衡水金卷2018年普通高等学校招生全国统一考试高三调研卷模拟二文科数学试题(原卷版)
全国普通高等学校2017-2018学年高考数学二模试卷(文科)(衡水金卷) Word版含解析
2017-2018学年全国普通高等学校高考数学二模试卷(文科)(衡水金卷)一、选择题(共12小题,每小题5分,满分60分.在每小题列出的四个选项中,只有一项符合题目要求)1.设集合A={x|≤0},B={y|y≥2016},则A∪(∁U B)=()A.R B. C.(﹣∞,2016]D.(﹣∞,2016)2.若复数=a+bi(a,b∈R,i为虚数单位),则b a=()A.1 B.﹣1 C.0 D.93.若向量=(﹣1,﹣1),=(﹣1,1),则|2+|=()A.B.2C. D.104.给出下列三个结论:①若p:∃x0∈R,x+x0+1≤0,则¬p:∀x∈R,x2+x+1>0;②“若m>0,则方程x2+x﹣m=0有实数根”的否为:“若m≤0,则方程x2+x﹣m=0没有实数根”;③p:a=1是x>0,x+≥2恒成立的充要条件.其中正确的是()A.①B.②③C.①②D.①③5.若=,则tanα=()A.B.2 C.D.46.若实数x,y满足不等式组,则的最小值为()A.﹣B.﹣2 C.﹣D.7.已知函数f(x)=2sin(ωx+φ)(ω>0)的图象关于直线x=对称,且f()=0,则ω的最小值为()A.2 B.4 C.6 D.88.如图,网格纸上小正方形的边长为1,粗实线和虚线画出的是多面体的三视图,则该多面体的体积为()A.B.C.或32 D.或9.执行如图所示的程序框图,则输出的“S+n”的值为()A.﹣21 B.﹣20 C.﹣19 D.﹣1810.设函数f(x)=,则f(20)=()A.3 B.4 C.5 D.log1711.已知双曲线﹣=1(a>0,b>0),过点M(2,1),斜率为4的直线l与双曲线交于A,B两点,且点M恰好为线段AB的中点,则双曲线的一条渐近线方程为()A.2x﹣y=0 B.y=x C.x﹣y=0 D. +y=012.已知定义在R上的函数f(x)满足f(x)=2f(x+2),当x∈[0,2)时,f(x)=x2﹣2x.若x∈[4,6)时,不等式f(x)≥﹣恒成立,则t的取值范围为()A.[﹣2,0)∪[1,+∞)B.(﹣∞,2]∪(0,1]C.[﹣2,0)∪(0,1)D.[﹣2,0)∪(0,1]二、填空题(共4小题,每小题5分,满分20分)13.2017年某地区高考改革方案出台,选考科目有:思想政治,历史,地理,物理,化学,生命科学.要求考生从中自选三门参加高考,甲,乙两名同学各自选考3门课程(每门课程被选中的机会相等),两位同学约定共同选择思想政治,不选物理,若两人选择的课程情况共有36种,则他们选考的3门课程都相同的概率是_______.14.在△ABC中,角A,B,C所对的边分别是a,b,c,sin2B=sinAsinC,且c=2a,则cosB 的值为_______.15.已知抛物线C:y2=8x,点P为抛物线上任意一点,过点P向圆D:x2+y2﹣4x+3=0作切线,切点分别为A,B,则四边形PADB面积的最小值为_______.16.如图,圆O是四边形ABQC的外接圆,其直径为4,PA垂直圆O所在的平面,PA=4,则四棱锥P﹣ABQC外接球的表面积为_______.三、解答题(共5小题,满分60分.解答应写出必要的文字说明,证明过程或演算步骤)17.设函数{a n}为等差数列,且a3=5,a5=9,数列{b n}的前n项和为S n,且S n+b n=2.(1)求数列{a n},{b n}的通项公式;(2)若T n=a1b n+a2b n﹣1+a3b n﹣2+…+a n﹣1b2+a n b1,求T n.18.某大学在自主招生面试环节中.七位评委老师为陈小伟,李小明打出了分数,要求统计组、复核组依次打出的分数进行统计,复核组拿到了有两处污染的成绩单(成绩为40﹣100委02给李小明打出的分数为91分.请你结合两处污染的成绩单数据完成两位同学成绩的茎叶图1,并比较两位同学成绩的稳定性.(2)若复合组将考生成绩去掉一个最高分和一个最低分,根据有两处污染的成绩单,你能否判断出两位同学平均水平的高低?(3)该大学用系统抽样的方法抽取了n名学生的面试成绩,制作了如图2所示的频率分布直方图.①已知图表中第四小组(即[70,80)内)的频数为15,求n的值;②请你根据图表中的信息估计样本的众数,中位数,平均数(精确到0.01)参考公式:假设样本数据是x1,x2,…x n,,s分别表示这组数据的平均数和标准差,则:s=.19.如图,已知四边形ABEF为矩形,四边形ABCD为直角梯形,平面ABEF⊥平面ABCD,∠BAD=90°,AB∥CD,AF=BC=2,CD=3,AB=4.(1)求证:AC⊥平面BCE;(2)求点E到平面BCF的距离.20.已知曲线f(x)=axlnx+bx在(1,f(1))处的切线方程为y=x﹣1.(1)求函数f(x)的解析式;(2)对∀x≥1,不等式f(x)≤m(x2﹣1)(m>0)恒成立,求实数m的最小值.21.已知点Q为抛物线C:y2=2px(0<p<6)上任意一点,Q到抛物线C准线的距离与其到点N(7,8)距离之和最小值是10,过x轴的正半轴上的点T(t,0)的直线l交抛物线于A,B两点.(1)求抛物线方程;(2)是否存在实数t,使得不论直线l绕点T如何转动, +为定值?选考题(请在22,23,24三题中任选一题作答,如果多做,则按所做第一题计分[集合证明选讲](共1小题,满分10分)22.如图,直线PA切⊙O于点A,直线PB交⊙O于点B,C,∠APC的角平分线分别与AB,AC相交于点D,E.(1)证明:AD=AE;(2)证明:AD2=DB•EC.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,已知C1:(θ为参数),将C1上的所有点的横坐标、纵坐标分别伸长为原来的和2倍后得到曲线C2以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(cosθ+sinθ)=4(1)试写出曲线C1的极坐标方程与曲线C2的参数方程;(2)在曲线C2上求一点P,使点P到直线l的距离最小,并求此最小值.[选修4-5:不等式选讲]24.已知m>1,且关于x的不等式m﹣|x﹣2|≥1的解集为[0,4].(1)求m的值;(2)若a,b均为正实数,且满足2a+b+m+4=ab,求a+b的最小值.2016年全国普通高等学校高考数学二模试卷(文科)(衡水金卷)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分.在每小题列出的四个选项中,只有一项符合题目要求)1.设集合A={x|≤0},B={y|y≥2016},则A∪(∁U B)=()A.R B. C.(﹣∞,2016]D.(﹣∞,2016)【考点】交、并、补集的混合运算.【分析】求出集合A中不等式的解集,再求出集合B的补集,即可求出所求.【解答】解:由≤0得到(x﹣2016)(x﹣2015)≤0,且x≠2015,解得2015<x≤2016,∴A=,∴∁U B=(﹣∞,2016),∴A∪(∁U B)=(﹣∞,2016],故选:C.2.若复数=a+bi(a,b∈R,i为虚数单位),则b a=()A.1 B.﹣1 C.0 D.9【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简复数,再由复数相等的充要条件即可求出a,b的值,则答案可求.【解答】解:=,又=a+bi,∴a=0,b=1.则b a=10=1.故选:A.3.若向量=(﹣1,﹣1),=(﹣1,1),则|2+|=()A.B.2C. D.10【考点】平面向量的坐标运算.【分析】直接利用向量的坐标运算和向量模的公式求解即可.【解答】解:向量=(﹣1,﹣1),=(﹣1,1),则|2+|=(﹣3,﹣1),∴|2+|==,故选:C.4.给出下列三个结论:①若p:∃x0∈R,x+x0+1≤0,则¬p:∀x∈R,x2+x+1>0;②“若m>0,则方程x2+x﹣m=0有实数根”的否为:“若m≤0,则方程x2+x﹣m=0没有实数根”;③p:a=1是x>0,x+≥2恒成立的充要条件.其中正确的是()A.①B.②③C.①②D.①③【考点】的真假判断与应用.【分析】①根据特称的否定是全称进行判断,②根据否的定义进行判断即可,③根据基本不等式结合充分条件和必要条件的定义进行判断即可.【解答】解:①若p:∃x0∈R,x+x0+1≤0,则¬p:∀x∈R,x2+x+1>0;正确,故①正确,②“若m>0,则方程x2+x﹣m=0有实数根”的否为:“若m≤0,则方程x2+x﹣m=0没有实数根”;正确,故②正确,③当a=1时,x+≥2=2=2,即充分性成立,若x>0,x+≥2恒成立,则x2+a≥2x,即a≥﹣x2+2x,当x>0时,﹣x2+2x=﹣(x﹣1)2+1≤1,则a≥1,此时必要性不成立,即a=1是x>0,x+≥2恒成立的充分不必要条件,故③错误,故选:C5.若=,则tanα=()A.B.2 C.D.4【考点】三角函数的化简求值.【分析】利用两角差的正弦函数,余弦函数公式,倍角公式,同角三角函数基本关系式化简已知等式,可得关于tanα的关系式,即可得解.【解答】解:∵====,解得:tanα=.故选:C.6.若实数x,y满足不等式组,则的最小值为()A.﹣B.﹣2 C.﹣D.【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用分式的性质转化为直线的斜率进行求解即可.【解答】解:==3+,则的几何意义是区域内的点到D(﹣5,8)的斜率,作出不等式组对应的平面区域如图:则由图象可得AD的斜率最小,由得,即A(﹣,),则AD的斜率k===﹣,此时的最小值为3﹣=,故选:D7.已知函数f(x)=2sin(ωx+φ)(ω>0)的图象关于直线x=对称,且f()=0,则ω的最小值为()A.2 B.4 C.6 D.8【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】求ω的最小值,由周期和ω的关系,需要求周期的最大值,对称轴与对称中心最近为周期,可求最大周期,从而求得最小的ω值.【解答】解:∵﹣==,∴T=π,∴ω=2.故选A.8.如图,网格纸上小正方形的边长为1,粗实线和虚线画出的是多面体的三视图,则该多面体的体积为()A.B.C.或32 D.或【考点】由三视图求面积、体积.【分析】由三视图知该几何体正四面体或五面体,且是棱长为2的正方体的一部分,画出直观图后,由正方体的性质求出该多面体的体积.【解答】解:由三视图知该几何体为正四面体P﹣ACF或几何体PFADC,直观图如图所示:则正四面体P﹣ACF是棱长为4的正方体的一部分,由正方体的性质得,==,三棱锥F﹣ABC的体积V三棱锥F﹣ABC∴正四面体P﹣ACF的体积V=4×4×4﹣4•V三棱锥F﹣ABC=64﹣4×=,该多面体的体积V=4×4×4﹣3•V 三棱锥F ﹣ABC=64﹣3×=32,∴该多面体的体积为或32,故选C .9.执行如图所示的程序框图,则输出的“S +n ”的值为( )A .﹣21B .﹣20C .﹣19D .﹣18 【考点】程序框图.【分析】模拟执行程序框图的运行过程,即可得出程序运行后输出的“S +n ”值. 【解答】解:当S=98时,n=2, 当S=94时,n=3, 当S=86时,n=4, 当S=70时,n=5, 当S=38时,n=6, 当S=﹣26时,n=7; 此时退出循环,故输出的“S +n ”的值为﹣26+7=﹣19. 故选:C .10.设函数f(x)=,则f(20)=()A.3 B.4 C.5 D.log17【考点】函数的值.【分析】根据函数的解析式将f(20)逐步化为:f(﹣1)+7后,代入解析式由对数的运算性质求值.【解答】解:∵函数f(x)=,∴f(20)=f(17)+1=f(14)+2=f(11)+3=…=f(2)+6=f(﹣1)+7=log4+7=5,故选:C.11.已知双曲线﹣=1(a>0,b>0),过点M(2,1),斜率为4的直线l与双曲线交于A,B两点,且点M恰好为线段AB的中点,则双曲线的一条渐近线方程为()A.2x﹣y=0 B.y=x C.x﹣y=0 D. +y=0【考点】双曲线的简单性质.【分析】利用点差法,结合中点坐标关系进行化简得=2,即可求出双曲线的渐近线方程.【解答】解:设A(x1,y1),B(x2,y2),则,两式相减可得:﹣=0,即=•∵斜率为4的直线l与双曲线﹣=1(a>0,b>0)相交于A,B两点,A、B的中点为M(2,1),∴k AB==4,,即x1+x2=4,y1+y2=2,则4=•,即=2,则=∴y=x=±x.即±x+y=0,则双曲线的一条渐近线为+y=0故选:D.12.已知定义在R上的函数f(x)满足f(x)=2f(x+2),当x∈[0,2)时,f(x)=x2﹣2x.若x∈[4,6)时,不等式f(x)≥﹣恒成立,则t的取值范围为()A.[﹣2,0)∪[1,+∞)B.(﹣∞,2]∪(0,1]C.[﹣2,0)∪(0,1)D.[﹣2,0)∪(0,1]【考点】函数解析式的求解及常用方法.【分析】根据f(x)=2f(x+2)得出f(x﹣4)=4f(x),由x∈[0,2)时f(x)的解析式求出x∈[4,6)时f(x)的解析式,求出f(x)的最小值,把不等式f(x)≥﹣化为﹣≤﹣,求出它的解集即可.【解答】解:由题意,定义在R上的函数f(x)满足f(x)=2f(x+2),∴f(x﹣2)=2f(x),f(x﹣4)=2f(x﹣2);即f(x﹣4)=4f(x);又当x∈[0,2)时,f(x)=x2﹣2x;当x∈[4,6)时,x﹣4∈[0,2),∴f(x﹣4)=(x﹣4)2﹣2(x﹣4)=x2﹣10x+24,∴f(x)=x2﹣x+6,且f(x)图象的对称轴为x=5,最小值为f(5)=﹣;又不等式f(x)≥﹣恒成立,即﹣≤﹣恒成立,∴≤0,等价于或,解得t≤﹣2或0<t≤1;∴t的取值范围是(﹣∞,﹣2]∪(0,1].故选:B.二、填空题(共4小题,每小题5分,满分20分)13.2017年某地区高考改革方案出台,选考科目有:思想政治,历史,地理,物理,化学,生命科学.要求考生从中自选三门参加高考,甲,乙两名同学各自选考3门课程(每门课程被选中的机会相等),两位同学约定共同选择思想政治,不选物理,若两人选择的课程情况共有36种,则他们选考的3门课程都相同的概率是.【考点】古典概型及其概率计算公式.【分析】由已知先求出基本事件总数,再求出他们选考的3门课程都相同包含的基本事件个数,由此能求出他们选考的3门课程都相同的概率.【解答】解:由已知得基本事件总数n=36,他们选考的3门课程都相同包含的基本事件个数m==6,∴他们选考的3门课程都相同的概率是p===.故答案为:.14.在△ABC中,角A,B,C所对的边分别是a,b,c,sin2B=sinAsinC,且c=2a,则cosB的值为.【考点】正弦定理;余弦定理.【分析】由已知利用正弦定理可得b2=ac,结合已知利用余弦定理即可计算得解cosB的值.【解答】解:∵sin2B=sinAsinC,∴由正弦定理可得:b2=ac,又∵c=2a,∴由余弦定理可得:cosB===.故答案为:.15.已知抛物线C:y2=8x,点P为抛物线上任意一点,过点P向圆D:x2+y2﹣4x+3=0作切线,切点分别为A,B,则四边形PADB面积的最小值为.【考点】抛物线的简单性质.【分析】设P(x,y),D为抛物线的焦点,故而PD=x+2,利用勾股定理求出PA,得出四边形面积关于x的函数,利用二次函数的性质及x的范围得出面积的最小值.【解答】解:圆D的圆心为D(2,0),半径为r=DA=1,与抛物线的焦点重合.抛物线的准线方程为x=﹣2.设P(x,y),则由抛物线的定义可知PD=PM=x+2,∵PA为圆D的切线,∴PA⊥AD,∴PA===.=2S△PAD=2××AD×PA∴S四边形PADB=.取得最小值.∵x≥0,∴当x=0时,S四边形PADB故答案为:.16.如图,圆O是四边形ABQC的外接圆,其直径为4,PA垂直圆O所在的平面,PA=4,则四棱锥P﹣ABQC外接球的表面积为32π.【考点】球的体积和表面积;球内接多面体.【分析】由题意,P﹣ABQC外接球的球心在过O点,且垂直于圆O所在平面的直线l上,在Rt△AOO′中,利用勾股定理求出R,即可求出P﹣ABQC外接球的表面积.【解答】解:由题意,P﹣ABQC外接球的球心在过O点,且垂直于圆O所在平面的直线l上,则l∥PA,设球心为O′,外接圆的半径为R,故O′A=O′P=R,且OO′=PA=2.在Rt△AOO′中,R2=22+22=8,所以P﹣ABQC外接球的表面积为4πR2=32π.故答案为:32π.三、解答题(共5小题,满分60分.解答应写出必要的文字说明,证明过程或演算步骤) 17.设函数{a n }为等差数列,且a 3=5,a 5=9,数列{b n }的前n 项和为S n ,且S n +b n =2. (1)求数列{a n },{b n }的通项公式;(2)若T n =a 1b n +a 2b n ﹣1+a 3b n ﹣2+…+a n ﹣1b 2+a n b 1,求T n . 【考点】数列的求和;数列递推式.【分析】(1)根据等差数列的性质列方程组解出首项和公差,得出{a n }的通项公式,利用b n =S n ﹣S n ﹣1得出{b n }是等比数列; (2)使用错位相减法求和.【解答】解:(1)设{a n }的公差为d ,则,解得.∴a n =1+2(n ﹣1)=2n ﹣1. ∵S n +b n =2,∴S n =2﹣b n . ∴n=1时,2b 1=2,∴b 1=1.当n ≥2时,b n =S n ﹣S n ﹣1=2﹣b n ﹣(2﹣b n ﹣1),∴b n =b n ﹣1.∴{b n }是以1为首项,以为公比的等比数列.∴b n =.(2)T n =1+3•+5+…+(2n ﹣3)+(2n ﹣1)•1,①∴T n =1•+3•+5+…+(2n ﹣3)•+(2n ﹣1),②①﹣②得:=﹣2(+++…+)+2n ﹣1﹣=﹣2•+2n ﹣1﹣=+2n ﹣3.∴T n =+4n ﹣6.18.某大学在自主招生面试环节中.七位评委老师为陈小伟,李小明打出了分数,要求统计组、复核组依次打出的分数进行统计,复核组拿到了有两处污染的成绩单(成绩为40﹣100委02给李小明打出的分数为91分.请你结合两处污染的成绩单数据完成两位同学成绩的茎叶图1,并比较两位同学成绩的稳定性.(2)若复合组将考生成绩去掉一个最高分和一个最低分,根据有两处污染的成绩单,你能否判断出两位同学平均水平的高低?(3)该大学用系统抽样的方法抽取了n名学生的面试成绩,制作了如图2所示的频率分布直方图.①已知图表中第四小组(即[70,80)内)的频数为15,求n的值;②请你根据图表中的信息估计样本的众数,中位数,平均数(精确到0.01)参考公式:假设样本数据是x1,x2,…x n,,s分别表示这组数据的平均数和标准差,则:s=.【考点】极差、方差与标准差;系统抽样方法.【分析】(1)画出茎叶图,计算平均数以及方差,从而判断李小明的成绩稳定;(2)设评委05给学生陈小伟打出的分数为:80+m,分别求出其平均分,作差判断即可;(3)(i)求出第四小组的频率,根据第四小组(即[70,80)内)的频数是15,求出n的值即可,(ii)设出中位数,得到估计值即可.【解答】解:(1)两位同学成绩的茎叶图如图所示:,==84,==85,故==,同理可得:s 李=,s 李<s 陈,故考生李小明的成绩较为稳定;(2)设评委05给学生陈小伟打出的分数为:80+m , (m ∈{0,1,2,3,4,5,6,7,8,9}), 将考生成绩去掉一个最高分和一个最低分,陈小伟的成绩数据分别为:85,84,80+m ,85,81,=,=,且﹣=,又m ∈{0,1,2,3,4,5,6,7,8,9},∴﹣<0,故李小明同学的平均水平较高; (3)(i )∵10×(0.004+0.006+0.016+0.020+0.024+x )=1, 解得:x=0.030,第四小组的频率为:0.030×10=0.30,又第四小组(即[70,80)内)的频数是15,故=0.30,解得:n=50;(ii )由频率分布直方图可知[70,80)这一组对应的小长方形最高,估计众数是75,设中位数是(70+x ),则0.04+0.06+0.20+0.03x=0.5,解得:x ≈6.67, 估计中位数是76.67,45×0.04+55×0.06+65×0.20+75×0.30+85×0.24+95×0.16=76.20, 估计平均数是76.20.19.如图,已知四边形ABEF 为矩形,四边形ABCD 为直角梯形,平面ABEF ⊥平面ABCD ,∠BAD=90°,AB ∥CD ,AF=BC=2,CD=3,AB=4. (1)求证:AC ⊥平面BCE ; (2)求点E 到平面BCF 的距离.【考点】点、线、面间的距离计算;直线与平面垂直的判定.【分析】(1)过点C作CM⊥AB,垂足为M,可得四边形ADCM是矩形利用勾股定理可得CM=.由AC2+BC2=16=AB2,利用勾股定理的逆定理可得AC⊥CB.由矩形的性质可得:AF⊥AB.利用面面垂直的性质定理可得:AF⊥平面ABCD,又BE∥AF,可得BE⊥平面ABCD,BE⊥AC,即可证明AC⊥平面BCE.(2)建立如图所示的空间直角坐标系.设平面BCF的法向量为=(x,y,z),则,利用点E到平面BCF的距离d=即可得出.【解答】证明:(1)过点C作CM⊥AB,垂足为M.则四边形ADCM是矩形,∴AM=DC=3,∴BM=1,在Rt△BCM中,CM==.在Rt△ACM中,AC2=AM2+CM2=12,∴AC2+BC2=16=AB2,∴∠ACB=90°,∴AC⊥CB.∵四边形ABEF为矩形,∴AF⊥AB.∵平面ABEF⊥平面ABCD,平面ABEF∩平面ABCD=AB,∴AF⊥平面ABCD,又BE∥AF,∴BE⊥平面ABCD,由AC⊂平面ABCD,∴BE⊥AC,又BE∩BC=B,∴AC⊥平面BCE.解:(2)建立如图所示的空间直角坐标系.∴A(0,0,0),C(,3,0),B(0,4,0),F(0,0,2),E(0,4,2).∴=(﹣,﹣3,2),=(,﹣1,0),=(0,0,﹣2).设平面BCF的法向量为=(x,y,z),则,可得,取=,∴点E到平面BCF的距离d====.20.已知曲线f(x)=axlnx+bx在(1,f(1))处的切线方程为y=x﹣1.(1)求函数f(x)的解析式;(2)对∀x≥1,不等式f(x)≤m(x2﹣1)(m>0)恒成立,求实数m的最小值.