华师大版八年级下册第16章分式复习检测题(原创)
华师大版八年级下册第16章《分式》达标测试卷 含答案解析
华师大版八年级下册第16章《分式》达标测试卷满分100分班级:________姓名:________座位:________成绩:________一.选择题(共10小题,满分30分)1.下列各式中,属于分式的是()A.x﹣1B.C.D.(x+y)2.随着电子技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占有面积0.00000065mm2,0.00000065用科学记数法表示为()A.6.5×107B.6.5×10﹣6C.6.5×10﹣8D.6.5×10﹣73.若把分式的x和y都扩大5倍,则分式的值()A.扩大到原来的5倍B.不变C.缩小为原来的倍D.扩大到原来的25倍4.把分式约分得()A.b+3B.a+3C.D.5.使分式的值等于0的x的值是()A.﹣1B.﹣1或5C.5D.1或﹣56.大拖拉机n天耕地a公顷,小拖拉机m天耕地b公顷,大拖拉机的工作效率是小拖拉机工作效率的()A.B.C.D.7.方程x2=(x﹣1)0的解为()A.x=﹣1B.x=1C.x=±1D.x=08.“双11”前,小明的妈妈花了120元钱在淘宝上购买了一批室内拖鞋,在“双11”大减价期间她发现回款的拖鞋单价每双降了5元,于是又花了100元钱购买了一批回款室内拖鞋,且比上次还多了2双.若设拖鞋原价每双为x元,则可以列出方程为()A.B.C.D.9.分式方程的解为()A.x=2B.x=﹣2C.x=﹣D.x=10.已知a为整数,且÷为正整数,求所有符合条件的a的值的和()A.0B.12C.10D.8二.填空题(共5小题,满分20分)11.若分式无意义,则x=.12.分式的最简公分母是.13.若+=3,则分式的值为.14.已知:x2+4x﹣1=0,则的值为.15.定义运算“※”:a※b=,则:①2m※3m(m>0);②若5※x=2,则x的值为.三.解答题(共7小题,满分50分)16.解分式方程:=﹣.17.化简式子(+1),并在﹣2,﹣1,0,1,2中选取一个合适的数作为m的值代入求值.18.甲、乙两个公司为某国际半程马拉松比赛各制作6400个相同的纪念品.已知甲公司的人数比乙公司人数少20%,乙公司比甲公司人均少做20个,甲、乙两公司各有多少人?19.学习了分式运算后,老师布置了这样一道计算题:,下面是一位同学有错的解答过程:=①=②=③=④;(1)该同学的解答过程的错误步骤是;(填序号),你认为该同学错误的原因是.(2)请写出正确解答过程.20.如图,“丰收1号”小麦的试验田是边长为a米(a>2)的正方形去掉一个边长为2米的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为(a﹣2)米的正方形,两块试验田的小麦都收获了500kg.(1)哪种小麦的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?21.已知关于x的分式方程+=(1)若方程的增根为x=1,求m的值(2)若方程有增根,求m的值(3)若方程无解,求m的值.22.京广高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为8.4万元,乙队每天的施工费用为5.6万元.工程预算的施工费用为500万元.为缩短工期并高效完成工程,拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断并说明理由.参考答案一.选择题(共10小题)1.【解答】解:是分式,故选:B.2.【解答】解:0.00000065=6.5×10﹣7.故选:D.3.【解答】解:∵把分式的x和y都扩大5倍,xy扩大到原来的25倍,x+y扩大到原来的5倍,∴若把分式的x和y都扩大5倍,则分式的值扩大到原来的5倍.故选:A.4.【解答】解:==;故选:D.5.【解答】解:∵分式的值等于0,∴x2﹣4x﹣5=0,且x+1≠0,解得:x=5.故选:C.6.【解答】解:∵大拖拉机n天耕地a公顷,∴大拖拉机的工作效率是,∵小拖拉机m天耕地b公顷,∴小拖拉机的工作效率是,∴大拖机的工作效率是小拖机的工作效率÷=倍.故选:A.7.【解答】解:∵x2=(x﹣1)0,∴x2=1,且x≠1,解得:x=﹣1.故选:A.8.【解答】解:设拖鞋原价每双为x元,则“双11”大减价期间该款拖鞋价格每双为(x﹣5)元,依题意,得:=﹣2.故选:D.9.【解答】解:去分母得:2x=x﹣2,解得:x=﹣2,经检验x=﹣2是分式方程的解,则分式方程的解为x=﹣2,故选:B.10.【解答】解:÷====,∵a为整数,且分式的值为正整数,∴a﹣3=1,3,a=4,6,∴所有符合条件的a的值的和:4+6=10.故选:C.二.填空题(共5小题)11.【解答】解:由题意得:x﹣2=0,解得:x=2,故答案为:2.12.【解答】解:分式的最简公分母是(a﹣1)2(a+1),故答案为:(a﹣1)2(a+1).13.【解答】解:由+=3,得x+y=3xy,====,故答案为.14.【解答】解:由x2+4x﹣1=0,得到x2=﹣4x+1,则原式======,故答案为:.15.【解答】解:①由m>0,得到3m>2m,根据题中的新定义得:原式==3;②当x>5时,化简得:=2,解得:x=10,经检验x=10是分式方程的解;当x<5时,化简得:=2,解得:x=,经检验x=是分式方程的解,综上,x的值为或10,故答案为:3;或10三.解答题(共7小题)16.【解答】解:原方程即=﹣,两边同时乘以(2x+1)(2x﹣1)得:x+1=3(2x﹣1)﹣2(2x+1),x+1=6x﹣3﹣4x﹣2,解得:x=6.经检验:x=6是原分式方程的解.∴原方程的解是x=6.17.【解答】解:(+1)=[]=()===,∵当m=﹣1,0,1,2时,原分式无意义,∴当m=﹣2时,原式==1.18.【解答】解:设乙公司有x人,则甲公司有(1﹣20%)x人,根据题意得:﹣=20,解得:x=80,经检验,x=80是原方程的解,且符合题意,∴(1﹣20%)x=64.答:甲公司有64人,乙公司有80人.19.【解答】解:(1)该同学的解答过程的错误步骤是②;该同学错误的原因是:用分式基本性质时,分母乘以(x+1),但是分子没有乘;故答案为:②,用分式基本性质时,分母乘以(x+1),但是分子没有乘;(2)====.20.【解答】解:(1)根据题意得:“丰收1号”小麦单位面积产量为500÷(a2﹣22)=(平方米),“丰收2号”小麦单位面积产量为500÷(a﹣2)2=(平方米),∵a>2,∴(a﹣2)2﹣(a2﹣4)=a2﹣4a+4﹣a2+4=8﹣4a<0,即(a﹣2)2<(a2﹣4),∴<,则“丰收2号”小麦单位面积产量大;(2)根据题意得:÷=•=,则高的单位面积产量是低的单位面积产量的倍.21.【解答】解:方程两边同时乘以(x+2)(x﹣1),去分母并整理得(m+1)x=﹣5,(1)∵x=1是分式方程的增根,∴1+m=﹣5,解得:m=﹣6;(2)∵原分式方程有增根,∴(x+2)(x﹣1)=0,解得:x=﹣2或x=1,当x=﹣2时,m=1.5;当x=1时,m=﹣6;(3)当m+1=0时,该方程无解,此时m=﹣1;当m+1≠0时,要使原方程无解,由(2)得:m=﹣6或m=,综上,m的值为﹣1或﹣6或1.5.22.【解答】解:(1)设乙队单独完成这项工程需要x天,则甲队单独完成这项工程需要x 天.根据题意,得.解得x=90.经检验,x=90是原方程的根.∴x=×90=60.答:甲、乙两队单独完成这项工程分别需60天和90天.(2)设甲、乙两队合作完成这项工程需要y天,则有.解得y=36.需要施工费用:36×(8.4+5.6)=504(万元).∵504>500.∴工程预算的施工费用不够用,需追加预算4万元.。
华师大版数学八年级下册第16章分式测试题含答案
华师大版八年级数学下册 第16章分式测试题一、单选题 1.下列代数式中,属于分式的是( ) A .5xB .3xy C .3x D 2.若代数式4x x -有意义,则实数x 的取值范围是( ) A .x =0 B .x =4 C .x ≠0 D .x ≠4 3.一种微粒的半径是0.00004米,这个数据用科学记数法表示为( )A .4×106B .4×10﹣6C .4×10﹣5D .4×105 4.下列各式正确的是A .c -a-b =-c a-bB .c -a-b =-c a b +C .c -a b +=-c a b +D .c -a-b =--c a-b5.计算2269243m m m m m-+-⋅--的结果是( ) A .32m m -+ B .23m m +- C .32m m +- D .23m m -+ 6.下列各式计算正确的是( ) A .111a b a b +=+ B .2m m m a b ab ⋅= C .11b b a a a +÷= D .110a b b a +=--7.若方程6(1)(1)1m x x x -+--=1有增根,则它的增根是( ) A .0B .1C .﹣1D .1和﹣18.设24932321x A B x x x x -=---+- (A ,B 为常数),则( ) A .71A B =⎧⎨=⎩ B .49A B =⎧⎨=-⎩ C .17A B =⎧⎨=⎩ D .3513A B =-⎧⎨=⎩二、填空题9.计算:23b a a b⨯= . 10.若分式2x x -的值是0,则x 的值为_______. 11.分式222x x +,24x x -的最简公分母是_______________. 12.若代数式62x +与4x的值相等,则x =_________. 13.若关于x 的方程2345mx m x +=-的解是x =1,则m 的值是________. 14.如果轮船在静水中航行的速度是a km/h ,水流的速度为b km/h(a>b),那么轮船顺水航行s km 比逆水航行s km 所用的时间少________小时.15.已知x -3y =0,且y≠0,则222(1)y x y x y x-+⋅-的值等于________. 16.某快递公司的分拣工小王和小李,在分拣同一类物件时,小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同.已知小王每小时比小李多分拣8个物件,设小李每小时分拣x 个物件,根据题意列出的方程是 .三、解答题17.计算: (1)11()3--(2018)0×(-12)-2; (2)1111x x ++-; (3)2221211x x x x x x -+÷-+-.18.解分式方程:222x x x =---5.19.已知分式1x y xy+-的值是m ,如果分式中x ,y 分别用它们的相反数代替,那么所得的值为n ,则m ,n 有何关系?20.先化简,再求值:(x -2+32x +)÷2212x x x +++,其中x =(π-2019)0+(13)-1.21.已知a ,b ,c 为实数,且13ab a b =+,14bc b c =+,15ca c a =+,求abc ab bc ca++的值.22.某汽车销售公司经销某品牌A 款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A 款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A 款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B 款汽车,已知A 款汽车每辆进价为7.5万元,B 款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B 款汽车每辆售价为8万元,为打开B 款汽车的销路,公司决定每售出一辆B 款汽车,返还顾客现金a 万元,要使(2)中所有的方案获利相同,a 值应是多少?此时,哪种方案对公司更有利?参考答案1.C【解析】【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式,从而得出答案.【详解】根据分式的定义A.是整式,答案错误;B.是整式,答案错误;C.是分式,答案正确;D.是根式,答案错误;故选C.【点睛】本题考查了分式的定义,在解题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式.2.D【解析】由分式有意义的条件:分母不为0,即x-4≠0,解得x≠4,故选D.3.C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00004=4×10﹣5. 故选C .【点睛】本题考查科学记数法—表示较小的数, 绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.4.B【解析】本题考查的是分式的基本性质根据分式的基本性质对各项分析即可.A 、,故本选项错误;B 、cca b a b =---+,正确;C 、,故本选项错误;D 、,故本选项错误;故选B .5.A【解析】【分析】将第一个分式的分子、分母进行因式分解后,再约分即可得解.【详解】2269243m m m m m -+-⋅--, =2(3)2·(2)(2)3m mm m m --+--, =32m m -+.故选A.【点睛】本题考查分式的乘法,约分是分式乘法的关键. 6.D【解析】【分析】根据分式的运算法则对各选项逐一判断即可. 【详解】A. 11a ba b ab++=,故该选项错误;B. m ma b⋅=2mab,故该选项错误;C.1b ba a+÷=11b a ba b b⨯=++,故该选项错误;D.11a b b a+--=11a b a b---=0, 故该选项正确.故选D.【点睛】本题考查了分式的运算,熟练掌握运算法则是解题关键.7.B【解析】方程两边都乘(x+1)(x﹣1),得6﹣m(x+1)=(x+1)(x﹣1),由最简公分母(x+1)(x﹣1)=0,可知增根可能是x=1或﹣1.当x=1时,m=3,当x=﹣1时,得到6=0,这是不可能的,所以增根只能是x=1.故选:B.8.A【解析】【分析】对等式右边通分加减运算和,再根据对应项系数相等列方程组求解即可.【详解】()()()()()()()()()()1323249321321321A x B x A B x A B x x x x x x x --+--+-+-+-+-==. 