣300=60〔元/件〕;第二次降价后的单件利润为:324﹣300=24〔元/件〕.依题意得:60m+24×〔100﹣m〕=36m+2400≥3210,解得:m≥22.5.∴m≥23.答:为使两次降价销售的总利润不少于3210元.第一次降价后至少要售出该种商品23件.【点评】此题考查了一元二次方程的应用以及一元一次不等式的应用,解题的关键是:〔1〕根据数量关系得出关于x的一元二次方程;〔2〕根据数量关系得出关于m的一元一次不等式.此题属于根底题,难度不大,解决该题型题目时,根据数量关系列出不等式〔方程或方程组〕是关键.21.〔6分〕阅读下面的例题,范例:解方程x2﹣|x|﹣2=0,解:〔1〕当x≥0时,原方程化为x2﹣x﹣2=0,解得:x1=2,x2=﹣1〔不合题意,舍去〕.〔2〕当x<0时,原方程化为x2+x﹣2=0,解得:x1=﹣2,x2=1〔不合题意,舍去〕.∴原方程的根是x1=2,x2=﹣2请参照例题解方程x2﹣|x﹣1|﹣1=0.【考点】解一元二次方程-因式分解法.【专题】阅读型.【分析】分为两种情况:〔1〕当x≥1时,原方程化为x2﹣x=0,〔2〕当x<1时,原方程化为x2+x﹣2=0,求出方程的解即可.【解答】解:x2﹣|x﹣1|﹣1=0,〔1〕当x≥1时,原方程化为x2﹣x=0,解得:x1=1,x2=0〔不合题意,舍去〕.〔2〕当x<1时,原方程化为x2+x﹣2=0,解得:x1=﹣2,x2=1〔不合题意,舍去〕.故原方程的根是x1=1,x2=﹣2.【点评】此题考查了解一元二次方程的应用,解此题的关键是能正确去掉绝对值符号.22.〔8分〕龙华天虹商场以120元/件的价格购进一批上衣,以200元/件的价格出售,每周可售出100件.为了促销,该商场决定降价销售,尽快减少库存.经调查发现,这种上衣每降价5元/件,每周可多售出20件.另外,每周的房租等固定本钱共3000元.该商场要想每周盈利8000元,应将每件上衣的售价降低多少元?【考点】一元二次方程的应用.【分析】设每件上衣应降价x元,那么每件利润为〔80﹣x〕元,此题的等量关系为:每件上衣的利润×每天售出数量﹣固定本钱=8000.【解答】解:设每件上衣应降价x元,那么每件利润为〔80﹣x〕元,列方程得:〔80﹣x〕〔100+x〕﹣3000=8000,解得:x1=30,x2=25因为为了促销,该商场决定降价销售,尽快减少库存,所以x=30.答:应将每件上衣的售价降低30元.【点评】此题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出适宜的等量关系,列出方程,再求解.23.〔9分〕如图,在△ABC中,∠B=90°,AB=6厘米,BC=8厘米.点P从A 点开始沿A边向点B以1厘米/秒的速度移动〔到达点B即停止运动〕,点Q从C点开始沿CB边向点B以2厘米/秒的速度移动〔到达点C即停止运动〕.〔1〕如果P、Q分别从A、C两点同时出发,经过几秒钟,△PBQ的面积等于是△ABC的三分之一?〔2〕如果P、Q两点分别从A、C两点同时出发,而且动点P从A点出发,沿AB移动〔到达点B即停止运动〕,动点Q从C出发,沿CB移动〔到达点C 即停止运动〕,几秒钟后,P、Q相距6厘米?〔3〕如果P、Q两点分别从A、C两点同时出发,而且动点P从A点出发,沿AB移动〔到达点B即停止运动〕,动点Q从C出发,沿CB移动〔到达点B 即停止运动〕,是否存在一个时刻,PQ同时平分△ABC的周长与面积?假设存在求出这个时刻的t 值,假设不存在说明理由.【考点】三角形综合题.【分析】〔1〕设经过t秒钟,△PBQ的面积等于是△ABC的三分之一,根据题意得:AP=t,BP=6﹣t,BQ=2t,由,△PBQ的面积等于是△ABC的三分之一列式可得求出t的值;〔2〕在Rt△PQB中,根据勾股定理列方程即可;〔3〕分两种情况:①当PQ平分△ABC面积时,计算出这时的t=5﹣,同时计算这时PQ所截△ABC的周长是否平分;②当PQ平分△ABC周长时,计算出这时的t=,此时△PBQ的面积是否为,计算即可.【解答】解:〔1〕设经过t秒钟,△PBQ的面积等于是△ABC的三分之一,由题意得:AP=t,BP=6﹣t,BQ=2t,×2t×〔6﹣t〕=××6×8,解得:t=2或4,∵0≤t≤4,∴t=2或4符合题意,答:经过2或4秒钟,△PBQ的面积等于是△ABC的三分之一;〔2〕在Rt△PQB中,PQ2=BQ2+PB2,∴62=〔2t〕2+〔6﹣t〕2,解得:t1=0〔舍〕,t2=,答:秒钟后,P、Q相距6厘米;〔3〕由题意得:PB=6﹣t,BQ=8﹣2t,分两种情况:①当PQ平分△ABC面积时,S△PBQ=S△ABC,〔6﹣t〕〔8﹣2t〕=××8×6,解得:t1=5+,t2=5﹣,∵Q从C到B,一共需要8÷2=4秒,5+>4,∴t1=5+不符合题意,舍去,当t2=5﹣时,AP=5﹣,BP=6﹣〔5﹣〕=1+,BQ=8﹣2〔5﹣〕=2﹣2,CQ=2〔5﹣〕=10﹣2,PQ将△ABC的周长分为两局部:一局部为:AC+AP+CQ=10+5﹣+10﹣2=25﹣3,另一局部:PB+BQ=1++2﹣2=3﹣1,25﹣3≠3﹣1,②当PQ平分△ABC周长时,AP+AC+CQ=PB+BQ,10+2t+t=6﹣t+8﹣2t,t=,当t=时,PB=6﹣=,BQ=8﹣2×=,∴S=××=≠12,△PBQ综上所述,不存在这样一个时刻,PQ同时平分△ABC的周长与面积.【点评】此题是动点运动问题,在三角形中的动点问题,首先要确定两个动点的:路线、路程、速度、时间,表示出时间为t时的路程是哪一条线段的长,根据条件列等式或方程,解出即可.。
【精选】北师大版七年级上册数学 有理数同步单元检测(Word版 含答案)