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(1)将(1,f(1))代入切线方程求出a的值,求出f(x)的导数,得到f′(1)=1,求出b的值,从而求出函数的解析式;(2)构造函数g(x)=xlnx﹣m(x2﹣1),(x≥1),只需g(x)max≤0成立即可,求出函数的导数,通过讨论m的范围,求出函数的最大值,从而求出m的最小值即可.【解答】解:(1)将(1,f(1))代入切线方程得:f(1)=0,又f(1)=b,故b=0,又f′(x)=a(lnx+1)+b,故f′(1)=1,即a+b=1,∴a=1,故f(x)=xlnx;(2)原问题等价于对∀x≥1,xlnx﹣m(x2﹣1)≤0恒成立,求实数m的最小值,构造函数g(x)=xlnx﹣m(x2﹣1),(x≥1),只需g(x)max≤0成立即可,g′(x)=lnx﹣2mx+1,g″(x)=,0<m<时,对于x∈[1,),g″(x)>0,g′(x)在[1,)递增,g′(x)≥g′(1)=1﹣2m>0,则函数g(x)在[1,)递增,即g(1)=0,故0≤g(x)<g(),与已知矛盾,m≥时,对于x∈(1,+∞),函数g″(x)<0恒成立,则g′(x)在区间(1,+∞)递减,则g′(x)<g′(1)=1﹣2m≤0,则函数g(x)在区间[1,+∞)递减,故g(x)≤g(1)=0恒成立,综上,对∀x≥1,f(x)≤m(x2﹣1)恒成立,则实数m的取值范围是[,+∞),故实数m的最小值是.21.已知点Q为抛物线C:y2=2px(0<p<6)上任意一点,Q到抛物线C准线的距离与其到点N(7,8)距离之和最小值是10,过x轴的正半轴上的点T(t,0)的直线l交抛物线于A,B两点.(1)求抛物线方程;(2)是否存在实数t,使得不论直线l绕点T如何转动, +为定值?【考点】抛物线的简单性质.【分析】(1)分N在抛物线内外两种情况讨论,根据抛物线的性质列方程得出p;(2)设l方程为x=my+t,联立方程组得出A,B两点坐标与m,t的关系,代入两点间的距离公式化简即可得出结论.【解答】解:(1)①若N在抛物线内部,则Q到抛物线C准线的距离与其到点N距离之和得最小值等于N到准线的距离,∴+7=10,解得p=6,不符合题意.②若N在抛物线外部,则Q到抛物线C准线的距离与其到点N(7,8)距离之和的最小值等于|NF|.∴=10,解得p=2.∴抛物线方程为y2=4x.(2)设直线l的方程为x=my+t,联立方程组,得y2﹣4my﹣4t=0.设A(x1,y1),B(x2,y2),∴y1+y2=4m,y1y2=﹣4t.∴===.===.∴=+==.∴当=1即t=2时,=.∴存在实数t=2使得为定值.选考题(请在22,23,24三题中任选一题作答,如果多做,则按所做第一题计分[集合证明选讲](共1小题,满分10分)22.如图,直线PA切⊙O于点A,直线PB交⊙O于点B,C,∠APC的角平分线分别与AB,AC相交于点D,E.(1)证明:AD=AE;(2)证明:AD2=DB•EC.【考点】与圆有关的比例线段;相似三角形的性质.【分析】(1)利用∠ADE=∠PAB+∠APD,∠AED=∠C+∠CPE,证明∠ADE=∠AED,即可证明AD=AE;(2)证明:△PCE∽△PAD,△PAE∽△PBD,即可得出AD2=DB•EC.【解答】证明:(1)PA与圆O相切于点A,AB是弦,∴∠PAB=∠C,又∵∠APD=∠CPE,∴∠PAB+∠APD=∠C+∠CPE,∵∠ADE=∠PAB+∠APD,∠AED=∠C+∠CPE,∴∠ADE=∠AED,∴AD=AE.(2)∵∠PCE=∠PAD,∠CPE=∠APD,∴△PCE∽△PAD,∴,∵∠PEA=∠PDB,∠APE=∠BPD,∴△PAE∽△PBD,∴=,∴=,由(1)知,AD=AE,∴AD2=DB•EC.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,已知C1:(θ为参数),将C1上的所有点的横坐标、纵坐标分别伸长为原来的和2倍后得到曲线C2以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(cosθ+sinθ)=4(1)试写出曲线C1的极坐标方程与曲线C2的参数方程;(2)在曲线C2上求一点P,使点P到直线l的距离最小,并求此最小值.【考点】参数方程化成普通方程.【分析】(1)把C1消去参数化为普通方程为x2+y2=1,再化为极坐标方程.根据函数图象的伸缩变换规律可得曲线C2的普通方程,再化为极参数方程.(2)先求得直线l的直角坐标方程,设点P(cosθ,2sinθ),求得点P到直线的距离为d=,故当sin(θ+)=1时,即θ=2kπ+,k∈z时,点P到直线l的距离的最小值,从而求得P的坐标以及此最小值【解答】解:(1)把C1:(θ为参数),消去参数化为普通方程为x2+y2=1,故曲线C1:的极坐标方程为ρ=1.再根据函数图象的伸缩变换规律可得曲线C2的普通方程为+=1,即+=1.故曲线C2的极参数方程为(θ为参数).(2)直线l:ρ(cosθ+sinθ)=4,即x+y﹣4=0,设点P(cosθ,2sinθ),则点P到直线的距离为d==,故当sin(θ+)=1时,d取得最小值,此时,θ=2kπ+,k∈z,点P(1,),故曲线C2上有一点P(1,)满足到直线l的距离的最小值为﹣.[选修4-5:不等式选讲]24.已知m>1,且关于x的不等式m﹣|x﹣2|≥1的解集为[0,4].(1)求m的值;(2)若a,b均为正实数,且满足2a+b+m+4=ab,求a+b的最小值.【考点】绝对值不等式的解法;绝对值三角不等式.【分析】(1)根据m的范围得到1﹣m≤x﹣2≤m﹣1,结合不等式的解集求出m的值即可;(2)求出2a+b+7=ab,得到不等式(a+b)2﹣6(a+b)﹣27≥0,解出即可.【解答】解:(1)∵不等式m﹣|x﹣2|≥1可化为|x﹣2|≤m﹣1,m>1,∴1﹣m≤x﹣2≤m﹣1,即3﹣m≤x≤m+1,∵其解集为[0,4],∴,∴m=3;(2)由(1)得:2a+b+7=ab,∴a+b+7=a(b﹣1)≤,∴(a+b)2﹣6(a+b)﹣27≥0即[(a+b)+3][(a+b)﹣9]≥0,∴a+b≤﹣3(舍)或a+b≥9,当且仅当,即a=4,b=5时“=”成立,∴a+b的最小值是9.2016年9月15日。
【全国百强校】衡水金卷2018届全国高三大联考文科数学试题
绝密★启用前【全国百强校】衡水金卷2018届全国高三大联考文科数学试题试卷副标题考试范围:xxx;考试时间:69分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)一、选择题(题型注释)1、已知集合,,则集合中元素的个数为()A.1 B.2 C.3 D.42、已知命题:,,则命题为()A., B.,C., D.,3、已知复数(为虚数单位),则复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4、已知双曲线:的一个焦点为,则双曲线的渐近线方程为()A. B.C. D.5、2017年8月1日是中国人民解放军建军90周年,中国人民银行发行了以此为主题的金银纪念币.如图所示的是一枚8克圆形金质纪念币,直径22毫米,面额100元.为了测算图中军旗部分的面积,现向硬币内随机投掷100粒芝麻,已知恰有30粒芝麻落在军旗内,据此可估计军旗的面积大约是()A. B. C. D.6、下列函数中,与函数的定义域、单调性与奇偶性均一致的函数是()A. B.C. D.7、如图是一个空间几何体的正视图和俯视图,则它的侧视图为()A. B. C. D.8、设,,,则的大小关系为()A. B. C. D.9、执行如图所示的程序框图,则输出的值为()A. B. C. D.10、将函数的图象向左平移个单位,再把所有点的横坐标伸长到原来的2倍,得到函数的图象,则下列关于函数的说法错误的是()A.最小正周期为 B.图象关于直线对称C.图象关于点对称 D.初相为11、抛物线有如下光学性质:由焦点射出的光线经抛物线反射后平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线发射后必经过抛物线的焦点.已知抛物线的焦点为,一平行于轴的光线从点射出,经过抛物线上的点反射后,再经抛物线上的另一点射出,则直线的斜率为()A. B. C. D.12、已知的内角的对边分别是,且,若,则的取值范围为()A. B. C. D.第II卷(非选择题)二、填空题(题型注释)13、已知向量,,若,则__________.14、已知函数,若曲线在点处的切线经过圆:的圆心,则实数的值为__________.15、已知实数满足约束条件则的取值范围为__________(用区间表示).16、在《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马.若四棱锥为阳马,侧棱底面,且,则该阳马的外接球与内切球表面积之和为__________.三、解答题(题型注释)17、在递增的等比数列中,,,其中.(1)求数列的通项公式;(2)记,求数列的前项和.18、如图,在三棱柱中,平面,,,点为的中点.(1)证明:平面;(2)求三棱锥的体积.19、随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中抽取了200人进行抽样分析,得到下表(单位:人):(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关?(2)现从所抽取的30岁以上的网友中利用分层抽样的方法再抽取5人.(i)分别求这5人中经常使用、偶尔或不用共享单车的人数;(ii)从这5人中,再随机选出2人赠送一件礼品,求选出的2人中至少有1人经常使用共享单车的概率.参考公式:,其中.参考数据:20、已知椭圆:过点,离心率为,直线:与椭圆交于两点.(1)求椭圆的标准方程;(2)是否存在实数,使得(其中为坐标原点)成立?若存在,求出实数的值;若不存在,请说明理由.21、已知函数,.(1)求函数的单调区间;(2)若关于的方程有实数根,求实数的取值范围.22、选修4-4:坐标系与参数方程已知曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.(1)求曲线的普通方程及直线的直角坐标方程;(2)求曲线上的点到直线的距离的最大值.23、选修4-5:不等式选讲已知函数.(1)解不等式;(2)记函数的值域为,若,试证明:.参考答案1、C2、D3、D4、A5、B6、D7、A8、A9、B10、C11、B12、B13、114、15、16、17、(1);(2).18、(1)见解析;(2).19、(1)见解析;(2)(i)经常使用共享单车的有3人,偶尔或不用共享单车的有2人,(ii).20、(1);(2).21、(1)函数的单调递增区间为,单调递减区间为;(2)当时,方程有实数根.22、(1)曲线的普通方程为,直线的普通方程为;(2).23、(1);(2)见解析.【解析】1、由题得,集合,所以.集合中元素的个数为3.故选C.2、含有一个量词的命题的否定写法是“变量词,否结论”,故为,.故选D.3、由题得,.所以复数在复平面内对应的点的坐标为(2,-1),位于第四象限.故选D.4、由题意得,,则,即.所以双曲线的渐近线方程为,即.故选A.5、根据题意可估计军旗的面积大约是.故选B.6、函数为奇函数,且在R上单调递减,对于A,是奇函数,但不在R上单调递减;对于B,是奇函数,但在R上单调递增;对于C,对于D,画出函数图象可知函数是奇函数,且在R上单调递减,故选D.7、由正视图和俯视图可知,该几何体是一个圆柱挖去一个圆锥构成的,结合正视图的宽及俯视图的直径可知其侧视图为A.故选A.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.8、由题意得,.得,而.所以,即<1.又.故.选A.9、由框图可知,.故选B.10、易求得,其最小正周期为,初相位,即A,D正确,而.故函数的图象关于直线对称,即B项正确,故C错误.选C.11、令,代入可得,即.由抛物线的光学性质可知,直线经过焦点,所以.故选B.点睛:抛物线的光学性质:从抛物线的焦点发出的光线或声波在经过抛物线周上反射后,反射光线平行于抛物线的对称轴.12、由正余弦定理,得.即. 所以,因为,所以.又,所以.因为,且,所以.所以,即,又.所以.故选B.点睛:在解三角形问题里,通常遇见三边的平方式,例如,要想到利用余弦定理转化,当遇见边和正余弦的式子时,通常是利用边化角进而化简,总之正余弦定理可以将边和角进行灵活转化,两个都可以尝试一下.13、由,得.即.解得.14、对求导,得,所以.故所求切线的方程为,即.由该直线经过圆:的圆心,得.解得.15、作出约束条件表示的平面区域(如图阴影部分表示)设,作出直线,当直线过点时,取得最小值;当直线过点时,取得最大值.即,所以.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画标准函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般情况下,目标函数的最大或最小会在可行域的端点或边界上取得.16、设该阳马的外接球与内切球的半径分别与,则.即.由.得.所以该阳马的外接球与内切球表面积之和为.17、试题分析:(1)由及得,,进而的,可得通项公式;(2)利用分组求和即可,一个等差数列和一个等比数列.试题解析:(1)设数列的公比为,则,又,∴,或,(舍).∴,即.故().(2)由(1)得,.∴.18、试题分析:(I)连接交于点,连接,通过证明,利用直线与平面平行的判定定理证明AC1∥平面CDB1.(II)要求三棱锥的体积,转化为即可求解.试题解析:(1)连接交于点,连接.在三棱柱中,四边形是平行四边形.∴点是的中点.∵点为的中点,∴.又平面,平面,∴平面.(2)∵,,∴.在三棱柱中,由平面,得平面平面.又平面平面.∴平面.∴点到平面的距离为,且.∴.19、试题分析:(1)根据所给数据,求出,与临界值比较,即可得出能在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关;(2)(i)利用分层比例即可求解;(ii)确定基本事件的个数,即可求出概率.试题解析:(1)由列联表可知,.因为,所以能在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关. (2)(i)依题意可知,所抽取的5名30岁以上的网友中,经常使用共享单车的有(人),偶尔或不用共享单车的有(人).(ii)设这5人中,经常使用共享单车的3人分别为;偶尔或不用共享单车的2人分别为.则从5人中选出2人的所有可能结果为,,,,,,,,,,共10种.其中没有1人经常使用共享单车的可能结果为,共1种.故选出的2人中至少有1人经常使用共享单车的概率.点睛:典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.20、试题分析:(1)根据题意得,从而可得方程;(2)直线和椭圆联立得,设,,由,得,即,由韦达定理代入即得. 试题解析:(1)依题意,得解得,,,故椭圆的标准方程为.(2)假设存在符合条件的实数.依题意,联立方程消去并整理,得.则,即或.设,,则,.由,得.∴.∴.即.∴.即.即,即.故存在实数,使得成立.21、试题分析:(1)函数求导,从而得单调区间;(2)方程有实数根,即函数存在零点,分类讨论函数的单调性,从而得有零点时参数的范围.试题解析:(1)依题意,得,.令,即.解得;令,即.解得.故函数的单调递增区间为,单调递减区间为.(2)由题得,.依题意,方程有实数根,即函数存在零点.又.令,得.当时,.即函数在区间上单调递减,而,.所以函数存在零点;当时,,随的变化情况如下表:所以为函数的极小值,也是最小值.当,即时,函数没有零点;当,即时,注意到,,所以函数存在零点.综上所述,当时,方程有实数根.点睛:已知函数有零点求参数常用的方法和思路:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成函数的值域问题解决;(3)数形结合法:先对解析式变形,在同一个平面直角坐标系中,画出函数的图像,然后数形结合求解.22、试题分析:(1)利用消去参数得曲线的普通方程为,利用得直线的普通方程为(2)利用圆的参数方程得,进而由三角求最值即可. 试题解析:(1)由曲线的参数方程(为参数),得曲线的普通方程为.由,得,即.∴直线的普通方程为.(2)设曲线上的一点为,则该点到直线的距离(其中).当时,.即曲线上的点到直线的距离的最大值为.23、试题分析:(1)利用分段去绝对值解不等式;(2),得,由即可证得.试题解析:(1)依题意,得则不等式即为或或解得.故原不等式的解集为.(2)由题得,,当且仅当.即时取等号.∴.∴.∵,∴,.∴.∴.。
普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案
普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案普通高等学校招生全国统一考试模拟试题——文科数学(二)本试卷满分150分,考试时间120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题纸上。
2.回答选择题时,选出每小题答案后,用铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题纸上,写在本试卷上无效。
3.考试结束后,将本试卷和答题纸一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合 $A=\{x|x-\frac{1}{2}<0\}$,$B=\{x|x-\frac{(2a+8)}{a(a+8)}<0\}$,若 $A\cap B=A$,则实数 $a$ 的取值范围是A。
$(-4,-3)$B。
$[-4,-3]$C。
$(-\infty,-3)\cup(4,+\infty)$D。
$(-3,4)$2.已知复数 $z=\frac{3+i}{2-3i}$,则 $z$ 的实部与虚部的和为A。
$-\frac{2}{5}+\frac{1}{5}i$B。
$-\frac{2}{5}-\frac{1}{5}i$C。
$\frac{2}{5}+\frac{1}{5}i$D。
$\frac{3}{5}+\frac{2}{5}i$3.某景区管理部门为征求游客对景区管理方面的意见及建议,从景区出口处随机选取 $5$ 人,其中 $3$ 人为跟团游客,$2$ 人为自驾游散客,并从中随机抽取 $2$ 人填写调查问卷,则这 $2$ 人中既有自驾游散客也有跟团游客的概率是A。
$\frac{2}{3}$B。
$\frac{1}{5}$C。
$\frac{2}{5}$D。
$\frac{3}{5}$4.已知双曲线 $E:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$ 的离心率为$\frac{\sqrt{10}}{3}$,斜率为 $-\frac{3}{2}$ 的直线 $l$ 经过双曲线的右顶点 $A$,与双曲线的渐近线分别交于 $M$,$N$ 两点,点 $M$ 在线段$AN$ 上,则 $\frac{AN}{AM}$ 等于A。
【衡水金卷】2018年普通高等学校招生全国统一考试模拟试题(二,压轴卷)数学(文)试题
2018年普通高等学校招生全国统一考试模拟试题文科数学(二)本试卷共4页,23题(含选考题)。
全卷满分1 50分。
考试用时1 20分钟。
第I 卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的。
1.已知集合{}{}21,,26A x x n n N B x x ==-∈=-<<,则A B= A .{1,3,5) B .{一1,1,3,5) C .[一1,5] D .(--2,6) 2.下列各式的运算结果为2i 的是A .234i i i i +++B .3i i -C .(2)1i i +-D .13i i+3.现有甲、乙两台机床同时生产直径为40mm 的零件,各抽测10件进行测量,其结果如 下图,则不通过计算从图中数据的变化不能反映的数字特征是 A .极差 B .方差 C .平均数 D .中位数4.已知在底面为菱形的直四棱柱ABCD —A 1B 1C 1D 1中,AB=4,BD1=42,若∠BAD 60︒=,则异面直线B 1C 与AD 1所成的角为A .30︒B .45︒C .60︒D .90︒5.如图所示的图形中,每个三角形上各有一个数字,若六个三角形上的 数字之和为20,则称该图形是“和谐图形’’.已知其中四个三角形上的 数字之和为14.现从1,2,3,4,5中任取两个数字标在另外两个 三角形上,则恰好使该图形为“和谐图形’’的概率为A .310 B .15 C .110 D .3206.已知函数y =f (x )在区间(-∞,0)内单调递增,且f (-x )=f (x ),若a =3 1.2121(log ),(2),()2f b f c f -==,则a ,b ,c 的大小关系为A. a >c >bB. b >c >aC. b >a >cD. a >b >c 7.执行如图所示的程序框图,则输出的m 值为 A.6 B.7 C. 8 D. 9 8. 关于函数1()2sin()26f x x π=+的图象或性质的说法中,正确的个数为①函数f (x )的图象关于直线83x π=对称, ②将函数f (x )的图象向右平移3π个单位所得图象的函数为 1()2sin()23f x x π=+③函f (x ) 在区间5(,)23ππ-上单调递增 ④若f (x )=a ,则1cos()233ax π-=A.1B. 2C. 3D. 49.某几何体是由两个同底面的三棱锥组成,其三视图如图所示,则 该几何体外接球的面积为A. 2a πB. 22a πC. 23a πD. 24a π10.已知F 是抛物线C:y 2=16x 的焦点,过F 点作x 轴的垂线与抛物线在第一象限的交点为P ,过P 点作直线x =-6的垂线,垂足为M ,直线x =-6与x 轴的交点为K ,在四边形KFPM 内作椭圆E.则面积最大的椭圆E 的内接矩形的最大面积为A. 42B. 62C.32D.4011.在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,若△ABC 的面积为S ,且a =1,4S b 2+c 2-1,则△ABC 外接圆的面积为 A. 4π B. 2π C.π D.2π12.已知函数f (x )是定义在区间(0,)+∞上的可导函数,f (x )为其导函数,当x >0且2x ≠时,'(2)[2()()]x f x xf x -+<0,若曲线y =f (x )在点(2.f (2))处的切线的斜 率为一4,则f (2)的值为A. 4B. 6C. 8D. 10第Ⅱ卷本卷包括必考题和选考题两部分。
