天津市红桥区2018届九年级上期末考试数学试卷有答案-最新推荐

合集下载

2018-2019学年天津市红桥区九年级(上)期末数学试卷(解析版)

2018-2019学年天津市红桥区九年级(上)期末数学试卷(解析版)

2018-2019学年天津市红桥区九年级(上)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分在每小题给出的个源项中,只有一项是符合题目要求的)1.下列说法正确的是()A.“打开电视机,正在播《都市报道60分》”是必然事件B.“从一个装有6个红球的不透明的袋中摸出一个球是红球”是随机事件C.“概率为0.0001的事件”是不可能事件D.“经过有交通信号灯的路口,遇到红灯”是随机事件2.下列图形中,可以看作是中心对称图形的是()A.B.C.D.3.如图,以A,B,C为顶点的三角形与以D,E,F为顶点的三角形相似,则这两个三角形的相似比为()A.2:1B.3:1C.4:3D.3:24.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是()A.CM=DM B.=C.∠ACD=∠ADC D.OM=MD5.若正方形的边长为6,则其外接圆的半径为()A.3B.3C.6D.66.如图,AB∥CD,AB=6,CD=9,AD=10,则OD的长为()A.4B.5C.6D.77.在半径为3的圆中,150°的圆心角所对的弧长是()A.B.C.D.8.如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于()A.20°B.25°C.40°D.50°9.若点A(x1,﹣6),B(x2,﹣2),C(x3,2)在反比例函数y=(m为常数)的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x1<x3C.x2<x3<x1D.x3<x2<x110.已知一个直角三角形两直角边之和为20cm,则这个直角三角形的最大面积为()A.25cm2B.50cm2C.100cm2D.不确定11.如图,直线AB与半径为2的⊙O相切于点C,D是⊙O上一点,且∠EDC=30°,弦EF∥AB,则EF的长度为()A.2B.2C.D.212.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为()A.﹣3B.3C.﹣6D.9二、填空题(本大题共名小题,每小题3分,共18分)13.已知y=x m﹣1,若y是x的反比例函数,则m的值为.14.不透明袋子中装有7个球,其中有3个红球,4个黄球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是.15.一个等边三角形边长的数值是方程x2﹣3x﹣10=0的根,那么这个三角形的周长为.16.如图,在△ABC中,DE∥BC,分别交AB,AC于点D、E.若AD=3,DB=2,BC=6,则DE 的长为.17.二次函数y=ax2+4x+a的最大值是3,则a的值是.18.如图,⊙O的直径AB长为10,弦AC长为6,∠ACB的平分线交⊙O于点D,则BC的长为,CD的长.三、解答题(本大题共7小题,共66分,解答应写出文字说明、滨其步成推理过程)19.(8分)已知关于x的一元二次方程x2+x+m﹣1=0.(I)当m=0时,求方程的实数根.(Ⅱ)若方程有两个不相等的实数根,求实数m的取值范围.20.(8分)一个盒中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸取一个小球然后放回,再随机摸出一个小球.(Ⅰ)请用列表法(或画树状图法)列出所有可能的结果;(Ⅱ)求两次取出的小球标号相同的概率;(Ⅲ)求两次取出的小球标号的和大于6的概率.21.(10分)已知直线y=﹣2x+1与y轴交于点A,与反比例函数y=(k为常数)的图象有一个交点B的纵坐标是5.(Ⅰ)求反比例函数的解析式,并说明其图象所在的象限;(Ⅱ)当2<x<5时,求反比例函数的函数值y的取值范围;(Ⅲ)求△AOB的面积S.22.(10分)如图,△ABC是等边三角形,点D,E分别在BC,AC上,且BD=CE,AD与BE相交于点F,(Ⅰ)证明:△ABD≌△BCE;(Ⅱ)证明:△ABE∽△FAE;(Ⅲ)若AF=7,DF=1,求BD的长.23.(10分)在△ABC中,∠ABC=45°,∠C=60°,⊙O经过点A,B,与BC交于点D,连接AD.(Ⅰ)如图①.若AB是⊙O的直径,交AC于点E,连接DE,求∠ADE的大小.(Ⅱ)如图②,若⊙O与AC相切,求∠ADC的大小.24.(10分)在平面直角坐标系中,O为原点,点A(﹣,0),点B(0,1)把△ABO绕点O 顺时针旋转,得△A'B'O,点A,B旋转后的对应点为A',B',记旋转角为α(0°<α<360°).(Ⅰ)如图①,当点A′,B,B′共线时,求AA′的长.(Ⅱ)如图②,当α=90°,求直线AB与A′B′的交点C的坐标;(Ⅲ)当点A′在直线AB上时,求BB′与OA′的交点D的坐标(直接写出结果即可)25.(10分)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.2018-2019学年天津市红桥区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分在每小题给出的个源项中,只有一项是符合题目要求的)1.下列说法正确的是()A.“打开电视机,正在播《都市报道60分》”是必然事件B.“从一个装有6个红球的不透明的袋中摸出一个球是红球”是随机事件C.“概率为0.0001的事件”是不可能事件D.“经过有交通信号灯的路口,遇到红灯”是随机事件【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:“打开电视机,正在播《都市报道60分》”是随机事件,A错误;“一个不透明的袋中装有6个红球,从中摸出1个球是红球”是必然事件,B错误;“概率为0.0001的事件”是随机事件,C错误;“经过有交通信号灯的路口,遇到红灯”是随机事件,D正确,故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.下列图形中,可以看作是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:A.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.如图,以A,B,C为顶点的三角形与以D,E,F为顶点的三角形相似,则这两个三角形的相似比为()A.2:1B.3:1C.4:3D.3:2【分析】根据相似三角形的性质解答即可.【解答】解:∵以A,B,C为顶点的三角形与以D,E,F为顶点的三角形相似,∴,故选:A.【点评】此题考查相似三角形的性质,关键是根据相似三角形的对应边之比即是相似比解答.4.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是()A.CM=DM B.=C.∠ACD=∠ADC D.OM=MD【分析】由直径AB垂直于弦CD,利用垂径定理得到M为CD的中点,B为劣弧的中点,可得出A和B选项成立,再由AM为公共边,一对直角相等,CM=DM,利用SAS可得出三角形ACM与三角形ADM全等,根据全等三角形的对应角相等可得出选项C成立,而OM不一定等于MD,得出选项D不成立.【解答】解:∵AB是⊙O的直径,弦CD⊥AB,垂足为M,∴M为CD的中点,即CM=DM,选项A成立;B为的中点,即=,选项B成立;在△ACM和△ADM中,∵,∴△ACM≌△ADM(SAS),∴∠ACD=∠ADC,选项C成立;而OM与MD不一定相等,选项D不成立.故选:D.【点评】此题考查了垂径定理,以及全等三角形的判定与性质,垂径定理为:垂直于弦的直径平分弦,且平分弦所对的弧,熟练掌握垂径定理是解本题的关键.5.若正方形的边长为6,则其外接圆的半径为()A.3B.3C.6D.6【分析】作OE⊥AD于E,连接OD,在Rt△ADE中,根据垂径定理和勾股定理即可求解.【解答】解:作OE⊥AD于E,连接OD,则AE=DE=3,OE=3.在Rt△ADE中,OD==3.故选:B.【点评】此题主要考查了正多边形和圆,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.6.如图,AB∥CD,AB=6,CD=9,AD=10,则OD的长为()A.4B.5C.6D.7【分析】根据相似三角形的判定和性质列比例式即可得到结论.【解答】解:∵AB∥CD,∴△AOB∽△DOC,∴=,∵AB=6,CD=9,AD=10,∴=,∴OD=6,故选:C.【点评】本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.7.在半径为3的圆中,150°的圆心角所对的弧长是()A.B.C.D.【分析】利用弧长公式可得.【解答】解:=.故选:D.【点评】此题主要是利用弧长公式进行计算,学生要牢记公式.8.如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于()A.20°B.25°C.40°D.50°【分析】连接OA,根据切线的性质,即可求得∠C的度数.【解答】解:如图,连接OA,∵AC是⊙O的切线,∴∠OAC=90°,∵OA=OB,∴∠B=∠OAB=25°,∴∠AOC=50°,∴∠C=40°.故选:C.【点评】本题考查了圆的切线性质,以及等腰三角形的性质,已知切线时常用的辅助线是连接圆心与切点.9.若点A(x1,﹣6),B(x2,﹣2),C(x3,2)在反比例函数y=(m为常数)的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x1<x3C.x2<x3<x1D.x3<x2<x1【分析】根据反比例函数的性质,可以判断出x1,x2,x3的大小关系,本题得以解决.【解答】解:∵反比例函数y=(m为常数),m2+1>0,∴在每个象限内,y随x的增大而减小,∵点A(x1,﹣6),B(x2,﹣2),C(x3,2)在反比例函数y=(m为常数)的图象上,﹣6<﹣2<0<2,∴x2<x1<x3,故选:B.【点评】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.10.已知一个直角三角形两直角边之和为20cm,则这个直角三角形的最大面积为()A.25cm2B.50cm2C.100cm2D.不确定【分析】本题考查二次函数最大(小)值的求法.设一条直角边为x,则另一条为(20﹣x),则根据三角形面积公式即可得到面积S和x之间的解析式,求最值即可.【解答】解:设一条直角边为x,则另一条为(20﹣x),∴S=x(20﹣x)=﹣(x﹣10)2+50,∵∴即当x=10时,S=×10×10=50cm2.最大故选:B.【点评】求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好,如y=﹣x2﹣2x+5,y=3x2﹣6x+1等用配方法求解比较简单.11.如图,直线AB与半径为2的⊙O相切于点C,D是⊙O上一点,且∠EDC=30°,弦EF∥AB,则EF的长度为()A.2B.2C.D.2【分析】作辅助线,连接OC与OE.根据一条弧所对的圆周角等于它所对的圆心角的一半,可知∠EOC的度数;再根据切线的性质定理,圆的切线垂直于经过切点的半径,可知OC⊥AB;又EF∥AB,可知OC⊥EF,最后由勾股定理可将EF的长求出.【解答】解:连接OE和OC,且OC与EF的交点为M.∵∠EDC=30°,∴∠COE=60°.∵AB与⊙O相切,∴OC⊥AB,又∵EF∥AB,∴OC⊥EF,即△EOM为直角三角形.在Rt△EOM中,EM=sin60°×OE=×2=,∵EF=2EM,∴EF=.故选:B.【点评】本题主要考查切线的性质及直角三角形的勾股定理.12.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为()A.﹣3B.3C.﹣6D.9【分析】先根据抛物线的开口向上可知a>0,由顶点纵坐标为﹣3得出b与a关系,再根据一元二次方程ax2+bx+m=0有实数根可得到关于m的不等式,求出m的取值范围即可.【解答】解:(法1)∵抛物线的开口向上,顶点纵坐标为﹣3,∴a>0,=﹣3,即b2=12a,∵一元二次方程ax2+bx+m=0有实数根,∴△=b2﹣4am≥0,即12a﹣4am≥0,即12﹣4m≥0,解得m≤3,∴m的最大值为3.(法2)一元二次方程ax2+bx+m=0有实数根,可以理解为y=ax2+bx和y=﹣m有交点,可见﹣m≥﹣3,∴m≤3,∴m的最大值为3.故选:B.【点评】本题考查的是抛物线与x轴的交点,根据题意判断出a的符号及a、b的关系是解答此题的关键.二、填空题(本大题共名小题,每小题3分,共18分)13.已知y=x m﹣1,若y是x的反比例函数,则m的值为0.【分析】根据反比例函数的一般式是(k≠0)或y=kx﹣1(k≠0),即可求解.【解答】解:∵y=x m﹣1是反比例函数,∴m﹣1=﹣1,解得m=0.故答案为:0.【点评】本题考查了反比例函数的一般形式(k≠0),也可转化为y=kx﹣1(k≠0)的形式,特别注意不要忽略k≠0这个条件.14.不透明袋子中装有7个球,其中有3个红球,4个黄球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵袋子中共有7个球,其中红球有3个,∴从袋子中随机取出1个球,它是红球的概率是,故答案为:.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15.一个等边三角形边长的数值是方程x2﹣3x﹣10=0的根,那么这个三角形的周长为15.【分析】先解方程求出方程的根,再确定等边三角形的边长,然后求等边三角形的周长.【解答】解:x2﹣3x﹣10=0,(x﹣5)(x+2)=0,即x﹣5=0或x+2=0,∴x1=5,x2=﹣2.因为方程x2﹣3x﹣10=0的根是等边三角形的边长,所以等边三角形的边长为5.所以该三角形的周长为:5×3=15.故答案为:15.【点评】本题考查了一元二次方程的解法、等边三角形的周长等知识点.求出方程的解是解决本题的关键.16.如图,在△ABC中,DE∥BC,分别交AB,AC于点D、E.若AD=3,DB=2,BC=6,则DE 的长为 3.6.【分析】根据平行线得出△ADE∽△ABC,根据相似得出比例式,代入求出即可.【解答】解:∵AD=3,DB=2,∴AB=AD+DB=5,∵DE∥BC,∴△ADE∽△ABC,∴,∵AD=3,AB=5,BC=6,∴,∴DE=3.6.故答案为:3.6.【点评】本题考查了相似三角形的性质和判定,关键是求出相似后得出比例式,题目比较典型,难度适中.17.二次函数y=ax2+4x+a的最大值是3,则a的值是﹣1.【分析】根据二次函数的最大值公式列出方程计算即可得解.【解答】解:由题意得,=3,整理得,a2﹣3a﹣4=0,解得a1=4,a2=﹣1,∵二次函数有最大值,∴a<0,∴a=﹣1.故答案为:﹣1.【点评】本题考查了二次函数的最值,易错点在于要考虑a的正负情况.18.如图,⊙O的直径AB长为10,弦AC长为6,∠ACB的平分线交⊙O于点D,则BC的长为8,CD的长7.【分析】根据圆周角定理得到∠ACB=90°,然后利用勾股定理可计算出BC,根据圆周角定理得到∠ADB=90°,再根据角平分线定义得∠ACD=∠BCD,则AD=BD,于是可判断△ABD为等腰直角三角形,然后根据等腰直角三角形的性质求出BD,作BH⊥CD于H,如图,证明△BCH为等腰直角三角形得到BH=CH=BC=4,再利用勾股定理计算出DH=3,从而计算CH+DH即可.【解答】解:∵AB为⊙O的直径,∴∠ACB=90°,在Rt△ACB中,AB=10,AC=6,∴BC==8;∵AB为⊙O的直径,∴∠ADB=90°,∵∠ACB的平分线交⊙O于D,∴∠ACD=∠BCD,∴AD=BD,∴△ABD为等腰直角三角形,∴BD=AB=5;作BH⊥CD于H,如图,∵∠BCH=45°,∴△BCH为等腰直角三角形,∴BH=CH=BC=4,在Rt△BDH中,DH==3,∴CD=CH+DH=4+3=7,故答案为:8,7.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.考查了等腰直角三角形的判定与性质以及勾股定理.三、解答题(本大题共7小题,共66分,解答应写出文字说明、滨其步成推理过程)19.(8分)已知关于x的一元二次方程x2+x+m﹣1=0.(I)当m=0时,求方程的实数根.(Ⅱ)若方程有两个不相等的实数根,求实数m的取值范围.【分析】(Ⅰ)令m=0,用公式法求出一元二次方程的根即可;(Ⅱ)根据方程有两个不相等的实数根,计算根的判别式得关于m的不等式,求解不等式即可.【解答】解:(Ⅰ)当m=0时,方程为x2+x﹣1=0.△=12﹣4×1×(﹣1)=5>0.∴x=,∴x1=,x2=.(Ⅱ)∵方程有两个不相等的实数根,∴△>0即(﹣1)2﹣4×1×(m﹣1)=1﹣4m+4=5﹣4m>0∵5﹣4m>0∴m<.【点评】本题考查了一元二次方程的解法、根的判别式.一元二次方程根的判别式△=b2﹣4ac.20.(8分)一个盒中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸取一个小球然后放回,再随机摸出一个小球.(Ⅰ)请用列表法(或画树状图法)列出所有可能的结果;(Ⅱ)求两次取出的小球标号相同的概率;(Ⅲ)求两次取出的小球标号的和大于6的概率.【分析】(Ⅰ)根据题意可画出树状图,由树状图即可求得所有可能的结果.(Ⅱ)根据树状图,即可求得两次取出的小球标号相同的情况,然后利用概率公式求解即可求得答案.(Ⅲ)根据树状图,即可求得两次取出的小球标号的和大于6的情况,然后利用概率公式求解即可求得答案.【解答】解:(Ⅰ)画树状图得:(Ⅱ)∵共有16种等可能的结果,两次取出的小球的标号相同的有4种情况,∴两次取出的小球标号相同的概率为=;(Ⅲ)∵共有16种等可能的结果,两次取出的小球标号的和大于6的有3种结果,∴两次取出的小球标号的和大于6的概率为.【点评】此题考查了列表法与树状图法求概率的知识.此题难度不大,解题的关键是注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.21.(10分)已知直线y=﹣2x+1与y轴交于点A,与反比例函数y=(k为常数)的图象有一个交点B的纵坐标是5.(Ⅰ)求反比例函数的解析式,并说明其图象所在的象限;(Ⅱ)当2<x<5时,求反比例函数的函数值y的取值范围;(Ⅲ)求△AOB的面积S.【分析】(Ⅰ)依据一次函数,求得B(﹣2,5),代入反比例函数y=,可得反比例函数的解析式;(Ⅱ)依据当x=2时,y=﹣5;当x=5时,y=﹣2,即可得到函数值y的取值范围为﹣5<y<﹣2;(Ⅲ)依据一次函数,即可得到A(0,1),进而得到△AOB的面积.【解答】解:(Ⅰ)在y=﹣2x+1中,令y=5,则x=﹣2,∴B(﹣2,5),代入反比例函数y=,可得k=﹣2×5=﹣10,∴反比例函数的解析式为,其图象在第二四象限;(Ⅱ)当2<x<5时,反比例函数的函数值随着x的增大而增大,当x=2时,y=﹣5;当x=5时,y=﹣2,∴函数值y的取值范围为﹣5<y<﹣2;(Ⅲ)当x=0时,y=﹣2x+1=1,∴A(0,1),∴OA=1,∴S=OA•|x B|=×1×2=1.△AOB【点评】本题考查了用待定系数法求反比例函数的解析式,反比例函数与一次函数的交点问题,三角形的面积的综合运用,主要考查学生能否熟练的运用这些性质进行计算和推理,通过做此题培养了学生的计算能力.22.(10分)如图,△ABC是等边三角形,点D,E分别在BC,AC上,且BD=CE,AD与BE相交于点F,(Ⅰ)证明:△ABD≌△BCE;(Ⅱ)证明:△ABE∽△FAE;(Ⅲ)若AF=7,DF=1,求BD的长.【分析】(Ⅰ)根据等边三角形的性质,利用SAS证得△ABD≌△BCE;(Ⅱ)由△ABD≌△BCE得∠BAD=∠CBE,又∠ABC=∠BAC,可证∠ABE=∠EAF,又∠AEF=∠BEA,由此可以证明△AEF∽△BEA;(Ⅲ)根据相似三角形的性质解答即可.【解答】解:(Ⅰ)∵△ABC是等边三角形,∴AB=BC,∠ABD=∠BCE,在△ABD与△BCE中,∴△ABD≌△BCE(SAS);(Ⅱ)由(1)得:∠BAD=∠CBE,又∵∠ABC=∠BAC,∴∠ABE=∠EAF,又∵∠AEF=∠BEA,∴△AEF∽△BEA;(Ⅲ)∵∠BAD=∠CBE,∠BDA=∠FDB,∴△ABD∽△BDF,∴,∴BD2=AD•DF=(AF+DF)•DF=8,∴BD=2.【点评】本题考查相似三角形的判定和性质,关键是利用了等边三角形的性质和相似三角形的判定和性质求解,有一定的综合性.23.(10分)在△ABC中,∠ABC=45°,∠C=60°,⊙O经过点A,B,与BC交于点D,连接AD.(Ⅰ)如图①.若AB是⊙O的直径,交AC于点E,连接DE,求∠ADE的大小.(Ⅱ)如图②,若⊙O与AC相切,求∠ADC的大小.【分析】(Ⅰ)连接BE,根据三角形内角和可求∠BAC的度数,由圆周角定理可得∠AEB=90°,即可求∠ABE=∠ADE=15°;(Ⅱ)连接OA,OD,由切线的性质可得∠OAC=90°,根据同弧所对的圆心角是圆周角的2倍可得∠AOD=90°,由等腰三角形的性质可求∠OAD=∠DAC=45°,根据三角形内角和可求∠ADC的度数.【解答】解:(Ⅰ)如图,连接BE∵∠ABC=45°,∠C=60°,∴∠BAC=75°,∵AB是直径,∴∠AEB=90°,∴∠ABE=∠AEB﹣∠BAC=15°,∵∠ABE=∠ADE,∴∠ADE=15°,(Ⅱ)连接OA,OD,∵AC是⊙O的切线,∴∠OAC=90°,∵∠ABC=45°∴∠AOD=90°,且OA=OD∴∠OAD=45°∴∠DAC=∠OAC﹣∠DAO=45°,且∠C=60°∴∠ADC=75°【点评】本题考查了切线的性质,圆周角定理,三角形内角和定理,熟练运用这些性质进行推理是本题的关键.24.(10分)在平面直角坐标系中,O为原点,点A(﹣,0),点B(0,1)把△ABO绕点O 顺时针旋转,得△A'B'O,点A,B旋转后的对应点为A',B',记旋转角为α(0°<α<360°).(Ⅰ)如图①,当点A′,B,B′共线时,求AA′的长.(Ⅱ)如图②,当α=90°,求直线AB与A′B′的交点C的坐标;(Ⅲ)当点A′在直线AB上时,求BB′与OA′的交点D的坐标(直接写出结果即可)【分析】(Ⅰ)如图①,只要证明△AOA′是等边三角形即可;(Ⅱ)如图②,当α=90°,点A′在y轴上,作CH⊥OA′于H.解直角三角形求出BH,CH 即可解决问题;(Ⅲ)如图③,设A′B′交x轴于点K.首先证明A′B′⊥x轴,求出OK,A′K即可解决问题;【解答】解:(Ⅰ)如图①,∵A(﹣,0),B(0,1),∴OA=,OB=1,∴tan∠BAO==,∴∠BAO=30°,∠ABO=60°,∵△A′OB′是由△AOB旋转得到,∴∠B′=∠ABO=60°,OB=OB′,OA=OA′,∴∠OBB′=60°,∴∠BOB′=α=∠AOA′=60°,∴△AOA′是等边三角形,∴AA′=OA=.(Ⅱ)如图②,当α=90°,点A′在y轴上,作CH⊥OA′于H.∵∠A′B′O=60°,∠CAB′=30°,∴∠ACB′=90°,∵A′B=OA′﹣OB=﹣1,∠BA′C=30°,∴BC=A′B=,∵∠HBC=60°,∴BH=BC=,CH=BH=,∴OH=1+BH=,∴点C的坐标(,).(Ⅲ)如图③中,设A′B′交x轴于点K.当A′在AB上时,∵OA=OA′,∴∠OAA′=∠AA′O=30°,∵∠OA ′B ′=30°,∴∠AA ′K =60°,∴∠AKA ′=90°,∵OA ′=,∠OA ′K =30°,∴OK =OA ′=,A ′K =OK =, ∴A ′(,).【点评】本题属于三角形综合题,考查了解直角三角形,等边三角形的判定和性质,直角三角形30度角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 25.(10分)如图,抛物线y =﹣x 2+mx +n 与x 轴交于A 、B 两点,与y 轴交于点C ,抛物线的对称轴交x 轴于点D ,已知A (﹣1,0),C (0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P ,使△PCD 是以CD 为腰的等腰三角形?如果存在,直接写出P 点的坐标;如果不存在,请说明理由;(3)点E 是线段BC 上的一个动点,过点E 作x 轴的垂线与抛物线相交于点F ,当点E 运动到什么位置时,四边形CDBF 的面积最大?求出四边形CDBF 的最大面积及此时E 点的坐标.【分析】(1)由待定系数法建立二元一次方程组求出求出m 、n 的值即可;(2)由(1)的解析式求出顶点坐标,再由勾股定理求出CD 的值,再以点C 为圆心,CD 为半径作弧交对称轴于P 1,以点D 为圆心CD 为半径作圆交对称轴于点P 2,P 3,作CE 垂直于对称轴与点E ,由等腰三角形的性质及勾股定理就可以求出结论;(3)先求出BC 的解析式,设出E 点的坐标为(a ,﹣ a +2),就可以表示出F 的坐标,由四边形CDBF 的面积=S △BCD +S △CEF +S △BEF 求出S 与a 的关系式,由二次函数的性质就可以求出结论.【解答】解:(1)∵抛物线y=﹣x2+mx+n经过A(﹣1,0),C(0,2).解得:,∴抛物线的解析式为:y=﹣x2+x+2;(2)∵y=﹣x2+x+2,∴y=﹣(x﹣)2+,∴抛物线的对称轴是x=.∴OD=.∵C(0,2),∴OC=2.在Rt△OCD中,由勾股定理,得CD=.∵△CDP是以CD为腰的等腰三角形,∴CP1=DP2=DP3=CD.作CM⊥x对称轴于M,∴MP1=MD=2,∴DP1=4.∴P1(,4),P2(,),P3(,﹣);(3)当y=0时,0=﹣x2+x+2∴x1=﹣1,x2=4,∴B(4,0).设直线BC的解析式为y=kx+b,由图象,得,解得:,∴直线BC 的解析式为:y =﹣x +2.如图2,过点C 作CM ⊥EF 于M ,设E (a ,﹣ a +2),F (a ,﹣ a 2+a +2),∴EF =﹣a 2+a +2﹣(﹣a +2)=﹣a 2+2a (0≤a ≤4).∵S 四边形CDBF =S △BCD +S △CEF +S △BEF =BD •OC +EF •CM +EF •BN ,=+a (﹣a 2+2a )+(4﹣a )(﹣a 2+2a ),=﹣a 2+4a +(0≤a ≤4).=﹣(a ﹣2)2+∴a =2时,S 四边形CDBF 的面积最大=, ∴E (2,1).【点评】本题考查了待定系数法求一次函数的解析式的运用,二次函数的解析式的运用,勾股定理的运用,等腰三角形的性质的运用,四边形的面积的运用,解答时求出函数的解析式是关键.。

