【八年级数学试题】八年级数学上12.3角平分线的性质(1)测试(人教版带答案)
新人教版八年级数学上册12.3角的平分线的性质(第1课时)课时同步习题(含答案)
12.3 角的平分线的性质一、选择题1. 用尺规作已知角的平分线的理论依据是( )A .SASB .AASC .SSSD .ASA2. 如图,∠1=∠2,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E ,下列结论错误的是( )A 、PD =PEB 、OD =OEC 、∠DPO=∠EPOD 、PD =OD 3. 如图,Rt △ABC 中,∠C =90°,∠ABC 的平分线BD 交AC 于D ,若CD =3cm ,则点D 到AB 的距离DE 是( )A .5cmB .4cmC .3cmD .2cm4. 如图,△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E ,且AB =6㎝,则△DEB 的周长为( )A. 4㎝B. 6㎝C. 10㎝D. 不能确定 21D A PO EB第2题图 第3题图 第4题图 5.如图,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥,垂足分别为A ,B .下列结论中不一定成立的是( ) A.PA PB = B.PO 平分APB ∠ C.OA OB = D.AB 垂直平分OP6.如图,AD 是△ABC 中∠BAC 的平分线,DE ⊥A B 于点E ,DF ⊥AC 交AC 于点F .S △ABC =7,DE=2,AB=4,则AC 长是( )第5题图 第6题图 第7题图7.如图,AD 是△ABC 的角平分线,DF ⊥AB ,垂足为F ,DE=DG ,△ADG 和△AED 的面积分别为50和39,则△EDF 的面积为( )DCA EBF E O D C ABA 、11B 、5.5C 、7D 、3.5 8.已知:如图,△ABC 中,∠C =90o ,点O 为△ABC 的三条角平分线的交点,OD ⊥BC ,OE ⊥AC ,OF ⊥AB ,点D 、E 、F 分别是垂足,且AB =10cm ,BC =8cm ,CA =6cm ,则点O 到三边AB 、AC 和BC 的距离分别等于( ) (A )2cm 、2cm 、2cm . (B )3cm 、3cm 、3cm .(C )4cm 、4cm 、4cm . (D )2cm 、3cm 、5cm .二、填空题 9.如图,P 是∠AOB 的角平分线上的一点,PC ⊥OA 于点C ,PD ⊥OB 于点D ,写出图中一对相等的线段(只需写出一对即可) .10.如图,在△ABC 中,∠A =90°,BD 平分∠ABC ,AD =2 cm ,则点D 到BC 的距离为________cm .11 .如图,OP 平分∠MON ,PA ⊥ON 于点A ,点Q 是射线OM 上一个动点,若PA=3,则PQ 的最小值为 .第9题图 第10题图 第11题图12.如图,在Rt △ABC 中,∠A=90°,∠ABC 的平分线BD 交AC 于点D ,AD=3,BC=10,则△BDC 的面积是 .第12题图 第13题图 第15题图13.如图,在Rt △ABC 中,∠C=90°,若BC=10,AD 平分∠BAC 交BC 于点D ,且BD :CD=3:2,则点D 到线段AB 的距离为 .14.已知△ABC 中,AD 是角平分线,AB=5,AC=3,且S △ADC =6,则S △ABD = .15.如图,AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,垂足分别为点E ,F ,连接EF ,则EF 与AD 的关系是 .16.通过学习我们已经知道三角形的三条内角平分线是交于一点的.如图,P 是△ABC 的内角平分线的交点,已知P 点到AB 边的距离为1,△ABC 的周长为10,则△ABC 的面积为 .17.如图,AD ∥BC ,∠ABC 的角平分线BP 与∠BAD 的角平分线AP 相交于点P ,作PE ⊥AB 于点E .若PE=2,则两平行线AD 与BC 间的距离为 .第16题图 第17题图 第18题图18. 如图,△ABC 的三边AB 、BC 、CA 长分别为40、50、60.其三条角平分线交于点O ,则S △ABO :S △BCO :S △CAO = .三、解答题19.已知:AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,BD =CD ,求证:∠B =∠C. 20. 如图,画∠AOB=90°,并画∠AOB 的平分线OCP 上,使三角尺的两条直角边与∠AOB 的两边分别相交于点E 、F21.如图,AB ∥CD ,以点A 为圆心,小于AC 长为半径作圆弧,分别交AB ,AC 于E ,F 两点,再分别以E ,F 为圆心,大于EF 长为半径作圆弧,两条圆弧交于点P ,作射线AP ,交CD 于点M .(1)若∠ACD=114°,求∠MAB 的度数;(2)若CN ⊥AM ,垂足为N ,求证:△ACN ≌△MCN .22. 如图,已知△ABC 中,AB=AC ,BE 平分∠ABC 交AC 于E ,若∠A=90°,那么BC 、B A 、AE 三者之间有何关系?并加以证明.23. 如图,△ABC中,D为BC的中点,DE⊥BC交∠BAC的平分线AE于点E,EF⊥AB于F,EG⊥A G交AC的延长线于G.求证:BF=CG.12.3 角的平分线的性质第1课时角的平分线的性质一、选择题1.C2.D3.C4.B5.D6.B7.B8.A二、填空题9.PC=PD(答案不唯一)10. 2 11. 3 12. 15 13. 4 14. 1015. AD垂直平分EF 16. 5 17. 4 18. 4:5:6三、解答题19.证明:∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,在Rt△DEB与Rt△DFC中,BD=CD,DE=DF,∴Rt△DEB≌Rt△DFC(HL),∴∠B=∠C.理由是:过点∴∠ACD+∠CAB=18的平分线,∴∠MAB=∠CAB=33°22 . 解:BC、BA、AE三者之间的关系:BC=BA+AE,理由如下:过E作ED⊥BC交BC于点D,∵BE平分∠ABC,BA⊥CA,∴AE=DE,∠EDC=∠A=∠BDE=90°,∵在Rt△BAE和Rt△BDE中,∴Rt△BAE≌Rt△BDE(HL),∴BA=BD,∵AB=AC,∠A=90°∴∠C=45°,∴∠CED=45°=∠C,∴DE=CD,∵AE=DE,∴AE=CD=DE,∴BC=BD+DC=BA+AE.∵EF⊥AB EG⊥A G,。
12.3 角的平分线的性质 人教版数学八年级上册堂堂练(含答案)
12.3角的平分线的性质—2023-2024学年人教版数学八年级上册堂堂练1.如图,OP平分,于点A,,点Q是射线OM上的一个动点,则下列结论正确的是( )A. B. C. D.2.如图,在中,,以顶点A为圆心,适当长度为半径画弧,分别交AC、AB于点M、N,再分别以点M、N为圆心,大于的长度为半径画弧,两弧交于点P,作射线AP交BC于点D,若,,则的面积是( )A.15B.30C.45D.603.角平分线的作法(尺规作图)①以点O为圆心,任意长为半径画弧,交OA、OB于C、D两点;②分别以C、D为圆心,大于CD长为半径画弧,两弧交于点P;③过点P作射线OP,射线OP即为所求.角平分线的作法依据的是( )A.SSSB.SASC.AASD.ASA4.如图,在中,,AD平分,交BC于点D.已知,,则的面积为( )A.80B.40C.20D.105.如图,的三边AB,BC,CA长分别是20,30,40,其三条角平分线将分为三个三角形,则等于( )A. B. C. D.6.如图,,,若,,则D到AB的距离为________。
7.如图,直线a,b,c表示3条互相交叉的公路.若要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的站址有______________处.8.如图,,M是BC的中点,DM平分,求证:AM平分.答案以及解析1.答案:C解析:平分,于点A,点P到OM的距离等于线段PA的长度,当时,PQ有最小值,的最小值,,即,故选C2.答案:C解析:如图,作于点E,由题意知AD是的角平分线,,,,的面积,故选C.3.答案:A解析:如下图所示:连接CP、DP,在与中,由作图可知:,,故选A.4.答案:B解析:如图,作于E,,,,故选B.5.答案:C解析:过点O作于D,于E,于F,点O是内心,,,故选C.6.答案: 4.解析:作于E,,,,,,,,故答案为:4.7.答案:4解析:如图,根据角平分线的性质定理,可知内部有1个点,另外与的平分线的交点、与的平分线的交点、与的平分线的交点,共4处站址可供选择.8.解析:如图,过点M作于F,,DM平分,,M是BC的中点,,,又,点M在的平分线上,AM平分.。
人教版_部编版八年级数学上册第十二章第三节角的平分线的性质习题(含答案) (18)
人教版_部编版八年级数学上册第十二章第三节角的平分线的性质考试复习题(含答案)如图,已知直线AB和CD相交于点O,∠COE=90°,OF平分∠AOE.(1)写出∠AOC与∠BOD的大小关系并说明理由;(2)若∠COF=34°26′,求∠BOD.【答案】解:(1)∠AOC=∠BOD,理由见解析;(2)∠BOD=21°08′.【解析】试题分析:(1)根据对顶角的性质即可判断,∠AOC=∠BOD;(2)根据直角的定义可得∠COE=90°,然后求出∠EOF,再根据角平分线的定义求出∠AOF,然后根据∠AOC=∠AOF-∠COF求出∠AOC,再根据对顶角相等解答.试题解析:(1)∠AOC=∠BOD,理由如下:因为∠AOC与∠BOD是对顶角,根据对顶角相等,所以∠AOC=∠BOD;(2)∵∠COE是直角,∴∠COE=90°,∴∠EOF=∠COE−∠COF=90°−34°26′=55°34′,∵OF平分∠AOE,∴∠AOF=∠COE=55°34′,∴∠AOC=∠AOF−∠COF=55°34′−34°26′=21°08′,∴∠BOD=∠AOC=21°08′.72.已知:如图,在△ABC中,BD平分∠ABC,交AC于点D,过D作DE∥BC交AB于点E.已知∠A=45°,∠C=105°,求∠EDB的度数.【答案】15°【解析】试题分析:先由三角形的内角和求出∠ABC的度数,再由BD是∠ABC的平分线求出∠DBC的度数,最后由DE∥BC求出∠EDB的度数.试题解析:在ΔABC中,∠A=45°,∠C=105°,∴∠ABC=30°∵BD平分∠ABC∴∠DBC=15°∵DE∥BC∴∠BDE=∠DBC=15°73.如图,在△ABC 中,∠B=32°,∠C =48°,AD⊥BC于点D,AE平分∠BAC交BC于点E,DF⊥AE于点F,求∠ADF的度数.【答案】∠ADF=82°.【解析】试题分析:由在△ABC中,∠B=32°,∠C=48°,根据三角形内角和定理,可求得∠BAC的度数,由AE平分∠BAC,根据角平分线的定义,可求得∠CAE 的度数,由AD⊥BC,根据直角三角形的性质,可求得∠CAD的度数,继而求得∠DAE的度数,则可求得∠ADF的度数.试题解析:在△ABC中,∠B=32°,∠C=48°,∴∠BAC=180°−∠B−∠C=100°,∵AE平分∠BAC,∴∠CAE=12∠BAC=50°,∵AD⊥BC,∴∠CAD=90°−∠C=42°,∴∠DAE=∠CAE−∠CAD=8°,∵DF⊥AE,∴∠ADF=90°−∠DAE=82°.74.已知:如图,在△ABC中,∠A=30°,∠B=60°.(1)作∠B的平分线BD,交AC于点D;(2)作AB的中点E(要求:尺规作图,保留作图痕迹,不必写作法和证明);(3)连接DE,求证:△ADE≌△BDE.【答案】(1)作图见解析;(2)作图见解析;(3)证明见解析.【解析】试题分析:(1)①以B为圆心,任意长为半径画弧,交AB、BC于F、N,FN长为半径画弧,两弧交于点M,过B、M画射线,再以F、N为圆心,大于12交AC于D,线段BD就是∠B的平分线;(2)分别以A、B为圆心,大于1AB长为半径画弧,两弧交于X、Y,过2X、Y画直线与AB交于点E,点E就是AB的中点;(3)首先根据角平分线的性质可得∠ABD的度数,进而得到∠ABD=∠A,根据等角对等边可得AD=BD,再加上条件AE=BE,ED=ED,即可利用SSS证明△ADE≌△BDE.试题解析:(1)作出∠B的平分线BD;(2)作出AB的中点E.(3)证明:∵∠ABD=12×60°=30°,∠A=30°,∴∠ABD=∠A,∴AD=BD,在△ADE和△BDE中,AE BE ED ED AD BD=⎧⎪=⎨⎪=⎩∴△ADE≌△BDE(SSS).75.读句画图并填空:(1)画平角AOB,画射线OC,再分别画∠AOC、∠BOC的角平分线OD、OE;(2)图中,∠∠COE= ∠COB,∠COD= ∠AOC,∠∠DOE=∠COE+∠COD= ∠AOB= ×180°=.【答案】(1)见解析图;(2)12,12,12,12,90°【解析】试题分析:根据基本作图进行作图即可.试题解析:解:(1)如下图所示:(2)∵COE ∠= 12COB ∠,12AOC ∠(角平分线的定义)∵DOE COE COD ∠=∠+∠ 12AOB =∠=1180902⨯︒=(等量代换). 76.已知下列条件,求角的度数。
2019-2020学年八年级上学期数学专题12.3 角平分线的性质(测试)(解析版)
专题12.3角平分线的性质(测试)一、单选题1.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,若BD=2CD,点D到AB的距离为4,则BC的长是()A.4 B.8 C.12 D.16【答案】C【解析】解:如图,过D作DE⊥AB于E,∵∠C=90°,∴CD⊥AC,∵AD平分∠BAC,∴CD=DE,∵D到AB的距离等于4,∴CD=DE=4,又∵BD=2CD,∴BD=8,∴BC=4+8=12,故选:C.2.如图,图中直线表示三条相互交叉的路,现要建一个货运中转站,要求它到三条公路的距离相等,则选择的地址有()A.4处B.3处C.2处D.1处【答案】A【解析】解:∵△ABC 内角平分线的交点到三角形三边的距离相等, ∴△ABC 内角平分线的交点满足条件; 如图:点P 是△ABC 两条外角平分线的交点, 过点P 作PE ⊥AB ,PD ⊥BC ,PF ⊥AC , ∴PE=PF ,PF=PD , ∴PE=PF=PD ,∴点P 到△ABC 的三边的距离相等,∴△ABC 两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个; 综上,到三条公路的距离相等的点有4个, ∴可供选择的地址有4个. 故选:A .3.如图,在ABC ∆中,90C ∠=︒,10AB =,AD 是ABC ∆的一条角平分线.若3CD =,则ABD ∆的面积为( )A .3B .10C .12D .15【答案】D【解析】解:如图,作DE ⊥AB 于E ,∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴DE=CD=3.∴△ABD的面积为12×3×10=15.故选:D.4.△ABC中,AB=7,BC=24,AC=25.在△ABC内有一点P到各边的距离相等,则这个距离为()A.1 B.2 C.3 D.4【答案】C【解析】解:∵△ABC中,AB=7,BC=24,AC=25,∴AB2+BC2=72+242=252=AC2,∴∠ABC=90°,连接AP,BP,CP.设PE=PF=PG=xS△ABC=12×AB×CB=84,S△ABC=12AB×x+12AC×x+12BC×x=12(AB+BC+AC)•x=12×56x=28x,则28x=84,x=3.故选:C.5.如图,OP平分∠AOB,点C,D分别在射线OA,OB上,添加下列条件,不能判定△POC≌△POD的是()A .OC =ODB .∠CPO =∠DPOC .PC =PD D .PC ⊥OA ,PD ⊥OB【答案】C【解析】∵OP 是∠AOB 的平分线, ∴∠AOP =∠BOP ,而OP 是公共边,A 、添加OC =OD 可以利用“SAS ”判定△POC ≌△POD ,B 、添加∠OPC =∠OPD 可以利用“ASA ”判定△POC ≌△POD , C 、添加PC =PD 符合“边边角”,不能判定△POC ≌△POD , D 、添加PC ⊥OA ,PD ⊥OB 可以利用“AAS ”判定△POC ≌△POD , 故选:C .6.如图,已知ABC ∆的面积为28cm ,BP 为ABC ∠的平分线,AP BP ⊥于点P ,则PBC ∆的面积为( ).A .23.5cmB .23.9cmC .24cmD .24.2cm【答案】C【解析】延长AP 交BC 的延长线于点E , ∵AP 垂直PB 且PB 平分ABC ∠, ∴ABP EBP ∠=∠.又BP BP =,90APB BPE ∠=∠=︒, ∴()ABP EBP ASA ∆≅∆. ∴BAP BEP S S ∆∆=,AP PE =. ∴APC PCE S S ∆∆=.设ACE S m ∆=,∴8ABE ABC ACE S S S m ∆∆∆=+=+,∴284cm 211222PBC ABE ACE S S S m m ∆∆∆+-==-=.7.如图,在ABC ∆中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,若32BC =,且:9:7BD CD =,则点D 到AB 边的距离为( ).A .18B .16C .14D .12【答案】C【解析】过点D 作DE AB ⊥于点E , ∵AD 平分BAC ∠,∴DC DE =.又:9:7BD CD =且32BC =,∴18BD =,14CD =. 即14DE =.即点D 到AB 边的距离为14. 故选C8.如图所示,P 是BAC ∠的平分线上一点,PM AB ⊥于点M ,PN AC ⊥于点N .有下列结论:①PM PN =;②AM AN =;③APM ∆与APN ∆面积相等;④90PAN APM ∠+∠=︒,其中正确结论的个数是( )A .1B .2C .3D .4【答案】D【解析】由角平分线性质可知①是正确的;可证()Rt Rt AMP ANP HL ∆≅∆,∴AM=AN,APM APN S S ∆∆=,可得②③是正确的;由()Rt Rt AMP ANP HL ∆≅∆可得∠APM=∠APN ,由∠APN+∠PAN=90°可得∠PAN+∠APM=90°,可知④是正确的,故选D.9.如图,在ABC ∆中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,DE AB ⊥于点E ,下列结论中正确的个数是( ).①AD 平分CDE ∠:②BAC BDE ∠=∠;③DE 平分ADB ∠;④AB AC BE =+. A .3个 B .2个C .1个D .4个【答案】A【解析】因为DE AB ⊥,所以90AED ∠=︒.又AD 是CAB ∠的角平分线,AC CD ⊥,由角平分线的性质得DC DE =,又AD AD =,故ACD AED ∆≅∆,所以ADC ADE ∠=∠,故①成立;在Rt ABC ∆中,90C ∠=︒,故90BAC B ∠+∠=︒,在Rt BDE ∆中,90B EDB ∠+∠=︒,因此BAC B B EDB ∠+∠=∠+∠,即BAC BDE ∠=∠,故②成立;∵ACD AED ∆≅∆,故AC AE =,因此AB AE EB AC BE =+=+,④成立; 当60B ∠=︒时,30EDB ∠=︒,75ADE ∠=︒,显然EDB ADE ∠≠∠,故③不成立.10.作∠AOB 的角平分线的作图过程如下,用下面的三角形全等判定法则解释其作图原理,最为恰当的是( )A.SAS B.ASA C.AAS D.SSS【答案】D【解析】连接CD、CE,根据作图步骤知OD=OE、CD=CE、OC=OC所以根据SSS可判定△OCE≌△OCD,所以∠BOC=∠AOC,OC平分∠AOB故用尺规作图画∠AOB的角平分线OC,作图依据是SSS,故选:D.11.如图,点P在∠MON的角平分线上,A、B分别在∠MON的边OM、ON上,若OB=3,S△OPB=6,则线段AP的长不可能是()A.3 B.4 C.5 D.6【答案】A【解析】作PC⊥OM于C,PD⊥ON于D,如图所示:∵点P在∠MON的角平分线上,∴PC=PD,∵S△OPB=12OB⋅PD=6,OB=3,∴PD=4,∴线段AP的长不可能是3,故选:A.12.如图,在△ABC中,∠C=90°,AC=BC,AB=4cm,AD平分∠BAC交BC于点D,DE⊥AB于点E,则以下结论:①AD平分∠CDE;②DE平分∠BDA;③AE-BE=BD;④△BDE周长是4cm.其中正确的有()A.4个B.3个C.2个D.1个【答案】B【解析】解:∵DE⊥AB,∴∠DEA=∠DEB=90°,∵AD平分∠CAB,∴∠CAD=∠BAD,∵∠C=90°,∠CDA+∠C+∠CAD=180°,∠DEA+∠BAD+∠EDA=180°,∴∠CDA=∠EDA,∴①正确;∵在△ABC中,∠C=90°,AC=BC,∴∠CAB=∠B=45°,∵∠C=∠DEA=∠DEB=90°,∴∠CDE=360°-90°-45°-90°=135°,∠BDE=180°-90°-45°=45°,∵∠CDA=∠EDA,∴∠CDA=∠EDA=11352︒⨯=67.5°≠45°,∴∠EDA≠∠BDE,∴DE不平分∠BDA,∴②错误;∵AD平分∠CAB,∠C=90°,DE⊥AB,∴CD=DE,由勾股定理得:AC=AE,∴AE=AC=BC , ∵∠B=∠BDE=45°, ∴BE=DE=CD ,∴AE-BE=BC-CD=BD ,∴③正确;△BDE 周长是BE+DE+BD=BE+CD+BD=BC+BE=AE+BE=AB=4cm ,∴④正确; 即正确的个数是3, 故选:B .13.如图,AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F .若S △ABC =28,DE =4,AB =8,则AC 长是( )A .8B .7C .6D .5【答案】C【解析】解:∵AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 交AC 于点F , ∴DF =DE =4.又∵S △ABC =S △ABD +S △ACD ,AB =8,112884422AC ∴=⨯⨯+⨯⨯,∴AC =6. 故选:C .14.如图,在△ABC 中,∠C =90°,∠B =30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中:①AD 是∠BAC 的平分线;②∠ADC =60°;③点D 在AB 的中垂线上;④△ABD 边AB 上的高等于DC.