衡水中学高三二调文科数学试卷及答案解析
2018—2019学年度高三年级上学期二调考试数学(文科)试题第Ⅰ卷(选择题 共60分)一、选择题(每小题5分,共60分,下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1.已知集合{}{}21,0,1,2,3,20,A B x x x =-=->则A B = ()A.{}3B.{}2,3C.{}1,3-D.{}1,2,3 2.下列关于命题的说法错误的是()A.命题“若2320x x -+=,则2x =”的逆否命题为“若2x ≠,则2320x x -+≠”B.“2a =”是“函数()log a f x x =在区间()0,+∞上为增函数”的充分不必要条件C.命题“0x R ∃∈,使得20010x x ++<”的否定是“x R ∀∈,均有210x x ++≥”D.“若0x 为()y f x =的极值点,则()00f x '=”的逆命题为真命题 3.复数2ii 1z =-(i 为虚数单位)在复平面内对应的点所在象限为() A.第二象限 B.第一象限 C.第四象限 D.第三象限 4.函数()3233f x x x x =-+的极值点的个数是() A.0 B.1 C.2 D.35.函数()21e xy x =-的图象大致是()A. B. C. D.6.已知函数()y f x =在区间(),0-∞内单调递增,且()()f x f x -=,若()1.2121l o g3,2,2a f b f c f -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则,,a b c 的大小关系为()A.a c b >>B.b c a >>C.b a c >>D.a b c >>7.已知函数()f x 是定义在R 上的偶函数,且对任意的()(),2x R f x f x ∈+=,当01x ≤≤,()2f x x =,若直线y x a =+与函数()f x 的图象在[]0,2内恰有两个不同的公共点,则实数a 的值是() A.0 B.0或12-C.1142--或D.104-或 8.为得到函数cos 23y x π⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin 2y x =的图象() A.向右平移512π个长度单位 B.向左平移512π个长度单位 C.向右平移56π个长度单位 D.向左平移56π个长度单位9.设函数()()()ln f x x x ax a R =-∈在区间()0,2上有两个极值点,则a 的取值范围是() A.1,02⎛⎫-⎪⎝⎭ B.ln 210,4+⎛⎫ ⎪⎝⎭ C.10,2⎛⎫ ⎪⎝⎭ D.ln 211,42+⎛⎫⎪⎝⎭ 10.若函数()()sin 06f x x πωω⎛⎫=+> ⎪⎝⎭在区间(),2ππ内没有最值,则ω的取值范围是()A.1120,,1243⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦B.1120,,633⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦C.12,43⎡⎤⎢⎥⎣⎦D.12,33⎡⎤⎢⎥⎣⎦ 11.已知函数()12ln 1,()2e x f x x g x -=+=,若()()f m g n =成立,则m n -的最小值是( ) A.1ln 22+ B.e 2- C.1ln 22-1212.已知函数()24,0,ln ,0,x x x f x x x x ⎧+≤=⎨>⎩()1g x kx =-,若方程()()0f x g x -=在()22,e x ∈-上有3个实根,则k 的取值范围为()A.(]1,2B.{}31,22⎛⎤ ⎥⎝⎦C.331,,222⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭ D.23311,,222e⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭第Ⅱ卷(共90分)二、填空题(每小题5分,共20分) 13.已知角θ的终边经过()2,3-,则3cos 2πθ⎛⎫+= ⎪⎝⎭.14.给出下列四个命题: ①函数()2sin 23f x x π⎛⎫=+⎪⎝⎭的一条对称轴是712x π=; ②函数()tan f x x =的图象关于点,02π⎛⎫⎪⎝⎭对称; ③若12sin 2sin 2044x x ππ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,则12x x k π-=,其中k Z ∈; ④函数2cos sin y x x =+的最小值为1-. 以上四个命题中错误的个数为 个.15.已知()()y f x x R =∈的导函数为()f x ',若()()32f x f x x --=,且当0x ≥时,()23,f x x '>则不等式()()21331f x f x x x -->-+的解集是 .16.已知函数()()2ln ,,e mf x x xg x x=+-=其中e 为自然对数的底数,若函数()f x 与()g x 的图象恰有一个公共点,则实数m 的取值范围是 .三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤)17. (本小题满分10分)已知函数()2cos 222x x x f x =.(1)求()f x 的单调递增区间; (2)求()f x 在区间[],0π-上的最小值. 18. (本小题满分12分) 已知函数()()sin 10,06f x A x A πωω⎛⎫=-+>> ⎪⎝⎭的最大值为3,其图象相邻两条对称轴之间的距离为2π. (1)求函数()f x 的解析式和当[]0,x π∈时,()f x 的单调减区间; (2)将()f x 的图象向右平移12π个长度单位,再向下平移1个长度单位,得到()g x 的图象,用“五点 法”作出()g x 在[]0,π内的大致图象.19. (本小题满分12分) 已知函数()e 2.x f x x =-(1)求曲线()y f x =在点()()0,0f 处的切线方程;(2)若函数()()[],1,1g x f x a x =-∈-恰有2个零点,求实数a 的取值范围. 20. (本小题满分12分)已知函数()()1ln f x m ax x x a =-++-.(1)当0a =时,若()0f x ≥在()1,+∞上恒成立,求m 的取值范围; (2)当1m a ==时,证明:()()10x f x -≤. 21. (本小题满分12分)已知函数()()221ln ,,,2f x x mxg x mx x m R =-=+∈令()()()F x f x g x =+. (1)当12m =时,求函数()f x 的单调区间及极值; (2)若关于x 的不等式()1F x mx ≤-恒成立,求整数m 的最小值. 22. (本小题满分12分) 已知函数()()ln af x x x a R x=++∈. (1)若函数()f x 在[)1,+∞上为增函数,求a 的取值范围;(2)若函数()()()21g x xf x a x x =-+-有两个不同的极值点,记作12,x x ,且12x x <,证明:2312e x x > ()e 为自然对数的底数.2018-2019学年度高三年级上学期二调考试文科数学答案一、选择题1.C 【解析】因为{}(){}{}2202020,B xx x xx xx x x =->=->=><或所以{}1,3.A B =- 故选C.2.D 【解析】由原命题与逆否命题的构成关系,可知A 正确;当21a =>时,函数()2log f x x =在定义域内是单调递增函数;当函数()log a f x x =在定义域内是单调递增函数时,1a >,所以B 正确;由于存在性命题的否定是全称命题,所以“0x R ∃∈,使得20010x x ++<”的否定是“x R ∀∈,均有210x x ++≥”,所以C 正确;因为()00f x '=的根不一定是极值点,例如:函数()31f x x =+,则()230,f x x'==即0x =就不是极值点,所以命题“若0x 为()y f x =的极值点,则()00f x '=”的逆命题为假命题,所以D 错误.故选D.3.C 【解析】由()22i i 12i1i i 1i 1z +===---,可知复数2i i 1z =-在复平面内对应的坐标为()1,1-,所以复数2ii 1z =-在复平面内对应的点在第四象限.故选C.4.A 【解析】由题可得,()()2236331.f x x x x '=-+=-当1x =时,()0f x '=,但在此零点两侧导函数均大于0,所以此处不是函数的极值点,所以函数极值点的个数为0.故选A.5.A 【解析】因为趋向于负无穷时,()21e 0xy x =-<,所以C,D 错误;因为()21e xy x '=+,所以当12x <-时,0y '<,所以A 正确,B 错误.故选A. 6.B 【解析】因为()()1222log 3log 3log 3,a f f f ⎛⎫==-= ⎪⎝⎭且1.21211log 3,022,22--><<=所以 1.221log 3202->>>.又()f x 在区间(),0-∞内单调递增,且()f x 为偶函数,所以()f x 在区间()0,+∞内单调递减,所以()1.2121log 32,2f f f -⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭所以.b c a >>故选B.7.D 【解析】因为()()2f x f x +=,所以函数()f x 的周期为2,作图如下:由图知,直线y x a =+与函数()f x 的图象在区间[]0,2内恰有两个不同的公共点时,直线y x a =+经过点()1,1或与()2f x x =相切于点A ,则11,a =+即0a =或2,x x a =+则140a ∆=+=,即14a =-.故选D.8.B 【解析】由题得,cos 2cos 2sin 23266y x x x ππππ⎛⎫⎛⎫⎛⎫=+=+-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.因为5s i n 2s i n 2s i n 2,666x x xππππ⎛⎫⎛⎫⎛⎫--=+-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以cos 23y x π⎛⎫=+ ⎪⎝⎭5sin 26x π⎛⎫=+ ⎪⎝⎭5sin 2.12x π⎛⎫=+ ⎪⎝⎭由图象平移的规则,可知只需将函数sin 2y x =的图象向左平移512π个长度单位就可以得到函数cos 23y x π⎛⎫=+ ⎪⎝⎭的图象.故选B.9.D 【解析】由题意得,()1ln ln 210f x x ax x a x ax x ⎛⎫'=-+-=-+= ⎪⎝⎭在区间()0,2上有两个不等的实根,即ln 12x a x +=在区间()0,2上有两个实根.设()ln 12x g x x+=,则()2ln 2xg x x'=-,易知当01x <<时,()0g x '>,()g x 单调递增;当12x <<时,()0g x '<,()g x 单调递减,则()()max 11.2g x g ==又()ln 2124g +=,当10ex <<时,()0g x <,所以ln 211.42a +<<故选D. 10.B 【解析】易知函数sin y x =的单调区间为3,22k k ππππ⎡⎤++⎢⎥⎣⎦,k Z ∈.由3,,262k x k k Z ππππωπ+≤+≤+∈得433,.k k x k Z ππππωω++≤≤∈因为函数()()si n 06fx x πωω⎛⎫=+>⎪⎝⎭在区间(),2ππ内没有最值,所以()f x 在区间(),2ππ内单调,所以()433,2,,k k k Z ππππππωω⎡⎤++⎢⎥⊆∈⎢⎥⎢⎥⎣⎦,所以3,432,k k Z k πππωπππω⎧+⎪≤⎪⎪∈⎨⎪+⎪≥⎪⎩,解得12,323k k k Z ω+≤≤+∈.由12,323k k +≤+得2.3k ≤当0k =时,得12;33ω≤≤当1k =-时,得21.36ω-≤≤又0ω>,所以10.6ω<≤综上,得ω的取值范围是1120,,.633⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦故选B.11.A 【解析】设()()f m g n t ==,则0t >,111e ,lnln ln 2,222t t m n t -==+=-+令 ()()()1112111e ln ln 2,e ,e 0,2t t t h t t h t h t t t---'''=-+-=-=+>则所以()h t '在区间()0,+∞上单调递增.又()10h '=,所以当()0,1t ∈时,()0h t '<;当()1,t ∈+∞时,()0h t '>,所以()h t 在区间()0,1上单调递减,在区间()1,+∞上单调递增,即()11l n 22h =+是极小值也是最小值,所以m n -的最小值是1ln 22+.故选A. 12.B 【解析】当0x =时,()()00,01f g ==-,则()()000f g -=不成立,即方程()()0f x g x -=没有零解.①当0x >时,l n 1x x k x =-,即l n 1k x x x =+,则1l n .k x x =+设()1ln ,h x x x =+则()22111,x h x x x x-'=-=由()0h x '>,得21e x <<,此时函数()h x 单调递增;由()0h x '<,得01x <<,此时函数()h x 单调递减,所以当1x =时,函数()h x 取得极小值()11h =;当2e x =时,()221e2eh =+;当0x →时,()h x →+∞;②当0x <时,241x x kx +=-,即241kx x x =++,则14k x x=++.设()14,m x x x =++则()222111,x m x x x-'=-=由()0,m x '>得1x >(舍去)或1x <-,此时函数()m x 单调递增;由()0,m x '<得10x -<<,此时()m x 单调递减,所以当1x =-时,函数()m x 取得极大值()12m -=;当2x =-时,()13224;22m -=--+=当0x →时,().m x →-∞作出函数()h x 和()m x 的图象,可知要使方程()()0f x g x -=在()22,e x ∈-上有三个实根,则31,22k k ⎛⎤∈= ⎥⎝⎦或.故选B.二、填空题13.13【解析】因为角θ的终边经过点()2,3-,所以2,3,x y r =-=,则si n ,13y r θ==所以3cos sin 213πθθ⎛⎫+== ⎪⎝⎭14.1【解析】对于①,因为7212f π⎛⎫=-⎪⎝⎭,所以2sin 23y x π⎛⎫=+ ⎪⎝⎭的一条对称轴是712x π=,故①正确;对于②,因为函数()tan f x x =满足()()0f x f x π+-=,所以()tan f x x=的图象关于点,02π⎛⎫⎪⎝⎭对称,故②正确;对于③,若12sin 2sin 20,44x x ππ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭则()122,2,,44x m x n m Z n Z ππππ-=-=∈∈所以()1211,,22x x m n k k Z ππ-=-=∈故③错误;对于④,函数22215cos sin sin sin 1sin ,24y x x x x x ⎛⎫=+=-++=--+ ⎪⎝⎭当sin 1x =-时,函数取得最小值1-,故④正确.综上,共有1个错误.15.1,2⎛⎫+∞⎪⎝⎭【解析】令()()3,F x f x x =-则由()()32f x f x x --=,可得()()F x F x -=,所以()F x 为偶函数.又当0x ≥时,()23f x x '>,即()'0F x >.由()()21331f x f x x x -->-+,得()()1F x F x >-,所以1x x >-,解得12x >. 16.[)2e 10,e +⎧⎫+∞-⎨⎬⎩⎭【解析】因为()110f x x '=+>,所以函数()f x 在区间()0,+∞上单调递增,且1110,e ef ⎛⎫=--< ⎪⎝⎭所以当0m ≥时,()f x 与()m g x x =有一个公共点;当0m <时,令()()fx g x =,即22ln ex x x x m +-=有一个解即可.设()22ln e h x x x x x =+-,则()()22l n 1.0,e h x xx h x ''=++-=令得1ex =.因为当10e x <<时,()0;h x '<当1e x >时,()0,h x '>所以当1e x =时,()h x 有唯一的极小值2e 1e +-,即()h x 有最小值2e 1e +-,所以当2e 1em +=-时,有一个公共点.综上,实数m 的取值范围是[)2e 10,e +⎧⎫+∞-⎨⎬⎩⎭. 三、解答题17. 解:(1)()21cos cos 22222x x x xf x x -==sin 22242x x x π⎛⎫=+-=+-⎪⎝⎭, 由()22242k x k k Z πππππ-≤+≤+∈,得()32244k x k k Z ππππ-≤≤+∈. 则()f x 的单调递增区间为()32,244k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦.(5分) (2)因为0x π-≤≤,所以3444x πππ-≤+≤,当42x ππ+=-,即34x π=-时,()min 12f x =--.(10分) 18. 解:(1)因为函数()f x 的最大值是3, 所以13, 2.A A +==即因为函数图象的相邻两条对称轴之间的距离为2π, 所以最小正周期,2T πω==即. 所以()2sin 216f x x π⎛⎫=-+ ⎪⎝⎭.(3分) 令()3222262k x k k Z πππππ+≤-≤+∈, 即()536k x k k Z ππππ+≤≤+∈. 因为[]0,x π∈,所以()f x 的单调减区间为5,36ππ⎡⎤⎢⎥⎣⎦.(6分) (2)依题意得,()12sin 2123g x f x x ππ⎛⎫⎛⎫=--=- ⎪ ⎪⎝⎭⎝⎭. 列表得:描点((52110,,,0,,2,,0,,2,,612312πππππ⎛⎫⎛⎫⎛⎫⎛⎫-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 连线得()g x 在[]0,π内的大致图象.(12分)19. 解:(1)因为()e 2xf x x =-,所以()'e 2x fx =-.所以()'0 1.f=-又()01,f =所以曲线()y f x =在点()()0,0f 处的切线方程为1,y x -=- 即10x y +-=.(5分)(2)由题意得,()e 2xg x x a =--,所以()'e 2xg x =-.由()'e 20x g x =-=,解得ln 2x =,故当1ln 2x -≤<时,()'0g x <,()g x 在[)1,ln 2-上单调递减; 当ln 21x <≤时,()'0g x >,()g x 在(]ln 2,1上单调递增. 所以()()min ln222ln2g x g a ==--. 又()11e +2g a --=-,()1e 2g a =--, 结合函数的图象可得,若函数恰有两个零点,则()()()11e 20,1e 20,ln 222ln 20,g a g a g a -⎧-=+-≥⎪=--≥⎨⎪=--<⎩解得22ln 2e 2a -<≤-.所以实数a 的取值范围为(]22ln2,e 2--.(12分) 20. 解:(1)由()0f x ≥,得ln xm x≤在()1,+∞上恒成立. 令()ln x g x x =,则()()'ln 1ln x g x x -=. 当()1,e x ∈时,()'0g x <; 当()e,+x ∈∞时,()'0g x >,所以()g x 在()1,e 上单调递减,在()e,+∞上单调递增. 故()g x 的最小值为()e =e g .所以e m ≤,即m 的取值范围为(],e -∞.(6分) (2)因为1m a ==,所以()()1ln 1f x x x x =-++-,()'11ln 1ln x f x x x x x+=--+=--. 令()1ln h x x x =--,则()'22111x h x x x x-=-+=. 当()1,x ∈+∞时,()'0h x <,()h x 单调递减; 当()0,1x ∈时,()'0h x >,()h x 单调递增.所以()()max 110h x h ==-<,即当()0,x ∈+∞时,()'0f x <,所以()f x 在()0,+∞上单调递减.又因为()10,f =所以当()0,1x ∈时,()0;f x >当()1,x ∈+∞时,()0.f x < 于是()()10x f x -≤对()0,x ∀∈+∞恒成立.(12分) 21. 解:(1)由题得,()()21ln 02f x x x x =->,所以()()'10f x x x x=->. 令()'0,f x =得1x =.由()'0,f x >得01x <<,所以()f x 的单调递增区间为()0,1,(2分) 由()'0,fx <得1x >,所以()f x 的单调递减区间()1,+∞.(3分)所以函数()()1=12f x f =-极大值,无极小值.(4分) (2)法一:令()()()()211ln 112G x F x mx x mx m x =--=-+-+,所以()()()2'1111mx m x G x mx m x x-+-+=-+-=.