2020年南平市高二数学上期中模拟试卷附答案
2020年高二数学上期中一模试题含答案
2020年高二数学上期中一模试题含答案一、选择题1.民间有一种五巧板拼图游戏.这种五巧板(图1)可以说是七巧板的变形,它是由一个正方形分割而成(图2),若在图2所示的正方形中任取一点,则该点取自标号为③和④的巧板的概率为( )A .518B .13C .718D .492.为研究某种细菌在特定环境下,随时间变化的繁殖情况,得到如下实验数据: 天数x (天) 3 4 56 繁殖个数y (千个)2.5344.5由最小二乘法得y 与x 的线性回归方程为ˆˆ0.7yx a =+,则当7x =时,繁殖个数y 的预测值为( ) A .4.9 B .5.25 C .5.95 D .6.153.函数()log a x x f x x=(01a <<)的图象大致形状是( )A .B .C .D .4.在含有3件次品的50件产品中,任取2件,则至少取到1件次品的概率为 ( )A .11347250C C C B .20347250C C C C .1233250C C C +D .1120347347250C C C C C + 5.甲、乙两名射击运动员分别进行了5次射击训练,成绩(单位:环)如下: 甲:7,8,8,8,9 乙:6,6,7,7,10;若甲、乙两名运动员的平均成绩分别用12,x x 表示,方差分别为2212,S S 表示,则( )A .221212,x x s s >> B .221212,x x s s ><C .221212,x x s s << D .221212,x x s s <> 6.AQI 即空气质量指数,AQI 越小,表明空气质量越好,当AQI 不大于100时称空气质量为“优良”.如图是某市3月1日到12日AQI 的统计数据.则下列叙述正确的是( )A .这12天的AQI 的中位数是90B .12天中超过7天空气质量为“优良”C .从3月4日到9日,空气质量越来越好D .这12天的AQI 的平均值为1007.有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为 A .45B .35C .25D .158.执行如图的程序框图,则输出x 的值是 ( )A .2018B .2019C .12D .29.A 地的天气预报显示,A 地在今后的三天中,每一天有强浓雾的概率为30%,现用随机模拟的方法估计这三天中至少有两天有强浓雾的概率,先利用计算器产生09-之间整数值的随机数,并用0,1,2,3,4,5,6表示没有强浓雾,用7,8,9表示有强浓雾,再以每3个随机数作为一组,代表三天的天气情况,产生了如下20组随机数:402978191925273842812479569683 231357394027506588730113537779则这三天中至少有两天有强浓雾的概率近似为()A.14B.25C.710D.1510.某高校大一新生中,来自东部地区的学生有2400人、中部地区学生有1600人、西部地区学生有1000人.从中选取100人作样本调研饮食习惯,为保证调研结果相对准确,下列判断正确的有()①用分层抽样的方法分别抽取东部地区学生48人、中部地区学生32人、西部地区学生20人;②用简单随机抽样的方法从新生中选出100人;③西部地区学生小刘被选中的概率为150;④中部地区学生小张被选中的概率为15000A.①④B.①③C.②④D.②③11.已知平面区域()2,4yx yy x⎧⎫≥⎧⎪⎪⎪Ω=⎨⎨⎬≤-⎪⎪⎪⎩⎩⎭,直线2y mx m=+和曲线24y x=-有两个不的交点,它们围成的平面区域为M,向区域Ω上随机投一点A,点A落在区域M内的概率为()P M.若01m≤≤,则()P M的取值范围为()A.22,π-⎛⎤⎥π⎝⎦B.22,π+⎛⎤⎥π⎝⎦C.212,π+⎡⎤⎢⎥π⎣⎦D.212,π-⎡⎤⎢⎥π⎣⎦12.已知P是△ABC所在平面内﹣点,20PB PC PA++=u u u r u u u r u u u r r,现将一粒黄豆随机撒在△ABC 内,则黄豆落在△PBC内的概率是()A.23B.12C.13D.14二、填空题13.在区间[-3,5]上随机取一个实数x,则事件“11422x≤≤()”发生的概率为____________.14.某校连续5天对同学们穿校服的情况进行统计,没有穿校服的人数用茎叶图表示,如图,若该组数据的平均数为18,则x=_____________.15.在可行域103x yx yx--≤⎧⎪+≤⎨⎪>⎩,内任取一点(),M x y,则满足20x y->的概率是______.16.某校高一年级有600个学生,高二年级有550个学生,高三年级有650个学生,为调查学生的视力情况,用分层抽样的方法抽取一个样本,若在高二、高三共抽取了48个学生,则应在高一年级抽取学生______个17.执行如图所示的程序框图,则输出S 的结果为________.18.某商家观察发现某种商品的销售量x 与气温y 呈线性相关关系,其中组样本数据如下表:已知该回归直线方程为ˆˆ1.02yx a =+,则实数ˆa =__________. 19.正四面体的4个面上分别写着1、2、3、4,将3个这样均匀的正四面体同时投掷于桌面上,与桌面接触的3个面上的3个数的乘积能被4整除的概率是_____________.20.已知方程0.85 2.1ˆ87yx =-是根据女大学生的身高预报其体重的回归方程, ˆ,x y 的单位是cm 和kg ,则针对某个体()160,53的残差是__________.三、解答题21.国家公安机关为给居民带来全方位的安全感,大力开展智慧警务社区建设.智慧警务建设让警务更智慧,让民生更便利,让社区更安全.下表是某公安分局在建设智慧警务社区活动中所记录的七个月内的该管辖社区的违法事件统计数据: 月份 1 2 3 4 5 6 7 违法案件数196101663421116根据以上数据,绘制了如图所示的散点图.(1)根据散点图判断,用y a bx =+与(0,01)xy c d b d =⋅<<<哪一个更适宜作为违法案件数y 关于月份x 的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)中的判断结果及表中所给数据,求y 关于x 的回归方程(保留两位有效数字),并预测第8个月该社区出现的违法案件数(取整数). 参考数据:其中i i v lgy =,7117i i v v ==∑.参考公式:对一组数据()11,u v ,()22,u v ,…,(),n n u v ,其回归直线的斜率和截距的最小二乘估计公式分别为:µ1221ni i i ni i u v nuvu nuβ==-=-∑∑,µµv u αβ=-. 22.为了调查某大学学生在周日上网的时间,随机对100名男生和100名女生进行了不记名的问卷调查,得到了如下的统计结果: 表1:男生上网时间与频数分布表:表2:女生上网时间与频数分布表: (1)若该大学共有女生750人,试估计其中上网时间不少于60分钟的人数;(2)完成表3的22⨯列联表,并回答能否有90%的把握认为“学生周日上网时间与性别有关”?(3)从表3的男生中“上网时间少于60分钟”和“上网时间不少于60分钟”的人数中用分层抽样的方法抽取一个容量为5的样本,再从中任取两人,求至少有一人上网时间超过60分钟的概率.表3:合计附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++,()20P K k ≥ 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 0k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.82823.每年七月份,我国J 地区有25天左右的降雨时间,如图是J 地区S 镇2000-2018年降雨量(单位:mm )的频率分布直方图,试用样本频率估计总体概率,解答下列问题:(1)假设每年的降雨天气相互独立,求S 镇未来三年里至少有两年的降雨量超过350mm 的概率;(2)在S 镇承包了20亩土地种植水果的老李过去种植的甲品种水果,平均每年的总利润为31.1万元.而乙品种水果的亩产量m (kg/亩)与降雨量之间的关系如下面统计表所示,又知乙品种水果的单位利润为32-0.01×m(元/kg ),请帮助老李排解忧愁,他来年应该种植哪个品种的水果可以使利润ξ(万元)的期望更大?(需说明理由); 降雨量[100,200)[200,300)[300,400)[400,500)亩产量 500 700 600 40024.某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.分数段[50,60)[60,70)[70,80)[80,90)x∶y1∶12∶13∶44∶525.随着“互联网+交通”模式的迅猛发展,“共享助力单车”在很多城市相继出现.某“共享助力单车”运营公司为了解某地区用户对该公司所提供的服务的满意度,随机调查了100名用户,得到用户的满意度评分,现将评分分为5组,如下表:组别一二三四五满意度评分[0,2)[2,4)[4,6)[6,8)[8,10]频数510a3216频率0.05b0.37c0.16(1)求表格中的a,b,c的值;(2)估计用户的满意度评分的平均数;(3)若从这100名用户中随机抽取25人,估计满意度评分低于6分的人数为多少?26.为了研究“教学方式”对教学质量的影响,某高中老师分别用两种不同的教学方式对入学数学平均分数和优秀率都相同的甲、乙两个高一新班进行教学(勤奋程度和自觉性都一样).以下茎叶图为甲、乙两班(每班均为20人)学生的数学期末考试成绩.(1)现从甲班数学成绩不低于80分的同学中随机抽取两名同学,求成绩为87分的同学至少有一名被抽中的概率;(2)学校规定:成绩不低于75分的为优秀.请填写下面的2×2列联表,并判断有多大把握认为“成绩优秀与教学方式有关”.甲班 乙班 合计优秀不优秀合计参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++参考数据:()20P K k ≥0.050 0.010 0.0010k3.841 6.635 10.828【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】分别求出③和④的巧板的面积,根据几何概型的概率关系转化为面积比. 【详解】设巧板①的边长为1,则结合图2可知大正方形的边长为3, 其面积239S ==.其中巧板③是底边长为2的等腰直角三角形,其面积为112112S =⨯⨯=的正方形 与腰长为1的等腰直角三角形的组合图形,其面积为22151122S ⨯⨯+==,故所求的概率12718S S P S +==. 故选:C . 【点睛】本题考查几何概型的概率求法,转化为面积比,属于中档题 .2.B解析:B 【解析】 【分析】根据表格中的数据,求得样本中心为97(,)22,代入回归直线方程,求得ˆ0.35a =,得到回归直线的方程为ˆ0.70.35yx =+,即可作出预测,得到答案. 【详解】由题意,根据表格中的数据,可得34569 2.534 4.57,4242x y ++++++====, 即样本中心为97(,)22,代入回归直线方程ˆˆ0.7yx a =+,即79ˆ0.722a=⨯+, 解得ˆ0.35a=,即回归直线的方程为ˆ0.70.35y x =+, 当7x =时,ˆ0.770.35 5.25y=⨯+=,故选B .【点睛】本题主要考查了回归直线方程的应用,其中解答中熟记回归直线方程的特征,求得回归直线的方程是解答的关键,着重考查了运算与求解能力,属于基础题.3.C解析:C【解析】【分析】确定函数是奇函数,图象关于原点对称,x>0时,f(x)=log a x(0<a<1)是单调减函数,即可得出结论.【详解】由题意,f(﹣x)=﹣f(x),所以函数是奇函数,图象关于原点对称,排除B、D;x>0时,f(x)=log a x(0<a<1)是单调减函数,排除A.故选C.【点睛】本题考查函数的图象,考查函数的奇偶性、单调性,正确分析函数的性质是关键.4.D解析:D【解析】【分析】由题意,恰好两件都是次品,共有23C种不同的取法,恰好两件中一件是次品、一件是正品,共有11347C C种不同的取法,即可求解.【详解】由题意,从含有3件次品的50件产品中,任取2件,共有250C种不同的取法,恰好两件都是次品,共有20347C C种不同的取法,恰好两件中一件是次品、一件是正品,共有11347C C种不同的取法,所以至少取到1件次品的概率为1120347347250C C C CC+,故选D.【点睛】本题主要考查了古典概型及其概率的计算,其中解答中正确理解题意,合理分类讨论,利用组合数的公式是解答的关键,着重考查了分类讨论思想,以及推理与运算能力,属于基础题.5.B解析:B【解析】【分析】计算18x=,27.2x=,210.4s=,222.16s=得到答案.【详解】17888985x ++++==,26677107.25x ++++==,故12x x >.()()()()()222222178888888980.45s -+-+-+-+-==;()()()()()222222267.267.277.277.2107.2 2.165s -+-+-+-+-==,故2212s s <.故选:B. 【点睛】本题考查了平均值和方差的计算,意在考查学生的计算能力和观察能力.6.C解析:C 【解析】这12天的AQI 指数值的中位数是959293.52+= ,故A 不正确;这12天中,空气质量为“优良”的有95,85,77,67,72,92共6天,故B 不正确;;从4日到9日,空气质量越来越好,,故C 正确;这12天的AQI 指数值的平均值为110,故D 不正确. 故选 C .7.C解析:C 【解析】选取两支彩笔的方法有25C 种,含有红色彩笔的选法为14C 种,由古典概型公式,满足题意的概率值为142542105C p C ===. 本题选择C 选项. 考点:古典概型名师点睛:对于古典概型问题主要把握基本事件的种数和符合要求的事件种数,基本事件的种数要注意区别是排列问题还是组合问题,看抽取时是有、无顺序,本题从这5支彩笔中任取2支不同颜色的彩笔,是组合问题,当然简单问题建议采取列举法更直观一些.8.D解析:D 【解析】 【分析】模拟执行程序框图,依次写出每次循环得到的x ,y 的值,当2019y = 时,不满足条件退出循环,输出x 的值即可得解. 【详解】解:模拟执行程序框图,可得2,0x y ==.