其中正确的个数是( )A.1 B.2 C.3 D.4【答案】D【解析】①根据作图的过程可知,AD是∠BAC的平分线.故①正确;②∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.又∵AD是∠BAC的平分线,∴∠CAD=∠BAD=12∠CAB=30°,∴∠ADC=90°-∠2=60°,即∠ADC=60°.故②正确;③∵∠BAD =∠B=30°,∴AD=BD,∴点D在AB的中垂线上.故③正确;④角平分线上的一点到线段两端点的距离相等, 因此判断出△ABD边AB上的高等于DC.故④正确.综上所述,正确的结论是:①②③④,共有4个.故选D.15.如图,BP平分∠ABC,D为BP上一点,E,F分别在BA,BC上,且满足DE=DF,若∠BED=140°,则∠BFD的度数是()A.40°B.50°C.60°D.70°【答案】A【解析】作DG ⊥AB 于G ,DH ⊥BC 于H ,∵D 是∠ABC 平分线上一点,DG ⊥AB ,DH ⊥BC ,∴DH=DG ,在Rt △DEG 和Rt △DFH 中,DG DH DE DF⎧⎨⎩== ∴Rt △DEG ≌Rt △DFH (HL ),∴∠DEG=∠DFH ,又∠DEG+∠BED=180°,∴∠BFD+∠BED=180°,∴∠BFD 的度数=180°-140°=40°,故选:A .16.如图,在四边形ABDC 中,∠B =∠D =90°,∠BAC 与∠ACD 的平分线交于点O ,且点O 在线段BD 上,BD =4,则点O 到边AC 的距离是( )A .1B .1.5C .2D .3【答案】C 【解析】解:过O 作OE ⊥AC 于E ,∵∠B =∠D =90°,∠BAC 与∠ACD 的平分线交于点O ,∴OB =OE =OD ,∵BD =4,∴OB =OE =OD =2,∴点O到边AC的距离是2,故选:C.二、填空题17.如图,以O为圆心,适当长为半径画弧,交横轴于点M,交纵轴于点N,再分别以点M、N为圆心,大于12MN的长为半径画弧,两弧交于点P.若点P到横轴和纵轴的距离分别为2a-1、a+2,则a=_____.【答案】3【解析】根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,故2a-1=a+2,整理得:a =3,18.如图所示,AB//CD,O为∠A、∠C的平分线的交点O,OE⊥AC于E,且OE=2,则AB与CD之间的距离等于_______.【答案】4【解析】解:过点O作OF⊥AB于F,作OG⊥CD于G,∵O为∠BAC、∠DCA的平分线的交点,OE⊥AC,∴OE=OF,OE=OG,∴OE=OF=OG=2,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠EOF+∠EOG=(180°−∠BAC)+(180°−∠ACD)=180°,∴E、O、G三点共线,∴AB与CD之间的距离=OF+OG=2+2=4.故答案为:4.19.如图,在Rt△ABC中,∠C=90°,以A为圆心,任意长为半径画弧,分别交AC,AB于点M,N;再分别以M,N为圆心,以大于12MN的长为半径画弧,两弧交于点G;作射线AG交BC于点D,若CD=2,BD=2.5,P为AB上一动点,则PD的最小值为_____.【答案】2【解析】解:由作法得AD平分∠BAC,∴点D到AB的距离等于DC=2,∴PD的最小值为2.故答案为2.20.Rt△ABC中,∠C是直角,O是角平分线的交点,AC=3,BC=4,AB=5,O到三边的距离r=______.【答案】1【解析】解:∵Rt△ABC中,∠C是直角,O是角平分线的交点,AC=3,BC=4,AB=5,∴S△ABC=12AC•BC=12(AC+BC+AB)•r,∴3×4=(3+4+5)×r,解得:r=1.故答案为:1.三、解答题21.按下列要求画图并填空:(1)过点B画出直线AC的垂线,交直线AC于点D,那么点B到直线AC的距离是线段的长.(2)用直尺和圆规作出∠ACB的平分线,若角平分线上有一点P到边AC的距离是3cm,通过你的测量,点P到边BC的距离是cm(保留作图痕迹).【答案】(1)见解析;(2)见解析.【解析】(1)如图所示:点B到直线AC的距离是线段BE的长.(2) 如图所示:点P到边BC的距离是3cm.22.在△ABC中,∠B=20°,∠ACB=110°,AE平分∠BAC,AD⊥BD于点D,求∠EAD的度数.【答案】45°【解析】∵在△ABC中,∠B=20°,∠ACB=110°,∴∠BAC=180°﹣20°﹣110°=50°.∵AE平分∠BAC,∴∠BAE=12∠BAC=25°,∴∠AEC=∠B+∠BAE=20°+25°=45°.∵AD⊥BC,∴∠D =90°,∴∠EAD =90°﹣∠AED =90°﹣45°=45°.23.如图,△ABC 中,∠C=90°,DE ⊥AB 于点E ,F 在AC 上且BE=FC,BD=FD ,求证:AD 是∠BAC 的平分线。
专训12.3.1角平分线的性质+判定-八年级上册考点专训(解析版)(人教版)
专训12.3.1角平分线的性质+判定1.如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是_______.【答案】30【分析】作DE AB ⊥于E ,如图,利用基本作图得到AP 平分∠BAC ,根据角平分线的性质得4DC DE ==,然后根据三角形面积公式.【详解】解:作DE AB ⊥于E ,如图,由作法得AP 平分∠BAC ,∴4DC DE ==,∴△ABD 的面积=1154302⨯⨯=.故答案为:30.【点睛】本题考查了基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).2.如图,OC 是AOB ∠的角平分线,点P 是OC 上一点,PM OB ⊥于点M ,点N 是射线OA 上的一个动点,若6PM =,则PN 的最小值为______.【答案】6【分析】根据垂线段最短可得PN ⊥OA 时,PN 最短,再根据角平分线上的点到角的两边的距离相等可得PM =PN ,从而得解.【详解】当PN ⊥OA 时,PN 的值最小,∵OC 平分∠AOB ,PM ⊥OB ,∴PM =PN ,∵PM =6,∴PN 的最小值为6.故答案为:6.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.3.如图,在ABC 中,AD 为BAC ∠的平分线,DE AB ⊥于点E ,DF AC ⊥于点F .若ABC 的面积是228cm ,20cm AB =,8cm AC =,则DE =____cm .【答案】2【分析】先根据角平分线的性质得出DE =DF ,再根据三角形的面积公式即可得出结论.【详解】解:在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,∴DE =DF ,∴S △ABC =S △ABD +S △ACD =12AB •DE +12AC •DF ,∵△ABC 面积是28cm 2,AB =20cm ,AC =8cm ,∴12×20DE +12×8DF =10DE +4DF =14DE =28,解得DE =2cm .故答案为:2.【点睛】本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.4.如图,在ABC 中,90C ∠=︒,AD 平分BAC ∠,过点D 作DE AB ⊥于E ,若3BE =,BDE 的周长为11,则BC =______.【答案】8【分析】利用角平分线的性质推出DE DC =,再根据三角形的周长计算得出答案.【详解】解:∵AD 平分BAC ∠,过点D 作DE AB ⊥于E ,90C ∠=︒,∴DE DC=∴BDE 的周长311BE BD DE BE BD CD BE BC BC =++=++=+=+=,∴8BC =.故答案为:8【点睛】此题考查角平分线的性质:角平分线上的点到角两边的距离相等,熟记定理是解题的关键.5.如图所示,AD 是△ABC 的平分钱,DF ⊥AB 于点F ,DE =DG ,若S △DEF =2,S △ADG =9:则△ADE 的面积为________.【答案】5【分析】过点D 作DH ⊥AC 于H ,根据角平分线的性质得到DH =DF ,进而证明Rt △DEF ≌Rt △DGH ,根据全等三角形的性质得到△DEF 的面积=△DGH 的面积=2,同理:△ADF 的面积=△ADH 的面积=7,进而即可求解.【详解】解:过点D 作DH ⊥AC 于H,∵AD 是△ABC 的角平分线,DF ⊥AB ,DH ⊥AC ,∴DH =DF ,在Rt △DEF 和Rt △DGH 中,∵DF DH DE DG ⎧⎨⎩==,∴Rt △DEF ≌Rt △DGH (HL ),∴△DEF 的面积=△DGH 的面积=2,同理可证,Rt △ADF ≌Rt △ADH ,∴△ADF 的面积=△ADH 的面积=9-2=7,∴△ADE 的面积=7-2=5.故答案是:5.【点睛】本题考查的是全等三角形的判定与性质、角平分线的性质,作辅助线构造出全等三角形并利用角平分线的性质是解题的关键.6.如图,在ABC 中,90,C AD ∠=︒是ABC 的角平分线,DE AB ⊥,垂足为E ,若2,CD DE ==_______.【答案】2【分析】根据角平分线的性质定理即可完成.【详解】∵AD 平分∠CAB ,且∠C =90°,DE AB⊥∴DE =CD =2故答案为:2.【点睛】本题考查了角平分线的性质定理,关键是清楚定理的条件:一是角平分线,二是经过角平分线的点的直线,且这两条直线垂直角的两边,即要有两个垂直,具体在有些题目中,往往缺少一个或两个垂直,这时要作一个垂直或两个垂直.7.如图在ABC 中,=90ACB ∠︒,BE 平分ABC ∠,DE AB ⊥于D ,如果+=3AE DE ,那么=AC ________.【答案】3【分析】根据角平分线上的点到角的两边距离相等可得CE =DE ,然后求出AC =AE +DE .【详解】解:∵∠ACB =90°,BE 平分∠ABC ,DE ⊥AB ,∴CE =DE ,∴AC =AE +CE =AE +DE =3.故答案为:3.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,是基础题,熟记性质是解题的关键.8.如图,在ABC 中,90C ∠=,AD 是BAC ∠的平分线,若2CD =,6AB =,则ABD 的面积是________.【答案】6【分析】设点D 到AB 的距离为h ,根据角平分线的性质即可求解【详解】设点D 到AB 的距离为h ,AD 是BAC ∠的平分线,90C = ∠,2CD =DC AC ∴⊥,2CD h == 6AB =∴1162622ABC S AB h =⨯=⨯⨯=△故答案为:6【点睛】本题考查了角平分线的性质,熟悉角平分线的性质是解题的关键.9.如图,OP 平分∠AOB ,PC ⊥OA ,点D 是OB 上的动点,若PC =1cm ,则PD 的长的最小值为___.【答案】1cm【分析】根据垂线段最短可知,当PD OB ⊥时最短,再根据角平分线上的点到角的两边的距离相等可得PD PC =,从而得解.【详解】解: 垂线段最短,∴当PD OB ⊥时PD 最短,OP 是AOB ∠的平分线,PC OA ⊥,PD PC ∴=,1PC = ,1PD ∴=,即PD 长度最小为1.故答案为:1cm .【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,垂线段最短的性质,解题的关键是:确定出PD 最小时的位置是解题的关键.10.如图,//AB CD ,108CDM ∠=︒,GF 交MEB ∠的角平分线EF 于点F ,120BGF ∠=︒.则F ∠=______.【答案】84︒【分析】根据//AB CD ,求出AED ∠,由对顶角相等及角平分线性质求出FEG ∠,最后根据三角形的外角性质求出F ∠即可.【详解】解://,108AB CD CDM ∠=︒ ,72AED ∴∠=︒,72MEG ∴∠=︒,EF 是MEB ∠的角平分线,1362FEG MEG ∴∠=∠=︒,120BGF ∠=︒ 为三角形的外角,BGF FEG F ∴∠=∠+∠,1203684F ∴∠=︒-︒=︒,故答案是:84︒.【点睛】本题考查了平行线的性质、对顶角、角平分线的性质、三角形的外角,解题的关键是掌握相关的性质,灵活运用.11.如图,AD 是ABC 的角平分线.若90,B BD ∠=︒=,则点D 到AC 的距离是_________.【分析】根据角平分线的性质,角平分线上的点到角的两边的距离相等,即可求得.【详解】如图,过D 作DE AC ⊥,则D 到AC 的距离为DEAD平分CAB ∠,90,B BD ∠=︒=,∴DE BD ==∴点D 到AC【点睛】本题考查了角平分线的性质,点到直线的距离等知识,理解点到直线的距离的定义,熟知角平分线的性质是解题关键.12.如图,在ABC 中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,DE AB ⊥,垂足为E ,若4BC =,1.6DE =,则BD 的长为______.【答案】2.4【分析】先根据角平分线的性质可得 1.6CD DE ==,再根据线段的和差即可得.【详解】解:AD 平分BAC ∠,90C ∠=︒,DE AB ⊥, 1.6DE =,1.6CD DE ∴==,4BC = ,4 1.6 2.4BD BC CD ∴=-=-=,故答案为:2.4.【点睛】本题考查了角平分线的性质,熟练掌握角平分线的性质是解题关键.13.如图,在 ABC 中,BD 平分∠ABC 交AC 于点D ,EF ∥BC 交BD 于点G ,若∠BEG =130°,则∠DGF =_____°.【答案】25【分析】根据角平分线的定义得到∠EBG =∠CBG ,根据平行线的性质得到∠EGB =∠CBG ,等量代换得到∠EBG =∠EGB ,再根据三角形的内角和定理和对顶角的性质于是得到结论.【详解】解:∵EF ∥BC ,∴∠EGB =∠CBG ,∵BD 平分∠ABC ,∴∠EBG =∠CBG ,∴∠EBG =∠EGB ,∵∠BEG =130°,∴∠EGB =1801302︒︒-=25°,∴∠DGF =∠EGB =25°.故答案为:25.【点睛】本题考查了角平分线的定义,平行线的性质,三角形的内角和定理,熟练掌握这些性质是解题的关键.14.如图,在ABC 中,90C ∠=︒,以点A 为圆心,任意长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 长为半径画弧,两弧交于点O ,作射线AO ,交BC 于点E .已知14CB =,8BE =,则点E 到AB 的距离为________.【答案】6【分析】如图,过点E 作ET ⊥AB 于T .证明ET =EC ,可得结论.【详解】解:如图,过点E 作ET ⊥AB 于T .∵BC =14,BE =8,∴EC =BC -BE =6,由作图可知,AE 平分⊥CAB ,∵EC ⊥AC ,ET ⊥AB ,∴ET =EC =6,故答案为:6.【点睛】本题考查作图——复杂作图,角平分线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.判断正误:三角形三条角平分线交于一点,且这一点到三顶点的距离相等__.【答案】⨯【分析】根据三角形角平分线的性质分析,即可得到答案.【详解】由角平分线性质可知:三角形的三条角平分线交于一点,这点到三角形的三边的距离相等;故答案为:⨯.【点睛】本题考查了三角形角平分线的知识;解题的关键是熟练掌握三角形角平分线的性质,从而完成求解.16.如图,在AOB 和COD △中,OA OB =,OC OD =,OA OC <,36AOB COD ∠=∠=︒,连接AC 、BD 交于点M ,连接OM .下列结论:①36AMB ∠=︒,②AC BD =,③OM 平分AOD ∠,④MO 平分AMD ∠.其中正确的结论是______(填序号).【答案】①②④【分析】由SAS 证明△AOC ≌△BOD 得出,得出∠OAC =∠OBD ,由扇形内角和:∠AMB=180-∠OBD-∠MGB =180°-∠OAC -∠OGA =∠AOC =36°,得出∠AMB =∠AOB =36°,①正确;由△AOC ≌△BOD 得出AC =BD ,②正确;作OG ⊥AM 于G ,OH ⊥DM 于H ,如图所示:则∠OGA =∠OHB =90°,利用全等三角形对应边上的高相等,得出OG =OH ,由角平分线的判定方法得出MO 平分∠AMD ,④正确;假设MO 平分∠AOD ,则∠DOM =∠AOM ,由全等三角形的判定定理可得△AMO ≌△DMO ,得AO =OD ,而OC =OD ,所以OA =OC ,而OA <OC ,故③错误;即可得出结论.【详解】解:设AC 与OB 交于G∵∠AOB =∠COD =36°,∴∠AOB +∠BOC =∠COD +∠BOC ,即∠AOC =∠BOD ,在△AOC 和△BOD 中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△BOD (SAS ),∴∠OAC =∠OBD ,∵∠OGA =∠MGB ,∴∠AMB=180-∠OBD-∠MGB =180°-∠OAC -∠OGA =∠AOC =36°,∴∠AMB =∠AOB =36°,故①正确;∵△AOC ≌△BOD (SAS ),∴AC=BD ,故②,作OG ⊥AM 于G ,OH ⊥DM 于H,如图所示,则∠OGA =∠OHB =90°,∵△AOC ≌△BOD ,∴S △OAC =S △OBD ,即AC·OG =BD·OH ,∵AC =BD ,∴OG =OH ,∴MO 平分∠AMD ,故④正确;假设MO 平分∠AOD ,则∠DOM =∠AOM ,在△AMO 与△DMO 中,AOM DOM OM OM AMO DMO ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AMO ≌△DMO (ASA ),∴AO =OD ,∵OC =OD ,∴OA =OC ,而OA <OC ,∴假设不正确,OM 不能平分AOD∠故③错误;正确的序号有①②④.故答案为①②④.【点睛】本题考查了全等三角形的判定与性质、三角形的内角和性质、角平分线的判定与性质,反证法等知识;掌握全等三角形的判定与性质、三角形的内角和性质、角平分线的判定与性质,反证法等知识,证明三角形全等是解题的关键.17.如图,已知ABC ∆中,90,C AC BC ∠=︒=,点D 在BC 上,DE AB ⊥,点E 为垂足,且DC DE =,联结AD ,则ADB ∠的大小为___________.【答案】112.5°【分析】首先根据角平分线的判定方法判定AD 是∠BAC 的平分线,然后利用外角性质求∠ADB 的度数即可.【详解】解:∵∠C =90°,DE ⊥AB∴∠C=∠AED=90°,在Rt∆ACD 和Rt∆AED 中DE DC AD AD =⎧⎨=⎩,∴Rt∆ACD ≌Rt∆AED ,∴∠CAD=∠EAD ,∴AD 平分∠BAC ,∴∠CAD =12∠BAC ,∵∠C =90°,AC =BC ,∴∠B =∠CAB =45°,∴∠CAD =22.5°,∴∠ADB=∠CAD +∠C =112.5°.故答案为:112.5°.【点睛】本题考查了角平分线的判定方法以及三角形外角的性质,角平分线的判定方法是:到角的两边距离相等的点在这个角的平分线上.18.如图,△ABC 中,∠ACB =90°,点D 在边AC 上,DE ⊥AB 于点E ,DC =DE ,∠A =32°,则∠BDC 的度数为________.【答案】61°【分析】首先利用直角三角形的性质求得∠ABC的度数,然后利用角平分线的判定方法得到BD为∠ABC的平分线,再求出∠ABD的度数,根据三角形外角的性质进而求得结论.【详解】解:∵∠A=32°,∠ACB=90°,∴∠CBA=58°,∵DE⊥AB,DC⊥BC,DC=DE,∴BD为∠ABC的平分线,∴∠CBD=∠EBD,∴∠CBD=12∠CBA=12×58°=29°,∴∠BDC=∠A+∠ABD=32°+29°=61°.故答案为:61°.【点睛】本题考查了角平分线的判定与性质,解题的关键是根据已知条件得到BD为∠ABC的平分线,难度不大.19.数学课上,同学们兴致勃勃地尝试着利用不同画图工具画一个角的平分线.小明用直尺画角平分线的方法如下:(1)用直尺的一边贴在∠AOB的OA边上,沿着直尺的另一条边画直线m;(2)再用直尺的一边贴在∠AOB的OB边上,沿着直尺的另一条边画直线n,直线m与直线n交于点D;(3)作射线OD.射线OD是∠AOB的平分线.请回答:小明的画图依据是____________________.【答案】角的内部到角的两边距离相等的点在这个角的平分线上【分析】根据角平分线的判定定理即可得出答案.【详解】∵作图时使用同一把尺子,尺子的宽度是一致的,∴点D 到OA 和OB 的距离是一样的,∴射线OD 是∠AOB 的平分线(角的内部到角的两边距离相等的点在这个角的平分线上).故答案为:角的内部到角的两边距离相等的点在这个角的平分线上.【点睛】本题考查了角平分线的判定定理,熟练掌握角平分线判定定理是解题关键.20.如图,ABC 中,ABC ∠、EAC ∠的角平分线BP 、AP 交于点P ,延长BA 、BC ,则下列结论中正确的有_______.(将所有正确序号填在横线上)①CP 平分ACF ∠;②2180ABC APC ︒∠+∠=,③2ACB APB =∠∠;④若PM BE ⊥,PN BC ⊥,则AM CN AC +=.【答案】①②③④【分析】①作PD ⊥AC 于D .由角平分线的性质得出PM=PN ,PM=PD ,得出PM=PN=PD ,即可得出①正确;②首先证出∠ABC+∠MPN=180°,证明Rt △PAM ≌Rt △PAD (HL ),得出∠APM=∠APD ,同理:Rt △PCD ≌Rt △PCN(HL ),得出∠CPD=∠CPN ,即可得出②正确;③由角平分线和三角形的外角性质得出∠CAE=∠ABC+∠ACB ,∠PAM=12∠ABC+∠APB ,得出∠ACB=2∠APB ,③正确;④由全等三角形的性质得出AD=AM ,CD=CN ,即可得出④正确;即可得出答案.【详解】解:①作PD ⊥AC 于D .∵PB 平分∠ABC ,PA 平分∠EAC ,PM ⊥BE ,PN ⊥BF ,∴PM=PN ,PM=PD ,∴PM=PN=PD ,∴点P 在∠ACF 的角平分线上,故①正确;②∵PM ⊥AB ,PN ⊥BC ,∴∠ABC+90°+∠MPN+90°=360°,∴∠ABC+∠MPN=180°,在Rt △PAM 和Rt △PAD 中,PA PA PM PD=⎧⎨=⎩,∴Rt △PAM ≌Rt △PAD (HL ),∴∠APM=∠APD ,同理:Rt △PCD ≌Rt △PCN (HL ),∴∠CPD=∠CPN ,∴∠MPN=2∠APC ,∴∠ABC+2∠APC=180°,②正确;③∵PA 平分∠CAE ,BP 平分∠ABC ,∴∠CAE=2∠PAM ,∵∠CAE=∠ABC+∠ACB ,∠PAM=12∠ABC+∠APB ,∴∠ACB=2∠APB ,③正确;④∵Rt △PAM ≌Rt △PAD (已证),∴AD=AM ,∵Rt △PCD ≌Rt △PCN (已证),∴CD=CN ,∴AM+CN=AD+CD=AC ,④正确;故答案为:①②③④.