所以3429A B A B ==-⎧⎨+⎩,解得71A B ⎧⎨⎩==. 故选A .【点睛】此题考查了分式的减法,比较灵活,需要熟练掌握分式的加减运算.9.3b【解析】 试题分析:根据分式的乘法运算法则,约分化简即可:23b a 3b a b⨯=. 10.2.【解析】【分析】根据分式分子为0分母不为0的条件,要使分式2x x-的值为0,则必须x 20{x 0-=≠,从而求解即可.【详解】解:有题意可得:x 20{x 0-=≠解得:x 2=故答案为:2.【点睛】本题考查分式的值为零的条件,掌握分式值为零即分子为零且分母不为零是本题的解题关键.11.x(x +2)(x -2)【解析】【分析】根据确定最简公分母的方法是:取各分母系数的最小公倍数;凡单独出现的字母连同它的指数作为最简公分母的一个因式;同底数幂取次数最高的,得到的因式的积就是最简公分母,先把分母因式分解,即可求出答案.【详解】 ∵()22222x x x x =++,()()2422x x x x x =-+-, ∴222x x +,24x x -的最简公分母是x (x+2)(x-2); 故答案为:x (x+2)(x-2).【点睛】此题考查了最简公分母,关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握;确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.12.4【解析】 ∵代数式62x +与4x的值相等, ∴642x x +=, 解得:x=4故答案是4.13.-196【解析】【分析】根据方程的解的定义,把x=1代入原方程,原方程左右两边相等,从而原方程转化为含有m 的新方程,解此新方程可以求得m 的值.【详解】把x=1代入原方程得,23415m m +-= 去分母得,10m+15=4m-4解得,m=-196. 故答案为:-196. 【点睛】解题关键是要掌握方程的解的定义,由已知解代入原方程得到新方程,然后解答. 14.222bs a b - 【解析】【分析】根据时间=路程÷速度,求出逆水航行的时间-顺水航行的时间,即可得到代数式.【详解】根据题意得:那么轮船顺水航行skm 与逆水航行skm 所用的时间差为:222=s s bs a b a b a b--+-. 故答案为:222bs a b -. 【点睛】本题考查理解题意的能力,时间差为,逆水航行的时间-顺水航行的时间,时间=路程÷速度.可列出代数式.15.34【解析】【分析】把小括号内分式通分并把分母分解因式,然后根据分式的乘法运算进行计算,再把x=3y 代入进行计算即可得解.【详解】2221?y x y x y x-+-(), =22222•x y y x y x y x-+--, =()()2•x x y x y x y x-+-,=+x x y, ∵x-3y=0,且y≠0,∴x=3y ,∴原式=3334y y y =+. 故答案为34. 【点睛】本题考查了分式的化简求值,一般分子、分母能因式分解的先因式分解,本题先计算然后再对分母分解因式更简便.16.. 【解析】试题解析:小华每小时分拣x 个物件,则小王每小时分拣(x +8)个物件, 根据题意得:6045.8x x=+ 故答案为6045.8x x=+ 17.(1)-1;(2)-221x ;(3) 1x . 【解析】【分析】(1)根据负整数指数幂和零次幂的运算法则进行计算即可得解;(2)按照异分母的分式加减法则进行计算即可;(3)原式利用除法法则变形,约分即可得到结果.【详解】(1)原式=3-1×4=-1. (2)原式=2112(1)(1)(1)(1)1x x x x x x x -+-=-+-+--. (3)2221 211x x x x x x -+÷-+-=2(1)(1)11(1)(1)x x x x x x x +--⨯=-+.【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.18.x =3【解析】【分析】观察可得最简公分母是x-2,方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【详解】方程的两边同乘(x -2),得-2=x -5(x -2),解得x =3.检验:将x =3代入x -2,得x -2=1≠0,∴x =3是原方程的解.【点睛】此题考查了分式方程的求解方法.注意掌握转化思想的应用,注意解分式方程一定要验根.19.m 与n 互为相反数.【解析】【分析】把x 、y 的相反数代入分式中,然后化简计算可得到n 的表达式,进而得到m 、n 的关系.【详解】由题意得:n=()() 11x y x y x y xy--+=-----=-m , 则m 与n 互为相反数.【点睛】此题主要考查了分式的基本性质,关键是正确理解题意,正确对题目进行变形. 20.13. 【解析】【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,求出x 的值代入计算即可求出值.【详解】(x-2+32x+)÷2212x xx+++=()()2 2(2)32 []?221 x x xx x x+-+++++=()()2 1(1)2•21 x x xx x+-+++=1 +1 xx-.x=(π-2019)0+(13)-1=1-2+3=2,当x=2时,原式=2121-+=13.【点睛】此题考查了分式的化简求值,以及实数的运算,熟练掌握运算法则是解本题的关键.21.1 6 .【解析】【分析】要求abcab bc ca++的值,可先求出其倒数的值,根据13aba b=+,14bcb c=+,15cac a=+,分别取其倒数即可求解.【详解】∵13aba b=+,14bcb c=+,15cac a=+,∴a+b=3ab,b+c=4bc,c+a=5ca,∴abcab bc ca++=2222abcab bc ca++=2()()()abcab bc bc ca ab ca +++++=2()()()abcb ac c b a a b c+++++=212 abc abc=16. 【点睛】本题考查了分式的化简求值,难度不大,关键是通过先求其倒数再进一步求解. 22.(1)9万元 (2)共有5种进货方案 (3)购买A 款汽车6辆,B 款汽车9辆时对公司更有利【解析】分析:(1)求单价,总价明显,应根据数量来列等量关系.等量关系为:今年的销售数量=去年的销售数量.(2)关系式为:公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆.(3)方案获利相同,说明与所设的未知数无关,让未知数x 的系数为0即可;多进B 款汽车对公司更有利,因为A 款汽车每辆进价为7.5万元,B 款汽车每辆进价为6万元,所以要多进B 款.详解:(1)设今年5月份A 款汽车每辆售价m 万元.则:901001m m =+, 解得:m =9.经检验,m =9是原方程的根且符合题意.答:今年5月份A 款汽车每辆售价9万元;(2)设购进A 款汽车x 辆,则购进B 款汽车(15﹣x )辆,根据题意得: 99≤7.5x +6(15﹣x )≤105.解得:6≤x ≤10.∵x 的正整数解为6,7,8,9,10,∴共有5种进货方案;(3)设总获利为W 万元,购进A 款汽车x 辆,则:W =(9﹣7.5)x +(8﹣6﹣a )(15﹣x )=(a ﹣0.5)x +30﹣15a .当a =0.5时,(2)中所有方案获利相同.此时,购买A 款汽车6辆,B 款汽车9辆时对公司更有利.点睛:本题考查了分式方程和一元一次不等式组的综合应用,找到合适的等量关系及不等关系是解决问题的关键.。
华师大版八年级下册数学第十六章分式测试题(附答案)
华师大版八年级下册数学第十六章分式测试题(附答案)一、单选题1.据统计,渝北区第二届“讯飞杯”优质课大赛视频网络点击10500 次,将数10500 用科学记数法表示为()A. 10.5´105B. 1.05´105C. 0.105´105D. 1.05´1042.2008年在北京举办的第29届奥运会的火炬传递在各方面都是创记录的:火炬境外传递城市19个,境内传递城市和地区116个,传递距离为137万公里,火炬手的总数达到21780人.用科学记数法表示21780为()A. 2.178×105B. 2.178×104C. 21.78×103D. 217.8×1023.某种微粒子,测得它的质量为0.00006746克,这个质量用科学记数法表示(保留三个有效数字)应为()A. 6.75×10﹣5克B. 6.74×10﹣5克C. 6.74×10﹣6克D. 6.75×10﹣6克4.已知﹣=2,则的值为()A. 0.5B. ﹣0.5C. 2D. ﹣25.据报道,2011年全国普通高等学校招生计划约675万人.数6750000用科学记数法表示为()A. B. C. D.6.下列运算正确的是()A. (a2)3=a5B. a2•a3=a5C. a﹣1=﹣aD. (a+b)(a﹣b)=a2+b27.某生态示范园,计划种植一批核桃,原计划总产量达36千克,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各为多少万千克?设原计划每亩平均产量x万千克,则改良后平均亩产量为1.5x 万千克.根据题意列方程为()A. ﹣=20B. ﹣=20C. ﹣=20D. + =208.函数y= 的自变量x的取值范围是()A. x≠2B. x<2C. x≥2D. x>29.在函数中,自变量x的取值范围是()A. x>2B. x≤2且x≠0C. x<2D. x>2且x≠010.下列各式从左至右的变形错误的是()A. B. C. D.11.若分式的值为0,则x的值是()A. x=3B. x=0C. x=-3D. x=-412.已知a+=,则a-的值为()A. ±2B. 8C.D. ±13.2017年扬州马拉松赛事在4月22日开跑,来自世界各地的30000名选手参加了这项国际赛事,将30000用科学记数法表示为________.14.化简:(1+)= ________.15.若代数式的值为零,则x=________.16.已知,且,则________.17.若分式的值为0,则x的值为________.18.用換元法解方程时,如果设时,那么得到关于的整式方程为________.19.用科学记数法39 800 000 是________20.某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x套,则根据题意可得方程为________。
华东师大版八年级下《第16章分式》单元复习测试(有答案)
第16章分式复习试题1.下列各式中,属于分式的个数有( )①1x ;②-x 2;③2xy x +y;④2x -x 3;⑤14(x 2+1). A .1个 B .2个 C .3个 D .4个2.如果分式3x -1有意义,那么x 的取值范围是( ) A .全体实数 B .x ≠1 C .x =1 D .x >13.下列计算不正确的一项是( )A .b 2x =by 2xyB .ax bx =a bC .3x 2y ÷6y 2x =x 32yD .2a a 2-4-1a -2=1a +24.方程2x +1x -1=3的解是( ) A .-45 B .45C .-4D .4 5.计算:⎝⎛⎭⎫a b -b a ÷a -b a 的结果为( )A .a +b bB .a -b bC .a -b aD .a +b a6.分式方程x x -1-1=3(x -1)(x +2)的解为( ) A .x =1 B .x =-1 C .无解 D .x =-27.电动车每小时比自行车多行驶了25千米,自行车行驶30千米比电动车行驶40千米多用了1小时,求两车的平均速度各为多少?设自行车的平均速度为x 千米/时,应列方程为( )A .30x -1=40x -25B .30x -1=40x +25C .30x +1=40x -25D .30x +1=40x +258.已知14m 2+14n 2=n -m -2,则1m -1n的值是( ) A .1 B .0 C .-1 D .-149.当x =6,y =3时,代数式⎝⎛⎭⎫x x +y +2y x +y ·3xy x +2y 的值是( )A .2B .3C .6D .910.关于x 的分式方程2x -a x +1=1的解是正数,则字母a 的取值范围为( ) A .a ≥-1 B .a >-1 C .a ≤-1 D .a <-111.分式方程x x -1=32(x -1)-2的解为________. 12.计算:⎝⎛⎭⎫a a +b +2b a +b ·a a +2b =________.13.人体内某种细胞可近似地看作球体,它的直径为0.000 000 156 m ,将0.000 000 156用科学记数法表示为________.14.已知实数m 满足m 2-3m +1=0,则代数式m 2+19m 2+2的值等于________. 15.甲、乙二人做某种机械零件,已知甲每小时比乙多做4个,甲做60个所用的时间与乙做40个所用的时间相等,则乙每小时所做的零件的个数为________.16.对于正数x ,规定f (x )=x x +1,例如f (3)=33+1=34,f ⎝⎛⎭⎫13=1313+1=14,计算:f (2 018)+f (2 017)+…+f (1)+f ⎝⎛⎭⎫11+f ⎝⎛⎭⎫12+…+f ⎝⎛⎭⎫12 018=________. 17.计算:(1)⎝⎛⎭⎫-a b 2×⎝⎛⎭⎫-b a 3÷(-ab 4); (2)⎝⎛⎭⎫-110-3+(-2 018)0-(-3)3×0.3-1;(3)(-1.4×10-10)÷(7×105)(结果用科学记数法表示).18.解下列分式方程:(1)3x -1=4x ; (2)x x +1-4x 2-1=1.19.先化简,再求值:⎝⎛⎭⎫1-2x +1÷x 2-1x 2+x,其中x =2.20.化简:⎝ ⎛⎭⎪⎫x 2-2x x 2-4x +4-3x -2÷x -3x 2-4,并从1,2,3,4这四个数中取一个合适的数作为x 的值代入求值.21.某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同,原计划平均每天生产多少个零件?22.为了提高产品的附加值,某公司计划将研发生产的1 200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.23.商场经营的某品牌童装,4月的销售额为20 000元,为扩大销量,5月份商场对这种童装打9折销售,结果销量增加了50件,销售额增加了7 000元.(1)求该童装4月份的销售单价;(2)若4月份销售这种童装获利8 000元,6月全月商场进行“六一儿童节”促销活动.童装在4月售价的基础上一律打8折销售,若该童装的成本不变,则销量至少为多少件,才能保证6月的利润比4月的利润至少增长25%?参考答案1.B 2.B 3.A 4.D 5.A 6.C 7.B 8.C 9.C 10.B11.x =76 12.a a +b13.1.56×10-7 14.9 15.8 16.2 01817.(1)1a2b3(2)-909(3)-2×10-1618.(1)x=4(2)x=-319.原式=xx+12320.原式=x+2当x=4时,原式=621.75个22.甲工厂每天加工40件产品,乙工厂每天加工60件产品23.(1)4月份的销售单价为200元(2)销量至少为250件。