一、初一数学有理数解答题压轴题精选(难)1.已知数轴上点A对应的数是,点B对应的数是一只小虫甲从点A出发,沿着数轴由A向B以每秒2个单位的速度爬行,到B点运动停止;另一只小虫乙从点B出发,沿着数轴由B向A以每秒4个单位的速度爬行,到A点运动停止,设运动时间为t. (1)若小虫乙到达A点后在数轴上继续作如下运动:第1次向左爬行2个单位,第2次向右爬行4个单位,第3次向左爬行6个单位,第4次向右爬行8个单位,,依此规律爬下去,求它第10次爬行后,所停点对应的数:(2)用含t的代数式表示甲、乙的距离S;(3)当甲、乙相距40个单位长度时,求运动时间t;(4)若点Q是线段BA延长线上一点,QB的中点为M,QA的三等分点为N,当点Q运动时,探究是否为定值?如果是,请求出这个定值;如果不是,请说明理由. 【答案】(1)解:第10次爬行所对应的数为(2)解:当甲、乙相遇时,秒时,甲、乙相遇;当甲到达B点是,秒;当乙到达A点时,秒;①当时,甲、乙距离;②当时,甲、乙距离;③当时,乙到达A点,此时甲、乙距离 .(3)解:①当时,,;②当时,,;③当时,,;综上,运动时间t为,或20.(4)解:设点Q对应的数是a,则M表示的数是,①当N为靠近Q点三等分点时,N表示的数是,,故当N为靠近Q点三等分点时,是定值,定值为20;②当N为靠近A点三等分点时,N表示的数是,,故当N为靠近A点三等分点时,不是定值.【解析】【分析】(1)向左爬行用减法,向右爬行用加法,列出式子求出结果即可;(2)分三种情况,相遇前、相遇后和乙到达A点后,分别在数轴上找出数量关系列出式子即可;(3)借助第二问的结论,令求出t的值即可;(4)设点Q表示的数为a,用a的代数式表示出M和N表示的数,进而用t的式子表示出BN和QM的长,求出的值,如果结果中不含有a,则式子为定值;反之则不是定值.2.已知数轴上有A,B,C三个点,对应的数分别为﹣36,﹣12,12;动点P从A出发,以每秒1个单位的速度向终点C移动,设运动时间为t秒(1)若点P到A点的距离是到点B距离的2倍,求点P的对应数;(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.在点Q开始运动后第几秒时,P、Q 两点之间的距离为4?请说明理由.【答案】(1)解:当P在A、B之间,PA+PB=AB,因为点P到A点的距离是到点B距离的2倍,所以PA=2PB,故2PB+PB=AB,代数可得PB=8,故P点对应数为﹣12﹣8=﹣20;当P在B、C之间,PA﹣PB=AB,所以2PB﹣PB=AB,故PB=AB=24,故P点对应数为﹣12+24=12,与点C重合.(2)解:分四种情况考虑,第一种情况:当Q未追上P时,两点相距4个单位长度.PA﹣QA=4,设时间为t1, AB+t1×1﹣3t1=4,故24+t1×1﹣3t1=4,则t1=10;第二种情况:当Q超过P时,两点相距4个单位长度.QA﹣PA=4,设时间为t2,3t2﹣(t2+AB)=4,故3t2﹣(t2+24)=4,则t2=14;第三种情况:当Q从C点返回未和P相遇时,两点相距4个单位长度.设时间为t3,3t3+t3+4+AB=2AC,故3t3+t3+4+24=2×48,则t3=17;第四种情况:当Q从C点返回和P相遇后,两点相距4个单位长度.设时间为t4,3t4+t4+AB=2AC+4,故3t4+t4+24=2×48+4,则t4=19.【解析】【分析】(1)P从A运动到C,存在两种情况:1.P在A、B之间2.P在B、C之间,后计算发现此点与C重合;(2)分四种情况考虑,第一种情况:当Q未追上P时,两点相距4个单位长度. 第二种情况:当Q超过P时,两点相距4个单位长度. 第三种情况:当Q 从C点返回未和P相遇时,两点相距4个单位长度,第四种情况:当Q从C点返回和P相遇后,两点相距4个单位长度.3.已知 a、b、c 在数轴上的位置如图:(1)用“<”或“>”填空:a+1________0;c-b________0;b-1________0;(2)化简:;(3)若a+b+c=0,且b与-1的距离和c与-1的距离相等,求下列式子的值:2b -c - (a - 4c - b).【答案】(1)>;<;<(2)解:∵a+1>0,c-b<0,b-1<0,∴原式=a+1-(b-c)-(1-b)=a+1-b+c-1+b=a+c(3)解:由已知得:b+1=-1-c,即b+c=-2,∵a+b+c=0,即-2+a=0,∴a=2,则2b -c - (a - 4c - b).=2b -c - a + 4c + b=3(b+c)-2=【解析】【解答】解:(1)根据题意得:c<0<b<1<a∴a+1>0;c-b<0;b-1<0【分析】(1)根据数轴上点的位置进行计算比较大小即可;(2)利用数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果(3)根据题意列出关系式,求出a与b+c的值,原式去括号合并得到最简结果,将a与b+c的值代入计算即可求出值.4.仔细观察下列等式:第1个:22﹣1=1×3第2个:32﹣1=2×4第3个:42﹣1=3×5第4个:52﹣1=4×6第5个:62﹣1=5×7…这些等式反映出自然数间的某种运算规律.按要求解答下列问题:(1)请你写出第6个等式:________;(2)设n(n≥1)表示自然数,则第n个等式可表示为________;(3)运用上述结论,计算: .【答案】(1)72﹣1=6×8(2)(n+1)2-1=n(n+2)(3)解:===【解析】【解答】解:(1)∵第1个:22-1=1×3第2个:32-1=2×4第3个:42-1=3×5第4个:52-1=4×6第5个:62-1=5×7,∴第6个等式:72-1=6×8;故答案为:72-1=6×82)设n(n≥1)表示自然数,则第n个等式可表示为:(n+1)2-1=n(n+2);故答案为:(n+1)2-1=n(n+2);【分析】(1)根据题中所给出的例子找出规律,即可得到第六个等式.(2)根据题中所给出的例子找出规律,进行解答即可.