【点睛】本题考查了角平分线的性质定理和判定定理,全等三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和,有一定综合性,但难度不大,只要仔细分析便不难求解.21.如图,在△ABC 中,∠A =90°,DE ⊥BC ,垂足为E .若AD =DE 且∠C =50°,则∠ABD =_____°.【答案】20︒【分析】利用三角形的内角和定理先求解ABC ∠,再利用角平分线的性质定理的逆定理证明:BD 平分,ABC ∠从而可得答案.【详解】解:9050A C ∠=︒∠=︒ ,,180905040ABC ∴∠=︒-︒-︒=︒,90,,A DE BC DA DE ∠=︒⊥= ,BD ∴平分,ABC ∠1202ABD ABC ∠=∠=︒,故答案为:20.︒【点睛】本题考查的是三角形的内角和定理,角平分线的定义及性质定理的逆定理,掌握角平分线的性质定理的逆定理是解题的关键.22.如图,BD⊥AE于点B,DC⊥AF于点C,且DB=DC,∠BAC=60°,∠ADG=120°,则∠DGF=_____________【答案】150°【分析】先根据到角的两边距离相等的点在角的平分线上得到AD是∠BAC的平分线,求出∠CAD的度数,再根据三角形的一个外角等于与它不相邻的两个内角的和即可求解.【详解】解:∵BD⊥AE于B,DC⊥AF于C,且DB=DC,∴AD是∠BAC的平分线,∵∠BAC=60°,∴∠CAD=12∠BAC=30°,∴∠DGF=∠CAD+∠ADG=30°+120°=150°.故答案为:150°.【点睛】本题考查了角平分线的判定与三角形的一个外角等于与它不相邻的两个内角的和的性质,仔细分析图形是解题的关键.23.如图,O是△ABC内一点,且O到三边AB,BC,CA的距离OF=OD=OE,若∠BAC=80°,则∠BOC 的度数为_________.【答案】130°根据到角的两边距离相等的点在角的平分线上判断出点O 是三角形三条角平分线的交点,再根据三角形的内角和定理求出∠ABC+∠ACB ,然后求出∠OBC+∠OCB ,再利用三角形的内角和定理列式计算即可得解.【详解】解:∵O 到三边AB 、BC 、CA 的距离OF=OD=OE ,∴点O 是三角形三条角平分线的交点,∵∠BAC=80°,∴∠ABC+∠ACB=180°-80°=100°,∴∠OBC+∠OCB=12(∠ABC+∠ACB )=12×100°=50°,在△OBC 中,∠BOC=180°-(∠OBC+∠OCB )=180°-50°=130°.故答案为:130°.【点睛】本题考查了到角的两边距离相等的点在角的平分线上的性质,三角形的内角和定理,要注意整体思想的利用.24.如图,ABC 中,A 60∠=︒,AB>AC ,两内角的平分线CD 、BE 交于点O ,OF 平分BOC ∠交BC 于F ,(1)BOC 120∠=︒;(2)连AO ,则AO 平分BAC ∠;(3)A 、O 、F 三点在同一直线上;(4)OD=OE ;(5)BD+CE=BC .其中正确的结论是__________.(填序号)【答案】①②④⑤.【分析】根据三角形内角和定理求出∠ABC+∠ACB 度数,求出∠EBC+∠DCB 度数,根据三角形内角和定理求出∠BOC 即可判断①,过O 作OM ⊥AB 于M ,OQ ⊥AC 于Q ,ON ⊥BC 于N ,根据角平分线性质求出OQ=OM=ON ,根据角平分线性质求出AO 平分∠BAC 即可判断②;假设,,A O F 三点共线,利用三角形的外角的性质逆推可得:ABC ACB ∠=∠,与已知条件AB>AC ,得ACB ∠>ABC ∠,互相矛盾,可判断③,证MOD QOE ≌,即可推出OD=OE ,从而判断④,通过全等求出BM=BN ,CN=CQ ,代入即可求出BD+CE=BC ,从而判断⑤.解:∵∠A=60°,∴18060120ABC ACB ∠+∠=︒-︒=︒,∴()1602ABC ACB ∠+∠=︒,∵BE 平分∠ABC ,CD 平分∠ACB ,∴1122EBC ABC DCB ACB ∠=∠∠=∠,,∴()1602EBC DCB ABC ACB ∠+∠=∠+∠=︒,∴()180120BOC EBC DCB ∠=︒-∠+∠=︒,∴①正确;过O 作OM ⊥AB 于M ,OQ ⊥AC 于Q ,ON ⊥BC 于N ,∵O 是∠ABC 和∠ACB 的角平分线交点,∴OM=ON ,ON=OQ ,∴OQ=OM ,∴O 在∠A 平分线上,∴②正确;如图,若,,A O F 三点共线,BOF BAO ABO COF OAC OCA ∴∠=∠+∠∠=∠+∠,,BOF COF BAO CAO ∠=∠∠=∠ ,,ABO ACO ∴∠=∠,ABC ACB ∴∠=∠,∵AB >AC ,∴∠ABC <∠ACB ,所以:A 、O 、F 不在同一直线上,∴③错误;∵120BOC ∠=︒,∴120DOE ∠=︒,OM ⊥AB ,OQ ⊥AC ,ON ⊥BC ,∴∠AMO=∠AQO=90°,∵∠A=60°,∴∠MOQ=120°,∴∠DOM=∠EOQ ,在OMD 和OQE 中,MOD EOQ OMD OQE OM ON ∠=∠⎧⎪∠=∠⎨⎪=⎩∴OMD OQE ≌(AAS ),∴OE=OD ,∴④正确;在Rt BNO 与Rt BMO 中,BO BO ON OM=⎧⎨=⎩∴()Rt BNO Rt BMO HL ≌,BN BM BD DM∴==+同理,Rt CNO Rt CQO ≌,CN CQ CE EQ ∴==-,∴BN CN BD DM CE EQ +=++-,∵DM=EQ,∴BC=BD+CE ,∴⑤正确;故答案为:①②④⑤.【点睛】本题考查了角平分线性质,三角形的内角和定理,三角形的外角的性质,全等三角形的性质和判定的应用,掌握以上知识是解题的关键.25.如图,已知OQ 平分∠AOB ,且PM ⊥OA ,PN ⊥OB ,根据角平分线的性质,则有___________;反之如果PM=PN ,且___________,那么OP 平分∠AOB.【答案】PM=PN PM ⊥OA ,PN ⊥OB【分析】依据角平分线的定理和逆定理可知.【详解】解: OQ 平分∠AOB ,且PM ⊥OA ,PN ⊥OB ,PNO PMONOP MOP OP OP∠=∠⎧⎪∴∠=∠⎨⎪=⎩()PMO PNO AAS ∴≅ PM PN∴=反之PM=PN ,且PM ⊥OA ,PN ⊥OB ,PM PNOP OP=⎧∴⎨=⎩()Rt PMO Rt PNO HL ∴≅ POM PON∴∠=∠∴OP 平分∠AOB故答案为:PM=PN ;PM ⊥OA ,PN ⊥OB【点睛】本题考查角平分线性质及其逆定理、全等三角形的判定与性质,是重要考点,难度较易,掌握相关知识是解题关键.26.如图,已知点D 是△ABC 的两外角平分线的交点,下列说法:(1)AD =CD ;(2)D 到AB 、BC 的距离相等;(3)D 到△ABC 的三边的距离相等;(4)点D 在∠B 的平分线上;其中正确的说法的序号是________________.【答案】(2),(3),(4)【解析】试题解析:如图,过点D 作DE BA ⊥交BA 的延长线于E ,作DF BC ⊥交BC 的延长线于F ,作DG AC ⊥于G ,∵点D 是ABC 的两外角平分线的交点,DE DG DF DG ∴==,,故()2正确;DE DF DG ∴==,故()3正确;∴点D 在B Ð的平分线上,故()4正确;只有AB BC =时,AE CF =,AD CD =,故()1错误.综上所述,说法正确的是()2()3()4.故答案为()2()3()4.点睛:角平分线上的点到角两边的距离相等.27.如图,90,C D E ∠=∠=︒为CD 中点,AE 平分,DAB ∠若32,DEA ∠= 则ABE ∠的度是__________.【答案】32︒【分析】根据已知条件以及直角三角形两锐角互余、角平分线的定义、四边形的内角和是360︒可求出64ABC ∠=︒,再根据角平分线的判定和性质即可求得答案.【详解】解:过点E 作EF AB ⊥于点F ,如图:∵90D ∠=︒,32DEA ∠=︒∴90903258DAE DEA ∠=︒-∠=︒-︒=︒∵AE 平分DAB∠∴2258116DAB DAE ∠=∠=⨯︒=︒∵90C D ∠=∠=︒∴在四边形ABCD 中,360909011664ABC ∠=︒-︒-︒-︒=︒∵EF AB ⊥,90D ∠=︒,AE 平分DAB∠∴EF ED=∵E 为CD 中点∴ED EC=∴EF EC =∵EF AB ⊥,90C ∠=︒∴BE 平分ABC∠∴11643222ABE ABC ∠=∠=⨯︒=︒故答案是:32︒【点睛】本题重点考查了角平分线的定义、判定和性质,涉及到的知识点有直角三角形的两锐角互余和四边形的内角和,其中证得EF EC =是解题的关键.28.如图,在OAB ∆和OCD ∆中,OA OB =,OC OD =,OA OC >,40AOB COD ∠=∠= ,连接AC ,BD 交于点M ,连接OM ,下列结论:①AC BD =;②40CMD ∠= ;③OM 平分AOD ∠;④MO 平分BMC ∠,其中正确的序号是__________.【答案】①②④【分析】由SAS 证明△AOC ≌△BOD 得出∠OCA=∠ODB ,AC=BD ,①正确;由全等三角形的性质得出∠OAC=∠OBD ,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD ,得出∠AMB=∠AOB=40°,②正确;作OG ⊥MC 于G ,OH ⊥MB 于H ,如图所示:则∠OGC=∠OHD=90°,由AAS 证明△OCG ≌△ODH (AAS ),得出OG=OH ,由角平分线的判定方法得出MO 平分∠BMC ,④正确;先假设OM 平分∠AOD ,推出OA=OC 与条件中OA OC >相矛盾,推出③错误.【详解】解:∵∠AOB=∠COD=40︒,∴∠AOB+∠AOD=∠COD+∠AOD ,即∠AOC=∠BOD ,在△AOC 和△BOD 中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≅△BOD ,∴∠OCA=∠ODB ,AC=BD ,①正确;∵△AOC ≅△BOD∴∠OAC=∠OBD ,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD ,∴∠AMB=∠AOB=40︒,∴∠CMD=∠AMB=40︒,②正确;作OG ⊥MC 于G ,OH ⊥MB 于H ,如图2所示:则∠OGC=∠OHD=90︒,在△OCG 和△ODH 中,OCA ODB OGC OHD OC OD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△OCG ≅△ODH ,∴OG=OH ,∵OG ⊥MC ,OH ⊥MB∴MO 平分∠BMC ,④正确;∵∠AOB=∠COD ,假设OM 平分∠AOD ,∵OM 平分∠AOD,∴∠AOM=∠DOM ,∵△AOC ≌△BOD ,∴∠COM=∠BOM ,∵MO 平分∠BMC ,∴∠CMO=∠BMO ,在△COM 和△BOM 中,∴△COM ≌△BOM(ASA),∴OB=OC ,∵OA=OB ,∴OA=OC ,与OA>OC 矛盾,故假设不成立,OM 不平分∠AOD∴③错误;故答案为:①②④【点睛】本题主要考查了全等三角形的判定与性质,掌握全等三角形的判定与性质是解题的关键.29.如图,52A ∠=︒,O 是ABC ∠、ACB ∠的角平分线交点,P 是ABC ∠、ACB ∠外角平分线交点,则BOC ∠=______︒,BPC ∠=_____︒,联结AP ,则PAB ∠=______︒,点O ____(选填“在”、“不在”或“不一定在”)直线AP 上.【答案】1166426在【分析】∠ABC+∠ACB=180°-∠A ,∠OBC+∠OCB=12(∠ABC+∠ACB ),∠BOC=180°-(∠OBC+∠OCB ),据此可求∠BOC 的度数;∠BCP=12∠BCE=12(∠A+∠ABC),∠PBC=12∠CBF=12(∠A+∠ACB),由三角形内角和定理得:∠BPC=180°-∠BCP-∠PBC,据此可求∠BPC的度数;作PG⊥AB于G,PH⊥AC于H,PK⊥BC于K,利用角平分线的性质定理可证明PG=PH,于是可证得AP 平分∠BAC,据此可求∠PAB的度数;同理可证OA平分∠BAC,故点O在直线AP上.【详解】解:∵O点是∠ABC和∠ACB的角平分线的交点,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=12(180°-∠A)=90°-12∠A,∴∠BOC=180°-(∠OBC+∠OCB)=180°-90°+12∠A=90°+12∠A=90°+26°=116°;如图,∵BP、CP为△ABC两外角的平分线,∴∠BCP=12∠BCE=12(∠A+∠ABC),∠PBC=12∠CBF=12(∠A+∠ACB),由三角形内角和定理得:∠BPC=180°-∠BCP-∠PBC=180°-12[∠A+(∠A+∠ABC+∠ACB)]=180°-12(∠A+180°)=90°-12∠A=90°-26°=64°.如图,作PG⊥AB于G,PH⊥AC于H,PK⊥BC于K,连接AP,∵BP、CP为△ABC两外角的平分线,PG⊥AB,PH⊥AC,PK⊥BC,∴PG=PK,PK=PH,∴PG=PH,∴AP平分∠BAC,∴PAB∠=26°同理可证OA平分∠BAC,点O在直线AP上.故答案是:(1)116;(2)64;(3)26;(4)在.【点睛】此题主要考查了角平分线的性质定理和判定定理及三角形内角和定理,熟知定理并正确作出辅助线是解题关键.30.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”小明的做法,其理论依据是__【答案】在角的内部,到角两边距离相等的点在角的平分线上【分析】根据角平分线的性质即可证明.【详解】因为直尺的宽度一样,故点P 到AO 与BO 的距离相等,故可知PO 为角平行线.【点睛】此题主要考查角平行线的性质,解题的关键是熟知角平分线的性质.31.如图,在平面直角坐标系xOy 中,点A 、B 分别在x 轴的正半轴、y 轴的正半轴上移动,点M 在第二象限,且MA 平分∠BAO ,做射线MB ,若∠1=∠2,则∠M 的度数是_______。
人教版八年级上册数学课时跟踪训练:12.3角平分线的性质(含答案)
课时跟踪训练:12.3角平分线的性质一.选择题1.如图,在△ABC中,∠ACB的外角平分线与∠ABC的外角平分线相交于点D.则下列结论正确的是()A.AD平分BC B.AD平分∠CAB C.AD平分∠CDB D.AD⊥BC2.如图,△AOB的外角∠CAB,∠DBA的平分线AP,BP相交于点P,PE⊥OC于E,PF⊥OD 于F,下列结论:(1)PE=PF;(2)点P在∠COD的平分线上;(3)∠APB=90°﹣∠O,其中正确的有()A.0个B.1个C.2个D.3个3.如图,OP平分∠AOB,PD⊥OA于点D,点E是射线OB上的一个动点,若PD=3,则PE 的最小值()A.等于3 B.大于3 C.小于3 D.无法确定4.如图在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于D,如果△ADE的周长为6cm,AC=4cm,那么AD等于()A.2cm B.4cm C.3cm D.6cm5.如图,已知△ABC的周长是16,MB和MC分别平分∠ABC和∠ACB,过点M作BC的垂线交BC于点D,且MD=4,则△ABC的面积是()A.64 B.48 C.32 D.426.如图,射线OC是∠AOB的角平分线,D是射线OC上一点,DP⊥OA于点P,DP=4,若点Q是射线OB上一点,OQ=3,则△ODQ的面积是()A.3 B.4 C.5 D.67.点P在∠AOB的平分线上,点P到OA边的距离等于m,点Q是OB边上的一个动点,则PQ与m的大小关系是()A.PQ<m B.PQ>m C.PQ≤m D.PQ≥m8.已知△ABC,两个完全一样的三角板如图摆放,它们的一组对应直角边分别在AB,AC上,且这组对应边所对的顶点重合于点M,点M一定在()A.∠A的平分线上B.AC边的高上C.BC边的垂直平分线上D.AB边的中线上9.如图,已知点P到△ABC三边的距离相等,DE∥AC,AB=8.1cm,BC=6cm,△BDE的周长为()cm.A.12 B.14.1 C.16.2 D.7.0510.如图,BD是△ABC的角平分线,DE⊥AB于E,△ABC的面积是15,AB=9,BC=6,则DE的长为()A.1 B.3 C.2 D.4二.填空题11.如图,在△ABC中,AD⊥DE,BE⊥DE,AC、BC分别平分∠BAD和∠ABE.点C在线段DE 上.若AD=5,BE=2,则AB的长是.12.如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC交BC于点D,若AB=5,DC=2,则△ABD的面积为.13.在四边形ABCD中,∠ADC与∠BCD的角平分线交于点E,∠DEC=115°,过点B作BF∥AD交CE于点F,CE=2BF,,连接BE,,则CE=.14.在正方形网格中,∠AOB的位置如图所示,点P,Q,M,N是四个格点,则这四个格点中到∠AOB两边距离相等的点是点.15.如图,在△ABC中,E为AC的中点,AD平分∠BAC,BA:CA=2:3,AD与BE相交于点O,若△OAE的面积比△BOD的面积大1,则△ABC的面积是三.解答题16.如图,在Rt△ABC中,∠C=90°,AD平分∠CAB交BC于点D,DE⊥AB于点E,且E为AB的中点.(1)求∠B的度数.(2)若DE=5,求BC的长.17.已知:在△ABC中,∠ABC=60°,∠ACB=40°,BD平分∠ABC,CD平分∠ACB,(1)如图1,求∠BDC的度数;(2)如图2,连接AD,作DE⊥AB,DE=2,AC=4,求△ADC的面积.18.在△ABC中,∠ABC和∠ACB的平分线相交于点O,(1)若∠ABC=60°,∠ACB=40°,求∠BOC的度数;(2)若∠ABC=60°,OB=4,且△ABC的周长为16,求△ABC的面积.19.如图,在△ABD中,∠BAD=80°,C为BD延长线上一点,∠BAC=130°,∠ABD的角平分线与AC交于点E,连接DE.(1)求证:点E到DA、DC的距离相等;(2)求∠BED的度数.20.在四边形ABCD中,CE平分∠BCD交AD于点E,点F在线段CE上运动.(1)如图1,已知∠A=∠D=90°①若BF平分∠ABC,则∠BFC=°②若∠BFC=90°,试说明∠DEC=∠ABC;(2)如图2,已知∠A=∠D=∠BFC,试说明BF平分∠ABC.参考答案一.选择题1.解:过D点分别作AB、BC、AC的垂线,垂足分别为E、G、F,∵∠ABC、∠ACB外角的平分线相交于点D,∴ED=GD,GD=DF,∴ED=DF,∴AP平分∠CAB.故选:B.2.解:(1)证明:作PH⊥AB于H,∵AP是∠CAB的平分线,∴∠PAE=∠PAH,在△PEA和△PHA中,,∴△PEA≌△PHA(AAS),∴PE=PH,同理,PF=PH,∴PE=PF,∴(1)正确;(2)与(1)可知:PE=PF,又∵PE⊥OC于E,PF⊥OD于F,∴点P在∠COD的平分线上,∴(2)正确;(3)∵∠O+∠OEP+∠EPF+∠OFP=360°,又∵∠OEP+∠OFP=90°+90°=180°,∴∠O+∠EPF=180°,即∠O+∠EPA+∠HPA+∠HPB+∠FPB=180°,由(1)知:△PEA≌△PHA,∴∠EPA=∠HPA,同理:∠FPB=∠HPB,∴∠O+2(∠HPA+∠HPB)=180°,即∠O+2∠APB=180°,∴∠APB=90°﹣,∴(3)错误;故选:C.3.解:过P点作PH⊥OB于H,如图,∵OP平分∠AOB,PD⊥OA,PH⊥OB于H,∴OH=OD=3,∵点E是射线OB上的一个动点,∴点E与H点重合时,PE有最小值,最小值为3.故选:A.4.解:在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于D,∴CE=DE,∵△ADE的周长为6cm,∴AE+DE+AD=6cm,即AC+AD=6cm,∵AC =4cm ,∴AD =6cm ﹣4cm =2cm ,故选:A .5.解:连接AM ,过M 作ME ⊥AB 于E ,MF ⊥AC 于F ,∵MB 和MC 分别平分∠ABC 和∠ACB ,MD ⊥BC ,MD =4,∴ME =MD =4,MF =MD =4,∵△ABC 的周长是16,∴AB +BC +AC =16,∴△ABC 的面积S =S △AMC +S △BCM +S △ABM==×AC ×4++ =2(AC +BC +AB )=2×16=32,故选:C .6.解:作DE ⊥OB 于E ,如图,∵OC 是∠AOB 的角平分线,DP ⊥OA ,DE ⊥OB ,∴DE =DP =4,∴S △ODQ =×3×4=6.故选:D .7.解:∵点P 在∠AOB 的平分线上,点P 到OA 边的距离等于m ,∴点P到OB的距离等于m,∵点Q是OB边上的一个动点,∴PQ≥m.故选:D.8.解:作射线AM,由题意得,MG=MH,MG⊥AB,MH⊥AC,∴AM平分∠BAC,故选:A.9.解:∵点P到△ABC三边的距离相等,∴AP平分∠BAC,∴∠DAP=∠CAP,∵DE∥AC,∴∠DPA=∠PAC,∴∠DAP=∠APD,∴AD=PD,同理PE=CE,∴△BDE的周BD+DE+BE=BD+PD+PE+BE=BD+AD+BE+CE=AB+BC=14.1cm,故选:B.10.解:作DF⊥BC交BC的延长线于F,∵BD是△ABC的角平分线,DE⊥AB,DF⊥BC,∴DE=DF,由题意得,×AB×DE+×BC×DF=15,即×9×DE+×6×DF=15,解得,DE=2,故选:C.二.填空题(共5小题)11.解:如图,过点C作CF⊥AB于F,∵AC,BC分别平分∠BAD,∠ABE,∴∠DAC=∠FAC,∠FBC=∠EBC,在△ADC和△AFC中,∵,∴△ADC≌△AFC(AAS),∴AD=AF,在△CBE≌△CBF中,∵,∴△CBE≌△CBF(AAS),∴BE=BF,∴AB=AF+BF=AD+BE=5+2=7,故答案为:7.12.解:作DH⊥AB于H,如图,∵AD平分∠BAC,DH⊥AB,DC⊥AC,∴DH=DC=2,∴△ABD的面积=×5×2=5.故答案为5.13.