2021-2022学年度华东师大版八年级数学下册第十六章分式章节测评试题(含详细解析)
华东师大版八年级数学下册第十六章分式章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果关于x 的不等式组45253m x x x ->⎧⎨+≥+⎩所有整数解中非负整数解有且仅有三个,且关于y 的分式方程2301322my y y --=--有正整数解,则符合条件的整数m 有( )个 A .1 B .2 C .3 D .42、若关于x 的一元一次不等式组3132x x x a+⎧≤+⎪⎨⎪≤-⎩的解集为x a ≤-,且关于x 的分式方程32222ax x x x +=+--有非负整数解,则所有满足条件的整数a 的值之和是( )A .14-B .5-C .9-D .6- 3、要使式子5a b a b -+值为0,则( ) A .a ≠0 B .b ≠0 C .5a =bD .5a =b 且b ≠0 4、根据分式的基本性质,分式22m -可以变形为( ) A .11m - B .22m -- C .22m -+ D .21m-5、下列关于x 的方程,是分式方程的是( )A .325xx -= B .11523x y -= C .32xx x π=+ D .1212x x=-+ 6、已知分式2ab a b +的值为25,如果把分式2ab a b+中的,a b 同时扩大为原来的3倍,那么新得到的分式的值为( )A .25 B .45 C .65 D .4257、下列运算正确的是( )A .22352a b a b -=-B .()22448a b a b -= C .()224--= D .()22224a b a b -=- 8、已知5a b +=,3ab =,则b a a b+的值为( ) A .6 B .193 C .223 D .89、若关于x 的一元一次不等式组()21122x x x m ⎧+-<+⎨-≤⎩的解集为1x <;关于x 的分式方程2422x m m x x ++=--的解为非负整数.则满足条件的整数m 的值之和是( )A .13B .12C .14D .1510、一辆汽车以60千米/时的速度行驶,从A 城到B 城需t 小时,如果该车的速度每小时增加v 千米,那么从A 城到B 城需要( )小时.A .60t v B .6060t v + C .60vt v + D .60vt 第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题4分,共计40分)1、计算下列各题:(1)|3﹣4|﹣1=_____;(2=_____;(3)30=_____;(4)32y xy x+=_____. 2、计算:24133--+=--m m m m _________. 3、如果分式2356x x x --+的值为零,那么x =____. 4、将0.000927用科学计数法表示为______.5、当x ≠4时,(x ﹣4)0=___.6、计算:1322x x x -+=++________. 7、已知ab =﹣4,a +b =3,则11a b +=_____. 8、若分式21x +无意义,则x 的值为__. 9、化简:1111x x x ⎛⎫+÷= ⎪--⎝⎭______. 10、计算:02202211122-⎛⎫⎛⎫-+--= ⎪ ⎪⎝⎭⎝⎭______. 三、解答题(5小题,每小题6分,共计30分)1、如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为“和谐分式”.(1)下列分式:①11x x -+;②222a b a b --;③22x y x y +-,其中是“和谐分式”的是 (填写序号即可); (2)若a 为整数,且214x x ax --++为“和谐分式”,写出满足条件的a 的值为 ; (3)在化简22344a ab ab b b -÷-时,小明和小娟分别进行了如下三步变形:小明:原式22222323232232444444()()a a a a a b a ab b ab b b b ab b b ab b b --=-⋅=-=---, 小娟:原式22223222444444()()()a a a a a a ab ab b b b b a b b b a b --=-⋅=-=---, 你比较欣赏谁的做法?先进行选择,再根据你的选择完成化简过程,并说明你选择的理由.2、计算(1)()()()223a b a b a a b -+-+ (2)22242211x x x x x x ⎛⎫-+÷- ⎪-+-⎝⎭3、计算:()03.14π-4、计算:1111x y x y ----+-. 5、计算:(1)()()()23123a a a a -+--(2)()254111x x x x x --⋅++---参考答案-一、单选题1、B【解析】【分析】解不等式组和分式方程得出关于x 的范围,根据不等式组有且仅有非负整数解和分式方程的解为正整数解得出m 的范围,继而可得整数m 的个数.解:解不等式45m x ->,得:54m x -<, 解不等式253x x +≥+,得:2x ≥-,不等式组有且仅有三个非负整数解,4234m -∴<≤, 解得:1216m <≤,解关于y 的分式方程2301322my y y --=--, 23013(2)my y --=-,(13)58m y -=, 得:1358y m =-, 分式方程有正整数解, ∴58013m >-,且58213m ≠-,即42m ≠, 解得:13m >且42m ≠,综上,1316m <≤,所以所有满足条件的整数m 的值为14,15,一共2个.故选:B .【点睛】本题主要考查分式方程的解和一元一次不等式组的解,解题的关键是熟练掌握解分式方程和不等式组的能力,并根据题意得到关于m 的范围.2、B【解析】先解不等式组根据解集x a ≤-,求出得a 的范围,再解分式方程,根据非负整数解,求出a 的值即可求解.【详解】 解一元一次不等式组3132x x x a+⎧≤+⎪⎨⎪≤-⎩得5x x a ≤⎧⎨≤-⎩ ∵元一次不等式组3132x x x a+⎧≤+⎪⎨⎪≤-⎩的解集为x a ≤-∴5a ≥-,即5a ≥-解关于x 的分式方程32222ax x x x +=+--得61x a =-+ ∵分式方程32222ax x x x+=+--有非负整数解, ∴11a +=-或12a +=-或13a +=-或16a +=-,解得2a =-或3a =-或4a =-或7a =-, ∵621x a =-≠+ ∴4a ≠-∵5a ≥-∴2a =-或3a =-∴2(3)5-+-=-或3a =-故选:B【点睛】本题考查分式方程、一元一次不等式组,熟练掌握分式方程、一元一次不等式组的解法,注意分式方程增根的情况是解题的关键.3、D【解析】【分析】根据分式有意义的条件,即可求解.【详解】解:根据题意得:50a b -= 且0a b +≠ ,∴5a b = 且0b ≠ .故选:D【点睛】本题主要考查了,熟练掌握分式有意义的条件是分式的分子等于0且分母不等于0是解题的关键.4、B【解析】【分析】根据分式的基本性质即可求出答案.【详解】 解:原式2222m m =---, 故选B .【点睛】本题考查的是分式的基本性质,即分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.5、D【解析】【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断.【详解】解:A.方程分母中不含未知数,故不是分式方程,不符合题意;B.方程分母中不含未知数,故不是分式方程,不符合题意;C.方程分母中不含表示未知数的字母,π是常数,故不是分式方程,不符合题意;D.方程分母中含未知数x,故是分式方程,符合题意.故选:D.【点睛】本题主要考查了分式方程的定义,解题的关键是掌握判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母).6、C【解析】【分析】直接利用分式的基本性质进而化简得出答案.【详解】解:把分式2aba b+中的,a b都扩大为原来的3倍,则分式223392263333()55ab a b aba b a b a b===⨯=+++,故选:C.【点睛】本题主要考查了分式的基本性质,解题的关键是正确化简分式.7、B【解析】【分析】由题意依据合并同类项和积、幂的乘方以及负指数幂和完全平方差公式逐项进行运算判断即可.【详解】解:A. 222352a b a b a b -=-,本选项运算错误;B. ()22448a b a b -=,本选项运算正确; C. ()2124--=,本选项运算错误; D. ()222244a b a ab b -=-+,本选项运算错误.故选:B.【点睛】本题考查整式的混合运算以及完全平方差公式,熟练掌握合并同类项和积、幂的乘方以及负指数幂运算是解题的关键.8、B【解析】【分析】 将原式同分,再将分子变形为2()2a b ab ab+-后代入数值计算即可. 【详解】解:∵5a b +=,3ab =, ∴2222()25231933b a a b a b ab a b ab ab ++--⨯+====, 故选:B .【点睛】此题考查了分式的化简求值,正确掌握完全平方公式的变形计算是解题的关键.9、B【解析】【分析】由关于x 的一元一次不等式组可得m ≥-1,关于x 的分式方程的解为83m x -=,根据题意得出所有满足条件的整数m 的值,求和即可.【详解】解:解不等式组2(1)122x x x m +-<+⎧⎨-≤⎩得,12x x m <⎧⎨≤+⎩, 因为不等式组的解集为1x <;所以21m +≥,解得,1m ≥-; 解分式方程2422x m m x x ++=--得,83m x -=, 因为关于x 的分式方程2422x m m x x ++=--的解为非负数. 所以,803m -≥且823m -≠, 解得,8m ≤且2m ≠,又因为方程的解是非负整数,则整数m 的值为-1,5,8;它们的和为:-1+5+8=12;故选:B【点睛】本题主要考查了分式方程的解,一元一次不等式组的解集,有理数的混合运算.考虑解分式方程可能产生增根是解题的关键.10、B【解析】【分析】根据题意求出全程,及后来行驶的速度,相除即可得到时间.【详解】解:一辆汽车以60千米/时的速度行驶,从A城到B城需t小时,故全程为60t千米,该车的速度每小时增加v千米后的速度为每小时(60+v)千米,则从A城到B城需要6060tv+小时,故选:B.【点睛】此题考查了分式的实际应用,正确理解题意是解题的关键.二、填空题1、 0 3 1 5 x【解析】【分析】(1)先化简绝对值,再计算减法运算即可得;(2)先计算有理数的乘方,再计算算术平方根即可得;(3)计算零指数幂即可得;(4)根据分式的加法运算法则即可得.【详解】解:(1)原式11110=--=-=,故答案为:0;(2)原式3==,故答案为:3;(3)原式1=,故答案为:1;(4)原式325x x x+==, 故答案为:5x .【点睛】本题考查了零指数幂、算术平方根、分式的加法等知识点,熟练掌握各运算法则是解题关键.2、-1【解析】【分析】根据同分母分式的加法法则计算即可.【详解】 解:241241313333m m m m m m m m m---+--+===-----. 故答案为:-1.【点睛】本题考查了同分母分式的加减运算,同分母分式的加减法则:分母不变,分子相加减.3、3-【解析】【分析】根据分时的值为0的条件,可得30x -= 且2560x x -+≠ ,即可求解.【详解】 解:根据题意得:30x -= 且2560x x -+≠ ,即3x =± 且()()230x x --≠ ,∴3x =± 且2x ≠ 且3x ≠ ,∴3x =- .故答案为:3-【点睛】本题主要考查了分时的值为0的条件,熟练掌握当分式的分子等于0,且分母不等于0时,分时的值为0是解题的关键.4、9.27×10-4【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000927=9.27×10-4,故答案为:9.27×10-4.【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5、1【解析】【分析】根据零指数幂的定义:a0=1(a≠0),求解即可.【详解】解:∵x≠4,∴x-4≠0,∴(x-4)0=1.故答案是:1.【点睛】本题考查了零指数幂,掌握运算法则是解答本题的关键.6、1【解析】【分析】根据b c b ca a a++=计算即可.【详解】∵1322 xx x-+++=13222 x xx x-++=++=1,故答案为:1.【点睛】本题考查了同分母分式的加法,熟练掌握同分母分式的加减法的法则是解题的关键.7、3 4 -【解析】先通分:11a ba b ab++=,然后再代入数据即可求解.【详解】解:由题意可知:113344a ba b ab++===--,故答案为:34 -.【点睛】本题考查了分式的加减运算及求值,属于基础题,计算过程中细心即可.8、-1【解析】【分析】根据使分式无意义的条件“分母为0”,计算即可.【详解】根据题意有10x+=,解得:1x=-.故答案为:-1.【点睛】本题考查使分式无意义的条件.掌握使分式无意义的条件是分母为0是解答本题的关键.9、1【解析】【分析】根据分式的加减运算法则以及乘除运算法则即可求出答案.