(3)根据所得结论,进行化简,即可得到答案.5.已知多项式,次数是b,3a与b互为相反数,在数轴上,点A 表示数a,点B表示数b.(1)数轴上A、B之间的距离记作,定义:设点C在数轴上对应的数为x,当时,直接写出x的值.(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度按照如此规律不断地左右运动,当运动了2019次时,求点P所对应的有理数.(3)若小蚂蚁甲从点A处以1个单位长度秒的速度向左运动,同时小蚂蚁乙从点B处以2单位长度秒的速度也向左运动,一同学观察两只小蚂蚁运动,在它们刚开始运动时,在原点O处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t秒,求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t. 【答案】(1)解:由多项式的次数是6可知,又3a和b互为相反数,故 .当C在A左侧时,,,;在A和B之间时,,点C不存在;点C在B点右侧时,,,;故答案为:或8.(2)解:依题意得:.点P对应的有理数为 .(3)解:甲、乙两小蚂蚁均向左运动,即时,此时,,,解得,;甲向左运动,乙向右运动时,即时,此时,,依题意得,,解得, .答:甲、乙两小蚂蚁到原点的距离相等时经历的时间是秒或8秒【解析】【分析】(1)根据题意可得a=−2,b=6;然后分当C在A左侧时,在A和B之间时,点C在B点右侧时,三种情况用x表示出|CA|和|CB|的长度,利用“|CA|+|CB|=12”列出方程即可求出答案;(2)向左运动记为负,向右运动记为正,由点P所表示的数依次加上每次运动的距离列出算式,进而根据有理数加减法法则算出答案;(3)分甲、乙两小蚂蚁均向左运动,即时,甲向左运动,乙向右运动时,即时两种情况,根据到原点距离相等列出方程求解即可.6.观察下面的等式:回答下列问题:(1)填空:________ ;(2)已知,则的值是________;(3)设满足上面特征的等式最左边的数为,则的最大值是________,此时的等式为________ .【答案】(1)-4(2)0或-4(3)4;【解析】【解答】解:根据观察可以知道,所有的式子符合的形式,所以(1)中此时2-a=6,解得a=-4,故答案为-4;所以(2)中a=2,故2-2=0,所以x的值为0;根据绝对值的意义将原式化简可得,求得x=0或x=-4,所以x的值为0或-4;(3)根据,可知,整理得,所以,所以y的最大值为4,此时的式子是.【分析】(1)根据即可求解;(2)由(1)的规律即可求解;(3)由(1)可得进行整理,根据绝对值意义求解即可.7.先阅读下列材料,再解决问题:学习数轴之后,有同学发现在数轴上到两点之间距离相等的点,可以用表示这两点表示的数来确定.如:(1)到表示数4和数10距离相等的点表示的数是7,有这样的关系7= (4+10);(2)到表示数和数距离相等的点表示的数是,有这样的关系 =.解决问题:根据上述规律完成下列各题:(1)到表示数50和数150距离相等的点表示的数是________(2)到表示数和数距离相等的点表示的数是________(3)到表示数 12和数 26距离相等的点表示的数是________(4)到表示数a和数b距离相等的点表示的数是________【答案】(1)100(2)(3)-14(4)【解析】【解答】解:(1)由题意得:到表示数50和数150距离相等的点表示的数为:(2)到表示数和数距离相等的点表示的数为:(3)到表示数 -12 和数 -26 距离相等的点表示的数为:(4)到表示数a和数b距离相等的点表示的数为: .故答案为:100,, -14,.【分析】根据题中的叙述分别表示出数轴上这些到两点之间距离相等的点,最后得出规律到两点之间距离相等的点的数等于这两点坐标之和除以2, 即x=.8.如图,在数轴上A点表示的数是-8,B点表示的数是2。
北师大版数学七年级上册同步练习: 2.1 有理数(word解析版)
2019-2019学年度北师大版数学七年级上册同步练习2.1 有理数〔word解析版〕学校:___________姓名:___________班级:___________一.选择题〔共12小题〕1.某种药品的说明书上标明保存温度是〔20±2〕℃ ,那么该药品在〔〕范围内保存才适宜.A.18℃~20℃B.20℃~22℃ C.18℃~21℃ D.18℃~22℃2.假设一辆汽车向南行驶5千米记作+5千米 ,那么向北行驶3千米应记作〔〕A.+3千米B.+2千米 C.﹣3千米D.﹣2千米3.如果“收入10元〞记作+10元 ,那么支出20元记作〔〕A.+20元 B.﹣20元 C.+10元D.﹣10元4.﹣2 ,0 ,2 ,﹣3这四个数中是正数的是〔〕A.﹣2 B.0 C.2 D.﹣35.以下一组数:﹣8 ,0 ,﹣32 ,﹣〔﹣5.7〕 ,其中负数的个数有〔〕A.1个B.2个C.3个D.4个6.假设足球质量与标准质量相比 ,超出局部记作正数 ,缺乏局部记作负数.那么下面4个足球中 ,质量最接近标准的是〔〕A.B.C.D.7.以下四个数中 ,正整数是〔〕A.﹣2 B.﹣1 C.0 D.18.在数﹣2 ,π ,0 ,2.6 ,+3 ,中 ,属于整数的个数为〔〕A.4 B.3 C.2 D.19.最大的负整数是〔〕A.0 B.1 C.﹣1 D.不存在10.以下四个数是负分数的是〔〕A.﹣〔﹣0.〕B.πC.0.341 D.11.以下说法中不正确的选项是〔〕A.﹣3.14既是负数 ,分数 ,也是有理数B.0既不是正数 ,也不是负数 ,但是整数C.﹣2019既是负数 ,也是整数 ,但不是有理数D.0是非正数12.在以下选项中 ,既是分数 ,又是负数的是〔〕A.9 B.C.﹣0.125 D.﹣72二.填空题〔共10小题〕13.如果盈利200元记做+200元 ,那么亏损80元记做元.14.