解:∵∠CBF=∠BCE,∴可以假设∠BCE=4x,则∠CBF=5x,∵DE平分∠ADC,CE平分∠DCB,∴∠ADE=∠EDC,∠ECD=∠ECB=4x,设∠ADE=∠EDC=y,∵AD∥BF,∴∠A+∠ABF=180°,∴∠ADC+∠DCB+∠CBF=180°,∴2y+13x=180°①,∵∠DEC=115°,∴∠EDC+∠ECD=65°,即y+4x=65°②,由①②解得,∴∠BCF=40°,∠CBF=50°,∴∠CFB=90°,∴BF⊥EC,∴CE=2BF,设BF=m,则CE=2m,=•EC•BF=,∵S△BCE∴×2m×m=,∴m=或﹣(舍弃),∴CE=2m=5,故答案为5.14.解:由图形可知,点M在∠AOB的角平分线上,∴点M到∠AOB两边距离相等,故答案为:M.15.解:作DM⊥AC于M,DN⊥AB于N,∵AD平分∠BAC,DM⊥AC,DN⊥AB,∴DM=DN,∴S△ABD :S△ADC=BD:DC=•AB•DN:•AC•DM=AB:AC=2:3,设△ABC的面积为S,则S△ADC =S,S△BEC=S,∵△OAE的面积比△BOD的面积大1,∴△ADC的面积比△BEC的面积大1,∴S﹣S=1,∴S=10,故答案为:10.三.解答题(共5小题)16.解:(1)∵DE⊥AB于点E,E为AB的中点,∴DE是线段AB的垂直平分线,∴DA=DB,∴∠2=∠B,∵∠C=90°,∴∠B=∠1=∠2=30°;(2)∵DE⊥AB,∠B=30°,∴BD=2DE=10,∵AD平分∠CAB,∠C=90°,DE⊥AB,∴DC=DE=5,∴BC=CD+BD=15.17.解:(1)∵BD平分∠ABC,∴∠DBC=∠ABC=×60°=30°,∵CD平分∠ACB,∴∠DCB=∠ACB=×40°=20°,∴∠BDC=180°﹣∠DBC﹣∠DCB=180°﹣30°﹣20°=130°;(2)作DF⊥AC于F,DH⊥BC于H,如图2,∵BD平分∠ABC,DE⊥AB,DH⊥BC,∴DH=DE=2,∵CD平分∠ACB,DF⊥AC,DH⊥BC,∴DF=DH=2,∴△ADC的面积=DF•AC=×2×4=4.18.解:(1)∵BO、CO分别平分∠ABC和∠ACB,∵∠ABC=60°,∠ACB=40°∴∠OBC=30°,∠OCB=20°,∴∠COB=180°﹣(30°+20°)=130°;(2)过O作OD⊥AB于D点,OE⊥AC于E,OF⊥BC于F,连接AO,如图,∵∠ABC=60°,OB=4∴∠OBD=30°,∴OD=OB=2,∵∠ABC和∠ACB的平分线相交于点O,∴OE=OF=2,∵S△ABC =S△AOB+S△AOC+S△BOC=×2×AB+×2×AC+×2×BC =AB+BC+AC,又∵△ABC的周长为16,∴S=16.△ABC19.证明:(1)过E作EF⊥AB于F,EG⊥AD于G,EH⊥BC于H,∵BE平分∠ABD,∴EH=EF,∵∠BAC=130°,∴∠FAE=∠CAD=50°,∴EF=EG,∴EG=EH,∴ED平分∠CDG,∴点E到DA、DC的距离相等;(2)∵ED平分∠CDG,∴∠HED=∠DEG,设∠DEG=y,∠GEB=x,∵∠EFA=∠EGA=90°,∴∠GEA=∠FEA=40°,∵∠EFB=∠EHB=90°,∠EBF=∠EBH,∴∠FEB=∠HEB,∴2y+x=80﹣x,2y+2x=80,y+x=40,即∠DEB=40°.20.解:(1)①∵∠A=∠D=90°,∴∠A+∠D=180°,∴AB∥CD,∴∠ABC+∠BCD=180°,∵CE平分∠BCD,BF平分∠ABC,∴∠CBF=,∠BCF=,∴∠CBF+∠BCF==90°,∴∠BFC=90°;故答案为:90②∵∠BFC=90°,∴∠CBF+∠BCF=90°,∵∠D=90°,∴∠DCE+∠DEC=90°,∵CE平分∠BCD,∴∠DCE=∠BCF,∴∠CBF=∠DEC,由①知:AB∥CD,∴∠ABC+∠BCD=180°,∴∠CBF=∠ABC,∴∠DEC=∠ABC;(2)如图2,延长BF交于点M,∵∠BFC=∠D,∠BFC+∠CFM=180°,∴∠CFM+∠D=180°,∴∠FMD+∠DCF=180°,∵∠FMD+∠EMF=180°,∴∠DCF=∠EMF,∵CE平分∠BCD,∴∠DCF=∠BCF,∴∠BCF=∠EMF,∵∠EFM=∠BFC,∴∠FEM=∠CBF,∵∠CFB=∠A,同理得∠FEM=∠ABF,∴∠ABF=∠CBF∴BF平分∠ABC.。
八年级初二上册数学 人教版《角平分线的性质》 练习试题 测试卷(含答案)
《12.3 角平分线的性质》课时练一、选择题1.在△ABC中,∠ABC、∠ACB的角平分线交于点O,连结AO,若△OAB、△OBC、△OCA的面积比为1:1:,则△ABC的形状是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形2.如图,在三角形ABC中,∠C=90°,AC=4cm,AB=7cm,AD平分∠BAC交BC于点D,DE⊥AB于点E,则EB的长是()A.3cm B.4cm C.5cm D.不能确定3.如图,△ABC中,∠C=90°,BC=9,AD平分∠BAC,过点D作DE⊥AB于E,测得BE=3,则△BDE的周长是()A.15B.12C.9D.64.如图,△ABC外角∠CBD,∠BCE的平分线BF、CF相交于点F,则下列结论成立的是()A.AF平分BC B.AF⊥BC C.AF平分∠BAC D.AF平分∠BFC 5.如图,Rt△ABC中,∠C=90°,AD是∠BAC的平分线交BC于点D,若CD=4m,AB =10m,则△ABD的面积是()A .20m 2B .30m 2C .40m 2D .无法确定 6.三条笔直的公路两两相交,若要建一座仓库,使它到三条公路的距离相等,则可供选择的点有( )A .1个B .2个C .3个D .4个7.AD 是△ABC 的角的平分线,AB =5,AC =3,则S △ABD :S △ACD =( )A .1:1B .2:1C .5:3D .3:58.如图,AB ∥CD ,点P 到AB 、BC 、CD 距离都相等,则∠P =( )A .120°B .90°C .75°D .60°9.如图,若OP 平分∠AOB ,PC ⊥OA ,PD ⊥OB ,垂足分别是C 、D ,则下列结论中错误的是( )A .PC =PDB .OC =PC C .∠CPO =∠DPOD .OC =OD 10.如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F ,△ABC 面积是28cm 2,AB =16cm ,AC =12cm ,则DE 的长为( )A.2B.2.4C.3D.3.2二.填空题11.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,交BC于点D,已知CD=3,则D到AB的距离是.12.如图,在△ABC中,∠C=90°,D是BC上一点,∠1=∠2,CB=8,BD=5.则点D 到AB的距离为.13.如图,点I为△ABC角平分线交点,AB=8,AC=6,BC=4,将∠ACB平移使其顶点C与I重合,则图中阴影部分的周长为.14.如图,△ABC中,∠BAC的角平分线交BC于D,过D作AC的垂线DE交AC于E,DE=5,则D到AB的距离是.15.如图△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,给出下列结论:①DC=DE;②DA平分∠CDE;③DE平分∠ADB;④BE+AC=AB;⑤∠BAC=∠BDE.其中正确的是(写序号)三.解答题16.如图,在△ABC中,∠B=90°,点O到AB,BC三边的距离相等,求∠AOC的度数.17.已知,如图,A,B,C,D四点在∠MON的边上,AB=CD,P为∠MON内一点,并且△P AB的面积与△PCD的面积相等.求证:射线OP是∠MON的平分线.18.如图,在△ABC中,AB=5,AC=4,BC=6,AP平分∠BAC并交BC于点P.(1)求S△ABP 与S△ACP的比值;(2)求BP的长.19.已知:如图,在△ABC中,角平分线BM与角平分线CN相交于点P,过点P分别作AB,BC,AC的垂线,垂足分别为D,E,F.(1)求证:PD=PE=PF;(2)点P在∠BAC的平分线上吗?说明理由.参考答案一、选择题1.C 2.A 3.B 4.C 5.A 6.D 7.C 8.B 9.B 10.A 二.填空题(共5小题)11.312.313.814.515.①②④⑤三.解答题(共4小题)16.解:∵点O到AC、BC、AB三边的距离相等,∴AO,CO分别平分∠CAB,∠ACB,∵∠ABC=90°,∴∠CAB+∠BCA=90°,∴∠CAO+∠ACO=45°,∴∠AOC=180°﹣45°=135°,17.证明:过P点作PE⊥ON,PF⊥OM,∵△P AB的面积与△PCD的面积相等,AB=CD,∴PE=PF,∵PE⊥ON,PF⊥OM,∴射线OP是∠MON的平分线.18.解:(1)过P作PE⊥AB,PF⊥AC,∵AP平分∠BAC并交BC于点P.PE⊥AB,PF⊥AC ∴PE=PF,∴S△ABP 与S△ACP的比=;(2)∵==,∴==,∴PB=BC=.19.(1)证明:∵BM平分∠ABC,PE⊥BC,PD⊥AB,∴PE=PD,∵CN平分∠ACB,PE⊥BC,PF⊥AC,∴PE=PF,∴PD=PE=PF.(2)解:结论:点P在∠BAC的平分线上。
人教版_部编版八年级数学上册第十二章第三节角的平分线的性质作业复习题(含答案) (87)
人教版_部编版八年级数学上册第十二章第三节角的平分线的性质作业复习题(含答案)如图,在△ABC中,AD是∠BAC的平分线,DE⊥AB、DF⊥AC,垂足分别为E、F,且BE=CF.求证:BD=CD.【答案】见解析【解析】【分析】根据角平分线的性质得到DE=DF,通过SAS证明△DEB≌△DFC,即可得到结论.【详解】∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠DEB=∠DFC=90°.在△DEB和△DFC中,∵DE DFDEB DFCBE FC=⎧⎪∠=∠⎨⎪=⎩,∴△DEB≌△DFC,∴BD=DC.【点睛】本题考查了全等三角形的判定和性质、角平分线的性质定理,解题的关键是正确寻找全等三角形解决问题.62.如图,∠B=∠C=90°,E是BC的中点,DE平分∠ADC,求证:∠EAB=∠EAD.【答案】证明见详解【解析】【分析】由题意利用角平分线的性质“角的平分线上的点到角的两边的距离相等”进行分析证明.【详解】解:证明:如图,过点E作EF⊥AD于F,∵∠C=90°,DE平分∠ADC,∴CE=EF,∵E是BC的中点,∴BE=CE,∴BE=EF,又∵∠B=90°,∴点E在∠BAD的平分线上,∴∠EAB=∠EAD.【点睛】本题考查角平分线性质,熟练掌握角平分线的性质“角的平分线上的点到角的两边的距离相等”是解题的关键.63.如图,BD 是∠ABC 的平分线,DE ⊥AB 于E ,△ABC 的面积为36cm 2,AB=18cm ,BC=12cm ,求DE 的长.【答案】125cm 【解析】【分析】由题意作DF ⊥BC 于F ,根据角平分线性质可得DE=DF ,进而利用ABC BCD ABD S S S =+进行分析计算即可求得DE 的长.【详解】解:作DF ⊥BC 于F ,∵BD 是∠ABC 的平分线,DE ⊥AB ,∴DE=DF ,∵△ABC 的面积为36cm 2, ∴113622ABC BCD ABD S S S BC DF AB DE =+=+=cm 2, ∵AB=18cm ,BC=12cm ,∴69691536DF DE DE DE DE +=+==,∴5361125DE ==cm. 【点睛】本题考查的是角平分线的性质,熟练掌握角的平分线上的点到角的两边的距离相等是解题的关键.64.如图,已知在ABC ∆中,90C ∠=︒,CA CB =,AD 平分CAB ∠交BC 于D ,DE AB ⊥.(1)说明ADC ADE ∆∆≌的理由;(2)若8AB =,求DEB ∆的周长.【答案】(1)详见解析;(2)8.【解析】【分析】(1)根据角平分线的性质及HL 即可判定Rt Rt ACD AED ∆∆≌;(2)根据全等三角形的性质及周长的定义即可求解.【详解】(1)90C ∠=︒DC AC ∴⊥ AD 平分BAC ∠,DE AB ⊥CD ED ∴=在Rt ACD ∆和Rt AED ∆中CD ED AD AD =⎧⎨=⎩Rt Rt ACD AED ∴∆∆≌(2)∵Rt Rt ACD AED ∆∆≌,CA CB =,CD ED =∴8DEB C DB DE EB BC BE AC BE AE BE AB ∆=++=+=+=+==【点睛】此题主要考查全等三角形的判定与性质,解题的关键是熟知角平分线的性质定理.65.如图,CE 是△ABC 的外角∠ACD 的平分线,且CE 交BA 的延长线于点E ,∠B=40°,∠E=30°,求∠BAC 的度数.【答案】∠BAC=100°.【解析】【分析】本题考查了三角形外角性质,角平分线定义的应用,根据三角形外角性质求出∠ECD ,根据角平分线定义求出∠ACD ,根据三角形外角性质求出即可.【详解】解:∵∠B=40°,∠E=30°,∴∠ECD=∠B+∠E=70°,∵CE 是△ABC 的外角∠ACD 的平分线,∴∠ACD=2∠ECD=140°,∴∠BAC=∠ACD﹣∠B=140°﹣40°=100°.【点睛】本题的关键是掌握三角形外角性质,并能灵活运用定理进行推理66.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠ABC=70°,∠C=30°,求∠DAE和∠AOB.【答案】20°,105°.【解析】【分析】先根据三角形内角和定理计算出∠BAC=180°-∠ABC-∠C=80°,再根据角平分线的性质得到∠CAE=12∠BAC=40°,利用三角形外角性质得∠AED=∠CAE+∠C=70°,进一步求得∠DAE;利用三角形外角的性质得出∠AOB=∠AED+∠CBF进行计算.【详解】∵∠ABC=70°,∠C=30°,∴∠BAC=180°﹣∠ABC﹣∠C=80°,∵AE、BF分别是∠BAC、∠ABC的平分线,∴∠CAE=12∠BAC=40°,∠CBF=12∠ABC=35°,∴∠AED=∠CAE+∠C=40°+30°=70°,∵AD ⊥BC ,∴∠DAE =90°﹣∠AED =20°;∵∠AOB =∠AED +∠CBF ,∴∠AOB =70°+35°=105°.【点睛】此题考查三角形内角和定理,三角形外角性质,角平分线的定义,解题关键在于掌握三角形内角和为180°.67.如图,DAB BCD ∠=∠,12180∠+∠=︒,BC 平分ACH ∠.(1)找出图中所有的平行直线,直接写出结论.(2)判断:AD 是GAC ∠的角平分线吗?并说明理由.(3)图中与B 相等的角共有______个.(不包括B )【答案】(1)AB ∥DC ,AD ∥BC ;(2)是,理由见解析;(3)5【解析】【分析】(1)根据平行线的判定解答即可;(2)利用平行线的性质和角平分线的定义解答即可;(3)根据平行线的性质和等量代换解答即可.【详解】(1)∵∠1+∠2=180°,∠2+∠ACD=180°,∴∠1=∠ACD,∴AB∥DC,∴∠DAB+∠ADC=180°,∵∠DAB=∠BCD,∠BCD+∠BCH=180°,∴∠ADC=∠BCH,∴AD∥BC;(2)∵AD∥BC,∴∠DAC=∠ACB,∵AB∥DC,∴∠GAC=∠ACH,∵BC平分∠ACH.∴∠ACB=∠BCH,∴∠GAD=∠DAC,即AD平分∠GAC;(3)∵AB∥DC,∴∠B=∠BCH, ∠DAF=∠ACB.∵AD∥BC,∴∠B=∠GAD, ∠D=∠BCH.∵∠GAD=∠DAC,∴∠B=∠BCH=∠D=∠GAD=∠ACB=∠DAC,∴图中与B相等的角共有5个.【点睛】此题考查平行线的判定和性质,用到的知识点:同位角相等,两直线平行;内错角相等,两直线平行;两直线平行,内错角相等.68.如图,直线AB,CD相交于点O,OD平分∠BOE,OF平分∠AOE (1)判断OF与OD的位置关系,并进行证明.(2)若∠AOC:∠AOD=1:5,求∠EOF的度数.【答案】(1)OF⊥OD,证明详见解析;(2)∠EOF=60°.【解析】【分析】(1)由OD平分∠BOE、OF平分∠AOE,可得出∠FOE=12∠AOE、∠EOD=12∠EOB,根据邻补角互补可得出∠AOE+∠EOB=180°,进而可得出∠FOD =∠FOE+∠EOD=90°,由此即可证出OF⊥OD;(2)由∠AOC:∠AOD=1:5结合邻补角互补、对顶角相等,可求出∠BOD 的度数,根据OD平分∠BOE、OF平分∠AOE,可得出∠BOE的度数以及∠EOF=12∠AOE,再根据邻补角互补结合∠EOF=12∠AOE,可求出∠EOF的度数.【详解】(1)OF⊥OD.证明:∵OD平分∠BOE,OF平分∠AOE,∴∠FOE=12∠AOE,∠EOD=12∠EOB.∵∠AOE+∠EOB=180°,∴∠FOD=∠FOE+∠EOD=12(∠AOE+∠EOB)=90°.∴OF⊥OD.(2)∵∠AOC:∠AOD=1:5,∠AOC=∠BOD,∴∠BOD:∠AOD=1:5.∵∠AOD+∠BOD=180°,∴∠BOD=30°,∠AOD=150°.∵OD平分∠BOE,OF平分∠AOE,∴∠BOE=2∠BOD=60°,∠EOF=12∠AOE.∵∠AOE+∠BOE=180°,∴∠AOE=120°,∴∠EOF=60°.【点睛】此题考查对顶角,邻补角,角平分线的定义,解题的关键是:(1)根据邻补角互补结合角平分线的定义找出∠FOD=90°;(2)通过比例关系结合邻补角互补求出∠BOD的度数.69.已知DB∥EH,F是两条射线内一点,连接DF、EF.(1)如图1:求证:∠F=∠D+∠E;(2)如图2:连接DE,∠BDE、∠HED的角平分交于点F时,求∠F的度数;(3)在(2)条件下,点A是射线DB上任意一点,连接AF,并延长交EH于点G,求证:AF=FG.【答案】(1)见解析;(2)90 ;(3)见解析.【解析】【分析】(1)过点F作FM∥BD,则FM∥HE,又根据FM∥BD,即可有∠1=∠D,∠2=∠E,则可证明∠F=∠D+∠E;(2)根据角平分线得出∠3=∠5,∠4=∠6,DB∥HE得出∠3+∠5+∠4+∠6=1800,即可证明∠F=900;(3)过F 点作BD的垂线,垂足为K,延长KF交EH于点I;过F点作FJ垂线于点J,根据DA∥EH得出∠AKF=∠GIF=900,由角平分线得出KF=FJ,FI=FJ,所以KF=FI,则可证明△AKF≌△GIF,所以AF=FG.【详解】(1)过点F作FM∥BD,则FM∥HE,∵FM∥BD,FM∥HE∴∠1=∠D,∠2=∠E∵∠F=∠1+∠2∴∠F=∠D+∠E(2)∵DF是角平分线∴∠3=∠5又∵EF是角平分线∴∠4=∠6又∵DB∥HE∴∠3+∠5+∠4+∠6=1800∴∠5+∠6=900∴∠F=900(3)过F 点作BD 的垂线,垂足为K ,延长KF 交EH 于点I ;过F 点作FJ 垂线于点J∵DA ∥EH∴∠AKF =∠GIF =900∵DF 是角平分线∴KF =FJEF 是角平分线∴FI =FJ∴KF =FI在△AKF 和△GIF 中90 KFA IFG AKF GIF KF FI∠∠⎧⎪∠∠⎨⎪⎩==== ∴△AKF ≌△GIF (AAS )∴AF =FG【点睛】本题考查了平行线、角平分线、三角形全等等知识点,综合性较强,熟练掌握各个知识点,并学会综合运用是解题的关键.70.如图,OA BC ⊥,ODC ABO ∠=∠.(1)请判断CD 和AB 位置关系,并说明理由;(2)ADC ∠的平分线DE 与OAB ∠的平分线交于F ,求F ∠的度数.(3)在(2)的条件下,M 是线段AD 上任意一点(不同于A 、D ),作MN OA ⊥交AF 于N ,作ADE ∠与ANM ∠的平分线交于P 点,求P ∠的度数.【答案】(1)CD ⊥AB ,理由见解析;(2)45F ∠=︒;(3)22.5P ∠=︒.【解析】【分析】(1)利用等量代换得出∠ABO +∠OCD =90°,说明CD ⊥AB 即可;(2)利用角平分线的性质,邻补角的意义以及三角形的内角和定理在△AFD 中解决问题即可;(3)利用角平分线的性质,三角形的内角和,四边形的内角和解决问题即可.【详解】CD ⊥AB .如图,延长CD 交AB 于点P ,∵OA BC ⊥∴∠ODC +∠OCD =90°,∵ODC ABO ∠=∠∴∠ABO +∠OCD =90°,∴∠CPB =180°−(∠ABO +∠OCD )=90°∴CD ⊥AB .(2)∵DE 平分∠ADC ,AF 平分∠OAB ,11()22ADE ADC COD OCD ∴∠=∠=∠+∠ 12FAD BAO ∠=∠, OA BC ⊥,90,90,90COD OAB ABO OCD ODC ,11180()13522FDA COD OCD OCD ∴∠=︒-∠+∠=︒-∠ ∵ODC ABO ∠=∠∴OCD OAB ∠=∠,∴在△ADF 中,180()F FDA DAF ∠=︒-∠+∠1118013522OCD OAB ⎛⎫=︒-︒-∠+∠ ⎪⎝⎭180135=-︒︒45=︒(3)∵MN OA ⊥∴90NMD ∠=︒,()360225ADF MNF F NDF ∴∠+∠=︒-∠+∠=︒∵ADE ∠与ANM ∠的平分线交于P 点 ∴11,22PDA EDA PNM ANM ()11()18018067.522PDA PNM EDA ANM ADF MNF ∴∠+∠=∠+∠=-∠+-∠=︒︒︒ 360P F ADF MNF PDA PNM ︒∴∠=-∠-∠-∠-∠-∠360()()22.5F ADF MNF PDA PNM ︒=-∠-∠+∠-∠+∠=︒.【点睛】本题考查三角形内角和定理,垂线,三角形的外角性质,四边形的内角和定理,角平分线的性质.(1)中能正确画出辅助线是解题关键;(2)中能考虑到利用△AFD 的内角和,并正确表示出FDA ∠和FAD ∠是解题关键;(3)中能表示出四边形DNFP 的其它三个角是解题关键.。
八年级数学上册12.3角平分线的性质(讲+练)(8大题型)-【重要笔记】2022-2023学年八年级
12.3 角平分线的性质角的平分线的性质角的平分线的性质:角的平分线上的点到角两边的距离相等。
注意:用符号语言表示角的平分线的性质定理:若CD平分∠ADB,点P是CD上一点,且PE⊥AD于点E,PF⊥BD于点F,则PE=PF.角的平分线的尺规作图角平分线的尺规作图(1)以O为圆心,适当长为半径画弧,交OA于D,交OB于E.(2)分别以D、E为圆心,大于12DE的长为半径画弧,两弧在∠AOB内部交于点C.(3)画射线OC.射线OC即为所求.题型1:作已知角的平分线1.尺规作图:已知:∠CBA,求作∠CAB的平分线.【变式1-1】如图,在直线MN上求作一点P,使点P到射线OA和OB的距离相等。