满足条件2019y <,执行循环体,1,1x y =-=;满足条件2019y <,执行循环体,1,22x y == ; 满足条件2019y <,执行循环体,2,3x y ==;满足条件2019y <,执行循环体,1,4x y =-= ; …观察规律可知,x 的取值周期为3,由于20196733⨯=,可得: 满足条件2019y <,执行循环体,当2,2019x y == ,不满足条件2019y <,退出循环,输出x 的值为2. 故选D . 【点睛】本题主要考查了循环结构的程序框图,依次写出每次循环得到的x ,y 的值,根据循环的周期,得到跳出循环时x 的值是解题的关键.9.D解析:D 【解析】 【分析】由题意知模拟这三天中至少有两天有强浓雾的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示三天中恰有两天有强浓雾的有可以通过列举得到共4组随机数,根据概率公式,得到结果. 【详解】由题意知模拟这三天中至少有两天有强浓雾的结果,经随机模拟产生了如下20组随机数, 在20组随机数中表示三天中恰有两天有强浓雾的有,可以通过列举得到共5组随机数:978,479、588、779,共4组随机数, 所求概率为41205=, 故选D . 【点睛】本题考查模拟方法估计概率,解题主要依据是等可能事件的概率,注意列举法在本题的应用.10.B解析:B 【解析】分析:由题意逐一考查所给的说法是否正确即可. 详解:逐一考查所给的说法:①由分层抽样的概念可知,取东部地区学生2400100240016001000⨯=++48人、中部地区学生1600100240016001000⨯=++32人、西部地区学生1000100240016001000⨯=++20人,题中的说法正确;②新生的人数较多,不适合用简单随机抽样的方法抽取人数,题中的说法错误;③西部地区学生小刘被选中的概率为100124001600100050=++,题中的说法正确;④中部地区学生小张被选中的概率为100124001600100050=++,题中的说法错误;综上可得,正确的说法是①③.本题选择B选项.点睛:本题主要考查分层抽样的概念,简单随机抽样的特征,古典概型概率公式等知识,意在考查学生的转化能力和计算求解能力.11.D解析:D【解析】【分析】判断平面区域,利用特殊值法排除选项,然后利用特殊法,即可求解相应概率的范围,得到答案.【详解】由题意知,平面区域()2,4yx yy x⎧⎫≥⎧⎪⎪Ω=⎨⎨⎬≤-⎪⎪⎪⎩⎩⎭,表示的图形是半圆是半圆以及内部点的集合,如图所示,又由直线2y mx m=+过半圆24y x=-上一点(2,0)-,当0m=时直线与x轴重合,此时()1P M=,故可排除,A B,若1m=,如图所示,可求得2()2P Mππ-=,所以()P M的取值范围为212,π-⎡⎤⎢⎥π⎣⎦.【点睛】本题主要考查了集合概型的应用,其中解答中判断平面区域,利用特殊值法排除选项,然后利用特殊法,求解相应概率的范围是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.12.B解析:B 【解析】 【分析】推导出点P 到BC 的距离等于A 到BC 的距离的12.从而S △PBC =12S △ABC .由此能求出将一粒黄豆随机撒在△ABC 内,黄豆落在△PBC 内的概率. 【详解】以PB 、PC 为邻边作平行四边形PBDC ,则PB PC +u u u r u u u r =PD u u u r , ∵20PB PC PA ++=u u u r u u u r u u u r r ,∴2PB PC PA +=-u u u r u u u r u u u r , ∴2PD PA =-u u u r u u u r,∴P 是△ABC 边BC 上的中线AO 的中点,∴点P 到BC 的距离等于A 到BC 的距离的12.∴S △PBC =12S △ABC .∴将一粒黄豆随机撒在△ABC 内,黄豆落在△PBC 内的概率为:P=PBC ABC S S V V =12. 故选B . 【点睛】本题考查概率的求法,考查几何概型等基础知识,考运算求解能力,考查化归与转化思想、函数与方程思想,考查创新意识、应用意识,是中档题.二、填空题13.【解析】【分析】解不等式可得出所求事件的区域长度又可求出所有基本事件构成的区域长度由几何概型可求出概率【详解】设事件表示由得则即构成事件的区域的长度为又因为所有的基本事件构成的区域的长度为所以事件的 解析:38【解析】 【分析】解不等式11422x⎛⎫≤≤ ⎪⎝⎭,可得出所求事件的区域长度,又可求出所有基本事件构成的区域长度,由几何概型可求出概率. 【详解】设事件A 表示11|422xx ⎧⎫⎪⎪⎛⎫≤≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,由11422x ⎛⎫≤≤ ⎪⎝⎭得2111222x -⎛⎫⎛⎫≤≤ ⎪ ⎪⎝⎭⎝⎭,则21x -≤≤, 即构成事件A 的区域的长度为12=3+.又因为所有的基本事件构成的区域的长度为53=8+, 所以事件A 的概率3()8P A =. 故答案为38.【点睛】本题考查了几何概型的概率公式,属基础题.14.8【解析】【分析】根据茎叶图计算平均数【详解】由茎叶图得【点睛】本题考查茎叶图以及平均数考查基本运算能力属基础题解析:8 【解析】 【分析】根据茎叶图计算平均数. 【详解】 由茎叶图得1617101920188.5x x +++++=∴=【点睛】本题考查茎叶图以及平均数,考查基本运算能力,属基础题.15.【解析】【分析】画出可行域求出面积满足的区域为图形中的红色直线的下方的四边形其面积为由几何概型的公式可得的概率为:;【详解】约束条件的可行域如图:由解得可行域d 面积为由解得满足的区域为图形中的红色直解析:58【解析】 【分析】画出可行域,求出面积,满足20x y ->的区域为图形中的红色直线的下方的四边形,其面积为1541322-⨯⨯=,由几何概型的公式可得20x y ->的概率为:55248=;【详解】约束条件1030x y x y x --≤⎧⎪+≤⎨⎪>⎩的可行域如图:由103x y x y --=⎧+=⎨⎩解得()2,1A , 可行域d 面积为12442⨯⨯=, 由32x y y x +=⎧=⎨⎩,解得()1.2B . 满足20x y ->的区域为图形中的红色直线的下方的四边形,其面积为1541322-⨯⨯=, 由几何概型的公式可得20x y ->的概率为:55248=;故答案为58.【点睛】本题考查了可行域的画法以及几何概型的概率公式的运用.考查数形结合以及计算能力.在利用几何概型的概率公式来求其概率时,几何“测度”可以是长度、面积、体积、角度等,其中对于几何度量为长度,面积、体积时的等可能性主要体现在点落在区域Ω上任置都是等可能的,而对于角度而言,则是过角的顶点的一条射线落在Ω的区域(事实也是角)任一位置是等可能的.16.24【解析】【分析】设应在高一年级抽取学生数为n 首先求出高一年级人数占总人数的百分比然后通过分层抽样的性质由此能求出应在高一年级抽取学生数【详解】设应在高一年级抽取学生数为n 因为某校高一年级有600解析:24 【解析】 【分析】设应在高一年级抽取学生数为,首先求出高一年级人数占总人数的百分比,然后通过分层抽样的性质,由此能求出应在高一年级抽取学生数。
2020年高二数学上期中一模试卷及答案
2020年高二数学上期中一模试卷及答案一、选择题1.一组数据的平均数为m ,方差为n ,将这组数据的每个数都乘以()0a a >得到一组新数据,则下列说法正确的是( ) A .这组新数据的平均数为m B .这组新数据的平均数为a m +C .这组新数据的方差为anD .这组新数据的标准差为2.从区间[]0,2随机抽取4n 个数1232,,,...,n x x x x ,1232,,,...,n y y y y 构成2n 个数对()11,x y ,()22,x y ,…,()22,n n x y ,其中两数的平方和小于4的数对有m 个,则用随机模拟的方法得到的圆周率疋的近似值为( ) A .2m nB .2mnC .4m nD .16m n3.在去年的足球甲A 联赛上,一队每场比赛平均失球数是1.5,全年比赛失球个数的标准差为1.1;二队每场比赛平均失球数是2.1,全年失球个数的标准差是0.4,你认为下列说法中正确的个数有( )①平均来说一队比二队防守技术好;②二队比一队防守技术水平更稳定;③一队防守有时表现很差,有时表现又非常好;④二队很少不失球. A .1个B .2个C .3个D .4个4.某商场为了了解毛衣的月销售量y (件)与月平均气温x (C ︒)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:由表中数据算出线性回归方程y bx a =+$$$中的2b =-$,气象部门预测下个月的平均气温为6C ︒,据此估计该商场下个月毛衣销售量约为( )A .58件B .40件C .38件D .46件5.从一批产品中取出三件产品,设事件A 为“三件产品全不是次品”,事件B 为“三件产品全是次品”,事件C 为“三件产品不全是次品”,则下列结论正确的是( ) A .事件A 与C 互斥 B .事件B 与C 互斥 C .任何两个事件均互斥D .任何两个事件均不互斥6.执行如图所示的程序框图,则输出的n 值是( )A .5B .7C .9D .117.从甲、乙、丙三人中任选两名代表,甲被选中的概率是( ) . A .12B .13C .23 D .18.将一颗骰子掷两次,观察出现的点数,并记第一次出现的点数为m ,第二次出现的点数为n ,向量p u v =(m ,n),q v =(3,6).则向量p u v与q v共线的概率为( ) A .13B .14C .16D .1129.我国古代名著《庄子g 天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是( )A .17?,,+1i s s i i i≤=-= B .1128?,,2i s s i i i≤=-= C .17?,,+12i s s i i i ≤=-= D .1128?,,22i s s i i i≤=-= 10.某高校大一新生中,来自东部地区的学生有2400人、中部地区学生有1600人、西部地区学生有1000人.从中选取100人作样本调研饮食习惯,为保证调研结果相对准确,下列判断正确的有( )①用分层抽样的方法分别抽取东部地区学生48人、中部地区学生32人、西部地区学生20人;②用简单随机抽样的方法从新生中选出100人; ③西部地区学生小刘被选中的概率为150; ④中部地区学生小张被选中的概率为15000A .①④B .①③C .②④D .②③11.同时掷三枚硬币,至少有1枚正面向上的概率是( ) A .78B .58C .38D .1812.运行如图所示的程序框图,若输出S 的值为129,则判断框内可填入的条件是( )A .4?k <B .5?k <C .6?k <D .7?k <二、填空题13.在5张卡片上分别写有数字1,2,3,4,5,然后将它们混合,再任意排列成一行,则得到的数能被2或5整除的概率是___________.14.执行如图所示的程序框图,则输出的m 的值为____.15.甲乙两人一起去游“西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是________.16.如左下图是一次数学考试成绩的样本频率分布直方图(样本容量n=200),若成绩不低于60分为及格,则样本中的及格人数是_________。
2020年高二数学第一学期期中考试模拟试卷附答案(一)
2020年高二数学第一学期期中考试模拟试卷(一)(文科)(考试时间120分钟满分150分)一.单项选择题(本大题共12小题,每小题5分,满分60分)1.若直线的倾斜角为120°,则直线的斜率为()A.B.C.D.2.设m,n是自然数,条件甲:m3+n3是偶数;条件乙:m﹣n是偶数,则甲是乙的()A.充分不必要条件B.必要不充分条件C.充分且必要条件D.既不充分也不必要条件3.点P(a,3)到直线4x﹣3y+1=0的距离等于4,则P点的坐标是()A.(7,3)B.(3,3)C.(7,3)或(﹣3,3)D.(﹣7,3)或(3,3)4.如图,正方体ABCD﹣A1B1C1D1中,E,F分别为棱A1B1,BB1的中点,则D1E与CF的延长线交于一点,此点在直线()A.AD上B.B1C1上C.A1D1上D.BC上5.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的左视图()A.B.C.D.6.已知轴截面是正方形的圆柱的高与球的直径相等,则圆柱的全面积与球的表面积的比是()A.6:5 B.5:4 C.4:3 D.3:27.设l、m、n表示不同的直线,α、β、γ表示不同的平面,给出下列4个命题:①若m∥l,且m⊥α,则l⊥α;②若m∥l,且m∥α,则l∥α;③若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n;④若α∩β=m,β∩γ=l,α∩γ=n,且n∥β,则m∥l.其中正确命题的个数是()A.1 B.2 C.3 D.48.在圆x2+y2﹣2x﹣6y=0内,过点E(0,1)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()A.B.C.D.9.直线x﹣y+m=0与圆x2+y2+2y﹣1=0有两个不同交点的一个必要而不充分条件是()A.﹣3<m<1 B.﹣2<m<0 C.﹣4<m<2 D.﹣2<m<110.如图,下列四个正方体图形中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB∥平面MNP的图形序号是()A.①②B.③④C.②③D.①④11.已知正方体ABCD﹣A1B1C1D1,过A1点可作条直线与直线AC和BC1都成60°角()A.1 B.2 C.3 D.412.在矩形ABCD中,AB=4,BC=3,沿AC将矩形ABCD折成一个直二面角B﹣AC ﹣D,则四面体ABCD的外接球的体积为()A.πB.πC.πD.π二.填空题(每小题5分,共20分)13.命题“若实数a满足a≤2,则a2<4”的否命题是命题(填“真”、“假”之一).14.对于一个底边在x轴上的正三角形ABC,边长AB=2,采用斜二测画法做出其直观图,则其直观图的面积是.15.一条直线经过P(1,2),且与A(2,3)、B(4,﹣5)距离相等,则直线l为.16.一个等腰直角三角形的顶点分别在底边长为4的正三棱柱的三条侧棱上,则此直角三角形的斜边长是.三.解答题(本大题共6小题,满分70分,第17题10分,其余各题每题12分.解答应写出文字说明,证明过程或演算步骤)17.