解:原式=1111x xx x +--⨯-=11x xx x-⨯-=1故答案为:1.【点睛】本题考查分式的混合运算,解题的关键是熟练运用分式的加减运算以及乘除运算法则,本题属于基础题型.10、-4【解析】【分析】先运用乘方、零次幂、负整数次幂化简,然后计算即可.【详解】解:02 202211122-⎛⎫⎛⎫-+--⎪ ⎪⎝⎭⎝⎭=114-+-=-4.故答案为-4.【点睛】本题主要考查了乘方、零次幂、负整数次幂等知识点,灵活运用相关运算法则成为解答本题的关键.三、解答题1、(1)②(3)我欣赏小娟的做法,见解析【解析】【分析】(1)根据和谐分式的定义判断即可得出答案;(2)根据完全平方公式和十字相乘法即可得出答案;(3)小娟利用了和谐分式,通分时找到了最简公分母,完成化简即可.(1)解:①分子或分母都不可以因式分解,不符合题意;②分母可以因式分解,且这个分式不可约分,符合题意;③这个分式可以约分,不符合题意;故答案为:②;(2)解:将分母变成完全平方公式得:244x x ±+,此时4a =±;将分母变形成(1)(4)x x ++,此时5a =;故答案为:4±或5;(3)我欣赏小娟的做法, 原式222444()a a ab b a b -+=- 24()ab b a b =- 4()a b a b =-, 理由:小娟利用了和谐分式,通分时找到了最简公分母.解:我欣赏小娟的做法, 原式222444()a a ab b a b -+=- 24()ab b a b =- 4()a b a b =-, 理由:小娟利用了和谐分式,通分时找到了最简公分母.【点睛】本题考查了分式的混合运算,解题的关键是掌握在分式的混合运算中,能因式分解的多项式要分解因式,便于约分.2、 (1)243b ab -- (2)21x x -- 【解析】【分析】(1)根据单项式乘多项式和平方差公式可以解答本题;(2)先因式分解,再根据分式的减法和除法解答本题.(1)解:(1)()()()223a b a b a a b -+-+()22243a b a ab =--+22243a b a ab =---243b ab =--(2)22242211x x x x x x ⎛⎫-+÷- ⎪-+-⎝⎭()()()()222212111x x x x x x x x -+-⎡⎤+=÷-⎢⎥---⎣⎦ ()()()()222211x x x x x -+-+⎡⎤=÷⎢⎥--⎣⎦()()()()()222121x x x x x ⎡⎤-+-=⎢⎥-+-⎢⎥⎣⎦ 21x x -=- 【点睛】本题考查整式的混合计算,分式的混合运算、单项式乘多项式、平方差公式,熟悉相关性质是解答本题的关键.3、6【解析】【分析】先运用零次幂、算术平方根的性质、立方根的知识化简,然后计算即可.【详解】解:()03.14π-=1+2-(-3)=1+2+3=6.【点睛】本题主要考查了零次幂、算术平方根、立方根等知识点,灵活运用相关知识是解答本题的关键.4、y x y x+-. 【解析】【分析】根据负整数指数幂、分式的加减法与除法法则即可得.【详解】 解:原式1111x y x y+=-y x xy xy y x xy xy+=- y xxy y xxy+=- y x y x+=-. 【点睛】本题考查了负整数指数幂、分式的加减法与除法,熟练掌握分式的运算法则是解题关键.5、 (1)3a + (2)11x - 【解析】【分析】(1)先利用单项式乘多项式和多项式乘多项式运算法则计算,然后再合并即可;(2)运用分式的四则混合运算法则计算即可.(1)解:()()()23123a a a a -+--=2262253a a a a -+-+=3a +.(2) 解:()254111x x x x x --⋅++-- =()()()541111x x x x x x --⋅+++-- =5411x x x x --+-- =541x x x -+-- =11x -. 【点睛】本题主要考查整式乘法混合运算、分式四则混合运算等知识点,灵活运用相关知识点成为解答本题的关键.。
华师大版数学八下第16章《分式》单元测试卷及答案
新人教八年级(下)第16章《分式》一、填空题(每小题3分,共24分)1.下列各式:()2221451, , , 532x x y x x xπ---其中分式共有( ) A .1个 B .2个 C .3个 D .4个2.下列计算正确的是( )A .m m m x x x 2=+B .22=-n n x xC .3332x x x =⋅D .264x x x -÷=3.下列约分正确的是( )A .313m m m +=+B .212y x y x -=-+ C .123369+=+a b a b D .()()y x a b y b a x =-- 4.若x 、y 的值均扩大为原来的2倍,则下列分式的值保持不变的是( )A .y x 23B .223y xC .y x 232D .2323yx 5.计算xx -++1111的正确结果是( ) A .0 B .212x x - C .212x - D .122-x 6.在一段坡路,小明骑自行车上坡的速度为每小时V 1千米,下坡时的速度为每小时V 2千米,则他在这段路上、下坡的平均速度是每小时( )A .221v v +千米B .2121v v v v +千米C .21212v v v v +千米 D .无法确定 7.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x 件,则x 应满足的方程为( )A .x+48720─548720= B .x +=+48720548720 C .572048720=-x D .-48720x +48720=5 8.若0≠-=y x xy ,则分式=-xy 11( ) A .xy1 B .x y - C .1 D .-1 二、填空题(每小题3分,共30分)9.分式12x ,212y ,15xy -的最简公分母为 .10.约分:(1)=b a ab2205__________,(2)=+--96922x x x __________.11.方程x x 527=-的解是 .12.利用分式的基本性质填空:(1)())0(,10 53≠=a axy xy a(2)() 1422=-+a a13.分式方程1111112-=+--x x x 去分母时,两边都乘以 .14.要使2415--x x 与的值相等,则x =__________.15.计算:=+-+3932a a a __________.16.若关于x 的分式方程3232-=--x m x x无解,则m 的值为__________.17.若分式231-+x x 的值为负数,则x 的取值范围是__________.18.已知2242141x y y x y y +-=-+-,则的24y y x ++值为______.三、解答题:(共56分)19.(4分)计算:(1)11123x x x ++ (2)3xy 2÷x y 2620.(4分)计算: ()3322232n m n m --⋅ 21.(4分)计算(1)168422+--x x xx(2)m n nn m m m n nm -+-+--222.(6分)先化简,后求值:222222()()12a a a a a b a ab b a b a b-÷-+--++-,其中2,33a b ==-23.(6分)解下列分式方程.(1)xx 3121=- (2)1412112-=-++x x x24.(6分)计算: 1111-÷⎪⎭⎫ ⎝⎛--x x x25.(6分)已知x 为整数,且918232322-++-++x x x x 为整数,求所有符合条件的x 的值.26.(6分)先阅读下面一段文字,然后解答问题:一个批发兼零售的文具店规定:凡一次购买铅笔301支以上(包括301支)可以按批发价付款;购买300支以下(包括300支)只能按零售价付款.现有学生小王购买铅笔,如果给初三年级学生每人买1支,则只能按零售价付款,需用()12-m 元,(m 为正整数,且12-m >100)如果多买60支,则可按批发价付款,同样需用()12-m 元.设初三年级共有x 名学生,则①x 的取值范围是 ;②铅笔的零售价每支应为 元;③批发价每支应为 元.(用含x 、m 的代数式表示).27.(6分)从甲地到乙地有两条公路,一条是全长600km 的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km /h ,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.28.(8分)问题探索:(1)已知一个正分数mn (m >n >0),如果分子、分母同时增加1,分数的值是增大还是减小?请证明你的结论.(2)若正分数mn (m >n >0)中分子和分母同时增加2,3…k (整数k >0),情况如何?(3)请你用上面的结论解释下面的问题:建筑学规定:民用住宅窗户面积必须小于地板面积,但按采光标准,窗户面积与地板面积的比应不小于10%,并且这个比值越大,住宅的采光条件越好,问同时增加相等的窗户面积和地板面积,住宅的采光条件是变好还是变坏?请说明理由.。
华东师大版八年级下册第16章《分式》单元测试卷(原卷版+解析版)
华东师大版八年级下册第16章《分式》单元测试卷(原卷版)本试卷三个大题共22个小题,全卷满分120分,考试时间120分钟。
题号一二三全卷总分总分人1718 19 20 21 22 得分1、答题前,请考生务必将自己姓名、考号、班级等写在试卷相应的位置上;2、选择题选出答案后,用钢笔或黑色水笔把答案标号填写在选择题答题卡的相应号上。
一、选择题(本大题共12个小题,每小题4分,共48分.以下每小题都给出了A 、B 、C 、D 四个选项,其中只有一个是符合题目要求的。
)1、在代数式m 1,3b ,π1-x ,y x +2,aa 1+中,分式的个数是( )A 、2B 、3C 、4D 、52、下列各分式中,是最简分式的是( )A 、x x 22B 、1122+++x x xC 、x x 1+ D 、112--x x 3、将分式yx x42-中的x ,y 的值同时扩大为原来的2022倍,则变化后分式的值( )A 、扩大为原来的2022倍B 、缩小为原来的20221C 、保持不变D 、以上都不正确4、已知0132=+-x x ,则xx 1-的值是( ) A 、5B 、7±C 、5±D 、35、若b a ≠,则下列分式化简正确的是( )A 、b a b a =--22B 、b a mb a m =+C 、b ab a =22D 、b abab =26、下列运算正确的是( )A 、692432b b a a b =•B 、2323132b a b ab =+ C 、a a a 32121=+ D 、1211112-=+--a a a 7、分式方程13132=----xx x 的解为( ) A 、2=xB 、无解C 、3=xD 、3-=x8、若关于x 的分式方程2113+-=--x mx x 产生增根,则m 的值为( ) A 、1-B 、2-C 、1D 、29、随着电影《你好,李焕英》热映,其同名小说的销量也急剧上升、某书店分别用400元和600元两次购进该小说,第二次数量比第一次多1倍,且第二次比第一次进价便宜4元,设书店第一次购进x 套,根据题意,下列方程正确的是( )A 、42600400=-x x B 、42400600=-x x C 、46002400=-xx D 、44002600=-xx 10、若关于x 的分式方程21121=----x k x kx 无解,则k 的值为( ) A 、31-=kB 、1=kC 、31=k 或2 D 、0=k 11、已知关于x 的分式方程xkx x -=--343的解为负数,则k 的取值范围是( ) A 、12-≤k 且3-≠k B 、12->k C 、12-<k 且3-≠k D 、12-<k 12、若关于x 的不等式组()⎪⎩⎪⎨⎧-≤+-≥-+12224131x a x x x 有解,且使关于y 的分式方程32221-=--+--yya y y 的解为非负数、则满足条件的所有整数a 的和为( ) A 、9- B 、8- C 、5- D 、﹣4二、填空题(本大题共4个小题,每小题4分,共16分) 13、已知611=+y x ,则yxy x y xy x +-++525的值为 ; 14、对于实数a 、b ,定义一种新运算“*”为:ba ab a -=*,这里等式右边是实数运算。
华东师大版数学八年级下册-第16章-分式--章节检测题-含答案
华东师大版数学八年级下册 第16章 分式 章节检测题一、选择题1.下列分式是最简分式的是( )A 。
错误!B 。
错误!C.a +b a 2+b 2D.错误! 2.使分式错误!有意义,x 应满足的条件是( )A .x ≠1B .x ≠2C .x ≠1或x ≠2D .x ≠1且x ≠23.若分式x -2x +3的值为0,则x 的值是( ) A .-3 B .-2 C .0 D .24.下列各式中,与分式错误!相等的是( )A.错误! B 。
错误!C.错误!(x ≠y ) D 。
错误!5.下列等式成立的是( )A .(-3)-2=-9B .(-3)-2=错误!C .a -2×b -2=a 2×b 2 D.a 2-b 2b -a=a +b 6.分式方程3x =4x +1+1的解是( ) A .x =-3 B .x =1C .x 1=3,x 2=-1D .x 1=1,x 2=-37.若关于x 的分式方程错误!=2-错误!的解为正数,则满足条件的正整数m 的值为( )A .1,2,3B .1,2C .1,3D .2,38.已知a 2+a -2=7,则a +a -1的值( )A .49B .47C .±3D .39.甲、乙两人同时分别从A ,B 两地沿同一条公路骑自行车到C 地.已知A,C 两地间的距离为110千米,B ,C 两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时,结果两人同时到达C 地,求两人的平均速度.为解决此问题,设乙骑自行车的平均速度为x 千米/时,由题意列出方程,下列正确的是( )A.错误!=错误!B.错误!=错误!C 。
错误!=错误!D 。