(不写作法,保留作图痕迹)【变式1-2】如图,在Rt△ABC中,△C=90°.(1)作△BAC的平分线AD交边BC于点D.(尺规作图,保留作图痕迹,不写作法).(2)在(1)的条件下,若△BAC=28°,求△ADB的度数.题型2:角平分线的性质的应用-证明线段2.如图,已知OE平分△AOB,BC△OA于点C,AD△OB于点D,求证:EA=EB.【变式2-1】如图,点D、B分别在△A的两边上,C是△A内一点,AB = AD,BC = CD,CE△AD于E,CF△AF于F.求证:CE = CF.【变式2-2】已知:如图,OC是△AOB的平分线,P是OC上的一点,PD△OA,PE△OB,垂足分别为D、E,点F是OC上的另一点,连接DF,EF.求证:DF=EF.题型3:角平分线的性质的应用-和差关系3.如图,在△ABC中,△C=90°,△CAD=△BAD,DE△AB于E,点F在边AC 上,连接DF.(1)求证:AC=AE;(2)若AC=8,AB=10,求DE的长;(3)若CF=BE,直接写出线段AB,AF,EB的数量关系.【变式3-1】如图,△ABC的边BC的垂直平分线DE交△ABC的外角平分线AD于点D,DF△AB于点F,且AB>AC,试探究BF、AC、AF之间的数量关系,并说明理由.【变式3-2】题型4:角平分线的性质的应用-面积相关4.如图,BD是ΔABC的角平分线,DE⊥AB垂足为E,ΔABC的面积为70,AB= 16,BC=12,求DE的长.【变式4-1】如图,AD是△ABC的角平分线,DF△AB,垂足为F,如图DE=DG,△ADG和△AED的面积分别为50和38,求△EDF的面积【变式4-2】如图,在ΔABC中,AD为∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,若ΔABC的面积为21cm2,AB=8cm,AC=6cm,求DE的值.角的平分线的判定角平分线的判定:角的内部到角两边距离相等的点在角的平分线上.注意:用符号语言表示角的平分线的判定:若PE⊥AD于点E,PF⊥BD于点F,PE=PF,则PD平分∠ADB题型5:角平分线的判定5.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,求证:AM平分∠DAB.【变式5-1】如图所示,PA=PB,△1+△2=180°.求证:OP平分△AOB.【变式5-2】如图所示,AP、CP分别是△ABC外角△MAC和△NCA的平分线,它们交于点P.求证:BP为△MBN的平分线.题型7:角平分线的性质与判定综合6.如图,已知点A、C分别在△GBE的边BG、BE上,且AB=AC,AD△BE,△GBE的平分线与AD交于点D,连接CD.求证:(1)AB=AD;(2)CD平分△ACE.【变式6-1】如图,已知△ABC中BC边的垂直平分线DE与∠BAC的平分线交于点E,EF⊥AB交AB的延长线于点F,BG⊥AC交AC于点G.求证.(1)BF=CG.(2)若AB=6,AC=8,求AF的长度.【变式6-2】如图,在△ABC外作两个大小不同的等腰直角三角形,其中∠DAB=∠CAE=90°,AB=AD,AC=AE.连接DC、BE交于F点.(1)求证:△DAC△△BAE.(2)直线DC、BE是否互相垂直,请说明理由.(3)求证:AF平分∠DFE.【变式6-3】如图1,射线BD交△ABC的外角平分线CE于点P,已知△A=78°,△BPC=39°,BC=7,AB=4.(1)求证:BD平分△ABC;(2)如图2,AC的垂直平分线交BD于点Q,交AC于点G,QM△BC于点M,求MC的长度.题型7:角平分线的实际应用7.某地有两条相交叉的公路,计划修建一个饭馆:希望饭馆点P既在MN这条公路上,又到直线OA、OB的距离相等.你能确定饭馆应该建在什么位置吗?(保留作图痕迹)【变式7-1】如图:某地要在三条公路围成的一块平地上修建一个公园,要使公园到三条公路的距离相等,应在何处修建?(使用尺规作图,保留作图痕迹)并证明你的观点.【变式7-2】太和中学校园内有一块直角三角形(Rt △ABC)空地,如图所示,园艺师傅以角平分线AD为界,在其两侧分别种上了不同的花草,在△ABD区域内种植了月季花,在△ACD区域内种植了牡丹花,并量得两直角边AB=10m,AC=6m,分别求月季花与牡丹花两种花草的种植面积.题型8:三角形中的角平分线8.已知△ABC的三条角平分线相交于点O,过点O作OD△BC,OE△AC,OF△AB.求证:OD=OE=OF.【变式8-1】如图,△ABC中,AB=6,AC=7,BD、CD分别平分△ABC、△ACB,过点D作直线平行于BC,交AB、AC于E、F. 求△AEF的周长.【变式8-2】如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于?【变式8-3】如图①,在△ABC中,△ABC和△ACB的平分线交于点O,△A=α.(1)如图①,若△A=50°,求△BOC的度数.(2)如图②,连接OA,求证:OA平分△BAC.(3)如图③,若射线BO与△ACB的外角平分线交于点P,求证OC△PC.一、单选题1.如图,在△ABC中,△C=90°,BD平分△ABC,交AC于点D;若DC=3,AB=8则△ABD的面积是()A.8B.12C.16D.242.如图,OP平分△MON,PA△ON于点A,点Q是射线OM上的一个动点,若PA= 4,则PQ的长不可能是()A.3.5B.4C.4.5D.53.如图,已知点O是△ABC内一点,且点O到三边的距离相等,△A=40°,则△BOC=()A.110°B.120°C.130°D.140°4.如图,在四边形ABCD中,AB=CD,BA和CD的延长线交于点E,若点P使得S△PAB=S△PCD,则满足此条件的点P()A.有且只有1个B.有且只有2个C.组成△E的平分线D.组成△E的平分线所在的直线(E点除外)5.如图,在Rt△ACB中,∠ACB=90°,BC=12,BD=2CD,AD平分∠BAC,则点D到AB的距离等于()A.3B.4C.5D.9二、填空题6.如图,在△ABC中,BE平分△ABC交AC于点E,AF△BC于点F,BE、AF交于点P,若AB=9,PF=3,则△ABP的面积是.7.如图,已知△COB=2△AOC,OD平分△AOB,且△COD=18°,则△AOB的度数为.8.如图,在Rt△ABC中,∠ACB=90°, AC=6, BC=8, AB=10, AD是∠BAC的平分线.若P, Q分别是AD和AC上的动点,则PC+PQ的最小值是.9.如图,OP平分△AOB,PM△OA于M,点D在OB上,DH△OP于H.若OD=4,OP=7,PM=3,则DH的长为.三、作图题10.如图,电信部门要在S区修建一座电视信号发射塔.按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条高速公路m和n的距离也必须相等.发射塔应修建在什么位置?请用尺规作图标出它的位置.四、解答题11.如图,已知AD⊥BC于点D,E是延长线BA上一点,且EC⊥BC于点C,若∠ACE=∠E.求证:AD平分∠BAC.12.如图,在△ABC中,AD为△BAC的平分线,DE△AB于E,DF△AC于F,△ABC 面积是28cm2,AB=20cm,AC=8cm,求DE的长.13.如图,点P是△AOB的角平分线OC上一点,PE△OA,OE=12cm,点G是线段OP的中点,连接EG,点F是射线OB上的一个动点,若PF的最小值为4cm,求△PGE的面积.14.如图,直线AB△CD,点E在CD上,点O、点F在AB上,连接OE,过点F作FH△OE于点H.(1)尺规作图:作△EOF的角平分线OG交CD于点G;(不写作法,保留作图痕迹,并标明字母)(2)在(1)的条件下,已知△OFH=20°,求△OGD的度数.15.如图,△ABC和△EBD中,△ABC=△DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE△CD;(3)连接BM,有以下两个结论:①BM平分△CBE;②MB平分△AMD,其中正确的一个是(请写序号),并给出证明过程.。
人教版八年级上数学12.3 角的平分线的性质 _同步练习及答案(含答案)
第12章《全等三角形》同步练习班级学号姓名得分一、填空题(每题3分,共30分)1.到一个角的两边距离相等的点都在_________.2.∠AOB的平分线上一点M,M到OA的距离为1.5 cm,则M到OB的距离为_________. 3.如图,∠AOB=60°,CD⊥OA于D,CE⊥OB于E,且CD=CE,则∠DOC=_________.4.如图,在△ABC中,∠C=90°,AD是角平分线,DE⊥AB于E,且DE=3 cm,BD=5 cm,则BC=_________ cm.5.如图,已知AB、CD相交于点E,过E作∠AEC及∠AED的平分线PQ与MN,则直线MN与PQ的关系是_________.6.三角形内一点到三角形的三边的距离相等,则这个点是三角形_________的交点.7.△ABC中,∠C=90°,AD平分∠BAC交BC于D,且BD:CD=3:2,BC=15cm,则点D到AB的距离是__________.8.角平分线的性质定理:角平分线上的点_____________________________.9.(1)如图,已知∠1 =∠2,DE⊥AB,DF⊥AC,垂足分别为E、F,则DE____DF.(2)已知DE⊥AB,DF⊥AC,垂足分别为E、F,且DE = DF,则∠1_____∠2.10.直角三角形两锐角的平分线所夹的钝角为_______度.二、选择题(每题3分,共24分)11.如图,OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D.下列结论中错误的是()A.PC = PD B.OC = ODC.∠CPO = ∠DPO D.OC = PC12.如图,△ABC中,∠C = 90°,AC = BC,AD是∠BAC的平分线,(第3题)(第4题)(第5题)21ABCDEF(第9题)ABCDOP(第11题)④ ①②③ (第14题)DE ⊥AB 于E ,若AC = 10cm ,则△DBE 的周长等于( )A .10cmB .8cmC .6cmD .9cm13.到三角形三条边的距离都相等的点是这个三角形的( )A .三条中线的交点B .三条高的交点C .三条边的垂直平分线的交点D .三条角平分线的交点 14. 如图所示,表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( ) A.1处 B.2处 C.3处 D.4处 15.给出下列结论,正确的有( )①到角两边距离相等的点,在这个角的平分线上;②角的平分线与 三角形平分线都是射线;③任何一个命题都有逆命题;④假命题的 逆命题一定是假命题A .1个B .2个C .3个D .4个 16.已知,Rt △ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D ,若BC =32,且BD ∶CD =9∶7,则D 到AB 的距离为( ) A .18 B .16 C .14 D .12 17.两个三角形有两个角对应相等,正确说法是( )A .两个三角形全等B .两个三角形一定不全等C .如果还有一角相等,两三角形就全等D .如果一对等角的角平分线相等,两三角形全等18.如图,OB 、OC 是∠AOD 的任意两条射线,OM 平分∠AOB ,ON 平分∠COD ,若∠MON =α,∠BOC =β,则表示∠AOD 的代数式为( )A .2α-βB .α-βC .α+βD .2α三、解答题(共46分) 19.(7分)如图,已知OE 、OD 分别平分∠AOB 和∠BOC ,若∠AOB =90°,∠EOD =70°,求∠BOC 的度数.ED CB A (第12题)(第18题)20.(7分)已知:有一块三角形空地,若想在空地中找到一个点,使这个点到三边的距离相等,试找出该点.(保留画图痕迹)21.(8分)如图,点D 、B 分别在∠A 的两边上,C 是∠A 内一点,AB = AD ,BC = CD ,CE ⊥AD 于E ,CF ⊥AF 于F . 求证:CE = CF22.(8分)已知:如图,在△ABC 中,∠A =90°,AB = AC ,BD 平分∠ABC .求证:BC = AB + ADF A B EC D D A23.(8分)如图,PB 和PC 是△ABC 的两条外角平分线. ①求证:∠BPC =90°-12∠BAC . ②根据第①问的结论猜想:三角形的三条外角平分线所在的直线形成的三角形按角分类属于什么三角形?24.(8分)如图,BP 是△ABC 的外角平分线,点P 在∠BAC 的角平分线上.求证:CP 是△ABC 的外角平分线.PC B AD E参考答案一、填空题1.这个角的平分线上2.1.5cm 3.30°4.8 5.MN⊥PQ 6.三条角平分线7.6cm 8.到角的两边的距离相等9.(1)=(2)= 10.135二、选择题11.D 12.B 13.D 14.D 15.B 16.C 17.D 18.A三、解答题19.50°20.画两个角的角平分线的交点P 21.略22.提示:过点D做DM⊥BC 23.①略;②锐角三角形24.提示:过P作三边AB、AC、BC的垂线段PD、PE、PF。
人教版_部编版八年级数学上册第十二章第三节角的平分线的性质习题(含答案) (64)
人教版_部编版八年级数学上册第十二章第三节角的平分线的性质考试复习题(含答案)如图,OC平分∠AOB,点D,E分别在OA,OB上,点P在OC上且有PD=PE.求证:∠PDO =∠PEB.【答案】证明见解析;【解析】试题分析:过点P作AO、BO的垂线,利用直角三角形全等的判定可证出结论.试题解析:过P做PM垂直OA于M PN垂直OB于N因为OC平分∠AOB所以PM="PN" (角平分线上的点到2边的距离相等)因为PD=PE所以∠PDM全等于∠PEN(HL)所以∠PDO=∠PEB考点:1.角平分线的性质;2.直角三角形全等的判定与性质.32.已知:如图,CD∠AB于D,BE∠AC于E,∠1=∠2.求证:OB=OC.【答案】证明见解析【解析】试题分析:又CD∠AB,BE∠AC,∠1=∠2,可得OE=OD,∠BDO=∠CEO=90°,再由∠BOD=∠COE,可得∠BOD∠∠COE,从而OB=OC.试题解析:∠CD∠AB,BE∠AC,∠1=∠2,∠OE=OD,∠BDO=∠CEO=90°,又∠∠BOD=∠COE,∠∠BOD∠∠COE,∠OB=OC.考点:1.角平分线的性质;2.三角形全等的判定与性质.33.如图,BD是△ABC的角平分线,DE⊥AB,垂足为E,AB=16,BC=12.(1)△ABD与△CBD的面积之比为;(2)若△ABC的面积为70,求DE的长.【答案】4:3;5.【解析】AB求出BC两个三角形的面积之比等于底的比求出△ABD与△CBD的面积之比;根据(1)求出的△ABD与△CBD的面积之比,得到△ABD的面积,根据三角形的面积公式求出DE.试题解析:(1)、∵BD是△ABC的角平分线,ABBC =43,∴△ABD与△CBD的面积之比为4:3;(2)、∵△ABC的面积为70,△ABD与△CBD的面积之比为4:3,∴△ABD的面积为40,又AB=16,则DE=5.考点:角平分线的性质34.根据图中尺规作图的痕迹,先判断得出结论:.然后证明你的结论(不要求写出已知、求证).【答案】OM平分∠BOA.【解析】试题分析:根据角作图的画法得出三角形全等,从而说明角平分线.试题解析:OM是∠AOB的角平分线连接CM、DM∠OC=OD,CM=DM,OM=OM,∠∠OCM∠∠OCD,∠∠BOM=∠AOM,∠OM是∠AOB的角平分线.考点:(1)、尺规作图;(2)、三角形全等35.(8分)已知:如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)求证:AM平分∠BAD;(2)试说明线段DM与AM有怎样的位置关系?(3)线段CD、AB、AD间有怎样的关系?直接写出结果.【答案】(1)见解析(2)DM⊥AM,(3)CD+AB=AD【解析】试题分析:(1)首先要作辅助线,ME⊥AD则利用角的平分线上的点到角的两边的距离相等可知ME=MC,再利用中点的条件可知ME=MB,再利用到角两边距离相等的点在角的平分线上的逆定理证明AM平分∠DAB.(2)根据平行线性质得出∠CDA+∠BAD=180°,求出∠1+∠3=90°,根据三角形内角和定理求出即可.(3)证Rt△DCM≌Rt△DEM,推出CD=DE,同理得出AE=AB,即可得出答案.试题解析:(1)证明:作ME⊥AD于E,∵MC⊥DC,ME⊥DA,MD平分∠ADC,∴ME=MC,∵M为BC中点,∴MB=MC,又∵ME=MC,∴ME=MB,又∵ME⊥AD,MB⊥AB,∴AM平分∠DAB.(2)解:DM⊥AM,理由是:∵DM平分∠CDA,AM平分∠DAB,∴∠1=∠2,∠3=∠4,∵DC∥AB,∴∠CDA+∠BAD=180°,∴∠1+∠3=90°,∴∠DMA=180°﹣(∠1+∠3)=90°,即DM⊥AM.(3)解:CD+AB=AD,理由是:∵ME⊥AD,MC⊥CD,∴∠C=∠DEM=90°,在Rt△DCM和Rt△DEM中DM DM EM CM=⎧⎨=⎩ ∴Rt △DCM ≌Rt △DEM (HL ),∴CD=DE ,同理AE=AB ,∵AE+DE=AD ,∴CD+AB=AD .考点:角平分线的性质;全等三角形的判定与性质36.如图,在∠ABC 中,∠ACB=90°,AC=BC=AD(1)作∠A 的平分线交CD 于E ;(2)过B 作CD 的垂线,垂足为F ;(3)请写出图中两对全等三角形(不添加任何字母),并选择其中一对加以证明.【答案】(1)作图见试题解析;(2)作图见试题解析;(3)∠ACE ∠∠ADE ,∠ACE ∠∠CFB .【解析】试题分析:(1)利用角平分线的作法得出∠A的平分线;(2)利用钝角三角形高线的作法得出BF;(3)利用等腰三角形的性质及全等三角形的判定得出答案.试题解析:(1)如图所示:AE即为所求;(2)如图所示:BF即为所求;(3)如图所示:∠ACE∠∠ADE,∠ACE∠∠CFB,∠AC=AD,AE平分∠CAD,∠AE∠CD,EC=DE,在∠ACE和∠ADE中,∠AE=AE,∠AEC=∠AED,EC=ED,∠∠ACE∠∠ADE(SAS).考点:1.作图—复杂作图;2.全等三角形的判定.37.(8分)如图,在∠ABC中,∠B=90°,AB=BC=4,点E在BC上,将∠ABC沿AE折叠,使点B落在AC边上的点F处.(1)求BE的长;(2)判断∠CEF是什么特殊三角形.【答案】BE=4√2-4【解析】试题分析:(1)先由勾股定理求出AC的长,由折叠可得∠CEF为直角三角形,BE="EF," 设BE=,根据勾股定理可得;(2)由(1)可得EF=FC=,所以直角三角形CEF是等腰直角三角形.试题解析:在∠ABC中,∠B=90°,AB=BC=4,∠AC=42分将∠ABC沿AE折叠,使点B落在AC边上的点F处.所以BE=EF,∠∠CEF为直角三角形EC2=EF2+FC2 4分设BE=,(4-)2=2+(4-4)24分∠6分EF=FC=7分∠∠CEF是等腰直角三角形8分考点:1.勾股定理;2. 图形折叠的性质;3.等腰直角三角形的判定.38.如图,AD⊥BC于点D,EG⊥BC于点G,⊥E=⊥3.请问:AD平分⊥BAC吗?若平分,请说明理由.【答案】平分,理由见解析.【解析】【分析】先利用平面内垂直于同一条直线的两条直线互相平行,得到AD∥EG,再利用平行线的性质和已知条件求出∥1=∥2即可.【详解】解:平分.证明:∥AD∥BC于D,EG∥BC于G,(已知)∥∥ADC=∥EGC=90°,(垂直的定义)∥AD∥EG,(同位角相等,两直线平行)∥∥2=∥3,(两直线平行,内错角相等)∥E=∥1,(两直线平行,同位角相等)又∥∥E=∥3(已知)∥∥1=∥2(等量代换)∥AD平分∥BAC(角平分线的定义).【点睛】本题考查平行线的判定与性质;角平分线的定义.39.画图说明题,试用几何方法说明你所得结果的正确性.(1)作∠AOB=90°;(2)在∠AOB的内部任意画一条射线OP;(3)画∠AOP的平分线OM以及∠BOP的平分线ON;(4)用量角器量得∠MON= 度.【答案】45,理由见解析【解析】【分析】首先根据题意画出图形,再根据角平分线的性质可得∠POM=1∠POB,2∠PON=12∠POA,然后可得∠POM+∠PON=12(∠POB+∠POA),进而可得答案.【详解】如图所示:∥OM是∥AOP的平分线,ON是∥BOP的平分线,∥∥POM=12∥POA,∥PON=12∥POB,∥∥POB+∥POA=∥AOB=90°,∥∥POM+∥PON=12(∥POB+∥POA)=12∥AOB=12×90°=45°.【点睛】考查了基本作图,以及角平分线的作法,关键是掌握角平分线的画法.40.(本题满分10分)如图,把∠EFP按图所示的方式放置在菱形ABCD 中,使得顶点E、F、P分别在线段AB、AD、AC上.已知EP=FP=,EF=,∠BAD=60°,且AB.(1)求∠EPF的大小;(2)若AP=6,求AE+AF的值;(3)若∠EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.【答案】(1)∠EPF=120°;(2)AE+AF=;(3)AP的最大值为8,AP 的最小值为4.【解析】试题分析:(1)过点P作PG∠EF,垂足为G,在RtFPG中,利用锐角三角函数求得∠FPG=60°,即可得∠EPF的度数.(2)作PM∠AB,PN∠ND,垂足分别为M、N,可证RtPME∠RtPNF,可得FN=EM;在RtPMA中,利用锐角三角函数求得AM的长,同样的方法求得AN的长,根据AE+AF=(AM-EM)+(AN+NF)=AM+AN即可求得AE+AF的值.(3)当PE∠AB,PF∠AD时,AP的值最大为8,当点A与点E(或点F)重合时,PA的值最小为4.试题解析:解:(1)过点P作PG∠EF,垂足为G,∠PE=PF,PG∠EF,∠FG=EG=,∠FPG=∠EPG=∠EPF.在RtFPG中,,∠∠FPG=60°∠∠EPF=2∠FPG=120°.作PM∠AB,PN∠ND,垂足分别为M、N,在菱形ABCD中,∠AD=AB,,DC=BC,AC=AC,∠∠ABC∠∠ADC,∠∠DAC=∠BAC∠点P到AB、CD两边的距离相等,即PM=PN.在RtPME和RtPNF中,∠PM=PN,PE=PF,∠RtPME∠RtPNF∠FN=EM在RtPMA中,∠PMA=90°,∠PAM=∠DAB=30°,∠AM=同理,AN=∠AE+AF=(AM-EM)+(AN+NF)=AM+AN=.(3)AP的最大值为8,AP的最小值为4.考点:菱形的性质;角平分线的性质;全等三角形的判定及性质.。
12.3 角的平分线的性质(第2课时)人教版数学八年级上册同步练习(含答案)
第十二章全等三角形
12.3 角的平分线的性质
第2课时角的平分线性质(2)
1. 如图,某个居民小区C附近有三条两两相交的道路MN,OA,OB,拟在MN上建造一个大型超市,使得它到OA,OB的距离相等,请确定该超市的位置P.