2018-2019学年天津市部分区九年级(上)期末数学试卷

2018-2019学年天津市部分区九年级(上)期末数学试卷

2018-2019 学年天津市部分区九年级(上)期末数学试卷副标题题号一二三总分得分一、选择题(本大题共12 小题,共 36.0分)1.下列方程中是关于x 的一元二次方程的是()22A. x + +1=0B. ax +bx+c=0C. (x-2)(x+3)=1D. 2x2-2xy+y2=02.下列事件中,是必然事件的是()A. 掷一次骰子,向上一面的点数是6B.经过有交通信号灯的路口,遇到红灯C.任意画一个三角形,其内角和是180 °D.射击运动员射击一次,命中靶心3.在下列四个图案中,既是轴对称图形,又是中心对称图形是()A. B. C. D.4.关于 x 的一元二次方程 x2+( k+1) x+k-2=0 根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 根的情况无法判断5.同时抛两个硬币,两个都正面向上的概率是()A. B. C. D.6.二次函数 y=x2+4x+5 的图象可以由二次函数y=x2的图象平移而得到,下列平移正确的是()A. 先向右平移2个单位,再向上平移 1 个单位B. 先向右平移 2 个单位,再向下平移 1 个单位C. 先向左平移2个单位,再向上平移 1 个单位D. 先向左平移 2 个单位,再向下平移 1 个单位7.圆锥的底面面积为16 πcm2,母线长为6cm,则这个圆锥的侧面积为()A. 24cm2B. 24πcm2C. 48cm2D. 48πcm28.一次会议上,每两个参加会议的人互相握了一次手,有人统计一共握了45次手,如果这次会议到会的人数为x 人,根据题意可列方程为()A. x(x+1)=45B. x(x-1)=45C. 2x(x+1)=45D. x(x-1)=45×29.如图, AB 为⊙O 的直径, C 为⊙O 上一点, AD 和过点 C 的切线互相垂直,垂足为 D .若∠DCA=55°,则∠CAO 的度数为()A.25°B.35°C.45°D.55°10. 一个不透明的盒子里有几个除颜色外其他完全相同的小球,其中有 6 个红球, 每次 摸球前先将盒子里的球摇匀, 任意摸出一个球记下颜色后再放回盒子里, 通过大量重复摸球实验后发现,摸到红球的频率稳定在 30%,那么估计盒子中小球的个数n为()A. 15B. 18C. 20D. 2411. 半径相等的圆的内接正三角形、正方形、正六边形的边长之比为(D.)A. 1 : :B.: :1 C.::11 : :33 22 212. 从如图所示的二次函数y=ax +bx+c 的图象中, 观察 得出下面五条信息:①c < 0;② abc > 0;③ a+b+c> 0;④ 2a+3b=0;⑤ c-8b > 0.你认为其中正确信息的个数为()A. 2 个B. 3 个C. 4 个D. 5 个二、填空题(本大题共 6 小题,共 18.0 分)13. 关于 x 的一元二次方程( m-3) x 2+x+m 2-9=0 有一根为 0,则 m 的值为 ______.14. 已知点 P 关于 x 轴的对称点为 P 1( 2, 3),那么点 P 关于原点的对称点P 2 的坐标是 ______.15. 小明在一次班会中参与知识抢答活动,现有语文题4 个,数学题5 个,综合题 11个,搅匀后从中随机抽取1 个题,他抽中综合题的概率是 ______.16. 如图,在 ⊙ O 中,弦 AB 、CD 相交于点 P ,∠A=40 °,∠CPB=70 °,则 ∠B 的大小为 ______(度)17. 如图,AB 为 ⊙ O 的直径,P 为 AB 延长线上的一点, PC 切 ⊙O 于点 C ,PC=6,PB=3,则 ⊙O 的直径等于 ______.18. 如图,在正方形 ABCD 中, AD=1,将 △ABD 绕点 B 顺时针旋转 45°得到 △A ′ BD ′,此时 A ′ D ′与 CD 交于点 E ,则 DE 的长度为 ______.三、解答题(本大题共7 小题,共66.0 分)19.如图, PA、PB 是⊙ O 的切线, A、B 为切点, AC 是⊙O 的直径,∠BAC=20°,求∠P 的度数.20.某市为响应国家“退耕还林”的号召,改变水土流失严重现状,2016 年某地区退耕还林 1200 亩,计划 2018 年退耕还林 1728 亩.求这两年平均每年退耕还林的增长率.21.在一个口袋中有 4 个完全相同的小球,把它们分别标号为1、 2、 3、 4,随机地摸取一个小球然后放回,再随机地摸出一个小球,请画树状图或列表求下列事件的概率:(1)两次取出的小球的标号相同;(2)两次取出的小球的标号的和等于6.22. 如图,在⊙O中,点C为ACB=120 °的中点,∠,OC 的延长线与AD 交于点 D,且∠D =∠B.(1)求证: AD 与⊙ O 相切;(2)若 CE=4 ,求弦 AB 的长.23.某宾馆有50 个房间供游客居住,当每个房间每天的定价为160 元时,房间会全部住满;当每个房间每天定价每增加10 元时,就会有一个房间空闲,如果游客居住房间,宾馆需对每个房间每天支出20 元的各种费用,房价定为多少时,宾馆利润最大?并求出一天的最大利润是多少?24.已知抛物线 y=ax2+bx+2 经过 A、 B、C 三点,当 x≥0时,其图象如图所示.( 1)求抛物线解析式并写出抛物线的顶点坐标;( 2)画出抛物线y=ax2+bx+2 当 x< 0 时的图象;( 3)利用抛物线y=ax 2+bx+2,写出 x 为何值时, y>0.25.已知 AB 是⊙ O 的直径,点 C 是 OA 的中点, CD ⊥OA 交⊙ O 于点 D,连接 OD.( 1)如图①,求∠AOD 的度数;( 2)如图②, PD 切⊙ O 于点 D,交 BA 的延长线于点P,过点 A 作 AE∥PD 交⊙O 于点 E,交 DO 于点 F,若⊙ O 的半径为4,求 AE 的长.答案和解析1.【答案】C【解析】解:A 、不是整式方程,故 A 错误;B 、ax 2+bx+c=0,当a=0 时,不是一元二次方程,故B 错误;C、(x-2)(x+3)=1 是一元二次方程,故此 C 正确;22D、2x -2xy+y =0,是二元二次方程,故 D 错误.依据一元二次方程的定义进行解答即可.本题主要考查的是一元二次方程的定义,熟练掌握一元二次方程的定义是解题的关键.2.【答案】C【解析】解:A .掷一次骰子,向上一面的点数是6是随机事件;B.经过有交通信号灯的路口,遇到红灯是随机事件;C.任意画一个三角形,其内角和是 180°是必然事件;D.射击运动员射击一次,命中靶心是随机事件;故选:C.必然事件就是一定发生的事件,依据定义即可判断.本题考查了必然事件的概念.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.【答案】A【解析】解:A 、此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,也是中心对称图形,故此选项正确;B、此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,是中心对称图形,故此选项错误 .C 、此图形沿一条直 线对折后能够完全重合,∴此图形是轴对称图形,旋转 180° 不能与原 图形重合,不是中心对称图形,故此选项错误 ;D 、此图形沿一条直 线对折后不能 够完全重合,∴此图形不是轴对称图形,是中心对称图形,故此选项错误 .故选:A .根据轴对称图形的定义沿一条直 线对折后,直线两旁部分完全重合的 图形是轴对称图形,以及中心对称图形的定义分别判断即可得出答案.此题主要考查了中心对称图形与轴对称图形的定义,熟练掌握其定 义是解决问题的关键.4.【答案】 A【解析】解:∵△(=k+1 2)=(k-1 2)-4(k-2 )+8>0,2∴关于 x 的一元二次方程 x +(k+1)x+k-2=0 一定有两个不相等的 实数根.计 别 式得到 △=(k-12+8先算出判)> ,然后根据判别式的意义判断根的情况.本题考查了一元二次方程 ax 2+bx+c=0(a ≠0)的根的判别式 △=b 2-4ac :当△>0,方程有两个不相等的 实数根;当△=0,方程有两个相等的 实数根;当△<0,方程没有实数根.5.【答案】 C【解析】解:一共有 4 种情况,两个正面向上的有 1 种情况,∴这两个正面向上的概率是.故选:C .列举出所有情况,看两个正面向上的情况数占 总情况数的多少即可.本题主要考查了等可能事件的概率,属于容易 题,用到的知识点为:概率=所求情况数与 总情况数之比.6.【答案】 C【解析】题2(2 ,+4x+5=x+2+1按照 “左加右减,上加下减 ”的规律,它可以由二次函数 y=x 2先向左平移 2 个 单位,再向上平移 1 个单位得到.故选:C .把二次函数 y=x 2+4x+3 化为顶点坐标式,再观察它是怎 样通过二次函数 y=x 2的图象平移而得到.此题不仅考查了对平移的理解,同时考查了学生将一般式 转化顶点式的能力. 7.【答案】 B【解析】2解:∵圆锥的底面面 积为 16πcm ,∴圆锥的半径为 4cm ,这个圆锥的侧面积=2π?4?6=24(πcm 2).故选:B .根据圆锥的底面面 积,得出圆锥的半径,进而利用圆锥的侧面积的面积公式求解.本题考查了圆锥的计算:关键是根据圆锥的底面面 积,得出圆锥的半径.8.【答案】 D【解析】解:设这次会议到会的人数 为 x 人,则每人将与(x-1)人握手,依题意,得: x (x-1)=45,即 x (x-1)=45×2.故选:D .设这次会议到会的人数 为 x 人,则每人将与(x-1)人握手,由每两个参加会议的人互相握了一次手且一共握了 45 次手,即可得出关于 x 的一元二次方程,第8页,共 18页此题得解.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9.【答案】B【解析】解:如图,连接 OC,∵DC 是⊙O 切线∴OC⊥CD,∴∠DCA+ ∠ACO=90°,且∠DCA=55°,∴∠ACO=35°∵AO=CO∴∠OAC=∠ACO=35°故选:B.由切线的性质可得 OC⊥CD,由等腰三角形的性质可得 OAC= ∠ACO=35° .本题考查了切线的性质,圆的有关知识,熟练运用切线的性质是本题的关键.10.【答案】C【解析】解:根据题意得=30%,解得 n=20,经检验:n=20 是原分式方程的解,所以这个不透明的盒子里大约有 20 个除颜色外其他完全相同的小球.故选:C.根据利用频率估计概率得到摸到红球的概率为 30%,然后根据概率公式计算n的值.本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右 摆动,并且摆动的幅度越来越小,根据 这个频率稳定性定理,可以用频率的集中 趋势来估计概率,这个固定的近似 值就是这个事件的概率.当实验的所有可能 结果不是有限个或 结果个数很多,或各种可能 结果发生的可能性不相等 时,一般通过统计频 率来估计概率.11.【答案】 B【解析】解:设圆的半径是 r ,则多边形的半径是 r ,则内接正三角形的 边长是 2rsin60 =° r ,内接正方形的 边长是 2rsin45 =° r ,正六边形的边长是 r ,因而半径相等的 圆的内接正三角形、正方形、正六 边形的边长之比为 : :1.故选:B .从中心向 边作垂线,构建直角三角形,通过解直角三角形可得.正多 边 形的 计 算一般是通 过 中心作 边 的垂 线 连 边 形中的半, 接半径,把正多边长 边 间 的 计 算 转 化 为 解直角三角形. 径, , 心距,中心角之12.【答案】 C【解析】解:① 由抛物线与 y 轴的交点可知:c <0,故① 正确;② 由抛物线的开口方向可知:a >0,->0,∴b <0,∴abc >0,故② 正确;③ 令 x=1 代入 y=ax 2+bx+c ,∴y=a+b+c <0,故③ 错误;④ 由对称轴可知:-= ,则 2a+3b=0,故④ 正确⑤ 如图所示,当 x=-2 时,y > 0.所以 4a-2b+c >0,所以 -8b+c >0.所以 c-8b >0.故⑤ 正确;综上所述,正确的结论有 4 个.故选:C .由抛物线的开口方向判断 a 与 0 的关系,由抛物线与 y 轴的交点判断 c 与 0 的关系,然后根据对称轴进行推理,进而对所得结论进行判断.主要考查图象与二次函数系数之 间的关系,会利用对称轴的范围求 2a 与 b 的关系,以及二次函数与方程之 间的转换的熟练运用.13.【答案】 -3【解析】解:把x=0 代入方程(m-3)x 2+x+m 2-9=0 得 m 2-9=0,解得 m 1=3,m 2=-3,而 m-3≠0,所以 m 的值为 -3.故答案为 -3.把 x=0 代入方程(m-3)x 2+x+m 2-9=0 得 m 2-9=0,解得 m 1=3,m 2=-3,然后根据一元二次方程的定 义确定 m 的值.本题考查了一元二次方程的解:能使一元二次方程左右两 边相等的未知数的值是一元二次方程的解.也考 查了一元二次方程的定 义.14.【答案】 ( -2, 3)【解析】∴点 P 关于原点的对称点 P2的坐标是(-2,3),故答案为:(-2,3).首先根据关于x 轴对称的点,横坐标相同,纵坐标互为相反数得到 P 点坐标,再根据两个点关于原点对称时的坐标特点:它们的坐标符号相反,即点 P(x,y)关于原点 O 的对称点是 P′(-x,-y)即可得到答案.此题主要考查了关于 x 轴对称的点的坐标特征,以及两个点关于原点对称时的坐标特点,解决问题的关键是熟记坐标变换的特点.15.【答案】【解析】解:∵小明在一次班会中参与知识抢答活动,现有语文题4个,数学题5个,综合题 11 个,∴他从中随机抽取综合题的概率是:= ,1 道,抽中故答案为:.由小明在一次班会中参与知识抢答活动,现有语文题4道,数学题5道,综合题 11 道,直接利用概率公式求解即可求得答案.此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.16.【答案】30【解析】解:∵∠CPB 是△APC 的外角,∴∠CPB=∠C+∠A;∵∠A=30 °,∠CPB=70°,∴∠C=∠CPB-∠A=40 °;∴∠B=∠C=30°;故答案为:30.欲求∠B 的度数,需求出同弧所对的圆周角∠C 的度数;△APC 中,已知了∠A 及外角∠CPB 的度数,即可由三角形的外角性质求出∠C 的度数,由此得解.此题主要考查了圆周角定理的 应用及三角形的外角性 质.熟练掌握定理及性 质是解题的关键.17.【答案】 9【解析】解:∵PC 是⊙O 切线,∴根据切割 线定理可得:CP 2=BP?AP ,且 PC=6,PB=3,∴36=3(3+AB )∴AB=9故答案为:9由切割线定理可得 CP 2=BP?AP ,即可求解.本题考查了切线的性质,切割线定理,熟练运用切割 线定理是本 题的关键. 18.【答案】 2-【解析】解:由题意可得出:∠BDC=45° ,∠DA ′E=90°,∴∠DEA ′ =45,°∴A ′ D=A ′E,∵在正方形 ABCD 中,AD=1 ,∴AB=A ′ B=1,∴BD= ,∴A ′ D= -1,∴在 Rt △DA ′E 中,DE= =2- .故答案为:2- .利用正方形和旋 转的性质得出 A ′D=A ′E,进而利用勾股定理得出 BD 的长,进 而利用锐角三角函数关系得出 DE 的长即可.此题主要考查了正方形和旋 转的性质以及勾股定理、锐角三角函数关系等知 识,得出 A ′D 的长是解题关键.19.【答案】 解:根据切线的性质得: ∠PAC=90 °,所以 ∠PAB =90°-∠BAC=90°-20 °=70°,根据切线长定理得 PA=PB ,所以 ∠PAB =∠PBA=70°,所以 ∠P=180°-70 °×2=40°.根据切线长定理得等腰△PAB ,运用三角形内角和定理求解即可.此题主要考查了切线长定理和切线的性质,得出 PA=PB 是解题关键.20.【答案】解:设平均增长率为x,根据题意得:1200 ( 1+x)2=1728 ,解得 x1=0.2=20% , x2=-2.2(舍去).所以平均每年的增长率是20%.故这两年平均每年退耕还林的增长率是10%.【解析】可设这两年平均每年退耕还林的增长率为 x,因为 2016 年退耕还林 1200 亩,计划 2018 年退耕还林 1728 亩,根据增长后的面积 =增长前的面积×(1+增长2率),则 2018 年的亩数是 1200(1+x),即可列方程求出答案.本题考查了一元二次方程的应用.本题只需仔细分析题意,利用方程即可解决问题.读懂题意,找到等量关系准确的列出方程是解题的关键.21.【答案】解:(1)画树状图得:∵共有 16 种等可能的结果,两次取出的小球的标号相同的有 4 种情况,∴P(两次取出的小球的标号相同)= = ;( 2)∵两次取出的小球的标号的和等于 6 的有 3 种情况,∴P(两次取出的小球的标号的和等于6) =.【解析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次取出的小球的标号相同情况,再利用概率公式即可求得答案;(2)由(1)可求得两次取出的小球的标号的和等于 6 的情况,再利用概率公式即可求得答案.此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.22.【答案】(1)证明:如图,连接OA,∵= ,∴CA=CB ,又∵∠ACB=120°,∴∠B=30 °,∴∠O=2∠B=60 °,∵∠D=∠B=30 °,∴∠OAD=180 °-(∠O+∠D) =90 °,∴AD 与⊙ O 相切;(2)∵∠O=60°, OA=OC,∴△OAC 是等边三角形,∴∠ACO=60 °,∵∠ACB=120 °,∴∠ACB=2∠ACO, AC=BC,∴OC⊥AB, AB=2 BE,∵CE=4 ,∠B=30 °,∴BC=2 CE=8,∴BE===4,∴AB=2BE=8,∴弦AB的长为 8.【解析】(1)连接 OA ,由=,得CA=CB,根据题意可得出∠O=60°,从而得出∠OAD=90°,则 AD 与⊙O 相切;(2)由题意得 OC⊥AB ,Rt△BCE 中,由三角函数得 BE=4,即可得出AB的长.本题考查了切线的判定和性质,垂径定理,解直角三角形,熟练掌握切线的判定和性质是解题的关键.23.x 元,宾馆所得利润为y 元,【答案】解:设每个房间每天的定价增加根据题意,得整理,得其中 0≤x≤500,且 x 是 10 的倍数∴房价定为160+180=340 时,宾馆利润最大∴y 最大值 =故房价定为340 元时,宾馆利润最大,一天的最大利润为10240 元【解析】可以设每个房间每天的定价增加x 元,宾馆所得利润为 y 元,则可列方程:,进行求解即可此题考查的是二次函数与一元二次方程的应用,根据题意列出方程,要求最值问题,即可转化为求二次函数的顶点问题.此题求最值也可用配方法进行求解.24.【答案】解:(1)由图象得,B(4,0),C(5,-3)把 B(4, 0), C( 5, -3)代入 y=ax2+bx+2 中得,,解得,所以抛物线的解析式为,y=- x2+ x+2∴h=- = ,k==∴顶点坐标为(,).(2)令 - x2+ x+2=0解得, x1=-1, x2=4∴图象与 x 轴的另一个交点为(-1, 0),并依题意画图象.(3)通过观察图象,当 -1< x<4 时, y>0.【解析】入 y=ax 2+bx+2 求得 a=- ,b= ,从而易写出函数解析式的一般式 为 y=- x 2+x+2,进而利用顶点坐标公式(- , )直接写出顶点坐标.(2)令- x 2+ x+2=0 即可求得抛物 线与 x 轴的另一个交点 为(-1,0),然后用光滑的曲 线将(0,2)和(-1,0)连接即可;(3)观察图象,当 y >0 时,抛物线的图象在 x 轴上方,这一段图象对应的 x 轴的取值在 -1 到 4 之间,所以直接写出 -1<x <4 即可.本题考查了利用待定系数法求二次函数解析式的基本方法,同 时也考查了根据抛物线解析式画 图象的能力和 观察抛物线确定自变量取值范围的能力.25.【答案】 解:( 1)连接 DA ,如图 1,∵点 C 是 OA 的中点, DC ⊥OA ,∴AD =DO ,∵OA=OD ,∴OA=OD =AD ,∴△AOD 是等边三角形,∴∠AOD=60 °;( 2)连接 AD ,如图 2,∵PD 与⊙ O 相切,∴PD ⊥DO ,∵AE ∥PD ,∴AE ⊥OD ,∵△AOD 是等边三角形,∴∠DAO=60 °,∴∠FAO=30 °,∴FO = AO=2,AF ==2 ,∴AE=2AF=4 .【解析】(1)证明△AOD 是等边三角形,进而求出 ∠AOD 的度数;(2)根据切线的性质求得 PD ⊥OD ,然后根据 AE ∥PD ,求得 AE ⊥OD ,进而求得∠FAO=30°,利用勾股定理即可得出答案.本题考查了切线的性质,30°角的直角三角形的性质等,熟练掌握性质和定理是解题的关键.。