错误!=错误!二、填空题10.若分式错误!(m -n≠0)的分母经过通分后变为m 2-n 2,则分子变为_____5m 2+5mn _______.11.已知错误!与错误!互为倒数,则x 的值为________.12.在学习负整数指数幂的知识后,明明给同桌晶晶出了如下题目:将(p 3q -2)2(-3p 4q ( ))-3的结果化为只含有正整数指数幂的形式,其结果为-错误!,其中“( )"处的数字是多少?聪明的你替晶晶同学填上“( )”的数字______.13.若关于x 的分式方程错误!-2=错误!有增根,则m 的值为______.14.环境空气质量问题已经成为人们日常生活所关心的重要问题,我国新修订的《环境空气质量标准》中增加了PM 2.5检测指标,“PM 2.5”是指大气中危害健康的直径小于或等于2。
综合解析华东师大版八年级数学下册第十六章分式专项测评试卷(精选含答案)
华东师大版八年级数学下册第十六章分式专项测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若关于x 的不等式组2123342x x a x x -⎧-<⎪⎨⎪-≤-⎩有且仅有3个整数解,且关于y 的方程2135a y a y --=+的解为负整数,则符合条件的整数a 的个数为( )A .1个B .2个C .3个D .4个2、下列分式中,从左到右变形错误的是( )A .144c c =B .111a b a b+=+ C .11a b b a =--- D .2242442a a a a a --=+++ 3、近年来,新冠肺炎给人类带来了巨大灾难,经科学家研究,冠状病毒多数为球形或近似球形,其直径约为0.00000011米,其中数据0.00000011用科学记数法表示正确的是( )A .81.110-⨯B .71.110-⨯C .61.110-⨯D .60.1110-⨯ 4、若分式3x y y +中的x ,y 都扩大到原来的2倍,则分式的值( ) A .不变 B .扩大到原来的2倍C .扩大到原来的4倍D .缩小到原来的12 5、下列命题中的真命题是( )A .内错角相等,两直线平行B .相等的角是对顶角C .122-=-D .若1=a ,则1a = 6、下列分式的变形正确的是( )A .21=21a a b b ++B .22x y x y ++=x +yC .55a a b b =D .22a a b b=(a ≠b ) 7、2020年是不平凡的一年,面对突如其来的新冠肺炎疫情,我们以人民至上、生命至上诠释了人间大爱,用众志成城、坚韧不拔书写了抗疫的史诗.新冠病毒属于冠状病毒科,形态要比细菌小很多,直径最小约0.00000006米,直径最大约为0.00000014米.将0.00000014用科学记数法表示为( )A .1.4×107B .1.4×10﹣7C .14×10﹣6D .1.4×10﹣68、如果关于x 的分式方程21155m x x ++=--无解,则m 的值为( ) A .5B .3C .1D .-1 9、解分式方程2111x x x-=--﹣2时,去分母得( ) A .﹣2+x =﹣1﹣2(x ﹣1)B .2﹣x =1﹣2(x ﹣1)C .2﹣x =﹣1﹣2(x ﹣1)D .﹣2+x =1+2(1﹣x ) 10、下列分式变形正确的是( )A .22a a b b =B .a b a b b b+=+ C .22142a a b b ++= D .22a a b b +=+ 第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题4分,共计40分)1、计算:02202211122-⎛⎫⎛⎫-+--=⎪ ⎪⎝⎭⎝⎭______.2、当12ab=时,式子2222+2a b a bba a b⎛⎫+-⋅⎪-⎝⎭的值为________.3、某中学八年级学生去距学校10千米的景点参观,一部分学生骑自行车先走,过了30分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍,设骑车学生的速度为x千米/小时,则所列方程是________.4、如果分式4123xx-+的值为0,则x的值是__________.5112⎛⎫+-=⎪⎝⎭______.6、“绿水青山就是金山银山”.某地为美化环境,计划种植树木2000棵.由于志愿者的加入,实际每天植树的棵树比原计划增加了25%,结果提前4天完成任务.则实际每天植树_________棵.7、若4x=是关于x的方程233x mx-=-的解,则m的值为________.8、计算:24133--+=--m mm m_________.9、当x=_____时,代数式27xx-与77xx-的值相等.10、若2410x x-+=,则2421xx x++的值为________.三、解答题(5小题,每小题6分,共计30分)1、某校为进一步开展体育中考训练,购买了一批篮球和排球,已知购买的排球数量是篮球的2倍,购买排球用去了4000元,购买篮球用去了2520元,篮球单价比排球贵26元,求篮球、排球的单价.2、解方程:(1)2313162x x-=--.(2)(x﹣1)(x+2)﹣3x(x+3)=6﹣2x2(1)()()()2222x y x y x y +--- (2)222111a a a a a a --⎛⎫+-÷ ⎪++⎝⎭ 4、已知关于x 的方程214339m m x x x ++=+--. (1)若4m =,解这个分式方程;(2)若原分式方程的解为整数,求整数m 的值.5、已知ABC 中,90,8cm,6cm B AB BC ∠=︒==,P 、Q 是ABC 边上的两个动点,其中点P 从点A 开始沿A B →方向运动且速度为每秒1cm ,点Q 从点B 开始沿B C A →→方向运动,在BC 边上的运动速度是每秒2cm ,在AC 边上的运动速度是每秒1.5cm ,它们同时出发,当其中一个点到达终点时,另一个点也随之停止,设运动时间为t 秒.(1)出发2秒后,求PQ 的长.(2)当点Q 在边BC 上运动时,t 为何值时,ACQ 的面积是ABC 面积的13.(3)当点Q 在边CA 上运动时,t 为何值时,PQ 将ABC 周长分为23:25两部分.-参考答案-一、单选题1、C【分析】 解不等式组得到227x a x <⎧⎪+⎨≥⎪⎩,利用不等式组有且仅有3个整数解得到169a -<≤-,再解分式方程得到152a y +=-,根据解为负整数,得到a 的取值,再取共同部分即可. 【详解】 解:解不等式组2123342x x a x x -⎧-<⎪⎨⎪-≤-⎩得:227x a x <⎧⎪+⎨≥⎪⎩, ∵不等式组有且仅有3个整数解, ∴2217a +-<≤-, 解得:169a -<≤-, 解方程2135a y a y --=+得:152a y +=-, ∵方程的解为负整数, ∴1502a +-<, ∴15a >-,∴a 的值为:-13、-11、-9、-7、-5、-3,…,∴符合条件的整数a 为:-13,-11,-9,共3个,故选C .【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.也考查了解一元一次不等式组的整数解.2、B【分析】根据分式的约分、异分母分式相加、提负号原则即可判断出答案.【详解】A.144cc=,所以此选项变形正确;B.111b aa b ab ab ba ba ab+=+=≠++,所以此选项变形错误;C.111()a b b a b a==-----,所以此选项变形正确;D.2224(2)(2)244(2)2a a a aa a a a-+--==++++,所以此选项变形正确.故选:B.【点睛】本题考查分式的变形,掌握约分,异分母分式相加减原则是解题的关键.3、B【解析】【分析】绝对值小于1的数可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000011=71.110-⨯,故选B.【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a 的值以及n 的值.4、A【解析】【分析】根据分式的基本性质可把x ,y 都扩大到原来的2倍代入原式得进行求解.【详解】解:把x ,y 都扩大到原来的2倍代入原式得,()22232233x y x y x y y y y+++==⨯⨯; 分式的值不变.故选A .【点睛】本题主要考查分式的基本性质,熟练掌握分式的基本性质,把握分子与分母的代数式的次数,分子与分母同次,不变,分子次数比分母次数高变大,分子的次数比分母点,变小是解题的关键.5、A【解析】【分析】根据平行线的判定定理和对顶角的性质,负指数幂的运算,绝对值的性质依次对选项判断即可得.【详解】解:A 、根据平行线的判定:内错角相等,两直线平行,选项正确;B 、对顶角相等,相等的角不一定是对顶角,选项错误;C 、1122-=,选项错误; D 、1a =,则1a =±,选项错误;故选:A.【点睛】题目主要考查命题的真假,包括平行线的判定,对顶角的性质,负指数幂的运算,绝对值的性质等,熟练掌握运用这些知识点是解题关键.6、C【解析】【分析】根据分式的基本性质判断即可.【详解】解:A选项中不能分子分母不能约分,故该选项不合题意;B选项中分子和分母没有公因式,故该选项不合题意;C选项中分子和分母都乘5,分式的值不变,故该选项符合题意;D选项中分子乘a,分母乘b,a≠b,故该选项不合题意;故选:C.【点睛】本题考查了分式的基本性质,把分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.7、B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:0.00000014=1.4×10-7.故选:B .【点睛】此题考查科学记数法的表示方法,表示时关键要确定a 的值以及n 的值.8、C【解析】【分析】先将分式方程化成整式方程,再根据分式方程无解可得5x =,然后将5x =代入整式方程求出m 的值即可得.【详解】 解:21155m x x++=--, 方程两边同乘以5x -化成整式方程为2(1)5m x -+=-,关于x 的分式方程21155m x x++=--无解, 50x ∴-=,即5x =,将5x =代入方程2(1)5m x -+=-得:2(1)0m -+=,解得1m =,故选:C .【点睛】本题考查了分式方程无解问题,根据分式方程无解得出方程的增根是解题关键.9、C【解析】【分析】先把方程化为21211x x x --=---,再在方程的两边都乘以1,x - 从而可得答案. 【详解】 解:21211x x x-=--- 则:21211x x x --=--- 去分母得:2121x x故选C【点睛】 本题考查的是解分式方程的去分母,掌握“确定各分母的最简公分母”是解本题的关键.10、C【解析】【分析】分式的分子与分母都乘以或除以同一个不为0的数或整式,分式的值不变,根据分式的基本性质逐一判断即可.【详解】 解:22,a a b b≠故A 不符合题意; ,2a b a b a b b b b++=≠+故B 不符合题意; ()21221442a a a b b b+++==,故C 符合题意; 2,2a a b b+≠+故D 不符合题意; 故选C【点睛】本题考查的是分式的基本性质,掌握“分式的基本性质判断分式的变形的正误”是解本题的关键.二、填空题1、-4【解析】【分析】先运用乘方、零次幂、负整数次幂化简,然后计算即可.【详解】解:02 202211122-⎛⎫⎛⎫-+--⎪ ⎪⎝⎭⎝⎭=114-+-=-4.故答案为-4.【点睛】本题主要考查了乘方、零次幂、负整数次幂等知识点,灵活运用相关运算法则成为解答本题的关键.2、-1【解析】【分析】先将原式括号内通分计算,再将两因式分子、分母因式分解,约分后代入求值即可.【详解】解:2222+2a b a bba ab ⎛⎫+-⋅⎪-⎝⎭=2222 2+ a ab b a ba a b-+⋅-=2()+()()a b a b a a b a b -⋅+- =a b a- =1ba - ∵12a b = ∴2b a = ∴原式=1-2=-1故答案为:-1.【点睛】本题主要考查了分式的化简求值,熟练掌握运算法则是解答本题的关键.3、1010122x x -= 【解析】【分析】根据等量关系:骑自行车的学生所用的时间-乘汽车的学生所用的时间=12小时,即可列出方程.【详解】 由题意,骑自行车的学生所用的时间为10x 小时,乘汽车的学生所用的时间为102x小时,由等量关系:骑自行车的学生所用的时间-乘汽车的学生所用的时间=12小时,得方程:1010122x x -= 故答案为:1010122x x -=【点睛】本题考查了分式方程的应用,关键是找到等量关系并根据等量关系正确地列出方程.4、14##0.25 【解析】【分析】分式的值为零时,分子等于零,即410x -=.【详解】解:由题意知,410x -=. 解得14x =. 此时分母07223x +=≠,符合题意. 故答案是:14. 【点睛】本题主要考查了分式的值为零的条件,解题的关键是掌握分式值为零的条件是分子等于零且分母不等于零.5【解析】【分析】1的符号,再根据绝对值的定义及零指数幂的意义即可完成.【详解】解∵1<3,112⎛⎫+-⎪⎝⎭,11=+,【点睛】本题考查了算术平方根据的估值,绝对值的意义,零指数幂的意义等知识,关键是掌握绝对值的意义和零指数幂的意义,并能对算术平方根正确估值.6、125【解析】【分析】设原计划每天植树x棵,则实际每天植树(1+25%)x棵,根据工作时间=工作总量÷工作效率,结合实际比原计划提前4天完成任务,即可得出关于x的分式方程,解之经检验后即可得出x的值,再将其代入(1+25%)x中即可求出结论.【详解】解:设原计划每天植树x棵,则实际每天植树(1+25%)x棵,依题意得:200020004(125%)x x-=+,解得:x=100,经检验,x=100是原方程的解,且符合题意,∴(1+25%)x=125.故答案为:125.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.7、5【解析】【分析】把4x=代入方程233x mx-=-,得到关于m的一元一次方程,再解方程即可.【详解】解:4x=是关于x的方程233x mx-=-的解,243,43m83,m解得:5,m=故答案为:5【点睛】本题考查的是分式方程的解,掌握“把分式方程的解代入原方程求解未知系数的值”是解本题的关键.8、-1【解析】【分析】根据同分母分式的加法法则计算即可.