2. 如图所示,已知△ABC中,PE∥AB交BC于点E,PF∥AC交BC于点F,点P是AD上一点,且点D到PE的距离与到PF的距离相等,判断AD是否平分∠BAC,并说明理由.
3. 如图,已知∠CBD和∠BCE的平分线相交于点F,求证:点F在∠DAE 的平分线上.
4. 如图,直线l1、l2、l3表示三条互相交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,可选择的地址有几处? 画出它的位置.
参考答案:
1.解答如下图:
2. 解:AD平分∠BAC.理由如下:
∵D到PE的距离与到PF的距离相等,
∴点D在∠EPF的平分线上.∴∠1=∠2.
又∵PE∥AB,
∴∠1=∠3.
同理,∠2=∠4.
∴∠3=∠4,∴AD平分∠BAC.
3. 证明:过点F作FG⊥AE于G,FH⊥AD于H,FM⊥BC于M.∵点F在∠BCE的平分线上,FG⊥AE,FM⊥BC.
∴FG=FM.
又∵点F在∠CBD的平分线上,FH⊥AD,FM⊥BC,
∴FM=FH,∴FG=FH.
∴点F在∠DAE的平分线上.
4.答案如下图:。
12.3.1 角的平分线的性质 初中数学人教版八年级上册课时习题(含答案)
12.3角的平分线的性质一、选择题(本大题共10小题,在每小题列出的选项中,选出符合题目的一项)1.如图,点P到AE,AD,BC的距离相等,则下列说法:①点P在∠BAC的平分线上;②点P在∠CBE的平分线上;③点P在∠BCD的平分线上;④点P是∠BAC,∠CBE,∠BCD的平分线的交点.其中正确的是( )A. ①②③④B. ①②③C. ④D. ②③2.如图,已知点P到AE,AD,BC的距离相等,下列说法:①点P在∠BAC的平分线上;②点P在∠CBE的平分线上;③点P在∠BCD的平分线上;④点P在∠BAC,∠CBE,∠BCD的平分线的交点上.其中正确的是( )A. ④B. ②③C. ①②③D.①②③④3.到三角形的三边距离相等的点是( )A. 三角形三条高的交点B. 三角形三条内角平分线的交点C. 三角形三条中线的交点D. 无法确定4.如图所示,∠B=∠C=90∘,M是BC的中点,DM平分∠ADC,且∠ADC =110∘,则∠MAB= ( )A. 30∘B. 35∘C. 45∘D. 60∘5.三角形内部到三边距离相等的点是( )A. 三边中线的交点B. 三边垂直平分线的交点C. 三内角平分线的交点D. 三边上高的交点6.如图,AB//CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是( )A. 8B. 6C. 4D. 27.在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是.( )A. 点CB. 点DC. 点ED. 点F8.在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是( )A. 点MB. 点NC. 点PD. 点Q9.如图,在△ABC中,∠B=90°,AB=6,BC=8,AD为∠BAC的角平分线,则三角形ADC的面积为( )A. 3B. 10C. 12D. 1510.如图,△ABC的外角平分线BD,CE相交于点P.若点P到AC的距离为3,则点P到AB的距离为( )A. 1B. 2C. 3D. 4二、填空题(本大题共4小)11.如图,点O在△ABC内,且到三边的距离相等.若∠A=60∘,则∠BOC=°.12.如图,点P到∠AOB两边的距离相等,若∠POB=30°,则∠AOB=________.13.如图,在△ABC中,∠C=90∘,AD平分∠BAC与BC边交于点D,BD=2CD,若点D到AB的距离等于5cm,则BC的长为cm.14.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC、AB于点M、N,再分别以M、N为圆心,MN的长为半径画弧,两弧交于点P,作射线AP交BC于点D,大于12若CD=3,AB=10,则△ABD的面积是________.三、解答题(本大题共3小题,解答应写出文字说明,证明过程或演算步骤)15.如图,∠1=∠2,∠3=∠4.求证:AP平分∠BAC.16.已知:如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.求证:AM平分∠DAB.17.如图,点B,C分别在∠A的两边上,点D是∠A内一点,DE⊥AB,DF⊥AC,垂足分别为E,F,且AB=AC,DE=DF.求证:BD=CD.参考答案1.【答案】A2.【答案】D3.【答案】B4.【答案】B5.【答案】C6.【答案】C7.【答案】C8.【答案】A9.【答案】D10.【答案】C11.【答案】12012.【答案】60°13.【答案】1514.【答案】1515.【答案】证明:过P作PQ⊥AB于Q,PN⊥BC于N,PM⊥AC于M,∵∠1=∠2.∠3=∠4,∴PQ=PN,PN=PM,∴PQ=PM,∵PQ⊥AB,PM⊥AC,∴AP平分∠BAC.16.【答案】证明:过点M作ME⊥AD,垂足为E,∵∠B=∠C=90°,∴MC⊥CD,MB⊥AB,∵DM平分∠ADC,∴∠CDM=∠EDM,又∵MC⊥CD,ME⊥AD,∴ME=MC,又∵MC=MB,∴ME=MB,又∵MB⊥AB,ME⊥AD,∴AM平分∠DAB.17.【答案】证明:连接AD,∵DE⊥AB,DF⊥AC,DE=DF,∴∠BAD=∠CAD,在△ABD和△ACD中AB=AC∠BAD=∠CAD,AD=AD∴△ABD≌△ACD,(SAS),∴BD=CD.。
人教版八年级上数学12.3《角平分线的性质》同步练习(有答案)
八年级上数学12.3《角平分线的性质》同步练习一、选择题:1、如图,在△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线.若AB=6,则点D到AB 的距离是______.2、如图,△ABC中,∠C=90°,AC=BC,AB=a(a>0),∠CAB的平分线交BC于点D,DE⊥AB垂足为E,则△DEB的周长等于( )A. aB. 1.5aC. 2aD. 1.2a3、如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC 的面积是( )A. 13B. 12C. 24D. 154、如图所示,OP平分∠AOB,PC⊥OA于C,PD⊥OB于D,则PC与PD的大小关系是()A.PC>PDB.PC=PDC.PC<PDD.不能确定5、如图,BD平分∠ABC,DE⊥AB于E,DF⊥BC于F,AB=6,BC=8.若S△ABC=28,则DE=( )A. 3B. 3.6C. 4D. 56、如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()A. ∠BAC=70°B. ∠D OC=90°C. ∠BDG=35°D. ∠D AC=55°7、如图,已知DB⊥AE于点B,DC⊥AF于点C,且DB=DC,∠BAC=40°,∠ADG=130°,则∠DGF如图,已知DB⊥AE于点B,DC⊥AF于点C,且DB=DC,∠BAC=40°,∠ADG=130°,则∠DGF的角度为()A. 150°B. 130°C. 120°D. 160°8、如图所示,已知△ABC的周长是21,BO,CO分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,则△ABC的面积是( )A. 31.5B. 30C. 12D. 16.59、如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是( )A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°10、如图所示,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于点O,且BD交AC于点D,CE交AB于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE. 其中一定正确的是( )A.①②③B.②③④C.①③⑤D.①③④二、填空题:11、在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是.12、如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为 .13、如图,在△ABC中,∠A=90°,BD平分∠ABC,AD=2cm,AB+BC=8,S△ABC= 。
人教版_部编版八年级数学上册第十二章第三节角的平分线的性质作业复习题(含答案) (30)
人教版_部编版八年级数学上册第十二章第三节角的平分线的性质作业复习题(含答案)已知,直线//AB DC ,点P 为平面上一点,连接AP 与CP .(1)如图1,点P 在直线AB 、CD 之间,当60BAP ∠=︒,20DCP ∠=︒时,求APC ∠.(2)如图2,点P 在直线AB 、CD 之间AC 左侧,BAP ∠与DCP ∠的角平分线相交于点K ,写出AKC ∠与APC ∠之间的数量关系,并说明理由.(3)如图3,点P 落在CD 下方,BAP ∠与DCP ∠的角平分线相交于点K ,AKC ∠与APC ∠有何数量关系?并说明理由.【答案】(1)80APC ︒∠=;(2)12AKC APC ∠=∠,见详解;(3)12AKC APC ∠=∠,见详解 【解析】【分析】(1)过点P 作//A PE B ,根据平行线的性质得到,APE BAP CPE DCP ∠=∠∠=∠,再根据APC APE CPE BAP DCP ∠=∠+∠=∠+∠计算即可;(2)过K 作//KE AB ,根据平行线的性质和角平分线的定义可得出AKC ∠与APC ∠的数量关系;(3)过K 作//KE AB ,根据平行线的性质和角平分线的定义可得出AKC ∠与APC ∠的数量关系.【详解】(1)(如图1,过点P 作//A PE B//AB CD////PE AB CD ∴,APE BAP CPE DCP ∴∠=∠∠=∠602080APC APE CPE BAP DCP ︒︒︒∴∠=∠+∠=∠+∠=+=(2)12AKC APC ∠=∠ 如图2,过K 作//KE AB//AB CD////KE AB CD ∴,AKE BAK CKE DCK ∴∠=∠∠=∠AKC AKE CKE BAK DCK ∴∠=∠+∠=∠+∠过点P 作//PF AB同理可得APC BAP DCP ∠=∠+∠BAP ∠与DCP ∠的角平分线相交于点K1111() , 2222BAK DCK BAP DCP BAP DCP APC ∴∠+∠=∠+∠=∠+∠=∠ 12AKC APC ∴∠=∠(3)12AKC APC ∠=∠ 如图3,过K 作//KE AB//AB CD////KE AB CD ∴,BAK AKE DCK CKE ∴∠=∠∠=∠AKC AKE CKE BAK DCK ∴∠=∠-∠=∠-∠过点P 作//PF AB同理可得APC BAP DCP ∠=∠-∠BAP ∠与DCP ∠的角平分线相交于点K1111()2222BAK DCK BAP DCP BAP DCP APC ∴∠-∠=∠-∠=∠-∠=∠ 12AKC APC ∴∠=∠ 【点睛】本题考查了平行线的性质和角平分线的定义,解题的关键是作出平行线构造内错角相等计算.92.如图,在△ABC 中,∠C =90°,AD 是∠BAC 的平分线,DE ⊥AB 于E ,F 在AC 上,且BD =DF .(1)求证:CF =EB ;(2)试判断AB 与AF ,EB 之间存在的数量关系,并说明理由.【答案】(1)见解析(2)AB =AF +2BE【解析】【分析】(1)根据角平分线的性质得到DC =DE ,证明Rt △FCD ≌Rt △BED ,根据全等三角形的性质证明;(2)证明Rt △ACD ≌Rt △AED ,根据全等三角形的性质证明.【详解】(1)证明:∵AD 是∠BAC 的平分线,DE ⊥AB ,∠C =90︒,∴DC =DE ,在Rt △FCD 和Rt △BED 中,DC DE DF DB ⎧⎨⎩==, ∴Rt △FCD ≌Rt △BED ,∴CF =EB ;(2)解:在Rt △ACD 和Rt △AED 中,DC DE AD AD ⎧⎨⎩==, ∴Rt △ACD ≌Rt △AED ,∴AC =AE ,∴AB =AE +BE =AF +FC +BE =AF +2BE .【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.93.如图,,,EF AD AD BC CE ∥∥平分,116,26BCF DAC ACF ∠∠=︒∠=︒,求FEC ∠的度数.【答案】19°.【解析】【分析】根据AD∥BC求出∠ACB,由∠ACF=26°求出∠BCF,利用角平分线的性∠.质求出∠BCE,再根据平行线的性质求出FEC【详解】∵EF∥AD,AD∥BC,∴EF∥BC,∠ACB+∠DAC=180°,∠=︒,116DAC∴∠=︒,ACB64∵∠ACF=26°,FCB ACB ACF∴∠=∠-∠=︒,38∠,CE平分BCF∴∠=︒,19BCE∵EF∥BC,∴∠=∠,FEC ECB∴∠=︒.19FEC【点睛】此题考查平行线的性质,角平分线的性质,熟记各性质定理并正确理解图形中各角之间的位置关系是解题的关键.94.某八年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,△ABC的两内角∠ABC与∠ACB的平分线交于点E,求证:△BEC=90°+12∠A;(2)如图2,△ABC的内角∠ABC的平分线与△ABC的外角∠ACM的平分线交于点E,请写出∠E与∠A的数量关系,并证明.(3)如图3,△ABC的两外角∠DBC与∠BCF的平分线交于点E,请你直接写出∠E与∠A的数量关系,不需证明.【答案】(1)证明见解析;(2)∠A=2∠E,证明见解析;(3)∠E=90°-12∠A.【解析】【分析】(1)先根据角平分线的性质得出∠EBC=12∠ABC,∠ECB=12∠ACB,再由三角形内角和定理得出∠BEC+∠EBC+∠ECB=180°,利用等量代换即可得出结论;(2)先根据角平分线的性质得出∠EBC=12∠ABC,∠ECM=12∠ACM,再由三角形外角的性质即可得出结论;(3)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出∠EBC与∠ECB,然后再根据三角形的内角和定理列式整理即可得解.【详解】(1)∵BE、CE分别平分∠ABC和∠ACB,∴∠EBC=12∠ABC,∠ECB=12∠ACB,∴∠BEC+∠EBC+∠ECB=180°,∴∠BEC=180°-(∠EBC+∠ECB)=180°-(12∠ABC+12∠ACB)=180°-12(∠ABC+∠ACB)=180°-12(180°-∠A)=180°-90°+12∠A=90°+12∠A.(2)∵BE是∠ABC的平分线,CE是∠ACM的平分线,∴∠EBC=12∠ABC,∠ECM=12∠ACM.∵∠ACM是△ABC的外角,∠ECM是△BCE的外角,∴∠ACM=∠A+∠ABC,∠ECM=∠BEC+∠EBC,∴∠ECM=12∠ACM=12(∠A+∠ABC)=∠BEC+∠EBC,即12∠A+∠EBC=∠BEC+∠EBC,∴∠A=2∠B∠A=2∠C,即∠A=2∠E;(3)结论∠E=90°-12∠A.∵∠CBD与∠BCF是△ABC的外角,∴∠CBD=∠A+∠ACB,∠BCF=∠A+∠ABC,∵BE,CE分别是∠ABC与∠ACB的平分线,∴∠EBC=12(∠A+∠ACB),∠ECB=12(∠A+∠ABC).∵∠EBC+∠ECB+∠E=180°,∴∠E=180°-∠EBC-∠ECB,=180°-12(∠A+∠ACB )-12(∠A+∠ABC ), =180°-12∠A-12(∠A+∠ABC+∠ACB ), =180°-12∠A-90° =90°-12∠A . 【点睛】本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.95.(习题回顾)(1)如下左图,在ABC ∆中,BE 平分,ABC CE ∠平分,64ACB A ∠∠=︒,则BEC ∠=_________︒.(探究延伸)在ABC ∆中,AI 平分BAC ∠、BI 平分ABC ∠、CI 平分BCA ∠相交于点I ,过点I 作DI IC ⊥,交AC 于点D .(2)如上中间图,求证:ADI AIB ∠=∠;(3)如上右图,ABC ∆外角ACE ∠的平分线CF 与BI 的延长线交于点F . ①判断DI 与CF 的位置关系,并说明理由;②若90BAC ∠=︒,试说明:CI CF =.【答案】(1)122;(2)证明见详解;(3)①//DI CF ,理由见解析;②理由见解析.【解析】【分析】(1)根据三角形内角和为180︒和角平分线的定义,可得EBC ECB ∠+∠,再利用三角形内角和,即可求得BEC ∠的大小;(2)根据根据三角形内角和为180︒和角平分线的定义,可表达出AIB ∠,再用同样的方法表达出ADI ∠,即可证明;(3)①根据角平分线的定义,用等量代换的方法,分别表达出IDC ∠和ACF ∠,再根据内错角相等,两直线平行,即可得到结论;②根据角平分线的定义,用等量代换的方法,分别表达出F ∠和FIC ∠,根据等腰三角形的要相等,即可得到结论.【详解】(1)在ABC ∆中,BE 平分,ABC CE ∠平分,64ACB A ∠∠=︒()()111806458?22EBC ECB ABC ACB ∴∠+∠=∠+∠=︒-︒=︒ 18058122?BEC ∴∠=︒-︒=︒.(2)AI 平分BAC ∠、BI 平分ABC ∠,12BAI BAC ∴∠=∠,12ABI ABC ∠=∠, ()()1118022BAI ABI BAC ABC ACB ∴∠+∠=∠+∠=︒-∠ 1902ACB =︒-∠ ∴在ABI 中,()180AIB BAI ABI ∠=︒-∠+∠11180909022ACB ACB ⎛⎫=︒-︒-∠=︒+∠ ⎪⎝⎭, CI 平分ACB ∠,12DCI ACB ∴∠=∠, DI IC ⊥,90DIC ∴∠=︒,1902ADI DIC DCI ACB ∴∠=∠+∠=︒+∠, ∴ADI AIB ∠=∠.(3)①DI 与CF 相平行,CF 平分ACE ∠,()11118090222ACF ACE ACB ACB ∴∠=∠=︒-∠=︒-∠, 又190902IDC DCI ACB ∠=︒-∠=︒-∠, IDC ACF ∴∠=∠,∴//DI CF .②ACE ABC BAC ∠=∠+∠90ACE ABC BAC ∴∠-∠=∠=︒FCE FBC F ∠=∠+∠F FCE FBC ∴∠=∠-∠11,22FCE ACE FBC ABC ∠=∠∠=∠, ()11145222F ACE ABC ACE ABC ∴∠=∠-∠=∠-∠=︒ ()11802BIC ABC ACB ∠=︒-∠+∠ ()1180180901352=︒-︒-︒=︒ 18013545FIC ∴∠=︒-︒=︒F FIC ∴∠=∠∴CI CF =.【点睛】本题考查三角形内角和、角平分线性质、三角形的外角性质的问题,主要用等量代换的思想,属中档题.96.如图,ABC ∆中,CD 是ACB ∠的角平分线,//DE AC ,交BC 于点E ,20B ∠=︒,44ADC ∠=︒,求DEC ∆各内角的度数.【答案】13224DEC EDC ECD ∠=︒∠=∠=︒,【解析】【分析】根据角平分线的定义及平行线的性质以及三角形的内角和定理进行计算即可得解.【详解】∵CD 是ACB ∠的角平分线∴ACD ECD ∠=∠∵//DE AC∴ACD EDC ∠=∠∴ECD EDC ∠=∠设ECD EDC x ∠=∠=∴2DEB x ∠=∵4420B BED ADC EDC ADC B ∠+∠=∠+∠∠=︒∠=︒,,∴20244x x ︒+=︒+∴24x =︒,∴24ECD EDC ∠=∠=︒∵180()DEC ECD EDC ∠=︒-∠+∠∴18048132DEC ∠=︒-︒=︒则DEC ∆各内角的度数为13224DEC EDC ECD ∠=︒∠=∠=︒,.【点睛】本题主要考查了三角形内角的计算,熟练掌握平行线的性质,角平分线及角度的和差倍分计算是解决本题的关键.97.已知,BAM ∠与ABN ∠两角的角平分线交于点P ,D 是射线BP 上一个动点,过点D 的直线分别交射线AM ,BN ,AP 于点E ,F ,C .(1)如图1,若140BAM ∠=︒,68ABN ∠=︒,AB EF ,求BPC ∠的度数;(2)如图2,若AC BD ⊥,请探索AEF ∠与BFE ∠的数量关系,并证明你的结论;(3)在点D 运动的过程中,请直接写出AEF ∠,BFE ∠与BPC ∠这三个角之间满足的数量关系:_________________________________.【答案】(1)104BPC ∠=︒;(2)180AEF BFE ∠+∠=︒,证明详见解析;(3)2BPC AEF BFE ∠=∠+∠或2360AEF BFE BPC ∠+∠+∠=︒【解析】【分析】(1)根据角平分线的性质结合三角形外角的性质即可求解;(2)设BAP PAE α∠=∠=,ABP PBF θ∠=∠=,根据角平分线的性质结合四边形内角和定理即可求解;(3)分点P 在线段BD 上和点P 在线段BD 的延长线上两种情况讨论即可求解.【详解】(1)∵PA 、PB 是∠BAM 、∠ABN 的角平分线,∴∠BAP=∠PAE=12∠BAM=1140702⨯︒=︒, ∠ABP=∠PBE=12∠ABN=168342⨯︒=︒, ∴∠BPC=∠BAP+∠ABP=7034104︒+︒=︒;(2)180AEF BFE ∠+∠=︒,理由如下:∵PA 、PB 是∠BAM 、∠ABN 的角平分线,∴设BAP PAE α∠=∠=,ABP PBF θ∠=∠=,∵AC BD ⊥,∴90BPC ∠=︒,∵BPC αθ∠=+,∴90BPC αθ∠=+=︒,又∵360AEF BFE BAE ABF ∠+∠+∠+∠=︒,∴222()360AEF BFE AEF BFE αθαθ∠+∠++=∠+∠++=︒,∴180AEF BFE ∠+∠=︒;(3)∵PA 、PB 是∠BAM 、∠ABN 的角平分线,∴设BAP PAE α∠=∠=,ABP PBF θ∠=∠=,∵360AEF BFE BAE ABF ∠+∠+∠+∠=︒,∴222()360AEF BFE AEF BFE αθαθ∠+∠++=∠+∠++=︒,如图,当点P 在线段BD 上时,BPC αθ∠=+,∴2360AEF BFE BPC ∠+∠+∠=︒;如图,当点P 在线段BD 的延长线上时,180BPC αθ∠++=︒,即180BPC αθ+=︒-∠,∴2(180)360AEF BFE BPC ∠+∠+︒-∠=︒,即2BPC AEF BFE ∠=∠+∠;【点睛】本题考查了角平分线的性质,三角形外角的性质,准确识图,理清图中各角度之间的关系是解题的关键.98.如图,在ABC 中,AD 是高线,AE 、BF 是角平分线,它们相交于点O ,50BAC ∠=︒,70C ∠=︒,求EAD ∠与BOA ∠的度数.【答案】∠EAD=5°,∠BOA=125°【解析】【分析】因为AD是高,所以∠ADC=90°,又因为∠C=70°,求出∠DAC度数,根据∠EAD=∠EAC-∠DAC可求∠EAD;因为∠BAC=50°,∠C=70°,所以∠BAO=25°,∠ABC=60°,BF是∠ABC的角平分线,则∠ABO=30°,故∠BOA 的度数可求.【详解】∵AD⊥BC∴∠ADC=90°∵∠C=70°∴∠DAC=180°-90°-70°=20°,∵AE平分∠BAC,∴∠CAE=12×50°=25°∴∠EAD=∠EAC-∠DAC=25°-20°=5°;∵∠BAC=50°,∠C=70°∴∠BAO=25°,∠ABC=60°∵BF是∠ABC的角平分线∴∠ABO=30°∴∠BOA=180°-∠BAO-∠ABO=180°-25°-30°=125°.【点睛】此题考查角平分线的性质,解题关键在于掌握其性质定义.99.已知:如图,在ABC ∆中,90ACB ︒∠=,CD 是高,AE 是ABC ∆内部的一条线段,AE 交CD 于点F ,交CB 于点E ,且CFE CEF ∠=∠.求证:AE 平分CAB ∠.【答案】详见解析【解析】【分析】根据CD AB ⊥,可得29090AFD CFE ∠=︒-∠=︒-∠,再根据余角的性质可得190ECF ∠=︒-∠,通过CFE CEF ∠=∠,即可证明21∠=∠,从而得证AE 平分CAB ∠.【详解】证明: ,CD AB ⊥∴在AFD ∆中,29090AFD CFE ∠=︒-∠=︒-∠90,ACE ∠=︒在 AEC ∆中190ECF ∴∠=︒-∠CFE CEF ∠=∠21∴∠=∠即AE平分CAB.【点睛】本题考查了角平分线的证明问题,掌握余角的性质、角平分线的性质以及判定定理是解题的关键.100.如图,在△ABC中,∠1=110°,∠C=80°,∠2=1∠3,BE3平分∠ABC,求∠4的度数.【答案】∠4=40°【解析】【分析】根据三角形的外角求出∠3,求出∠2,求出∠BAC,根据三角形内角和定理求出∠ABC,根据角平分线的性质求出∠ABE,根据三角形外角性质求出即可.【详解】解:②②1=110°,②C=80°,②3130C ∠=∠-∠=︒,②②2=13②3, ②②2=10°,②2340BAC ∠=∠+∠=︒,②180180408060ABC BAC C ∠︒∠-∠=︒-︒-︒=︒=﹣,②BE 平分②ABC , ②1302ABE ABC ∠=∠=︒, ②②4=②ABE+②2=30°+10°=40°.【点睛】本题考查了角平分线的性质、三角形内角和定理和三角形外角性质,能求出∠ABE 的度数是解此题的关键.。