天津市红桥区九年级上期末数学考试卷(解析版)(初三)期末考试.doc

天津市红桥区九年级上期末数学考试卷(解析版)(初三)期末考试.doc

天津市红桥区九年级上期末数学考试卷(解析版)(初三)期末考试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】下列标志既是轴对称图形又是中心对称图形的是()【答案】A.【解析】试题分析:根据中心对称图形与轴对称图形的概念判可得选项A是轴对称图形,是中心对称图形.故正确;选项B是轴对称图形,不是中心对称图形.故错误;选项C不是轴对称图形,是中心对称图形.故错误;选项D是轴对称图形,不是中心对称图形.故错误.故选A.考点:中心对称图形;轴对称图形.【题文】三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是()A. B. C. D.【答案】A.【解析】试题分析:画树状图得:∵共有6种等可能的结果,而两张卡片上的数字恰好都小于3有2种情况,∴两张卡片上的数字恰好都小于3概率=.故选A.考点:列表法与树状图法.【题文】一元二次方程x2+2x﹣3=0的两个根中,较小一个根为()评卷人得分A.3 B.﹣3 C.﹣2 D.﹣1【答案】B.【解析】试题分析:∵(x﹣1)(x+3)=0,∴x﹣1=0或x+3=0,解得:x=1或x=﹣3,则两个根中,较小一个根为﹣3,故选B.考点:解一元二次方程-因式分解法.【题文】将抛物线y=﹣(x﹣3)2﹣2向上平移1个单位后,其顶点坐标为()A.(﹣3,﹣2) B.(﹣3,﹣1) C.(3,﹣2) D.(3,﹣1)【答案】D.【解析】试题分析:抛物线y=﹣(x﹣3)2﹣2的顶点坐标为(3,﹣2),向上平移1个单位后的抛物线的顶点坐标为(3,﹣1).故选考点:二次函数图象与几何变换.【题文】如图,△ABC中,DE∥BC,EF∥AB,则图中相似三角形的对数是()A.1对 B.2对 C.3对 D.4对【答案】C.【解析】试题分析:由DE∥BC,EF∥AB,即可得△ADE∽△ABC,△EFC∽△ABC,继而得△ADE∽△EFC.所以图中相似三角形的对数是3对.故选C.考点:相似三角形的判定.【题文】正六边形的边心距与边长之比为()A.1:2 B.:2 C.:1 D.:2【答案】D.【解析】试题分析:如图:设正六边形的边长是a,则半径长也是a;过正六边形的中心O作边AB的垂线段OC,则AC=AB=a,由勾股定理得OC= = a,所以正六边形的边心距与边长之比为: a:a=:2.故选D.考点:正多边形和圆.【题文】如图,BD是⊙O的直径,∠CBD=30°,则∠A的度数为()A.30° B.45° C.60° D.75°【答案】C.【解析】试题分析:由BD是⊙O的直径,根据直径所对的圆周角是直角,得∠BCD=90°,可求∠D=60°,即可求∠A=∠D=60°.故选C.考点:圆周角定理.【题文】如图是二次函数:y=ax2+bx+c(a≠0)的图象,下列说法错误的是()A.函数y的最大值是4B.函效的图象关于直线x=﹣1对称C.当x<﹣1时,y随x的增大而增大D.当﹣4<x<1时,函数值y>0【答案】D.【解析】试题分析:观察二次函数图象,发现:开口向下,a<0,抛物线的顶点坐标为(﹣1,4),对称轴为x=﹣1,与x轴的一个交点为(1,0).选项A,∵a<0,∴二次函数y的最大值为顶点的纵坐标,即函数y的最大值是4,A正确;选项B,∵二次函数的对称轴为x=﹣1,∴函效的图象关于直线x=﹣1对称,B正确;选项C,当x<﹣1时,y随x的增大而增大,C正确;选项D,∵二次函效的图象关于直线x=﹣1对称,且函数图象与x轴有一个交点(1,0),∴二次函数与x轴的另一个交点为(﹣3,0).∴当﹣3<x<1时,函数值y>0,即D不正确.故选D.考点:二次函数的性质.【题文】已知甲、乙两地相距20千米,汽车从甲地匀速行驶到乙地,则汽车行驶时间t(单位:小时)关于行驶速度v(单位:千米/小时)的函数关系式是()A.t=20v B.t= C.t= D.t=【答案】B.【解析】试题分析:根据路程=时间×速度可得vt=20,变形可得t=.故选B.考点:根据实际问题列反比例函数关系式.【题文】在反比例函数y=图象的每一支曲线上,y都随x的增大而减小,则k的取值范围是()A.k>﹣3 B.k>3 C.k<3 D.k<﹣3【答案】A.【解析】试题分析:已知在反比例函数y=图象的每一支曲线上,y都随x的增大而减小,所以k+3>0,解得k >﹣3.故选A.考点:反比例函数的性质.【题文】如图,在直角△ABC中,∠C=90°,BC=3,AC=4,D、E分别是AC、BC上的一点,且DE=3.若以DE为直径的圆与斜边AB相交于M、N,则MN的最大值为()A. B.2 C. D.【答案】C.【解析】试题分析:过O作OG垂于G,连接OC,∵OC=,只有C、O、G三点在一条直线上OE最小,连接OM,∴OM=,∴只有OG最小,GM才能最大,从而MN有最大值,作CF⊥AB于F,∴G和F重合时,MN有最大值,∵∠C=90°,BC=3,AC=4,∴A B= =5,∵AC•BC=AB•CF,∴CF=,∴OG=﹣=,∴MG==,∴MN=2MG=,故选C.考点:直线与圆的位置关系.【题文】已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点(﹣2,0),(x1,0),且1<x1<2,与y轴的正半轴的交点在(0,2)的下方,下列结论:①a<b<c;②2a+c>0;③4a+c<0;④2a﹣b+1>0.其中正确结论的个数为()A.1 B.2 C.3 D.4【答案】D.【解析】试题分析:①因为图象与x轴两交点为(﹣2,0),(x1,0),且1<x1<2,对称轴x=,则对称轴﹣<﹣<0,且a<0,∴a<b<0,由抛物线与y轴的正半轴的交点在(0,2)的下方,得c>0,即a<b<c,故①正确;②设x2=﹣2,则x1x2=,而1<x1<2,∴﹣4<x1x2<﹣2,∴﹣4<<﹣2,∴2a+c>0,4a+c<0,故②③正确;④由抛物线过(﹣2,0),则4a﹣2b+c=0,而c<2,则4a﹣2b+2>0,即2a﹣b+1>0,故④正确.综上可知正确的有4个,故选D.考点:二次函数图象与系数的关系.【题文】方程100x2﹣3x﹣7=0两根之和等于.【答案】.【解析】试题分析:根据根与系数的关系可得方程100x2﹣3x﹣7=0两根之和等于.考点:根与系数的关系.【题文】若扇形OAB的圆心角为120°,半径为3,则该扇形的弧长为.(结果保留π)【答案】2π.【解析】试题分析:根据弧长公式可知该扇形的弧长为=2π,考点:弧长的计算.【题文】如果两个相似三角形的面积比是4:9,那么它们对应高的比是.【答案】2:3.【解析】试题分析:已知两个相似三角形的面积比是4:9,根据相似三角形面积的比等于相似比的平方求出相似比是2:3,,根据相似三角形对应高的比等于相似比即可得它们对应高的比是2:3..考点:相似三角形的性质.【题文】如图,正方形ABCD内有一点O使得△OBC是等边三角形,连接OA并延长,交以O为圆心OB长为半径的⊙O于点E,连接BD并延长交⊙O于点F,连接EF,则∠EFB的度数为度.【答案】37.5.【解析】试题分析:∵四边形ABCD是正方形,∴∠ABC=90°,∵△OBC是等边三角形,∴∠OBC=60°,∴∠ABO=30°,∵AB=BO,∴∠AOB==75°,∴∠EFB=∠AOB=37.5°.考点:圆周角定理;等边三角形的判定;正方形的性质.【题文】若a为实数,则代数式的最小值为.【答案】3.【解析】试题分析:因,根据非负数的性质可得当a=3时,有最小值为9,所以当a=3时,有最小值为3.考点:配方法的应用;非负数的性质:偶次方;二次根式的性质与化简.【题文】如图,在梯形ABCD中,AB∥DC,AB⊥BC,AB=2cm,CD=4cm.以BC上一点O为圆心的圆经过A、D 两点,且∠AOD=90°,则圆心O到弦AD的距离是 cm.【答案】 .【解析】试题分析:如图,作AE⊥CD,垂足为E,OF⊥AD,垂足为F,则四边形AECB是矩形,CE=AB=2cm,DE=CD﹣CE=4﹣2=2cm,∵∠AOD=90°,AO=OD,所以△AOD是等腰直角三角形,AO=OD,∠OAD=∠ADO=45°,BO=CD,∵AB∥CD,∴∠BAD+∠ADC=180°∴∠ODC+∠OAB=90°,∵∠ODC+∠DOC=90°,∴∠DOC=∠BAO,∵∠B=∠C=90°∴△ABO≌△OCD,∴O C=AB=2cm,OB=CD=4cm,BC=BO+OC=AE=6cm,由勾股定理知,AD2=AE2+DE2,得AD=2 cm,∴AO=OD=2 cm,S△AOD=AO•DO= AD•OF,∴OF=cm.考点:垂径定理;直角三角形全等的判定;等腰三角形的性质与判定;勾股定理;矩形的判定.【题文】某单位A,B,C,D四人随机分成两组赴北京,上海学习,每组两人.(1)求A去北京的概率;(2)用列表法(或树状图法)求A,B都去北京的概率;(3)求A,B分在同一组的概率.【答案】(1);(2);(3) .【解析】试题分析:(1)由某单位A,B,C,D四人随机分成两组赴北京,上海学习,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与A,B都去北京的情况,再利用概率公式即可求得答案;(3)由(2)可求得A,B分在同一组的情况,然后直接利用概率公式求解即可求得答案.试题解析:(1)∵某单位A,B,C,D四人随机分成两组赴北京,上海学习,∴A去北京的概率为;(2)画树状图得:∵共有12种等可能的结果,A,B都去北京的有2种情况,∴A,B都去北京的概率为:;(3)由(2)得:A,B分在同一组的有4种情况,∴A,B分在同一组的概率为.考点:列表法与树状图法.【题文】四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如图所示,如果AF=4,∠F=60°,求:(1)指出旋转中心和旋转角度;(2)求DE的长度和∠EBD的度数.【答案】(1)旋转中心为点A,旋转角为90°;(2)DE=4﹣4,∠EBD=15°.【解析】试题分析:(1)由于△ADF旋转一定角度后得到△ABE,根据旋转的性质得到旋转中心为点A,∠DAB等于旋转角,于是得到旋转角为90°;(2)根据旋转的性质得到AE=AF=4,∠AEB=∠F=60°,则∠ABE=90°﹣60°=30°,解直角三角形得到AD=4 ,∠ABD=45°,所以DE=4﹣4,然后利用∠EBD=∠ABD﹣∠ABE计算即可.试题解析:(1)∵△ADF旋转一定角度后得到△ABE,∴旋转中心为点A,∠DAB等于旋转角,∴旋转角为90°;(2)∵△AD F以点A为旋转轴心,顺时针旋转90°后得到△ABE,∴AE=AF=4,∠AEB=∠F=60°,∴∠ABE=90°﹣60°=30°,∵四边形ABCD为正方形,∴AD=AB=4,∠ABD=45°,∴DE=4﹣4,∠EBD=∠ABD﹣∠ABE=15°.考点:旋转的性质;正方形的性质.【题文】如图,抛物线y=﹣x2+3x+4交x轴于A、B两点(点A在B左边),交y轴于点C.(1)求A、B两点的坐标;(2)求直线BC的函数关系式;(3)点P在抛物线的对称轴上,连接PB,PC,若△PBC的面积为4,求点P的坐标.【答案】(1)A、B两点坐标为(﹣1,0)和(4,0);(2)直线BC的函数关系式为y=﹣x+4;(3)点P的坐标为(,)或(,).【解析】试题分析:(1)令y=0得﹣x2+3x+4=0解得方程的解即为A、B两点坐标;(2)令x=0,解得抛物线y=﹣x2+3x+4与y轴交点C的坐标,设直线BC的函数关系式y=kx+b,解得k和b的值即可得出直线BC的函数关系式;(3)求得抛物线y=﹣x2+3x+4的对称轴,设对称轴与直线BC的交点记为D,求得D点坐标,设点P的坐标,表示出PD,再根据三角形的面积公式得出点P的坐标.试题解析:(1)由﹣x2+3x+4=0解得x=﹣1或x=4,所以A、B两点坐标为(﹣1,0)和(4,0);(2)抛物线y=﹣x2+3x+4与y轴交点C坐标为(0,4),由(1)得,B(4,0),设直线BC的函数关系式y=kx+b,∴,解得,∴直线BC的函数关系式为y=﹣x+4;(3)抛物线y=﹣x2+3x+4的对称轴为x= ,对称轴与直线BC的交点记为D,则D点坐标为(,).∵点P在抛物线的对称轴上,∴设点P的坐标为(,m),∴PD=|m﹣|,∴S△PBC=OB•PD=4.∴×4×|m﹣|=4,∴m=或m=.∴点P的坐标为(,)或(,).考点:抛物线与x轴的交点;待定系数法求一次函数解析式;二次函数的性质.【题文】如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.(1)求证:DF⊥AB;(2)若AF的长为2,求FG的长.【答案】(1)详见解析;(2)FG=3.【解析】试题分析:(1)连结OD,根据切线的性质由DF是圆的切线得∠ODF=90°,再根据等边三角形的性质得∠C=∠A=∠B=60°,AB=AC,而OD=OC,所以∠ODC=60°=∠A,于是可判断OD∥AB,根据平行线的性质得DF⊥AB ;(2)在Rt△ADF中,由∠A=60°得到∠ADF=30°,根据含30度的直角三角形三边的关系得AD=2AF=4,再证明OD为△ABC的中位线,则AD=CD=4,即AC=8,所以AB=8,BF=AB﹣AF=6,然后在Rt△BFG中,根据正弦的定义计算FG的长.试题解析:(1)证明:连结OD,如图,∵DF是圆的切线,∴OD⊥DF,∴∠ODF=90°,∵△ABC为等边三角形,∴∠C=∠A=∠B=60°,AB=AC,而OD=OC,∴∠ODC=60°,∴∠ODC=∠A,∴OD∥AB,∴DF⊥AB;(2)解:在Rt△ADF中,∠A=60°,∴∠ADF=30°,∴AD=2AF=2×2=4,而OD∥AB,点O为BC的中点,∴OD为△ABC的中位线,∴AD=CD=4,即AC=8,∴AB=8,∴BF=AB﹣AF=6,∵FG⊥BC,∴∠BGF=90°,在Rt△BFG中,sinB=sin60°=,∴FG=6×=3 .考点:切线的性质;等边三角形的性质.【题文】如图,反比例函数y=与一次函数y=ax+b的图象交于点A(2,2)、B(,n).(1)求这两个函数解析式;(2)将一次函数y=ax+b的图象沿y轴向下平移m个单位,使平移后的图象与反比例函数y=的图象有且只有一个交点,求m的值.【答案】(1)y=, y=﹣4x+10;(2)m=2或m=18.【解析】试题分析:(1)由点A在反比例函数的图象上,结合反比例函数图象上的点的坐标特征即可得出反比例函数的解析式;由点B的横坐标以及反比例函数的解析式即可得出点B的坐标,再由A、B点的坐标利用待定系数法即可求出一次函数得解析式;(2)结合(1)中得结论找出平移后的直线的解析式,将其代入反比例函数解析式中,整理得出关于x的二次方程,令其根的判别式△=0,即可得出关于m的一元二次方程,解方程即可得出结论.试题解析:(1)∵A(2,2)在反比例函数y=的图象上,∴k=4.∴反比例函数的解析式为 y=.又∵点B(,n)在反比例函数y=的图象上,∴,解得:n=8,即点B的坐标为(,8).由A(2,2)、B(,8)在一次函数y=ax+b的图象上,得:,解得:,∴一次函数的解析式为y=﹣4x+10.(2)将直线y=﹣4x+10向下平移m个单位得直线的解析式为y=﹣4x+10﹣m,∵直线y=﹣4x+10﹣m与双曲线y=有且只有一个交点,令,得4x2+(m﹣10)x+4=0,∴△=(m﹣10)2﹣64=0,解得:m=2或m=18.考点:反比例函数与一次函数的交点问题.【题文】如图1,在△ABC中,∠A=36°,AB=AC,∠ABC的平分线BE交AC于E.(1)求证:AE=BC;(2)如图(2),过点E作EF∥BC交AB于F,将△AEF绕点A逆时针旋转角α(0°<α<144°)得到△AE′F′,连结CE′,BF′,求证:CE′=BF′;(3)在(2)的旋转过程中是否存在CE′∥AB?若存在,求出相应的旋转角α;若不存在,请说明理由.【答案】(1)详见解析;(2)详见解析;(3)存在CE′∥AB,当旋转角为36°或72°时,CE′∥AB.【解析】试题分析:(1)根据等腰三角形的性质以及角平分线的性质得出对应角之间的关系进而得出答案;(2)由旋转的性质可知:∠E′AC=∠F′AB,AE′=AF′,根据全等三角形证明方法得出即可;(3)分别根据①当点E的像E′与点M重合时,则四边形ABCM为等腰梯形,②当点E的像E′与点N重合时,求出α即可.试题解析:(1)证明:∵AB=BC,∠A=36°,∴∠ABC=∠C=72°,又∵BE平分∠ABC,∴∠ABE=∠CBE=36°,∴∠BEC=180°﹣∠C﹣∠CBE=72°,∴∠ABE=∠A,∠BEC=∠C,∴AE=BE,BE=BC,∴AE=BC.(2)证明:∵AC=AB且EF∥BC,∴AE=AF;由旋转的性质可知:∠E′AC=∠F′AB,AE′=AF′,∵在△CAE′和△BAF′中,∴△CAE′≌△BAF′,∴CE′=BF′.(3)存在CE′∥AB,理由:由(1)可知AE=BC,所以,在△AEF绕点A逆时针旋转过程中,E点经过的路径(圆弧)与过点C且与AB平行的直线l交于M、N两点,如图:①当点E的像E′与点M重合时,则四边形ABCM为等腰梯形,∴∠BAM=∠ABC=72°,又∠BAC=36°,∴α=∠CAM=36°.②当点E的像E′与点N重合时,由AB∥l得,∠AMN=∠BAM=72°,∵AM=AN,∴∠ANM=∠AMN=72°,∴∠MAN=180°﹣2×72°=36°,l(4)若点M在直线BH上运动,点N在x轴上运动,当以点C、M、N为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN的面积.【答案】(1)y=﹣x2+4x;(2)3;(3)(5,﹣5);(4)△CMN的面积为:或或17或5.【解析】试题分析:(1)利用待定系数法求二次函数的表达式;(2)根据二次函数的对称轴x=2写出点C的坐标为(3,3),根据面积公式求△ABC的面积;(3)因为点P是抛物线上一动点,且位于第四象限,设出点P的坐标(m,﹣m2+4m),利用差表示△ABP的面积,列式计算求出m的值,写出点P的坐标;(4)分别以点C、M、N为直角顶点分三类进行讨论,利用全等三角形和勾股定理求CM或CN的长,利用面积公式进行计算.试题解析:(1)把点A(4,0),B(1,3)代入抛物线y=ax2+bx中,得解得:,∴抛物线表达式为:y=﹣x2+4x;(2)点C的坐标为(3,3),又∵点B的坐标为(1,3),∴BC=2,∴S△ABC=×2×3=3;(3)过P点作PD⊥BH交BH于点D,设点P(m,﹣m2+4m),根据题意,得:BH=AH=3,HD=m2﹣4m,PD=m﹣1,∴S△ABP=S△ABH+S四边形HAPD﹣S△BPD,6=×3×3+(3+m﹣1)(m2﹣4m)﹣(m﹣1)(3+m2﹣4m),∴3m2﹣15m=0,m1=0(舍去),m2=5,∴点P坐标为(5,﹣5).(4)以点C、M、N为顶点的三角形为等腰直角三角形时,分三类情况讨论:①以点M为直角顶点且M在x轴上方时,如图2,CM=MN,∠CMN=90°,则△CBM≌△MHN,∴BC=MH=2,BM=HN=3﹣2=1,∴M(1,2),N(2,0),由勾股定理得:MC=,∴S△CMN=××=;②以点M为直角顶点且M在x轴下方时,如图3,作辅助线,构建如图所示的两直角三角形:Rt△NEM和Rt △MDC,得Rt△NEM≌Rt△MDC,∴EM=CD=5,MD=ME=2,由勾股定理得:CM= =,∴S△CMN=××=;③以点N为直角顶点且N在y轴左侧时,如图4,CN=MN,∠MNC=90°,作辅助线,同理得:CN= =,∴S△CMN=××=17;④以点N为直角顶点且N在y轴右侧时,作辅助线,如图5,同理得:CN==,∴S△CMN=××=5;⑤以C为直角顶点时,不能构成满足条件的等腰直角三角形;综上所述:△CMN的面积为:或或17或5.考点:二次函数综合题.。

天津市红桥区九年级上期末强化练习试卷(有答案)-(数学)

天津市红桥区九年级上期末强化练习试卷(有答案)-(数学)

2017-2018学年 九年级数学上册 期末强化练习卷一、选择题1.下列方程是一元二次方程的是( )A .ax 2+bx+c=0B .x 2+2x=x 2﹣1C .(x ﹣1)(x ﹣3)=0D . =22.下列各图中,不是中心对称图形的是( )3.在今年的中考中,市区学生体育测试分成了三类,耐力类、速度类和力量类.其中必测项目为耐力类,抽测项目为:速度类有50m 、100m 、50m × 2往返跑三项,力量类有原地掷实心球、立定跳远、引体向上(男)或仰卧起坐(女)三项.市中考领导小组要从速度类和力量类中各随机抽取一项进行测试,请问同时抽中50m × 2往返跑、引体向上(男)或仰卧起坐(女)两项的概率是( ).A .31B .32C .61D .91 4.若关于x 的一元二次方程x 2+(2k ﹣1)x+k 2﹣1=0有实数根,则k 取值范围是( ) A .k ≥1.25 B .k >1.25 C .k <1.25 D .k ≤1.255.如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA .OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( )A .12个单位B .10个单位C .1个单位D .15个单位6.如图,已知AC 是⊙O 的直径,点B 在圆周上(不与A .C 重合),点D 在AC 的延长线上,连接BD 交⊙O 于点E,若∠AOB=3∠ADB ,则( )A .DE=EB B . DE=EBC . DE=DOD .DE=OB7.已知⊙O 的半径是4,OP=3,则点P 与⊙O 的位置关系是( )A .点P 在圆内B .点P 在圆上C .点P 在圆外D .不能确定8.下列成语所描述的事件是必然事件的是( )A .瓮中捉鳖B .拔苗助长C .守株待兔D .水中捞月9.在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为s=5t2+2t,则当t=4时,该物体所经过的路程为( )A.88米B.68米C.48米D.28米10.同一坐标系中,一次函数y=ax+1与二次函数y=x2+a的图象可能是( )11.如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上.若AC=,∠B=60°,则CD的长为()A.0.5 B.1.5 C.D.112. “如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根”.请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1-(x-a)(x-b)=0的两根,且a < b, 则a、b、m、n 的大小关系是()A.m<a<b<n B.a<m<n<b C.a<m<b<n D.m<a<n<b二、填空题13.若关于x的二次方程有两个相等的实数根,则实数a=14.从1,2,3,4四个数中任取一个数作为AC的长度,又从4,5中任取一个数作为BC的长度,AB=6,则AB、AC、BC能构成三角形的概率是.15.如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小是__________度.16.如图,⊙O是正五边形ABCDE的外接圆,则∠CAD= °.17.已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为.18.抛物线y=mx2﹣2x+1与x轴有且只有一个交点,则m的值是.三、解答题19.如图,△ABC的顶点坐标分别为A(1,3)、B(4,2)、C(2,1).(1)在图中以点O为位似中心在原点的另一侧画出△ABC放大2倍后得到的△A1B1C1,并写出A1的坐标;(2)请在图中画出△ABC绕点O逆时针旋转90°后得到的△A2B2C2.20.解方程:3x2﹣6x+1=0(用配方法)21.如图,已知二次函数y=ax2+bx+c的图象与x轴交于A.B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;(2)求△MCB的面积S△MCB.22.一个不透明的布袋里装有16个只有颜色不同的球,其中红球有x个,白球有2x个,其他均为黄球,现甲从布袋中随机摸出一个球,若是红球则甲同学获胜,甲同学把摸出的球放回并搅匀,由乙同学随机摸出一个球,若为黄球,则乙同学获胜.(1)当x=3时,谁获胜的可能性大?(2)当x为何值时,游戏对双方是公平的?23.本市新建的滴水湖是圆形人工湖。

2018-2019学年天津市红桥区九年级(上)期末数学试卷(有答案和解析)

2018-2019学年天津市红桥区九年级(上)期末数学试卷(有答案和解析)