当0m ≤时,因为0x >,所以()'0G x >,所以()G x 在()0,+∞上是递增函数.又因为()31202G m =-+>,所以关于x 的不等式()1G x mx ≤-不能恒成立. 当0m >时,()()()2'1111m x x mx m x m G x x x⎛⎫-+ ⎪-+-+⎝⎭==-.令()'0G x =,得1x m=, 所以当10,x m ⎛⎫∈ ⎪⎝⎭时,()'0G x >;当1,x m ⎛⎫∈+∞ ⎪⎝⎭时,()'0G x <, 因此函数()G x 在10,x m ⎛⎫∈ ⎪⎝⎭上是增函数,在1,x m ⎛⎫∈+∞ ⎪⎝⎭上是减函数. 故函数()G x 的最大值为11ln 2G m m m ⎛⎫=- ⎪⎝⎭. 令()1ln 2h m m m =-, 因为()1102h =>,()12ln 204h =-<,又因为()h m 在()0,m ∈+∞上是减函数, 所以当2m ≥时,()0h m <, 所以整数m 的最小值为2.(12分) 法二:由()1F x mx ≤-恒成立,知()()22ln 102x x m x x x++≥>+恒成立. 令()()()22ln 102x x h x x x x ++=>+,则()()()()'22212ln 2x x x h x x x -++=+. 令()2ln x x x ϕ=+, 因为11ln 4022ϕ⎛⎫=-<⎪⎝⎭,()110ϕ=>,且()x ϕ为增函数. 故存在01,12x ⎛⎫∈ ⎪⎝⎭,使()00x ϕ=,即002ln 0x x +=.当00x x <<时,()'0h x >,()h x 为增函数,当0x x >时,()'0h x <,()h x 为减函数,所以()()0002max 0002ln 2212x x h x h x x x x ++===+. 而01,12x ⎛⎫∈ ⎪⎝⎭,所以()011,2x ∈, 所以整数m 的最小值为2.(12分)22.解:(1)由题可知,函数()f x 的定义域为()0,+∞,()22211.a x x af x x x x +-'=+-=因为函数()f x 在区间[)1,+∞上为增函数,所以()0f x '≥在区间[)1,+∞上恒成立等价于()2mina x x≤+,即2a ≤,所以a 的取值范围是(],2-∞.(4分)(2)由题得,()2ln ,g x x x ax a x =-+-则()ln 2.g x x ax '=-因为()g x 有两个极值点12,x x , 所以1122ln 2,ln 2.x ax x ax ==欲证2312e x x ⋅>等价于证()2312ln ln e 3x x ⋅>=,即12ln 2ln 3x x +>,所以1232.2ax ax +>因为120x x <<,所以原不等式等价于12324a x x >+①.由1122ln 2,ln 2,x ax x ax ==可得()2211ln 2x a x x x =-,则()2121ln2x x a x x =-②.由①②可知,原不等式等价于212112ln32x x x x x x >-+,即()2211221121313ln .221x x x x x x x x x x ⎛⎫- ⎪-⎝⎭>=++设21x t x =,则1t >,则上式等价于()()31ln 112t t t t ->>+.令()()()31ln 112t h t t t t -=->+,则()()()()()()()22312611411.1212t t t t h t t t t t +----'=-=++ 因为1t >,所以()0h t '>,所以()h t 在区间()1,+∞上单调递增,所以当1t >时,()()10h t h >=,即()31ln 12t t t->+,所以原不等式成立,即2312e x x ⋅>.(12分)。
2018届河北省普通高等学校招生全国统一考试高三第二次调研考试数学(文)试题-含答案
2018届河北省普通高等学校招生全国统一考试高三第二次调研考试数学(文)试题本试卷满分150分,考试时间120分钟.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{}212=12A x x B x x A B ⎧⎫=-<<≤⋃=⎨⎬⎩⎭,,则 A. {}12x x -≤< B. 112x x ⎧⎫-<≤⎨⎬⎩⎭C. {}2x x <D. {}12x x ≤<2.已知()12i i a bi +=+(i 是虚数单位,,a b R ∈),则a b += A. 3-B.3C.1D. 1-3.已知,l m 是两条不同的直线,α是一个平面,则下列命题中正确的是 A.若//,,//l m l m αα⊂则 B. 若//,//,//l m l m αα则 C.若,,l m m l αα⊥⊂⊥则D. 若,//,l l m m αα⊥⊥则4.在下列双曲线方程中,表示焦点在y 轴上且渐近线方程为3y x =±的是A. 2219y x -= B. 2219x y -= C. 2219y x -= D. 2219x y -= 5.某科研机构为了研究中年人秃头是否与患有心脏病有关,随机调查了一些中年人的情况,具体数据如下表所示:根据表中数据得()22277520450530015.96810.82825750320455K K ⨯⨯-⨯=≈≥⨯⨯⨯,由,断定秃发与患有心脏病有关,那么这种判断出错的可能性为A.0.1B.0.05C.0.01D.0.0016.执行如图所示的程序框图,则输出的S 的值是A. 1-B.23C.32D.47.已知函数()()sin ,336f x A x f x f x f x πππωϕ⎛⎫⎛⎫⎛⎫=++=--+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,且 6f x π⎛⎫- ⎪⎝⎭,则实数ω的值可能是 A.2B.3C.4D.58.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积是A.9B.272C.18D.279.关于圆周率π,数学发展史上出现过许多有创意的求法,如著名的普丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请120名同学每人随机写下一个,x y 都小于1的正实数对(),x y ,再统计其中,x y 能与1构成钝角三角形三边的数对(),x y 的个数m ,最后根据统计个数m 估计π的值.如果统计结果是m 34=,那么可以估计π的值为 A.227B.4715C.5116D.531710.已知函数()()20,0f x ax bx a b =+>>的图像在点()()1,1f 处的切线的斜率为2,则8a bab+的最小值是 A.10B.9C.8D. 11.已知中心在原点的椭圆与双曲线有公共焦点,左、右焦点分别为12,F F ,且两条曲线在第一象限的交点为P ,12PF F ∆是以1PF 为底边的等腰三角形.若110PF =,椭圆与双曲线的离心率分别为1212,1e e e e +,则的取值范围是A. ()1,+∞B. 4,3⎛⎫+∞⎪⎝⎭C. 6,5⎛⎫+∞⎪⎝⎭D. 10,9⎛⎫+∞⎪⎝⎭12.已知定义在R 上的函数()()()1112f x f f x '=>满足,且恒成立,则不等式()22122x f x <+的解集为 A. (),1-∞-B. ()1,+∞C. ()(),11,-∞-⋃+∞D. ()1,1-二、填空题:本题共4小题,每小题5分,共20分. 13.已知向量,a b 满足()2,0,1,a b a b ==+=,则向量,a b 所成的角为__________.14.已知实数,x y 满足约束条件4,2,311,x y x y z x y x +=⎧⎪≤=-+⎨⎪≥⎩若,则实数z 的最大值是_________.15.已知P 是抛物线24y x =上的动点,点Q 在圆()()22:331C x y ++-=上,点R 是点P 在y 轴上的射影,则PQ PR +的最小值是___________. 16.在ABC ∆中,角A,B,C 所对的边分别为21,,sinsin sin ,24B C a b c B C -+=,且 2b c +=,则实数a 的取值范围是____________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)已知数列{}n a 的前n 项和为n S ,且对任意正整数n 都有()10,1n n a S λλ-=≠.(1)求证:{}n a 为等比数列. (2)若441112log log n n n b a a λ+==,且,求数列{}n b 的前n 项和n T .18.(12分)炼钢是一个氧化降碳的过程,由于钢水含碳量的多少直接影响冶炼时间的长短,因此必须掌握钢水含碳量和冶炼时间的关系.现已测得炉料熔化完毕时钢水的含碳量x 与冶炼时间y (从炉料熔化完毕到出钢的时间)的一组数据,如下表所示:(1)据统计表明,y x 与之间具有线性相关关系,请用相关系数r 加以说明(r 若0.75≥,则认为y 与x 有较强的线性相关关系,否则认为没有较强的线性相关关系,r 精确到0.001); (2)建立y 关于x 的回归方程(回归系数的结果精确到0.01); (3)根据(2)中的结论,预测钢水含碳量为160个0.01%的冶炼时间.参考公式:回归方程=y bx a +中斜率和截距的最小二乘估计分别为1221ni ii nii x ynx yb xnx==-=-∑∑,a y bx =-,相关系数ni ix ynx yr -=∑参考数据:10101022111159.8,172,265448,312350,287640ii i i i ii x y xy x y ========∑∑∑,12905=.19.(12分)如图,四边形ABCD 为梯形,AB//CD ,PD ⊥平面ABCD ,90,BAD ADC DC ∠=∠==22,,AB a DA E ==为BC 的中点.(1)求证:平面PBC ⊥平面PDE.(2)在线段PC 上是否存在一点F ,使得PA//平面BDF ?若存在,指出点F 的位置,并证明;若不存在,请说明理由.20.(12分)在平面直角坐标系中,点(),A x y 到点()()121,010F F -与点,的距离之和为4. (1)试求点A 的M 的方程. (2)若斜率为12的直线l 与轨迹M 交于C,D 两点,312P ⎛⎫⎪⎝⎭,为轨迹M 上不同于C ,D 的一点,记直线PC 的斜率为1k ,直线PD 的斜率为2k ,试问12k k +是否为定值.若是,求出该定值;若不同,请说出理由.21.(12分)已知函数()()2ln 2a f x x x x a R =-∈. (1)当1a =时,判断函数()f x 的单调性;(2)若函数()()()11g x f x a x x =+-=在处取得极大值,求实数a 的取值范围.(二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分. 22.[选修4-4:坐标系与参数方程](10分)在极坐标系中,圆C 的极坐标方程为()24cos sin 3ρρθθ=+-,若以极点O 为原点,极轴为x 轴的正半轴建立平面直角坐标系. (1)求圆C 的一个参数方程;(2)在平面直角坐标系中,(),P x y 是圆C 上的动点,试求2x y +的最大值,并求出此时点P 的直角坐标.23. [选修4-5:不等式选讲](10分)若关于x 的不等式32310x x t ++--≥的解集为R ,记实数t 的最大值为a .,(1)求a 的值;(2)若正实数,m n 满足45m n a +=,求14233y m n m n=+++的最小值.参考答案。
【衡水金卷压轴卷】2018年普通高等学校招生全国统一考试模拟试题文科数学(二)试题(解析版)
2018年普通高等学校招生全国统一考试模拟试题文科数学(二)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】B【解析】【分析】由A与B,求出两集合的交集即可【详解】因为集合,所以,故选:.【点睛】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2. 下列各式的运算结果为的是()A. B. C. D.【答案】D【解析】【分析】利用复数形式的代数运算化简各选项即可得到答案.【详解】;;.故选:.【点睛】复数的运算,难点是乘除法法则,设,则,.3. 现有甲、乙两台机床同时生产直径为的零件,各抽测件进行测量,其结果如下图,则不通过计算从图中数据的变化不能反映的数字特征是()A. 极差B. 方差C. 平均数D. 中位数【答案】C【解析】【分析】根据频数分布折线图逐一进行判断即可.【详解】由于极差反映了最大值与最小值差的关系,方差反映数据的波动幅度大小关系,平均数反映所有数据的平均值的关系,中位数反映中间一位或两位平均值的大小关系,因此由图可知,不通过计算不能比较平均数大小关系.故选:.【点睛】平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动大小,方差或标准差越小,则数据分布波动较小,相对比较稳定.4. 已知在底面为菱形的直四棱柱中,,若,则异面直线与所成的角为()A. B. C. D.【答案】D【解析】【分析】连接交于点,(或其补角)为异面直线与所成的角,转化到三角形中即可求出. 【详解】连接,四边形为菱形,,.又为直角三角形,,得,四边形为正方形.连接交于点,(或其补角)为异面直线与所成的角,由于为正方形,,故异面直线与所成的角为.故选:.【点睛】求异面直线所成角的步骤:1平移,将两条异面直线平移成相交直线.2定角,根据异面直线所成角的定义找出所成角.3求角,在三角形中用余弦定理或正弦定理或三角函数求角.4结论.5. 如下图所示的图形中,每个三角形上各有一个数字,若六个三角形上的数字之和为,则称该图形是“和谐图形”,已知其中四个三角形上的数字之和为.现从中任取两个数字标在另外两个三角形上,则恰好使该图形为“和谐图形”的概率为()A. B. C. D.【答案】B【解析】【分析】由“和谐图形”得到满足题意的情况共两种,利用古典概型概率公式即可求出.【详解】由题意可知,若该图形为“和谐图形”,则另外两个三角形上的数字之和恰为.从中任取两个数字的所有情况有,,,共种,而其中数字之和为的情况有,共种,所以所求概率.故选:.【点睛】有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数:1.基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举;2.注意区分排列与组合,以及计数原理的正确使用.6. 已知函数在区间内单调递增,且,若,,,则的大小关系为()A. B.C. D.【答案】B【解析】【分析】利用奇偶性把自变量转化到同一单调区间即可比较大小.【详解】,且,.又在区间内单调递增,且为偶函数,在区间内单调递减,,.故选:.【点睛】对于比较大小、求值或范围的问题,一般先利用函数的奇偶性得出区间上的单调性,再利用其单调性脱去函数的符号“f”,转化为考查函数的单调性的问题或解不等式(组)的问题,若为偶函数,则,若函数是奇函数,则.7. 执行如图所示的程序框图,则输出的值为()A. B. C. D.【答案】C【解析】【分析】模拟程序的运行,可得程序框图的功能,结合已知进而计算得解m的值.【详解】初始值:,第一次运行:;第二次运行:;第三次运行:;第四次运行:,运行终止,因此输出.故选:.【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.8. 关于函数的图象或性质的说法中,正确的个数为()①函数的图象关于直线对称;②将函数的图象向右平移个单位所得图象的函数为;③函数在区间上单调递增;④若,则.A. B. C. D.【答案】A【解析】【分析】①令得到对称轴,即可作出判断;②根据平移变换知识可知正误;③求出其单调增区间即可作出判断;④利用配角法即可得到结果.【详解】令,解得,当时,得到,故①正确;将函数的图象向右平移个单位,得,故②错误;令,故③错误;若,则,故④错误.故选:.【点睛】函数的性质(1) .(2)周期(3)由求对称轴(4)由求增区间;由求减区间.9. 某几何体是由两个同底面的三棱锥组成,其三视图如下图所示,则该几何体外接球的面积为()A. B. C. D.【答案】C【解析】【分析】由三视图可得该几何体为同底面不同棱的两个三棱锥构成,补成正方体即可求出该几何体外接球的面积【详解】由题可知,该几何体是由同底面不同棱的两个三棱锥构成,其中底面是棱长为的正三角形,一个是三条侧棱两两垂直,且侧棱长为的正三棱锥,另一个是棱长为的正四面体,如图所示:该几何体的外接球与棱长为的正方体的外接球相同,因此外接球的直径即为正方体的体对角线,所以,所以该几何体外接球面积,故选:.【点睛】空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.10. 已知是抛物线的焦点,过点作轴的垂线与抛物线在第一象限的交点为,过点作直线的垂线,垂足为,直线与轴的交点为,在四边形内作椭圆,则面积最大的椭圆的内接矩形的最大面积为()A. B. C. D.【答案】D【解析】【分析】明确四边形的边长,在其内作面积最大的椭圆应与各边相切,可知所作的椭圆的长半轴长为,短半轴长为,利用三角换元知识即可得到最值.【详解】由,得,即,则,当时,,所以,则四边形为边长分别为与的矩形,故在其内作面积最大的椭圆应与各边相切,可知所作的椭圆的长半轴长为,短半轴长为,又在椭圆内作内接矩形的最大面积记为,易知 (为参数),因此,故选:.【点睛】圆锥曲线中最值与范围问题的常见求法:(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下几个方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;③利用基本不等式求出参数的取值范围;④利用函数的值域的求法,确定参数的取值范围.11. 在中,内角的对边分别为.若的面积为,且,,则外接圆的面积为()A. B. C. D.【答案】D【解析】【分析】由余弦定理与面积公式结合条件可得∠A的值,然后利用正弦定理可得外接圆的直径,进而得到外接圆的面积.【详解】在中,由余弦定理,得,既有,又由面积公式,得,即有,又,所以,所以.因为,所以,又由正弦定理,得,其中为外接圆的半径,由及,得,所以外接圆的面积.故选:.【点睛】本题主要考查正弦定理、余弦定理在解三角形中的应用,属于中档题. 正弦定理是解三角形的有力工具,其常见用法有以下三种:(1)知道两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)知道两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径.12. 已知函数是定义在区间上的可导函数,为其导函数,当且时,,若曲线在点处的切线的斜率为,则的值为()A. B. C. D.【答案】A【解析】【分析】令g (x )=x 2f (x ),讨论x >2,0<x <2时,g (x )的单调区间和极值点,可得g′(2)=0,即有f (2)+f′(2)=0,由f′(2)=﹣4,即可得出.【详解】当且时,,可得时,;时,,令,,则,可得当时, ;当时,,所以函数在处取得极大值,所以,又,所以.故选:.【点睛】用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造.构造辅助函数常根据导数法则进行:如构造;如构造;如构造;如构造等.第Ⅱ卷二、填空题:本题共4小题,每小题5分.13. 已知向量,其中,且与垂直,则的值为__________.【答案】【解析】 【分析】利用平面向量坐标运算法则先求出,再由+与垂直,能求出实数x 的值.【详解】由题可知, ,因为与垂直,所以,即,即.故答案为:【点睛】本题考查实数值的求法,考查平面向量坐标运算法则、向量垂直等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.14. 过双曲线的右焦点作渐近线的垂线,垂足为,且该直线与轴的交点为,若(为坐标原点),则双曲线的离心率的取值范围为__________. 【答案】【解析】 【分析】由可得从而得到双曲线的离心率.【详解】不妨设渐近线方程为,右焦点,则点到渐近线的距离为.又在方程中,令,得,所以.由|FP<OQ|,可得,可得,即得,又因为,所以.故答案为:【点睛】本题考查了双曲线的几何性质——离心率的求解,其中根据条件转化为圆锥曲线的离心率的方程,得到a,c 的关系式是解得的关键,对于双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式;②只需要根据一个条件得到关于a,b,c的齐次式,转化为a,c的齐次式,然后转化为关于e的方程(不等式),解方程(不等式),即可得e (e的取值范围).15. 已知曲线的方程为,过平面上一点作的两条切线,切点分别为,且满足.记的轨迹为,过平面上一点作的两条切线,切点分别为,且满足.记的轨迹为,按上述规律一直进行下去,…,记,且为数列的前项和,则满足的最小正整数为__________.【答案】5【解析】【分析】由题意可知轨迹分别是半径为的圆,故,求出,解不等式足即可.【详解】由题设可知轨迹分别是半径为的圆.因为,所以,所以.由,得,故最小的正整数为.故答案为:5【点睛】本题考查等比数列的通项公式与求和公式,考查数列递推公式、两点间距离公式、直线与圆相切的性质、勾股定理等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.16. 某儿童玩具生产厂一车间计划每天生产遥控小车模型、遥控飞机模型、遥控火车模型这三种玩具共个,生产一个遥控小车模型需分钟,生产一个遥控飞机模型需分钟,生产一个遥控火车模型需分钟,已知总生产时间不超过分钟,若生产一个遥控小车模型可获利元,生产一个遥控飞机模型可获利元,生产一个遥控火车模型可获利元,该公司合理分配生产任务可使每天的利润最大,则最大利润是__________元【答案】【解析】【分析】依题意,每天安排生产个遥控小车模型,个遥控飞机模型,则生产个遥控火车,根据题意即可得出每天的利润;先根据题意列出约束条件,再根据约束条件画出可行域,设,再利用z的几何意义求最值.