人教版_部编版八年级数学上册第十二章第三节角的平分线的性质习题(含答案) (1)
人教版_部编版八年级数学上册第十二章第三节角的平分线的性质考试复习题(含答案)一、单选题1.△ABC是一个任意三角形,用直尺和圆规作出∠A,∠B的平分线,如果两条平分线交于点O,那么下列选项中不正确的是()A.点O一定在△ABC的内部B.点O到△ABC的三边距离一定相等C.∠C的平分线一定经过点O D.点O到△ABC三顶点的距离一定相等【答案】D【解析】由三角形的三条角平分线在三角形内相交于一点可知:A、C正确;而由角平分线的性质可证得点O到△ABC的三边距离相等,所以B正确;而三角形三条角平分线的交点到三个顶点的距离不一定相等,所以D错误.故选D.2.如图,△ABC的两条外角平分线AP、CP相交于点P,PH⊥AC于H;如果∠ABC=60º,则下列结论:①∠ABP=30º;②∠APC=60º;③PB=2PH;④∠APH=∠BPC;其中正确的结论个数是()A.1 B.2 C.3 D.4【答案】B【解析】【分析】作PM ⊥BC 于M ,PN ⊥BA 于N .根据角平分线的性质定理可证得PN=PM ,再根据角平分线的判定定理可得PB 平分∠ABC ,即可判定①;证明⊥PAN ⊥⊥PAH ,⊥PCM ⊥⊥PCH ,根据全等三角形的性质可得⊥APN=⊥APH ,⊥CPM=⊥CPH ,由此即可判定②;在Rt ⊥PBN 中,∠PBN=30°,根据30°角直角三角形的性质即可判定③;由⊥BPN=⊥CPA=60°即可判定④.【详解】如图,作PM ⊥BC 于M ,PN ⊥BA 于N .⊥⊥PAH=⊥PAN ,PN ⊥AD ,PH ⊥AC ,⊥PN=PH ,同理PM=PH ,⊥PN=PM ,⊥PB 平分∠ABC ,⊥⊥ABP=12⊥ABC=30°,故①正确, ∵在Rt ⊥PAH 和Rt ⊥PAN 中,PA PA PN PH =⎧⎨=⎩, ⊥⊥PAN ⊥⊥PAH ,同理可证,△PCM ⊥⊥PCH ,⊥⊥APN=⊥APH ,⊥CPM=⊥CPH ,⊥⊥MPN=180°-⊥ABC=120°,⊥⊥APC=12⊥MPN=60°,故②正确,在Rt⊥PBN中,∵∠PBN=30°,⊥PB=2PN=2PH,故③正确,⊥⊥BPN=⊥CPA=60°,⊥⊥CPB=⊥APN=⊥APH,故④正确.综上,正确的结论为①②③④.故选D.【点睛】本题考查了角平分线的性质定理及判定定理、全等三角形的判定与性质及30°角直角三角形的性质,熟练运用相关知识是解决问题的关键.3.如图,AD是△ABC中△BAC的角平分线,DE△AB于点E,S△ABC=9,DE=2,AB=5,则AC长是()A.3 B.4 C.5 D.6【答案】B【解析】如图,作DF⊥AC交AC于点F,∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∴S△ABC=S△ADC+S△ADB=12AC·DF+12AB·DE=12DE(AC+AB)=9,∴12×2×(AC+5)=9,∴AC=4.故选B.点睛:(1)遇到角平分线较常用的一类辅助线的作法是过角平分线上一点向角的两边作垂线.(2)三角形的面积除了用公式法还可以用割补法将三角形的面积用别的形式表示出来,此题将三角形面积表示为两个三角形的面积之和,然后列方程求解.4.若△ABC内一点O到三角形三条边的距离相等,则O为△ABC()的交点.A.角平分线B.高线C.中线D.边的中垂线【答案】A【解析】试题分析:由角平分线性质的逆定理:到角的两边的距离相等的点在角的平分线上,则这个点是三角形三条角平分线的交点,即可确定答案.解:∵到角的两边的距离相等的点在角的平分线上,∴这个点是三角形三条角平分线的交点.故选A.5.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于点D,DE⊥AB于点E,若BD=5cm,DE=3cm,则AC的长为()A.8 cm B.10 cm C.6cm D.16 cm【答案】A【解析】解:⊥AD平分⊥BAC,⊥C=90°,DE⊥AB,⊥CD=DE,⊥BD=5,DE=3,⊥CD=3,⊥AC=BC=CD+DB=3+5=8.故选A.6.如图,在△ABC中,△1=△2,G为AD的中点,BG的延长线交AC 于点E,F为AB上的一点,CF与AD垂直,交AD于点H,则下面判断正确的有()△AD是△ABE的角平分线;△BE是△ABD的边AD上的中线;△CH是△ACD的边AD上的高;△AH是△ACF的角平分线和高A.1个B.2个C.3个D.4个【答案】B【解析】解:①根据三角形的角平分线的概念,知AG是△ABE的角平分线,故此说法错误;②根据三角形的中线的概念,知BG是△ABD的边AD上的中线,故此说法错误;③根据三角形的高的概念,知CH为△ACD的边AD上的高,故此说法正确;④根据三角形的角平分线和高的概念,知AH是△ACF的角平分线和高线,故此说法正确.故选B.点睛:本题考查了三角形的角平分线、三角形的中线、三角形的高的概念,注意:三角形的角平分线、中线、高都是线段,且都是顶点和三角形的某条边相交的交点之间的线段.透彻理解定义是解题的关键.7.如图,BD、CD分别是△ABC的两个外角∠CBE、∠BCF•的平分线,若∠=︒,则∠D的度数是()A70A.40°B.50°C.65°D.55°【答案】D【解析】∵∠A=70°,∴∠ABC+∠ACB=110°,∴∠EBC+∠FCB=360°-110°=250°,∵BD、CD分别平分∠CBE、∠BCF,∴∠DBC=∠DBE,∠DCB=∠DCF,∴∠DBC+∠DCB=125°,∴∠D=55°.故选D.点睛:充分利用三角形的内角和,平角的性质,以及角平分线的性质.8.如图,△1=△2,PD△OA,PE△OB,垂足分别为D,E,下列结论错误的是()A.PD=PE B.OD=OE C.△DPO=△EPO D.PD=OP【答案】D【解析】试题分析:根据角平分线的性质可得:PD=PE,根据题意HL判定定理可得:Rt△POE△Rt△POD,则OD=OE,△DPO=△EPO.考点:角平分线的性质9.若∠α与∠β互为余角,则∠α的补角与∠β的补角之和为( )A.90°B.180°C.270°D.360°【答案】C【解析】∵∠α与∠β互为余角,∴∠α+∠β=90°,∵∠α的补角为180°-∠α,∠β的补角为180°-∠β,∴(180°-∠α)+(180°-∠β)=360°-(∠α+∠β)=360°-90°=270°.故选C.【点睛】这是一道有关余角和补角的题目,需明确余角和补角的含义;由于互补的两角之和为180°,于是可以表示出∠α和∠β的补角,进而得到它们的之和;再根据互余的两角之和为90°得到∠α+∠β=90°,即可求出∠α与∠β的补角之和.10.在ABC △内部取一点P ,使得点P 到ABC △的的三边距离相等,则点P 是ABC △的( ).A .三条高的交点B .三条角平分线的交点C .三条中线的交点D .三边的垂直平凡线的交点【答案】B【解析】如图:PD PF PE ==.故选B .。
人教版八年级数学上册第12单元第3节 第1课时 角平分线的性质 同步练习题(含答案)
12.3 角的平分线的性质一、选择题1.下列说法:①角的内部任意一点到角的两边的距离相等;•②到角的两边距离相等的点在这个角的平分线上;③角的平分线上任意一点到角的两边的距离相等;④△ABC 中∠BAC 的平分线上任意一点到三角形的三边的距离相等,其中正确的( )A .1个B .2个C .3个D .4个2. 已知AD 是△ABC 的角平分线,DE ⊥AB 于E,且DE=3cm,则点D 到AC 的距离是( ) A.2cm; B.3cm; C.4cm; D.6cm3.如图1,已知CE 、CF 分别是△ABC 的内角和外角平分线,•则图中与∠BCE 互余的角有( )A .4个B .3个C .2个D .1个4.如图2,已知点P 到AE 、AD 、BC 的距离相等,则下列说法:①点P 在∠BAC 的平分线上;②点P 在∠CBE 的平分线上;③点P 在∠BCD 的平分线上;④点P 是∠BAC 、∠CBE 、∠BCD 的平分线的交点,其中正确的是( )A .①②③④B .①②③C .④D .②③D CBA EFPDCBAEPDCBA E(1) (2) (3) 二、填空题5.用直尺和圆规平分已知角的依据是______________.6.角的平分线上的点到_______________相等;到___________________________相等的点在这个角的平分线上.7.如图3,AB ∥CD ,AP 、CP 分别平分∠BAC 和∠ACD ,PE ⊥AC 于E ,且PE=•2cm ,则AB 与CD 之间的距离是___________. 三、解题题8.请你画一个角,并用直尺和圆规把这个角两等分.9.如图,四边形ABCD 中AB=AD ,CB=CD ,点P 是对角线AC 上一点,PE ⊥BC 于E ,PF ⊥CD 于F ,求证PE=PF .PDC BAEF10.如图,四边形ABCD 中AB=AD ,AB ⊥BC ,AD ⊥CD ,P 是对角线AC 上一点,•求证:PB=PC .PDCBA参考答案:1.B 2.B 3.C 4.A 5.SSS6.角的两边的距离;角的两边的距离 7.4cm 8.略 9.证明AC 平分∠BCD10.先证Rt△ABC≌Rt△ADC,再证△APB≌△APD。
《123角平分线的性质》同步测试题((有答案))-(新课标人教版数学八年级)AlHKMK
角平分线的性质测试题一、选择题(本大题共11小题,共33.0分)1.如图,AD是的角平分线,,垂足为E,交ED的延长线于点F,若BC恰好平分,给出下列四个结论:;;;,其中正确的结论共有A. 4个B. 3个C. 2个D. 1个2.如图,AD是的角平分线,,,垂足分别为点E、点F,连接EF与AD相交于点O,下列结论不一定成立的是A. B. C.D.3.如图,在中,,,点E在BC的延长线上,的平分线BD与的平分线CD相交于点D,连接AD,则下列结论中,正确的是A. B. C. D.4.如图,在中,,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若,,则的面积是A. 15B. 30C. 45D. 605.为促进旅游发展,某地要在三条公路围成的一块平地上修建一个度假村,如图所示,若要使度假村到三条公路的距离相等,则这个度假村应修建在A. 三角形ABC三条高线的交点处B. 三角形ABC三条角平分线的交点处C. 三角形ABC三条中线的交点处D. 三角形ABC三边垂直平分线的交点处6.如图,,,垂足分别为D、E,且,则与全等的理由是A. SASB. AAAC. SSSD. HL7.如图,OP平分,,垂足为A,,,Q是射线OM上的一个动点,则线段PQ的最小值是A. 10B. 8C. 4D. 68.三条公路将A、B、C三个村庄连成一个如图的三角形区域,如果在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,那么这个集贸市场应建的位置是A. 三条高线的交点B. 三条中线的交点C. 三条角平分线的交点D. 三边垂直平分线的交点9.如图:的两个外角平分线交于点P,则下列结论正确的是平分到AB,BC的距离相等平分.A. B. C. D.10.如图,BD是的平分线,于E,,,,则DE的长是A. 2cmB. 4cmC.D.11.如图,点P为定角的平分线上的一个定点,且与互补,若在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:恒成立;的值不变;四边形PMON的面积不变;的长不变,其中正确的个数为A. 4B. 3C. 2D. 1二、填空题(本大题共11小题,共33.0分)12.如图,,,,若,则______.13.如图,已知于点B,于点C,且,,,则______.14.如图,的三条角平分线交于点O,O到AB的距离为3,且的周长为18,则的面积为______.15.如图,在中,,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于的长为半径画弧,两弧交于点P,作射线AB交边BC于点D,若,,则的面积是______.16.已知:如图,中,,沿过点B的一条直线BE折叠,使点C恰好落在AB边的中点D处,则______ 度17.边长为7,24,25的内有一点P到三边距离相等,则这个距离为______ .18.如图,OC平分,点P是OC上一点,于点M,点N是射线OA上的一个动点,若,则PN的最小值为______.19.如图,在中,,,AD平分,交BC边于点D,若,则的面积为______.20.如图,在中,,BD平分,若,则点D到AB的距离为______ cm.21.随着人们生活水平的不断提高,汽车逐步进入到千家万户,小红的爸爸想在本镇的三条相互交叉的公路如图所示,建一个加油站,要求它到三条公路的距离相等,这样可供选择的地址有______处22.已知OC平分,点P为OC上一点,于D,且,过点P作交OB于E,,求PE的长度______cm.三、计算题(本大题共3小题,共18.0分)23.如图,中,,,E,F分别是BC,AC的中点,若,求线段AB的长.24.如图,等腰梯形ABCD中,,,梯形周长为40,对角线BD平分,求梯形的腰长及两底边的长.25.某私营企业要修建一个加油站,如图,其设计要求是,加油站到两村A、B的距离必须相等,且到两条公路m、n的距离也必须相等,那么加油站应修在什么位置,在图上标出它的位置要有作图痕迹四、解答题(本大题共2小题,共16.0分)26.如图,BD是的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.请判断四边形EBGD的形状,并说明理由;若,,,点H是BD上的一个动点,求的最小值.两直角边分别与OA、OB相交于点C、D,问PC与PD相等吗?试说明理由.答案和解析【答案】1. A2. C3. B4. B5. B6. D7. D8. C9. C10. D11. B12. 413.14. 2715. 3016. 3017. 318. 519. 820. 321. 422. 623. 解:作BH平分交AC于H,连结HE,如图,平分,,,,为等腰三角形,点E为BC的中点,,,,,为的平分线,,,即,.24. 解:四边形ABCD是等腰梯形,,,,又BD平分,,,,又,,,,,,,即梯形腰长为8,两底边长为8和16,答:梯形的腰长是8,两底边的长分别是8,16.25. 解:作图如图,点P即为所求作的点.26. 解:四边形EBGD是菱形.理由:垂直平分BD,,,,,,,在和中,≌ ,,,四边形EBGD是菱形.作于M,于N,连接EC交BD于点H,此时最小,在中,,,,,,,,,,,在中,,,,,,在中,,,.,的最小值为10.27. 解:PC与PD相等理由如下:过点P作于点E,于点F.平分,点P在OM上,,,角平分线上的点到角两边的距离相等又,,四边形OEPF为矩形,,,又,,.在与中,,≌ ,.【解析】1. 解:,,平分,,,,是的角平分线,,,故正确,在与中,,≌ ,,,故正确;,,故正确.故选:A.根据等腰三角形的性质三线合一得到,,故正确;通过 ≌ ,得到,,故正确.本题考查了全等三角形的判定和性质,等腰三角形的性质,平行线的性质,掌握等腰三角形的性质三线合一是解题的关键.2. 解:是的角平分线,,,,,在和中,,≌ ,;是的角平分线,,在和中,,≌ ,;故选C.首先运用角平分线的性质得出,再由HL证明 ≌ ,即可得出;根据SAS 即可证明 ≌ ,即可得到.本题考查了角平分线的性质、全等三角形的判定与性质、等腰三角形的三线合一性质;熟练掌握全等三角形的判定方法是解决问题的关键.3. 解:,,,故A选项错误,平分,,在中,,,故B选项正确;平分,,平分,,,,故C选项错误;,,,故D选项错误.故选:B.根据三角形的内角和定理列式计算即可求出,再根据角平分线的定义求出,然后利用三角形的内角和定理求出,再根据对顶角相等可得,根据邻补角的定义和角平分线的定义求出,再利用三角形的内角和定理列式计算即可,判断出,根据,,即可判定.本题考查了角平分线的性质,三角形的内角和定理,角平分线的定义,熟记定理和概念是解题的关键.4. 解:由题意得AP是的平分线,过点D作于E,又,,的面积.故选:B.判断出AP是的平分线,过点D作于E,根据角平分线上的点到角的两边距离相等可得,然后根据三角形的面积公式列式计算即可得解.本题考查了角平分线上的点到角的两边距离相等的性质以及角平分线的画法,熟记性质是解题的关键.5. 解:度假村在三条公路围成的平地上且到三条公路的距离相等,度假村应该在三条角平分线的交点处.故选B.根据角平分线上的点到角的两边的距离相等的性质解答.本题考查了角平分线上的点到角的两边的距离相等的性质,是基础题,熟记性质是解题的关键.6. 解:,,,在和中,≌ ,故选:D.根据题中的条件可得和是直角三角形,再根据条件,可根据HL定理判定 ≌ .本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、结合已知条件在图形上的位置选择判定方法.7. 解:当时,PQ的值最小,平分,,,,故选D.根据垂线段最短得出当时,PQ的值最小,根据角平分线性质得出,求出即可.本题考查了角平分线性质,垂线段最短的应用,能得出要使PQ最小时Q的位置是解此题的关键.8. 解:在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,根据角平分线的性质,集贸市场应建在、、的角平分线的交点处.故选:C.根据角平分线上的点到角的两边的距离相等解答即可.本题主要考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.9. 解:过点P作与点D,于点E,于点F.平分,CP平分,.点P在的平分线上,P到AB,BC的距离相等.故正确.故选C.根据角平分线上的点到角的两边的距离相等,过点P作与点D,于点E,于点F,则点P在的平分线上.此题考查角平分线的性质:角平分线上的点到角的两边的距离相等;到角的两边距离相等的点在角的平分线上.10. 解:如图,过点D作于F,是的平分线,,,,,,解得.故选D.过点D作于F,根据角平分线上的点到角的两边距离相等可得,然后根据的面积列出方程求解即可.本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.11. 解:如图作于E,于F.,,,,,平分,于E,于F,,在和中,,≌ ,,在和中,,≌ ,,,故正确,,定值,故正确,四边形四边形定值,故正确,MN的长度是变化的,故错误,故选:B.如图作于E,于只要证明 ≌ , ≌ ,即可一一判断.本题考查全等三角形的性质、角平分线的性质定理、四边形的面积等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.12. 解:作于G,如图所示:,,,,,.故答案为:4.作于F,根据角平分线的性质得到EG的长度,再根据平行线的性质得到,然后利用三角形的外角和内角的关系求出,利用角所对的直角边是斜边的一半解题.本题考查了角平分线的性质、平行线的性质、含角的直角三角形的性质;熟练掌握角平分线的性质,证出是解决问题的关键.13. 解:于B,于C,且,是的平分线,,,.故答案为:先根据到角的两边距离相等的点在角的平分线上得到AD是的平分线,求出的度数,再根据三角形的一个外角等于与它不相邻的两个内角的和即可求解.本题考查了角平分线的判定与三角形的一个外角等于与它不相邻的两个内角的和的性质,仔细分析图形是解题的关键.14. 