2018-2019学年天津市红桥区九年级(上)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分在每小题给出的个源项中,只有一项是符合题目要求的)1.下列说法正确的是()A.“打开电视机,正在播《都市报道60分》”是必然事件B.“从一个装有6个红球的不透明的袋中摸出一个球是红球”是随机事件C.“概率为0.0001的事件”是不可能事件D.“经过有交通信号灯的路口,遇到红灯”是随机事件2.下列图形中,可以看作是中心对称图形的是()A.B.C.D.3.如图,以A,B,C为顶点的三角形与以D,E,F为顶点的三角形相似,则这两个三角形的相似比为()A.2:1B.3:1C.4:3D.3:24.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是()A.CM=DM B.=C.∠ACD=∠ADC D.OM=MD5.若正方形的边长为6,则其外接圆的半径为()A.3B.3C.6D.66.如图,AB∥CD,AB=6,CD=9,AD=10,则OD的长为()A.4B.5C.6D.77.在半径为3的圆中,150°的圆心角所对的弧长是()A.B.C.D.8.如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于()A.20°B.25°C.40°D.50°9.若点A(x1,﹣6),B(x2,﹣2),C(x3,2)在反比例函数y=(m为常数)的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x1<x3C.x2<x3<x1D.x3<x2<x110.已知一个直角三角形两直角边之和为20cm,则这个直角三角形的最大面积为()A.25cm2B.50cm2C.100cm2D.不确定11.如图,直线AB与半径为2的⊙O相切于点C,D是⊙O上一点,且∠EDC=30°,弦EF∥AB,则EF的长度为()A.2B.2C.D.212.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为()A.﹣3B.3C.﹣6D.9二、填空题(本大题共名小题,每小题3分,共18分)13.已知y=x m﹣1,若y是x的反比例函数,则m的值为.14.不透明袋子中装有7个球,其中有3个红球,4个黄球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是.15.一个等边三角形边长的数值是方程x2﹣3x﹣10=0的根,那么这个三角形的周长为.16.如图,在△ABC中,DE∥BC,分别交AB,AC于点D、E.若AD=3,DB=2,BC=6,则DE 的长为.17.二次函数y=ax2+4x+a的最大值是3,则a的值是.18.如图,⊙O的直径AB长为10,弦AC长为6,∠ACB的平分线交⊙O于点D,则BC的长为,CD的长.三、解答题(本大题共7小题,共66分,解答应写出文字说明、滨其步成推理过程)19.(8分)已知关于x的一元二次方程x2+x+m﹣1=0.(I)当m=0时,求方程的实数根.(Ⅱ)若方程有两个不相等的实数根,求实数m的取值范围.20.(8分)一个盒中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸取一个小球然后放回,再随机摸出一个小球.(Ⅰ)请用列表法(或画树状图法)列出所有可能的结果;(Ⅱ)求两次取出的小球标号相同的概率;(Ⅲ)求两次取出的小球标号的和大于6的概率.21.(10分)已知直线y=﹣2x+1与y轴交于点A,与反比例函数y=(k为常数)的图象有一个交点B的纵坐标是5.(Ⅰ)求反比例函数的解析式,并说明其图象所在的象限;(Ⅱ)当2<x<5时,求反比例函数的函数值y的取值范围;(Ⅲ)求△AOB的面积S.22.(10分)如图,△ABC是等边三角形,点D,E分别在BC,AC上,且BD=CE,AD与BE相交于点F,(Ⅰ)证明:△ABD≌△BCE;(Ⅱ)证明:△ABE∽△FAE;(Ⅲ)若AF=7,DF=1,求BD的长.23.(10分)在△ABC中,∠ABC=45°,∠C=60°,⊙O经过点A,B,与BC交于点D,连接AD.(Ⅰ)如图①.若AB是⊙O的直径,交AC于点E,连接DE,求∠ADE的大小.(Ⅱ)如图②,若⊙O与AC相切,求∠ADC的大小.24.(10分)在平面直角坐标系中,O为原点,点A(﹣,0),点B(0,1)把△ABO绕点O 顺时针旋转,得△A'B'O,点A,B旋转后的对应点为A',B',记旋转角为α(0°<α<360°).(Ⅰ)如图①,当点A′,B,B′共线时,求AA′的长.(Ⅱ)如图②,当α=90°,求直线AB与A′B′的交点C的坐标;(Ⅲ)当点A′在直线AB上时,求BB′与OA′的交点D的坐标(直接写出结果即可)25.(10分)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.2018-2019学年天津市红桥区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分在每小题给出的个源项中,只有一项是符合题目要求的)1.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:“打开电视机,正在播《都市报道60分》”是随机事件,A错误;“一个不透明的袋中装有6个红球,从中摸出1个球是红球”是必然事件,B错误;“概率为0.0001的事件”是随机事件,C错误;“经过有交通信号灯的路口,遇到红灯”是随机事件,D正确,故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:A.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【分析】根据相似三角形的性质解答即可.【解答】解:∵以A,B,C为顶点的三角形与以D,E,F为顶点的三角形相似,∴,故选:A.【点评】此题考查相似三角形的性质,关键是根据相似三角形的对应边之比即是相似比解答.4.【分析】由直径AB垂直于弦CD,利用垂径定理得到M为CD的中点,B为劣弧的中点,可得出A和B选项成立,再由AM为公共边,一对直角相等,CM=DM,利用SAS可得出三角形ACM与三角形ADM全等,根据全等三角形的对应角相等可得出选项C成立,而OM不一定等于MD,得出选项D不成立.【解答】解:∵AB是⊙O的直径,弦CD⊥AB,垂足为M,∴M为CD的中点,即CM=DM,选项A成立;B为的中点,即=,选项B成立;在△ACM和△ADM中,∵,∴△ACM≌△ADM(SAS),∴∠ACD=∠ADC,选项C成立;而OM与MD不一定相等,选项D不成立.故选:D.【点评】此题考查了垂径定理,以及全等三角形的判定与性质,垂径定理为:垂直于弦的直径平分弦,且平分弦所对的弧,熟练掌握垂径定理是解本题的关键.5.【分析】作OE⊥AD于E,连接OD,在Rt△ADE中,根据垂径定理和勾股定理即可求解.【解答】解:作OE⊥AD于E,连接OD,则AE=DE=3,OE=3.在Rt△ADE中,OD==3.故选:B.【点评】此题主要考查了正多边形和圆,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.6.【分析】根据相似三角形的判定和性质列比例式即可得到结论.【解答】解:∵AB∥CD,∴△AOB∽△DOC,∴=,∵AB=6,CD=9,AD=10,∴=,∴OD=6,故选:C.【点评】本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.7.【分析】利用弧长公式可得.【解答】解:=.故选:D.【点评】此题主要是利用弧长公式进行计算,学生要牢记公式.8.【分析】连接OA,根据切线的性质,即可求得∠C的度数.【解答】解:如图,连接OA,∵AC是⊙O的切线,∴∠OAC=90°,∵OA=OB,∴∠B=∠OAB=25°,∴∠AOC=50°,∴∠C=40°.故选:C.【点评】本题考查了圆的切线性质,以及等腰三角形的性质,已知切线时常用的辅助线是连接圆心与切点.9.【分析】根据反比例函数的性质,可以判断出x1,x2,x3的大小关系,本题得以解决.【解答】解:∵反比例函数y=(m为常数),m2+1>0,∴在每个象限内,y随x的增大而减小,∵点A(x1,﹣6),B(x2,﹣2),C(x3,2)在反比例函数y=(m为常数)的图象上,﹣6<﹣2<0<2,∴x2<x1<x3,故选:B.【点评】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.10.【分析】本题考查二次函数最大(小)值的求法.设一条直角边为x,则另一条为(20﹣x),则根据三角形面积公式即可得到面积S和x之间的解析式,求最值即可.【解答】解:设一条直角边为x,则另一条为(20﹣x),∴S=x(20﹣x)=﹣(x﹣10)2+50,∵∴即当x=10时,S=×10×10=50cm2.最大故选:B.【点评】求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好,如y=﹣x2﹣2x+5,y=3x2﹣6x+1等用配方法求解比较简单.11.【分析】作辅助线,连接OC与OE.根据一条弧所对的圆周角等于它所对的圆心角的一半,可知∠EOC的度数;再根据切线的性质定理,圆的切线垂直于经过切点的半径,可知OC⊥AB;又EF∥AB,可知OC⊥EF,最后由勾股定理可将EF的长求出.【解答】解:连接OE和OC,且OC与EF的交点为M.∵∠EDC=30°,∴∠COE=60°.∵AB与⊙O相切,∴OC⊥AB,又∵EF∥AB,∴OC⊥EF,即△EOM为直角三角形.在Rt△EOM中,EM=sin60°×OE=×2=,∵EF=2EM,∴EF=.故选:B.【点评】本题主要考查切线的性质及直角三角形的勾股定理.12.【分析】先根据抛物线的开口向上可知a>0,由顶点纵坐标为﹣3得出b与a关系,再根据一元二次方程ax2+bx+m=0有实数根可得到关于m的不等式,求出m的取值范围即可.【解答】解:(法1)∵抛物线的开口向上,顶点纵坐标为﹣3,∴a>0,=﹣3,即b2=12a,∵一元二次方程ax2+bx+m=0有实数根,∴△=b2﹣4am≥0,即12a﹣4am≥0,即12﹣4m≥0,解得m≤3,∴m的最大值为3.(法2)一元二次方程ax2+bx+m=0有实数根,可以理解为y=ax2+bx和y=﹣m有交点,可见﹣m≥﹣3,∴m≤3,∴m的最大值为3.故选:B.【点评】本题考查的是抛物线与x轴的交点,根据题意判断出a的符号及a、b的关系是解答此题的关键.二、填空题(本大题共名小题,每小题3分,共18分)13.【分析】根据反比例函数的一般式是(k≠0)或y=kx﹣1(k≠0),即可求解.【解答】解:∵y=x m﹣1是反比例函数,∴m﹣1=﹣1,解得m=0.故答案为:0.【点评】本题考查了反比例函数的一般形式(k≠0),也可转化为y=kx﹣1(k≠0)的形式,特别注意不要忽略k≠0这个条件.14.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵袋子中共有7个球,其中红球有3个,∴从袋子中随机取出1个球,它是红球的概率是,故答案为:.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15.【分析】先解方程求出方程的根,再确定等边三角形的边长,然后求等边三角形的周长.【解答】解:x2﹣3x﹣10=0,(x﹣5)(x+2)=0,即x﹣5=0或x+2=0,∴x1=5,x2=﹣2.因为方程x2﹣3x﹣10=0的根是等边三角形的边长,所以等边三角形的边长为5.所以该三角形的周长为:5×3=15.故答案为:15.【点评】本题考查了一元二次方程的解法、等边三角形的周长等知识点.求出方程的解是解决本题的关键.16.【分析】根据平行线得出△ADE∽△ABC,根据相似得出比例式,代入求出即可.【解答】解:∵AD=3,DB=2,∴AB=AD+DB=5,∵DE∥BC,∴△ADE∽△ABC,∴,∵AD=3,AB=5,BC=6,∴,∴DE=3.6.故答案为:3.6.【点评】本题考查了相似三角形的性质和判定,关键是求出相似后得出比例式,题目比较典型,难度适中.17.【分析】根据二次函数的最大值公式列出方程计算即可得解.【解答】解:由题意得,=3,整理得,a2﹣3a﹣4=0,解得a1=4,a2=﹣1,∵二次函数有最大值,∴a<0,∴a=﹣1.故答案为:﹣1.【点评】本题考查了二次函数的最值,易错点在于要考虑a的正负情况.18.【分析】根据圆周角定理得到∠ACB=90°,然后利用勾股定理可计算出BC,根据圆周角定理得到∠ADB=90°,再根据角平分线定义得∠ACD=∠BCD,则AD=BD,于是可判断△ABD为等腰直角三角形,然后根据等腰直角三角形的性质求出BD,作BH⊥CD于H,如图,证明△BCH 为等腰直角三角形得到BH=CH=BC=4,再利用勾股定理计算出DH=3,从而计算CH+DH即可.【解答】解:∵AB为⊙O的直径,∴∠ACB=90°,在Rt△ACB中,AB=10,AC=6,∴BC==8;∵AB为⊙O的直径,∴∠ADB=90°,∵∠ACB的平分线交⊙O于D,∴∠ACD=∠BCD,∴AD=BD,∴△ABD为等腰直角三角形,∴BD=AB=5;作BH⊥CD于H,如图,∵∠BCH=45°,∴△BCH为等腰直角三角形,∴BH=CH=BC=4,在Rt△BDH中,DH==3,∴CD=CH+DH=4+3=7,故答案为:8,7.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.考查了等腰直角三角形的判定与性质以及勾股定理.三、解答题(本大题共7小题,共66分,解答应写出文字说明、滨其步成推理过程)19.【分析】(Ⅰ)令m=0,用公式法求出一元二次方程的根即可;(Ⅱ)根据方程有两个不相等的实数根,计算根的判别式得关于m的不等式,求解不等式即可.【解答】解:(Ⅰ)当m=0时,方程为x2+x﹣1=0.△=12﹣4×1×(﹣1)=5>0.∴x=,∴x1=,x2=.(Ⅱ)∵方程有两个不相等的实数根,∴△>0即(﹣1)2﹣4×1×(m﹣1)=1﹣4m+4=5﹣4m>0∵5﹣4m>0∴m<.【点评】本题考查了一元二次方程的解法、根的判别式.一元二次方程根的判别式△=b2﹣4ac.20.【分析】(Ⅰ)根据题意可画出树状图,由树状图即可求得所有可能的结果.(Ⅱ)根据树状图,即可求得两次取出的小球标号相同的情况,然后利用概率公式求解即可求得答案.(Ⅲ)根据树状图,即可求得两次取出的小球标号的和大于6的情况,然后利用概率公式求解即可求得答案.【解答】解:(Ⅰ)画树状图得:(Ⅱ)∵共有16种等可能的结果,两次取出的小球的标号相同的有4种情况,∴两次取出的小球标号相同的概率为=;(Ⅲ)∵共有16种等可能的结果,两次取出的小球标号的和大于6的有3种结果,∴两次取出的小球标号的和大于6的概率为.【点评】此题考查了列表法与树状图法求概率的知识.此题难度不大,解题的关键是注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.21.【分析】(Ⅰ)依据一次函数,求得B(﹣2,5),代入反比例函数y=,可得反比例函数的解析式;(Ⅱ)依据当x=2时,y=﹣5;当x=5时,y=﹣2,即可得到函数值y的取值范围为﹣5<y<﹣2;(Ⅲ)依据一次函数,即可得到A(0,1),进而得到△AOB的面积.【解答】解:(Ⅰ)在y=﹣2x+1中,令y=5,则x=﹣2,∴B(﹣2,5),代入反比例函数y=,可得k=﹣2×5=﹣10,∴反比例函数的解析式为,其图象在第二四象限;(Ⅱ)当2<x<5时,反比例函数的函数值随着x的增大而增大,当x=2时,y=﹣5;当x=5时,y=﹣2,∴函数值y的取值范围为﹣5<y<﹣2;(Ⅲ)当x=0时,y=﹣2x+1=1,∴A(0,1),∴OA=1,∴S=OA•|x B|=×1×2=1.△AOB【点评】本题考查了用待定系数法求反比例函数的解析式,反比例函数与一次函数的交点问题,三角形的面积的综合运用,主要考查学生能否熟练的运用这些性质进行计算和推理,通过做此题培养了学生的计算能力.22.【分析】(Ⅰ)根据等边三角形的性质,利用SAS证得△ABD≌△BCE;(Ⅱ)由△ABD≌△BCE得∠BAD=∠CBE,又∠ABC=∠BAC,可证∠ABE=∠EAF,又∠AEF =∠BEA,由此可以证明△AEF∽△BEA;(Ⅲ)根据相似三角形的性质解答即可.【解答】解:(Ⅰ)∵△ABC是等边三角形,∴AB=BC,∠ABD=∠BCE,在△ABD与△BCE中,∴△ABD≌△BCE(SAS);(Ⅱ)由(1)得:∠BAD=∠CBE,又∵∠ABC=∠BAC,∴∠ABE=∠EAF,又∵∠AEF=∠BEA,∴△AEF∽△BEA;(Ⅲ)∵∠BAD=∠CBE,∠BDA=∠FDB,∴△ABD∽△BDF,∴,∴BD2=AD•DF=(AF+DF)•DF=8,∴BD=2.【点评】本题考查相似三角形的判定和性质,关键是利用了等边三角形的性质和相似三角形的判定和性质求解,有一定的综合性.23.【分析】(Ⅰ)连接BE,根据三角形内角和可求∠BAC的度数,由圆周角定理可得∠AEB=90°,即可求∠ABE=∠ADE=15°;(Ⅱ)连接OA,OD,由切线的性质可得∠OAC=90°,根据同弧所对的圆心角是圆周角的2倍可得∠AOD=90°,由等腰三角形的性质可求∠OAD=∠DAC=45°,根据三角形内角和可求∠ADC的度数.【解答】解:(Ⅰ)如图,连接BE∵∠ABC=45°,∠C=60°,∴∠BAC=75°,∵AB是直径,∴∠AEB=90°,∴∠ABE=∠AEB﹣∠BAC=15°,∵∠ABE=∠ADE,∴∠ADE=15°,(Ⅱ)连接OA,OD,∵AC是⊙O的切线,∴∠OAC=90°,∵∠ABC=45°∴∠AOD=90°,且OA=OD∴∠OAD=45°∴∠DAC=∠OAC﹣∠DAO=45°,且∠C=60°∴∠ADC=75°【点评】本题考查了切线的性质,圆周角定理,三角形内角和定理,熟练运用这些性质进行推理是本题的关键.24.【分析】(Ⅰ)如图①,只要证明△AOA′是等边三角形即可;(Ⅱ)如图②,当α=90°,点A′在y轴上,作CH⊥OA′于H.解直角三角形求出BH,CH 即可解决问题;(Ⅲ)如图③,设A′B′交x轴于点K.首先证明A′B′⊥x轴,求出OK,A′K即可解决问题;【解答】解:(Ⅰ)如图①,∵A(﹣,0),B(0,1),∴OA=,OB=1,∴tan∠BAO==,∴∠BAO=30°,∠ABO=60°,∵△A′OB′是由△AOB旋转得到,∴∠B′=∠ABO=60°,OB=OB′,OA=OA′,∴∠OBB′=60°,∴∠BOB′=α=∠AOA′=60°,∴△AOA′是等边三角形,∴AA′=OA=.(Ⅱ)如图②,当α=90°,点A′在y轴上,作CH⊥OA′于H.∵∠A′B′O=60°,∠CAB′=30°,∴∠ACB′=90°,∵A′B=OA′﹣OB=﹣1,∠BA′C=30°,∴BC=A′B=,∵∠HBC=60°,∴BH=BC=,CH=BH=,∴OH=1+BH=,∴点C的坐标(,).(Ⅲ)如图③中,设A′B′交x轴于点K.当A′在AB上时,∵OA=OA′,∴∠OAA ′=∠AA ′O =30°,∵∠OA ′B ′=30°,∴∠AA ′K =60°,∴∠AKA ′=90°,∵OA ′=,∠OA ′K =30°,∴OK =OA ′=,A ′K =OK =, ∴A ′(,).【点评】本题属于三角形综合题,考查了解直角三角形,等边三角形的判定和性质,直角三角形30度角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 25.【分析】(1)由待定系数法建立二元一次方程组求出求出m 、n 的值即可;(2)由(1)的解析式求出顶点坐标,再由勾股定理求出CD 的值,再以点C 为圆心,CD 为半径作弧交对称轴于P 1,以点D 为圆心CD 为半径作圆交对称轴于点P 2,P 3,作CE 垂直于对称轴与点E ,由等腰三角形的性质及勾股定理就可以求出结论;(3)先求出BC 的解析式,设出E 点的坐标为(a ,﹣ a +2),就可以表示出F 的坐标,由四边形CDBF 的面积=S △BCD +S △CEF +S △BEF 求出S 与a 的关系式,由二次函数的性质就可以求出结论.【解答】解:(1)∵抛物线y =﹣x 2+mx +n 经过A (﹣1,0),C (0,2). 解得:,∴抛物线的解析式为:y =﹣x 2+x +2;(2)∵y =﹣x 2+x +2,∴y =﹣(x ﹣)2+,∴抛物线的对称轴是x =.∴OD =.∵C (0,2),∴OC =2.在Rt △OCD 中,由勾股定理,得CD =.∵△CDP 是以CD 为腰的等腰三角形,∴CP 1=DP 2=DP 3=CD .作CM ⊥x 对称轴于M ,∴MP 1=MD =2,∴DP 1=4.∴P 1(,4),P 2(,),P 3(,﹣);(3)当y =0时,0=﹣x 2+x +2∴x 1=﹣1,x 2=4,∴B (4,0). 设直线BC 的解析式为y =kx +b ,由图象,得,解得:,∴直线BC 的解析式为:y =﹣x +2.如图2,过点C 作CM ⊥EF 于M ,设E (a ,﹣ a +2),F (a ,﹣ a 2+a +2), ∴EF =﹣a 2+a +2﹣(﹣a +2)=﹣a 2+2a (0≤a ≤4).∵S 四边形CDBF =S △BCD +S △CEF +S △BEF =BD •OC +EF •CM +EF •BN ,=+a (﹣a 2+2a )+(4﹣a )(﹣a 2+2a ),=﹣a 2+4a +(0≤a ≤4).=﹣(a ﹣2)2+ ∴a =2时,S 四边形CDBF 的面积最大=, ∴E (2,1).【点评】本题考查了待定系数法求一次函数的解析式的运用,二次函数的解析式的运用,勾股定理的运用,等腰三角形的性质的运用,四边形的面积的运用,解答时求出函数的解析式是关键.。