【详解】设每天安排生产个遥控小车模型,个遥控飞机模型,则生产个遥控火车模型,依题得,实数满足线性约束条件目标函数为,化简得,作出不等式组表示的可行域(如图所示):作直线,将直线向右上方平移过点时,直线在y轴上的截距最大,由得所以,此时(元).故答案为:5000【点睛】本题考查线性规划的实际应用,在解决线性规划的应用题时,其步骤为:①分析题目中相关量的关系,列出不等式组,即约束条件,②由约束条件画出可行域,③分析目标函数Z与直线截距之间的关系,④使用平移直线法求出最优解,⑤还原到现实问题中.三、解答题:解答应写出文字说明,证明过程或演算步骤.17. 设正项等比数列的前项和为,已知.(1)记,判断:数列是否成等差数列,若是,请证明;若不是,请说明理由;(2)记,数列的前项和为,求满足的最小正整数的值.【答案】(1)见解析(2)【解析】【分析】(1)设等比数列的首项为,公比为,求出进而得到,结合等差数列定义即可作出判断;(2)由(1)可知,.利用裂项相消法求出,即可求出最小正整数的值.【详解】(1)设等比数列的首项为,公比为,由,得(舍).当时,,所以.所以,所以,则,所以,因此,且,故数列是首项为,公差为的等差数列.(2)由(1)可知,.则.令,解得,又,所以.【点睛】裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2);(3);(4);此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.18. 如图,在四棱锥中,底面,,,以为圆心,为半径的圆过点.(1)证明:平面;(2)若,求三棱锥的体积.【答案】(1)见解析(2)【解析】【分析】(1)要证平面,转证即可;(2)三棱锥的体积,在中利用解三角形知识求出其面积即可.【详解】(1)由底面,可知.又以为圆心,为半径的圆过点,所以.又因为,所以.在中,有,所以,即.又,所以平面.(2)由(1)可知,,所以.又由已知及(1)可知,,所以.在中,设,则由余弦定理,得,即,即,解得.且,所以.因为底面,所以三棱锥的体积,故三棱锥的体积为.【点睛】求锥体的体积要充分利用多面体的截面和旋转体的轴截面,将空间问题转化为平面问题求解,注意求体积的一些特殊方法——分割法、补形法、等体积法.①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.19. 下表是某学生在4月份开始进人冲刺复习至高考前的5次大型联考数学成绩(分);(1)请画出上表数据的散点图;(2)①请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;②若在4月份开始进入冲刺复习前,该生的数学分数最好为116分,并以此作为初始分数,利用上述回归方程预测高考的数学成绩,并以预测高考成绩作为最终成绩,求该生4月份后复习提高率.(复习提高率=,分数取整数)附:回归直线的斜率和截距的最小二乘估计公式分别为,.【答案】(1)(2) ①②【解析】【分析】(1)把所给的5对数据写成对应的点的坐标,在坐标系中描出来,得到散点图;(2)根据所给的这组数据求出利用最小二乘法所需要的几个数据,代入求系数的公式,求得结果,再把样本中心点代入,求出的值,得到线性回归方程;根据上一问所求的线性回归方程,把代入线性回归方程 (分),净提高分为 (分),即可估计该生4月份后复习提高率.【详解】(1)散点图如图:(2)①由题得,,,,,,所以,,故关于的线性回归方程为.②由上述回归方程可得高考应该是第六次考试,故,则 (分),故净提高分为 (分),所以该生的复习提高率为.【点睛】求回归直线方程的步骤:①依据样本数据画出散点图,确定两个变量具有线性相关关系;②计算的值;③计算回归系数;④写出回归直线方程为;回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.20. 已知函数,.(1)若函数在定义域内单调递增,求实数的取值范围;(2)证明:方程有且只有一个实数根.【答案】(1) (2) 见解析【解析】【分析】(1)依题意,得恒成立,即在区间内恒成立;(2)方程有且只有一个实数根即证明函数的图象与直线有且只有一个交点.令,研究其图象变化趋势即可.【详解】(1)由题得,函数的定义域为由,得,依题意,得恒成立,所以在区间内恒成立,所以.而,当且仅当,即时,等号成立,故,因此实数的取值范围为.(2)令,即,即,也就是证明函数的图象与直线有且只有一个交点.由,得记,所以令,当时,,在区间内单调递减;当时,,在区间内单调递增,所以当时,有有极小值,故,因此在区间内单调递增,又因为当,且时,,当时,,因此函数的图象与直线有且只有一个交点,故方程有且只有一个实数根.【点睛】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.21. 在平面直角坐标系中,已知椭圆的离心率为,且椭圆的短轴恰好是圆的一条直径.(1)求椭圆的方程(2)设分别是椭圆的左,右顶点,点是椭圆上不同于的任意点,是否存在直线,使直线交直线于点,且满足,若存在,求实数的值;若不存在,请说明理由.【答案】(1) (2)【解析】【分析】(1)由e===,2b=4,联立解出即可得出;(2)由题意知, 设,直线的方程为,则,又点在椭圆上,.从而故存在实数的值.【详解】(1)由题可知,.联立,故椭圆的方程为.(2)由题意知,,设,则直线的方程为.设存在直线满足条件,则当时,,所以.又点在椭圆上,所以,所以,,.因为,所以,即,又由题可知,所以,所以存在满足条件.【点睛】解决解析几何中探索性问题的方法存在性问题通常采用“肯定顺推法”.其步骤为:假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程在平面直角坐标系,曲线,(为参数)在以原点为极点轴的正半轴为极轴的极坐标系中,圆的极坐标方程为.(1)求曲线的普通方程和圆的直角坐标方程(2)设曲线与圆E相交于两点,求的值.【答案】(1) (2)【解析】【分析】(1)利用sin2α+cos2α=1可得曲线C的普通方程,利用及其ρ2=x2+y2即可得到圆的直角坐标方程;(2)联立曲线与圆E的普通方程可得两点坐标,从而得到的值.【详解】(1)由消去参数,可得.所以曲线的普通方程为.将,,代人中,得,即圆的直角坐标方程为.(2)联立化简,得,解得或(舍).当时,,设直线与轴交于点,数形结合,得,所以,故的值为.【点睛】(1)直角坐标方程化为极坐标方程,只要运用公式及直接代入并化简即可; (2)极坐标方程化为直角坐标方程时常通过变形,构造形如的形式,进行整体代换.其中方程的两边同乘以(或同除以)及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须同解,因此应注意对变形过程的检验. 23. 选修4-5:不等式选讲已知函数.(1)求不等式的解集;(2)设,证明:.【答案】(1) (2)见解析【解析】【分析】(1)讨论x的取值范围,去掉绝对值,从而得到不等式的解集;(2)利用作差法证明不等式.【详解】(1)当时,恒成立,所以;当时,,所以,综合可知,不等式的解集为. (2)因为,又因为,所以,因此,所以,所以原不等式成立.【点睛】作差法一般步骤:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差.。
经典文档衡水金卷2018年普通高等学校招生全国统一考试模拟试题(压轴卷)文科数学(一)
2018 年普通高等学校招生全国统一考试模拟试题文科数学(一)本试卷共 4 页,23 题(含选考题)。
全卷满分150 分。
考试用时120 分钟。
第Ⅰ卷一、选择题:本题共12 小題,毎小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合 A (x, y) y x ,B(x, y) y 2 ,则AI BA. 2B. 2,2C. ( 2,2) D, ( 2,2),(2,2)2.已知i为虚数单位,若复数复数为2z (a 2a 3) (a 3)i是纯虚数,则复数12a ii的共轭A.475 5i或3155iB.4755iC.3155iD.3155i3.在某次月考中,一名生物老师从他所任教的某班中抽取了甲、乙两组学生的生物成绩(每组恰好各10 人),并将获取的成绩制作成如图所示的茎叶图.观察茎叶图,下面说法错误的是A.甲组学生的生物成绩高分人数少于乙组B.甲组学生的生物成绩比乙组学生的生物成绩更稳定C.甲组学生与乙组学生的生物平均成绩相同D.甲组学生与乙组学生生物成绩的中位数相同4.已知双曲线C:2 2x y2 2 1(a 0,b 0)a b的渐近线与动曲线y (x 2) 3( R) 在第一象限内相交于一定点A,则双曲线 C 的离心率为A. 54B.53C. 2D.435.如图,在长方体ABCD -A1B1C1D1 中,点E,F 分别为B1C1,C1D1 的中点,则四棱锥A -B1FFD1 的正视图与侧视图分別为A.②,③B,④,② C. ②,① D. ②,④6.已知等差数列a n 的前孢项和为S n ,且a1 10, a2 a3 a4 a5 a6 20 ,则“S n取得最小值’的’一个充分不必要条件是A .n=5 或6 B.n=5 或6 或7 C.n=6 D.n=117.我国古代《九章算术》里,记载了一个例子:今有羡除,下广六尺,上广一丈,深三尺,末广八尺,无深,袤七尺,问积几何? 该问题中的羡除是如图所示的五面体ABCDEF ,其三个侧面皆为等腰梯形,两个底面为直角三角形,其中.AB=6 尺,CD=10 尺,EF=8 尺,AB ,CD 之间的距离为 3 尺,CD,EF’间的距离为7 尺,则异面直线DF‘与AB 所成的角的正弦值为A .9130130B.7130130C.97D.798.设3a log ,b ln 3,执行如图所示的程序框图,则输出的S 的值为2A .9+ln 3B.3-ln 3C.11D.1x x9.函数 f (x) 2 2 2的部分图象可能是10.将函数 f (x) 2cos x 的图象向右平移 6 个单位,再将所得图象上所有点的横坐标变为原来的1( 0) 倍,得到函数g(x)的图象,若函数g(x)在区间3( , )4 4上是增函效,则则的取值范围是A.2[ ,2]9B.2(0, ]9C.26 32[ , ]9 9D.2 26 14(0, ] U[ , ]9 9 311.已知函数2,x 1f (x) x22x ,x 1,若方程 2[ f ( x)] mf (x) 1 0(m R) 恰有 4 个不同的实根,则实数m 的取值范围为A,5(0, )2B.5(2, )2C. (2, )D.5( , )212.若过抛物线 2 2 ( 0)x py p 或2 2 ( 0)y px p 的焦点 F 的直与该抛物线交于A,B两点,则称线段AB 为该抛物线的焦点弦,此时有以下性质成立:1 1 2AF BF P。
(衡水金卷)2018年普通高等学校招生全国统一考试模拟数学试题二文(含答案)
(衡水金卷)2018年普通高等学校招生全国统一考试模拟考试数学试题二 文第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}3,2,1,0,1,2,3A =---,集合{}1,0,1,3A =-,集合{}3,2,1,3B =---,则()U C A B ⋃=( )A .{}3,2,1--B .{}2,1,1--C .{}2D .{}1,2,3-2. 已知复数z 满足()20181z i i +=(i 是虚数单位),则复数z 在复平面内对应的点所在象限为( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3.函数()()ln 21f x x =+的定义域为( )A .1,22⎡⎤-⎢⎥⎣⎦B .1,22⎡⎫-⎪⎢⎣⎭C .1,22⎛⎤- ⎥⎝⎦D .1,22⎛⎫- ⎪⎝⎭4.三世纪中期,魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法.所谓割圆术,就是不断倍增圆内接正多边形的边数求出圆周率的方法.如图是刘徽利用正六边形计算圆周率时所画的示意图,现项园中随机投掷一个点,则该点落在正六边形内的概率为( )A B C5.已知双曲线()222210,0x y a b a b-=>>的一条渐近线与直线4310x y ++=垂直,且焦点在圆()22126x y +-=上,则该双曲线的标准方程为( )A .221916x y -=B .221169x y -=C .22134x y -=D .22143x y -=6.执行如图所示的程序框图,若输入的0.05t =,则输出的n 为( )A .3B .4C .5D .67.已知数列{}n a 的前n 项和为n S ,1133,2n n a a S ++==,则5a =( ) A .33 B .43 C .53 D .638.已知将函数()()sin 206f x x πωω⎛⎫=+> ⎪⎝⎭的图象向左平移3π个单位长度得到函数()g x 的图象,若函数()g x 图象的两条相邻的对称轴间的距离为2π,则函数()g x 的—个对称中心为( )A .,06π⎛⎫- ⎪⎝⎭B .,06π⎛⎫ ⎪⎝⎭C .,012π⎛⎫- ⎪⎝⎭D .,012π⎛⎫⎪⎝⎭9.榫卯是在两个木构件上所采用的一中凹凸结合的连接方式,凸出部分叫榫,凹进部分叫卯,榫和卯咬合,起到连接作用,代表建筑有:北京的紫禁城、天坛祈年殿、山西悬空寺等,如图所示是一种榫卯的三视图,其表面积为( )A .812π+B .816π+C .912π+D .916π+10.已知实数,x y 满足约束条件0,20,3,x y x y x -≥⎧⎪+-≥⎨⎪≤⎩当且仅当1x y ==时,目标函数z kx y =+取大值,则实数k 的取值范围是( )A .(),1-∞B .(),1-∞-C .()1,-+∞D .()1,+∞11.已知0a >,命题:p 函数()()2lg 23f x ax x =++的值域为R ,命题:q 函数()ag x x x=+在区间()1,+∞内单调递增.若p q ⌝∧是真命题,则实数a 的取值范围是( ) A .(],0-∞ B .1,3⎛⎤-∞ ⎥⎝⎦ C .10,3⎛⎤ ⎥⎝⎦ D .1,13⎛⎤⎥⎝⎦12.若函数()ln ,0x x f x x >⎧⎪=⎨≤⎪⎩与()1g x x a =++的图像上存在关于y 轴对称的点,则实数a的取值范围是( )A .RB .(],e -∞-C .[),e +∞D .∅第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知在ABC ∆中,D 为BC 边上的点,20BD CD +=,若(),AD mAB nAC m n R =+∈,则n = .14.已知焦点在x 轴上的椭圆222121x y m m +=+20y -+=上,则椭圆的离心率为 .15.在锐角ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若()sin cos sin 1cos C A B C =-,且,3A b π=,则c = .16.如图,在矩形ABCD 中,2AD =,E 为AB 边上的点,项将ADE ∆沿DE 翻折至A DE '∆,使得点A '在平面EBCD 上的投影在CD 上,且直线A D '与平面EBCD 所成角为30︒,则线段AE 的长为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知等差数列{}n a 的前n 项和为n S ,15965,3a a a S =+=. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足11n n n b a a ++=,且16b a =,求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T .18.如图,四棱锥P ABCD -的底面ABCD 是边长为2的正方形,平面PAB ⊥平面ABCD ,点E 是PD 的中点,棱PA 与平面BCE 交于点F .(1)求证://AD EF ;(2)若PAB ∆是正三角形,求三棱锥P BEF -的体积.19.某市统计局就某地居民的收入调查了10000人,并根据所得数据画出样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[)1000,1500).(1)求居民收入在[)3000,3500的频率;(2)根据频率分布直方图算出样本数据的中位数及样本数据的平均数;(3)为了分析居民的收人与年龄、职业等方面的关系,必须按月收入再从这10000人中按分层抽样方法抽出100人作进一步分析,则月收入在[)2500,3000内应抽取多少人?20.已知点F 为抛物线()2:20C y px p =>的焦点,过F 的直线l 交抛物线于,A B 两点. (1)若直线l 的斜率为1,8AB =,求抛物线C 的方程;(2)若抛物线C 的准线与x 轴交于点()1,0P -,(:2:1APF BPF S S ∆∆=,求PA PB ⋅的值. 21.已知函数()2ln ,f x x x ax a R =++∈.(1)当1a =时,求曲线()f x 在1x =处的切线方程;(2)若()1212,x x x x <是函数()f x 的导函数()f x '的两个零点,当(),3a ∈-∞-时,求证:()()123ln 24f x f x ->-. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,已知曲线1C 的参数方程为2143x t y t =-⎧⎨=-+⎩(t 为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4πρθ⎛⎫=- ⎪⎝⎭.(1)求曲线1C 的普通方程与2C 的直角坐标方程; (2)判断曲线12,C C 是否相交,若相交,求出相交弦长. 23.选修4-5:不等式选讲 已知函数()212f x x x =-++. (1)求不等式()0f x >的解集;(2)若对任意的[),x m ∈+∞,都有()f x x m ≤-成立,求实数m 的取值范围.试卷答案一、选择题1-5: CBDAB 6-10: CCDBB 11、12:DC 二、填空题13.1314. 23三、解答题17. 解:(1)设等差数列{}n a 的公差为d , 由15965,3a a a S =+=, 得 ()()6535458652d d d ⨯+++=⨯+, 解得2d =.所以()()()*1152123n a a n d n n n N =+-=+-=+∈. (2)由(1)得,1626315b a ==⨯+=. 又因为11n n n b a a ++=,所以当2n ≥时,()()12321n n n b a a n n -==++ 当1n =时,15315b =⨯=,符合上式, 所以()()2321n b n n =++. 所以()()11111232122123n b n n n n ⎛⎫==- ⎪++++⎝⎭. 所以1111111235572123n T n n ⎛⎫=-+-++- ⎪++⎝⎭()1112323323nn n ⎛⎫=-=⎪++⎝⎭. 18. 解:(1)因为底面ABCD 是边长为2的正方形, 所以//BC AD .又因为BC ⊄平面PAD ,AD ⊂平面PAD , 所以//BC 平面PAD .又因为,,,B C E F 四点共面,且平面BCEF ⋂平面PAD EF =, 所以//BC EF .又因为//BC AD ,所以//AD EF . (2)因为//AD EF ,点E 是PD 的中点, 所以点F 为PA 的中点,112EF AD ==. 又因为平面PAB ⊥平面ABCD ,平面PAB ⋂平面,ABCD AB AD AB =⊥, 所以AD ⊥平面PAB ,所以EF ⊥平面PAB . 又因为PAB ∆是正三角形, 所以2PA PB AB ===,所以12PBF PBA S S ∆∆=又1EF =,所以113P BEF B PEF V V --===故三棱锥P BEF -. 19.解:(1)由题知,月收入在[)3000,3500的频率为0.00035000.15⨯=.(2)从左数第一组的频率为0.00025000.1⨯=,第二组的频率为0.00045000.2⨯=, 第三组的频率为0.00055000.25⨯=, ∴中位数在第三组, 设中位数为2000x +,则0.00050.50.10.2x ⨯=--,解得400x =, ∴中位数为2400.由12500.117500.222500.2527500.2532500.1537500.052400⨯+⨯+⨯+⨯+⨯+⨯=, 得样本数据的平均数为2400.(3)月收入在[)2500,3000的频数为0.25100002500⨯=(人), ∵抽取的样本容量为100, ∴抽取的比例为100110000100=, ∴月收入在[)2500,3000内应抽取的人数为1250025100⨯=(人). 20.解:(1)由题意知,直线l 的方程为2p y x =-.联立2,22,p y x y px ⎧=-⎪⎨⎪=⎩得22304p x px -+=. 设,A B 两点的坐标分别为()(),,,A A B B x y x y , 则3A B x x p +=.由抛物线的性质,可得4822A B A B p pAB FA FB x x x x p p =+=+++=++==, 解得2p =,所以抛物线C 的方程为24y x =.(2)由题意,得()1,0F ,抛物线2:4C y x =, 设直线l 的方程为1x my =+,()()1122,,,A x y B x y , 联立21,4,x my y x =+⎧⎨=⎩得2440y my --=.所以12124,4,y y m y y +=⎧⎨=-⎩①因为(:2:1APF BPF S S ∆∆=,所以2AF BF=-因为,,A F B 三点共线,且,AF FB 方向相同, 所以()23AF FB =-,所以()(()11221,21,x y x y --=-, 所以)122y y=,代入①,得))22214,2 4.y m y⎧=⎪⎨=-⎪⎩解得212m =, 又因为()1,0P -,所以()()11221,,1,PA x y PB x y =+=+, 所以()()11221,1,PA PB x y x y ⋅=+⋅+ ()1212121x x x x y y =++++()()()1212111114my my my my =+++++++- ()212122m y y m y y =++2224842m m m =-+==.21.