已知两直线l1:ax﹣by+4=0,l2:(a﹣1)x+y+b=0,分别求满足下列条件的a,b 值(1)l1⊥l2,且直线l1过点(﹣3,﹣1);(2)l1∥l2,且直线l1在两坐标轴上的截距相等.18.如图,在四棱锥P﹣ABCD中,底面ABCD是边长为2的正方形,侧面PAD⊥底面ABCD,且PA=PD=AD,E、F分别为PC、BD的中点.(1)求证:EF∥平面PAD;(2)求证:面PAB⊥平面PDC.19.已知圆M:x2+y2﹣4y+3=0,Q是x轴上动点,QA、QB分别切圆M于A、B两点,(1)若|AB|=,求直线MQ的方程;(2)求四边形QAMB面积的最小值.20.已知△ABC三边所在直线方程为AB:3x+4y+12=0,BC:4x﹣3y+16=0,CA:2x+y ﹣2=0,求:(1)∠ABC的平分线所在的直线方程;(2)AB与AC边上的中位线所在直线方程.21.已知三棱柱ABC﹣A′B′C′中,面BCC′B′⊥底面ABC,BB′⊥AC,底面ABC是边长为2的等边三角形,AA′=3,E,F分别在棱AA′,CC′上,且AE=C′F=2.(Ⅰ)求证:BB′⊥底面ABC;(Ⅱ)在棱A′B′上找一点M,使得C′M∥面BEF,并给出证明.22.已知圆C:x2+(y﹣3)2=4,一动直线l过A(﹣1,0)与圆C相交于P、Q两点,M是PQ中点,l与直线m:x+3y+6=0相交于N.(Ⅰ)求证:当l与m垂直时,l必过圆心C;(Ⅱ)当时,求直线l的方程;(Ⅲ)探索是否与直线l的倾斜角有关,若无关,请求出其值;若有关,请说明理由.参考答案一.单项选择题1.B 2.C 3.C.4.B.5.D.6.D.7.B.8.B.9.C 10.D.11.C.12.C.二.填空题13.解:命题的否命题为:“若实数a满足a>2,则a2≥4”∵a>2∴a2>4∴a2≥4∴否命题为真命题故答案为:真14.解:如图所示,A′B′=AB=2,O′C′==,作C′D′⊥x′,则C′D′==.∴其直观图的面积===.故答案为:.15.解:①当所求直线与AB平行时,k AB==﹣4,可得y﹣2=﹣4(x﹣1),化为4x+y﹣6=0;②当所求直线经过线段AB的中点M(3,﹣1)时,k==﹣,可得y﹣2=﹣(x ﹣1),化为3x+2y﹣7=0.综上可得所求直线方程为:4x+y﹣6=0;或3x+2y﹣7=0.故答案为:4x+y﹣6=0;或3x+2y﹣7=0.16.解:如图,正三棱柱ABC﹣A1B1C1中,△ABC为正三角形,边长为4,△DEF为等腰直角三角形,DF为斜边,设DF长为x,则DE=EF=,作DG⊥BB1,HG⊥CC1,EI⊥CC1,则EG==,FI==,FH=FI+HI=FI+EG=2,在Rt△DHF中,DF2=DH2+FH2,即x2=16+(2)2,解得x=4.即该三角形的斜边长为4.故答案为:4.三.解答题17.解:(1)∵两直线l1:ax﹣by+4=0,l2:(a﹣1)x+y+b=0且l1⊥l2,∴a(a﹣1)+(﹣b)×1=0,即a2﹣a﹣b=0,又∵直线l1过点(﹣3,﹣1),∴﹣3a+b+4=0,联立解得a=2,b=2;(2)由l1∥l2可得a×1﹣(﹣b)(a﹣1)=0,即a+ab﹣b=0,在方程ax﹣by+4=0中令x=0可得y=,令y=0可得x=﹣,∴=﹣,即b=﹣a,联立解得a=2,b=﹣2.18.证明:(1)连接AC,由正方形性质可知,AC与BD相交于BD的中点F,F也为AC中点,E为PC中点.所以在△CPA中,EF∥PA,又PA⊂平面PAD,EF⊄平面PAD,所以EF∥平面PAD;(2)平面PAD⊥平面ABCD平面PAD∩面ABCD=AD⇒CD⊥平面PAD⇒CD⊥PA正方形ABCD中CD⊥ADPA⊂平面PADCD⊂平面ABCD又,所以PA2+PD2=AD2所以△PAD是等腰直角三角形,且,即PA⊥PD.因为CD∩PD=D,且CD、PD⊂面PDC所以PA⊥面PDC又PA⊂面PAB,所以面PAB⊥面PDC.19.解:(1)圆M:x2+y2﹣4y+3=0,即x2+(y﹣2)2=1,圆心M(0,2),半径r=1.由+MN2=r2=1,求得:MN=.由BM2=MNMQ,求得MQ=3.设Q(x0,0),则=3,即x0=±.所以直线MQ的方程为2x+y﹣2=0 或2x﹣y+2=0.(2)易知,当MQ取得最短时,四边形QAMB面积的最小值,即Q与O重合,此时,QA=,即四边形QAMB面积的最小值为1×=.20.解:(1)由求得,可得点B的坐标为(﹣4,0).设∠ABC的内角平分线所在直线的斜率为k,则=,即=.求得k=,或k=﹣7.由题意可得,∠ABC的内角平分线所在直线的斜率k应在BA、BC的斜率之间,故取k=,故∠ABC的平分线所在的直线方程为y﹣0=(x+4),即x﹣7y+4=0.(2)由,求得,可得点A的坐标为(4,﹣6),故线段AB的中点D的坐标为(0,﹣3),再根据AB与AC边上的中位线所在直线的斜率等于BC的斜率,故AB与AC边上的中位线所在直线方程为y+3=(x﹣0),即4x﹣3y﹣9=0.21.(Ⅰ)证明:取BC中点O,因为三角形ABC是等边三角形,所以AO⊥BC,又因为面BCC'B'⊥底面ABC,AO⊂面ABC,面BCC'B'∩面ABC=BC,所以AO⊥面BCC'B',又BB'⊂面BCC'B',所以AO⊥BB'.又BB'⊥AC,AO∩AC=A,AO⊂面ABC,AC⊂面ABC,所以BB'⊥底面ABC.(Ⅱ)显然M不是A',B',当M为A'B'的中点,使得C'M∥面BEF.证明:过M作MN∥AA'交BE于N,则N为中点,则MN=(A'E+B'B)=2,则MN=C'F,MN∥C'F,所以四边形C'MNF为平行四边形,所以C'M∥FN,C'M⊄平面BEF,NF⊂平面BEF,所以C'M∥面BEF.22.解:(Ⅰ)∵直线l与直线m垂直,且,∴k l=3,又k AC=3,所以当直线l与m垂直时,直线l必过圆心C;(Ⅱ)①当直线l与x轴垂直时,易知x=﹣1符合题意,②当直线l与x轴不垂直时,设直线l的方程为y=k(x+1),即kx﹣y+k=0,因为,所以,则由CM==1,得,∴直线l:4x﹣3y+4=0.从而所求的直线l的方程为x=﹣1或4x﹣3y+4=0;(Ⅲ)因为CM⊥MN,∴,当直线l与x轴垂直时,易得,则,又,∴,当直线l的斜率存在时,设直线l的方程为y=k(x+1),则由,得N(,),则,∴=,综上,与直线l的斜率无关,且.。
最新版2019-2020年福建省重点高中高二上学期期中考试数学(理)模拟试题及答案-精编试题
上学期期中模拟考试高二理科数学试卷一、选择题(本大题共12小题,每小题5分,合计60分,答案用2B铅笔在机读答题卡上填涂。
)1.已知命题p:∀x∈R,x>sinx,则p的否定形式为A.p⌝:∃x∈R,x<sinx B.p⌝:∀x∈R,x≤sinxC.p⌝:∃x∈R,x≤sinx D.p⌝:∀x∈R,x<sinx2.方程(x-y)2+(xy-1)2=0表示的是A.一条直线和一条双曲线B.两条双曲线C.两个点D.以上答案都不对3.对于给定的两个变量的统计数据,下列说法正确的是A.都可以分析出两个变量的关系B.都可以用一条直线近似地表示两者的关系C.都可以作出散点图D.都可以用确定的表达式表示两者的关系4. 口袋中有100个大小相同的红球、白球、黑球,其中红球45个,从口袋中摸出一个球,摸出白球的概率为0.23,则摸出黑球的概率为A.0.45 B.0.67 C.0.64 D.0.325.已知p:x2-x<0,那么p的一个必要不充分条件是A.0<x<1 B.-1<x<1 C. 12<x<23 D.12<x<26.某学校举办了一次以班级为单位的广播操比赛,9位评委给高一(1)班打出的分数如茎叶图所示,统计员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清,若记分员计算无误,则数字x应该是A .2B .3C .4D .57.在如图的程序框图中,输入n =60,按程序运行后输出的结果是A .0B .3C .4D .58.已知焦点在x 轴上的双曲线的渐近线方程是y =±4x,则该双曲线的离心率是A.17B.15C.174 D.1549.将一根长10 cm 的铁丝用剪刀剪成两段,然后再将每一段剪成等长的两段, 并用这四段铁丝围成一个矩形,则围成的矩形面积大于6 cm 2的概率等于A.15B.25C.35D.4510.已知命题p :∃x ∈R ,(m +1)(x 2+1)≤0,命题q :∀x ∈R ,x 2+mx +1>0恒成立. 若p ∧q 为假命题,则实数m 的取值范围为A .m≥2B .m≤-2或m >-1C .m≤-2或m≥2D .-1<m≤211.已知F 1、F 2分别是双曲线x 2a 2-y 2b 2=1(a>0,b>0)的左、右焦点,P 为双曲线上一点,过F 1作∠F 1PF 2的平分线的垂线,垂足为H ,则点H 的轨迹为A .椭圆B .双曲线C .圆D .抛物线12.已知抛物线y2=4x上两个动点B、C和点A(1,2),且∠BAC=90°,则动直线BC 必过定点A.(2,5) B.(-2,5) C.(5,-2) D.(5,2)二、填空题(本大题共4小题,每小题5分,共20分.把正确答案直接写在答题卷相应位置上。
福建省南平市高二上学期数学期中考试试卷
福建省南平市高二上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020高一上·天津月考) 一元二次方程有一个正根和一个负根的充分不必要条件是()A .B .C .D .2. (2分)若且,则下列不等式中一定成立的是()A .B .C .D .3. (2分)已知数列中,,定义,则()A .B .C .D .4. (2分) (2019高一上·琼海期中) 若 ,那么的最小值是()A . 64B . 128C .D .5. (2分) (2018高二上·济源月考) 已知成等差数列,成等比数列,则=()A . 8B . -8C . ±8D .6. (2分)(2020·茂名模拟) 已知函数,若函数有四个零点,则的取值范围是()A .B .C .D .7. (2分)(2016·湖南模拟) 已知数列{an}的通项公式an=5﹣n,其前n项和为Sn ,将数列{an}的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{bn}的前3项,记{bn}的前n项和为Tn ,若存在m∈N* ,使对任意n∈N* ,总有Sn<Tn+λ恒成立,则实数λ的取值范围是()A . λ≥2B . λ>3C . λ≥3D . λ>28. (2分)在等比数列{an}中,a1=8,a4=a3a5 ,则a7=()A .B .C .D .9. (2分) (2019高三上·烟台期中) 已知函数与函数的图象在区间上恰有两对关于轴对称的点,则实数m的取值范围是()A .B .C .D .10. (2分)(2019·潍坊模拟) 函数的图象可能是()A .B .C .D .二、多选题 (共3题;共9分)11. (3分)(2020·嘉祥模拟) 已知数列满足给出下列四个命题,其中的真命题是()A . 数列单调递增;B . 数列单调递增;C . 数从某项以后单调递增;D . 数列从某项以后单调递增.12. (3分)(2019高三上·济南期中) 定义在上的函数的导函数为 ,且对恒成立.下列结论正确的是()A .B . 若 ,则C .D . 若 ,则13. (3分) (2019高二上·烟台期中) 下列说法正确的是().A . 若,,则的最大值为4B . 若,则函数的最大值为-1C . 若,,则的最小值为1D . 函数的最小值为9三、填空题 (共4题;共4分)14. (1分) (2019高一上·凤城月考) 若则的范围是________; 的范围是________15. (1分) (2015高一下·广安期中) 已知数列{an}的前n项和Sn=n2+2n﹣1,则a1+a3+a5+…+a25=________16. (1分) (2019高二下·常州期中) 已知函数若关于的不等式在上恒成立,则实数的取值范围是________.17. (1分)等差数列{an}中,已知a4、a5分别是方程x2﹣8x+15=0的两根,则S8=________四、解答题 (共6题;共60分)18. (10分)(2018·鞍山模拟) 已知函数 .(1)若在定义域内无极值点,求实数的取值范围;(2)求证:当时,恒成立.19. (10分) (2019高二上·田东期中) 在等差数列中,,,数列的前项和.(1)求数列,的通项公式;(2)求数列的前项和 .20. (10分)要制作一个容积为8m3 ,高不低于3m,底部矩形长为2m的无盖长方体容器,已知该容器的底面造价是每平方米40元,侧面造价是每平方米20元,求该容器的最低总造价以及此时容器底部矩形的宽?21. (10分)(2020·新课标Ⅰ·文) 已知函数 .(1)当时,讨论的单调性;(2)若有两个零点,求a的取值范围.22. (10分) (2018高三上·哈尔滨月考) 已知数列满足,且, .(1)设,证明:数列为等差数列,并求数列的通项公式;(2)求数列的前项和 .23. (10分)(2017·鹰潭模拟) 已知函数f(x)=alnx﹣ax﹣3(a∈R).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数g(x)=x3+x2(f'(x)+ )在区间(t,3)上总不是单调函数,求m的取值范围;(Ⅲ)求证:× × ×…× <(n≥2,n∈N*).参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、多选题 (共3题;共9分)11-1、12-1、13-1、三、填空题 (共4题;共4分)14-1、15-1、16-1、17-1、四、解答题 (共6题;共60分)18-1、18-2、19-1、19-2、20-1、21-1、21-2、22-1、22-2、23-1、第11 页共11 页。
福建省南平市高级中学2019-2020学年高二期中考试数学试题 Word版含解析(含上下两个学期)
(Ⅱ)是否存在斜率为 的直线 与椭圆 相交于 两点,使得 ( 为椭圆的左焦点)?若存在,求出直线 的方程;若不存在,说明理由.
南平市高级中学2020-2021学年度第一学期
高二年级数学科期中考试试题卷答案
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.
1
2
3
4
5
6
7
8
A
D
B
C
C
D
C
D
二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分.
9
10
11
12
ABC
BC
小题5分,共20分.