天津市红桥区九年级(上)期末数学试卷

天津市红桥区九年级(上)期末数学试卷

九年级(上)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.下列说法正确的是()A. “打开电视机,正在播《都市报道60分》”是必然事件B. “从一个装有6个红球的不透明的袋中摸出一个球是红球”是随机事件C. “概率为0.0001的事件”是不可能事件D. “经过有交通信号灯的路口,遇到红灯”是随机事件2.下列图形中,可以看作是中心对称图形的是()A. B. C. D.3.如图,以A,B,C为顶点的三角形与以D,E,F为顶点的三角形相似,则这两个三角形的相似比为()A. 2:1B. 3:1C. 4:3D. 3:24.如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是()A. CM=DMB. CB=DBC. ∠ACD=∠ADCD. OM=MD5.若正方形的边长为6,则其外接圆的半径为()A. 3B. 32C. 6D. 626.如图,AB∥CD,AB=6,CD=9,AD=10,则OD的长为()A. 4B. 5C. 6D. 77.在半径为3的圆中,150°的圆心角所对的弧长是()A. 154πB. 152πC. 54πD. 52π8.如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于()A. 20∘B. 25∘C. 40∘D. 50∘9.若点A(x1,-6),B(x2,-2),C(x3,2)在反比例函数y=m2+1x(m为常数)的图象上,则x1,x2,x3的大小关系是()A. x1<x2<x3B. x2<x1<x3C. x2<x3<x1D. x3<x2<x110.已知一个直角三角形两直角边之和为20cm,则这个直角三角形的最大面积为()A. 25cm2B. 50cm2C. 100cm2D. 不确定11.如图,直线AB与半径为2的⊙O相切于点C,D是⊙O上一点,且∠EDC=30°,弦EF∥AB,则EF的长度为()A. 2B. 23C. 3D. 2212.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为()A. −3B. 3C. −6D. 9二、填空题(本大题共6小题,共18.0分)13.已知y=x m-1,若y是x的反比例函数,则m的值为______.14.不透明袋子中装有7个球,其中有3个红球,4个黄球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是______.15.一个等边三角形边长的数值是方程x2-3x-10=0的根,那么这个三角形的周长为______.16.如图,在△ABC中,DE∥BC,分别交AB,AC于点D、E.若AD=3,DB=2,BC=6,则DE的长为______.17.二次函数y=ax2+4x+a的最大值是3,则a的值是______.18.如图,⊙O的直径AB长为10,弦AC长为6,∠ACB的平分线交⊙O于点D,则BC的长为______,CD的长______.三、解答题(本大题共7小题,共66.0分)19.已知关于x的一元二次方程x2+x+m-1=0.(I)当m=0时,求方程的实数根.(Ⅱ)若方程有两个不相等的实数根,求实数m的取值范围.20.一个盒中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸取一个小球然后放回,再随机摸出一个小球.(Ⅰ)请用列表法(或画树状图法)列出所有可能的结果;(Ⅱ)求两次取出的小球标号相同的概率;(Ⅲ)求两次取出的小球标号的和大于6的概率.21.已知直线y=-2x+1与y轴交于点A,与反比例函数y=kx(k为常数)的图象有一个交点B的纵坐标是5.(Ⅰ)求反比例函数的解析式,并说明其图象所在的象限;(Ⅱ)当2<x<5时,求反比例函数的函数值y的取值范围;(Ⅲ)求△AOB的面积S.22.如图,△ABC是等边三角形,点D,E分别在BC,AC上,且BD=CE,AD与BE相交于点F,(Ⅰ)证明:△ABD≌△BCE;(Ⅱ)证明:△ABE∽△FAE;(Ⅲ)若AF=7,DF=1,求BD的长.23.在△ABC中,∠ABC=45°,∠C=60°,⊙O经过点A,B,与BC交于点D,连接AD.(Ⅰ)如图①.若AB是⊙O的直径,交AC于点E,连接DE,求∠ADE的大小.(Ⅱ)如图②,若⊙O与AC相切,求∠ADC的大小.24.在平面直角坐标系中,O为原点,点A(-3,0),点B(0,1)把△ABO绕点O顺时针旋转,得△A'B'O,点A,B旋转后的对应点为A',B',记旋转角为α(0°<α<360°).(Ⅰ)如图①,当点A′,B,B′共线时,求AA′的长.(Ⅱ)如图②,当α=90°,求直线AB与A′B′的交点C的坐标;(Ⅲ)当点A′在直线AB上时,求BB′与OA′的交点D的坐标(直接写出结果即可)25.如图,抛物线y=-12x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(-1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.答案和解析1.【答案】D【解析】解:“打开电视机,正在播《都市报道60分》”是随机事件,A错误;“一个不透明的袋中装有6个红球,从中摸出1个球是红球”是必然事件,B错误;“概率为0.0001的事件”是随机事件,C错误;“经过有交通信号灯的路口,遇到红灯”是随机事件,D正确,故选D.根据事件发生的可能性大小判断相应事件的类型即可.本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.【答案】A【解析】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:A.根据中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【答案】A【解析】解:∵以A,B,C为顶点的三角形与以D,E,F为顶点的三角形相似,∴,故选:A.根据相似三角形的性质解答即可.此题考查相似三角形的性质,关键是根据相似三角形的对应边之比即是相似比解答.4.【答案】D【解析】解:∵AB是⊙O的直径,弦CD⊥AB,垂足为M,∴M为CD的中点,即CM=DM,选项A成立;B为的中点,即=,选项B成立;在△ACM和△ADM中,∵,∴△ACM≌△ADM(SAS),∴∠ACD=∠ADC,选项C成立;而OM与MD不一定相等,选项D不成立.故选:D.由直径AB垂直于弦CD,利用垂径定理得到M为CD的中点,B为劣弧的中点,可得出A和B选项成立,再由AM为公共边,一对直角相等,CM=DM,利用SAS可得出三角形ACM与三角形ADM全等,根据全等三角形的对应角相等可得出选项C成立,而OM不一定等于MD,得出选项D不成立.此题考查了垂径定理,以及全等三角形的判定与性质,垂径定理为:垂直于弦的直径平分弦,且平分弦所对的弧,熟练掌握垂径定理是解本题的关键.5.【答案】B【解析】解:作OE⊥AD于E,连接OD,则AE=DE=3,OE=3.在Rt△ADE中,OD==3.故选:B.作OE⊥AD于E,连接OD,在Rt△ADE中,根据垂径定理和勾股定理即可求解.此题主要考查了正多边形和圆,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.6.【答案】C【解析】解:∵AB∥CD,∴△AOB∽△DOC,∴=,∵AB=6,CD=9,AD=10,∴=,∴OD=6,故选:C.根据相似三角形的判定和性质列比例式即可得到结论.本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.7.【答案】D【解析】解:=.故选:D.利用弧长公式可得.此题主要是利用弧长公式进行计算,学生要牢记公式.8.【答案】C【解析】解:如图,连接OA,∵AC是⊙O的切线,∴∠OAC=90°,∵OA=OB,∴∠B=∠OAB=25°,∴∠AOC=50°,∴∠C=40°.故选:C.连接OA,根据切线的性质,即可求得∠C的度数.本题考查了圆的切线性质,以及等腰三角形的性质,已知切线时常用的辅助线是连接圆心与切点.9.【答案】B【解析】解:∵反比例函数y=(m为常数),m2+1>0,∴在每个象限内,y随x的增大而减小,∵点A(x1,-6),B(x2,-2),C(x3,2)在反比例函数y=(m为常数)的图象上,-6<-2<0<2,∴x2<x1<x3,故选:B.根据反比例函数的性质,可以判断出x1,x2,x3的大小关系,本题得以解决.本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.10.【答案】B【解析】解:设一条直角边为x,则另一条为(20-x),∴S=x(20-x)=-(x-10)2+50,∵∴即当x=10时,S=×10×10=50cm2.最大故选:B.本题考查二次函数最大(小)值的求法.设一条直角边为x,则另一条为(20-x),则根据三角形面积公式即可得到面积S和x之间的解析式,求最值即可.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好,如y=-x2-2x+5,y=3x2-6x+1等用配方法求解比较简单.11.【答案】B【解析】解:连接OE和OC,且OC与EF的交点为M.∵∠EDC=30°,∴∠COE=60°.∵AB与⊙O相切,∴OC⊥AB,又∵EF∥AB,∴OC⊥EF,即△EOM为直角三角形.在Rt△EOM中,EM=sin60°×OE=×2=,∵EF=2EM,∴EF=.故选:B.作辅助线,连接OC与OE.根据一条弧所对的圆周角等于它所对的圆心角的一半,可知∠EOC的度数;再根据切线的性质定理,圆的切线垂直于经过切点的半径,可知OC⊥AB;又EF∥AB,可知OC⊥EF,最后由勾股定理可将EF的长求出.本题主要考查切线的性质及直角三角形的勾股定理.12.【答案】B【解析】解:(法1)∵抛物线的开口向上,顶点纵坐标为-3,∴a>0,=-3,即b2=12a,∵一元二次方程ax2+bx+m=0有实数根,∴△=b2-4am≥0,即12a-4am≥0,即12-4m≥0,解得m≤3,∴m的最大值为3.(法2)一元二次方程ax2+bx+m=0有实数根,可以理解为y=ax2+bx和y=-m有交点,可见-m≥-3,∴m≤3,∴m的最大值为3.故选:B.先根据抛物线的开口向上可知a>0,由顶点纵坐标为-3得出b与a关系,再根据一元二次方程ax2+bx+m=0有实数根可得到关于m的不等式,求出m的取值范围即可.本题考查的是抛物线与x轴的交点,根据题意判断出a的符号及a、b的关系是解答此题的关键.13.【答案】0【解析】解:∵y=x m-1是反比例函数,∴m-1=-1,解得m=0.故答案为:0.根据反比例函数的一般式是(k≠0)或y=kx-1(k≠0),即可求解.本题考查了反比例函数的一般形式(k≠0),也可转化为y=kx-1(k≠0)的形式,特别注意不要忽略k≠0这个条件.14.【答案】37【解析】解:∵袋子中共有7个球,其中红球有3个,∴从袋子中随机取出1个球,它是红球的概率是,故答案为:.根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15.【答案】15【解析】解:x2-3x-10=0,(x-5)(x+2)=0,即x-5=0或x+2=0,∴x1=5,x2=-2.因为方程x2-3x-10=0的根是等边三角形的边长,所以等边三角形的边长为5.所以该三角形的周长为:5×3=15.故答案为:15.先解方程求出方程的根,再确定等边三角形的边长,然后求等边三角形的周长.本题考查了一元二次方程的解法、等边三角形的周长等知识点.求出方程的解是解决本题的关键.16.【答案】3.6【解析】解:∵AD=3,DB=2,∴AB=AD+DB=5,∵DE∥BC,∴△ADE∽△ABC,∴,∵AD=3,AB=5,BC=6,∴,∴DE=3.6.故答案为:3.6.根据平行线得出△ADE∽△ABC,根据相似得出比例式,代入求出即可.本题考查了相似三角形的性质和判定,关键是求出相似后得出比例式,题目比较典型,难度适中.17.【答案】-1【解析】解:由题意得,=3,整理得,a2-3a-4=0,解得a1=4,a2=-1,∵二次函数有最大值,∴a<0,∴a=-1.故答案为:-1.根据二次函数的最大值公式列出方程计算即可得解.本题考查了二次函数的最值,易错点在于要考虑a的正负情况.18.【答案】8 72【解析】解:∵AB为⊙O的直径,∴∠ACB=90°,在Rt△ACB中,AB=10,AC=6,∴BC==8;∵AB为⊙O的直径,∴∠ADB=90°,∵∠ACB的平分线交⊙O于D,∴∠ACD=∠BCD,∴AD=BD,∴△ABD为等腰直角三角形,∴BD=AB=5;作BH⊥CD于H,如图,∵∠BCH=45°,∴△BCH为等腰直角三角形,∴BH=CH=BC=4,在Rt△BDH中,DH==3,∴CD=CH+DH=4+3=7,故答案为:8,7.根据圆周角定理得到∠ACB=90°,然后利用勾股定理可计算出BC,根据圆周角定理得到∠ADB=90°,再根据角平分线定义得∠ACD=∠BCD,则AD=BD,于是可判断△ABD为等腰直角三角形,然后根据等腰直角三角形的性质求出BD,作BH⊥CD于H,如图,证明△BCH为等腰直角三角形得到BH=CH= BC=4,再利用勾股定理计算出DH=3,从而计算CH+DH即可.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.考查了等腰直角三角形的判定与性质以及勾股定理.19.【答案】解:(Ⅰ)当m=0时,方程为x2+x-1=0.△=12-4×1×(-1)=5>0.∴x=−1±52×1,∴x1=−1+52,x2=−1−52.(Ⅱ)∵方程有两个不相等的实数根,∴△>0即(-1)2-4×1×(m-1)=1-4m+4=5-4m>0∵5-4m>0∴m<54.【解析】(Ⅰ)令m=0,用公式法求出一元二次方程的根即可;(Ⅱ)根据方程有两个不相等的实数根,计算根的判别式得关于m的不等式,求解不等式即可.本题考查了一元二次方程的解法、根的判别式.一元二次方程根的判别式△=b2-4ac.20.【答案】解:(Ⅰ)画树状图得:(Ⅱ)∵共有16种等可能的结果,两次取出的小球的标号相同的有4种情况,∴两次取出的小球标号相同的概率为416=14;(Ⅲ)∵共有16种等可能的结果,两次取出的小球标号的和大于6的有3种结果,∴两次取出的小球标号的和大于6的概率为316.【解析】(Ⅰ)根据题意可画出树状图,由树状图即可求得所有可能的结果.(Ⅱ)根据树状图,即可求得两次取出的小球标号相同的情况,然后利用概率公式求解即可求得答案.(Ⅲ)根据树状图,即可求得两次取出的小球标号的和大于6的情况,然后利用概率公式求解即可求得答案.此题考查了列表法与树状图法求概率的知识.此题难度不大,解题的关键是注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.21.【答案】解:(Ⅰ)在y=-2x+1中,令y=5,则x=-2,∴B(-2,5),代入反比例函数y=kx,可得k=-2×5=-10,∴反比例函数的解析式为y=−10x,其图象在第二四象限;(Ⅱ)当2<x<5时,反比例函数的函数值随着x的增大而增大,当x=2时,y=-5;当x=5时,y=-2,∴函数值y的取值范围为-5<y<-2;(Ⅲ)当x=0时,y=-2x+1=1,∴A(0,1),∴OA=1,∴S△AOB=12OA•|x B|=12×1×2=1.【解析】(Ⅰ)依据一次函数,求得B(-2,5),代入反比例函数y=,可得反比例函数的解析式;(Ⅱ)依据当x=2时,y=-5;当x=5时,y=-2,即可得到函数值y的取值范围为-5<y<-2;(Ⅲ)依据一次函数,即可得到A(0,1),进而得到△AOB的面积.本题考查了用待定系数法求反比例函数的解析式,反比例函数与一次函数的交点问题,三角形的面积的综合运用,主要考查学生能否熟练的运用这些性质进行计算和推理,通过做此题培养了学生的计算能力.22.【答案】解:(Ⅰ)∵△ABC是等边三角形,∴AB=BC,∠ABD=∠BCE,在△ABD与△BCE中AB=BC∠ABC=∠BAC=∠C=60°BD=CE,∴△ABD≌△BCE(SAS);(Ⅱ)由(1)得:∠BAD=∠CBE,又∵∠ABC=∠BAC,∴∠ABE=∠EAF,又∵∠AEF=∠BEA,∴△AEF∽△BEA;(Ⅲ)∵∠BAD=∠CBE,∠BDA=∠FDB,∴△ABD∽△BDF,∴ADBD=BDDF,∴BD2=AD•DF=(AF+DF)•DF=8,∴BD=22.【解析】(Ⅰ)根据等边三角形的性质,利用SAS证得△ABD≌△BCE;(Ⅱ)由△ABD≌△BCE得∠BAD=∠CBE,又∠ABC=∠BAC,可证∠ABE=∠EAF,又∠AEF=∠BEA,由此可以证明△AEF∽△BEA;(Ⅲ)根据相似三角形的性质解答即可.本题考查相似三角形的判定和性质,关键是利用了等边三角形的性质和相似三角形的判定和性质求解,有一定的综合性.23.【答案】解:(Ⅰ)如图,连接BE∵∠ABC=45°,∠C=60°,∴∠BAC=75°,∵AB是直径,∴∠AEB=90°,∴∠ABE=∠AEB-∠BAC=15°,∵∠ABE=∠ADE,(Ⅱ)连接OA,OD,∵AC是⊙O的切线,∴∠OAC=90°,∵∠ABC=45°∴∠AOD=90°,且OA=OD∴∠OAD=45°∴∠DAC=∠OAC-∠DAO=45°,且∠C=60°∴∠ADC=75°【解析】(Ⅰ)连接BE,根据三角形内角和可求∠BAC的度数,由圆周角定理可得∠AEB=90°,即可求∠ABE=∠ADE=15°;(Ⅱ)连接OA,OD,由切线的性质可得∠OAC=90°,根据同弧所对的圆心角是圆周角的2倍可得∠AOD=90°,由等腰三角形的性质可求∠OAD=∠DAC=45°,根据三角形内角和可求∠ADC的度数.本题考查了切线的性质,圆周角定理,三角形内角和定理,熟练运用这些性质进行推理是本题的关键.24.【答案】解:(Ⅰ)如图①,∵A(-3,0),B(0,1),∴OA=3,OB=1,∴tan∠BAO=OBOA=33,∴∠BAO=30°,∠ABO=60°,∵△A′OB′是由△AOB旋转得到,∴∠B′=∠ABO=60°,OB=OB′,OA=OA′,∴∠OBB′=60°,∴∠BOB′=α=∠AOA′=60°,∴△AOA′是等边三角形,(Ⅱ)如图②,当α=90°,点A′在y轴上,作CH⊥OA′于H.∵∠A′B′O=60°,∠CAB′=30°,∴∠ACB′=90°,∵A′B=OA′-OB=3-1,∠BA′C=30°,∴BC=12A′B=3−12,∵∠HBC=60°,∴BH=12BC=3−14,CH=3BH=3−34,∴OH=1+BH=3+34,∴点C的坐标(3−34,3+34).(Ⅲ)如图③中,设A′B′交x轴于点K.当A′在AB上时,∵OA=OA′,∴∠OAA′=∠AA′O=30°,∵∠OA′B′=30°,∴∠AA′K=60°,∴∠AKA′=90°,∵OA′=3,∠OA′K=30°,∴OK=12OA′=32,A′K=3OK=32,∴A′(32,32).【解析】(Ⅰ)如图①,只要证明△AOA′是等边三角形即可;(Ⅱ)如图②,当α=90°,点A′在y轴上,作CH⊥OA′于H.解直角三角形求出BH,CH即可解决问题;(Ⅲ)如图③,设A′B′交x轴于点K.首先证明A′B′⊥x轴,求出OK,A′K即可解决问题;本题属于三角形综合题,考查了解直角三角形,等边三角形的判定和性质,直角三角形30度角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.【答案】解:(1)∵抛物线y=-12x2+mx+n经过A(-1,0),C(0,2).解得:m=32n=2,∴抛物线的解析式为:y=-12x2+32x+2;(2)∵y=-12x2+32x+2,∴y=-12(x-32)2+258,∴抛物线的对称轴是x=32.∴OD=32.∵C(0,2),∴OC=2.在Rt△OCD中,由勾股定理,得CD=52.∵△CDP是以CD为腰的等腰三角形,∴CP1=DP2=DP3=CD.作CM⊥x对称轴于M,∴MP1=MD=2,∴DP1=4.∴P1(32,4),P2(32,52),P3(32,-52);(3)当y=0时,0=-12x2+32x+2∴x1=-1,x2=4,∴B(4,0).设直线BC的解析式为y=kx+b,由图象,得2=b0=4k+b,解得:k=−12b=2,∴直线BC的解析式为:y=-12x+2.如图2,过点C作CM⊥EF于M,设E(a,-12a+2),F(a,-12a2+32a+2),∴EF=-12a2+32a+2-(-12a+2)=-12a2+2a(0≤a≤4).∵S四边形CDBF=S△BCD+S△CEF+S△BEF=12BD•OC+12EF•CM+12EF•BN,=12×52×2+12a(-12a2+2a)+12(4-a)(-12a2+2a),=-a2+4a+52(0≤a≤4).=-(a-2)2+132∴a=2时,S四边形CDBF的面积最大=132,∴E(2,1).【解析】(1)由待定系数法建立二元一次方程组求出求出m、n的值即可;(2)由(1)的解析式求出顶点坐标,再由勾股定理求出CD的值,再以点C为圆心,CD为半径作弧交对称轴于P1,以点D为圆心CD为半径作圆交对称轴于点P2,P3,作CE垂直于对称轴与点E,由等腰三角形的性质及勾股定理就可以求出结论;(3)先求出BC的解析式,设出E点的坐标为(a,-a+2),就可以表示出F的坐标,由四边形CDBF的面积=S△BCD+S△CEF+S△BEF求出S与a的关系式,由二次函数的性质就可以求出结论.本题考查了待定系数法求一次函数的解析式的运用,二次函数的解析式的运用,勾股定理的运用,等腰三角形的性质的运用,四边形的面积的运用,解答时求出函数的解析式是关键.。

2018-2019学年天津市部分区九年级(上)期末数学试卷

2018-2019学年天津市部分区九年级(上)期末数学试卷

2018-2019学年天津市部分区九年级(上)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列方程中是关于x的一元二次方程的是()A.x2++1=0B.ax2+bx+c=0C.(x﹣2)(x+3)=1D.2x2﹣2xy+y2=02.(3分)下列事件中,是必然事件的是()A.掷一次骰子,向上一面的点数是6B.经过有交通信号灯的路口,遇到红灯C.任意画一个三角形,其内角和是180°D.射击运动员射击一次,命中靶心3.(3分)在下列四个图案中,既是轴对称图形,又是中心对称图形是()A.B.C.D.4.(3分)关于x的一元二次方程x2+(k+1)x+k﹣2=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断5.(3分)同时抛两个硬币,两个都正面向上的概率是()A.B.C.D.6.(3分)二次函数y=x2+4x+5的图象可以由二次函数y=x2的图象平移而得到,下列平移正确的是()A.先向右平移2个单位,再向上平移1个单位B.先向右平移2个单位,再向下平移1个单位C.先向左平移2个单位,再向上平移1个单位D.先向左平移2个单位,再向下平移1个单位7.(3分)圆锥的底面面积为16πcm2,母线长为6cm,则这个圆锥的侧面积为()A.24cm2B.24πcm2C.48cm2D.48πcm28.(3分)一次会议上,每两个参加会议的人互相握了一次手,有人统计一共握了45次手,如果这次会议到会的人数为x人,根据题意可列方程为()A.x(x+1)=45B.x(x﹣1)=45C.2x(x+1)=45D.x(x﹣1)=45×29.(3分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D.若∠DCA=55°,则∠CAO的度数为()A.25°B.35°C.45°D.55°10.(3分)一个不透明的盒子里有几个除颜色外其他完全相同的小球,其中有6个红球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子里,通过大量重复摸球实验后发现,摸到红球的频率稳定在30%,那么估计盒子中小球的个数n为()A.15B.18C.20D.2411.(3分)半径相等的圆的内接正三角形、正方形、正六边形的边长之比为()A.1::B.::1C.3:2:1D.1:2:312.(3分)从如图所示的二次函数y=ax2+bx+c的图象中,观察得出下面五条信息:①c<0;②abc>0;③a+b+c>0;④2a+3b=0;⑤c﹣8b>0.你认为其中正确信息的个数为()A.2个B.3个C.4个D.5个二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)关于x的一元二次方程(m﹣3)x2+x+m2﹣9=0有一根为0,则m的值为.14.(3分)已知点P关于x轴的对称点为P1(2,3),那么点P关于原点的对称点P2的坐标是.15.(3分)小明在一次班会中参与知识抢答活动,现有语文题4个,数学题5个,综合题11个,搅匀后从中随机抽取1个题,他抽中综合题的概率是.16.(3分)如图,在⊙O中,弦AB、CD相交于点P,∠A=40°,∠CPB=70°,则∠B 的大小为(度)17.(3分)如图,AB为⊙O的直径,P为AB延长线上的一点,PC切⊙O于点C,PC=6,PB=3,则⊙O的直径等于.18.(3分)如图,在正方形ABCD中,AD=1,将△ABD绕点B顺时针旋转45°得到△A′BD′,此时A′D′与CD交于点E,则DE的长度为.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.(8分)如图,P A、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠BAC=20°,求∠P的度数.20.(8分)某市为响应国家“退耕还林”的号召,改变水土流失严重现状,2016年某地区退耕还林1200亩,计划2018年退耕还林1728亩.求这两年平均每年退耕还林的增长率.21.(10分)在一个口袋中有4个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸取一个小球然后放回,再随机地摸出一个小球,请画树状图或列表求下列事件的概率:(1)两次取出的小球的标号相同;(2)两次取出的小球的标号的和等于6.22.(10分)如图,在⊙O中,点C为的中点,∠ACB=120°,OC的延长线与AD交于点D,且∠D=∠B.(1)求证:AD与⊙O相切;(2)若CE=4,求弦AB的长.23.(10分)某宾馆有50个房间供游客居住,当每个房间每天的定价为160元时,房间会全部住满;当每个房间每天定价每增加10元时,就会有一个房间空闲,如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用,房价定为多少时,宾馆利润最大?并求出一天的最大利润是多少?24.(10分)已知抛物线y=ax2+bx+2经过A、B、C三点,当x≥0时,其图象如图所示.(1)求抛物线解析式并写出抛物线的顶点坐标;(2)画出抛物线y=ax2+bx+2当x<0时的图象;(3)利用抛物线y=ax2+bx+2,写出x为何值时,y>0.25.(10分)已知AB是⊙O的直径,点C是OA的中点,CD⊥OA交⊙O于点D,连接OD.(1)如图①,求∠AOD的度数;(2)如图②,PD切⊙O于点D,交BA的延长线于点P,过点A作AE∥PD交⊙O于点E,交DO于点F,若⊙O的半径为4,求AE的长.。

2017~2018学年天津红桥区初三上学期期末化学试卷

2017~2018学年天津红桥区初三上学期期末化学试卷

第Ⅰ卷(选择题 共2大题 共30分)相对原子质量 H-1 O-16 Na-23 C-12 Cu-64 Fe-56 Mg-24 Zn-65 N-14 S-32选择题(本大题共10小题,共20分。

每小题给出的四个选项中。

只有一个最符合题意。

)1.A.B.C.D.第 个世界地球日,主题是“节约集约利用资源,倡导绿色简约生活”。

下列做法不宜提倡的是( )少开私家车多采用公共交通工具出行对废旧金属进行回收利用经常使用一次性筷子,塑料袋等开发和利用太阳能、风能、地热能、潮汐能、核能等,减少对化石能源的依赖472.A.苹果汁和葡萄汁均显酸性 B.鸡蛋清和牛奶均显碱性C.苹果汁比葡萄汁的酸性强D.胃酸过多的人应少饮苹果汁和葡萄汁一些食物的近似 如下:食物葡萄汁苹果汁牛奶鸡蛋清下列说法中不正确的是( )pH pH3.5∼4.52.9∼3.36.3∼6.67.6∼8.03.A.称量固体氢氯化钠 B.测溶液 C.过滤 D.稀释浓硫酸下图所示实验操作,正确的是( )pH 4.A.B.C.D.下列有关燃烧和灭火的说法不合理的是( )炒菜时油锅里的油着火,可用锅盖盖灭降低可燃物的着火点是灭火的一条途径煤矿矿井、大米加工厂、加油站等场所应严禁烟火钻木取火是因为摩擦生热,使温度达到了可燃物的着火点5.A.熟石灰、氧化钙、 B.水银、银、C.石灰水、氢氧化钙、 D.烧碱、氢氧化钠、下列各组物质的俗名、化学名称及化学式对应关系正确的是( )CaO AgCa(OH)2NaOH6.A.使用乙醇汽油可节省石油资源 B.静置后乙醇汽油会出现分层现象C.一个乙醇分子由 个原子构成D.乙醇中碳氢元素的质量比为 将适量乙醇()完全溶解于汽油中可作为汽车燃料,简称乙醇汽油。

下列有关说法不正确的是( )OH C 2H 594:17.A.B.C.D.下列关于溶液说法正确的是( )将氯化钠和植物油放入水中,充分搅拌后都能形成溶液把 的蔗糖溶液均分成两份,每份溶液的溶质质量分为 向 时的蔗糖饱和溶液中加入食盐,食盐不再溶解配制 的氯化钠溶液一般经过计算、称量(或量取)、溶解、装瓶存放等步骤20%10%20C ∘50 g 16%8.A.B.C.D.如图是甲、乙两种固体物质(不含结晶水)的溶解度曲线,下列说法正确的是( )甲的溶解度大于乙的溶解度时,甲、乙的饱和溶液升温至 时,均有固体析出 时, 点对应的甲溶液不饱和 时,乙饱和溶液的质量分数为 C a 1∘C a 2∘C a 2∘M C a 2∘20%9.A.B.C.D.化学世界绚丽多彩,下列实验中有关颜色的描述不正确的是( )硫粉在氧气中燃烧出现蓝紫色火焰将铁钉加入到稀硫酸中,溶液由无色变为黄色对木炭和氧化铜的粉末加强热会出现红色物质将铜片放入硝酸银溶液,溶液由无色变为蓝色10.A.B.C.化学小组为探究铝、铜、银三种金属的活动性顺序,设计了下图所示实验方案,下列说法不正确的是( )由实验甲可知金属活动性: 由实验乙可知金属活动性: 由实验甲、乙、丙可知金属活动性: Al >Cu Cu >AgAl >Cu >Ag选择题(本大题共5小题,每小题2分,共10分。

天津市红桥区2018届九年级数学上学期期末考试试题(扫描版 含答案)新人教版

天津市红桥区2018届九年级数学上学期期末考试试题(扫描版 含答案)新人教版

∴△ CAE ≌△ BAF (SAS), ∴ CE BF 6 ; ②由(Ⅰ)可知 AE BC , 所以,在△ AEF 绕点 A 逆时针旋转过程中,点 E 经过的路径(圆弧)与过点 C 且与 AB 平行的直线
l 相交于点 M 、 N ,如图,
………………………………………… 6 分
…………………………………… 2 分
49 5
三、解答题:本大题共 6 个小题,共 60 分. (21)(本小题满分 10 分) 解:(Ⅰ)如图所示:
开始


绿
红 黄 绿
红 黄 绿
红 黄 绿
(红,红),(红,黄),(红,绿),(黄,红),(黄,黄), (黄,绿),(绿,红),(绿,黄),(绿,绿) 共 9 种情况; 列表法略 (Ⅱ) P (甲获胜)
∵ B DAE ,∴△ ABC ∽△ DAE ; (Ⅱ)解:∵△ ABC ∽△ DAE ,∴ ∵ AB 8 , AD 6 , AE 4 ,∴ ∴ BC
16 . 3 BC BA , AE AD
………………………………………… 4 分
BC 8 . 4 6
…………………………………………… 8 分 ……………………………………… 10 分
当点 E 的像 E 与点 M 重合时,四边形 ABCM 是等腰梯形, 所以, BAM ABC 72 , 又∵ BAC 36 , ∴ CAM 36 ; 当点 E 的像 E 与点 N 重合时, ∵ CE ∥ AB ,∴ AMN BAM 72 ,
参考答案 一、选择题:本大题共 12 个小题,每小题 3 分,共 36 分. (1)D (7)A (2)B (8)B (3)A (9)D (4)D (10)A (5)C (11)C (6)D (12)B

天津市部分地区2019-2018学年度第一学期期末试卷九年级数学(高清版,附答案)

天津市部分地区2019-2018学年度第一学期期末试卷九年级数学(高清版,附答案)

天津市部分地区2019-2018学年度第一学期期末试卷九年级数学(高清版,附答案)九年级数学参考答案一、选择题(每小题3分;共36分)二、填空题(每小题3分;共18分)13. -4 ; 14.(3;-2); 15.12; 16.65 ; 17.20个; 18.1或6或11或26 (注:答对1或2个的给1分;答对3个的给2分;答对4个的给3分)19.(1) 解:移项;得x 2﹣8x= -1;配方;得 x 2﹣8x+ 42= -1+42即(x-4)2 =15 . ............................................2分∴ x ﹣∴ x 1 x 2=4 .............................................4分(2)解: 因式分解;得(x-3)(x+1)=0 ............................................1分于是得 x-3=0 , 或x+1=0 ............................................2分∴x 1=3;x 2= -1. .............................................4分20.解:(1)△A′BC′如图所示; .............................................3分(2)∵BC′=BC=4,∠CBC′=90º∴= .............................................5分(3)点A 经过的路径为以点B 为圆心;AB 为半径的圆弧;路径长即为弧长;∵5=;∠ABA′=90º .................6分∴'AA 的长为:180n r π=90551802ππ⨯⨯=; 即点A 经过的路径长为52π. ...................8分 21.(1)设每公顷水稻产量的年平均增长率为x ; ............................................1分根据题意;得 7200(1+x )2=8712 ............................................4分解得:x 1=0.1;x 2=﹣2.1(不合题意;舍去) ............................................6分答:年平均增长率为10%; ............................................7分(2)由题意;得8712(1+0.1)=9583.2(kg )因为 9583.2<10000 ............................................9分 所以;2016年该村水稻产量不能达到10000kg . ...........................................10分22.解:如图;连接OD ............................................1分 ∵AB 是⊙O 的直径∴∠ACB=∠ADB= 90°;............................................3分 在Rt △ABC 中; BC=22222012AB AC -=-=16(cm)............................................5分 ∵CD 平分∠ACB ;∴∠ACD=∠BCD,∴∠AOD=∠BOD.∴AD=BD...........................................7分 又 在Rt △ABD 中;222AD BD AB +=∴ AD=BD=22AB =22×20=102(cm )............................................10分23.解:(1)同学甲的方案不公平.............................................1分理由如下:开始第一次 红1 红2 白 蓝第二次 红2 白 蓝 红1 白 蓝 红1 红2 蓝 红1 红2 白............................5分由树状图可以看出;所有可能出现的结果共有12种;即:红1 红1 红1 红2 红2 红2 白 白 白 蓝 蓝 蓝红2 白 蓝 红1 白 蓝 红1 红2 蓝 红1 红2 白这些结果出现的可能性相等. 其中摸到“一红一白”的有4种;摸到“一白一蓝”的有2种;故小刚获胜的概率为41=123;小明获胜的概率为21=126............................................7分 两人获胜的概率不相同;所以该方案不公平 .......................................8分(2)拿出一个红球或放进一个蓝球;其他不变 (答案不唯一) ...............................10分24.解:(1)直线DM 与⊙O 相切 ............................................1分证明:连接OD , ............................................2分 ∵OB=OD∴∠B=∠ODB ............................................3分∵AB=AC∴∠B=∠C ............................................4分∴∠ODB =∠C∴OD ∥AC ............................................5分又∵DM ⊥AC∴DM ⊥OD∴DM 与OD 相切 ............................................6分(2)连接OE 交AB 于点H ...........................................7分∵E 是AB 的中点;AB=24∴OE ⊥AB, AH=12AB=12 ...........................................8分 连接OA, 设⊙O 的半径为x ...........................................9分由EH=8;则OH=x-8在RtΔOAH 中;根据勾股定理得 222(8)12x x -+=解得x=13 ∴⊙O 的半径为13. ......................................10分图1 图225.解:(1)把A (﹣2;0);C (0;2)代入y=﹣x 2+mx+n ;得0422m n n =--+⎧⎨=⎩;解得12m n =-⎧⎨=⎩. 故该抛物线的解析式为:y=﹣x 2﹣x+2. ............................................3分(2)由(1)知;该抛物线的解析式为y=﹣x 2﹣x+2;则易得B (1;0).∵S △AOM =2S △BOC ; ∴12AO ⨯︱y M ︳=122BO CO ⨯⨯⨯ ∴×2×|﹣x 2﹣x+2|=2××1×2. ............................................4分 整理;得x 2+x=0或x 2+x ﹣4=0;解得x=0或 x=﹣1或117-± .............................6分 则符合条件的点M 的坐标为:(0;2)或(-1;2)或(1172-+;-2)或(1172-;-2). ..........................................7分(3)设直线AC 的解析式为y=kx+b ;将A (﹣2;0);C (0;2)代入;得202k b b -+=⎧⎨=⎩; 解得12k b =⎧⎨=⎩.即直线AC 的解析式为y=x+2. ............................................8分 设N 点坐标为(x ;x+2);(﹣2≤x≤0);则D 点坐标为(x ;﹣x 2﹣x+2);ND=(﹣x 2﹣x+2)﹣(x+2)=﹣x 2﹣2x=﹣(x+1)2+1;∴当x=﹣1时;ND有最大值1............................................10分。