如果向东走10米记作+10米 ,那么向西走15米可记作米.15.把向东走4米记作+4米 ,那么向西走6米记作米.16.将高于平均水位2m记作“+2m〞 ,那么低于平均水位0.5m记作.17.如果卖出一台电脑赚钱500元 ,记作+500 ,那么亏本300元 ,记作元.18.观察下面一列数:﹣1 ,2 ,﹣3 ,4 ,﹣5 ,6 ,﹣7 ,…将这列数排成以下形式:按照上述规律排下去 ,那么第10行从左边数第9个数是;数﹣201是第行从左边数第个数.19.在﹣42 ,+0.01 ,π ,0 ,120 ,这5个数中正有理数是.20.在+8.3 ,﹣4 ,﹣0.8 ,0 ,90 , , ,+24中 ,非负数有 ,负分数有.21.以下各数:2 ,﹣5 ,0 ,﹣0.06 ,+ ,20% ,0.1 ,其中分数有个.22.有一个五位数 ,十位上数字是最小的素数 ,百位上的数字是最小的自然数 ,千位上的数字是最小的合数 ,如果这个数能被2 ,3 ,5整除 ,这个数万位上的数字可以是.三.解答题〔共4小题〕23.如图 ,一只甲虫在5×5的方格〔每小格边长为1〕上沿着网格线运动 ,它从A处出发去看望B、C、D处的其它甲虫 ,规定:向上向右走为正 ,向下向左走为负.例如从A到B记为:A→B〔+1 ,+4〕 ,从D到C记为:D→C〔﹣1 ,+2〕 ,其中第一个数表示左右方向 ,第二个数表示上下方向.〔1〕图中A→C〔 , 〕,B→C〔 , 〕 ,D→〔﹣4 ,﹣2〕;〔2〕假设这只甲虫从A处去P处的行走路线依次为〔+2 ,+2〕 ,〔+2 ,﹣1〕 ,〔﹣2 ,+3〕 ,〔﹣1 ,﹣2〕 ,请在图中标出P的位置;〔3〕假设这只甲虫的行走路线为A→B→C→D ,请计算该甲虫走过的路程.24.某高速公路养护小组 ,乘车沿南北向公路巡视维护 ,如果约定向北为正 ,向南为负 ,当天的行驶记录如下〔单位:千米〕+17 ,﹣9 ,+7 ,﹣15 ,﹣3 ,+11 ,﹣6 ,﹣8 ,+5 ,+6〔1〕养护小组最后到达的地方在出发点的哪个方向?距出发点多远?〔2〕养护过程中 ,最远处离出发点有多远?〔3〕假设汽车耗油量为0.5升/千米 ,那么这次养护共耗油多少升?25.观察以下两个等式:3+2=3×2﹣1 ,4+﹣1 ,给出定义如下:我们称使等式a+b=ab﹣1成立的一对有理数a ,b为“椒江有理数对〞 ,记为〔a ,b〕 ,如:数对〔3 ,2〕 ,〔4 ,〕都是“椒江有理数对〞.〔1〕数对〔﹣2 ,1〕 ,〔5 ,〕中是“椒江有理数对〞的是;〔2〕假设〔a ,3〕是“椒江有理数对〞 ,求a的值;〔3〕假设〔m ,n〕是“椒江有理数对〞 ,那么〔﹣n ,﹣m〕“椒江有理数对〞〔填“是〞、“不是〞或“不确定〞〕.〔4〕请再写出一对符合条件的“椒江有理数对〞〔注意:不能与题目中已有的“椒江有理数对〞重复〕26.阅读下面文字 ,根据所给信息解答下面问题:把几个数用大括号括起来 ,中间用返号隔开 ,如:{3 ,4};{﹣3 ,6 ,8 ,18} ,其中大括号内的数称其为集合的元素.如果一个集合满足:只要其中有一个元素a ,使得﹣2a+4也是这个集合的元素 ,这样的集合称为条件集合.例如;{3 ,﹣2} ,因为﹣2×3+4=﹣2 ,﹣2恰好是这个集合的元素所以吕{3 ,﹣2}是条件集合:例如;〔﹣2 ,9 ,8 ,} ,因为﹣2×〔﹣2〕+4=8 ,8恰好是这个集合的元素 ,所以{﹣2 ,9 ,8 ,}是条件集合.〔1〕集合{﹣4 ,12}是否是条件集合?〔2〕集合{ ,﹣ , }是否是条件集合?〔3〕假设集合{8 ,n}和{m}都是条件集合.求m、n的值.2019-2019学年度北师大版数学七年级上册同步练习: 2.1 有理数〔word解析版〕参考答案与试题解析一.选择题〔共12小题〕1.【分析】药品的最低温度是〔20﹣2〕℃ ,最高温度是〔20+2〕℃ ,据此即可求得温度的范围.【解答】解:20﹣2=18℃ ,20+2=22℃ ,那么该药品在18℃~22℃范围内.应选:D.2.【分析】由向南行驶为正 ,向北行驶为负.即可得到向北行驶3千米应记作﹣3千米.【解答】解:汽车向南行驶5千米记作+5千米 ,那么向北行驶3千米应记作﹣3千米 ,应选:C.3.【分析】根据正负数的含义 ,可得:收入记住“+〞 ,那么支出记作“﹣〞 ,据此求解即可.【解答】解:如果收入10元记作+10元 ,那么支出20元记作﹣20元.应选:B.4.【分析】根据正数的定义进行判断.【解答】解:正数是2 ,应选:C.5.【分析】根据题目中的数据可以判断各个数是正数还是负数 ,从而可以解答此题.【解答】解:∵﹣32=﹣9 ,﹣〔﹣5.7〕=5.7 ,∴在﹣8 ,0 ,﹣32 ,﹣〔﹣5.7〕中负数是﹣8 ,﹣32 ,即负数的个数有2个.应选:B.6.【分析】求出每个数的绝对值 ,根据绝对值的大小找出绝对值最小的数即可.【解答】解:∵|+0.8|=0.8 ,|﹣3.5|=3.5 ,|﹣0.7|=0.7 ,|+2.1|=2.1 ,0.7<0.8<2.1<3.5 ,∴从轻重的角度看 ,最接近标准的是﹣0.7.应选:C.7.【分析】正整数是指既是正数还是整数 ,由此即可判定求解.【解答】解:A、﹣2是负整数 ,应选项错误;B、﹣1是负整数 ,应选项错误;C、0是非正整数 ,应选项错误;D、1是正整数 ,应选项正确.应选:D.8.【分析】整数包括正整数、负整数和0 ,依此即可求解.【解答】解:在数﹣2 ,π ,0 ,2.6 ,+3 ,中 ,整数有﹣2 ,0 ,+3 ,属于整数的个数 ,3.应选:B.9.【分析】根据负整数的概念和有理数的大小进行判断.【解答】解:负整数是负数且是整数 ,即最大的负整数是﹣1.应选:C.10.【分析】根据负分数的概念 ,选项必须既是负数又是分数.【解答】解:A、﹣〔﹣0.〕是正数 ,不是负分数;B、π是无理数 ,不是负分数;C、0.341是正数 ,不是负分数;D、﹣既是负数 ,又是分数 ,所以是负分数.