13. 14.(0,0,3)15.-2≤a≤616、
(Ⅱ)过点 作直线 与抛物线有且只有一个公共点,求直线 的方程.
19.已知点 和 ,动点 到 两点的距离之差的绝对值为2.记点 的轨迹为 .
(Ⅰ)求轨迹 的方程;
(Ⅱ)设 与直线 交于两点 ,求线段 的长度.
20.如图,在四棱锥 中, 平面 ,四边形 为梯形, , , 为侧棱 上一点,且 , , , .
A. B.
C. 或 D.
二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分.
9.已知点 是平行四边形 所在的平面外一点,如果 , , .其中正确的结论是()
A. B. C. 是平面 的法向量 D. .
10.已知双曲线 : ( , )的一个焦点坐标为 ,且两条渐近线的夹角为 ,则双曲线 的标准方程为( )。
2020年南平市高三数学上期中模拟试卷附答案
2020年南平市高三数学上期中模拟试卷附答案一、选择题1.设ABC ∆的三个内角, , A B C 成等差数列,sin A 、sin B 、sin C 成等比数列,则这个三角形的形状是 ( ) A .直角三角形B .等边三角形C .等腰直角三角形D .钝角三角形2.已知数列{}n a 的首项11a =,数列{}n b 为等比数列,且1n n na b a +=.若10112b b =,则21a =( )A .92B .102C .112D .1223.河南洛阳的龙门石窟是中国石刻艺术宝库之一,现为世界文化遗产,龙门石窟与莫高窟、云冈石窟、麦积山石窟并称中国四大石窟.现有一石窟的某处“浮雕像”共7层,每上层的数量是下层的2倍,总共有1016个“浮雕像”,这些“浮雕像”构成一幅优美的图案,若从最下层往上“浮雕像”的数量构成一个数列{}n a ,则()235log a a ⋅的值为( ) A .8B .10C .12D .164.在斜ABC ∆中,设角,,A B C 的对边分别为,,a b c ,已知sin sin sin 4sin cos a A b B c C b B C +-=,CD 是角C 的内角平分线,且CD b =,则cos C = ( )A .18B .34C .23 D .165.若ABC V 的对边分别为,,a b c ,且1a =,45B ∠=o ,2ABC S =V ,则b =( )A .5B .25CD.6.在等差数列{}n a 中,351024a a a ++=,则此数列的前13项的和等于( ) A .16B .26C .8D .137.在ABC ∆中,角,,A B C 的对边分别是,,a b c , 2cos22A b c c+=,则ABC ∆的形状为 A .直角三角形 B .等腰三角形或直角三角形 C .等腰直角三角形 D .正三角形8.中华人民共和国国歌有84个字,37小节,奏唱需要46秒,某校周一举行升旗仪式,旗杆正好处在坡度15︒的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60︒和30°,第一排和最后一排的距离为部与第一排在同一个水平面上.要使国歌结束时国旗刚好升到旗杆顶部,升旗手升旗的速度应为(米/秒)A.3323B .5323C .7323D .83239.某校运动会开幕式上举行升旗仪式,旗杆正好处在坡度的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为和,第一排和最后一排的距离为56米(如图所示),旗杆底部与第一排在同一个水平面上.若国歌长度约为秒,要使国歌结束时国旗刚好升到旗杆顶部,升旗手升旗的速度应为()(米 /秒)A .110B .310 C .12 D .71010.在ABC V 中,角,,A B C 所对的边分别为,,a b c ,S 表示ABC V 的面积,若cos cos sin ,c B b C a A += ()2223S b a c =+-,则B ∠=A .90︒B .60︒C .45︒D .30︒11.在等差数列{}n a 中,如果123440,60a a a a +=+=,那么78a a +=( ) A .95B .100C .135D .8012.已知a >0,x ,y 满足约束条件1{3(3)x x y y a x ≥+≤≥-,若z=2x+y 的最小值为1,则a=A .B .C .1D .2二、填空题13.已知的三边长分别为3,5,7,则该三角形的外接圆半径等于_________.14.已知实数,x y 满足102010x y x y x y ++≥⎧⎪-≥⎨⎪--≤⎩,则目标函数2z x y =+的最大值为____.15.设不等式组30,{230,1x y x y x +-<--≤≥表示的平面区域为1Ω,平面区域2Ω与1Ω关于直线20x y +=对称,对于任意的12,C D ∈Ω∈Ω,则CD 的最小值为__________.16.已知各项为正数的等比数列{}n a 满足7652a a a =+,若存在两项,m n a a 使得122m n a a a ⋅=,则14m n+的最小值为__________. 17.定义在R 上的函数()f x 满足()()f x f x -=,且当0x ≥21,01,()22,1,xx x f x x ⎧-+≤<=⎨-≥⎩若任意的[],1x m m ∈+,不等式(1)()f x f x m -≤+恒成立,则实数m 的最大值是 ____________18.已知等比数列{}n a 的首项为1a ,前n 项和为n S ,若数列{}12n S a -为等比数列,则32a a =____. 19.如图所示,位于A 处的信息中心获悉:在其正东方向40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°,相距20海里的C 处的乙船,现乙船朝北偏东θ的方向即沿直线CB 前往B 处救援,则cos θ=______________.20.在中,若,则__________.三、解答题21.已知数列{}n a 的前n 项和22n n nS +=.(1)求数列{}n a 通项公式; (2)令11n n n b a a +=,求数列{}n b 的前n 项和n T . 22.已知a ,b ,c 分别为ABC △三个内角A ,B ,C 的对边,cos 3sin 0a C a C b c --=.(1)求A .(2)若2a =,ABC △的面积为3,求b ,c . 23.已知数列{}n a 满足:121n n a a n +=-+,13a =.(1)设数列{}n b 满足:n n b a n =-,求证:数列{}n b 是等比数列; (2)求出数列{}n a 的通项公式和前n 项和n S .24.ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos cos a C c A a +=. (1)求证:A B =; (2)若6A π=,ABC V 的面积为3,求ABC V 的周长.25.在ABC V 中,角A ,B ,C 的对边分别是a ,b ,c ,且()3cos 23cos a C b c A =-(Ⅰ)求角A 的大小;(Ⅱ)若2a =,求ABC V 面积的最大值.26.在ΔABC 中,角,,A B C 所对的边分别为,,a b c ,且222sin sin sin sin sin A C B A C +=-.(1)求B 的大小;(2)设BAC ∠的平分线AD 交BC 于,23,1D AD BD ==,求sin BAC ∠的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】先由ABC ∆的三个内角, , A B C 成等差数列,得出2,33B AC ππ=+=,又因为sin A 、sin B 、sin C 成等比数列,所以23sin sin sin 4B AC =⋅=,整理计算即可得出答案.【详解】因为ABC ∆的三个内角, , A B C 成等差数列,所以2,33B AC ππ=+=, 又因为sin A 、sin B 、sin C 成等比数列, 所以23sin sin sin 4B AC =⋅= 所以222sin sin sin sin cos sin cos333A A A A A πππ⎛⎫⎛⎫⋅-=⋅-⎪ ⎪⎝⎭⎝⎭21111132sin 2cos 2sin 22442344A A A A A π⎛⎫=+=-+=-+= ⎪⎝⎭ 即sin 213A π⎛⎫-= ⎪⎝⎭又因为203A π<< 所以3A π=故选B 【点睛】本题考查数列与三角函数的综合,关键在于求得2,33B AC ππ=+=,再利用三角公式转化,属于中档题.2.B解析:B 【解析】 【分析】由已知条件推导出a n =b 1b 2…b n-1,由此利用b 10b 11=2,根据等比数列的性质能求出a 21. 【详解】数列{a n }的首项a 1=1,数列{b n }为等比数列,且1n n na b a +=, ∴3212212a a b a b a a ==,=4312341233aa b b b a b b b a ∴=∴=,,=,, …101211011211220120219101122n n a b b b b b a b b b b b b b b b -=⋯=∴=⋯=⨯⨯⋯⨯=Q ,,()()() . 故选B . 【点睛】本题考查数列的第21项的求法,是中档题,解题时要认真审题,注意递公式和等比数列的性质的合理运用.3.C解析:C 【解析】【分析】数列{}n a ,是等比数列,公比为2,前7项和为1016,由此可求得首项1a ,得通项公式,从而得结论. 【详解】Q 最下层的“浮雕像”的数量为1a ,依题有:公比()717122,7,101612a q n S -====-,解得18a =,则()12*82217,n n n a n n N -+=⨯=≤≤∈,57352,2a a ∴==,从而()()571212352352222,log log 212a a a a ⋅=⨯=∴⋅==,故选C .【点睛】本题考查等比数列的应用.数列应用题求解时,关键是根据题设抽象出数列的条件,然后利用数列的知识求解.4.A解析:A 【解析】 【分析】利用正弦定理角化边可构造方程2cos cos bC C a=,由cos 0C ≠可得2a b =;利用ABC ACD BCD S S S ∆∆∆=+可构造方程求得3cos 24C =,利用二倍角公式求得结果.【详解】由正弦定理得:22224cos a b c b C +-=则22224cos 2cos cos 22a b c b C bC C ab ab a+-===ABC ∆Q 为斜三角形 cos 0C ∴≠ 2a b ∴=ABC ACD BCD S S S ∆∆∆=+Q 1112sin sin 2sin 22222C Cb b C b b b b ∴⋅=⋅+⋅即:2sin 4sin cos 3sin 222C C CC ==()0,C π∈Q 0,22C π⎛⎫∴∈ ⎪⎝⎭ sin 02C ∴≠ 3cos 24C ∴= 291cos 2cos 1212168C C ∴=-=⨯-= 本题正确选项:A 【点睛】本题考查解三角形的相关知识,涉及到正弦定理化简边角关系式、余弦定理和三角形面积公式的应用、二倍角公式求三角函数值等知识;关键是能够通过面积桥的方式构造方程解出半角的三角函数值.5.A解析:A 【解析】在ABC ∆中,1a =,045B ∠=,可得114522ABC S csin ∆=⨯⨯︒=,解得c =.由余弦定理可得:5b ===. 6.D解析:D 【解析】 【详解】试题分析:∵351024a a a ++=,∴410224a a +=,∴4102a a +=,∴1134101313()13()1322a a a a S ++===,故选D. 考点:等差数列的通项公式、前n 项和公式.7.A解析:A 【解析】 【分析】先根据二倍角公式化简,再根据正弦定理化角,最后根据角的关系判断选择. 【详解】 因为2cos22A b c c+=,所以1cosA 22b cc ++=,()ccosA b,sinCcosA sinB sin A C ,sinAcosC 0===+=,因此cosC 0C 2π==,,选A.【点睛】本题考查二倍角公式以及正弦定理,考查基本分析转化能力,属基础题.8.B解析:B 【解析】 【分析】如解析中图形,可在HAB ∆中,利用正弦定理求出HB ,然后在Rt HBO ∆中求出直角边HO 即旗杆的高度,最后可得速度. 【详解】如图,由题意45,105HAB HBA ∠=︒∠=︒,∴30AHB ∠=︒,在HAB ∆中,sin sin HB AB HAB AHB =∠∠,即102sin 45sin 30HB =︒︒,20HB =. ∴sin 20sin 60103OH HB HBO =∠=︒=,10353v ==(米/秒). 故选B . 【点睛】本题考查解三角形的应用,解题关键是掌握正弦定理和余弦定理,解题时要根据条件选用恰当的公式,适当注意各个公式适合的条件.9.B解析:B 【解析】试题分析: 如下图:由已知,在ABC ∆中,105,45,56ABC ACB BC ∠=∠==o o ,从而可得:30BAC ∠=o 由正弦定理,得:56sin 45AB =o 103AB ∴=那么在Rt ADB ∆中,60ABD o ∠=,3sin 6010315AD AB ∴===o , 即旗杆高度为15米,由3155010÷=,知:升旗手升旗的速度应为310(米 /秒). 故选B .考点:解三角形在实际问题中的应用.10.D解析:D 【解析】【分析】由正弦定理,两角和的正弦函数公式化简已知等式可得sin A =1,即A =900,由余弦定理、三角形面积公式可求角C ,从而得到B 的值. 【详解】由正弦定理及cos cos sin ,c B b C a A +=得2sin cos sin cos sin ,C B B C A +=()2sin sin sin 1C B A A ⇒+=⇒=,因为000180A <<,所以090A =;由余弦定理、三角形面积公式及)222S b a c =+-,得1sin 2cos 2ab C ab C =,整理得tan C =,又00090C <<,所以060C =,故030B =. 故选D 【点睛】本题考查正、余弦定理、两角和的正弦公式、三角形面积公式在解三角形中的综合应用,考查计算能力和转化思想,属于中档题.11.B解析:B 【解析】 【分析】根据等差数列{}n a 性质可知:1234a a a a ++,,56a a +,78a a +构成新的等差数列,然后求出结果 【详解】由等差数列的性质可知:1234a a a a ++,,56a a +,78a a +构成新的等差数列,()()()()781234124140320100a a a a a a a a ⎡⎤∴+=++-+-+=+⨯=⎣⎦故选B 【点睛】本题主要考查了等差数列的性质运用,等差数列中连续的、等长的、间隔相等的几项的和依然成等差,即可计算出结果。
福建省南平市建瓯市芝华中学2019_2020学年高二数学上学期期中试题(含解析)