天津市红桥区2018年秋季九年级期末数学摸拟试题含答案

天津市红桥区2018年秋季九年级期末数学摸拟试题含答案

天津市红桥区2018年秋季九年级期末数学摸拟试题含答案一.选择题(共10小题,满分30分)1.如果2x=3y(x,y均不为0),那么下列各式中正确的是()A.=3 B.=C.=D.=2.已知一次函数y1=kx+b(k≠0)与反比例函数y2=(m>0)的图象如图所示,则当y1>y2时,自变量x满足的条件是()A.1<x<3 B.1≤x≤3C.x>1 D.x<33.如图,∠1的正切值为()A.B.C.3 D.24.如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,点D的对称点F恰好落在BC上,已知折痕AE=10cm,且tan∠EFC=,那么该矩形的周长为()A.72cm B.36cm C.20cm D.16cm5.在下列网格中,小正方形的边长为1,点A、B、O都在格点上,则∠A的正弦值是()A.B.C.D.6.已知a≠0,在同一直角坐标系中,函数y=ax与y=ax2的图象有可能是()A.①②B.②③C.①③D.②④7.小明从右边的二次函数y=ax2+bx+c图象中,观察得出了下面的五条信息:①a<0,②c=0,③函数的最小值为﹣3,④当0<x1<x2<2时,y1>y2,⑤对称轴是直线x=2.你认为其中正确的个数为()A.2 B.3 C.4 D.58.如图,AB是半圆O直径,半径OC⊥AB,连接AC,∠CAB的平分线AD分别交OC于点E,交于点D,连接CD、OD,以下三个结论:①AC∥OD;②AC=2C D;③线段CD是CE与CO的比例中项,其中所有正确结论的序号是()A.①②B.①③C.②③D.①②③9.已知:如图,点P是正方形ABCD的对角线AC上的一个动点(A、C除外),作PE⊥AB于点E,作PF⊥BC于点F,设正方形ABCD 的边长为x,矩形PEBF的周长为y,在下列图象中,大致表示y 与x之间的函数关系的是()A.B.C.D.10.如图,已知△ABC为等腰直角三角形,D为斜边BC的中点,经过点A、D的⊙O与边AB、AC、BC分别相交于点E、F、M.对于如下五个结论:①∠FMC=45°;②AE+AF=AB;③;④2BM2=BE•BA;⑤四边形AEMF为矩形.其中正确结论的个数是()A.2个B.3个C.4个D.5个二.填空题(共5小题,满分15分,每小题3分)11.已知二次函数y=mx2+(m2﹣3)x+1,当x=﹣1时,y取得最大值,则m=.12.如图,正方形ABCD的边长为1cm,M、N分别是BC、CD上两个动点,且始终保持AM⊥MN,则△ADN的最小面积为.13.如果点A(2,﹣4)与点B(6,﹣4)在抛物线y=ax2+bx+c(a≠0)上,那么该抛物线的对称轴为直线.14.如图,在半圆O中,直径AE=10,四边形ABCD是平行四边形,且顶点A、B、C在半圆上,点D在直径AE上,连接CE,若AD =8,则CE长为.15.如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x 轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C2017.若点P是第2016段抛物线的顶点,则P点的坐标为.三.解答题(共8小题,满分75分)16.(8分)先化简,再求值•+.(其中x=1,y=2)17.(9分)如图所示,一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05m.(1)建立如图所示的直角坐标系,求抛物线的解析式;(2)该运动员身高1.8m,在这次跳投中,球在头顶上方0.25m处出手,问:球出手时,他跳离地面的高度是多少?18.(9分)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.(1)当每件的销售价为52元时,该纪念品每天的销售数量为件;(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y 最大?并求出最大利润.19.(9分)如图,在△ABC中,AB=AC,AD为BC边上的中线,DE⊥AB于点E.(1)求证:△BDE∽△CAD.(2)若AB=13,BC=10,求线段DE的长.20.(9分)如图,在△ABC中,∠ACB=90°,O是边AC上一点,以O为圆心,以OA为半径的圆分别交AB、AC于点E、D,在BC的延长线上取点F,使得BF=EF.(1)判断直线EF与⊙O的位置关系,并说明理由;(2)若∠A=30°,求证:DG=DA;(3)若∠A=30°,且图中阴影部分的面积等于2,求⊙O的半径的长.21.(9分)重庆市物价局发出通知,从2011年2月18日起降低部分抗生素药品和神经系统类药品最高零售价格,共涉及162个品种,某药房对售出的抗生素药品A、B、C、D、E的销量进行统计,绘制成如下统计图:(1)补全折线统计图;(2)计算2月份售出各类抗生素销量的极差为;(3)2月份王老师到药房买了抗生素类药D、E各一盒,若D中有两盒是降价药,E中有一盒是降价药,请用画树状图或列表法求出他买到两盒都是降价药的概率.22.(10分)重庆是一座美丽的山坡,某中学依山而建,校门A处,有一斜坡AB,长度为13米,在坡顶B处看教学楼CF的楼顶C的仰角∠CBF=53°,离B点4米远的E处有一花台,在E处仰望C的仰角∠CEF=63.4°,CF的延长线交校门处的水平面于D点,FD=5米.(1)求斜坡AB的坡度i.(2)求DC的长.(参考数据:tan53°≈,tan63.4°≈2)23.(12分)如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=﹣x2+bx+c经过点A、C,与AB交于点D.(1)求抛物线的函数解析式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC 上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.①求S关于m的函数表达式;②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.参考答案一.选择题1.解:A、由=3得,x=3x﹣3y,2x=3y,故本选项正确;B、由=得,5x=2(x+y),3x=2y,故本选项错误;C、由=得,3x=2y,故本选项错误;D、由=得,3(x+y)=5y,3x=2y,故本选项错误.故选:A.2.解:当1<x<3时,y1>y2.故选:A.3.解:根据圆周角的性质可得:∠1=∠2.∵tan∠2=,∴∠1的正切值等于.故选:A.4.解:在矩形ABCD中,AB=CD,AD=BC,∠B=∠D=90°,∵△ADE沿AE对折,点D的对称点F恰好落在BC上,∴∠AFE=∠D=90°,AD=AF,∵∠EFC+∠AFB=180°﹣90°=90°,∠BAF+∠AFB=90°,∴∠BAF=∠EFC,∵tan∠EFC=,∴设BF=3x、AB=4x,在Rt△ABF中,AF===5x,∴AD=BC=5x,∴CF=BC﹣BF=5x﹣3x=2x,∵tan∠EFC=,∴CE=CF•tan∠EFC=2x•=x,∴DE=CD﹣CE=4x﹣x=x,在Rt△ADE中,AD2+DE2=AE2,即(5x)2+(x)2=(10)2,整理得,x2=16,解得x=4,∴AB=4×4=16cm,AD=5×4=20cm,矩形的周长=2(16+20)=72cm.故选:A.5.解:由题意得,OC=2,AC=4,由勾股定理得,AO==2,∴sin A==,故选:A.6.解:当a>0时,则函数y=ax中,y随x的增大而增大,函数y=ax2开口向上,故①不正确,②正确;当a<0时,则函数y=ax中,y随x的增大而减小,函数y=ax2开口向下,故④不正确,③正确;∴两函数图象可能是②③,故选:B.7.解:①由抛物线开口向上,得到a>0,本选项错误;②由抛物线过原点,得到c=0,本选项正确;③当x=2时,函数的最小值为﹣3,本选项正确;④当0<x1<x2<2时,函数为减函数,得到y1>y2,本选项正确;⑤对称轴是直线x=2,本选项正确,则其中正确的个数为4.故选:C.8.解:∵OA=OD,∴∠OAD=∠ODA,∵AD为∠CAB的平分线,∴∠CAD=∠OAD,∴∠CAD=∠ODA,∴AC∥OD,故选项①正确;∵OC⊥AB,OA=OC,∴△AOC为等腰直角三角形,∴∠DOB=∠COD=∠B AC=45°,∵∠ADC与∠AOC都对,∴∠ADC=∠AOC=45°,∴∠ADC=∠COD,又∠OCD=∠DCE,∴△DCE∽△OCD,∴=,即CD2=CE•OC,故选项③正确;取的中点F,可得=,∵=2,∴==,∴AF=FC=CD,即AF+FC=2CD,∵AF+FC>AC,则2CD>AC,故选项②错误,则正确的选项有:①③.故选:B.9.解:由题意可得:△APE和△PCF都是等腰直角三角形.∴AE=PE,PF=CF,那么矩形PEBF的周长等于2个正方形的边长.则y=2x,为正比例函数.故选:A.10.解:连接AM,根据等腰三角形的三线合一,得AD⊥BC,再根据90°的圆周角所对的弦是直径,得EF、AM是直径,根据对角线相等且互相平分的四边形是矩形,得四边形AEMF是矩形,∴①根据等腰直角三角形ABC的底角是45°,易得∠FMC=45°,正确;②根据矩形和等腰直角三角形的性质,得AE+AF=AB,正确;③连接FD,可以证明△EDF是等腰直角三角形,则③中左右两边的比都是等腰直角三角形的直角边和斜边的比,正确;④根据BM=BE,得左边=4BE2,故需证明AB=4BE,根据已知条件它们之间不一定有这种关系,错误;⑤正确.所以①②③⑤共4个正确.故选C.二.填空题(共5小题,满分15分,每小题3分)11.解:根据题意知,﹣=﹣1,且m<0,整理该方程可得m2﹣2m﹣3=0,解得:m=﹣1或m=3(舍),故答案为:﹣1.12.解:设BM=xcm,则MC=(1﹣x)cm,∵∠AMN=90°,∴∠AMB+∠NMC=90°,∠NMC+∠MNC=90°,∴∠AMB=∠MNC,又∵∠B=∠C,∴△ABM ∽△MCN ,则=,即=,解得:CN ==x (1﹣x ),∴S △ADN =S 正方形ABCD =×1×[1﹣x (1﹣x )]=x 2﹣x +,∵<0,∴当x =cm 时,S △ADN 最小,最小值是=(cm 2).故答案是: cm 2. 13.解:∵点A (2,﹣4)与点B (6,﹣4)的纵坐标相等, ∴点A 、B 关于抛物线对称轴对称,∴抛物线的对称轴为直线x ==4.故答案为:x =4.14.解:连接OC ,过O 点作OF ⊥BC ,垂足为F ,交半圆与点H , ∵OC =5,BC =8,∴根据垂径定理CF =4,点H 为弧BC 的中点,且为半圆AE 的中点, ∴由勾股定理得OF =3,且弧AB =弧CE∴AB =CE ,又∵ABCD 为平行四边形,∴AB =CD ,∴CE =CD ,∴△CDE 为等腰三角形,在等腰三角形CDE 中,DE 边上的高CM =OF =3,∵DE =10﹣8=2,∴由勾股定理得,CE2=OF2+(DE)2,∴CE=,故答案为.15.解:由题意可知:第1段抛物线的顶点坐标为:(1,1),第2段抛物线的顶点坐标为:(3,﹣1),第3段抛物线的顶点坐标为:(5,1)故第2016段抛物线的顶点为:(4031,﹣1)故答案为:(4031,﹣1)三.解答题(共8小题,满分75分)16.解:当x=1,y=2时,原式=•+=+==﹣317.解:(1)∵当球运行的水平距离为2.5米时,达到最大高度3.5米,∴抛物线的顶点坐标为(0,3.5),∴设抛物线的表达式为y=ax2+3.5.由图知图象过以下点:(1.5,3.05).∴2.25a+3.5=3.05,解得:a=﹣0.2,∴抛物线的表达式为y=﹣0.2x2+3.5.(2)设球出手时,他跳离地面的高度为hm,∵y=﹣0.2x2+3.5,而球出手时,球的高度为h+1.8+0.25=(h+2.05)m,∴h+2.05=﹣0.2×(﹣2.5)2+3.5,∴h=0.2.答:球出手时,他跳离地面的高度为0.2m.18.解:(1)由题意得:200﹣10×(52﹣50)=200﹣20=180(件),故答案为:180;(2)由题意得:y=(x﹣40)[200﹣10(x﹣50)]=﹣10x2+1100x﹣28000=﹣10(x﹣55)2+2250∴每件销售价为55元时,获得最大利润;最大利润为2250元.19.解:(1)∵AB=AC,BD=CD,∴AD⊥BC,∠B=∠C,∵DE⊥AB,∴∠DEB=∠ADC,∴△BDE∽△CAD.(2)∵AB=AC,BD=CD,∴AD⊥BC,在Rt△ADB中,AD===12,∵•AD•BD=•AB•DE,∴DE=.20.解:(1)连接OE,∵OA=OE,∴∠A=∠AEO,∵BF=EF,∴∠B=∠BEF,∵∠ACB=90°,∴∠A+∠B=90°,∴∠AEO+∠BEF=90°,∴∠OEG=90°,∴EF是⊙O的切线;(2)∵∠AED=90°,∠A=30°,∴ED=AD,∵∠A+∠B=90°,∴∠B=∠BEF=60°,∵∠BEF+∠DEG=90°,∴∠DEG=30°,∵∠ADE+∠A=90°,∴∠ADE=60°,∵∠ADE=∠EGD+∠DEG,∴∠DGE=30°,∴∠DEG=∠DGE,∴DG=DE,∴DG=DA;(3)∵AD是⊙O的直径,∴∠AED=90°,∵∠A=30°,∴∠EOD=60°,∴∠EGO=30°,∵阴影部分的面积=×r×r﹣=2﹣π.解得:r2=4,即r=2,即⊙O的半径的长为2.21.解:(1)2月份销售抗生素的总数是:6÷30%=20(盒),则E类的销售盒数是:20×10%=2(盒),则A类销售的盒数是:20﹣5﹣6﹣3﹣2=4(盒),;(2)极差是:6﹣2=4(盒);(3)若D中有两盒是降价药都用D表示,另一盒不降价的记作D1,E中有一盒是降价药记作E,另一盒记作E1,则共有20种情况,他买到两盒都是降价药的有6种情况,则概率是:=.22.解:(1)过B作BG⊥AD于G,则四边形BGDF是矩形,∴BG=DF=5米,∵AB=13米,∴AG==12米,∴AB的坡度i==1:2.4;(2)在R t△BCF中,BF==,在R t△CEF中,EF==,∵BE=4米,∴BF﹣EF═﹣=4,解得:CF=16.∴DC=CF+DF=16+5=21米.23.解:(1)将A、C两点坐标代入抛物线,得,解得:,∴抛物线的解析式为y=﹣x2+x+8;(2)①∵OA=8,OC=6,∴AC ==10,过点Q 作QE ⊥BC 与E 点,则sin ∠ACB ===,∴=,∴QE =(10﹣m ),∴S =•CP •QE =m ×(10﹣m )=﹣m 2+3m ;②∵S =•CP •QE =m ×(10﹣m )=﹣m 2+3m =﹣(m ﹣5)2+,∴当m =5时,S 取最大值;在抛物线对称轴l 上存在点F ,使△FDQ 为直角三角形,∵抛物线的解析式为y =﹣x 2+x +8的对称轴为x =, D 的坐标为(3,8),Q (3,4),当∠FDQ =90°时,F 1(,8),当∠FQD =90°时,则F 2(,4),当∠DFQ =90°时,设F (,n ),则FD 2+FQ 2=DQ 2,即+(8﹣n )2++(n ﹣4)2=16,解得:n =6±,∴F 3(,6+),F 4(,6﹣),满足条件的点F 共有四个,坐标分别为F 1(,8),F 2(,4),F 3(,6+),F 4(,6﹣).。