应选:D.11.【分析】此题需先根据有理数的定义 ,找出不符合题意得数即可求出结果.【解答】解:根据题意得:﹣2019既是负数 ,也是整数 ,但它也是有理数应选:C.12.【分析】利用分数及负数的定义判断即可得到结果.【解答】解:以下选项中 ,既是分数又是负数的是﹣0.125.应选:C.二.填空题〔共10小题〕13.【分析】此题主要用正负数来表示具有意义相反的两种量:盈利记为正 ,那么亏损记为负 ,直接得出结论即可.【解答】解:“正〞和“负〞相对 ,把盈利200元记作+200元 ,那么亏损80元记作﹣80元.故答案为﹣80.14.【分析】明确“正〞和“负〞所表示的意义 ,再根据题意作答.【解答】解:∵向东走10米记作+10米 ,∴向西走15米记作﹣215米.故答案为:﹣15.15.【分析】此题主要用正负数来表示具有意义相反的两种量:向西记为负 ,那么向东就记为正 ,由此解答即可;【解答】解:如果把向东走4米记作+4米 ,那么向西走6米记作:﹣6米.故答案为:﹣616.【分析】根据正数和负数表示相反意义的量 ,高于平均水位记为正 ,可得低于平均水位的表示方法.【解答】解:将高于平均水位2m记作“+2m〞 ,那么低于平均水位0.5m记作﹣0.5m.故答案为:﹣0.5m.17.【分析】由赚钱为正 ,亏本为负.赚钱500元记作+500 ,即可得到亏本300元应记作﹣300元.【解答】解:根据题意 ,亏本300元 ,记作﹣300元 ,故答案为:﹣300.18.【分析】先从排列中总结规律 ,再利用规律代入求解.【解答】解:根据题意 ,每一行最末的数字的绝对值是行数的平方 ,且奇数前带有负号 ,偶数前是正号;如第四行最末的数字是42=16 ,第9行最后的数字是﹣81 ,∴第10行从左边数第9个数是81+9=90 ,∵﹣201=﹣〔142+5〕 ,∴是第15行从左边数第5个数.故应填:90;15;5.19.【分析】根据正有理数的定义解答即可.【解答】解:正有理数有:+0.01 ,120.故答案为:+0.01 ,120.20.【分析】根据有理数的分类:进行解答即可.【解答】解:非负数有+8.3 ,0 ,90 , ,+24;负分数有﹣0.8 ,;故答案为:+8.3 ,0 ,90 , ,+24;﹣0.8 ,.21.【分析】利用分数定义判断即可.【解答】解:以下各数:2 ,﹣5 ,0 ,﹣0.06 ,+ ,20% ,0.1 ,其中分数有4个 ,故答案为:422.【分析】找出最小的素数 ,最小的自然数 ,以及最小的合数 ,再根据题意求出万位上的数即可.【解答】解:根据题意得:最小的素数是2 ,最小的自然数为0 ,最小的合数为4 ,能被2 ,3 ,5整除 ,个位上是0 ,其余各位上数字的和能够被3整除 ,可得这个数万位上的数字可以是3或6或9.故答案为:3或6或9.三.解答题〔共4小题〕23.【分析】〔1〕根据规定及实例可知A→C记为〔3 ,4〕B→C记为〔2 ,0〕D→A记为〔﹣4 ,﹣2〕;〔2〕按题目所示平移规律分别向右向上平移2个格点 ,再向右平移2个格点 ,向下平移1个格点;向左平移2个格点 ,向上平移3个格点;向左平移1个向下平移两个格点即可得到点P的坐标 ,在图中标出即可;〔3〕根据点的运动路径 ,表示出运动的距离 ,相加即可得到行走的总路径长.【解答】解:〔1〕规定:向上向右走为正 ,向下向左走为负∴A→C记为〔3 ,4〕B→C记为〔2 ,0〕D→A记为〔﹣4 ,﹣2〕;〔2〕P点位置如下图.〔3〕据条件可知:A→B表示为:〔1 ,4〕,B→C记为〔2 ,0〕C→D记为〔1 ,﹣1〕;该甲虫走过的路线长为1+4+2+1+2=10.故答案为:〔3 ,4〕;〔2 ,0〕;A;24.【分析】〔1〕根据有理数的加法 ,可得答案;〔2〕根据有理数的加法 ,可得每次行程 ,根据绝对值的意义 ,可得答案;〔3〕根据单位耗油量乘以路程 ,可得答案.【解答】解:〔1〕17+〔﹣9〕+7+〔﹣15〕+〔﹣3〕+11+〔﹣6〕+〔﹣8〕+5+6=5〔千米〕 ,答:养护小组最后到达的地方在出发点的北方距出发点5千米;〔2〕第一次17千米 ,第二次17+〔﹣9〕=8 ,第三次8+7=15 ,第四次15+〔﹣15〕=0 ,第五次0+〔﹣3〕=﹣3 ,第六次﹣3+11=8 ,第七次8+〔﹣6〕=2 ,第八次2+〔﹣8〕=﹣6 ,第九次﹣6+5=﹣1 ,第十次﹣1+6=5 ,答:最远距出发点17千米;〔3〕〔17+|﹣9|+7+|﹣15|+|﹣3|+11+|﹣6|+|﹣8|+5+6〕×0.5=87×0.5=43.5〔升〕 ,答:这次养护共耗油43.5升.25.【分析】〔1〕根据“椒江有理数对〞的定义即可判断;〔2〕根据“椒江有理数对〞的定义 ,构建方程即可解决问题;〔3〕根据“椒江有理数对〞的定义即可判断;〔4〕根据“椒江有理数对〞的定义即可解决问题.【解答】解:〔1〕﹣2+1=﹣1 ,﹣2×1﹣1=﹣3 ,∴﹣2+1≠﹣2×1﹣1 ,∴〔﹣2 ,1〕不是“共生有理数对〞 ,∵5+= ,5×﹣1= ,∴5+=5×﹣1 ,∴〔5 ,〕中是“椒江有理数对〞;〔2〕由题意得:a+3=3a﹣1 ,解得a=2.〔3〕不是.理由:﹣n+〔﹣m〕=﹣n﹣m ,﹣n•〔﹣m〕﹣1=mn﹣1∵〔m ,n〕是“椒江有理数对〞∴m+n=mn﹣1∴﹣n﹣m=﹣〔mn﹣1〕=﹣〔﹣n〕×〔﹣m〕+1=﹣[〔﹣n〕×〔﹣m〕﹣1] ,∴〔﹣n ,﹣m〕不是“椒江有理数对〞 ,〔4〕〔5 ,1.5〕等.故答案为:〔5 ,〕;不是;〔5 ,1.5〕.26.【分析】〔1〕依据一个集合满足:只要其中有一个元素 a ,使得﹣2a+4也是这个集合的元素 ,这样的集合我们称为条件集合 ,即可得到结论;〔2〕依据一个集合满足:只要其中有一个元素a ,使得﹣2a+4也是这个集合的元素 ,这样的集合我们称为条件集合 ,即可得到结论;〔3〕分情况讨论:当﹣2×8+4=n ,解得:n=12;当﹣2n+4=8 ,解得:n=﹣2;当﹣2n+4=n ,解得:n=;当﹣2m+4=m ,解得:m=.【解答】解:〔1〕∵﹣2×〔﹣4〕+4=12 ,∴集合{﹣4 ,12}是条件集合;〔2〕∵﹣2×〔﹣〕+4= ,∴{ , ,是条件集合;〔3〕∵集合{8 ,n}和{m}都是条件集合 ,∴当﹣2×8+4=n ,解得:n=12;当﹣2n+4=8 ,解得:n=﹣2;当﹣2n+4=n ,解得:n=;当﹣2m+4=m ,解得:m=.。