福建省南平市建瓯市芝华中学2019-2020学年高二数学上学期期中试题(含解析)一、选择题,每题只有一个答案符合要求.1. 若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是( )A.2π B.4π C.6π D.8π 【答案】B 【解析】试题分析:本题是几何概型问题,矩形面积2,半圆面积,所以质点落在以AB 为直径的半圆内的概率是,故选B .考点:几何概型.2.有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为 A.45B.35C.25D.15【答案】C 【解析】选取两支彩笔方法有25C 种,含有红色彩笔的选法为14C 种,由古典概型公式,满足题意的概率值为142542105C p C ===. 本题选择C 选项.考点:古典概型名师点睛:对于古典概型问题主要把握基本事件的种数和符合要求的事件种数,基本事件的种数要注意区别是排列问题还是组合问题,看抽取时是有、无顺序,本题从这5支彩笔中任取2支不同颜色的彩笔,是组合问题,当然简单问题建议采取列举法更直观一些.3.某校高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信息,可确定被抽测的人数及分数在[90,100]内的人数分别为( )A. 20,2B. 24,4C. 25,2D. 25,4【答案】C 【解析】由频率分布直方图可知,组距为[)10,50,60的频率为0.008100.08⨯=,由茎叶图可知[)50,60的人数为2,设参加本次考试的总人数为N ,则所以2250.08N ==,根据频率分布直方图可知[]90,100内的人数与[)50,60的人数一样,都是2,故选C.4.已知双曲线离心率2e =,与椭圆221248x y +=有相同的焦点,则该双曲线渐近线方程是()A. 13y x =±B. 33y x =±C. 3y x =D.23y x =±【答案】C 【解析】 【分析】先求出椭圆221248x y +=的焦点()4,0和()4,0-,所以双曲线方程可设为22221x y a b-=,所以其渐近线方程为by x a=±,由题意得双曲线的4c =,再根据其离心率2e =,求出a ,根据222c a b =+,得到b ,从而得到双曲线的渐近线方程,求出答案.【详解】因为椭圆221248x y +=,其焦点为()4,0和()4,0-,因为双曲线与椭圆有相同的焦点,所以设双曲线的方程为22221x y a b-=,则其渐近线方程为b y x a =±,且双曲线中4c = 因为双曲线的离心率2ce a==,所以2a =, 又因双曲线中222c a b =+所以22212b c a =-=,即b =所以双曲线的渐近线方程为y = 故选C 项.【点睛】本题考查根据双曲线的离心率和焦点求,,a b c ,双曲线的渐近线,属于简单题. 5.设命题2:,420p x R x x m ∀∈-+≥ (其中m 为常数),则“m 1≥”是“命题p 为真命题”( ) A. 充分不必要 B. 必要不充分 C. 充分且必要 D. 既不充分也不必要【答案】B 【解析】 【分析】命题p :x ∈R ,x 2﹣4x +2m ≥0(其中m 为常数),由△=16﹣8m ≤0,解得m 范围即可判断出结论.【详解】若命题p 为真,则对任意x ∈R ,2420x x m -+≥恒成立,所以1680m ∆=-≤,即21m m ≥⇒≥.因为2m ≥,则“m 1≥”是“命题p 为真”的必要不充分条件, 选B .【点睛】本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.6.为了研究某班学生的脚长x (单位厘米)和身高y (单位厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为ˆˆˆybx a =+.已知101225i i x ==∑,1011600i i y ==∑,ˆ4b =.该班某学生的脚长为24,据此估计其身高为( ) A. 160 B. 163C. 166D. 170【答案】C 【解析】【详解】由已知22.5,160x y ==,160422.570,424166ˆ70ay ∴=-⨯==⨯+=, 故选C. 7.若命题p :函数22y x x =-的单调递增区间是[1,)+∞,命题q :函数1y x x=-的单调递增区间是[1,)+∞,则( ) A. p q ∧是真命题 B. p q ∨是假命题 C. p ⌝是真命题 D. q ⌝是真命题【答案】D 【解析】 【分析】由二次函数的单调性可判断命题p 为真,利用增+增为增结合函数的定义域可得增区间进而知命题q 为假命题,从而可得解.【详解】命题p :函数22y x x =-的对称轴为1x =,且开口向上,所以在[1,)+∞上单调递增,命题p 为真; 命题q :函数1y x x =-的定义域为{|0}x x ≠,且y x =和1y x=-为增函数,所以函数1y x x=-的增区间为(,0)-∞和(0,)+∞,所以命题q 为假命题.所以q ⌝是真命题.故选:D.【点睛】本题主要考查了函数的单调性及复合命题的真假判断,注意区别在区间上单调递增和增区间的区间,属于基础题.8.如图所示,在平行六面体1111ABCD A B C D -中,设1AA a =,AB b =,AD c =,N 是BC 的中点,试用a ,b ,c 表示1A N ( )A. 12a b c -++B. a b c -++C. 12a b c --+D.12a b c -+【答案】A 【解析】 【分析】根据空间向量的线性表示,用1AA ,AB ,AD 表示出1A N 即可. 【详解】解:N 是BC 的中点,11111222A N A A AB BN a b BC a b AD a b c ∴=++=-++=-++=-++.故选:A.【点睛】本题考查了空间向量的线性表示与应用问题,是基础题目.9.设椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别为1F 、2F ,P 是C 上的点,2PF ⊥1F 2F ,∠12PF F =30,则C 的离心率为( ) A.36B.13C.123 【答案】D 【解析】由题意可设|PF 2|=m ,结合条件可知|PF 1|=2m ,|F 1F 2|3m ,故离心率e =1212233223F F c m a PF PF m m ===++选D. 点睛:解决椭圆和双曲线离心率的求值及范围问题其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.10.正四棱锥S ABCD -中,2SA AB ==,则直线AC 与平面SBC 所成角的正弦值为( ) A.3B.66C.33D.63【答案】C 【解析】 【分析】建立合适的空间直角坐标系,求出AC 和平面SBC 的法向量n ,直线AC 与平面SBC 所成角的正弦值即为AC 与n 的夹角的余弦值的绝对值,利用夹角公式求出即可. 【详解】建立如图所示的空间直角坐标系O xyz -.有图知2222222SO SA AO =-=-=由题得()1,1,0A -、()1,1,0C -、()1,1,0B 、(2S .()2,2,0CA ∴=-,(1,2BS =--,(1,2CS =-.设平面SBC 的一个法向量(),,n x y z =,则00n BS n CS ⎧⋅=⎨⋅=⎩,2020x y z x y z ⎧--+=⎪∴⎨-+=⎪⎩,令2z =,得0x =,2y =,()0,2,2n ∴=.设直线AC 与平面SBC 所成的角为θ,则sin cos ,AC n θ===故选:C.【点睛】本题考查线面角的求解,利用向量法可简化分析过程,直接用计算的方式解决问题,是基础题.11.已知P 为抛物线24y x =上一个动点,Q 为圆()2241x y +-=上一个动点,那么点P 到点Q距离与点P 到抛物线的准线距离之和的最小值是( )A. 5B. 821【答案】D 【解析】 【分析】根据抛物线的定义可知P 到准线的距离等于点P 到焦点的距离,进而问题转化为求点P 到点Q 的距离与点P 到抛物线的焦点距离之和的最小值,根据图象可知当P ,Q ,F 三点共线时P 到点Q 的距离与点P 到抛物线的焦点距离之和的最小,进一步求QF 的最小值,为圆心到焦点F 的距离减去圆的半径. 【详解】设圆心为C ,则()0,4C,半径1r =,设抛物线的焦点()1,0F ,据抛物线的定义知,点P 到点Q 的距离与点P 到抛物线准线距离之和为221141171PQ PF QF CF +≥≥-=+=.故选:D.【点睛】本题主要考查了抛物线的应用.考查了学生转化和化归,数形结合等数学思想.12.已知F 是双曲线22:18y C x -=的右焦点,P 是C 左支上一点,(0,66A ,当APF ∆周长最小时,该三角形的面积为( ) A. 26 B. 6C. 6D. 6【答案】C 【解析】 【分析】利用双曲线的定义,确定APF ∆周长最小时,P 的坐标,即可求出APF ∆周长最小时,该三角形的面积.【详解】设双曲线的左焦点为1F ,由双曲线定义知,12PF a PF =+,APF ∴∆的周长为1122PA PF AF PA a PF AF PA PF AF a ++=+++=+++,由于2a AF +是定值,要使APF ∆的周长最小,则1PA PF +最小,即P 、A 、1F 共线,()0,66A ,()13,0F -,∴直线1AF 的方程为1366x +=-, 即326x =-代入2218y x -=整理得266960y y +-=,解得26y =或86y =-(舍),所以P 点的纵坐标为26,111166662612622APF AFF PFF S S S ∆∆∆∴=-=⨯⨯-⨯⨯=.故选:C.【点睛】本题考查双曲线的定义,考查三角形面积的计算,确定点P 的坐标是关键. 二、填空题13.命题:2,210x R ax x ∀∈++<的否定为____________【答案】2000,210x R ax x ∃∈++≥【解析】 【分析】直接利用全称命题的否定解答.【详解】由题全称命题的否定为特称命题,所以2,210x R ax x ∀∈++<的否定为2000,210x R ax x ∃∈++≥.故答案为:2000,210x R ax x ∃∈++≥【点睛】本题主要考查全称命题的否定,意在考查学生对这些知识的理解掌握水平和分析推理能力.14.在直三棱柱111ABC A B C -中,若1BAC 90,AB ACAA ,则异面直线1BA 与1AC 所成的角等于_________ 【答案】60 【解析】 【分析】建立空间直角坐标系分别求得1=(0,1,1)BA ,1(1,0,1)AC ,再利用111111,cos BA AC BA AC BA AC 即可得到所求角大小。
福建省南平市2020年高二上学期)期中数学试卷(I)卷
福建省南平市2020年高二上学期)期中数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)在空间直角坐标系中,与点,,等距离的点的个数为()A . 1B . 2C . 3D . 无数2. (2分)用更相减损术求459与357的最大公约数,需要做减法的次数为()A . 4B . 5C . 6D . 73. (2分)某高校有甲、乙、丙三个数学建模兴趣班,甲、乙两班各有45人,丙班有60人,为了解该校数学建模成果,采用分层抽样从中抽取一个容量为10的样本,则在乙班抽取的人数为(()A . 2B . 3C . 4D . 54. (2分)下列说法正确的个数是()(1 )线性回归方程y=bx+a必过(2)在一个列联表中,由计算得=4.235,则有95%的把握确认这两个变量间没有关系(3)复数(4)若随机变量,且p(<4)=p,则p(0<<2)=2p-1A . 1B . 2C . 3D . 45. (2分) (2017高一上·厦门期末) 用系统抽样方法从编号为1,2,3,…,700的学生中抽样50人,若第2段中编号为20的学生被抽中,则第5段中被抽中的学生编号为()A . 48B . 62C . 76D . 906. (2分) (2017高三上·珠海期末) 某程序框图如图所示,若该程序运行后输出的值是,则()A . a=11B . a=12C . a=137. (2分)方程x2+y2+4mx﹣2y+5m=0表示圆的充要条件是()A . <m<1B . m<或m>1C . m<D . m>18. (2分) (2019高三上·铁岭月考) 已知点,为坐标原点,分别在线段上运动,则的周长的最小值为()A .B .C .D .9. (2分) (2017·湖北模拟) 如图某空间几何体的正视图和俯视图分别为边长为2的正方形和正三角形,则该空间几何体的外接球的表面积为()A .B .C . 16π10. (2分)设直线与轴的交点为P,点P把圆的直径分为两段,则其长度之比为()A . 或B . 或C . 或D . 或11. (2分) (2017高一上·舒兰期末) 若经过A(a,﹣1),B(2,3)的直线的斜率为2,则a等于()A . 0B . ﹣1C . 1D . ﹣212. (2分) (2016高二下·玉溪期中) 已知在圆x2+y2﹣4x+2y=0内,过点E(1,0)的最长弦和最短弦分别是AC和BD,则四边形ABCD的面积为()A .B . 6C .D . 2二、填空题 (共4题;共4分)13. (1分) (2016高二上·南城期中) 若直线x+ay+2=0和2x+3y+1=0互相垂直,则a=________.14. (1分) (2016高二上·郑州期中) 设实数x,y满足约束条件,若目标函数z=ax+by(a >0,b>0)的最大值为10,则a2+b2的最小值为________.15. (1分)在下列四个图所表示的正方体中,能够得到AB⊥CD的是________16. (1分) (2018高二上·万州期末) 若的一个顶点是,的角平分线方程分别为,则边所在的直线方程为________三、解答题 (共6题;共60分)17. (10分) (2017高一下·南通期中) 根据所给条件求直线的方程:(1)直线过点(﹣4,0),倾斜角的正弦值为;(2)直线过点(﹣2,1),且到原点的距离为2.18. (15分) (2016高一下·黄山期末) 甲、乙两位学生参加数学竞赛培训,在培训期间,他们参加的5次预赛成绩记录如下:甲8282799587乙9575809085(1)请用茎叶图表示这两组数据;(2)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率;(3)现要从中选派一人参加9月份的全国数学联赛,从统计学的角度考虑,你认为选派哪位学生参加合适?请说明理由.19. (5分)已知圆C过点(1,2)和(2,1),且圆心在直线x+y﹣4=0上.(Ⅰ)求圆C的方程;(Ⅱ)若一束光线l自点A(﹣3,3)发出,射到x轴上,被x轴反射到圆C上,若反射点为M(a,0),求实数a的取值范围.20. (10分) (2016高二下·黑龙江开学考) 如图,PA⊥平面ABCD,AD∥BC,∠ABC=90°,AB=BC=PA=1,AD=3,E是PB的中点.(1)求证:AE⊥平面PBC;(2)求二面角B﹣PC﹣D的余弦值.21. (10分)已知函数y=f(x)的程序框图如图所示.(1)求函数y=f(x)的表达式;(2)写出输入x的值计算y的值的程序.22. (10分) (2017高二上·海淀期中) 已知直线与圆相交于、两点,且满足.(1)求圆的方程.(2)若,,为轴上两点,点在圆上,过作与垂直的直线与圆交于另一点,连,求四边形的面积的取值范围.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共60分) 17-1、17-2、18-1、18-2、18-3、19-1、20-1、20-2、21-1、21-2、22-1、22-2、第11 页共11 页。
2020-2021学年福建省南平市河东中心中学高二数学理模拟试题含解析