(汇总3份试卷)2018年天津市九年级上学期数学期末监测试题

(汇总3份试卷)2018年天津市九年级上学期数学期末监测试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知点P(a,m),Q(b,n)都在反比例函数y=2x的图象上,且a<0<b,则下列结论一定正确的是()A.m+n<0 B.m+n>0 C.m<n D.m>n 【答案】D【解析】根据反比例函数的性质,可得答案.【详解】∵y=−2x的k=-2<1,图象位于二四象限,a<1,∴P(a,m)在第二象限,∴m>1;∵b>1,∴Q(b,n)在第四象限,∴n<1.∴n<1<m,即m>n,故D正确;故选D.【点睛】本题考查了反比例函数的性质,利用反比例函数的性质:k<1时,图象位于二四象限是解题关键.2.如图,BD是菱形ABCD的对角线,CE⊥AB交于点E,交BD于点F,且点E是AB中点,则tan∠BFE 的值是()A.12B.2 C3D3【答案】D【分析】首先利用菱形的性质得出AB=BC,即可得出∠ABC=60°,再利用三角函数得出答案.【详解】解:∵四边形ABCD是菱形,∴AB=BC,∵CE⊥AB,点E是AB中点,∴∠ABC=60°,∴∠EBF=30°,∴∠BFE=60°,∴tan ∠BFE=3. 故选:D 【点睛】 此题考查菱形的性质,关键是根据含30°的直角三角形的性质和三角函数解答.3.如图,在△ABC 中,AD ⊥BC 交BC 于点D ,AD =BD ,若AB =42,tanC =43,则BC =( )A .8B .82C .7D .72【答案】C 【分析】证出△ABD 是等腰直角三角形,得出AD =BD =22AB =4,由三角函数定义求出CD =3,即可得出答案.【详解】解:AD BC ⊥交BC 于点D ,AD BD =,ABD ∴∆是等腰直角三角形,24AD BD AB ∴===, 4tan 3AD C CD==, 3CD ∴=,7BC BD CD ∴=+=;故选:C .【点睛】本题考查了解直角三角形、等腰直角三角形的性质以及三角函数定义;熟练掌握等腰直角三角形的性质和三角函数定义是解题的关键.4.坡比常用来反映斜坡的倾斜程度.如图所示,斜坡AB 坡比为( ).A 2:4B .22 1C .1:3D .3:1【分析】利用勾股定理可求出AC 的长,根据坡比的定义即可得答案.【详解】∵AB=3,BC=1,∠ACB=90°,∴=∴斜坡AB 坡比为BC :AC=1::4,故选:A.【点睛】本题考查坡比的定义,坡比是坡面的垂直高度与水平宽度的比;熟练掌握坡比的定义是解题关键. 5.计算:tan45°+sin30°=( )A .2B C .32 D 【答案】C【解析】代入45°角的正切函数值和30°角的正弦函数值计算即可.【详解】解:原式=13122+= 故选C .【点睛】熟记“45°角的正切函数值和30°角的正弦函数值”是正确解答本题的关键.6.抛物线y =3x 2向右平移一个单位得到的抛物线是( )A .y =3x 2+1B .y =3x 2﹣1C .y =3(x+1)2D .y =3(x ﹣1)2 【答案】D【解析】先确定抛物线y =3x 1的顶点坐标为(0,0),再利用点平移的坐标变换规律得到点(0,0)平移后对应点的坐标为(1,0),然后根据顶点式写出平移后的抛物线的解析式.【详解】y =3x 1的顶点坐标为(0,0),把点(0,0)右平移一个单位所得对应点的坐标为(1,0),所以平移后的抛物线解析式为y =3(x ﹣1)1.故选D .【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.7.下列事件中,必然事件是( )A .抛掷1个均匀的骰子,出现6点向上B .366人中至少有2人的生日相同C .两直线被第三条直线所截,同位角相等D .实数的绝对值是非负数【分析】根据概率、平行线的性质、负数的性质对各选项进行判断.【详解】A.抛掷1个均匀的骰子,出现6点向上的概率为16,错误.B.367人中至少有2人的生日相同,错误.C.两条平行线被第三条直线所截,同位角相等,错误.D.实数的绝对值是非负数,正确.故答案为:D.【点睛】本题考查了必然事件的性质以及判定,掌握概率、平行线的性质、负数的性质是解题的关键.8.已知点O是△ABC的外心,作正方形OCDE,下列说法:①点O是△AEB的外心;②点O是△ADC的外心;③点O是△BCE的外心;④点O是△ADB的外心.其中一定不成立的说法是()A.②④B.①③C.②③④D.①③④【答案】A【分析】根据三角形的外心得出OA=OC=OB,根据正方形的性质得出OA=OC<OD,求出OA=OB=OC=OE≠OD,再逐个判断即可.【详解】解:如图,连接OB、OD、OA,∵O为锐角三角形ABC的外心,∴OA=OC=OB,∵四边形OCDE为正方形,∴OA=OC<OD,∴OA=OB=OC=OE≠OD,∴OA=OC≠OD,即O不是△ADC的外心,OA=OE=OB,即O是△AEB的外心,OB=OC=OE,即O是△BCE的外心,OB=OA≠OD,即O不是△ABD的外心,故选:A.【点睛】本题考查了正方形的性质和三角形的外心.熟记三角形的外心到三个顶点的距离相等是解决此题的关键. 9.已知点P(x,y)在第二象限,|x|=6,|y|=8,则点P关于原点的对称点的坐标为()A.(6,8) B.(﹣6,8) C.(﹣6,﹣8) D.(6,﹣8)【分析】根据P 在第二象限可以确定x ,y 的符号,再根据|x|=6,|y|=8就可以得到x ,y 的值,得出P 点的坐标,进而求出点P 关于原点的对称点的坐标.【详解】∵|x|=6,|y|=8,∴x =±6,y =±8,∵点P 在第二象限,∴x <0,y >0,∴x =﹣6,y =8,即点P 的坐标是(﹣6,8),关于原点的对称点的坐标是(6,﹣8),故选:D .【点睛】主要考查了平面直角坐标系中各个象限的点的坐标的符号特点和对称点的规律.解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.10.若ABC ∆与111A B C ∆相似且对应中线之比为2:5,则周长之比和面积比分别是( )A .2:5,4:5B .2:5,4:25C .4:25,4:25D .4:25,2:5 【答案】B【分析】直接根据相似三角形的性质进行解答即可. 【详解】解:ABC ∆与111A B C ∆相似,且对应中线之比为2:5,∴其相似比为2:5,∴ABC ∆与11A B C ∆周长之比为2:5,ABC ∆与11A B C ∆面积比为4:25,故选:B.【点睛】本题考查的是相似三角形的性质,熟知相似三角形周长的比等于相似比,相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比,相似三角形面积比是相似比的平方是解答此题的关键.11.如图,在△ABC 中,点D 、E 分别在边AB 、AC 的反向延长线上,下面比例式中,不能判定ED //BC 的是( )A .BA CA BD CE =B .EA DA EC DB = C .ED EA BC AC = D .EA AC AD AB = 【答案】C 【分析】根据平行线分线段成比例定理推理的逆定理,对各选项进行逐一判断即可.【详解】A. 当BA CA BD CE=时,能判断ED BC ‖; B. 当EA DA EC DB=时,能判断ED BC ‖; C. 当ED EA BC AC=时,不能判断ED BC ‖; D. 当EA AC AD AB =时,EA AD AC AB =,能判断ED BC ‖. 故选:C.【点睛】本题考查平行线分线段成比例定理推理的逆定理,根据定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.能根据定理判断线段是否为对应线段是解决此题的关键.12.如图所示的中心对称图形中,对称中心是( )A .1OB .2OC .3OD .4O【答案】B 【分析】直接利用中心对称图形的性质得出答案.【详解】解:如图所示的中心对称图形中,对称中心是O 1.故选:B .【点睛】本题考查中心对称图形,解题关键是熟练掌握中心对称图形的性质.二、填空题(本题包括8个小题)13.从长度分别是4cm ,8cm ,10cm ,12cm 的四根木条中,抽出其中三根能组成三角形的概率是______.【答案】34 【分析】四根木条中,抽出其中三根的组合有4种,计算出能组成三角形的组合,利用概率公式进行求解即可.【详解】解:能组成三角形的组合有:4,8,10;4,10,12;8,10,12三种情况,故抽出其中三根能组成三角形的概率是34. 【点睛】本题考查了列举法求概率,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n,构成三角形的基本要求为两小边之和大于最大边. 14.如图,△ABC 的外心的坐标是____.【答案】()2,1-【解析】试题解析:∵△ABC 的外心即是三角形三边垂直平分线的交点,∴作图得:∴EF 与MN 的交点O′即为所求的△ABC 的外心,∴△ABC 的外心坐标是(﹣2,﹣1).15.一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积...是______________. 【答案】48π【分析】首先利用圆的面积公式即可求得侧面积,利用弧长公式求得圆锥的底面半径,得到底面面积,据此即可求得圆锥的全面积.【详解】解:侧面积是:221122832r πππ=⨯⨯=,底面圆半径为:28242ππ⨯÷=, 底面积2416ππ=⨯=,故圆锥的全面积是:321648πππ+=,故答案为:48π【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.16.二次函数y =2x 2的图象向左平移2个单位长度,再向下平移5个单位长度后得到的图象的解析式为_____.【答案】y =2(x+2)2﹣1【分析】直接根据“上加下减,左加右减”的原则进行解答.【详解】由“左加右减”的原则可知,将二次函数y =2x 2的图象向左平移2个单位长度所得抛物线的解析式为:y =2(x+2)2,即y =2(x+1)2;由“上加下减”的原则可知,将抛物线y =2(x+2)2向下平移1个单位长度所得抛物线的解析式为:y =2(x+2)2﹣1,即y =2(x+2)2﹣1.故答案为:y =2(x+2)2﹣1.【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.17.如图,直线 4y x =+与两坐标轴相交于 A B ,两点,点 P 为线段 OA 上的动点,连结 BP ,过点A作 AM 垂直于直线BP ,垂足为 M ,当点P 从点O 运动到点A 时,则点M 经过 的路径长为__________.2π【分析】根据直线与两坐标轴交点坐标的特点可得A 、B 两点坐标,由题意可得点M 的路径是以AB 的中点N 为圆心,AB 长的一半为半径的OA ,求出OA 的长度即可.【详解】解:∵AM 垂直于直线BP ,∴∠BMA=90°,∴点M 的路径是以AB 的中点N 为圆心,AB 长的一半为半径的OA ,连接ON ,∵直线y=-x+4与两坐标轴交A、B两点,∴OA=OB=4,∴ON⊥AB,∴∠ONA=90°,∵在Rt△OAB中,AB=2242OA OB+=,∴ON=22,∴90222180OAlππ==故答案为:2π.【点睛】本题考查了一次函数的综合题,涉及了两坐标轴交点坐标及点的运动轨迹,难点在于根据∠BMA=90°,判断出点M的运动路径是解题的关键,同学们要注意培养自己解答综合题的能力.18.抛物线y=x2+2x与y轴的交点坐标是_____.【答案】(0,0)【解析】令x=0求出y的值,然后写出即可.【详解】令x=0,则y=0,所以,抛物线与y轴的交点坐标为(0,0).故答案为(0,0).【点睛】本题考查了二次函数图象上点的坐标特征,熟练掌握抛物线与坐标轴的交点的求解方法是解题的关键.三、解答题(本题包括8个小题)19.如图,已知AB为⊙O的直径,点E在⊙O上,∠EAB的平分线交⊙O于点C,过点C作AE的垂线,垂足为D,直线DC与AB的延长线交于点P.(1)判断直线PC 与⊙O 的位置关系,并说明理由;(2)若tan∠P=34,AD=6,求线段AE 的长. 【答案】(1)PC 是⊙O 的切线;(2)92【解析】试题分析:(1)结论:PC 是⊙O 的切线.只要证明OC ∥AD ,推出∠OCP=∠D=90°,即可. (2)由OC ∥AD ,推出OC OP AD AP =,即10610r r -=,解得r=154,由BE ∥PD ,AE=AB•sin ∠ABE=AB•sin ∠P ,由此计算即可.试题解析:解:(1)结论:PC 是⊙O 的切线.理由如下:连接OC .∵AC 平分∠EAB ,∴∠EAC=∠CAB .又∵∠CAB=∠ACO ,∴∠EAC=∠OCA ,∴OC ∥AD .∵AD ⊥PD ,∴∠OCP=∠D=90°,∴PC 是⊙O 的切线.(2)连接BE .在Rt △ADP 中,∠ADP=90°,AD=6,tan ∠P=34,∴PD=8,AP=10,设半径为r .∵OC ∥AD ,∴OC OP AD AP =,即10610r r -=,解得r=154.∵AB 是直径,∴∠AEB=∠D=90°,∴BE ∥PD ,∴AE=AB•sin ∠A BE=AB•sin ∠P=152×35=92.点睛:本题考查了直线与圆的位置关系.解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.20.已知反比例函数y=4x(1)若该反比例函数的图象与直线y =kx+4(k≠0)只有一个公共点,求k 的值; (2)如图,反比例函数y=4x (1≤x≤4)的图象记为曲线C l ,将C l 向左平移2个单位长度,得曲线C 2,请在图中画出C 2,并直接写出C 1平移至C 2处所扫过的面积.【答案】(2)k=-2;(2)作图见解析;2.【分析】(2)把这两个函数解析式联立,化简可得kx2+4x-4=0,又因y=4x的图像与直线y=kx+4只有一个公共点,可得△=0,即可求得k值;(2)C2平移至C2处所扫过的面积等于平行四边形C2C2AB的面积,直接求得即可.【详解】Jie :(2)联立4{4yxy kx==+得kx2+4x-4=0,又∵y=4x的图像与直线y=kx+4只有一个公共点,∴42-4∙k∙(—4)=0,∴k=-2.(2)如图:C2平移至C2处所扫过的面积为2.【点睛】本题考查反比例函数与一次函数的交点问题;平移的性质.21.地下停车场的设计大大缓解了住宅小区停车难的问题,如图是龙泉某小区的地下停车库坡道入口的设计示意图,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小刚认为CD的长就是所限制的高度,而小亮认为应该以CE的长作为限制的高度.小刚和小亮谁说得对?请你判断并计算出正确的限制高度.(结果精确到0.1m,参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.325)【答案】小亮说的对,CE 为2.6m .【解析】先根据CE ⊥AE ,判断出CE 为高,再根据解直角三角形的知识解答.【详解】解:在△ABD 中,∠ABD =90°,∠BAD =18°,BA =10m ,∵tan ∠BAD =,∴BD =10×tan18°,∴CD =BD ﹣BC =10×tan18°﹣0.5≈2.7(m ),在△ABD 中,∠CDE =90°﹣∠BAD =72°,∵CE ⊥ED ,∴sin ∠CDE =,∴CE =sin ∠CDE ×CD =sin72°×2.7≈2.6(m ),∵2.6m <2.7m ,且CE ⊥AE ,∴小亮说的对.答:小亮说的对,CE 为2.6m .【点睛】本题主要考查了解直角三角形的应用,主要是正弦、正切概念及运算,解决本题的关键把实际问题转化为数学问题.22.如图,在Rt ABC ∆中,90C =∠,矩形DEFG 的顶点G 、F 分别在边AC 、BC 上,D 、E 在边AB 上.(1)求证:ADG ∆∽FEB ∆;(2)若2AD GD =,则ADG ∆面积与BEF ∆面积的比为 .【答案】(1)见解析;(2)1.【分析】(1)先证∠AGD=∠B ,再根据∠ADG=∠BEF=90°,即可证明;(2)由(1)得ADG ∆∽FEB ∆,则△ADG 面积与△BEF 面积的比=2AD EF ⎛⎫⎪⎝⎭=1. 【详解】(1)证:在矩形DEFG 中,GDE FED ∠=∠=90°∴GDA FEB ∠=∠=90°∵C GDA ∠=∠=90°∴A AGD A B ∠+∠=∠+∠=90°∴AGD B ∠=∠在ADG ∆和FEB ∆中∵AGD B ∠=∠,GDA FEB ∠=∠=90°∴ADG ∆∽FEB ∆(2)解:∵四边形DEFG 为矩形,∴GD=EF ,∵△ADG ∽△FEB , ∴224ADGBEF S AD AD S EF GD ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ 故答案为1.【点睛】本题考查了相似三角形的判定与性质,根据题意证得△ADG ∽△FEB 是解答本题的关键.23.如图是反比例函数k y x=的图象的一个分支.()1比例系数k 的值是________;()2写出该图象的另一个分支上的2个点的坐标:________、________;()3当x 在什么范围取值时,y 是小于3的正数?()4如果自变量x 取值范围为23x ≤≤,求y 的取值范围.【答案】(1)12;(2)(﹣2,﹣6),(﹣3,﹣4);(3)x >4;(4)y 的取值范围是4≤y≤6.【解析】(1)根据图像过点(2,6),即可得出k 的值;(2)根据(1)中所求解析式,即可得出图像上点的坐标;(3)根据y =12x<3求出x 的取值范围即可;(4)根据x =2时,y =6,当x =3时,y =4,得出y 的取值范围即可.【详解】(1)∵图像过点(2,6),∴k =xy =12;(2)(﹣2,﹣6),(﹣3,﹣4).(答案不唯一,符合xy =12且在第三象限的点即可.);(3)当y =12x<3时,则x >4; (4)当x =2时,y =6,当x =3时,y =4,故2≤x≤3时,y 的取值范围是4≤y≤6.【点睛】本题主要考查了待定系数法求反比例函数解析式以及不等式解法等知识,根据不等式的性质得出x 与y 的取值范围是解题的关键.24.某校为培育青少年科技创新能力,举办了动漫制作活动,小明设计了点做圆周运动的一个雏形,如图所示,甲、乙两点分别从直径的两端点A 、B ,以顺时针、逆时针的方向同时沿圆周运动,甲运动的路程()cm l 与时间()s t 满足关系()230l t t t =+≥,乙以8cm /s 的速度匀速运动,半圆的长度为42cm .(1)甲运动4s 后的路程是多少?(2)甲、乙从开始运动到第一次相遇时,它们运动了多少时间?(3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间?【答案】(1)28cm ;(2)3s ;(3)7s【分析】(1)将t=4代入公式计算即可;(2)第一次相遇即是共走半圆的长度,据此列方程23842t t t,求解即可; (3)第二次相遇应是走了三个半圆的长度,得到238126t t t,解方程即可得到答案. 【详解】解:(1)当 t=4s 时,23161228l t t cm.答:甲运动 4s 后的路程是 28?c m .(2) 由图可知,甲乙第一次相遇时走过的路程为半圆 21?c m ,甲走过的路程为 2t 3t +,乙走过的路程为 4t ,则23842t t t .解得 3t = 或 14t =-(不合题意,舍去).答:甲、乙从开始运动到第一次相遇时,它们运动了 3s .(3) 由图可知,甲乙第二次相遇时走过的路程为三个半圆 342126cm ,则238126t t t解得 7t = 或 18t =-(不合题意,舍去).答:甲、乙从开始运动到第二次相遇时,它们运动了 7s .【点睛】此题考查一元二次方程的实际应用,正确理解题意是解题的关键.25.某学校的学生为了对小雁塔有基本的认识,在老师的带领下对小雁塔进行了测量.测量方法如下:如图,间接测得小雁塔地部点D 到地面上一点E 的距离为115.2米,小雁塔的顶端为点B ,且BD ⊥DE ,在点E 处竖直放一个木棒,其顶端为C ,CE =1.72米,在DE 的延长线上找一点A ,使A 、C 、B 三点在同一直线上,测得AE =4.8米.求小雁塔的高度.【答案】43 m. 【解析】直接利用相似三角形的判定与性质得出AE EC AD BD=,进而得出答案. 【详解】解 由题意可得△AEC ∽△ADB , 则AE AD =EC BD, 故 4.84.8115.2+=1.72BD , 解得DB =43,答:小雁塔的高度为43 m.【点睛】本题考查了相似三角形的判定与性质,正确得出△AEC ∽△ADB 是解题的关键.26.(1)3tan30°-tan45°+2sin60°(210118(π1)2cos 452-⎛⎫--+ ⎪⎝⎭° 【答案】(1)31;(2)221【分析】(2)根据特殊角的三角函数值,代入求出即可.(2)根据特殊角的三角函数值,零指数幂求出每一部分的值,代入求出即可.【详解】(1)3tan30tan452sin60︒︒︒-+ 3331232=⨯-+⨯ 313=+231=(210118(1)2cos452π-︒⎛⎫---+ ⎪⎝⎭ 2321222=-⨯+ 221=【点睛】本题考查了实数的运算法则,同时也利用了特殊角的三角函数值、0指数幂的定义及负指数幂定义解决问题.27.小明和小军两人一起做游戏,游戏规则如下:每人从1,2,…,8中任意选择一个数字,然后两人各转动一次如图所示的转盘(转盘被分为面积相等的四个扇形),两人转出的数字之和等于谁事先选择的数,谁就获胜;若两人转出的数字之和不等于他们各自选择的数,就在做一次上述游戏,直至决出胜负.若小军事先选择的数是5,用列表或画树状图的方法求他获胜的概率.【答案】14.【解析】试题分析:列表得出所有等可能的情况数,找出两指针所指数字的和为5情况数,即可确定小军胜的概率.试题解析:列表如下:所有等可能的情况有16种,其中两指针所指数字的和为5的情况有4种,所以小军获胜的概率=416=14.考点:列表法与树状图法.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,点A,B,C,D四个点均在⊙O上,∠A=70°,则∠C为()A.35°B.70°C.110°D.120°【答案】C【分析】根据圆内接四边形的性质即可求出∠C.【详解】∵四边形ABCD是圆内接四边形,∴∠C=180°﹣∠A=110°,故选:C.【点睛】此题考查的是圆的内接四边形,掌握圆内接四边形的性质:对角互补,是解决此题的关键.2.已知⊙O半径为3,M为直线AB上一点,若MO=3,则直线AB与⊙O的位置关系为()A.相切B.相交C.相切或相离D.相切或相交【答案】D【解析】试题解析“因为垂线段最短,所以圆心到直线的距离小于等于1.此时和半径1的大小不确定,则直线和圆相交、相切都有可能.故选D.点睛:直线和圆的位置关系与数量之间的联系:若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.3.如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是AC上的点,若∠D=110°,则∠AOC的度数为()A.130°B.135°C.140°D.145°【答案】C【分析】根据“圆内接四边形的对角互补”,由∠D可以求得∠B,再由圆周角定理可以求得∠AOC的度数.【详解】解:∵∠D =110°,∴∠B =180°﹣110°=70°,∴∠AOC =2∠B =140°,故选C .【点睛】本题考查圆周角定理及圆内接四边形的性质,熟练掌握有关定理和性质的应用是解题关键.4.在同一直角坐标系中,函数y=k x和y=kx ﹣3的图象大致是( ) A . B . C . D .【答案】B【分析】根据一次函数和反比例函数的特点,k≠0,所以分k >0和k <0两种情况讨论;当两函数系数k 取相同符号值,两函数图象共存于同一坐标系内的即为正确答案.【详解】解:分两种情况讨论:①当k >0时,y=kx ﹣3与y 轴的交点在负半轴,过一、三、四象限,反比例函数的图象在第一、三象限; ②当k <0时,y=kx ﹣3与y 轴的交点在负半轴,过二、三、四象限,反比例函数的图象在第二、四象限, 观察只有B 选项符合,故选B .【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,熟练掌握它们的性质才能灵活解题. 5.抛物线()21312y x =--+的顶点坐标为( ) A .(3,1)B .(3-,1)C .(1,3)D .(1,3-) 【答案】A【分析】利用二次函数的顶点式是:y =a (x−h )2+k (a≠0,且a ,h ,k 是常数),顶点坐标是(h ,k )进行解答.【详解】∵()21312y x =--+, ∴抛物线的顶点坐标是(3,1).故选:A .【点睛】此题考查了二次函数的性质,二次函数y =a (x−h )2+k 的顶点坐标为(h ,k ),对称轴为x =h .熟知二次函数的顶点坐标式是解答本题的关键6.如图,已知“人字梯”的5个踩档把梯子等分成6份,从上往下的第二个踩档与第三个踩档的正中间处有一条60cm长的绑绳EF,tanα=,则“人字梯”的顶端离地面的高度AD是()A.144cm B.180cm C.240cm D.360cm【答案】B【解析】试题分析:解:如图:根据题意可知::△AFO∽△ABD,OF=EF=30cm∴,∴∴CD=72cm,∵tanα=∴∴AD==180cm.故选B.考点:解直角三角形的应用.7.如图,边长为1的正方形ABCD中,点E在CB的延长线上,连接ED交AB于点F,AF=x(0.2≤x≤0.8),EC=y.则在下面函数图象中,大致能反映y与x之间函数关系的是()A.B.C.D.【答案】C【分析】通过相似三角形△EFB∽△EDC的对应边成比例列出比例式1x y11y--=,从而得到y与x之间函数关系式,从而推知该函数图象.【详解】根据题意知,BF=1﹣x,BE=y﹣1,∵AD//BC,∴△EFB∽△EDC,∴BF BEDC EC=,即1x y11y--=,∴y=1x(0.2≤x≤0.8),该函数图象是位于第一象限的双曲线的一部分.A、D的图象都是直线的一部分,B的图象是抛物线的一部分,C的图象是双曲线的一部分.故选C.8.某市为了改善城市容貌,绿化环境,计划过两年时间,绿地面积增加44%,这两年平均每年绿地面积的增长率是( )A.19%B.20%C.21%D.22%【答案】B【解析】试题分析:设这两年平均每年绿地面积的增长率是x,则过一年时间的绿地面积为1+x,过两年时间的绿地面积为(1+x)2,根据绿地面积增加44%即可列方程求解.设这两年平均每年绿地面积的增长率是x,由题意得(1+x)2=1+44%解得x1=0.2,x2=-2.2(舍)故选B.考点:一元二次方程的应用点评:提升对实际问题的理解能力是数学学习的指导思想,因而此类问题是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.9.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB,BD于M,N两点.若AM=2,则线段ON的长为( )A.22B.32C.1 D.62【答案】C【分析】作MH⊥AC于H,如图,根据正方形的性质得∠MAH=45°,则△AMH为等腰直角三角形,所以AH=MH=2AM=2,再根据角平分线性质得BM=MH=2,则AB=2+2,于是利用正方形的性质得到AC=2AB=22+2,OC=12AC=2+1,所以CH=AC-AH=2+2,然后证明△CON∽△CHM,再利用相似比可计算出ON的长.【详解】试题分析:作MH⊥AC于H,如图,∵四边形ABCD为正方形,∴∠MAH=45°,∴△AMH为等腰直角三角形,∴AH=MH=22AM=222∵CM平分∠ACB,∴2∴2∴222)2+2,∴OC=122+1,CH=AC﹣222,∵BD⊥AC,∴ON∥MH,∴△CON∽△CHM,∴ON OCMH CH=2222=+∴ON=1.故选C .【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和正方形的性质.10.如图,⊙O 是△ABC 的外接圆,∠C =60°,则∠AOB 的度数是( )A .30°B .60°C .120°D .150°【答案】C 【分析】根据圆周角定理即可得到结论.【详解】∵∠C =60°,∴∠AOB =2∠C =120°,故选:C .【点睛】本题考查了三角形的外接圆与外心,圆周角定理,熟练掌握圆周角定理是解题的关键.11.如右图,在54⨯的正方形网格中,每个小正方形的边长都是1,ABC 的顶点都在格点上,则sin BAC ∠的值为( )A .45B .35C .34D .23【答案】A【分析】过C 作CD AB ⊥于D ,首先根据勾股定理求出AC ,然后在Rt ACD ∆中即可求出sin BAC ∠的值.【详解】如图,过C 作CD AB ⊥于D ,则=90ADC ∠︒,222234=+=+AC AD CD =1.4sin 5CD BAC AC ∠==. 故选:A .【点睛】本题考查了勾股定理的运用以及锐角三角函数,正确作出辅助线构造直角三角形是解题的关键. 12.函数y=ax 2-a 与y=a x(a≠0)在同一直角坐标系中的图象可能是( ) A . B . C . D .【答案】A【解析】本题可先由二次函数图象得到字母系数的正负,再与反比例函数的图象相比较看是否一致.逐一排除.【详解】A 、由二次函数图象,得a <1.当a <1时,反比例函数图象在二、四象限,故A 正确; B 、由函数图象开口方向,得a >1.当a >1时,抛物线于y 轴的交点在x 轴的下方,故B 错误; C 、由函数图象开口方向,得a <1.当a <1时,抛物线于y 轴的交点在x 轴的上方,故C 错误; D 、由抛物线的开口方向,得a <1,反比例函数的图象应在二、四象限,故D 错误;故选A .【点睛】本题考查了二次函数图象,应该识记反比例函数y=a x在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.二、填空题(本题包括8个小题)13.已知圆的半径是2,则该圆的内接正六边形的面积是__________【答案】3【分析】根据正六边形被它的半径分成六个全等的等边三角形,再根据等边三角形的边长,求出等边三角形的高,再根据面积公式即可得出答案.【详解】解:连接OA 、OB ,作OG AB ⊥于G ,等边三角形的边长是2,223OG OA AG ∴=-=,∴等边三角形的面积是12332⨯⨯=, ∴正六边形的面积是:6363⨯=; 故答案为:63.【点睛】本题考查的是正多边形和圆的知识,解题的关键要记住正六边形的特点,它被半径分成六个全等的等边三角形.14.如图,在Rt ABC 中,ABC 90∠=,AB 12=,BC 5=,点D 、E 分别是AB 、AC 的中点,CF 是ACB ∠的平分线,交ED 的延长线于点F ,则DF 的长是______.【答案】4【分析】勾股定理求AC 的长,中位线证明EF=EC,DE=2.5即可解题. 【详解】解:在Rt ABC 中,12AB =,5BC =,∴AC=13(勾股定理),∵点D 、E 分别是AB 、AC 的中点,∴DE=2.5(中位线),DE∥BC,∵CF 是ACB ∠的平分线,∴∠ECF=∠BCF=∠EFC,∴EF=EC=6.5,∴DF=6.5-2.5=4.【点睛】本题考查了三角形的中位线,等角对等边,勾股定理,中等难度,证明EF=EC 是解题关键.15.计算sin45°的值等于__________【答案】22。

[精品]红桥区2018届九年级上期末考试数学试卷有答案精品

[精品]红桥区2018届九年级上期末考试数学试卷有答案精品

2017-2018学年天津市红桥区九年级(上)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.下列函数中是二次函数的是()A.y=3x﹣1 B.y=x3﹣2x﹣3 C.y=(x+1)2﹣x2D.y=3x2﹣12.如图,在△ABC中,点D、E分别为边AB、AC上的点,且DE∥BC,若AD=5,BD=10,AE=3,则CE的长为()A.3 B.6 C.9 D.123.下列图形中既是轴对称图形,又是中心对称图形的是()A.B. C.D.4.抛物线y=3(x﹣4)2+5的顶点坐标为()A.(﹣4,﹣5)B.(﹣4,5) C.(4,﹣5) D.(4,5)5.从,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是()A.B.C.D.6.对于双曲线y=,当x>0时,y随x的增大而减小,则m的取值范围为()A.m>0 B.m>1 C.m<0 D.m<17.已知正三角形外接圆半径为2,这个正三角形的边长是()A.2B.C.3 D.28.已知,如图,AB是⊙O的直径,点D,C在⊙O上,连接AD、BD、DC、AC,如果∠BAD=25°,那么∠C的度数是()A.75°B.65°C.60°D.50°9.如图,将△ABC绕点A按逆时针方向旋转40°到△AB′C′的位置,连接CC′,若CC′∥AB,则∠BAC的大小是()A.55°B.60°C.65°D.70°10.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,若旋转角为20°,则∠1为()A.110°B.120°C.150°D.160°11.如图,PA、PB切⊙O于点A、B,PA=10,CD切⊙O于点E,交PA、PB于C、D两点,则△PCD的周长是()A.10 B.18 C.20 D.2212.如图,点A在双曲线的第一象限的那一支上,AB垂直于y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为()A.16 B.C.D.9二、填空题(本大题共8小题,每小题3分,共24分)13.如果抛物线y=(m﹣1)x2的开口向上,那么m的取值范围是.14.如图,已知反比例函数y=(k为常数,k≠0)的图象经过点A,过A点作AB⊥x轴,垂足为B.若△AOB的面积为1,则k= .15.如图,已知△ADE∽△ABC,且AD=3,DC=4,AE=2,则BE= .16.已知△ABC的三边长分别是6,8,10,则△ABC外接圆的直径是.17.在电视台举办的“超级女生”比赛中,甲乙丙三位评委对选手的综合表现,分别给出“淘汰”或“通过”的结论.比赛规则设定:三位评委中至少有两位评委给出“通过”的结论,那么这位选手才能进入下一轮比赛.试问:对于选手A进入下一轮比赛的概率是.18.如图,沿直线DE折叠等边三角形纸片△ABC,使A点落在BC边上任意一点F处(不与B、C重合).已知△ABC边长为28,D为AB上一点,BD=15,BF=7,则CE= .19.如图,△ABC是边长为12的等边三角形,D是BC的中点,E是直线AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF.则在点E的运动过程中,DF的最小值是.20.已知抛物线经过A(﹣4,0)、B(0,﹣4)、C(2,0)三点,若点M为第三象限内抛物线上一动点,△AMB的面积为S,则S的最大值为.三、解答题(本大题共6小题,共60分)21.(10分)甲、乙两位同学玩转盘游戏,游戏规则:将圆盘平均分成三份,分别涂上红,黄,绿三种颜色,两位同学分别转动转盘两次(若压线,重新转).若两次指针指到的颜色相同,则甲获胜;若两次指针指到的颜色是黄绿组合则乙获胜;其余情况则视为平局.(1)请用画树状图的方法,列出所有可能出现的结果;(2)试用概率说明游戏是否公平.22.(10分)如图,已知点A(1,a)是反比例函数y1=的图象上一点,直线y2=﹣与反比例函数y1=的图象的交点为点B、D,且B(3,﹣1),求:(Ⅰ)求反比例函数的解析式;(Ⅱ)求点D坐标,并直接写出y1>y2时x的取值范围;(Ⅲ)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P 的坐标.23.(10分)已知:如图,D是AC上一点,DE∥AB,∠B=∠DAE.(Ⅰ)求证:△ABC∽△DAE;(Ⅱ)若AB=8,AD=6,AE=4,求BC的长.24.(10分)如图所示,AB是⊙O的直径,AD与⊙O相切于点A,DE与⊙O相切于点E,点C 为DE延长线上一点,且CE=CB.(1)求证:BC为⊙O的切线;(2)若AB=4,AD=1,求线段CE的长.25.(10分)已知,△ABC中,AB=AC,点E是边AC上一点,过点E作EF∥BC交AB于点F (1)如图①,求证:AE=AF;(2)如图②,将△AEF绕点A逆时针旋转α(0°<α<144°)得到△AE′F′.连接CE′BF′.①若BF′=6,求CE′的长;②若∠EBC=∠BAC=36°,在图②的旋转过程中,当CE′∥AB时,直接写出旋转角α的大小.26.(10分)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(3,0),B(﹣1,0)两点,与y轴相交于点C(0,﹣3)(1)求该二次函数的解析式;(2)设E是y轴右侧抛物线上异于点A的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH,则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;(3)设P点是x轴下方的抛物线上的一个动点,连接PA、PC,求△PAC面积的取值范围,若△PAC面积为整数时,这样的△PAC有几个?2017-2018学年天津市红桥区九年级(上)期末数学试卷参考答案一、选择题(本大题共12小题,每小题3分,共36分)1.D;2.B;3.B;4.D;5.C;6.D;7.A;8.B;9.D;10.A;11.C;12.B;二、填空题(本大题共8小题,每小题3分,共24分)13.m>1;14.﹣2;15.8.5;16.10;17.;18.;19.3;20.4;三、解答题(本大题共6小题,共60分)。