解:作于E,于F,于H,的三条角平分线交于点O,,,,,的面积,故答案为:27.作于E,于F,于H,根据角平分线的性质得到,根据三角形的面积公式计算即可.本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.15. 解:作于E,由基本尺规作图可知,AD是的角平分线,,,,的面积,故答案为:30.根据角平分线的性质得到,根据三角形的面积公式计算即可.本题考查的是角平分线的性质、基本作图,掌握角的平分线上的点到角的两边的距离相等是解题的关键.16. 解:在中,,与重合,,,又点D是AB的中点,,设,,..只要证明,设列出方程即可解决问题.本题考查翻折变换、垂直平分线的性质等知识,解题的关键是灵活运用翻折不变性,学会设未知数列方程解决问题,属于中考常考题型.17. 解:,是直角三角形,根据题意画图,如图所示:连接AP,BP,CP.设,,,则,.故答案为:3.首先根据三边长确定三角形是直角三角形,再根据题意画出图形,连接AP,BP,CP,根据直角三角形的面积公式即可求得该距离的长.此题主要考查了勾股定理逆定理,以及三角形的面积注意构造辅助线,则直角三角形的面积有两种表示方法:一是整体计算,即两条直角边乘积的一半;二是等于三个小三角形的面积和,即,然后即可计算x的值.18. 解:当时,PN的值最小,平分,,,,的最小值为5.故答案为:5.根据垂线段最短可得时,PN最短,再根据角平分线上的点到角的两边的距离相等可得,从而得解.本题考查了角平分线上的点到角的两边的距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.19. 解:作于E,平分,,,,的面积,故答案为:8.作于E,根据角平分线的性质求出DE的长,根据三角形的面积公式计算即可.本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.20. 解:如图,过点D作于E,,BD平分,,,,即点D到AB的距离为3cm.故答案为:3.过点D作于E,根据角平分线上的点到角的两边的距离相等可得,从而得解.本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.21. 解:如图所示,加油站站的地址有四处,故答案为:4.根据角平分线上的点到角的两边的距离相等作出图形即可得解.本题考查了角平分线的性质,掌握角平分线上的点到角的两边的距离相等的性质是解题的关键,作出图形更形象直观.22. 解:过P作于F,,OC平分,,,,,,平分,于D,于F,,,,故答案为:6.过P作于F,根据角平分线的定义可得,根据平行线的性质可得,从而可得,即可得出答案.此题主要考查:含度的直角三角形的性质:在直角三角形中,角所对的直角边等于斜边的一半,角平分线的性质:角的平分线上的点到角的两边的距离相等.23. 作BH平分交AC于H,连结HE,如图,由于,则,于是可判断为等腰三角形,根据等腰三角形的性质得,易得,根据平行线分线段成比例定理得,接着根据角平分线的性质定理得,则,然后把代入计算即可得到.本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例也考查了等腰三角形的判定与性质和角平分线性质.24. 根据等腰梯形性质得到,,根据角平分线性质推出,推出,根据已知梯形的周长求出即可.本题主要考查对等腰梯形的性质,平行线的性质,等腰三角形的性质,角平分线的性质等知识点的理解和掌握,能求出是解此题的关键.25. 连接A、B,作AB的垂直平分线,然后作两条公路m和n夹角的平分线,其交点即为加油站的位置.此题考查学生对角平分线的性质和线段垂直平分线的性质的理解和掌握特别要注意让学生牢记角平分线的性质定理.26. 结论四边形EBGD是菱形只要证明即可.作于M,于N,连接EC交BD于点H,此时最小,在中,求出EM、MC即可解决问题.本题考查平行四边形的判定和性质、菱形的判定和性质、角平分线的性质、垂直平分线的性质、勾股定理等知识,解题的关键是利用对称找到点H的位置,属于中考常考题型.27. 先过点P作于点E,于点F,构造全等三角形:和,这两个三角形已具备两个条件:的角以及,只需再证,根据已知,两个角都等于减去,那么三角形全等就可证.本题考查了角平分线的性质,以及四边形的内角和是、还有三角形全等的判定和性质等知识正确作出辅助线是解答本题的关键.。
人教版八年级数学上册12.3角平分线的性质课时训练(含答案)
人教版八年级数学上册12.3角平分线的性质课时训练(含答案)人教版八年级数学上册12.3 角平分线的性质课时训练一、选择题1. 如图,PD⊥AB,PE⊥AC,垂足分别为D,E,且PD=PE,则△APD与△APE 全等的理由是()A.SAS B.AAA C.SSS D.HL2. 如图,P是∠AOB的平分线OC上一点,PD⊥OA,垂足为D.若PD=2,则点P到边OB的距离是()A.4 B. 3 C.2 D.13. 如图,P为OC上一点,PM⊥OA,PN⊥OB,垂足分别为M,N,PM=PN,∠BOC=30°,则∠AOB的度数为()A.30°B.45°C.60°D.50°4. 下面是黑板上给出的尺规作图题,需要回答横线上符号代表的内容.已知∠AOB.求作:∠AOB的平分线.作法如下:①以点O为圆心,适当长为半径画弧,交OA于点M,交__○__于点N;②分别以点__⊕__为圆心,大于__△__的长为半径画弧,两弧在__?__的内部交于点C;③画射线OC,OC即为所求.则下列回答正确的是()A.○表示OA B.⊕表示M,CC.△表示MN D.?表示∠AOB5. 如图,在直角坐标系中,AD是Rt△OAB的角平分线,点D的坐标是(0,-3),那么点D到AB的距离是()A.3B.-3C.2D.-26. 如图,利用尺规作∠AOB的平分线OC,其作法如下:(1)以点O为圆心,适当长为半径画弧,与OA,OB分别交于点D,E;(2)分别以点D,E为圆心,大于DE的长为半径画弧,两弧在∠AOB的内部交于点C;(3)画射线OC,则射线OC就是∠AOB的平分线.这样作图的原理是三角形全等的一种判定方法,这种判定方法是()A.SSSB.SASC.ASAD.AAS7. 如图,AB∥CD,以点A为圆心,小于AC的长为半径画弧,与AB,AC分别交于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧在∠CAB的内部交于点G,作射线AG交CD于点H.若∠C=140°,则∠AHC 的大小是()A.20°B.25°C.30°D.40°8. 如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D.若CD=4,AB=16,则△ABD的面积是()A.14 B.32 C.42 D.569. 如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC =9,CD=4,则四边形ABCD的面积是()A.24 B.30C.36 D.4210. 如图,AD是△ABC的角平分线,DE⊥AB,AB=6 cm,DE=4 cm,S△ABC=30 cm2,则AC的长为()A.10 cmB.9 cmC.4.5 cmD.3 cm二、填空题11. 如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P到OA的距离为________.12. 如图,在△ABC中,两条外角平分线交于点P,PM⊥AC交AC的延长线于点M.若PM=6 cm,则点P到AB的距离为.13. 将两块完全相同的三角尺在∠AOB的内部如图摆放,两块三角尺较短的直角边分别与∠AOB的两边重合,且含30°角的顶点恰好也重合于点C,则射线OC 即为∠AOB的平分线,理由是______________________.14. 如图,∠B=∠D=90°,根据角平分线的性质填空:(1)若∠1=∠2,则________=________.(2)若∠3=∠4,则________=________.15. 如图,在△ABC中,E为AC的中点,AD平分∠BAC交BC于点D,AB︰AC=2︰3,AD与BE相交于点O.若△OAE的面积比△BOD的面积大1,则△ABC的面积是.三、解答题16. 育新中学校园内有一块直角三角形(Rt△ABC)空地,如图所示,园艺师傅以角平分线AD为界,在其两侧分别种上了不同的花草,在△ABD区域内种植了一串红,在△ACD区域内种植了鸡冠花,并量得两直角边AB=20 m,AC=10 m,分别求一串红与鸡冠花两种花草的种植面积.17. 如图,已知∠1=∠2,BA18. 如图,在∠AOB的两边OA,OB上分别取点D,M和点E,N,使OM=ON,OD=OE,DN和EM相交于点C.求证:点C在∠AOB的平分线上.19. 如图,A,B两点分别在射线OM,ON上,点C在∠MON的内部且CA=CB,CD⊥OM,CE⊥ON,垂足分别为D,E,且AD=BE.(1)求证:OC平分∠MON;(2)如果AO=10,BO=4,求OD的长.20. 如图,在Rt△ABC中,∠ACB=90°,∠B=60°,AD,CE是角平分线,AD 与CE相交于点F,FM⊥AB,FN⊥BC,垂足分别为M,N.求证:FE=FD.人教版八年级数学上册12.3 角平分线的性质课时训练-答案一、选择题1. 【答案】D2. 【答案】C[解析] 如图,过点P作PE⊥OB于点E.∵P是∠AOB的平分线OC上一点,PD⊥OA,PE⊥OB,∴PE=PD=2.3. 【答案】C[解析] ∵点P在OC上,PM⊥OA,PN⊥OB,PM =PN,∴OC是∠AOB的平分线.∵∠BOC=30°,∴∠AOB=60°.4. 【答案】D5. 【答案】A[解析] 如图,过点D作DE⊥AB于点E.∵点D的坐标是(0,-3),∴OD=3.∵AD是△OAB的角平分线,∴ED=OD=3,即点D到AB的距离是3.6. 【答案】A7. 【答案】A[解析] 由题意可得AH平分∠CAB.∵AB∥CD,∴∠C+∠CAB=180°,∠HAB=∠AHC.∵∠ACD=140°,∴∠CAB=40°.∵AH平分∠CAB,∴∠HAB=20°.∴∠AHC=20°.8. 【答案】B[解析] 如图,过点D作DH⊥AB于点H. 由作法得AP平分∠BAC.∵DC⊥AC,DH⊥AB,∴DH=DC=4.∴S△ABD=12×16×4=32.9. 【答案】B[解析] 过点D作DH⊥AB交BA的延长线于点H. ∵BD平分∠ABC,∠BCD=90°,∴DH=CD=4.∴四边形ABCD的面积=S△ABD+S△BCD=12AB·DH+12BC·CD=12×6×4+12×9×4=30.10. 【答案】B[解析] 如图,过点D作DF⊥AC于点F.∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=4.∵AB=6,∴S △ABC =S △ABD +S △ACD =×6×4+AC ×4=30, 解得AC=9(cm).故选B .二、填空题11. 【答案】3 【解析】如解图,过点P 作PD ⊥OA 于点D ,∵OP 为∠AOB 的平分线,PC ⊥OB 于点C ,∴PD =PC ,∵PC =3,∴PD =3,即点P 到点OA 的距离为3.12. 【答案】6 cm[解析] 如图,过点P 作PN ⊥BC 于点N ,PQ ⊥AB 交AB 的延长线于点Q.∵BP ,CP 是两条外角的平分线,PM ⊥AC ,∴PN=PM ,PQ=PN.∴PQ=PM.∵PM=6 cm,∴PQ=6 cm,即点P 到AB 的距离为6 cm .13. 【答案】角的内部到角的两边距离相等的点在角的平分线上14. 【答案】(1)BCCD (2)AB AD15. 【答案】10[解析] 如图,过点D 作DM ⊥AC 于点M ,DN ⊥AB 于点N.∵AD 平分∠BAC,DM ⊥AC ,DN ⊥AB , ∴DM=DN.∵S △ABD ︰S △ADC =BD ︰DC ,且S △ABD =·AB ·DN ,S △ADC =·AC ·DM ,∴BD ∶DC=AB ∶AC=2∶3. 设△ABC 的面积为S ,则S △ADC =S.∵E 为AC 的中点, ∴S △BEC =S.∵△OAE 的面积比△BOD 的面积大1, ∴△ADC 的面积比△BEC 的面积大1. ∴S-S=1.∴S=10.故答案为10.三、解答题16. 【答案】解:如图,过点D 作DE ⊥AB 于点E ,DF ⊥AC 于点F.∵AD 是∠BAC 的平分线,∴DE =DF. ∵AB =20 m ,AC =10 m ,∴S △ABC =12×20×10=12×20·DE +12×10·DF ,解得DE =203(m).∴△ACD 的面积=12×10×203=1003(m 2),△ABD 的面积=12×20×203=2003(m 2).故一串红的种植面积为2003 m 2,鸡冠花的种植面积为1003 m 2.17. 【答案】证明:如图,过点P 作PE ⊥BA 交BA 的延长线于点E.又∵∠1=∠2,PF ⊥BC ,∴PE=PF ,∠PEA=∠PFC=90°. 在Rt △PEA 与Rt △PFC 中,∴Rt △PEA ≌Rt △PFC (HL). ∴∠P AE=∠PCB. ∵∠P AE+∠BAP=180°, ∴∠PCB+∠BAP=180°.18. 【答案】证明:如图,过点C 作CG ⊥OA 于点G ,CF ⊥OB 于点F .在△MOE 和△NOD 中,∴△MOE ≌△NOD (SAS). ∴S △MOE =S △NOD .∴S △MOE -S 四边形ODCE =S △NOD -S 四边形ODCE ,即S △MDC =S △NEC .由三角形面积公式得DM ·CG=EN ·CF .∵OM=ON ,OD=OE ,∴DM=EN.∴CG=CF . 又∵CG ⊥OA ,CF ⊥OB ,∴点C 在∠AOB 的平分线上.19. 【答案】解:(1)证明:∵CD ⊥OM ,CE ⊥ON ,∴∠CDA =∠CEB =90°.在Rt △ACD 与Rt △BCE 中,CA =CB ,AD =BE ,∴Rt △ACD ≌Rt △BCE(HL).∴CD=CE.又∵CD ⊥OM ,CE ⊥ON ,∴OC 平分∠MON. (2)在Rt △ODC 与Rt △OEC 中,CD =CE ,OC =OC ,∴Rt △ODC ≌Rt △OEC. ∴OD =OE. 设BE =x.∵BO =4,∴OE =OD =4+x. ∵AD =BE =x ,∴AO =OD +AD =4+2x =10. ∴x =3.∴OD =4+3=7.20. 【答案】证明:如图,连接BF.∵F 是△ABC 的角平分线AD ,CE 的交点,∴BF 平分∠ABC. ∵FM ⊥AB ,FN ⊥BC ,∴FM =FN ,∠DNF =∠EMF =90°.∵在Rt △ABC 中,∠ACB =90°,∠ABC =60°,∴∠BAC =30°.∵AD 平分∠BAC ,∴∠DAC =12∠BAC =15°. ∴∠CDA =75°.∵CE 平分∠ACB ,∠ACB =90°,∴∠ACE =45°. ∴∠MEF =75°=∠NDF. 在△DNF 和△EMF 中,∠DNF =∠EMF ,∠NDF =∠MEF ,FN =FM ,∴△DNF ≌△EMF(AAS).∴FE =FD.。
人教版_部编版八年级数学上册第十二章第三节角的平分线的性质习题(含答案) (41)
人教版_部编版八年级数学上册第十二章第三节角的平分线的性质考试复习题(含答案)一、单选题1.如图,在△ABC中,∠C=90 ,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB于点E,且AB=6cm,则△DEB的周长是( )A.6cm B.4cm C.10cm D.以上都不对【答案】A【解析】试题分析:∵CA=CB,∵C=90°,AD平分∵CAB,∵∵ACB为等腰直角三角形,BC=AC=AE,∵∵ACD∵∵AED,∵CD=DE,又∵DE∵AB于点E,∵∵EDB为等腰直角三角形,DE=DB=CD,∵∵DEB的周长=DE+EB+DB=CD+DB+EB=CB+EB=AE+EB=AB=6,∵周长为6.故选A.考点:1.全等三角形的判定与性质;2.等腰直角三角形.2.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=8,DE=4,则△BCE的面积等于()A.32 B.16 C.8 D.4【答案】B【解析】【分析】根据角平分线的性质可得:点E到BC的距离为4,则三角形的面积=8×4÷2=16.【详解】解:如图:过E作EF⊥BC于F,∵CD是AB边上的高,BE平分∠ABC,交CD于点E,DE=8,∴DE=EF=4,∵BC=8,∴12×BC×EF=12×8×4=16,故选B.3.在△ABC中,AD是角平分线,DE⊥AB于点E,⊥ABC的面积为15,AB=6,DE=3,则AC的长是()A.8 B.6 C.5 D.4【答案】D试题分析:根据角平分线的性质可得:点D到AB和AC的距离相等,根据题意可得:∵ABD的面积为9,∵ADC的面积为6,则AC的长度=6×2÷3=4.考点:角平分线的性质4.如图,在△ABC中,AD为△BAC的平分线,DE△AB于E,DF△AC于F,△ABC的面积是28cm2,AB=20cm,AC=8cm,则DE的长是()A.4cm B.3cm C.2cm D.1cm【答案】C【解析】试题分析:根据角平分线的性质求出DE=DF,根据三角形的面积公式列式计算即可.∵AD是∵BAC的平分线,DE∵AB于点E,DF∵AC于点F,∵DE=DF,∵×AB×DE+AC×DF=S∵ABC=28,即×20DE+×8DE=28,解得DE=2.考点:角平分线的性质.5.下列说法正确的是()A.三角形三条高的交点都在三角形内B.三角形的角平分线是射线C.三角形三边的垂直平分线不一定交于一点D.三角形三条中线的交点在三角形内【解析】试题分析:根据三角形的角平分线、中线和高的定义及性质进行判断即可.A、锐角三角形的三条高都在三角形内部;直角三角形有两条高与直角边重合,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部.说法错误;B、三角形的角平分线是线段,错误;C、三角形三边的垂直平分线一定交于一点,错误;D、三角形三条中线的交点在三角形内,正确;考点:三角形的角平分线、中线和高.6.如图,OC是△AOB的平分线,PD△DA于点D,PD=2,则P点到OB 的距离是()A.1 B.2 C.3 D.4【答案】B【解析】试题分析:可过点P作PE∵OB,由角平分线的性质可得,PD=PE,进而可得出结论.如图,过点P作PE∵OB,∵OC是∵AOB的平分线,点P在OC上,且PD∵OA,PE∵OB,∵PE=PD,又PD=2,∵PE=PD=2.考点:角平分线的性质.7.如图,OC平分△AOB,点P是射线OC上的一点,PD△OB于点D,且PD=3,动点Q在射线OA上运动,则线段PQ的长度不可能是()A.2 B.3 C.4 D.5【答案】A【解析】试题分析:过点P作PE∵OA于E,根据角平分线上的点到脚的两边距离相等可得PE=PD,再根据垂线段最短解答.解:如图,过点P作PE∵OA于E,∵OC平分∵AOB,PD∵OB,∵PE=PD=3,∵动点Q在射线OA上运动,∵PQ≥3,∵线段PQ的长度不可能是2.故选A.点评:本题考查了角平分线上的点到脚的两边距离相等的性质,垂线段最短的性质,是基础题,熟记性质是解题的关键.8.如图,AB⊥CD,BP和CP分别平分⊥ABC和⊥DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8 B.6 C.4 D.2【答案】C【解析】过点P作PE⊥BC于E,⊥AB⊥CD,PA⊥AB,⊥PD⊥CD,⊥BP和CP分别平分∠ABC和∠DCB,⊥PA=PE,PD=PE,⊥PE=PA=PD,⊥PA+PD=AD=8,⊥PA=PD=4,⊥PE=4.故选C.9.已知∠AOB,求作射线OC,使OC平分∠AOB,那么作法的合理顺序是()①作射线OC;②在射线OA和OB上分别截取OD、OE,使OD=OE;③分别以D、E为圆心,大于12DE的长为半径在∠AOB内作弧,两弧交于点C.A.⊥⊥⊥B.⊥⊥⊥C.⊥⊥⊥D.⊥⊥⊥【答案】C【解析】由题意可知其作图法依据的是,切线的性质,故必须先选择圆心,再求半径,最后作出OC,故其顺序为②③①.故选C.10.如图,在△ABC中,∠C=90°,按以下步骤作图:①以点A为圆心、适当长为半径作圆弧,分别交边AC、AB于点M、N;②分别以点M和点N 为圆心、大于12MN的长为半径作圆弧,在∠BAC内,两弧交于点P;③作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.60【答案】B【解析】解:作DE⊥AB于E,由基本作图可知,AP平分∠CAB.⊥AP平分∠CAB,∠C=90°,DE⊥AB,∴DE=DC=4,∴△ABD的面积=12×AB×DE=30.故选B.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学上12.3角平分线的性质(1)测试(人教版带答
案)
123 角的平分线的性质
第1时角平分线的性质
一、选择题
1 用尺规作已知角的平分线的理论依据是()
A.SAS B.AAS c.SSS D.ASA
2 如图,∠1=∠2,PD⊥A,PE⊥B,垂足分别为 D,E,下列结论错误的是()
A、PD=PE
B、D=E c、∠DP=∠EP D、PD=D
3 如图,Rt△ABc中,∠c=90°,∠ABc的平分线BD交Ac于D,若cD=3c,则点D到AB的距离DE是()
A.5c B .4c c.3c D.2c
4 如图,△ABc中,∠c=90°,Ac=Bc,AD平分∠cAB交Bc于D,DE⊥AB于E,且AB=6㎝,则△DEB的周长为()
A 4㎝
B 6㎝ c 10㎝ D 不能确定
5如图,P平分,,,垂足分别为A,B.下列结论中不一定成立的是()
A B 平分 c D 垂直平分
6如图,AD是△ABc中∠BAc的平分线,DE⊥AB于点E,DF⊥Ac 交Ac于点F.S△ABc =7,DE=2,AB=4,则Ac长是() A.4B.3c.6D.5
7如图,AD是△ABc的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG 和△AED的面积分别为50和39,则△EDF的面积为()
A、11
B、55 c、7D、35
8已知如图,△ABc中,∠c=90,点为△ABc的三条角平分线的交点,D⊥Bc,E⊥Ac,F⊥AB,点D、E、F分别是垂足,且AB=10c,Bc=8c,cA=6c,则点到三边AB、Ac和Bc的距离分别等于()。