北师大版七年级数学上册《2.1有理数》同步练习含答案
1 有理数1.有理数的两种分类方法:有理数⎩⎪⎨⎪⎧正有理数⎩⎪⎨⎪⎧负有理数⎩⎪⎨⎪⎧有理数⎩⎪⎨⎪⎧整数⎩⎪⎨⎪⎧分数⎩⎪⎨⎪⎧2.在-4,-2,0,1,3,4这六个数中,正数有( ) A .1个 B .2个 C .3个 D .4个3.如果水位升高5 m 时,水位变化记作+5 m ,那么水位下降3 m 时,水位变化记作________m ,水位不升不降时,水位变化记作________m.4.李白出生于公元701年,我们记作+701,那么秦始皇出生于公元前259年,可记作( )A .259B .-960C .-259D .4425.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入1000元记作+1000元,那么-600元表示( )A .收入600元B .支出600元C .收入400元D .支出400元6.某校七年级一班某次数学测试的平均成绩为83分,小明考了85分,记作+2分,小芳考了90分应记作________,小丽考了80分应记作________.7.某品牌乒乓球的标准质量为2.7克,误差为±0.03克,若从符合要求的乒乓球中随意取出两只,则这两只乒乓球的质量最多相差( )A .0.03克B .0.06克C .2.73克D .2.67克 8.红富士苹果的包装箱上标明苹果质量为15 kg -0.03 kg+0.02 kg,如果某箱苹果重14.95 kg ,那么这箱苹果________标准.(填“符合”或“不符合”)9.加工一根轴,图上标明的直径加工要求是Φ45-0.04+0.03(单位:mm),则这种零件的标准尺寸是________mm ,合格产品的最大直径是________mm ,最小直径是________mm.如果加工成的轴的直径是44.8毫米,它是________(填“合格”或“不合格”)产品.10.某种药品必须在规定的温度内保存,说明书上标明是20-3+4℃,这表示保存药品合适的温度是________℃~________℃.11.某服装店以每件82元的价格购进了30套保暖内衣,销售时,针对不同的顾客,这30套保暖内衣的售价不完全相同,若以100元为标准,将超过的钱数记为正数,不足的钱数记为负数,则记录结果如表所示:请你求出该服装店在售完这30套保暖内衣后,共赚了多少钱?12.下列说法正确的是( )A .+2是正数,但3不是正数B .一个数不是正数就是负数C .带负号的数是负数D .0既不是正数,也不是负数 13.下列说法中正确的个数是( )①正整数和负整数统称为整数;②0不是有理数;③带“-”号的数是负数;④整数和分数统称为有理数;⑤0既是整数,又是偶数;⑥π2是分数.A .1B .2C .3D .414.在-6,-23,0,-35,2.5这5个数中,负数有________个.15.写出一个是分数但不是正数的数:________. 16.把下列各数填在相应的集合里:2018,1,-1,-2014,0.5,110,-13,-0.75,0,20%.整数集合:{____________________…};正分数集合:{________________…}; 负分数集合:{________________…};正数集合:{__________________…}; 负数集合:{__________________…}.17.将分数67化为小数是0.8·57142·,则小数点后第2018位上的数是________.18.观察下列各组数的排列规律,接着写出后面的三个数. (1)-2,4,-6,8,-10,________,________,________,…; (2)12,-23,34,-45,56,________,________,________,….19.将一串有理数按下列规律排列,回答问题.1 有理数1.有理数⎩⎪⎨⎪⎧正有理数⎩⎪⎨⎪⎧正整数正分数 0 负有理数⎩⎪⎨⎪⎧负整数负分数有理数⎩⎪⎨⎪⎧整数⎩⎪⎨⎪⎧正整数 0负整数分数⎩⎪⎨⎪⎧正分数负分数2.C3.-3 0 4.C 5.B 6.+7分 -3分7.B 8.不符合9.45 45.03 44.96 不合格 10.17 2411.解:7×(100+5)+6×(100+1)+7×100+8×(100-2)+2×(100-5)=735+606+700+784+190=3015(元),30×82=2460(元), 3015-2460=555(元). 答:共赚了555元. 12.D 13.B 14.315.答案不唯一,如-1316.解:整数集合:{2018,1,-1,-2014,0,…};正分数集合:⎩⎨⎧⎭⎬⎫0.5,110,20%,…;负分数集合:⎩⎨⎧⎭⎬⎫-13,-0.75,…;正数集合:⎩⎨⎧⎭⎬⎫2018,1,0.5,110,20%,…;负数集合:⎩⎨⎧⎭⎬⎫-1,-2014,-13,-0.75,….17.518.(1)12 -14 16 (2)-67 78 -8919.(1)正数 (2)负数排在B ,D 处。
北师大版数学七年级上册 有理数同步单元检测(Word版 含答案)