2018-2019年度天津市红桥区初三期末考试数学试题

2018-2019年度天津市红桥区初三期末考试数学试题

2018-2019年度天津市红桥区初三期末考试数学试题一、选择题(每小题3分,共36分) 1、下列说法正确的是( )A .“打开电视机,正在播《都市报道60分》”是必然事件B .“从一个装有6个红球的不透明的袋中摸出一个球是红球”是随机事件C .“概率为0.0001的事件”是不可能事件D .“经过有信号灯的路口,遇到红灯”是随机事件 2、下列图形中,可以看做是中心对称图形的是( )3、如图,以A 、B 、C 为顶点的三角形与以D 、E 、F 为顶点的三角形相似,则这两个三角形的相似比为( )A .2:1B .3:1C .4:3D .3:24、如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,下列结论中不成立的是( ) A .CM =DM B .弧CB =弧DB C .∠ACD =∠ADC D .OM =MD第3题图 第4题图5、若正方形的边长为6,则其外接圆的半径为( ) A .3 B .32 C .6 D .266、如图,AB ∥CD ,AB =6,CD =9,AD =10,则OD 的长为( ) A .4 B .5 C .6 D .77、在半径为3的圆中,150°的圆心角所对的弧长为( )A .π415B .π215C .π45D .π258、如图,AB 是⊙O 的弦,AC 是⊙O 的切线,A 为切点,BC 经过圆心。

若∠B =25°,则∠C 的大小等于( ) A .20° B .25° C .40° D .50°9、若点A (1x ,-6),B (2x ,2),C (3x ,2)在反比例函数xm y 12+=(m 为常数)的图象上,则1x 、2x 、3x 的大小关系是( )A .321x x x <<B .312x x x <<C .132x x x <<D .123x x x <<10、已知一个直角三角形两直角边之和为20cm ,则这个直角三角形的最大面积为( ) A .252cm B .402cm C .502cm D .1002cm 11、如图,直线AB 与半径为2的⊙O 相切于点C ,D 是⊙O 上一点,且∠EDC =30°,弦EF ∥AB ,则EF 的长为( )A .3B .2C .22D .32第6题图第8题图12、二次函数bx ax y +=2的图象如图所示,若关于x 的一元二次方程02=++m bx ax 有实数根,则m 的最大值为( )A .-3B .3C .-6D .6第11题图 第12题图 第16题图 第18题图 二、填空题(每小题3分,共18分)13、已知1-=m x y ,若y 是x 的反比例函数,则m 的值为_______________14、不透明袋子中装有7个球,其中有3个红球,4个黄球,这些球除颜色外无其他差别,从袋中随机取出1 个球,则它是红球的概率是_____________15、一个等边三角形的边长的数值是方程01032=--x x 的根,那么这个三角形的周长为________16、如图,在△ABC 中,DE ∥BC ,分别交AB 、AC 于点D 、E ,若AD =3,DB =2,BC =6,则DE 的长为_______________17、若二次函数a x ax y ++=42(a 为常数)的最大值为3,则a 的值为______________ 18、如图,⊙O 的直径AB 长为10,弦AC 长为6,∠ACB 的平分线交⊙O 于点D ,则BC 的长为___________,CD 的长为_____________ 三、解答题(本大题共7小题,共66分) 19、(本小题8分)已知关于x 的一元二次方程012=-++m x x (I )当m =0时,求方程的实数根;(II )若方程有两个不相等的实数根,求实数m 的取值范围 20、(本小题8分)一个盒中有4个完全相同的小球,把他们分别标号为1,2,3,4,随机摸去一个小球然后放回,再随机摸出一个小球(I )请用列表法(或画树状图法)列出所有可能的结果; (II )求两次取出的小球标号相同的概率;(III )求两次取出的小球标号的和大于6的概率21、(本小题10分)已知直线12+-=x y 与y 轴交于点A ,与反比例函数xky =(k 为常数)的图象有一个交点B 的纵坐标是5(I )求反比例函数的解析式,并说明其图象所在的象限; (II )当52<<x 时,求反比例函数的函数值y 的取值范围; (III )求△AOB 的面积S 22、(本小题10分)如图,△ABC 是等边三角形,点D 、E 分别在BC 、AC 上,且BD =CE ,AD 与BE 相交于点F(I )证明:△ABD ≌△BCE ; (II )证明:△ABE ∽△F AE ;(III )若AF =7,DF =1,求BD 的长23、(本小题10分)在△ABC 中,∠ABC =45°,∠C =60°,⊙O 经过点A 、B 与BC 交于点D ,连接AD (I )如图①,若AB 是⊙O 的直径,交AC 于点E ,连接DE ,求∠ADE 的大小; (II )如图②,若⊙O 与AC 相切,求∠ADC 的大小24、(本小题10分)在平面直角坐标系中,O 为原点,点A (3-,0),点B (0,1),把△ABO 绕点O 顺时针旋转,得△O B A '',点A 、B 旋转后的对应点为'A 、'B ,及旋转角为)3600(︒<<︒αα (I )如图①,当点'A 、B 、'B 共线时,求'AA 的长;(II )如图②,当α=90°时,求直线AB 与''B A 的交点C 的坐标;(III )当点'A 在直线AB 上时,求'BB 与'OA 的交点D 的坐标(直接写出结果即可)25、(本小题10分)抛物线n mx x y ++-=221与x 轴交于A 、B 两点,与y 轴交于点C ,抛物线的对称轴交x 轴于点D ,已知A (-1,0),C (0,2) (I )求抛物线的解析式; (II )在抛物线的对称轴上是否存在点P ,使△PCD 是以CD 为腰的等腰三角形?如果存在,求出p 的坐标;如果不存在,请说明理由;(III )点E 是线段BC 上的一个动点,过点E 作x 轴的垂线与抛物线相交于点F ,求四边形CDBF 的面积的最大值及此时点E 的坐标红桥区 2018~2019 学年度第一学期九年级期末测试数学参考答案及评分标准一、选择题:本大题共 12 个小题,每小题 3 分,共 36 分.(1)D (2)A (3)A (4)D (5)B (6)C (7)D(8)C(9)B(10)C(11)D(12)B二、填空题:本大题共 6 个小题,每小题 3 分,共 18 分. (13) 0 (14) 37(15)15(16) 185(17) -1(18) 8 , 7 三、解答题:本大题共 7 个小题,共 66 分.(19)(本小题 8 分)解:(Ⅰ)当 m = 0 时,方程为 x 2 + x - 1 = 0 ,∆ = b 2 - 4ac = 12 - 4 ⨯1⨯ (-1) = 5 > 0 . ...................... 2 分(公式 1 分,结果 1 分)方程有两个不等的实数根 x =, ................................... 3 分2即x1=-1 -25,x =-1 +25............................................... 5 分(Ⅱ)∆=b2 - 4ac =12 - 4 ⨯1⨯ (m -1) = 5 - 4m .................................... 6 分根据题意,由∆> 0 ,解得m<5 .............................................. 8 分4(20)(本小题8分)解:(Ⅰ)根据题意,列表如下:所有等可能的情况有16 种. .................................................. 4 分(Ⅱ)∵两次取出的小球标号相同的情况有4 种,∴P =4=1................ 6 分1 16 4(Ⅲ)∵两次取出的小球标号的和大于6 的情况共有3 种,∴P2 =16.………8 分23(21)(本小题 10 分)解:(Ⅰ)由-2x + 1 = 5 ,解得 x = -2 .∴ B (-2 ,5) .∴k = -2 ⨯ 5 = -10 < 0 .……… 2 分∴ 反比例函数的解析式为 y = - 10,其图象在二、四象限. ........................ 4 分x (Ⅱ)∵ k = -10 < 0 ,∴ 当2 < x < 5 时,反比例函数的函数值 y 随 x 的增大而增大. ..................... 5 分 当 x = 2 时, y = -5 ;当 x = 5 时, y = -2 .∴ -5 < y < -2 . ........................ 8 分(Ⅲ)当 x = 0 时, y = -2x + 1 = 1 ,∴A (0 ,1) .∴ OA = 1 .∴ S △AOB = 1 OA ⋅ | x 2 B| = 1⨯1⨯ 2 = 1 . .......................................... 10 分 2 (22)(本小题 10 分)解:(Ⅰ)∵△ABC 是等边三角形,∴ AB = BC , ∠ABC = ∠BAC = ∠C = 60︒ . …… 2 分∵ BD = CE ,∴ △ABD ≌△BCE .......................................... 3 分 (Ⅱ)由(Ⅰ), ∠BAD = ∠CBE . ................................................................................................ 4 分∵ ∠EAF = ∠BAC - ∠BAD , ∠ABE = ∠ABC - ∠CBE ,∴ ∠EAF = ∠ABE .…… 6 分∵ ∠AEF = ∠BEA ,∴ △ABE ∽△FAE . .................................... 7 分(Ⅲ)∵ ∠BAD = ∠CBE , ∠BDA = ∠FDB ,∴ △ABD ∽△BDF . ∴ AD = BD. ...................................... 9 分BD DF ∴ BD 2 = AD ⋅ DF = (AF + FD ) ⋅ DF = 8 .∴ BD = 2 . ........................ 10 分(23)(本小题 10 分)解:(Ⅰ)连接 B E .∵ ∠ABC = 45︒ , ∠C = 60︒ ,∴ ∠BAC = 75︒ .……… 1 分∵ AB 是⊙ O 的直径,∴ ∠AEB = 90︒ . ................ 2 分 ∴ ∠ABE = 90︒ - ∠BAC = 15︒ . ........................ 3 分 ∵ ∠ABE = ∠ADE ,∴ ∠ADE = 15︒ . ................. 4 分(Ⅱ)连接OA , OD .∵ AC 是⊙ O 的切线,∴ OA ⊥ AC . ................ 5 分 ∵ ∠ABC = 45︒ ,∴ ∠AOD = 90︒ . ....................6 分∴ OD // AC .∴ ∠ODC = 120︒ . ..................... 8 分 ∵ OA = OD ,∴ ∠ODA = ∠OAD = 45︒ .……… 9 分C∴ ∠ADC = ∠ODC - ∠ODA = 75︒ . ................... 10 分2 A O EBD CAOBD3 3 , ⎨ ⎨ (24)(本小题 10 分) 解:(Ⅰ)由已知, O A =, O B = 1 .∴∠ABO = 60︒ , ∠BAO = 30︒ . .................. 1 分∵ △A 'B 'O 是由△ABO 旋转得到的,∴ ∠B ' = ∠ABO = 60︒ ,OB = OB ' ,OA = OA ' . … 2 分∴ ∠OBB ' = 60︒ .∴ ∠BOB ' = α= ∠AOA ' = 60︒ . ...................... 3 分 ∴ AA ' = OA = . ............................... 4 分(Ⅱ)过 C 作CH ⊥ A 'B ,垂足为 H .y A ' ∵ α= 90︒ , ∠OB 'A ' = 60︒ , ∠BAO = 30︒ ,∴ AC ⊥ A 'B ' .H C B∵ A 'B = OA ' - OB = 3 - 1 , ∠A 'BC = ∠ABO = 60︒ ,∴ BC = 1 A 'B = 3 -1 . A O B ' x∴ CH = 2 2 3 BC = 3 -3 , BH = 1BC =3 -1 .∴ OH = 1 + BH = 3 + 3 . 24 2 4 4∴ 点C 的坐标为(3 - 3 3 + 3) . ............................................ 8 分(Ⅲ)( , 4 41) . ............................................................. 10 分 6 2 (25)(本小题 10 分)解:(Ⅰ)∵ 抛物线 y = - 1 x 2 + mx + n 经过 A (-1,0) , C (0 ,2) ,2 ⎧- 1 - m + n = 0 , ⎧m = 3 ,∴ ⎪ 2解得⎪ 2 …………………………………… 2 分 ⎪⎩n = 2 , ⎪⎩n = 2 .∴ 抛物线的解析式为 y = - 1 x 2 + 3x + 2 . ....................................... 3 分2 2(Ⅱ)∵ y = - 1 x 2 + 3 + 2 = - 1 (x - 3 )2 + 25,2 2 2 2 8∴ 抛物线的对称轴是 x = 3 . ∴ 2 OD = 3. .................................... 4 分2∵ C (0 ,2) ,∴ OC = 2 .在Rt △OCD 中,由勾股定理,得CD = 5. 2 ∵ △CDP 是以CD 为腰的等腰三角形,∴ CP = DP = DP = CD .123作CH ⊥ x 轴于点 H ,∴ HP 1 = HD = 2 . ∴DP 1 = 4 .∴ P ( 3 ,4) , P ( 3 5) , P ( 3 ,- 5) . .................................................................................... 7 分, 1 2 2 2 2 32 23 yP 1C P 2HA ODBxP 3yA 'B B 'AO x(Ⅲ)当y = 0 时,由-1x2 +3x + 2 = 0 ,解得x =-1 ,或x = 4 ,∴2 2B(4,0).⎧b = 2 ,⎧k =-1,设直线BC 的解析式为y =kx +b ,由图象,得⎨ 解得⎪2⎩4k +b = 0 ,⎨⎪⎩b=2.∴直线B C 的解析式为y=-1x + 2 . .......................................... 8 分2过点C作CM⊥EF于M,设E(a,-1a+2),F(a,-1a2 +3a+2),2 2 2∴EF =-1a 2 +3a + 2 - (-1a + 2) =-1a 2 + 2a .2 2 2 2∵S四边形CDBF =S△BCD+S△CEF+S△BEF=1BD ⋅OC +1EF ⋅CM +1EF ⋅BN2 2 2=1⨯5⨯ 2 +1a(-1a2 + 2a) +1(4 -a)(-1a2 + 2a)2 2 2 2 2 2=-a2 + 4a +5=-(a - 2)2 +132 2yCFMEA O D NB x∴根据题意0 ≤a ≤4 ,∴当a 2 时,S四边形CDBF的最大值为13,此时点E(2,1)................................................. 10分2- 10 -。

红桥区2017-2018学年九年级上期末强化练习试卷有答案-数学精品【名校版】

红桥区2017-2018学年九年级上期末强化练习试卷有答案-数学精品【名校版】

2017-2018学年 九年级数学上册 期末强化练习卷一、选择题1.下列方程是一元二次方程的是( )A .ax 2+bx+c=0B .x 2+2x=x 2﹣1C .(x ﹣1)(x ﹣3)=0D .=22.下列各图中,不是中心对称图形的是( )3.在今年的中考中,市区学生体育测试分成了三类,耐力类、速度类和力量类.其中必测项目为耐力类,抽测项目为:速度类有50m 、100m 、50m × 2往返跑三项,力量类有原地掷实心球、立定跳远、引体向上(男)或仰卧起坐(女)三项.市中考领导小组要从速度类和力量类中各随机抽取一项进行测试,请问同时抽中50m × 2往返跑、引体向上(男)或仰卧起坐(女)两项的概率是( ). A .31B .32C .61D .914.若关于x 的一元二次方程x 2+(2k ﹣1)x+k 2﹣1=0有实数根,则k 取值范围是( ) A .k ≥1.25B .k >1.25C .k <1.25D .k ≤1.255.如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA .OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( ) A .12个单位B .10个单位C .1个单位D .15个单位6.如图,已知AC 是⊙O 的直径,点B 在圆周上(不与A .C 重合),点D 在AC 的延长线上,连接BD 交⊙O 于点E,若∠AOB=3∠ADB ,则( )A .DE=EB B . DE=EBC . DE=DOD .DE=OB7.已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定8.下列成语所描述的事件是必然事件的是()A.瓮中捉鳖B.拔苗助长C.守株待兔D.水中捞月9.在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为s=5t2+2t,则当t=4时,该物体所经过的路程为( )A.88米B.68米C.48米D.28米10.同一坐标系中,一次函数y=ax+1与二次函数y=x2+a的图象可能是( )11.如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上.若AC=,∠B=60°,则CD的长为()A.0.5 B.1.5 C.D.112. “如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根”.请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x 的方程1-(x-a)(x-b)=0的两根,且a < b, 则a、b、m、n 的大小关系是()A.m<a<b<n B.a<m<n<b C.a<m<b<n D.m<a<n<b二、填空题13.若关于x的二次方程有两个相等的实数根,则实数a=14.从1,2,3,4四个数中任取一个数作为AC的长度,又从4,5中任取一个数作为BC的长度,AB=6,则AB、AC、BC能构成三角形的概率是.15.如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小是__________度.16.如图,⊙O是正五边形ABCDE的外接圆,则∠CAD=°.17.已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为.18.抛物线y=mx2﹣2x+1与x轴有且只有一个交点,则m的值是.三、解答题19.如图,△ABC的顶点坐标分别为A(1,3)、B(4,2)、C(2,1).(1)在图中以点O为位似中心在原点的另一侧画出△ABC放大2倍后得到的△A1B1C1,并写出A1的坐标;(2)请在图中画出△ABC绕点O逆时针旋转90°后得到的△A2B2C2.20.解方程3x2﹣6x+1=0(用配方法)21.如图,已知二次函数y=ax2+bx+c的图象与x轴交于A.B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;(2)求△MCB的面积S.△MCB22.一个不透明的布袋里装有16个只有颜色不同的球,其中红球有x个,白球有2x个,其他均为黄球,现甲从布袋中随机摸出一个球,若是红球则甲同学获胜,甲同学把摸出的球放回并搅匀,由乙同学随机摸出一个球,若为黄球,则乙同学获胜.(1)当x=3时,谁获胜的可能性大?(2)当x为何值时,游戏对双方是公平的?23.本市新建的滴水湖是圆形人工湖。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年天津市红桥区九年级(上)期末数学试卷
一、选择题(本大题共12小题,每小题3分,共36分)
1.下列函数中是二次函数的是()
A.y=3x﹣1 B.y=x3﹣2x﹣3 C.y=(x+1)2﹣x2D.y=3x2﹣1
2.如图,在△ABC中,点D、E分别为边AB、AC上的点,且DE∥BC,若AD=5,BD=10,AE=3,则CE的长为()
A.3 B.6 C.9 D.12
3.下列图形中既是轴对称图形,又是中心对称图形的是()
A.B. C.D.
4.抛物线y=3(x﹣4)2+5的顶点坐标为()
A.(﹣4,﹣5)B.(﹣4,5) C.(4,﹣5) D.(4,5)
5.从,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是()A.B.C.D.
6.对于双曲线y=,当x>0时,y随x的增大而减小,则m的取值范围为()
A.m>0 B.m>1 C.m<0 D.m<1
7.已知正三角形外接圆半径为2,这个正三角形的边长是()
A.2B.C.3 D.2
8.已知,如图,AB是⊙O的直径,点D,C在⊙O上,连接AD、BD、DC、AC,如果∠BAD=25°,那么∠C的度数是()
A.75°B.65°C.60°D.50°
9.如图,将△ABC绕点A按逆时针方向旋转40°到△AB′C′的位置,连接CC′,若CC′∥AB,则∠BAC的大小是()
A.55°B.60°C.65°D.70°
10.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,若旋转角为20°,则∠1为()
A.110°B.120°C.150°D.160°
11.如图,PA、PB切⊙O于点A、B,PA=10,CD切⊙O于点E,交PA、PB于C、D两点,则△PCD的周长是()
A.10 B.18 C.20 D.22
12.如图,点A在双曲线的第一象限的那一支上,AB垂直于y轴于点B,点C在x轴正半
轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为()
A.16 B.C.D.9
二、填空题(本大题共8小题,每小题3分,共24分)
13.如果抛物线y=(m﹣1)x2的开口向上,那么m的取值范围是.
14.如图,已知反比例函数y=(k为常数,k≠0)的图象经过点A,过A点作AB⊥x轴,垂足为B.若△AOB的面积为1,则k= .
15.如图,已知△ADE∽△ABC,且AD=3,DC=4,AE=2,则BE= .
16.已知△ABC的三边长分别是6,8,10,则△ABC外接圆的直径是.
17.在电视台举办的“超级女生”比赛中,甲乙丙三位评委对选手的综合表现,分别给出“淘汰”或“通过”的结论.比赛规则设定:三位评委中至少有两位评委给出“通过”的结论,那么这位选手才能进入下一轮比赛.试问:对于选手A进入下一轮比赛的概率是.18.如图,沿直线DE折叠等边三角形纸片△ABC,使A点落在BC边上任意一点F处(不与B、C重合).已知△ABC边长为28,D为AB上一点,BD=15,BF=7,则CE= .
19.如图,△ABC是边长为12的等边三角形,D是BC的中点,E是直线AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF.则在点E的运动过程中,DF的最小值是.
20.已知抛物线经过A(﹣4,0)、B(0,﹣4)、C(2,0)三点,若点M为第三象限内抛物线上一动点,△AMB的面积为S,则S的最大值为.
三、解答题(本大题共6小题,共60分)
21.(10分)甲、乙两位同学玩转盘游戏,游戏规则:将圆盘平均分成三份,分别涂上红,黄,绿三种颜色,两位同学分别转动转盘两次(若压线,重新转).若两次指针指到的颜色相同,则甲获胜;若两次指针指到的颜色是黄绿组合则乙获胜;其余情况则视为平局.
(1)请用画树状图的方法,列出所有可能出现的结果;
(2)试用概率说明游戏是否公平.
22.(10分)如图,已知点A (1,a )是反比例函数y 1=的图象上一点,直线y 2=﹣

反比例函数y 1=的图象的交点为点B 、D ,且B (3,﹣1),求:
(Ⅰ)求反比例函数的解析式;
(Ⅱ)求点D 坐标,并直接写出y 1>y 2时x 的取值范围; (Ⅲ)动点P (x ,0)在x 轴的正半轴上运动,当线段PA 与线段PB 之差达到最大时,求点P 的坐标.
23.(10分)已知:如图,D 是AC 上一点,DE ∥AB ,∠B=∠DAE .
(Ⅰ)求证:△ABC ∽△DAE ;
(Ⅱ)若AB=8,AD=6,AE=4,求BC 的长.
24.(10分)如图所示,AB 是⊙O 的直径,AD 与⊙O 相切于点A ,DE 与⊙O 相切于点E ,点C 为DE 延长线上一点,且CE=CB .
(1)求证:BC为⊙O的切线;
(2)若AB=4,AD=1,求线段CE的长.
25.(10分)已知,△ABC中,AB=AC,点E是边AC上一点,过点E作EF∥BC交AB于点F (1)如图①,求证:AE=AF;
(2)如图②,将△AEF绕点A逆时针旋转α(0°<α<144°)得到△AE′F′.连接CE′BF′.
①若BF′=6,求CE′的长;
②若∠EBC=∠BAC=36°,在图②的旋转过程中,当CE′∥AB时,直接写出旋转角α的大小.
26.(10分)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(3,0),B(﹣1,0)两点,与y轴相交于点C(0,﹣3)
(1)求该二次函数的解析式;
(2)设E是y轴右侧抛物线上异于点A的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH,则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;
(3)设P点是x轴下方的抛物线上的一个动点,连接PA、PC,求△PAC面积的取值范围,若△PAC面积为整数时,这样的△PAC有几个?
2017-2018学年天津市红桥区九年级(上)期末数学试卷
参考答案
一、选择题(本大题共12小题,每小题3分,共36分)
1.D;2.B;3.B;4.D;5.C;6.D;7.A;8.B;9.D;10.A;
11.C;12.B;
二、填空题(本大题共8小题,每小题3分,共24分)
13.m>1;14.﹣2;15.8.5;16.10;
17.;18.;19.3;20.4;
三、解答题(本大题共6小题,共60分)。

相关文档
最新文档