2020-2021学年福建省南平市河东中心中学高二数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 在△ABC中,△ABC的面积夹角的取值范围是()A.B.C.D.参考答案:B略2. 对于任意的且,函数的图象必经过点()A. B. C.D.参考答案:D3. 春节期间,“厉行节约,反对浪费”之风悄然吹开,某市通过随机询问100名性别不同的居民是否能做到“光盘”行动得到如下的列联表:,参照附表,得到的正确的结论是()A.在犯错误的概率不超过1%的前提下,认为“该市居民能否做到“光盘”与性别有关”B.在犯错误的概率不超过1%的前提下,认为“该市居民能否做到光盘与相别无关”C.有90%以上的把握认为“该市居民能否做到光盘与性别有关”D.有90%以上的把握认为“该市居民能否做到光盘与性别无关”参考答案:C 4. 若方程只有一个实数解,则a的取值范围为()A. B. C. D.参考答案:B【分析】方程只有一个实数解,等价于有一个解,即的图象有一个交点,利用导数研究函数的单调性、极值,画出函数图象,利用数形结合可得结果.【详解】方程只有一个实数解,等价于有一个解,即的图象有一个交点,设,则,由,得;由,得或,所以在上递增,在上递减,的极大值为,当时,;当时,;画出函数图象,如图,由图可知当,当或时,的图象有一个交点,此时,方程只有一个实数解,所以,的取值范围为,故选B.【点睛】本题主要考查函数与方程的应用,考查了导数的应用,考查了数形结合思想,属于难题. 数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.5. 如图,抛物线的焦点为,准线为,经过且斜率为的直线与抛物线在轴上方的部分相交于点,,垂足为,则的面积是()A. B.C. D .参考答案:C略6. 甲、乙、丙三名同学站成一排,甲站在中间的概率是()A、 B、 C、D、参考答案:D7. 曲线 (为参数)与坐标轴的交点是()A. B. C. D.参考答案:B8. 已知空间几何体的三视图如图所示,则该几何体的体积是()A. B. C.4 D.8参考答案:B9. 数列的通项公式,则该数列的前()项之和等于9A B CD参考答案:A略10. 直线的倾斜角等于( )A .B .C .D .参考答案:A二、 填空题:本大题共7小题,每小题4分,共28分 11. 下列流程图是循环结构的是________.参考答案: ③④12. 已知x >3,则函数y=+x的最小值为 .参考答案:5【考点】函数的最值及其几何意义. 【分析】根据基本不等式即可求出最小值.【解答】解:x >3,则函数y=+x=+x ﹣3+3≥2+3=2+3=5,当且仅当x=4时取等号,故函数y=+x 的最小值为5,故答案为:5. 13. 命题“ 若,则”的逆否命题是参考答案:若或则14. 已知函数,的最大值为4,则实数a 的值为_______.参考答案:-5【分析】 求导后,若,则,可验证出不合题意;当时,求解出的单调性,分别在,,三种情况下通过最大值取得的点构造关于最值的方程,解方程求得结果.【详解】由题意得:当时,,则在上单调递增,解得:,不合题意,舍去当时,令,解得:,可知在,上单调递减;在上单调递增①当,即时,解得:,不合题意,舍去 ②当,即时,,解得:③当,即时解得:,不合题意,舍去综上所述:本题正确结果:【点睛】本题考查根据函数的最值求解参数值的问题,关键是对于含有参数的函数,通过对极值点位置的讨论确定最值取得的点,从而可利用最值构造出方程,求解出参数的取值范围.15. 若复数是实数,则实数= .参考答案:5略16.已知两点(4,9),(6,3),则以为直径的圆的一般方程为_______________.参考答案:17. 已知等差数列中,,将此等差数列的各项排成如下三角形数阵:则此数阵中第20行从左到右的第10个数是_________参考答案:598略三、解答题:本大题共5小题,共72分。
福建省南平市第八中学2020-2021学年高二上学期期中检测数学试卷及解析
福建省南平市第八中学2020-2021学年高二上学期期中检测数学试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题1.设点M(0,-5),N(0,5),△MNP 的周长为36,则△MNP 的顶点P 的轨迹方程为( )A. x 2169+y 2144=1 (y≠0) B. y 2169+x 2144=1(x≠0)C. x 2169+y 225=1 (y≠0) D. y 2169+x 225=1 (x≠0)2.已知双曲线22197x y -=的左右焦点分别为12,F F ,若双曲线上一点P 使得1260F PF ∠=,求12F PF △的面积( )C. D.3.在长方体1111ABCD A B C D -中,下列各式运算结果为1BD 的是( )①111A D A A AB -- ②111BC BB D C +- ③1AD AB DD -- ④1111B D A A DD -+ A.①②B.②③C.③④D.①④4.已知向量(2,1,2)OA =-,(2,2,1)OB =,则以OA ,OB 为邻边的三角形OAB 的面积( )C.2D.45.如图,已知F 是椭圆22221(0)x y a b a b+=>>的左焦点,P 是椭圆上的一点,PF x ⊥轴,//OP AB (O 为原点),则该椭圆的离心率是( )A.2B.4C.126.已知(sin ,cos ,tan )a θθθ→=,1cos ,sin ,tan b θθθ→⎛⎫= ⎪⎝⎭,且a b →→⊥,则θ为( )A.4π-B.4π C.2()2k k Z ππ-∈ D.()4k k Z ππ-∈7.已知正方体1111ABCD A B C D -的棱长为2,E ,F ,G 分别是1C C ,11D A ,AB 的中点,求点A 到平面EFG 的距离( )A.6B.4C.3D.28.下列说法错误的是( ) A.若1,2n n n a a a n N *++>∈,则{}n a 是递增数列 B.“2sin x”的一个必要不充分条件是“4x π=”C.抛物线212y x =的焦点坐标是1,08⎛⎫⎪⎝⎭D.若,a b c d >>,则ac bd >第II 卷(非选择题)二、新添加的题型)A.若空间向量m 、n 、p ,满足//m n ,//n p ,则//m nB.若空间向量m 、n 、p ,满足m n =,n p =,则m p =C.在空间中,一个基底就是一个基向量D.任意三个不共线的向量都可以构成空间的一个基底10.设抛物线2:4C y x =的焦点为F 直线l 过F 且与C 交于,A B 两点,若3AF BF =,则l 的方程为( )A.1)3y x =- B.1)y x =-C.1)y x =-D.3(1)yx11.如图,在空间直角坐标系 Oxyz 中,正四面体ABCD 的顶点,,A B C 分别在x ,y ,z 轴的正半轴上,下列结论正确的是:( )A.O ABC -是正三棱锥 B.直线//OB 平面ACD C.直线AD 与OB 所成的角是45° D.二面角 D OB A --为45°12.如图,已知抛物线C 的顶点为(0,0)O ,焦点为(0,1)F ,则抛物线C 的方程为______;过点F 作直线交抛物线C 于,A B 两点,若直线AO ,BO 分别交直线:2l y x =-于M ,N 两点,则||MN 的最小值为_____.三、填空题13.已知命题p : ∀x > 0,总有(x +1) x e >1.则p ⌝为___________________. 14.已知O 是空间任一点,A,B,C,D 四点满足任三点均不共线,但四点共面,且OA ⃑⃑⃑⃑⃑⃑⃑ =2x ⋅BO ⃑⃑⃑⃑⃑⃑⃑ +3y ⋅CO ⃑⃑⃑⃑⃑⃑⃑ +4z ⋅DO ⃑⃑⃑⃑⃑⃑⃑ ,则2x +3y +4z =________.15.已知双曲线2214x y -=和点()3,1P -,直线l 经过点P 且与双曲线相交于A 、B 两点,当P 恰好为线段AB 的中点时,l 的方程为______.四、解答题16.命题:05p x >+,命题()22:2100q x x m m --<+>,若p ⌝是q ⌝的充分不必要条件,求m 的取值范围.17.(1)点(,)M x y 与定点(4,0)F 的距离和它到定直线25:4l x =的距离的比是常数45,求M 的轨迹方程;(2)经过两点(3,A --,(7)B --,求双曲线标准方程. 18.如图,正方体1111ABCD A B C D -中, ,E F 分别是1,BB CD 的中点.(1)求证: 1D F ⊥平面ADE ;(2)求异面直线EF 与1BD 所成角的余弦值.19.已知椭圆C :22221(0)x y a b a b +=>>为2.(1)椭圆C 的方程;(2)设直线l :12y x m =+交椭圆C 于A ,B 两点,且AB =,求m 的值. 20.如图,在正方形11AA D D 与矩形ABCD 所在平面互相垂直,22AB AD ==,点E 为AB 的中点.(1)求证:1//BD 平面1A DE ; (2)求证:11D E A D ⊥;(3)在线段AB 上是否存在点M ,使二面角1D MC D --的大小为6π?若存在,求出AM 的长;若不存在,请说明理由.21.已知椭圆2222:1(0)x y a b a bΓ+=>>经过点(2,1)M -,且右焦点F .(1)求椭圆Γ的标准方程;(2)过(1,0)N 且斜率存在的直线AB 交椭圆Γ于A ,B 两点,记t MA MB =⋅,若t 的最大值和最小值分别为1t ,2t ,求12t t +的值.参考答案1.B【解析】1.由题意得到|PM |+|PN |=26,根据椭圆的定义,可得点P 的轨迹是一条以M,N 为焦点的椭圆,即可得到答案.由题意△MNP 的周长为36,M (0,-5),N (0,5),∴|MN|=10,|PM|+|PN|=26,可知点P 的轨迹是以M ,N 为焦点,长轴长为26除去长轴的两个端点的椭圆,所以点P 的轨迹方程为+=1(x≠0).故选B. 2.C【解析】2.先根据双曲线方程得到3a =,b =,4c =,设1PF m =,2PF n =,可得,22m n a -==. 由1260F PF ∠=︒,在12F PF △根据余弦定理可得:2221212122cos60F F PF PF PF PF =+-︒,即可求得答案.22197x y -=,所以3a =,b =4c =, P 在双曲线上,设1PF m =,2PF n =,∴26m n a -==①由1260F PF ∠=︒,在12F PF △根据余弦定理可得:2221212122cos60F F PF PF PF PF =+-︒故2264m n mn =+-② 由①②可得28mn =,∴直角12F PF △的面积121212s 11in sin 6022F PF Sm PF PF F PF n ⋅∠⋅=︒==故选:C . 3.A【解析】3.根据空间向量的运算法则,逐项计算,即可判断出结果.11111AD A A AB AD AB BD --=-=,①对; 1111111111BC BB DC BC CC DC BC C D BD +-=+-=+=,②对; 111111AD AB DD BD DD B D D B D D --=-=+=,③错;11111111B D A DD BD DD DD BD DD A -+=++=+显然不等于1BD ,④错.故选:A . 4.B【解析】4.根据向量夹角的坐标表示,向量模的坐标表示,先求出cos cos ,AOB OA OB ∠=<>,以及向量的模,再得出sin AOB ∠,根据三角形面积公式,即可得出结果. 因为向量(2,1,2)OA =-,(2,2,1)OB =, 所以223OA ==,223OB ==,,2212214cos cos ,339OA OB AOB OA OB OA OB⨯-⨯+⨯∠=<>===⨯,因此sin 9AOB ∠==,所以,以OA ,OB 为邻边的三角形OAB 的面积为1sin 22OA OB AOB ∠=. 故选:B. 5.A【解析】5.根据题中条件,先得到(),0F c -,求出2,b P c a ⎛⎫- ⎪⎝⎭,根据//OP AB 得到OP AB k k =,化简整理,即可求出结果.因为F 是椭圆22221(0)x y a b a b+=>>的左焦点,所以(),0F c -,(),0A a ,()0,B b ,因为P 是椭圆上的一点,PF x ⊥轴,将x c =-代入22221x y a b +=得22221c y a b+=,所以2by a =±;又//OP AB ,所以2,b P c a ⎛⎫- ⎪⎝⎭,OP AB k k =,即200b b ac a =---,整理得b c =,所以该椭圆的离心率为e c a ====.故选:A. 6.D【解析】6.由空间向量垂直的坐标关系得2sin cos 10θθ+=,解方程即可得答案. 解:因为a b →→⊥,(sin ,cos ,tan )a θθθ→=,1cos ,sin ,tan b θθθ→⎛⎫= ⎪⎝⎭,所以sin cos cos sin 10θθθθ++=,即sin 21θ=-, 所以22,2k k Z πθπ=-+∈,即,4k k Z πθπ=-+∈故选:D. 7.C【解析】7.在正方体中,DA ,DC ,1DD 两两垂直,以点D 为坐标原点,分别以DA ,DC ,1DD 为x 轴,y 轴,z 轴,建立空间直角坐标系,根据题中条件,求出平面EFG 的一个法向量,以及直线AG 的方向向量,根据空间向量的方法,即可求出点到面的距离.在正方体中,DA ,DC ,1DD 两两垂直,以点D 为坐标原点,分别以DA ,DC ,1DD 为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,因为正方体的棱长为2,E ,F ,G 分别是1C C ,11D A ,AB 的中点,所以()2,0,0A ,()2,1,0G ,()1,0,2F ,()0,2,1E , 则()1,2,1EF =-,()2,1,1EG =--,()0,1,0AG =, 设平面EFG 的一个法向量为(),,m x y z =,则m EF m EG⎧⊥⎨⊥⎩,即00m EF m EG ⎧⋅=⎨⋅=⎩,则2020x y z x y z -+=⎧⎨--=⎩,因此x y z ==,不妨令1x =,则()1,1,1m =, 设直线AG 与平面EFG 所成角为θ,则sin cos ,3AG m AG m AG mθ⋅=<>===所以点A 到平面EFG 的距离为sin 3d AG θ==. 故选:C. 8.BCD【解析】8.根据递增数列的定义,可判断A 正确;根据充分条件与必要条件的概念,可判断B 错;根据抛物线的方程,可判断C 错;通过举反例,可判断D 错. A 选项,若1,2n n n a a a n N *++>∈,则若1,n n a a n N *+>∈,即数列{}n a 是递增数列;A 正确;B 选项,由2sin 2x得24x k ππ=+或()324x k k Z ππ=+∈,所以由4x π=能推出2sin x,反之不能推出,因此4x π=是2sin x的一个充分不必要条件;B 错; C 选项,由212y x =得22x y =,则抛物线22x y =的焦点坐标为10,2⎛⎫⎪⎝⎭;C 错; D 选项,若1a c ==,2b d ==-,则满足,a b c d >>,但不满足ac bd >;D 错. 故选:BCD. 9.ACD【解析】9.取0n =可判断A 选项的正误;利用相等向量的概念可判断B 选项的正误;利用空间向量基底的概念可判断C 、D 选项的正误.