【详解】解:24124131 3333m m m m mm m m m---+--+===-----.故答案为:-1.【点睛】本题考查了同分母分式的加减运算,同分母分式的加减法则:分母不变,分子相加减.9、0【解析】【分析】根据题意列出分式方程,按分式方程的解法步骤解方程即可得解.【详解】解:依题意得:2777x xx x=--,两边同时乘x-7得,x2=7x,即x(x-7)=0,解得:x1=0,x2=7.检验:当x=0时,x-7≠0,所以x=0是原方程的根,当x=7时,x-7=0,所以x=7不是原方程的根.所以原方程的解为:x=0.故答案为:0.【点睛】本题考查了分式方程的解法.掌握其解法是解决此题关键.10、1 15【解析】【分析】根据x2-4x+1=0可得到x2=4x-1,x2+1=4x,然后把原式的分子分母进行降次,再约分即可.【详解】解:∵x2-4x+1=0,∴x2=4x-1,x2+1=4x∴2421xx x++=()22211xx x++=()24141xx x-+=221641xx x-+=()41164141xx x---+=115.故答案为115.【点睛】本题考查了分式的化简求值,灵活变形是解答本题的关键.三、解答题1、篮球、排球的单价分别为126元、100元【解析】【分析】设购买了篮球x个,则排球购买了2x个.根据“篮球单价比排球贵26元”列出方程求解即可.【详解】解:设购买了篮球x个,则排球购买了2x个,依题意可列方程40002520262x x+=,解得x=200,经检验x=200是原方程的解,∴排球的单价为40001002200=⨯元,篮球的单价为126元. 答:篮球、排球的单价分别为126元、100元.【点睛】本题考查了分式方程的应用.解答分式方程时,一定要验根.2、 (1)x =12(2)x =-1【解析】【分析】(1)方程两边同乘以2(31)x -得到,关于x 的一元一次方程,解此方程即可;(2)先去括号、移项,将方程的右边化为0,得到关于x 的一元一次方程,解此方程即可.(1) 解:2313162x x -=-- 方程两边同乘以2(31)x -得,42(31)3x --=63x ∴-=-12x ∴= (2)(x ﹣1)(x +2)﹣3x (x +3)=6﹣2x 2222239620x x x x x +----+=88x ∴-=1x ∴=-.【点睛】本题考查解分式方程、解一元一次方程等知识,是重要考点,掌握相关知识是解题关键.3、 (1)22234x y xy -+ (2)1a a - 【解析】【分析】(1)利用平方差公式及完全平方公式展开,然后合并同类项计算即可得;(2)先通分,然后去括号计算分式的除法,最后进行化简即可得.(1)解:原式()2222422x y x xy y =---+,22224242x y x xy y =--+-,22234x y xy =-+;(2) 解:原式2222111a a a a a a-+-+=⋅+-, ()()21111a a a a a -+=⋅+-, 1a a-=. 【点睛】题目主要考查整式的混合运算及分式的混合运算,完全平方公式及平方差公式的运用,熟练掌握两个运算法则是解题关键.4、 (1)751x = (2)0m =,-2,-4【解析】【分析】(1)把m =4代入原方程得2418339x x x +=+--,方程两边都乘最简公分母(x −3)(x +3),可以把分式方程转化为整式方程求解;(2)方程两边都乘最简公分母(x −3)(x +3),分式方程转化为整式方程,m (x −3)+(x +3)=m +4,整理得()141m x m +=+,原分式方程的解为整数,10m +≠,411m x m +=+,对代数式进行分析即可求解.(1)解:将4m =带入原分式方程得2418339x x x +=+-- 去分母可得:()4338x x -++= 解得:751x = 经检验,751x =符合题意, 即原分式方程的解为751x =. (2)解:去分母可得:()334m x x m -++=+整理可得:()141m x m +=+∵原分式方程的解为整数∴10m +≠,∴411mxm+=+,∵413411mxm m+==-++为整数,且m为整数∴11m+=,-1,3,-3,∴0m=,-2,2,-4∵当2m=时原分式方程无解,∴0m=,-2,-4.【点睛】本题考查分式方程,分式方程转化为整式方程求解,最后注意需检验.在对分式方程进行分析时,要注意考虑分母不为零的情况.5、 (1);(2)2(3)4或6【解析】【分析】(1)求出BP=6,利用勾股定理求出PQ的长;(2)先求出CQ=6-2t,根据ACQ的面积是ABC面积的13得11162)868232t⨯-⨯=⨯⨯⨯(,计算即可;(3)根据勾股定理求出AC,当点Q在AC上时,计算出CQ的长,分别计算PQ分△ABC的周长中BP+BC+CQ的长及AP+AQ的长,列比例式计算即可.(1)解:当出发2秒后,AP=2,BQ=4,∴BP=AB-AP=8-2=6,∵∠B =90°,∴PQ =cm )(2)解:∵BQ =2t ,BC =6,∴CQ =6-2t , ∴11162)868232t ⨯-⨯=⨯⨯⨯(, 得t =2;(3)解:在ABC 中,90,8cm,6cm B AB BC ∠=︒==,∴AC 10,当点Q 在AC 上时, 1.5(3) 1.5 4.5CQ t t =-=-,∵BC =6,BP =8-t ,∴PQ 分△ABC 的周长中BP+BC+CQ =86 1.5 4.50.59.5t t t -++-=+,AP+AQ =1068(0.59.5)0.514.5t t ++-+=-+, 当0.59.5230.514.525t t +=-+时,得t =4; 当0.514.5230.59.525t t -+=+时,得t =6; 检验可得t 值均符合题意,∴t 为4或6时,PQ 将ABC 周长分为23:25两部分.【点睛】此题考查了勾股定理,三角形与动点问题,实际问题与一元一次方程,列比例求解,解题中运用分类思想,正确掌握勾股定理的计算公式是解题的关键.。
华东师大版八年级数学下册第十六章分式单元检测(Word版含答案)
第十六章 分式单元检测一、单选题1.在13,3x ,14x +,+x x y中,分式的个数为( )A .1B .2C .3D .42.下列分式中,无论x 取何值,分式总有意义的是( )A .212x B .2x x+ C .311+x D .211x + 3.下列各式变形正确的是( )A .122b a b a =++ B .11b b a a +=+ C .a b a bc c-++=- D .()221111a a a a +-=-- 4.下列各分式中,最简分式是( ) A .2244x x x +++B .36129m n a b+-C .2222x y x y xy -+D .2222y x y x--5.下列分式运算,结果正确的是( )A .a c ad b d bc⋅=B .33nn n b b a a +⎛⎫= ⎪⎝⎭C .222224a a a b a b ⎛⎫= ⎪--⎝⎭D .4453⋅=m n m n m n6.化简---a ba b a b的结果是( ) A .a 2﹣b 2 B .a +b C .a ﹣b D .17.若代数式2(0)11x xx x x ≠--◯运算结果为x ,则在“○”处的运算符号应该是( )A .除号“÷”B .除号“÷”或减号“-”C .减号“-”D .乘号“×”或减号“-”8.若方程2253x ax x -=+--的解为x =4,则a 等于( ) A .0B .﹣2C .3D .49.若关于x 的分式方程311x a x x--=-无解,则a 的值是( ) A .0或1B .﹣2或0C .﹣1或2D .﹣2或110.某工厂生产空气净化器,实际平均每天比原计划多生产100台空气净化器,实际生产1200台空气净化器的时间与原计划生产900台空气净化器所需时间相同.若设原计划每天生产x 台空气净化器,则根据题意可列方程为( )A .1200900100x x=+ B .12009000100x x-=- C .9001200100x x=+ D .1200900100x x-= 二、填空题 11.若分式32x x +-的值为0,则x 的值是______. 12.计算:20210+(-12)1-=________.13.某种细胞的直径是0.00000087米,将0.00000087用科学记数法表示为______. 14.已知:34(1)(2)x x x ---=1A x -+2Bx -,则A =_____,B =_____. 15.若4a ≥-,且关于x 的分式方程8322a x x x-+=--有正整数解,则满足条件的所有a 的取值之积为______.16.在实施“中小学生蛋奶工程”中,某配送公司按上级要求,每周向学校配送鸡蛋10000个,鸡蛋用甲、乙两种不同规格的包装箱进行包装,若单独使用甲型包装箱比单独使用乙型包装箱可少用10个,每个甲型包装箱比每个乙型包装箱可多装50个鸡蛋,设每个甲型包装箱可装x 个鸡蛋,根据题意可列方程为__________. 三、解答题 17.计算(1)2323m n n q q mq m⎛⎫÷⋅ ⎪⎝⎭;(2)2244411x x x -⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭.18.先化简,后求值:532224x x x x -⎛⎫++÷⎪--⎝⎭,其中4x =.19.解方程:2153111x x x x x -+=-+-.20.已知关于x 的分式方程41x ++31x -=21k x -. (1)若方程有增根,求k 的值.21.以下是圆圆解方程2x x -+2=12x-的解答过程. 解:去分母,得x +2=1, 移项,合并同类项,得x =1.圆圆的解答过程是否正确?如果有错误,写出正确的解答过程.22.为加快乡村振兴步伐,不断改善农民生产生活条件,某乡镇计划修建一条长18千米的乡村公路,拟由甲、乙两个工程队联合完成.已知甲工程队每天比乙工程队每天少修路0.3千米,甲工程队单独完成修路任务所需天数是乙工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)已知甲工程队每天的修路费用为9万元,乙工程队每天的修路费用为12万元,若先由甲工程队单独修路若干天,再由甲、乙两个工程队联合修路,恰好15天完成修路任务,则共需修路费用多少万元?23.阅读材料:被誉为“世界杂交水稻之父”,“共和国勋章”获得者袁隆平,成功研发出杂交水稻.杂交水稻的亩产量是普通水稻的亩产量的2倍;现有两块试验田,A块种植杂交水稻,B块种普通水稻,A块试验田比B块试验田少4亩;(1)A块试验田收获水稻9720千克、B块试验田收获水稻7260千克,求普通水稻和杂交水稻的亩产量各是多少千克?(2)为增加产量,明年计划将种植普通水稻的B块试验田部分改种杂交水稻,使总产量不低于17760千克,那么至少把B块试验田改多少亩种植杂交水稻?答案1.B2.D3.D4.D5.D6.D7.B8.A9.D10.A11.-312.-1.13.78.710-⨯14.1215.40-16.10000100001050 x x+=-17.(1)63 m n q(2)22 xx-+18.14-19.2x=20.(1)k的值为6或﹣8(2)k<﹣1,且k≠﹣821.有错误,正确过程见解析,1x22.(1)甲乙两个工程队每天各修路0.6千米和0.9千米(2)255万元23.(1)普通水稻的亩产量是600千克,杂交水稻的亩产量是1200千克(2)至少把B块试验田改1.3亩种植杂交水稻。
第16章分式单元复习训练卷2021-2022学年华东师大版八年级数学下册(word版含答案)
华东师大版八年级数学下册第16章 分式单元复习训练卷一、选择题(共10小题,每小题4分,共40分)1. 若分式|x|-1x -1的值等于0,则x 的值为( ) A .-1 B .0 C .1 D .±12. 某种长途电话的收费方式如下:接通电话的第一分钟收费a 元,之后的每一分钟收费b 元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是( ) A .8-a b 分钟 B .8a +b分钟 C .(8-a b +1)分钟 D .8-a -b b分钟 3. 若x ,y 的值均扩大为原来的5倍,则下列分式的值保持不变的是( ) A.2+x 2+y B.x 2y 3 C.x +y x 2-y 2 D.x 3(x +y)34. 下列说法:①解分式方程一定会产生增根;②方程x -2x2-4x +4=0的根为x =2;③方程12x =12x -4的最简公分母为2x(2x -4);④x +1x -1=1+1x +1是分式方程. 其中正确的个数有( )A .1个B .2个C .3个D .4个5. 已知两个分式:A =-4x 2-4,B =1x +2+12-x,其中x≠±2,则A 与B 的关系是( ) A .相等 B .互为倒数C .互为相反数D .A 大于B6. 化简⎝⎛⎭⎫1-2x -1x 2÷⎝⎛⎭⎫1-1x 2的结果为( ) A.x -1x +1 B.x +1x -1 C.x +1x D.x -1x 7. 如图,点A 、B 在数轴上,它们所对应的数分别是-4与2x +23x -5,且点A 、B 到原点的距离相等,则x 的值为( )A .2.2B .2C .4D .38. 已知13m -12n =1,则4n +3mn -6m 9m +6mn -6n的值是( ) A .-53 B .-54 C.58 D.539.由(1+c 2+c -12 )值的正负可以比较A =1+c 2+c 与12的大小,下列正确的是( ) A .当c =-2时,A =12 B .当c =0时,A≠12C .当c <-2时,A >12D .当c <0时,A <1210. 小明用18元买售价相同的一次性医用口罩,小美用290元买售价相同的N95口罩(两人的钱恰好用完),已知每个N95口罩比一次性医用口罩贵27.2元.且小明和小美买到数量相同的口罩.设一次性医用口罩每个x 元,根据题意可列方程为( )A.18x =290x +27.2B.18x =290x -27.2C.18x +27.2=290xD.18x -27.2=290x二.填空题(共6小题,每小题4分,共24分)11. 计算:3y 10x ÷3y 25x 2 =________. 12.计算:2x x -1 -x x -1=__________. 