解:(1)当1a =-时,()2ln f x x x x =+-,()121f x x x'=+-, 所以()1ln1110f =+-=,()11212f '=+-=. 所以曲线()f x 在1x =处的切线方程为()21y x =-, 即220x y --=.(2)由题得,()()212120x ax f x x a x x x ++'=++=>.因为12,x x 是导函数()f x '的两个零点, 所以12,x x 是方程210ax ax ++=的两根, 故121210,22a x x x x +=->=. 令()221g x x ax =++, 因为(),3a ∈-∞-,所以13022a g +⎛⎫=< ⎪⎝⎭,()130g a =+<, 所以()1210,,1,2x x ⎛⎫∈∈+∞ ⎪⎝⎭,且22112221,21ax x ax x =--=--, 所以()()()()()2222111212121222ln ln x x f x f x x x ax ax x x x x -=+-+-=--+, 又因为1212x x =,所以1212x x =,所以()()()()2212121221ln 2,1,4f x f x x x x x -=--∈+∞,令()2222,t x =∈+∞,()()()121ln 22t h t f x f x t t=-=--. 因为()()22211110222t h t t t t -'=+-=>, 所以()h t 在区间()2,+∞内单调递增, 所以()()32ln 24h t h >=-, 即()()123ln 24f x f x ->-. 22.解:(1)由题知,将曲线1C 的参数方程消去参数t , 可得曲线1C 的普通方程为210x y +-=.由4πρθ⎛⎫=- ⎪⎝⎭,得()22cos sin ρρθρθ=+.将222x y ρ=+,cos ,sin x y ρθρθ==代入上式, 得2222x y x y +=+, 即()()22112x y -+-=.故曲线2C 的直角坐标方程为()()22112x y -+-=.(2)由(1)知,圆2C 的圆心为()1,1,半径R =,因为圆心到直线1C 的距离d ==< 所以曲线12,C C 相交,所以相交弦长为==. 23.解:(1)当2x ≤-时,不等式转化为()()2120x x --++>,解得2x ≤-; 当122x -<<时,不等式转化为()()2120x x ---+>,解得123x -<<-; 当12x ≥时,不等式转化为()()2120x x --+>,解得3x >.11 综上所述,不等式()0f x >的解集为{13x x <-或}3x >.(2)由(1)得,()3,2,131,2,213,,2x x f x x x x x ⎧⎪-+≤-⎪⎪=---<<⎨⎪⎪-≥⎪⎩作出其函数图象如图所示:令y x m =-,若对任意的[),x m ∈+∞,都有()f x x m ≤-成立, 即函数()f x 的图象在直线y x m =-的下方或在直线y x m =-上. 当2m ≤-时,30m -+≤,无解; 当122m -<<时,310m --≤,解得1132m -≤<; 当12m ≥时,30m -≤,解得132m ≤≤. 综上可知,当133m -≤≤时满足条件,故实数m 的取值范围是1,33⎡⎤-⎢⎥⎣⎦.。
衡水金卷2018年普通高校招生全国卷信息卷 高三文科数学(二)
2018年普通高等学校招生全国统一考试模拟试题文数(二)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}()(){}2,1,0,1,|130A B x x x =--=+-<,则AB =( )A .{}1,0,1-B .{}0,1C .{}0D .{}2,1-- 2. 若i 为虚数单位,()()13i a i i +-=+,则实数a =( ) A . 2 B . -2 C .3 D .-33. 游戏《王者荣耀》对青少年的不良影响巨大,被戏称为“王者农药”.某车间20名青年工人都有着不低的游戏段位等级,其中白银段位11人,其余人都是黄金或铂金段位.从该车间随机抽取一名工人,若抽得黄金段位的概率是0.2,则抽得铂金段位的概率是( ) A .0.20 B .0.22 C . 0.25 D . 0.424.下列函数既是偶函数又在区间()0,+∞上单调递增的是 ( ) A .3y x = B .14y x = C. y x = D .tan y x =5.已知变量,x y 满足不等式组1035250430x x y x y -≥⎧⎪+-≤⎨⎪-+≤⎩,则目标函数23z x y =--的最大值是 ( )A .-3B .-5 C.195D .5 6.一个几何体的三视图如图所示,则该几何体的体积为( )A . 53πB .73π C.76π D .23π7.设实数,,a b c 满足21log 332,,ln a b a c a --===,则,,a b c 的大小关系为 ( )A .c a b <<B .c b a << C. a c b << D .b c a <<8.数学猜想是推动数学理论发展的强大动力,是数学发展中最活跃、最主动、最积极的因素之一,是人类理性中最富有创造性的部分.1927年德国汉堡大学的学生考拉兹提出一个猜想:对于每一个正整数,如果它是奇数,对它乘3再加1,如果它是偶数,对它除以2,这样循环,最终结果都能得到1.下面是根据考拉兹猜想设计的一个程序框图,则输出的i 为 ( )A . 5B . 6 C. 7 D .89. 已知函数()()2sin 03f x x ωω=<<的图象关于直线4x π=对称,将()f x 的图象向右平移3π个单位,再向上平移1个单位可以得到函数()g x 的图象,则()g x 在区间,32ππ⎡⎤-⎢⎥⎣⎦上的值域是( )A .1⎡⎤-⎣⎦B .1⎡⎤+⎣⎦C. ⎤⎥⎣⎦ D .1⎡⎤⎢⎥⎣⎦10.已知正四棱锥P ABCD -,若该正四棱锥的体积为2,则此球的体积为 ( ) A .1243π B .62581π C. 50081π D .2569π11. 已知定义在R 上的函数()f x 满足()()f x f x '>-,则关于m 的不等式()()132120m f m f m e -+-->的解集是( )A .1,3⎛⎫+∞ ⎪⎝⎭B .10,3⎛⎫ ⎪⎝⎭ C. 1,3⎛⎫-∞ ⎪⎝⎭ D .11,23⎛⎫-⎪⎝⎭12.已知椭圆()222:1024x y C b b+=<<的离心率2e =,椭圆C 与y 轴正半轴的交点F 是抛物线()2:20D x py p =>的焦点,过点F 的直线l 交抛物线D 于,A B 两点,过点,A B 分别作抛物线D 的切线1l 和2l ,直线1l 和2l 相交于点M ,则FM AB = ( ) A . 0 B . 1 C. -1 D .不确定第Ⅱ卷本卷包括必考题和选考题两部分.第13-21题为必考题,每个试题考生都必须作答.第22-23题为选考题,考生根据要求作答.二、填空题:本题共4小题,每小题5分,满分20分,将答案填在答题纸上13.如图,在ABC ∆中,D 是AB 边上的点,且满足3AD BD =,设,CA a CD b ==,则向量CB 用,a b 表示为 .14.若()f n 为()2*1n n N +∈的各位数字之和,如:2111122,1225+=++=,则()115f =.记()()()()()()()()()()()*121321,,,,,k k f n f n f n f f n f n f f n f n f f n k N +====∈,则()20175f = .15.已知点()2,0P 到双曲线()2222:10,0x y E a b a b-=>>则双曲线离心率的取值范围是 .16.已知数列{}n a 满足1221,2,2n na a a +==是()()22,2n n a n n λ++的等差中项,若()*212n n a a n N +>∈,则实数λ的取值范围为 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知sin a C A =. (1)求角A 的大小; (2)若2b =,且43B ππ≤≤,求边c 的取值范围.18.如图,在直三棱柱111ABC A B C -中,2,,BC AB AC M N ===分别是111,A B B C 的中点. (1)求证://MN 平面11ACC A ;(2)若三棱柱111ABC A B C -的体积为4,求异面直线1AC 与BN 夹角的余弦值.19. “双十一”期间,某淘宝店主对其商品的上架时间x (小时)和销售量y (件)的关系作了统计,得到了如下数据并研究.(1)求表中销售量y 的平均数和中位数;(2)① 作出散点图,并判断变量y 与x 是否线性相关?若研究的方案是先根据前5组数据求线性回归方程,再利用第6组数据进行检验,求线性回归方程ˆˆˆybx a =+; ②若根据①中线性回归方程得到商品上架12小时的销售量的预测值与检测值不超过3件,则认为得到的线性回归方程是理想的,试问:①中的线性回归方程是否理想.附:线性回归方程ˆˆˆybx a =+中,1221ˆˆˆ,ni ii ni i x y nx yb ay bx x nx==-==--∑∑. 20. 已知圆C 的圆心在x 轴正半轴上,且y 轴和直线20x +=均与圆C 相切. (1)求圆C 的标准方程;(2)若直线y x m =+与圆C 相交于,M N 两点,点()0,1P ,且MPN ∠为锐角,求实数m 的取值范围. 21.已知函数()()1ln f x a x a R x=+∈. (1)讨论()f x 的单调性;(2)若(]()0,,0x e f x ∈≥恒成立,求实数a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,圆22:1O x y +=,把圆O 上每一点的横坐标伸长为原来的2倍,纵坐标不变,得到曲线C ,且倾斜角为α,经过点(Q 的直线l 与曲线C 交于,A B 两点. (1)当4πα=时,求曲线C 的普通方程与直线l 的参数方程;(2)求点Q 到,A B 两点的距离之积的最小值. 23.选修4-5:不等式选讲 设函数()321f x x x =+--. (1)解不等式()2f x x >;(2)若存在[]1,3x ∈,使不等式()1ax f x +>成立,求实数a 的取值范围.试卷答案一、选择题1-5: BACCB 6-10: AABAC 11、12:AA二、填空题13. 1433a b -+14. 8 15. ( 16. [)0,+∞ 三、解答题17.解:(1sin 1sin sin c CC C=⇔==,∴tan A =,∴3A π=.(2)∵2,3b A π==,在ABC ∆中,由正弦定理,得sin sin b cB C=,∴2sin 2sin 311sin sin sin tan B C B c B B B Bπ2⎛⎫- ⎪⎝⎭===+=+,∵43B ππ≤≤,∴1tan B ≤≤∴21c ≤≤,即c的取值范围为1⎡⎤⎣⎦.18.(1)如图,连接1AB ,因为该三棱柱是直三棱柱,所以111AA A B ⊥, 则四边形11ABB A 为矩形.由矩形性质,得1AB 过1A B 的中点M . 在11AB C ∆中,由中位线性质,得1//MN AC , 又MN ⊄平面111,ACC A AC ⊂平面11ACC A , 所以//MN 平面11ACC A .(2)因为2,BC AB AC ===AB BC ⊥, 故1122222ABC S BC AB ∆==⨯⨯=, 又三棱柱111ABC A B C -体积为4. 所以1124ABC S BB BB ∆=⨯=,即12BB = 由(1)知,1//MN AC ,则MNB ∠即为异面直线1AC 与BN 的夹角(或补角).在MNB ∆中,111122MN AC BM A B BN =====,所以cos MNB ∠==,即异面直线1AC 与BN 夹角的余弦值为5. 19.解:(1)由题得,平均数为641382052853604302476+++++=;中位数为2052852452+=;(2)①作出散点图如图所示:由散点图发现这些点大致在一条直线附近,故变量y 与x 是线性相关的. 由前5组数据计算,得6,210.4x y ==,55211220,7790ii i i i xx y ====∑∑,∴2779056210.4ˆˆ36.95,210.436.95611.322056ba-⨯⨯===-⨯=--⨯, ∴线性回归方程为ˆ36.9511.3yx =-; ②将12x =代入ˆ36.95x 11.3y=-,得ˆ432.1y =, ∵432.14303-<,故①中的线性回归方程是理想的.20.解:(1)设圆C 的方程为()()222x a y b r -+-=,由题意,得00a b a r r>⎧⎪=⎪⎪=⎨=,解得202a b r =⎧⎪=⎨⎪=⎩,则圆C 的标准方程为()2224x y -+=;(2)将y x m =+代入圆C 的方程,得()222220x m x m +-+=,由()224280m m ∆=-->,得22m --<-+设()()1122,,,M x y N x y ,则212122,2m x x m x x +=-=,依题意,得0PM PN >,即()()1212110x x x m x m ++-+->, 即210m m +->,解得12m -<或12m ->, 故实数m的取值范围是1522⎛⎛-+---+ ⎝⎭⎝. 21.解:(1)由题得,()f x 的定义域为()()22110,,a ax f x x x x-'+∞=-=, 当0a ≤时,()0f x '<恒成立,故()f x 在区间()0,+∞上单调递减,无递增区间; 当0a >,由()0f x '<,得10x a<<, 由()0f x '>,得1x a>. 所以()f x 的单调递减区间为10,a ⎛⎫ ⎪⎝⎭,单调递增区间为1,a ⎛⎫+∞ ⎪⎝⎭. (2)若(]()0,,0x e f x ∈≥恒成立,即()f x 在区间(]0,e 上的最小值大于等于0, 由(1)可知,当0a ≤时,()0f x '<恒成立, 即()f x 在区间(]0,e 上单调递减, 故()f x 在区间(]0,e 上的最小值为()11ln f e a e a e e=+=+, 由10a e +≥,得1a e ≥-,故10a e-≤≤, 当0a >时,若1e a ≤,即10a e<≤时,()0f x '≤对(]0,x e ∈恒成立, 所以()f x 在区间(]0,e 上单调递减, 则()f x 在区间(]0,e 上的最小值为()11ln 0f e a e a e e=+=+>, 显然()f x 的区间(]0,e 上的最小值大于等于0成立. ②若10e<<,即1a >时,则有所以()f x 在区间(]0,e 上的最小值为11ln f a a a a ⎛⎫=+⎪⎝⎭, 由1ln0a a a+≥,得1ln 0a -≥, 解得a e ≤,即1a e e<≤.综上所述,实数a 的取值范围是1,e e⎡⎤-⎢⎥⎣⎦.22.解:(1)设圆O 上任意一点的坐标为()00,x y ,曲线C 上一点的坐标为(),x y ,根据题意,得002x x y y =⎧⎨=⎩,即0012x xy y⎧=⎪⎨⎪=⎩.又点()00,x y 在圆22:1O x y +=上,所以22112x y ⎛⎫+= ⎪⎝⎭,即曲线C 的方程为2214x y +=,由题知,(,4Q πα=,所以直线l的参数方程是1x y ⎧=⎪⎪⎨⎪=⎪⎩(t 是参数). (2)将直线l的参数方程1cos sin x t y t αα=+⎧⎪⎨=⎪⎩(t 是参数)代入2214x y +=, 得()()222cos4sin 2cos 90tt αααα++++= (*).设,A B 两点对应的参数分别为12,t t , 则1222299cos 4sin 13sin t t ααα==++, 当2πα=时,经检验,(*)式中0∆>,则12t t 取得最小值,即最小值为94. 23.解:(1)因为()321f x x x =+--,所以()4,3132,3214,2x x f x x x x x ⎧⎪-≤-⎪⎪=+-<≤⎨⎪⎪-+>⎪⎩,由()2f x x >,得342x x x ≤-⎧⎨->⎩或132322x x x ⎧-<≤⎪⎨⎪+>⎩或1242x x x⎧>⎪⎨⎪-+>⎩,解得4x <-或122x -<≤或1423x <<.综上所述,不等式()2f x x >的解集为()4,42,3⎛⎫-∞-- ⎪⎝⎭. (2)当[]1,3x ∈时,()4f x x =-+, 由()1ax f x +>,得14ax x +>-+, 即31a x>-+. 存在[]1,3x ∈,使不等式()1ax f x +>成立,等价于31min a x ⎛⎫>-+⎪⎝⎭. 因为()31g x x=-+在[]1,3x ∈上是减函数, 所以()()min 30g x g ==,所以0a >,即实数a 的取值范围是()0,+∞.。
河北省衡水市衡水金卷2018届高三大联考数学(文)试卷及答案
河北省衡水市衡水金卷2018届高三大联考数学(文)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2540M x x x =-+≤,{}0,1,2,3N =,则集合M N I 中元素的个数为( )A .1B .2C .3D .42.已知命题p :x ∀∈R ,()1220x -<,则命题p ⌝为( ) A .0x ∃∈R ,()12020x -> B .x ∀∈R ,()1210x -> C .x ∀∈R ,()1210x -≥ D .0x ∃∈R ,()12020x -≥ 3.已知复数5i2i 1z =-(i 为虚数单位),则复数z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4.已知双曲线C :()2221016x y a a -=>的一个焦点为()5,0,则双曲线C 的渐近线方程为( ) A .430x y ±= B .1690x y ±=C .40x =D .4312x y ±=5.2017年8月1日是中国人民解放军建军90周年,中国人民银行发行了以此为主题的金银纪念币.如图所示的是一枚8克圆形金质纪念币,直径22毫米,面额100元.为了测算图中军旗部分的面积,现向硬币内随机投掷100粒芝麻,已知恰有30粒芝麻落在军旗内,据此可估计军旗的面积大约是( )A .2726mm 5π B.2363mm 10π C .2363mm 5π D .2363mm 20π6.下列函数中,与函数122x x y =-的定义域、单调性与奇偶性均一致的函数是( )A .sin y x =B .2y x =C .1y x =D .()()2200x x y x x ⎧-≥⎪=⎨<⎪⎩7.如图是一个空间几何体的正视图和俯视图,则它的侧视图为( )A .B .C .D .8.设55log 4log 2a =-,2ln ln 33b =+,1lg5210c =,则a b c ,,的大小关系为( ) A .a b c << B .b c a << C .c a b << D .b a c << 9.执行如图所示的程序框图,则输出的S 值为( )A .1819 B .1920 C .2021 D .12010.将函数()2sin 43f x x ⎛⎫=-⎪⎝⎭π的图象向左平移6π个单位,再把所有点的横坐标伸长到原来的2倍,得到函数()y g x =的图象,则下列关于函数()y g x =的说法错误的是( ) A .最小正周期为π B .图象关于直线12x =π对称C .图象关于点,012⎛⎫⎪⎝⎭π对称 D .初相为3π11.抛物线有如下光学性质:由焦点射出的光线经抛物线反射后平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线发射后必经过抛物线的焦点.已知抛物线24y x =的焦点为F ,一平行于x 轴的光线从点()3,1M 射出,经过抛物线上的点A 反射后,再经抛物线上的另一点B 射出,则直线AB 的斜率为( ) A .43 B .43- C .43± D .169- 12.已知ABC ∆的内角A B C ,,的对边分别是a b c ,,,且()()222cos cos ab c a B b A abc +-⋅+=,若2a b +=,则c 的取值范围为( )A .()0,2B .[)1,2C .1,22⎡⎫⎪⎢⎣⎭D .(]1,2第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量sin ,cos 36a ⎛⎫= ⎪⎝⎭ππr ,(),1b k =r,若a b ∥r r ,则k = .14.已知函数()32f x x x =-,若曲线()f x 在点()()1,1f 处的切线经过圆C :()222x y a +-=的圆心,则实数a 的值为 .15.已知实数x y ,满足约束条件3,,60,x y x y +≤⎧⎪⎪≥⎨⎪≥⎪⎩ππ则()sin x y +的取值范围为 (用区间表示).16.在《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马.若四棱锥M ABCD -为阳马,侧棱MA ⊥底面ABCD ,且2MA BC AB ===,则该阳马的外接球与内切球表面积之和为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在递增的等比数列{}n a 中,1632a a ⋅=,2518a a ⋅=,其中*n ∈N .(1)求数列{}n a 的通项公式;(2)记21log n n n b a a +=+,求数列{}n b 的前n 项和n T .18.如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,AC BC ⊥,12AC BC CC ===,点D 为AB 的中点.(1)证明:1AC ∥平面1B CD ; (2)求三棱锥11A CDB -的体积.19.