一、初一数学有理数解答题压轴题精选(难)1.同学们都知道表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离,试探索:(1)求 ________.(2)找出所有符合条件的整数,使得.满足条件的所有整数值有________(3)由以上探索,猜想对于任何有理数x,是否有最大值或最小值?如果有最大值或最小值是多少?有最________(填“最大”或“最小”)值是________.【答案】(1)7(2)-3,-2,-1,0,1,2;(3)最小;3【解析】【解答】(1)原式=|5+2|=7.故答案为: 7;(2)令x+3=0或x-2=0时,则x=-3或x=2.当x<-3时,- (x+3) - (x-2) =5 ,-x-3-x+2=5,解得x=-3(范围内不成立)当-3≤x≤2时,(x+3) - (x-2) = 5,x+3-x+1=4,0x=0,x为任意数,则整数x=-3,-2,-1, 0,1,当x>2时,(x+3) + (x-2) = 5,x=2(范围内不成立) .综上所述,符合条件的整数x有: -3, -2, -1, 0,1,2.故答案为:-3,-2,-1,0,1,2;(3) 由(2) 的探索猜想,对于任何有理数x,有最小值为3,令x-3=0或x-6=0时,则x=3,x=6当x<3时,-(x-3)-(x-6)=-2x+3﹥3当3≤x≤6时,x-3-(x-6)=3,当x>6时,x-3+x-6=2x-9>3∴对于任何有理数x,有最小值为3【分析】(1)直接去括号,再按照去绝对值的方法去掉绝对值就可以了;(2)要求x的整数值可以进行分段计算,令x+3=0或x-2=0时,分为3段进行计算,最后确定x的值.(3)根据(2)方法去绝对值,分为3种情况去绝对值符号,计算三种不同情况的值,最后讨论得出最小值.2.阅读下面的材料:点A、B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|当A、B两点中有一点在原点时,设点A在原点,如图①|AB|=|OB|=|b|=|a﹣b|当A、B两点都不在原点时,( 1 )如图②,点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|(2 )如图③,点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a ﹣b|( 3 )如图④,点A、B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|综上所述,数轴上A、B两点之间的距离|AB|=|a﹣b|请用上面的知识解答下面的问题:(1)数轴上表示﹣2和﹣4的两点之间的距离是________,数轴上表示1和﹣3的两点之间的距离是________.(2)数轴上表示x和﹣1的两点A和B之间的距离是________,如果|AB|=2,那么x为________.(3)当|x+1|+|x﹣2|=5时的整数x的值________.(4)当|x+1|+|x﹣2|取最小值时,相应的x的取值范围是________.【答案】(1)2;4(2)x+1;1或-3(3)-2或3(4)-1≤ x≤2【解析】【解答】(1)数轴上表示﹣2和﹣4的两点之间的距离是|﹣2﹣(﹣4)|=2;数轴上表示1和﹣3的两点之间的距离是|1﹣(﹣3)|=4故答案为:2,4(2)数轴上x与-1的两点间的距离为|x-(-1)|=|x+1|,如果|AB|=2,则x+1=±2,解得x=1或-3;故答案为:|x+1|,1或-3(3)解方程|x+1|+|x﹣2|=5,且x为整数.当x+1>0,x-2>0,则(x+1)+(x-2)=5,解得x=3当x+1<0,x-2<0,则-(x+1)-(x-2)=5,解得x=-2当x+1与x-2异号,则等式不成立.故答案为:3或-2.( 4 )根据题意得x+1≥0且x-2≤0,则-1≤x≤2;【分析】(1)直接根据数轴上A、B两点之间的距离|AB|=|a−b|,代入数值运用绝对值的意义即可求解;(2)直接根据数轴上A、B两点之间的距离|AB|=|a−b|,列出方程,求解即可;(3)由数轴上A、B两点之间的距离|AB|=|a−b|可知,|x+1|+|x−2|表示点x到−1与2两点距离之和,由于,2与-1之间的距离是3小于5,故表示数x的点,不可能在-1与2之间,然后分数轴上表示x的点在数轴上表示数字1的点的右边及数轴上表示x的点在数轴上表示数字-2的点的左边两种情况考虑即可解决问题;(4)由数轴上A、B两点之间的距离|AB|=|a−b|可知,|x+1|+|x−2|表示点x到−1与2两点距离之和,根据两点之间线段最短即可得出x的取值范围.3.如图,已知数轴上点A表示的数为-3,B是数轴上位于点A右侧一点,且AB=12.动点P从点A出发,以每秒2个单位长度的速度沿数轴向点B方向匀速运动,设运动时间为t秒.(1)数轴上点B表示的数为________;点P表示的数为________(用含t的代数式表示). (2)动点Q从点B出发,以每秒1个单位长度的速度沿数轴向点A方向匀速运动;点P、点Q同时出发,当点P与点Q重合后,点P马上改变方向,与点Q继续向点A方向匀速运动(点P、点Q在运动过程中,速度始终保持不变);当点P到达A点时,P、Q停止运动.设运动时间为t秒.①当点P与点Q重合时,求t的值,并求出此时点P表示的数.②当点P是线段AQ的三等分点时,求t的值.【答案】(1)9;-3+2t(2)解:①根据题意,得:(1+2)t=12,解得:t=4,∴-3+2t=-3+2×4=5,答:当t=4时,点P与点Q重合,此时点P表示的数为5;②P与Q重合前:当2AP=PQ时,有2t+4t+t=12,解得t= ;当AP=2PQ时,有2t+t+t=12,解得t=3;P与Q重合后:当AP=2PQ时,有2(8-t)=2(t-4),解得t=6;当2AP=PQ时,有4(8-t)=t-4,解得t= ;综上所述,当t= 秒或3秒或6秒或秒时,点P是线段AQ的三等分点【解析】【解答】解:(1)由题意知,点B表示的数是-3+12=9,点P表示的数是-3+2t,故答案为:9,-3+2t;【分析】(1)根据数轴上两点间的距离等于两坐标之差的绝对值可求得点B所表示的数;根据路程=速度×时间可得点P运动的距离,再根据平移的点的坐标的性质可得点P表示的数;(2)①由题意可列方程求解;②分两种情况讨论求解:P与Q重合前:当2AP=PQ时,可得关于t的方程求解;当AP=2PQ时,可得关于t的方程求解;P与Q重合后:当AP=2PQ时,可得关于t的方程求解;当2AP=PQ时,可得关于t的方程求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1 有理数