13.若分式x 2-2x x的值为0,则x 的值是____. 14.化简:(1x -4 -8x 2-16)·(x +4)=______. 15. 中华优秀传统文化是中华民族的“根”和“魂”.为了大力弘扬中华优秀传统文化,某校决定开展名著阅读活动.用3600元购买“四大名著”若干套后,发现这批图书满足不了学生的阅读需求,图书管理员在购买第二批时正赶上图书城八折销售该套书,于是用2400元购买的套数只比第一批少4套.设第一批购买的“四大名著”每套的价格为x 元,则符合题意的方程是__ __.16.观察下列一组数:32,1,710,917,1126,…,它们是按一定规律排列的,那么这组数的第n 个数是__________.(n 为正整数)三.解答题(共6小题, 56分)17.(6分) 化简:⎝⎛⎭⎪⎫2a -b a +b -b a -b ÷a -2b a -b.18.(8分) 先化简:⎝ ⎛⎭⎪⎫x -4-x x -1÷x 2-4x +4x -1,并将x 从0,1,2中选一个合理的数代入求值.19.(8分) 已知x 2+y 2+8x +6y +25=0,求x 2-4y 2x 2+4xy +4y 2-x x +2y的值.20.(10分) 解下列分式方程:(1)1-x x -2+2=12-x;(2)3x 2-9+x x -3=1.21.(12分) 某工厂计划在规定时间内生产24 000个零件.若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务,工厂在安排原有工人按原计划生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人按原计划每天生产的零件总数还多20%.按此测算,恰好提前两天完成24 000个零件的生产任务,求原计划安排多少工人.22.(12分) 阅读下面的材料,解答后面的问题.解方程:x -1x -4x x -1=0. 解:设y =x -1x ,则原方程可化为y -4y=0,方程两边同时乘以y ,得y 2-4=0,解得y 1=2,y 2=-2.经检验,y 1=2,y 2=-2都是方程y -4y=0的解. 当y =2时,x -1x =2,解得x =-1;当y =-2时,x -1x =-2,解得x =13. 经检验,x =-1或x =13都是原分式方程的解.∴原分式方程的解为x =-1或x =13. 上述这种解分式方程的方法称为换元法.问题:(1)若在方程x -14x -x x -1=0中,设y =x -1x ,则原方程可化为______________; (2)若在方程x -1x +1-4x +4x -1=0中,设y =x -1x +1,则原方程可化为_____________; (3)模仿上述换元法解方程:x -1x +2-3x -1-1=0.参考答案1-5ACDAA 6-10AABCA11.x 2y12. x x -113.214.115.3600x -24000.8x=4 16.2n +1n 2+117.解:原式=(2a -b )(a -b )-b (a +b )(a +b )(a -b )·a -b a -2b =2a 2-2ab -ab +b 2-ab -b 2(a +b )(a -2b )=2a 2-4ab (a +b )(a -2b )=2a (a -2b )(a +b )(a -2b )=2a a +b. 18.解:原式=x 2-x -4+x x -1·x -1x 2-4x +4=(x +2)(x -2)x -1·x -1(x -2)2=x +2x -2.因为x -1≠0,x -2≠0,所以x≠1,x≠2.所以0,1,2中只能选0.当x =0时,原式=-1.19.解:因为x 2+y 2+8x +6y +25=0,所以(x +4)2+(y +3)2=0.所以x =-4,y =-3. x 2-4y 2x 2+4xy +4y 2-x x +2y =(x +2y )(x -2y )(x +2y )2-x x +2y =x -2y x +2y -x x +2y =-2y x +2y.当x =-4,y =-3时,原式=-35. 20.(1)解:原方程无解.(2)解:x =-4.21.解:(1)设原计划每天生产零件x 个,由题意得24 000x =24 000+300x +30,解得x =2 400.经检验,x =2 400是原方程的解,且符合题意,所以规定的天数为24 000÷2 400=10(天).答:原计划每天生产的零件个数是2 400个,规定的天数是10天.(2)设原计划安排y 个工人.由题意得[5×20×(1+20%)×2 400y+2 400]×(10-2)=24 000,解得y =480.经检验,y =480是原方程的解,且符合题意.答:原计划安排480个工人.22.解:(1)y 4-1y=0 (2)y -4y=0 (3)原方程可化为x -1x +2-x +2x -1=0,①,设y =x -1x +2,则方程①可化为y -1y =0.方程两边同时乘以y ,得y 2-1=0,解得y 1=1,y 2=-1.经检验,y 1=1,y 2=-1都是方程y -1y=0的解.当y =1时,x -1x +2=1,该方程无解;当y =-1时,x -1x +2=-1,解得x =-12,经检验,x =-12是原分式方程的解.∴原分式方程的解为x =-12.。
华东师大版八年级数学下册第16章分式单元复习训练卷(Word版含答案)
华东师大版八年级数学下册第16章 分式单元复习训练卷一、选择题(共10小题,每小题4分,共40分)1. 上复习课时,李老师叫小聪举出一些分式的例子,他举出:1x ,12,x 2+12,3xy π,3x +y,其中正确的有( )A .2个B .3个C .4个D .5个2. 若分式x +1x -2有意义,则x 的取值应满足( ) A .x≠2 B .x≠-1C .x =2D .x =-13. 把分式x +y 4x 2中的x 和y 都扩大为原来的2倍,则这个分式的值( ) A .不变B .扩大为原来的2倍C .缩小为原来的12D .缩小为原来的144. 分式①a +2a 2+3,②a -b a 2-b 2,③4a 12(a -b),④1x -2中,最简分式有( ) A .1个 B .2个C .3个D .4个5. 化简a +1a 2-a ÷a 2-1a 2-2a +1的结果是( ) A .a B .1a C .a +1a -1 D .a -1a +16. 计算(a 2+b 2a 2-b 2 -a -b a +b )·a -b 2ab的结果是( ) A .1a -b B .1a +bC .a -bD .a +b7. 若x =2是分式方程kx x -1-2k x=2的解,则k 的值为( ) A .2 B .1C .0D .-18. 货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x 千米/小时,依题意列方程正确的是( ) A.25x =35x -20 B.25x -20=35xC.25x =35x +20D.25x +20=35x9.已知ab≠0,a +b≠0,则a -1+b-1等于( )A .a +bB .1abC .ab a +bD .a +b ab 10. 关于x 的分式方程ax -3x -2 +1=3x -12-x 的解为正数,且使关于y 的一元一次不等式组⎩⎪⎨⎪⎧3y -22≤y -1,y +2>a有解,则所有满足条件的整数a 的值之和是( ) A .-5 B .-4C .-3D .-2二.填空题(共6小题,每小题4分,共24分)11. 计算:(π-3.14)0-⎝⎛⎭⎫-12-3=________.12. 利用分式的基本性质填写下列各式中未知的分子或分母:(1)a a (x +y )=1( );(2)x 2-2x 2xy =x -2( ); 13. 计算:x 2÷2y·12y=______. 14. 若2x 2+3x -1=0,则代数式2x -34x 2-2x ÷(2x +1-82x -1)的值为_______. 15.关于x 的分式方程m x -1+31-x=1的解为正数,则m 的取值范围是________. 16.纳米是非常小的长度单位,已知1纳米=10-6毫米.某种病毒的直径为100纳米,若将这种病毒排成1毫米长,则病毒的个数是_________.三.解答题(共6小题, 56分)17.(6分) 不改变下列分式的值,将分式的分子和分母中的各项系数都化为整数,且使分子和分母不含公因式.(1)15x -12y 14x +23y ; (2)0.1x +0.3y 0.5x -0.02y.18.(8分) 计算:(1)(a +2-5a -2)·2a -43-a; (2)a -2a +3÷a 2-42a +6-5a +2.19.(8分) 有这样一道题:化简:m m +3 +6m 2-9 ÷2m -3,小华说:“不论m 取什么值,这个题目的结果都一样的.”他说得对吗?谈谈你的看法.20.(10分) 解方程:(1)x x -1 -2x=1. (2)2x 2-4+x x -2=1.21.(12分) 小刚家到学校的距离是1 800米.某天早上,小刚到学校后发现作业本忘在家中,此时离上课还有20分钟,于是他立即按原路跑步回家,拿到作业本后骑自行车按原路返回学校.已知小刚骑自行车的时间比跑步的时间少4.5分钟,且骑自行车的平均速度是跑步平均速度的1.6倍.(1)求小刚跑步的平均速度;(2)如果小刚在家取作业本和取自行车共用了3分钟,他能否在上课前赶回学校?请说明理由.22.(12分) 阅读下面材料,并解答问题.材料:将分式-x 4-x 2+3-x 2+1拆分成一个整式与一个分式(分子为整数)的和的形式. 解:由分母为-x 2+1,可设-x 4-x 2+3=(-x 2+1)(x 2+a)+b,则-x 4-x 2+3=-x 4-ax 2+x 2+a +b =-x 4-(a -1)x 2+(a +b).∵对于任意x,上述等式均成立,∴⎩⎪⎨⎪⎧a -1=1,a +b =3,∴⎩⎪⎨⎪⎧a =2,b =1,∴-x 4-x 2+3-x 2+1=(-x 2+1)(x 2+2)+1-x 2+1=(-x 2+1)(x 2+2)-x 2+1+1-x 2+1=x 2+2+1-x 2+1.这样,分式-x 4-x 2+3-x 2+1就被拆分成了一个整式x 2+2与一个分式1-x 2+1的和. 解答:(1)将分式-x 4-6x 2+8-x 2+1拆分成一个整式与一个分式(分子为整数)的和的形式; (2)如果2x -1x +1的值为整数,求整数x 的值.参考答案1-5AACBB 6-10BACDB11. 912.x +y,2y13.x 24y 2 14.1215.m >2且m≠316.10417.解:(1)原式=12x -30y 15x +40y. (2)原式=5x +15y 25x -y. 18. (1)解:原式=-2a -6.(2)解:原式=-3a +2. 19.解:小华说得对.理由:原式=m m +3 +6(m +3)(m -3) ·m -32 =m +3m +3=1.因为结果等于1,所以不论m 取什么值,这个题目的结果都是一样的20.解:(1)去分母,得x 2-2x +2=x 2-x.解得x =2.检验:当x =2时,x(x -1)=2≠0.∴x =2是原方程的解(2)去分母,得2+x(x +2)=x 2-4.解得x =-3.经检验当x =-3时,(x +2)(x -2)≠0,故x =-3是原方程的根.21.解:(1)设小刚跑步的平均速度为x 米/分,则小刚骑自行车的平均速度为1.6x 米/分,根据题意,得1 8001.6x +4.5=1 800x,解得x =150,经检验,x =150是所列方程的根,所以小刚跑步的平均速度为150米/分.(2)小刚跑步所用的时间为1 800÷150=12(分),骑自行车所用的时间为12-4.5=7.5(分),因为在家取作业本和取自行车共用了3分,所以小刚从开始跑步回家到赶回学校需要12+7.5+3=22.5(分).又因为22.5>20,所以小刚不能在上课前赶回学校.22. 解:(1)由分母为-x 2+1,可设-x 4-6x 2+8=(-x 2+1)(x 2+a)+b,则-x 4-6x 2+8=-x 4-ax 2+x 2+a +b =-x 4-(a -1)x 2+(a +b).∵对于任意x,上述等式均成立,∴⎩⎪⎨⎪⎧a -1=6,a +b =8,∴⎩⎪⎨⎪⎧a =7,b =1,∴-x 4-6x 2+8-x 2+1=(-x 2+1)(x 2+7)+1-x 2+1=(-x 2+1)(x 2+7)-x 2+1+1-x 2+1=x 2+7+1-x 2+1.(2)2x -1x +1=2x +2-3x +1=2(x +1)-3x +1=2-3x +1,∵2x -1x +1的值为整数,且x 为整数,∴x +1的值为1或-1或3或-3,故x 的值为0或-2或2或-4.。
华师大版八年级数学下册第16章 分式单元检测题
(3)请你再找出一组满足以上特征的两个实数,并写成等式形式:_________.
答案及设计意图Βιβλιοθήκη 一.选择题1.设计意图:错解1:,误把π当作变量字母所以选B;错解2:显然A、D都是整式,C 经过同底数的幂相除化为5m也是整式,故选B.原因是把C项化简后用分式定义判定结果所致,判断一个代数式属于哪一类,我们只看形式,不能因为 能够化成5m而叫整式。
A.0B.1C.-1D.1和-1
9.已知两个分式: , ,其中 ,则A与B的关系是()
A.相等B.互为倒数C.互为相反数D.A大于B
10.某实验员用一架不等臂天平称药品.第一次将左盘放入50克砝码,右盘放药品使天平平衡;第二次将右盘放入50克砝码,左盘放药品再次使天平平衡.那么这两次称得药品的质量和().
正确答案应选(D).
4.C
5.B
6.用直接法.求最简公分母,先求几个分式的分母的最低公倍式,几个分式分母的最低公倍式是: .故本题应选(D).
7.用排除法.
选项(A)中, ;;选项(B)中, ,如 ;
选项(C)中, ,因此可排除(A)、(B)、(C),故本题应选(D).
8.解若方程有增根,则(x+1)(x-1)=0∴x=1或x=-1.故选D.
A.等于100克B.大于100克C.小于100克D.以上情况都有可能
二、填空题(每小题3分,共24分)
11、分式 的值为0,则 的取值是___________
12、下列分式 中,最简分式有.
13、写出最简公分母: .
14、已知:x=1+ ,y=1- ,用含x的代数式表示y,则y=.