随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在A 市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中抽取了200人进行抽样分析,得到下表(单位:人):(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为A 市使用共享单车情况与年龄有关?(2)现从所抽取的30岁以上的网友中利用分层抽样的方法再抽取5人. (i )分别求这5人中经常使用、偶尔或不用共享单车的人数;(ii )从这5人中,再随机选出2人赠送一件礼品,求选出的2人中至少有1人经常使用共享单车的概率.参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:()20P K k ≥0.15 0.10 0.05 0.025 0.010 0k2.0722.7063.8415.0246.63520.已知椭圆C :()222210x y a b a b+=>>过点()2,12,直线l :20kx y -+=与椭圆C 交于A B ,两点. (1)求椭圆C 的标准方程;(2)是否存在实数k ,使得OA OB OA OB +=-uu r uu u r uu r uu u r(其中O 为坐标原点)成立?若存在,求出实数k 的值;若不存在,请说明理由.21.已知函数()2ln 23f x x x =-+,()()()4ln 0g x f x x a x a '=++≠. (1)求函数()f x 的单调区间;(2)若关于x 的方程()g x a =有实数根,求实数a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程已知曲线C 的参数方程为2cos sin x y =⎧⎨=⎩αα(α为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线lsin 34⎛⎫+= ⎪⎝⎭πθ. (1)求曲线C 的普通方程及直线l 的直角坐标方程; (2)求曲线C 上的点到直线l 的距离的最大值. 23.选修4-5:不等式选讲 已知函数()211f x x x =-++. (1)解不等式()3f x ≤;(2)记函数()()1g x f x x =++的值域为M ,若t M ∈,试证明:223t t -≥.衡水金卷2018届全国高三大联考文数参考答案及评分细则一、选择题1-5:CDDAB 6-10:DAABC 11、12:BB 二、填空题13.1 14.2- 15.1,12⎡⎤⎢⎥⎣⎦16.36-π 三、解答题17.解:(1)设数列{}n a 的公比为q ,则251632a a a a ⋅=⋅=, 又2518a a +=,∴22a =,516a =或216a =,52a =(舍). ∴3528a q a ==,即2q =. 故2122n n n a a q--==(*n ∈N ).(2)由(1)得,12n n b n -=+.∴12n n T b b b =+++L()()211222123n n -=+++++++++L L()112122n n n +-=+- 2212nn n +=-+.18.解:(1)连接1BC 交1B C 于点O ,连接OD .在三棱柱111ABC A B C -中,四边形11BCC B 是平行四边形. ∴点O 是1BC 的中点. ∵点D 为AB 的中点, ∴1OD AC ∥.又OD ⊂平面1B CD ,1AC ⊄平面1B CD ,∴1AC ∥平面1B CD .(2)∵AC BC =,AD BD =, ∴CD AB ⊥.在三棱柱111ABC A B C -中,由1AA ⊥平面ABC ,得平面11ABB A ⊥平面ABC . 又平面11ABB A I 平面ABC AB =. ∴CD ⊥平面11ABB A .∴点C 到平面11A DB 的距离为CD ,且sin 4CD AC ==π∴11111113A CDB C A DB A DB V V S CD --∆==⨯1111132A B AA CD =⨯⨯⨯⨯=14263⨯=. 19.解:(1)由列联表可知,()2220070406030 2.19813070100100K ⨯⨯-⨯=≈⨯⨯⨯.因为2.198 2.072>,所以能在犯错误的概率不超过0.15的前提下认为A 市使用共享单车情况与年龄有关. (2)(i )依题意可知,所抽取的5名30岁以上的网友中,经常使用共享单车的有6053100⨯=(人), 偶尔或不用共享单车的有4052100⨯=(人).(ii )设这5人中,经常使用共享单车的3人分别为a b c ,,;偶尔或不用共享单车的2人分别为d e ,.则从5人中选出2人的所有可能结果为(),a b ,(),a c ,(),a d ,(),a e ,(),b c ,(),b d ,(),b e ,(),c d ,(),c e ,(),d e ,共10种.其中没有1人经常使用共享单车的可能结果为(),d e ,共1种.故选出的2人中至少有1人经常使用共享单车的概率1911010P =-=. 20.解:(1)依题意,得22222211,,2,a b caa b c ⎧+=⎪⎪⎪=⎨⎪⎪=+⎪⎩解得24a =,22b =,22c =,故椭圆C 的标准方程为22142x y +=. (2)假设存在符合条件的实数k .依题意,联立方程222,24,y kx x y =+⎧⎨+=⎩消去y 并整理,得()2212840k xkx +++=.则()226416120k k∆=-+>,即2k >或2k <-. 设()11,A x y ,()22,B x y ,则122812k x x k +=-+,122412x x k=+. 由OA OB OA OB +=-uu r uu u r uu r uu u r ,得0OA OB ⋅=uu r uu u r.∴12120x x y y +=.∴()()1212220x x kx kx +++=. 即()()212121240kx xk x x ++++=.∴()22224116401212k k k k+-+=++. 即2284012k k -=+. 即22k =,即k =故存在实数k =OA OB OA OB +=-uu r uu u r uu r uu u r成立.21.解:(1)依题意,得()21144x f x x x x -'=-=()()1212x x x+-=,()0,x ∈+∞. 令()0f x '>,即120x ->. 解得102x <<; 令()0f x '<,即120x -<. 解得12x >. 故函数()f x 的单调递增区间为10,2⎛⎫ ⎪⎝⎭,单调递减区间为1,2⎛⎫+∞ ⎪⎝⎭. (2)由题得,()()4ln g x f x x a x '=++=1ln a x x+. 依题意,方程1ln 0a x a x +-=有实数根, 即函数()1ln h x a x a x=+-存在零点.又()2211a ax h x x x x -'=-+=.令()0h x '=,得1x a=.当0a <时,()0h x '<.即函数()h x 在区间()0,+∞上单调递减,而()110h a =->,111111e 1a ah a a a e --⎛⎫⎛⎫=+-- ⎪ ⎪⎝⎭⎝⎭1111110e e a-=-<-<.所以函数()h x 存在零点;当0a >时,()h x ',()h x 随x 的变化情况如下表:所以11ln ln h a a a a a a a ⎛⎫=+-=- ⎪⎝⎭为函数()h x 的极小值,也是最小值. 当10h a ⎛⎫> ⎪⎝⎭,即01a <<时,函数()h x 没有零点; 当10h a ⎛⎫≤⎪⎝⎭,即1a ≥时,注意到()110h a =-≤, ()11e 0e eh a a =+-=>, 所以函数()h x 存在零点.综上所述,当()[),01,a ∈-∞+∞U 时,方程()g x a =有实数根.22.解:(1)由曲线C 的参数方程2cos sin x y =⎧⎨=⎩αα(α为参数),得曲线C 的普通方程为2214x y +=. 2sin 34⎛⎫+= ⎪⎝⎭πρθ, 得()sin cos 3+=ρθθ,即3x y +=.∴直线l 的普通方程为30x y +-=.(2)设曲线C 上的一点为()2cos ,sin αα,则该点到直线l的距离d ==(其中tan 2=ϕ).当()sin 1+=-αϕ时,max d ==. 即曲线C 上的点到直线l. 23.解:(1)依题意,得()3,1,12,1,213,.2x x f x x x x x ⎧⎪-≤-⎪⎪=--<<⎨⎪⎪≥⎪⎩ 则不等式()3f x ≤即为1,33x x ≤-⎧⎨-≤⎩或11,223x x ⎧-<<⎪⎨⎪-≤⎩或1,23 3.x x ⎧≥⎪⎨⎪≤⎩ 解得11x -≤≤.故原不等式的解集为{}11x x -≤≤. (2)由题得,()()121g x f x x x =++=-+2221223x x x +≥---=, 当且仅当()()21220x x -+≤.即112x -≤≤时取等号. ∴[)3,M =+∞.∴()()22331t t t t --=-+. ∵t M ∈,∴30t -≥,10t +>. ∴()()310t t -+≥. ∴223t t -≥.。
衡水金卷2018年高考数学二模试卷(文科)
2018年全国普通高等学校高考数学二模试卷(文科)(衡水金卷)一.选择题(本大题共12小题,每小题5分,共60分.在每小题列出的四个选项中,只有一项符合题目要求)1.已知集合A={x∈N|x(2﹣x)≥0},B={x|﹣1≤x≤1},则A∩B=()A.{x|0≤x≤2}B.{x|0<x<2}C.{0,1,2}D.{0,1}2.已知复数z=(a∈R,i为虚数单位)是纯虚数,则a的值为()A.1 B.2 C.﹣1 D.03.已知=2,则tanα=()A.B.﹣C.D.﹣54.A,B,C三位抗战老兵应邀参加了在北京举行的“纪念抗战胜利70周年”大阅兵的老兵方队,现安排这三位老兵分别坐在某辆检阅车的前三排(每两人均不坐同一排),则事件“A或B坐第一排”的概率为()A.B.C.D.5.已知圆O的方程为x2+y2=1,直线l的方程为y=k(x﹣1)+3,则“k=“是”直线l与圆O相切”的.A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.椭圆C: +=1(a>b>0)的两焦点为F1,F2,P为椭圆C上一点,且PF2⊥x轴,若△PF1F2的内切圆半径r=,则椭圆C的离心率为()A.B.C.D.7.已知某几何体的三视图如图所示,则几何体的体积为()A. + B. +C. +D. +8.《张丘建算经》卷上第22题为“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈.”其意思为:现有一善于织布的女子,从第2天开始,每天比前一天多织相同量的布,第1天织了5尺布,现在一月(按30天计算)共织390尺布,记该女子一月中的第n天所织布的尺数为a n,则a14+a15+a16+a17的值为()A.55 B.52 C.39 D.269.将函数f(x)=2sin(2x+)的图象向左平移个单位,再把所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=g(x)的图象,则下面对函数y=g(x)的叙述正确的是()A.函数g(x)=2sin(x+)B.函数g(x)的周期为πC.函数g(x)的一个对称中心为点(﹣,0)D.函数g(x)在区间[,]上单调递增10.执行如图所示的程序框图,其中输入的a i(i=1,2,…10)依次是:﹣3,﹣4,5,3,4,﹣5,6,8,0,2,则输出的V值为()A.16 B.C.D.11.设关于x,y的不等式组,表示的平面区域内存在点M(x0,y0),满足x0+2y0=5,则实数t的取值范围是()A.(﹣∞,﹣1]B.[1,+∞)C.(﹣∞,1]D.以上都不正确12.定义在R上的函数f(x)满足:①f(﹣x)=﹣f(x);②f(x+2)=f(x);③x∈[0,1]时,f(x)=log(x2﹣x+1),则函数y=f(x)﹣log3|x|的零点个数为()A.8 B.6 C.4 D.2二.填空题(本大题共4小题,每小题5分,共20分)13.已知正项数列{a n}满足=4,且a3a5=64,则数列{a n}的前6项和S6=______.14.已知向量=(m,n﹣1),=(1,1),且⊥,则mn的最大值为______.15.已知F是抛物线y2=2x的焦点,A,B是抛物线上的两点,|AF|+|BF|=3,若直线AB的斜率为3,则线段AB的中点P的坐标为______.16.若函数f(x)=(a>0且a≠1)在区间[,+∞)内单调递减,则a的取值范围是______.三.解答题(本大题共5小题,共70分,解答应写出必要的文字说明,证明过程或演算步骤)17.在△ABC中,角A,B,C所对的边分别为a,b,c,且b=c,sinA﹣sinB=(﹣1)sinC.(1)求B的大小;(2)若△ABC的面积为4,求a,b,c的值.18.到2018年,北京市高考英语总分将由150分降低到100分,语文分值将相应增加.某校高三学生率先尝试100分制英语考试,从中随机抽出50人的英语成绩作为样本并进行统计,将测试结果按如下方式分成五组:第一组[50,60],第二组[60,70],…第五组[90,100],如图是按上述分组方法得到的频率分布直方图.(1)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计这次参加英语考试的高三学生的英语平均成绩;(2)从这五组中抽取14人进行座谈,若抽取的这14人中,恰好有2人成绩为50分,7人成绩为70分,2人成绩为75分,3人成绩为80分,求这14人英语成绩的方差;(3)从50人的样本中,随机抽取测试成绩在[50,60]∪[90,100]内的两名学生,设其测试成绩分别为m,n(i)求事件“|m﹣n|>30”的概率;(ii)求事件“mn≤3600”的概率.19.如图,△ADM是等腰直角三角形,AD⊥DM,四边形ABCM是直角梯形,AB⊥BC,MC⊥BC,且AB=2BC=2CM=2,平面ADM⊥平面ABCM.(1)求证:AD⊥BD;(2)若点E是线段DB上的一动点,问点E在何位置时,三棱锥M﹣ADE的体积为?20.已知圆C的圆心与双曲线M:y2﹣x2=的上焦点重合,直线3x+4y+1=0与圆C相交于A,B两点,且|AB|=4.(1)求圆C的标准方程;(2)O为坐标原点,D(﹣2,0),E(2,0)为x轴上的两点,若圆C内的动点P使得|PD|,|PO|,|PE|成等比数列,求•的取值范围.21.已知函数f(x)=lnx+(a>1).(1)若函数f(x)的图象在x=1处的切线斜率为﹣1,求该切线与两坐标轴围成的三角形的面积;(2)若函数f(x)在区间[1,e]上的最小值是2,求a的值.请考生在22.23.24题三题中任选一题作答,如果多做,则按所做的第一题记分)[选修4-1:几何证明选讲]22.如图,直线PB与⊙O交于A,B两点,OD⊥AB于点D,PC是⊙O的切线,切点为C.(1)求证:PC2+AD2=PD2(2)若BC是⊙O的直径,BC=3BD=3,试求线段BP的长.[选修4-4:坐标系与参数方程]23.设点A是曲线C:,(θ为参数)上的动点,点B是直线l:,(t为参数)上的动点(1)求曲线C与直线l的普通方程;(2)求A,B两点的最小距离.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣2|﹣|x﹣4|.(1)求不等式f(x)<0的解集;(2)若函数g(x)=的定义域为R,求实数m的取值范围.2018年全国普通高等学校高考数学二模试卷(文科)(衡水金卷)参考答案与试题解析一.选择题(本大题共12小题,每小题5分,共60分.在每小题列出的四个选项中,只有一项符合题目要求)1.已知集合A={x∈N|x(2﹣x)≥0},B={x|﹣1≤x≤1},则A∩B=()A.{x|0≤x≤2}B.{x|0<x<2}C.{0,1,2}D.{0,1}【考点】交集及其运算.【分析】求出两个集合,然后求解交集即可.【解答】解:集合A={x∈N|x(2﹣x)≥0}═{x∈N|0≤x≤2}={0,1,2},B={x|﹣1≤x≤1},则集合A∩B={0,1}.故选:D.2.已知复数z=(a∈R,i为虚数单位)是纯虚数,则a的值为()A.1 B.2 C.﹣1 D.0【考点】复数代数形式的乘除运算.【分析】由复数的除法运算化复数为a+bi(a,b∈R)的形式,由实部等于0且虚部不等于0列方程求出实数a的值.【解答】解:根据复数z===+i是纯虚数,得,解得a=2;所以使复数是纯虚数的实数a的值为2.故选:B.3.已知=2,则tanα=()A.B.﹣C.D.﹣5【考点】三角函数的化简求值.【分析】利用诱导公式,同角三角函数基本关系式化简已知等式即可得解.【解答】解:∵===2,∴解得:tanα=﹣5.故选:D.4.A,B,C三位抗战老兵应邀参加了在北京举行的“纪念抗战胜利70周年”大阅兵的老兵方队,现安排这三位老兵分别坐在某辆检阅车的前三排(每两人均不坐同一排),则事件“A或B坐第一排”的概率为()A.B.C.D.【考点】古典概型及其概率计算公式.【分析】安排这3位老兵分别坐在某辆检阅车的前3排(每两人均不坐同一排),先求出基本事件总数,再求出A或B坐第一排的种数,根据概率公式计算即可.【解答】解:安排这3位老兵分别坐在某辆检阅车的前3排(每两人均不坐同一排),基本事件总数A33=6,A或B坐第一排有C21A22=4种,故“A或B坐第一排”的概率为=,故选:A.5.已知圆O的方程为x2+y2=1,直线l的方程为y=k(x﹣1)+3,则“k=“是”直线l与圆O相切”的.A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据利用点到直线的距离公式求得圆心到直线的距离,求出k的值,再根据充分必要条件的定义判断即可.【解答】解:O的方程为x2+y2=1,表示以(0,0)为圆心、半径r=1的圆.求出圆心到直线l的方程为y=k(x﹣1)+3的距离为d==1,解得k=,故“k=“是”直线l与圆O相切”充要条件,故选:C.6.椭圆C: +=1(a>b>0)的两焦点为F1,F2,P为椭圆C上一点,且PF2⊥x轴,若△PF1F2的内切圆半径r=,则椭圆C的离心率为()A.B.C.D.【考点】椭圆的简单性质.【分析】设出椭圆的焦点坐标,令x=c,求得|PF2|=,由椭圆的定义可得,|PF1|=2a﹣,在直角△PF1F2中,运用面积相等,可得内切圆的半径r,由条件化简整理,结合离心率公式,计算即可得到所求值.【解答】解:由椭圆C: +=1(a>b>0)的两焦点为F1(﹣c,0),F2(c,0),P为椭圆C上一点,且PF2⊥x轴,可得|F1F2|=2c,由x=c,可得y=±b=±,即有|PF2|=,由椭圆的定义可得,|PF1|=2a﹣,在直角△PF1F2中, |PF2|•|F1F2|=r(|F1F2|+|PF1|+|PF2|),可得△PF1F2的内切圆半径r==c,即有2b2=2(a2﹣c2)=a(a+c),整理,得a=2c,椭圆C的离心率为e==.故选:B.7.已知某几何体的三视图如图所示,则几何体的体积为()A. + B. +C. +D. +【考点】由三视图求面积、体积.【分析】由三视图知该几何体是一个组合体:上面是三棱锥、下面是半球,由三视图求出几何元素的长度,由球体、锥体的体积公式求出该几何体的体积.【解答】解:根据三视图可知几何体是一个组合体:上面是三棱锥、下面是半球,且三棱锥的底面是等腰直角三角形、直角边为1,高为1,由圆的直径所对的圆周角是直角得球的半径是,∴几何体的体积V==,故选D.8.《张丘建算经》卷上第22题为“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈.”其意思为:现有一善于织布的女子,从第2天开始,每天比前一天多织相同量的布,第1天织了5尺布,现在一月(按30天计算)共织390尺布,记该女子一月中的第n天所织布的尺数为a n,则a14+a15+a16+a17的值为()A.55 B.52 C.39 D.26【考点】等差数列的前n项和.【分析】设从第2天开始,每天比前一天多织d尺布,由等差数列前n项和公式求出d=,由此利用等差数列通项公式能求出a14+a15+a16+a17.【解答】解:设从第2天开始,每天比前一天多织d尺布,则=390,解得d=,∴a14+a15+a16+a17=a1+13d+a1+14d+a1+15d+a1+16d=4a1+58d=4×5+58×=52.故选:B.9.将函数f(x)=2sin(2x+)的图象向左平移个单位,再把所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=g(x)的图象,则下面对函数y=g(x)的叙述正确的是()A.函数g(x)=2sin(x+)B.函数g(x)的周期为πC.函数g(x)的一个对称中心为点(﹣,0)D.函数g(x)在区间[,]上单调递增【考点】函数y=Asin(ωx+φ)的图象变换.【分析】利用函数y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式,再利用正弦函数的周期性、单调性以及它的图象的对称性,得出结论.【解答】解:将函数f(x)=2sin(2x+)的图象向左平移个单位,可得函数y=2sin[2(x+)+]=2sin(2x+)的图象;再把所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=g(x)=2sin(4x+)的图象,故g(x)的周期为=,排除A、B.令x=﹣,求得f(x)=0,可得g(x)的一个对称中心为点(﹣,0),故C满足条件.在区间[,]上,4x+∈[π,],函数g(x)没有单调性,故排除D,故选:C.10.执行如图所示的程序框图,其中输入的a i(i=1,2,…10)依次是:﹣3,﹣4,5,3,4,﹣5,6,8,0,2,则输出的V值为()A.16 B.C.D.【考点】程序框图.【分析】模拟程序的运行,可得程序框图的功能是计算并输出V=的值,由题意计算S,T的值即可得解.【解答】解:根据题意,本程序框图中循环体为“直到型”循环结构,模拟程序的运行,可得程序框图的功能是计算并输出V=的值.