对于A 选项,若0n =,对于非零向量m 、p ,则//m n ,//n p ,但m 与n 不一定共线,A 选项错误;对于B 选项,对于空间向量m 、n 、p ,满足m n =,n p =,则m p =,B 选项正确; 对于C 选项,在空间中,任意不共面的三个非零向量为空间向量的一个基底,C 选项错误; 对于D 选项,在空间中,任意不共线的三个向量可以共面,不一定可构成空间向量的一个基底,D 选项错误. 故选:ACD. 10.CD【解析】10.先由抛物线方程得到焦点坐标,设直线l 的方程为()1y k x =-,()11,A x y ,()22,B x y ,联立直线与抛物线方程,根据韦达定理,以及题中条件,求出k =. 由抛物线2:4C y x =可得,其焦点为()1,0F ,由题意,设直线l 的方程为()1y k x =-,()11,A x y ,()22,B x y , 由()214y k x y x⎧=-⎨=⎩消去y 得()2222240k x k x k -++=,则212221224421k x x k k x x ⎧++==+⎪⎨⎪=⎩,()224224416160k k k ∆=+-=+>, 根据抛物线的定义可得,11AF x =+,21BF x =+, 因为3AF BF =,所以()12131x x +=+,则1213322x x x =+=+,解得13x =或11x =-(根据抛物的方程,负值舍去);所以213x =,所以12210423x x k+==+,解得k = 即直线l的方程为1)y x =-. 故选:CD. 11.ACD【解析】11.根据空间几何体的性质,以及空间线面之间的关系,逐个分析判断即可得解.对A ,由正四面体ABCD ,可得=AB AC BC =,所以OA OB OC ==, 所以O ABC -是正三棱锥,故A 正确; 对B ,如图补全图形,置正四面体ABCD 于一个正方体中, 可得//OB AE ,而AE 和平面ACD 相交,故B 错误; 对C ,直线AD 与 OB 所成的角,由//OB AE 即直线AE 与AD 所成的角,是45°,故C 正确;对D ,二面角 D OB A --,即平面OBD 于底面AOBE 所成角, 可得二面角的平面角为DBE ∠,故为45°,故D 正确. 故答案为:ACD12.24x y =【解析】12.由抛物线的几何性质,及焦点()0,1F ,可直接求得p ,确定出抛物线的开口方向,写出物线C 的标准方程;设()11,A x y ,()22,B x y ,直线AB 的方程为1y kx =+,将直线方程与抛物线方程联立,根据韦达定理,再结合弦长公式求出12x x -,分别求出M x 和N x ,即可表示出MN ,最后利用换元法和二次函数,即可求得MN 最小值. 由题意可设抛物线C 的方程为()220x py p =>,则12p=,解得2p =, 故抛物线C 的方程为24x y =;设()11,A x y ,()22,B x y ,直线AB 的方程为1y kx =+, 由214y kx x y=+⎧⎨=⎩消去y ,整理得2440x kx --=,所以124x x k +=,124x x =-, 从而有12x x -==由112y y x x y x ⎧=⎪⎨⎪=-⎩解得点M 的横坐标为1121111122844M x x x x x y x x ===---, 同理可得点N 的横坐标为284N x x =-,所以284M N MN x x =-=--==,令43k t -=,0t ≠,则34t k +=, 当0t >时,N M => 当0t <时,5M N ==≥,综上所述,当253t =-,即43k =-时,MN 故答案为:24x y=13.00,x ∃>使得00+11x x e ≤()【解析】13.对于全称命题的否定,要改为特称命题,即∀→∃ ,所以0:0p x ⌝∃> ,有()0911xx e +≤ ,故答案为00x ∃> ,有()0011x x e +≤ .14.-1【解析】14.利用空间向量基本定理,及向量共面的条件,即可得到结论. ∵OA →=2x •BO →+3y •CO →+4z •DO →, ∴OA →=−2x •OB →−3y •OC →−4z •OD →,∵O 是空间任意一点,A 、B 、C 、D 四点满足任三点均不共线,但四点共面 ∴﹣2x ﹣3y ﹣4z =1∴2x +3y +4z =﹣1 故答案为:﹣1 15.3450x y +-=【解析】15.设点()11,A x y 、()22,B x y ,利用点差法可求得直线l 的方程,进而可得出直线l 的方程. 设点()11,A x y 、()22,B x y ,若直线l x ⊥轴,则A 、B 两点关于x 轴对称,则点P 在x 轴上,不合乎题意.由于()3,1P -为线段AB 的中点,则12123212x x y y+⎧=⎪⎪⎨+⎪=-⎪⎩,可得121262x x y y +=⎧⎨+=-⎩, 将点A 、B 的坐标代入双曲线的方程可得221122221414x y x y ⎧-=⎪⎪⎨⎪-=⎪⎩,上述两式相减得222212124x x y y -=-,可得2212221214y y x x -=-,即1212121214y y y y x x x x -+⋅=-+, 所以,12121134y y x x -⎛⎫⋅-= ⎪-⎝⎭,所以,直线l 的斜率为121234y y x x -=--,因此,直线l 的方程为()3134y x +=--,即3450x y +-=. 故答案为:3450x y +-=. 16.(]0,2【解析】16.分别求解绝对值不等式和含参一元二次不等式,结合,p q 命题对应x 的取值范围,根据充分不必要条件,求得集合之间的包含关系,再由集合的包含关系,求参数范围即可. 因为3:05xp x ->+等价于:53p x -<<; 又()22:2100q x x m m --<+>等价于()()():1001q x m x m m -+-<>-,即():110q m x m m -<<+>,由p ⌝是q ⌝的充分而不必要条件,可得:q 是p 的充分不必要条件,即集合()1,1m m -+是集合()5,3-的真子集,故1513m m -≥-⎧⎨+≤⎩(等号不能同时取得),解得2m ≤,又因为0m >,m ∴的取值范围为(]0,2. 17.(1)221259x y +=;(2)2212575y x -=【解析】17.(145||4x =-,化简即可求得其方程; (2)设双曲线的方程为221(0)mx ny mn -=>,代入A ,B 的坐标,解方程即可得到所求双曲线的方程;(1)因为点(,)M x y 与定点(4,0)F 的距离和它到定直线25:4l x =的距离的比是常数4545||4x =-. 将上式两边平方,并化简,得22925225x y +=.即221259x y +=. (2设双曲线的方程为221(0)mx ny mn -=>,将点A ,B 坐标代入可得9281m n -=,且72491m n -=, 求得175m =-,125n =-. ∴双曲线的标准方程为2212575y x -=.18.(1)见解析;(2【解析】18.试题分析:如图,以点D 为坐标原点,向量1,,DA DC DD 分别作为,,x y z 轴的正方向,建立空间直角坐标系.设正方体棱长为2. (1)设平面ADE 的法向量()000,,n x y z =,由0{ 0n DA n DE ⋅=⋅=得n ,再由1n D F ,即可证得;(2)由111cos ,EF BD EF BD EF BD ⋅=⋅计算得异面直线EF 与1BD 所成角的余弦值.试题解析:如图,以点D 为坐标原点,向量1,,DA DC DD 分别作为,,x y z 轴的正方向,建立空间直角坐标系.设正方体棱长为2,则()0,0,0D , ()2,0,0A , ()2,2,0B , ()10,0,2D ,()2,2,1E , ()0,1,0F .(1)设平面ADE 的法向量()000,,n x y z =,则0{ 0n DA n DE ⋅=⋅=,即000020,{220x x y z =++=,不妨取()0,1,2n =-∵()10,1,2D F =-,∴n 1D F ,即1D F ⊥平面ADE ; (2)∵()()12,1,1,2,2,2EF BD =---=--, ∴1112cos ,3EF BD EF BD EF BD ⋅==⋅,即异面直线EF 与1BD . 19.(1)2214x y +=;(2)1m=±.【解析】19.(1)通过短轴的一个端点到右焦点的距离可知2a =,进而利用离心率的值计算即得结论; (2)设()11,A x y ,()22,.B x y联立直线与椭圆方程,消去y 得到关于x 的一元二次方程,得到根与系数的关系,再利用弦长公式即可得出.解:(1)由题意可得222222a b c c a ⎧=+=⎪⎨=⎪⎩, 解得:2a =,1b =,∴椭圆C 的方程为2214x y +=; (2)设()11,A x y ,()22,.B x y联立221244y x m x y ⎧=+⎪⎨⎪+=⎩,得222220x mx m ++-=,122x x m ∴+=-,21222x x m =-,122AB x ∴=-==解得1m =±.20.(1)证明见详解;(2)证明见详解;(3)存在,且23AM =-.【解析】20.(1) 连接1AD ,交1A D 于点O ,由EO 为1ABD 的中位线,以及线面平行的判定定理,即可证明1//BD 平面1A DE ;(2)由条件可得可得1D D ⊥平面ABCD ,以点D 为原点,DA ,DC ,1DD 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,求出11D E DA ⋅,即可证明结论成立; (3)设()()001,,002M y y ≤≤,根据(2)中建立的空间直角坐标系,求出两平面的法向量,根据向量夹角公式,由题中条件,即可求出结果. (1)证明:连接1AD ,交1A D 于点O , ∵四边形11AA D D 为正方形,∴O 是1AD 的中点,∵点E 为AB 的中点,连接OE .∴EO 为1ABD 的中位线,∴1//EO BD , 又∵1BD ⊄平面1A DE ,OE ⊂平面1A DE , ∴1//BD 平面1A DE ;(2)由正方形11AA D D 与矩形ABCD 所在平面互相垂直,可得1D D ⊥平面ABCD , 以点D 为原点,DA ,DC ,1DD 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则()0,0,0D ,()0,2,0C ,()11,0,1A ,()10,0,1D ,()1,2,0B ,()1,1,0E . 由题意得()11,1,1D E =-,()11,0,1DA =, ()111110110D E DA ⋅=⨯+⨯+-⨯=,所以11D E DA ⊥,故11D E A D ⊥.(3)解:假设在线段AB 上是否存在点M ,由题意可设()()001,,002M y y ≤≤, 因为()01,2,0MC y =--,()10,2,1D C =-, 设平面1D MC 的一个法向量为()1,,v x y z =,则1110v MC v D C ⎧⋅=⎪⎨⋅=⎪⎩,得()02020x y y y z ⎧-+-=⎨-=⎩, 取1y =,则()102,1,2v y =-是平面1D MC 的一个法向量, 而平面MCD 的一个法向量为()10,0,1v =, 要使二面角1D MC D --的大小为6π, 则(121212coscos ,62v v v v v v π⋅=<>===, 解得)002023y y =-≤≤. 所以当23AM =-时,二面角1D MC D --的大小为6π.21.(1)22163x y +=;(2)132.【解析】21.(1)根据焦点坐标得出c 的值,由223b a =-,将点(2,1)M -代入椭圆的方程,解出26a =,即可得出椭圆Γ的标准方程;(2)设直线AB 的方程为(1)y k x =-,将其代入椭圆方程,由韦达定理以及向量的数量积公式得出2(152)210t k k t -+--=,利用判别式法得出2213160t t --,最后由韦达定理得出12t t +的值.(1)由椭圆22221x y a b +=的右焦点为,知223a b -=,即223b a =-,则222213x y a a +=-,23a >. 又椭圆过点(2,1)M -,∴224113a a +=-,又23a >,∴26a =. ∴椭圆Γ的标准方程为22163x y +=.(2)设直线AB 的方程为(1)y k x =-,()11,A x y ,()22,B x y由221,63(1)x y y k x ⎧+=⎪⎨⎪=-⎩得2222(1)6x k x +-=,即()2222124260k x k x k +-+-= ∵点(1,0)N 在椭圆内部,∴0∆>∴由韦达定理可得:212221224122621k x x k k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩(*)则()()()()12122211t MA MB x x y y =⋅=+++--()()()1122212411x x x x k k x k x k =++++--⋅--()()()22212121225k x x k k x x k k =++--++++()()222222226412252121k k t k k k k k k k -∴=+⋅+--⋅+++++将(*)代入上式得:22152121k k t k +-=+,即2(152)210t k k t -+--=,R k ∈,则2124(152)(1)0t t ∆=+-+≥∴(215)(1)10t t -+-≤,即2213160t t --≤ 由题意知1t ,2t 是2213160t t --=的两根 ∴12132t t +=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年南平市高二数学上期中模拟试卷附答案一、选择题1.如图所示,墙上挂有边长为a 的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,半径为2a的圆弧,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则它击中阴影部分的概率是 ( )A .18π-B .4π C .14π-D .与a 的值有关联2.统计某校n 名学生的某次数学同步练习成绩,根据成绩分数依次分成六组:[)[)[)[)[)[]90,100,100,110,110,120,120,130,130,140,140,150,得到频率分布直方图如图所示,若不低于140分的人数为110.①0.031m =;②800n =;③100分以下的人数为60;④分数在区间[)120,140的人数占大半.则说法正确的是( )A .①②B .①③C .②③D .②④3.《九章算术》是我国古代内容极为丰富的一部数学专著,书中有如下问题:今有女子善织,日增等尺,七日织28尺,第二日,第五日,第八日所织之和为15尺,则第十五日所织尺数为( )A .13B .14C .15D .164.我国数学家陈景润在哥德巴赫猜想的研究中做出了重大贡献,哥德巴赫猜想是:“任一大于2的偶数都可以写成两个质数之和”,如32=13+19.在不超过32的质数中,随机选取两个不同的数,其和等于30的概率为( ) A .111B .211C .355D .4555.如图,是民航部门统计的某年春运期间12个城市出售的往返机票的平均价格以及相比上年同期变化幅度的数据统计图表,根据图表,下面叙述不正确的是( )A .深圳的变化幅度最小,北京的平均价格最高.B .深圳和厦门的平均价格同去年相比有所下降.C .