15、 ,
华东师大版八年级下册数学试题:第十六章分式测试卷(含答案)
第十六章 分式单元测试卷一、选择题:(每小题2分,共20分) 1.下列各式:2b a -,x x 3+,πy +5,()1432+x , b a b a -+,)(1y x m-中,是分式的共有( )A.1个B.2个C.3个D.4个 2.下列各式正确的是( )A .11++=++b a x b x a B .22x y x y = C .()0,≠=a ma na m n D .am an m n --=3.下列各分式中,最简分式是( )A .()()y x y x +-8534B .y x x y +-22C .2222xy y x y x ++ D .()222y x y x +- 4.化简2293mmm --的结果是( ) A.3+m m B.3+-m m C.3-m m D.mm-3 5.若把分式xyyx 2+中的x 和y 都扩大3倍,那么分式的值( )A .扩大3倍B .不变C .缩小3倍D .缩小6倍6.A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程( )A .9448448=-++x x B .9448448=-++xx C .9448=+x D .9496496=-++x x 7.一轮船从A 地到B 地需7天,而从B 地到A 地只需5天,则一竹排从B 地漂到A 地需要的天数是( )A .12 B.35 C.24 D.47 8.已知226a b ab +=,且0a b >>,则a ba b+-的值为( )A .2B .2±C .2D .2±二、填空题:(每小题3分,共24分)9.分式392--x x 当x ____时分式的值为零,当x ____时,分式xx2121-+有意义.10.利用分式的基本性质填空: (1)())0(,10 53≠=a axy xy a (2)()1422=-+a a 11. 若121-x 与)4(31+x 互为倒数,则x= . 12. 若关于x 的分式方程3232-=--x m x x 无解,则m 的值为__________. 13.若分式231-+x x 的值为负数,则x 的取值范围是__________.14. 已知2242141x y y x y y +-=-+-,则的24y y x ++值为______.三、解答题:(共56分) 15.计算:(1) ()3322232n m n m --⋅ (2)1111-÷⎪⎭⎫ ⎝⎛--x x x (3)4214121111xx x x ++++++-16. 解下列分式方程.17.已知x 为整数,且918232322-++-++x x x x 为整数,求所有符合条件的x 的值.19.某工人原计划在规定时间内恰好加工1500个零件,改进了工具和操作方法后,工作效率提高为原来的2倍,因此加工1500个零件时,比原计划提前了5小时,问原计划每小时加工多少个零件?20. A 、B 两地相距20 km ,甲骑车自A 地出发向B 地方向行进30分钟后,乙骑车自B 地出发,以每小时比甲快2倍的速度向A 地驶去,两车在距B 地12 km 的C 地相遇,求甲、乙两人的车速.17.已知x 为整数,且918232322-++-++x x x x 为整数,求所有符合条件的x 的值参考答案1.C 2.B 3.C 4.C 5.B 6.C 7.B 8.A 9.B 10.A()11244222x x x x +--=-()22332726x x ++=+二、填空题(每小题3分,共24分)11.=-3、≠1212.26a 、2a - 13.(1)(1)x x +- 14.6 15.3a - 16. 17.-1<x <2318.2(提示:设24y y m +=,原方程变形为211x m x m -=--,方程两边同时乘以(1)(1)x m --,得(1)(1)(2)x m x m -=--,化简得m x +=2,即24y y m ++=2.三、解答题(共56分)19.(1)原式=632666x x x ++=116x(2)原式=2236x xy y g=212x 20.原式=243343m n m n -g=1712m n - 21.(1)原式=2(4)(4)x x x --=4xx - (2)原式=2m n m n m n m n m n -++----=2m n m n m n -++--=mm n --22.原式=22222()()[]1()()()a a a a b a a b a b a b a b a b--÷-+--+-- =2222()[]1()()()a ab a a a b a a b a b a b ----÷+-+-=2()()1()ab a b a b a b ab-+-÷+-- =a b a b a b a b +-+--=2aa b- 当2,33a b ==-时,原式=2232(3)3⨯--=43113=411 23.(1)方程两边同时乘以3(2)x x -,得32x x =-,解得x =-1,把x =-1代入3(2)x x -,3(2)x x -≠0,∴原方程的解,∴原方程的解是x =-1.(2)方程两边同乘以最简公分母(1)(1)x x +-,得4)1(2)1(=++-x x ,解这个整式方程得,1=x ,检验:把1=x 代入最简公分母(1)(1)x x +-,(1)(1)x x +-=0,∴1=x 不是原方程的解,应舍去,∴原方程无解.24.(1)原式=1111x x x -⎛⎫+⎪-⎝⎭g =1111x x x x -+--g =11x x x x--g =1 (2)原式=241124(1)(1)(1)(1)11x x x x x x x x+-+++-+-+++ =224224111x x x++-++=22222242(1)2(1)4(1)(1)(1)(1)1x x x x x x x +-++-++-+=2222422224(1)(1)1x x x x x ++-+-++=444411x x +-+=4444444(1)4(1)(1)(1)(1)(1)x x x x x x +-+-++-=4484(1)4(1)1x x x ++--=881x -25.原式=222218339x x x x +-++--=22(3)2(3)(218)9x x x x --+++-2269x x +-=2(3)(3)(3)x x x ++-=23x -,∵918232322-++-++x x x x 是整数,∴23x -是整数, ∴3x -的值可能是±1或±2,分别解得x =4,x =2,x =5,x =1,符合条件的x 可以是1、2、4、5. 26.①241≤x ≤300;②x m 12-,6012+-x m27.设原计划每小时加工x 个零件,根据题意得:1500150052x x-=,解得x =150,经检验,x =150是原方程的根,答:设原计划每小时加工150个零件. 28.设甲速为xkm/h ,乙速为3xkm/h ,则有xx x31260301220=--,解之得8=x ,经检验,x =8是原方程的根,答:甲速为8km/h ,乙速为24km/h.。
最新【华东师大版】八年级数学下册第16章:分式检测题
第16章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)(每小题都给出A ,B ,C ,D 四个选项,其中只有一个是正确的)1.下列各式:3x +1,2,3+y ,x +2,π,其中分式共有( B ) A .1个 B .2个 C .3个 D .4个2.当分式|x|-3x +3的值为0时,x 的值为( B ) A .0 B .3 C .-3 D .±33.把分式xy x 2-y2中的x ,y 的值都扩大到原来的2倍,则分式的值( A ) A .不变 B .扩大到原来的2倍C .扩大到原来的4倍D .缩小到原来的4.(2016·泰州)人体中红细胞的直径约为0.000 007 7 m ,将数0.000 007 7用科学记数法表示为( C )A .77×10-5B .0.77×10-7C .7.7×10-6D .7.7×10-75.式子(a -1)0+1a +1有意义,则a 的取值范围是( A ) A .a ≠1且a ≠-1 B .a ≠1或a ≠-1 C .a =1或-1 D .a ≠0且a ≠-16.下列计算正确的是( B )A.⎝ ⎛⎭⎪⎫b a 2=b 2a B .a 2÷a -1=a 3 C.1x +1y =2x +y D.-x -y x -y =-1 7.(2016·泰安)化简a 2-4a 2+2a +1÷a 2-4a +4(a +1)2-2a -2的结果为( C ) A.a +2a -2 B.a -4a -2 C.a a -2D .a 8.(2016·凉山州)关于x 的方程3x -2x +1=2+m x +1无解,则m 的值为( A ) A .-5 B .-8 C .-2 D .59.(2016·潍坊)若关于x 的方程x +m x -3+3m 3-x=3的解为正数,则m 的取值范围是( B ) A .m <92 B .m <92且m ≠32C .m >-94D .m >-94且m ≠-3410.(2016·泰安)某加工车间共有26名工人,现要加工2100个A 零件,1200个B 零件,已知每人每天加工A 零件30个或B 零件20个,问怎样分工才能确保同时完成两种零件的加工任务(每人只能加工一种零件)?设安排x 人加工A 零件,由题意列方程得( A )A.210030x =120020(26-x )B.2100x =120026-xC.210020x =120030(26-x )D.2100x ×30=120026-x×20 二、填空题(每小题3分,共24分)11.计算:2x x +1+2x +1=__2__. 12.(2016·泸州)分式方程4x -3-1x=0的根是__x =-1__. 13.若x +y =1,且x ≠0,则(x +2xy +y 2x )÷x +y x的值为__1__. 14.已知1a +12b =3,则代数式2a -5ab +4b 4ab -3a -6b 的值为__-12__. 15.将(3m 3n -3)3·(-mn -3)-2的结果化为只含有正整数指数幂的形式为__27m 7n 3__. 16.若解分式方程2x x -4-a 4-x=0时产生增根,则a =__-8__. 17.观察下列一组数:32,1,710,917,1126……它们是按一定规律排列的,那么这组数的第n 个数是__2n +1n 2+1__.(n 为正整数)18.若x -1x =4,则x 2x 4+x 2+1=__119__. 三、解答题(共66分)19.(6分)计算:-22+(13)-2-|-9|-(π-2018)0. 120.(10分)计算:(1)a 2-2ab +b 2a 2-b 2÷⎝ ⎛⎭⎪⎫1a -1b ; (2)(2016·资阳)(1+1a -1)÷a a 2-2a +1. 原式=-ab a +b 原式=a -121.(10分)先化简,再求值:(1)(2016·龙岩)(x +1-3x -1)·x -1x -2,其中x =2+2; 原式=x +2,当x =2+2时,原式=4+2(2)(3x -1-x -1)÷x -2x 2-2x +1,其中x 是不等式组⎩⎪⎨⎪⎧x -3(x -2)≥2,①4x -2<5x -1,②的一个整数解. 原式=-x 2-x +2,解不等式组得-1<x ≤2,其整数解为0,1,2,由于x 不能取1和2,所以当x =0时,原式=222.(10分)解分式方程:(1)(2016·乐山)1x -2-3=x -12-x ; (2)2x 2-1-1=x 1-x. (1)解得x =3,经检验,当x =3时,x -2≠0,则原方程的解为x =3(2)解得x =-3,经检验,当x =-3时,x 2-1≠0,则原方程的解为x =-323.(8分)甲、乙两位同学同时为校文化艺术节制作彩旗.已知甲每小时比乙多做5面彩旗,甲做60面彩旗与乙做50面彩旗所用时间相等,问:甲、乙每小时各做多少面彩旗?设乙每小时做x 面彩旗,则甲每小时做(x +5)面彩旗,依题意得60x +5=50x ,解得x =25,经检验,x =25是原方程的解.x +5=25+5=30.故甲每小时做30面彩旗,乙每小时做25面彩旗24.(10分)若1(2n -1)(2n +1)=a 2n -1+b 2n +1,对任意自然数n 都成立. (1)求a ,b 的值;(2)计算11×3+13×5+15×7+…+119×21的值. (1)1(2n -1)(2n +1)=a 2n -1+b 2n +1=a (2n +1)+b (2n -1)(2n -1)(2n +1),可得2n (a +b )+a -b =1,即⎩⎪⎨⎪⎧a +b =0,a -b =1,解得⎩⎪⎨⎪⎧a =12,b =-12(2)11×3+13×5+15×7+…+119×21=12×(1-13+13-15+…+119-121)=12×(1-121)=102125.(12分)(2016·绵阳)绵阳人民商场准备购进甲、乙两种牛奶进行销售,若甲种牛奶的进价比乙种牛奶的进价每件少5元,其用90元购进甲种牛奶的数量与用100元购进乙种牛奶的数量相同.(1)求甲种牛奶、乙种牛奶的进价分别是多少元?(2)若该商场购进甲种牛奶的数量是乙种牛奶的3倍少5件,两种牛奶的总数不超过95件,该商场甲种牛奶的销售价格为每件49元,乙种牛奶的销售价格为每件55元,则购进的甲、乙两种牛奶全部售出后,可使销售的总利润(利润=售价-进价)超过371元,请通过计算求出该商场购进甲、乙两种牛奶有哪几种方案?(1)设乙种牛奶的进价为每件x 元,则甲种牛奶的进价为每件(x -5)元,由题意得90x -5=100x,解得x =50.经检验x =50是原分式方程的解,且符合实际意义,则甲种牛奶进价是每件45元,乙种牛奶进价是每件50元 (2)设购进乙种牛奶y 件,则购进甲种牛奶(3y -5)件,由题意得⎩⎪⎨⎪⎧3y -5+y ≤95,(49-45)(3y -5)+(55-50)y >371,解得23<y ≤25.∵y 为整数,∴y =24或25,∴共有两种方案:方案一:购进甲种牛奶67件,乙种牛奶24件;方案二:购进甲种牛奶70件,乙种牛奶25件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式复习练习题
一、基础题
1、分式
有意义,则x 的取值范围是_______
2、若分式1
1
2--x x 的值为零,则x 的值为______
3、计算:+= .
4、化简ab
a b a +-22
2的结果为_____
5、不改变分式
6
5.04
3.0+-x x 的值,把它的分子和分母中的各项系数都化为整数,所得结果是______ 6、若分式
()00≠≠+y x y
x xy
,中,分子、分母中的x 、y 同时扩大为原来的2倍,则分式的值( )
A .扩大2倍 B.缩小2倍 C.不变 D.无法确定 7、若分式
()002≠≠+-y x y
x y
x ,中,分子、分母中的x 、y 同时扩大为原来的2倍,则分式的值( )
A .扩大2倍 B.缩小2倍 C.不变 D.无法确定
8、已知311
=-b
a ,则分式
b ab a b
ab a ---+232=__________
9、已知0132=++x x ,则221
x
x +=___________
10、一组按规律排列的式子,
,,,, 49
37253y
x y x y x y x --其中y ≠0,则第7个分式是_______,第n 个分式是________. 11、分式
x
x x x +-221
1,的最简公分母是_________ 12、计算()2
2222---⋅b a b a =_______
13、若()120=+X ,则x 应满足的条件是_______
14、()2
30
--x x 有意义的条件是_______
15、如果a=()0
99-,b=()1
1.0--,c=2
35-⎪⎭
⎫
⎝⎛-,那么a 、b 、c 三数的大小关系是
________
16、1粒芝麻的质量约为0.000004kg ,这个数用科学计数法表示为_______。
17、据测算,我国一年因土地沙漠化造成的经济损失为54 750 000 000元,这个数字用科学计数法表示为_____。
18、代数式8
9
5537242322,,,,,,a b y y x y x y x x π++--中是分式的有_____________
二、解答题: 12、计算:
(1)()102614201434-⎪⎭⎫ ⎝⎛+-⨯--+(2)1
211216-⎪⎭
⎫ ⎝⎛+--+π
13、计算下列分式
(1)42424441622++∙+-÷++-a a a a a a a a (2)⎪⎪⎭⎫ ⎝
⎛++÷--ab b a ab b a b a 2122222
2 (3)a a a a 2112112
++÷⎪⎪⎭
⎫ ⎝⎛
++
(4)a a a a a a
93332
-∙
⎪⎭⎫ ⎝⎛+--
14、化简求值:
(1)⎪⎭
⎫
⎝⎛+-÷-+-1311122
2x x x x 其中x 在-4<x<4中选择。
(2)43
12122
--÷⎪⎭
⎫ ⎝⎛--x x x x x ,其中x=4
(3)ab a b a b a b ab a b a -÷⎪⎪⎭
⎫ ⎝⎛-++--22
22222,其中a,b 满足031=-++b a
15、已知下面一列等式:
;;;;5
14151414131413131213121211211-=⨯-=⨯-=⨯-=⨯
(1)请你按这些等式左边的结构特征写出它的一般性等式;
(2)利用等式计算:
()()()()()()()
431
32121111++++++++++x x x x x x x x。