由题意可得:S=3+4+5+6+8+2,T=(﹣3)+(﹣4)+(﹣5)+0,所以:V===.故选:B.11.设关于x,y的不等式组,表示的平面区域内存在点M(x0,y0),满足x0+2y0=5,则实数t的取值范围是()A.(﹣∞,﹣1]B.[1,+∞)C.(﹣∞,1]D.以上都不正确【考点】简单线性规划.【分析】作出可行域,根据可行域满足的条件判断可行域边界x﹣2y=t的位置,列出不等式解出.【解答】解:作出可行域如图:∵平面区域内存在点M(x0,y0),满足x0+2y0=5,∴直线x+2y=5与可行域有交点,解方程组得A(2,).∴点A在直线x﹣2y=t上或在直线x﹣2y=t下方.由x﹣2y=t得y=.∴,解得t≤﹣1.故选:A.12.定义在R上的函数f(x)满足:①f(﹣x)=﹣f(x);②f(x+2)=f(x);③x∈[0,1]时,f(x)=log(x2﹣x+1),则函数y=f(x)﹣log3|x|的零点个数为()A .8B .6C .4D .2 【考点】函数零点的判定定理. 【分析】由已知画出两个函数f (x )=log(x 2﹣x +1)与y=log 3|x |的简图,数形结合得答案.【解答】解:由①②可知,f (x )是周期为2的奇函数,又x ∈[0,1]时,f (x )=log (x 2﹣x +1),可得函数f (x )在R 上的图象如图,由图可知,函数y=f (x )﹣log 3|x |的零点个数为6个,故选:B .二.填空题(本大题共4小题,每小题5分,共20分)13.已知正项数列{a n }满足=4,且a 3a 5=64,则数列{a n }的前6项和S 6= 63 .【考点】数列的求和.【分析】由正项数列{a n }满足=4,两边开方可得:a n+1=2a n ,可得公比q=2.又a 3a 5=64,利用等比数列的通项公式可得a 1.再利用等比数列的求和公式即可得出.【解答】解:∵正项数列{a n }满足=4,∴a n+1=2a n ,∴公比q=2.∵a 3a 5=64,∴=64,解得a 1=1. 则数列{a n }的前6项和S 6==63. 故答案为:63.14.已知向量=(m ,n ﹣1),=(1,1),且⊥,则mn 的最大值为.【考点】平面向量数量积的运算.【分析】首先由向量的垂直得到关于m ,n 的等式,然后利用基本不等式求mn 的最值.【解答】解:因为向量=(m ,n ﹣1),=(1,1),且⊥,所以=m +n ﹣1=0,即m +n=1,所以mn,当且仅当m=n 时取等号,所以mn 的最大值为.故答案为:15.已知F 是抛物线y 2=2x 的焦点,A ,B 是抛物线上的两点,|AF |+|BF |=3,若直线AB 的斜率为3,则线段AB 的中点P 的坐标为 (1,) . 【考点】抛物线的简单性质. 【分析】设A (x 1,y 1),B (x 2,y 2),代入抛物线的方程,求得抛物线的焦点和准线方程,运用抛物线的定义,以及中点坐标公式,结合直线的斜率公式,化简整理,即可得到所求中点P 的坐标. 【解答】解:设A (x 1,y 1),B (x 2,y 2), 可得y 12=2x 1,y 22=2x 2,抛物线y 2=2x 的焦点为F (,0),准线为x=﹣, 由抛物线的定义,可得|AF |=x 1+,|BF |=x 2+, 由AF |+|BF |=3,可得x 1+x 2+1=3, 即x 1+x 2=2,即=1,AB 的中点的横坐标为1,又k AB ====3,即为y 1+y 2=,则=.则AB 的中点坐标为(1,).故答案为:(1,).16.若函数f (x )=(a >0且a ≠1)在区间[,+∞)内单调递减,则a 的取值范围是 (0,] .【考点】函数单调性的性质.【分析】由题意利用函数的单调性与导数的关系可得,由此求得a的范围.【解答】解:∵函数f(x)=(a>0且a≠1)在区间[,+∞)内单调递减,当≤x≤1时,f′(x)=﹣3x2+a≤0,且﹣1+a+≥2a﹣1,∴,求得0<a≤,故答案为:(0,].三.解答题(本大题共5小题,共70分,解答应写出必要的文字说明,证明过程或演算步骤)17.在△ABC中,角A,B,C所对的边分别为a,b,c,且b=c,sinA﹣sinB=(﹣1)sinC.(1)求B的大小;(2)若△ABC的面积为4,求a,b,c的值.【考点】余弦定理;正弦定理.【分析】(1)利用正弦定理化简已知可得a﹣b=()c,结合b=c,可得a=,由余弦定理可求cosB,结合范围B∈(0,π),即可得解B的值.(2)利用已知及三角形面积公式可求c的值,结合(1)即可求得b,a的值.【解答】解:(1)∵sinA﹣sinB=(﹣1)sinC.∴由正弦定理可得:a﹣b=()c,又∵b=c,可得a=.∴cosB===,又∵B∈(0,π),∴B=(2)∵△ABC的面积为4,∴=4,解得:c=4,∴由(1)可得:b=4,a=418.到2018年,北京市高考英语总分将由150分降低到100分,语文分值将相应增加.某校高三学生率先尝试100分制英语考试,从中随机抽出50人的英语成绩作为样本并进行统计,将测试结果按如下方式分成五组:第一组[50,60],第二组[60,70],…第五组[90,100],如图是按上述分组方法得到的频率分布直方图.(1)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计这次参加英语考试的高三学生的英语平均成绩;(2)从这五组中抽取14人进行座谈,若抽取的这14人中,恰好有2人成绩为50分,7人成绩为70分,2人成绩为75分,3人成绩为80分,求这14人英语成绩的方差;(3)从50人的样本中,随机抽取测试成绩在[50,60]∪[90,100]内的两名学生,设其测试成绩分别为m,n(i)求事件“|m﹣n|>30”的概率;(ii)求事件“mn≤3600”的概率.【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【分析】(1)由频率分布直方图能估计高三学生的英语平均成绩.(2)先求出这14人英语成绩的平均分,由此能求出这14人英语成绩的方差.(3)(i)由直方图知成绩在[50,60]内的人数为2,设其成绩分别为a,b,c,利用列举法能求出事件“|m﹣n|>30”的概率.(ii)由事件mn≤3600的基本事件只有(x,y)这一种,能求出事件“mn≤3600”的概率.【解答】解:(1)估计高三学生的英语平均成绩为:55×0.004×10+65×0.018×10+75×0.040×10+85×0.032×10+95×0.006×10=76.8.(2)这14人英语成绩的平均分为:==70,∴这14人英语成绩的方差:S2= [2(50﹣70)2+7(70﹣70)2+2(75﹣70)2+3(80﹣70)2]=.(3)(i)由直方图知成绩在[50,60]内的人数为:50×10×0.004=2,设其成绩分别为a,b,c,若m,n∈[50,60)时,只有(x,y)一种情况,若m,n∈[90,100]时,有(a,b),(b,c),(a,c)三种情况,∴基本事件总数为10种,事件“|m﹣n|>30”所包含的基本事件有6种,∴P(|m﹣n|>30)=.(ii)事件mn≤3600的基本事件只有(x,y)这一种,∴P(mn≤3600)=.19.如图,△ADM是等腰直角三角形,AD⊥DM,四边形ABCM是直角梯形,AB⊥BC,MC⊥BC,且AB=2BC=2CM=2,平面ADM⊥平面ABCM.(1)求证:AD⊥BD;(2)若点E是线段DB上的一动点,问点E在何位置时,三棱锥M﹣ADE的体积为?【考点】棱柱、棱锥、棱台的体积;空间中直线与直线之间的位置关系.【分析】(1)根据平面几何知识可证明AM⊥BM,故而BM⊥平面ADM,于是BM⊥AD,结合AD⊥DM可得AD⊥平面BDM,于是AD⊥BD;(2)令,则E到平面ADM的距离d=λ•BM=,代入棱锥的体积公式即可得出λ,从而确定E的位置.【解答】证明:(1)∵四边形ABCM是直角梯形,AB⊥BC,MC⊥BC,AB=2BC=2MC=2,∴BM=AM=,∴BM2+AM2=AB2,即AM⊥BM.∵平面ADM⊥平面ABCM,平面ADM∩平面ABCM=AM,BM⊂平面ABCM,∴BM⊥平面DAM,又DA⊂平面DAM,∴BM⊥AD,又AD⊥DM,DM⊂平面BDM,BM⊂平面BDM,DM∩BM=M,∴AD⊥平面BDM,∵BD⊂平面BDM,∴AD⊥BD.(2)由(1)可知BM⊥平面ADM,BM=,设,则E到平面ADM的距离d=.∵△ADM是等腰直角三角形,AD⊥DM,AM=,∴AD=DM=1,∴V M﹣ADE =V E﹣ADM==.即=.∴.∴E为BD的中点.20.已知圆C的圆心与双曲线M:y2﹣x2=的上焦点重合,直线3x+4y+1=0与圆C相交于A,B两点,且|AB|=4.(1)求圆C的标准方程;(2)O为坐标原点,D(﹣2,0),E(2,0)为x轴上的两点,若圆C内的动点P使得|PD|,|PO|,|PE|成等比数列,求•的取值范围.【考点】双曲线的简单性质.【分析】(1)求出双曲线的标准方程求出焦点坐标,利用直线和圆相交的弦长公式进行求解即可.(2)根据|PD|,|PO|,|PE|成等比数列,建立方程关系,结合向量数量积的坐标进行化简求解即可.【解答】解:(1)双曲线的标准方程为=1,则c==1,即双曲线的焦点C(0,1),圆心C到直线3x+4y+1=0的距离d=,则半径r=.故圆C的标准方程为x2+(y﹣1)2=5.(2)设P(x,y),∵|PD|,|PO|,|PE|成等比数列,∴•=x2+y2,整理得x2﹣y2=2,故•=(﹣2﹣x,﹣y)•(2﹣x,﹣y)=x2﹣4+y2=2(y2﹣1),由于P在圆C内,则,得y2﹣y﹣1<0,得<y<,则0≤y2<()2=,∴2(y2﹣1)∈[﹣2,1+),则•的取值范围是[﹣2,1+).21.已知函数f(x)=lnx+(a>1).(1)若函数f(x)的图象在x=1处的切线斜率为﹣1,求该切线与两坐标轴围成的三角形的面积;(2)若函数f(x)在区间[1,e]上的最小值是2,求a的值.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(1)求出函数的导数,根据f′(1)=﹣1,求出a的值,从而求出切线方程即可;(2)求出函数的导数,通过讨论a的范围,单调函数的单调区间,求出函数的最小值,从而求出a的值即可.【解答】解:(1)由f(x)=lnx+,得:f′(x)=,则f′(1)=1﹣a,由切线斜率为﹣1,得1﹣a=﹣1,解得:a=2,则f(1)=2,∴函数f(x)在x=1处的切线方程是y﹣2=﹣(x﹣1),即x+y﹣3=0,故与两坐标轴围成的三角形的面积为:×3×3=;(2)由(1)知,f′(x)=,x∈[1,e],①1<a<e时,在区间[1,a]上有f′(x)<0,函数f(x)在区间[1,a]上单调递减,在区间(a,e]上有f′(x)>0,函数f(x)在区间(a,e]上单调递增,∴f(x)的最小值是f(a)=lna+1,由lna+1=2得:a=e与1<a<e矛盾,②a=e时,f′(x)≤0,f(x)在[1,e]上递减,∴f(x)的最小值是f(e)=2,符合题意;③a>e时,显然f(x)在区间[1,e]上递减,最小值是f(e)=1+>2,与最小值是2矛盾;综上,a=e.请考生在22.23.24题三题中任选一题作答,如果多做,则按所做的第一题记分)[选修4-1:几何证明选讲]22.如图,直线PB与⊙O交于A,B两点,OD⊥AB于点D,PC是⊙O的切线,切点为C.(1)求证:PC2+AD2=PD2(2)若BC是⊙O的直径,BC=3BD=3,试求线段BP的长.【考点】与圆有关的比例线段.【分析】(1)由垂径定理和切割线定理得AD=BD,PC2=PA•PB=(PD﹣AD)(PD+AD),由此能证明PC2+AD2=PD2.(2)求出AB=2BD=2,在Rt△BCP中,由射影定理得BC2=BA•BP,即可求出线段BP的长.【解答】证明:(1)∵直线PB与圆O交于A,B两点,OD⊥AB于点D,PC是圆O的切线,切点为C.∴AD=BD,PC2=PA•PB=(PD﹣AD)(PD+AD)=PD2﹣AD2,∴PC2+AD2=PD2.解:(2)∵BC是⊙O的直径,∴AC⊥AB,∵D是AB的中点,∴AB=2BD=2,在Rt△BCP中,由射影定理得BC2=BA•BP,∴BP==.[选修4-4:坐标系与参数方程]23.设点A是曲线C:,(θ为参数)上的动点,点B是直线l:,(t为参数)上的动点(1)求曲线C与直线l的普通方程;(2)求A,B两点的最小距离.【考点】参数方程化成普通方程.【分析】(1)由曲线C:,(θ为参数),利用cos2θ+sin2θ=1可得普通方程.由直线l:,(t为参数),消去参数t化为普通方程.(2)设A(2cosθ,sinθ),点A到直线l的距离d=(其中tanφ=4),利用三角函数的单调性与值域即可得出最值.【解答】解:(1)由曲线C:,(θ为参数),可得普通方程:=1.由直线l:,(t为参数)化为普通方程:2x﹣y﹣5=0.(2)设A(2cosθ,sinθ),点A到直线l的距离d==(其中tanφ=4),当sin(θ﹣φ)=﹣1时,d取得最小值=.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣2|﹣|x﹣4|.(1)求不等式f(x)<0的解集;(2)若函数g(x)=的定义域为R,求实数m的取值范围.【考点】绝对值不等式的解法;绝对值三角不等式.【分析】(1)通过讨论x的范围,求出不等式的解集即可;(2)问题等价于m=f(x)在R无解,求出f(x)的范围,从而求出m的范围即可.【解答】解:(1)原不等式即为|x﹣2|﹣|x﹣4|<0,若x≤2,则2﹣x+x﹣4<0,符合题意,∴x≤2,若2<x<4,则x﹣2+x﹣4<0,解得:x<3,∴2<x<3,若x≥4,则x﹣2﹣x+4<0,不合题意,综上,原不等式的解集是{x|x<3};(2)若函数g(x)=的定义域为R,则m﹣f(x)=0恒不成立,即m=f(x)在R无解,|f(x)|=||x﹣2|﹣|x﹣4||≤|x﹣2﹣(x﹣4)|=2,当且仅当(x﹣2)(x﹣4)≤0时取“=”,∴﹣2≤f(x)≤2,故m的范围是(﹣∞,﹣2)∪(2,+∞).2018年9月18日编制:衡水中学总群386429879。
【衡水金卷压轴卷】2018年普通高等学校招生全国统一考试模拟试题(压轴卷)文科数学(一)(含答案)
2018年普通高等学校招生全国统一考试模拟试题文科数学(一)本试卷共4页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
第Ⅰ卷一、选择题:本题共12小題,毎小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的。
1.已知集合{}{}(,),(,)2A x y y x B x y y ====,则A B =A. {}2B. {}2,2-C. {}(2,2)- D, {}(2,2),(2,2)-2.已知i 为虚数单位,若复数2(23)(3)z a a a i =+-++是纯虚数,则复数12ai i --的共轭 复数为A .4755i --或3155i + B. 4755i -- C. 3155i - D. 3155i + 3.在某次月考中,一名生物老师从他所任教的某班中抽取了甲、乙两组学生的生物成绩(每组恰好各10人),并将获取的成绩制作成如图所示的茎叶图.观察茎叶图,下面说法错误的是A .甲组学生的生物成绩高分人数少于乙组B .甲组学生的生物成绩比乙组学生的生物成绩更稳定C .甲组学生与乙组学生的生物平均成绩相同D .甲组学生与乙组学生生物成绩的中位数相同4.已知双曲线C :22221(0,0)x y a b a b-=>>的渐近线与动曲线(2)3()y x R αα=-+∈在第一象限内相交于一定点A ,则双曲线C 的离心率为A. 54B. 53C. 2D. 435.如图,在长方体ABCD -A1B1C1D1中,点E ,F 分别为B1C1,C1D1的中点,则四棱锥A -B1FFD1的正视图与侧视图分別为A .②,③B ,④,② C. ②,① D. ②,④6.已知等差数列{}n a 的前孢项和为n S ,且12345610,20a a a a a a =-++++=-,则“n S 取得最小值’’的一个充分不必要条件是A .n =5或6B .n =5或6或7C . n =6D .n =117.我国古代《九章算术》里,记载了一个例子:今有羡除,下广六尺,上广一丈,深三尺,末广八尺,无深,袤七尺,问积几何? 该问题中的羡除是如图所示的五面体ABCDEF ,其三个侧面皆为等腰梯形,两个底面为直角三角形,其中.AB=6尺,CD=10尺,EF=8尺,AB ,CD 之间的距离为3尺,CD ,EF’间的距离为7尺,则异面直线DF‘与AB 所成的角的正弦值为AB. C .97 D. 798.设32log ,ln3a b ==,执行如图所示的程序框图,则输出的S 的值为A .9+ln 3B .3-ln 3C .11D .19.函数()222x x f x -=+-的部分图象可能是10.将函数()2cos f x x =的图象向右平移6个单位,再将所得图象上所有点的横坐标变 为原来的1(0)ωω>倍,得到函数g (x )的图象,若函数g (x )在区间3(,)44ππ上是增函 效,则则ω的取值范围是 A. 2[,2]9B. 2(0,]9 C. 2632[,]99 D. 22614(0,][,]993 11.已知函数22,1()2,1x f x x x x ⎧-≤⎪=⎨⎪>-⎩,若方程2[()]()10()f x mf x m R -+=∈恰有4个不同的实根,则实数m 的取值范围为A, 5(0,)2 B. 5(2,)2 C. (2,)+∞ D. 5(,)2+∞12.若过抛物线22(0)x py p =>或22(0)y px p =>的焦点F 的直与该抛物线交于A ,B 两点,则称线段AB 为该抛物线的焦点弦,此时有以下性质成立:112AF BF P+=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年普通高等学校招生全国统一考试模拟试题(衡水金卷调研卷)
文数二
第Ⅰ卷(共60分)
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1. 已知集合,集合,集合,则()
A. B. C. D.
2. 已知复数满足(是虚数单位),则复数在复平面内对应的点所在象限为()
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
3. 函数的定义域为()
A. B. C. D.
4. 三世纪中期,魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法.所谓割圆术,就是不断倍增圆内接正多边形的边数求出圆周率的方法.如图是刘徽利用正六边形计算圆周率时所画的示意图,现项园中随机投掷一个点,则该点落在正六边形内的概率为()
A. B. C. D.
5. 已知双曲线的一条渐近线与直线垂直,且焦点在圆上,则该双曲线的标准方程为()
A. B. C. D.
6. 执行如图所示的程序框图,若输入的,则输出的为()
学¥科¥网...学¥科¥网...
A. 3
B. 4
C. 5
D. 6
7. 已知数列的前项和为,,则()
A. B. C. D.
8. 已知将函数的图象向左平移个单位长度得到函数的图象,若函数图象的两条相邻的对称轴间的距离为,则函数的—个对称中心为()
A. B. C. D.
9. 榫卯是在两个木构件上所采用的一中凹凸结合的连接方式,凸出部分叫榫,凹进部分叫卯,榫和卯咬合,起到连接作用,代表建筑有:北京的紫禁城、天坛祈年殿、山西悬空寺等,如图所示是一种榫卯的三视图,其表面积为()
A. B. C. D.
10. 已知实数满足约束条件当且仅当时,目标函数取大值,则实数的取值
范围是()
A. B. C. D.
11. 已知,命题函数的值域为,命题函数在区间内单调递增.
若是真命题,则实数的取值范围是()
A. B. C. D.
12. 若函数与的图像上存在关于轴对称的点,则实数的取值范围是()
A. B. C. D.
第Ⅱ卷(共90分)
二、填空题(每题5分,满分20分,将答案填在答题纸上)
13. 已知在中,为边上的点,,若,则__________.
14. 已知焦点在轴上的椭圆的一个焦点在直线上,则椭圆的离心率为_____.
15. 在锐角中,角所对的边分别为,若,且,则
__________.
16. 如图,在矩形中,,为边上的点,项将沿翻折至,使得点在平面
上的投影在上,且直线与平面所成角为,则线段的长为__________.
三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)
17. 已知等差数列的前项和为,.
(1)求数列的通项公式;
(2)若数列满足,且,求数列的前项和.
18. 如图,四棱锥的底面是边长为2的正方形,平面平面,点是的中点,棱
与平面交于点.
(1)求证:;
(2)若是正三角形,求三棱锥的体积.
19. 某市统计局就某地居民的收入调查了10000人,并根据所得数据画出样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在).
(1)求居民收入在的频率;
(2)根据频率分布直方图算出样本数据的中位数及样本数据的平均数;
(3)为了分析居民的收人与年龄、职业等方面的关系,必须按月收入再从这10000人中按分层抽样方法抽出100人作进一步分析,则月收入在内应抽取多少人?
20. 已知点为抛物线的焦点,过的直线交抛物线于两点.
(1)若直线的斜率为1,,求抛物线的方程;
(2)若抛物线的准线与轴交于点,,求的值.
21. 已知函数.
(1)当时,求曲线在处的切线方程;
(2)若是函数的导函数的两个零点,当时,求证:.
请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.
22. 选修4-4:坐标系与参数方程
在平面直角坐标系中,已知曲线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的普通方程与的直角坐标方程;
(2)判断曲线是否相交,若相交,求出相交弦长.
23. 选修4-5:不等式选讲
已知函数.
(1)求不等式的解集;
(2)若对任意的,都有成立,求实数的取值范围.。