平均价格从高到低居于前三位的城市为北京、深圳、广州.D .平均价格的涨幅从高到低居于前三位的城市为天津、西安、厦门.6.远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,如图所示的是一位母亲记录的孩子自出生后的天数,在从右向左依次排列的不同绳子上打结,满七进一,根据图示可知,孩子已经出生的天数是( )A .336B .510C .1326D .36037.运行该程序框图,若输出的x 的值为16,则判断框中不可能填( )A .5k ≥B .4k >C .9k ≥D .7k >8.某高校大一新生中,来自东部地区的学生有2400人、中部地区学生有1600人、西部地区学生有1000人.从中选取100人作样本调研饮食习惯,为保证调研结果相对准确,下列判断正确的有( )①用分层抽样的方法分别抽取东部地区学生48人、中部地区学生32人、西部地区学生20人;②用简单随机抽样的方法从新生中选出100人; ③西部地区学生小刘被选中的概率为150; ④中部地区学生小张被选中的概率为15000A .①④B .①③C .②④D .②③9.某次测试成绩满分是为150分,设n 名学生的得分分别为()12,,,1n i a a a a N i n ∈≤≤L ,()1150k b k ≤≤为n 名学生中得分至少为k 分的人数.记M 为n 名学生的平均成绩,则( ) A .12150b b b M n ++=LB .12150150b b b M ++=LC .12150b b b M n++>LD .12150150b b b M ++>L10.若同时掷两枚骰子,则向上的点数和是6的概率为( ) A .16B .112C .536D .51811.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是 A .甲地:总体均值为3,中位数为4 B .乙地:总体均值为1,总体方差大于0 C .丙地:中位数为2,众数为3D .丁地:总体均值为2,总体方差为312.某程序框图如图所示,该程序运行后输出的k 的值是( )A .4B .5C .6D .7二、填空题13.有一批产品,其中有2件次品和4件正品,从中任取2件,至少有1件次品的概率为______.14.某人向边长分别为5,12,13的三角形区域内随机丢一粒芝麻,假设芝麻落在区域内的任意一点是等可能的,则其恰落在离三个顶点距离都大于2的地方的概率为__ . 15.在区间[]3,3-上随机取一个数x ,使得11x +≥成立的概率为______.16.如图程序框图的算法思路源于我国古代数学名著《九章算术》中“更相减损术”.执行该程序框图,若输入的a ,b 分别为98、63,则输出的a =_______.17.甲乙两人一起去游“西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是________.18.若按右上图所示的程序框图运行后,输出的结果是63,则判断框中的整数M 的值是__________。
19.某学生每次投篮的命中概率都为40%.现采用随机模拟的方法求事件的概率:先由计算器产生0到9之间的整数值随机数,制定1、2、3、4表示命中,5、6、7、8、9、0表示不命中;再以每3个随机数为一组,代表三次投篮的结果.经随机模拟产生如下20组随机数:989 537 113 730 488 556 027 393 257 431 683 569 458 812 932 271 925 191 966 907,据此统计,该学生三次投篮中恰有一次命中的概率约为__________.20.甲、乙、丙三人进行传球练习,共传球三次,球首先从甲手中传出,则第3次球恰好传回给甲的概率是________.三、解答题21.已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(I )应从甲、乙、丙三个部门的员工中分别抽取多少人?(II )若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i )用X 表示抽取的3人中睡眠不足..的员工人数,求随机变量X 的分布列与数学期望; (ii )设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A 发生的概率.22.为了调查某大学学生在周日上网的时间,随机对100名男生和100名女生进行了不记名的问卷调查,得到了如下的统计结果: 表1:男生上网时间与频数分布表: 上网时间(分钟) [)30,40[)40,50[)50,60[)60,70[)70,80人数525302515表2:女生上网时间与频数分布表: 上网时间(分钟) [)30,40[)40,50[)50,60[)60,70[)70,80人数1020402010(1)若该大学共有女生750人,试估计其中上网时间不少于60分钟的人数;(2)完成表3的22⨯列联表,并回答能否有90%的把握认为“学生周日上网时间与性别有关”?(3)从表3的男生中“上网时间少于60分钟”和“上网时间不少于60分钟”的人数中用分层抽样的方法抽取一个容量为5的样本,再从中任取两人,求至少有一人上网时间超过60分钟的概率.表3:上网时间少于60分钟 上网时间不少于60分钟 合计男生 女生 合计附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++,()20P K k ≥ 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 0k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.82823.己知集合()[][]{},0,2,1,1M x y x y =∈∈-.(1)若, x y M ∈,且, x y 为整数,求0x y +≥的概率; (2)若,x y M ∈,求0x y +≥的概率.24.高一(1)班参加校生物竞赛学生的成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:(1)求高一(1)班参加校生物竞赛的人数及分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;(2)若要从分数在[80,100]之间的学生中任选2人进行某项研究,求至少有1人分数在[90,100]之间的概率.25.为了调查教师对教育改革认识水平,现从某市年龄在[]20,45的教师队伍中随机选取100名教师,得到的频率分布直方图如图所示,若从年龄在[)[)[]30,35,35,40,40,45中用分层抽样的方法选取6名教师代表.(1)求年龄在[)35,40中的教师代表人数;(2)在这6名教师代表中随机选取2名教师,求在[)35,40中至少有一名教师被选中的概率.26.在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱. (1)摸出的3个球为白球的概率是多少?(2)摸出的3个球为2个黄球1个白球的概率是多少?(3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】试题分析:本题考查几何概型问题,击中阴影部分的概率为222()214a a a ππ-=-.考点:几何概型,圆的面积公式. 2.B解析:B 【解析】 【分析】根据频率分布直方图的性质和频率分布直方图中样本估计总体,准确运算,即可求解. 【详解】由题意,根据频率分布直方图的性质得10(0.0200.0160.0160.0110.006)1m +++++=,解得0.031m =.故①正确;因为不低于140分的频率为0.011100.11⨯=,所以11010000.11n ==,故②错误; 由100分以下的频率为0.00610=0.06⨯,所以100分以下的人数为10000.06=60⨯,故③正确;分数在区间[120,140)的人数占0.031100.016100.47⨯+⨯=,占小半.故④错误. 所以说法正确的是①③. 故选B. 【点睛】本题主要考查了频率分布直方图的应用,其中解答熟记频率分布直方图的性质,以及在频率分布直方图中,各小长方形的面积表示相应各组的频率,所有小长方形的面积的和等于1,着重考查了分析问题和解答问题的能力,属于基础题.3.C解析:C 【解析】 【分析】 【详解】由题意得等差数列{}n a 中258715,28a a a S ++== 求15a25855153155a a a a a ++=⇒=⇒=1774428772845412a a S a a d +=⇒⨯==⇒=∴=-= 154(154)1415415a a ∴=+-⨯=+-=,选C.4.C解析:C 【解析】 【分析】利用列举法求得基本事件的总数,再得出选取两个不同的数且和等于30,所包含的基本事件的个数,利用古典概型的概率计算公式,即可求解. 【详解】由题意,不超过32的质数有2,3,5,7,11,13,17,19,23,29,31,共有11个, 其中随机选取两个不同的数且和等于30的有30=7+23=11+19=13+17,共有3组,所以所求概率为2113355C =, 故选:C. 【点睛】本题主要考查了古典概型及其概率的计算,其中解答中利用列举法求得基本事件的总数是解答的关键,着重考查了推理与计算能力.5.D解析:D 【解析】 【分析】根据折线的变化率,得到相比去年同期变化幅度、升降趋势,逐一验证即可. 【详解】由图可知,选项A 、B 、C 都正确,对于D ,因为要判断涨幅从高到低,而不是判断变化幅度,所以错误. 故选D . 【点睛】本题考查了条形统计图的应用,从图表中准确获取信息是关键,属于中档题.6.B解析:B 【解析】试题分析:由题意满七进一,可得该图示为七进制数, 化为十进制数为321737276510⨯+⨯+⨯+=,故选B.考点:1、阅读能力及建模能力;2、进位制的应用.7.D解析:D 【解析】运行该程序,第一次,1,k 2x ==, 第二次,2,k 3x ==, 第三次,4,k 4x ==, 第四次,16,k 5x ==, 第五次,4,k 6x ==, 第六次,16,k 7x ==, 第七次,4,k 8x ==, 第八次,16,k 9x ==, 观察可知,若判断框中为5k ≥.,则第四次结束,输出x 的值为16,满足; 若判断框中为4k >.,则第四次结束,输出x 的值为16,满足;若判断框中为9k ≥.,则第八次结束,输出x 的值为16,满足; 若判断框中为7k >.,则第七次结束,输出x 的值为4,不满足; 故选D.8.B解析:B 【解析】分析:由题意逐一考查所给的说法是否正确即可. 详解:逐一考查所给的说法:①由分层抽样的概念可知,取东部地区学生2400100240016001000⨯=++48人、中部地区学生1600100240016001000⨯=++32人、西部地区学生1000100240016001000⨯=++20人,题中的说法正确;②新生的人数较多,不适合用简单随机抽样的方法抽取人数,题中的说法错误; ③西部地区学生小刘被选中的概率为100124001600100050=++,题中的说法正确;④中部地区学生小张被选中的概率为100124001600100050=++,题中的说法错误;综上可得,正确的说法是①③. 本题选择B 选项.点睛:本题主要考查分层抽样的概念,简单随机抽样的特征,古典概型概率公式等知识,意在考查学生的转化能力和计算求解能力.9.A解析:A 【解析】 【分析】由于选项中必有一项正确,故本选择题利用特殊法解决.设2n =,这2名学生的得分分别为150,150.则这2名学生中得分至少为(1150)k k 剟分的人数分别为:2,2,⋯,2,2.一共有150个“2”,计算12150b b b n++⋯+的值,再对照选项即可得到答案.【详解】 利用特殊法解决.假设2n =,这2名学生的得分分别为150,150. 则这2名学生中得分至少为1分的人数分别为:12b =, 这2名学生中得分至少为2分的人数分别为:22b =, 这2名学生中得分至少为3分的人数分别为:32b =,⋯这2名学生中得分至少为150分的人数分别为:1502b =, 即这2名学生中得分至少为(1150)k k 剟分的人数k b 分别为: 2,2,⋯,2,2.一共有150个“2”,从而得k 分的同学会被记k 次,所有k b 的和恰好是所有人得分的总和, 即12112k k b b b b a a -++⋯++=+, 从而121502222215015022b b b n ++⋯++++⋯+⨯===.12150222221502150150150b b b ++⋯++++⋯+⨯===.对照选项,只有(A )正确. 故选:A . 【点睛】本题主要考查众数、中位数、平均数、数列求和等基础知识,考查运算求解能力,考查特殊化思想思想、化归与转化思想.属于基础题.10.C解析:C 【解析】由图表可知,点数和共有36种可能性,其中是6的共有5种,所以点数和是6的概率为536,故选C.点睛:本题考查古典概型的概率,属于中档题目.具有以下两个特点的概率模型称为古典概率模型,简称古典概型.(1)试验中所有可能出现的基本事件只有有限个.(2)每个基本事件出现的可能性相等.如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是;如果某个事件A 包括的结果有m 个,那么事件A 的概率P (A )=.11.D解析:D 【解析】试题分析:由于甲地总体均值为,中位数为,即中间两个数(第天)人数的平均数为,因此后面的人数可以大于,故甲地不符合.乙地中总体均值为,因此这天的感染人数总数为,又由于方差大于,故这天中不可能每天都是,可以有一天大于,故乙地不符合,丙地中中位数为,众数为,出现的最多,并且可以出现,故丙地不符合,故丁地符合.考点:众数、中位数、平均数、方差12.A解析:A 【解析】 【分析】根据框图,模拟计算即可得出结果. 【详解】程序执行第一次,0021s =+=,1k =,第二次,1=1+23,2S k ==,第三次,33211,3S k =+==,第四次,11112100,4S k =+>=,跳出循环,输出4k =,故选A. 【点睛】本题主要考查了程序框图,循环结构,属于中档题.二、填空题13.【解析】【分析】利用古典概型概率公式求出事件至少有件次品的对立事件全都是次品的概率再利用对立事件的概率公式可计算出所求事件的概率【详解】记事件至少有件次品则其对立事件为全都是次品由古典概型的概率公式解析:56. 【解析】 【分析】利用古典概型概率公式求出事件“至少有1件次品”的对立事件“全都是次品”的概率,再利用对立事件的概率公式可计算出所求事件的概率. 【详解】记事件:A 至少有1件次品,则其对立事件为:A 全都是次品,由古典概型的概率公式可得()222416C P A C ==,()()151166P A P A ∴=-=-=.因此,至少有1件次品的概率为56,故答案为56. 【点睛】本题考查古典概型概率公式以及对立事件概率的计算,在求事件的概率时,若问题中涉及“至少”,可利用对立事件的概率进行计算,可简化分类讨论,考查分析问题的能力和计算能力,属于中等题.14.【解析】由题意可知与三个顶点的距离都小于2的区域的面积恰好为一个半径为2的半圆的面积即所以与三个顶点的距离都大于2的区域的面积由几何概型的概率公式知其恰落在与三个顶点的距离都大于2的地方的概率为答案解析:1515π- 【解析】由题意可知,与三个顶点的距离都小于2的区域的面积恰好为一个半径为2的半圆的面积,即2π,所以与三个顶点的距离都大于2的区域的面积302π-。