1.有理数的两种分类方法:
有理数⎩⎪⎨⎪
⎧正有理数⎩⎪⎨
⎪⎧
负有理数⎩⎪⎨
⎪⎧
有理数⎩
⎪⎨
⎪⎧整数⎩⎪⎨
⎪⎧
分数⎩⎪⎨
⎪⎧
2.在-4,-2,0,1,3,4这六个数中,正数有( ) A .1个 B .2个 C .3个 D .4个
3.如果水位升高5 m 时,水位变化记作+5 m ,那么水位下降3 m 时,水位变化记作________m ,水位不升不降时,水位变化记作________m.
4.李白出生于公元701年,我们记作+701,那么秦始皇出生于公元前259年,可记作( )
A .259
B .-960
C .-259
D .442
5.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入1000元记作+1000元,那么-600元表示( )
A .收入600元
B .支出600元
C .收入400元
D .支出400元
6.某校七年级一班某次数学测试的平均成绩为83分,小明考了85分,记作+2分,小芳考了90分应记作________,小丽考了80分应记作________.
7.某品牌乒乓球的标准质量为2.7克,误差为±0.03克,若从符合要求的乒乓球中随意取出两只,则这两只乒乓球的质量最多相差( )
A.0.03克 B.0.06克 C.2.73克 D.2.67克
8.红富士苹果的包装箱上标明苹果质量为15 kg-0.03 kg+0.02 kg,如果某箱苹果重14.95 kg,那么这箱苹果________标准.(填“符合”或“不符合”)
9.加工一根轴,图上标明的直径加工要求是Φ45-0.04+0.03(单位:mm),则这种零件的标准尺寸是________mm,合格产品的最大直径是________mm,最小直径是________mm.如果加工成的轴的直径是44.8毫米,它是________(填“合格”或“不合格”)产品.
10.某种药品必须在规定的温度内保存,说明书上标明是20-3+4℃,这表示保存药品合适的温度是________℃~________℃.
11.某服装店以每件82元的价格购进了30套保暖内衣,销售时,针对不同的顾客,这30套保暖内衣的售价不完全相同,若以100元为标准,将超过的钱数记为正数,不足的钱数记为负数,则记录结果如表所示:
请你求出该服装店在售完这30套保暖内衣后,共赚了多少钱?
12.下列说法正确的是( )
A .+2是正数,但3不是正数
B .一个数不是正数就是负数
C .带负号的数是负数
D .0既不是正数,也不是负数 13.下列说法中正确的个数是( )
①正整数和负整数统称为整数;②0不是有理数;③带“-”号的数是负数;④整数和分数统称为有理数;⑤0既是整数,又是偶数;⑥π
2
是分数.
A .1
B .2
C .3
D .4
14.在-6,-23,0,-3
5,2.5这5个数中,负数有________个.
15.写出一个是分数但不是正数的数:________. 16.把下列各数填在相应的集合里:
2018,1,-1,-2014,0.5,110,-1
3
,-0.75,0,20%.
整数集合:{____________________…};正分数集合:{________________…}; 负分数集合:{________________…};正数集合:{__________________…}; 负数集合:{__________________…}.
17.将分数6
7
化为小数是0.8·57142·,则小数点后第2018位上的数是________.
18.观察下列各组数的排列规律,接着写出后面的三个数. (1)-2,4,-6,8,-10,________,________,________,…; (2)12,-23,34,-45,5
6,________,________,________,….
19.将一串有理数按下列规律排列,回答问题.
1 有理数
1.有理数⎩⎪⎨⎪⎧正有理数⎩⎪⎨
⎪⎧正整数
正分数
0 负有理数⎩⎪⎨
⎪⎧负整数负分数
有理数⎩⎪⎨
⎪⎧整数⎩⎪⎨
⎪⎧正整数 0
负整数分数⎩
⎪⎨
⎪⎧正分数负分数 2.C
3.-3 0 4.C 5.B 6.+7分 -3分
7.B 8.不符合9.45 45.03 44.96 不合格 10.17 24
11.解:7×(100+5)+6×(100+1)+7×100+8×(100-2)+2×(100-5)=735+606+700+784+190=3015(元),
30×82=2460(元), 3015-2460=555(元). 答:共赚了555元. 12.D 13.B 14.3
15.答案不唯一,如-1
3
16.解:整数集合:{2018,1,-1,-2014,0,…};
正分数集合:⎩⎨⎧⎭⎬⎫0.5,1
10,20%,…;
负分数集合:⎩⎨⎧⎭
⎬⎫
-13,-0.75,…;
正数集合:⎩⎨⎧⎭⎬⎫2018,1,0.5,1
10,20%,…;
负数集合:⎩⎨⎧⎭
⎬⎫-1,-2014,-1
3,-0.75,….
17.5
18.(1)12 -14 16 (2)-67 78 -8
9
19.(1)正数 (2)负数排在B ,D 处。