2015-2016年四川省乐山市峨眉山市博睿特外国语学校初三上学期期末数学试卷及参考答案

合集下载

(完整word版)2015-2016学年度上学期期末质量检测九年级数学试卷

(完整word版)2015-2016学年度上学期期末质量检测九年级数学试卷

2015-2016学年度上学期期末质量检测九年级数学试卷说 明:1.本卷共六大题,全卷共 24题,满分120分,考试时间为120分钟2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答, 否则不给分c +d b c B . cCD.—221.下列各数中,为有理数的是( ▲ )A . nB . \ 3C.3.14D .—、32.已知5个正数a , b , c , d , e ,且 a v b v c v dv e ,则新一组数据 的中位数是(▲)、选择题(本大题共 6小题,每小题3分,共18分)每题只有一个正确的选项0,a ,b , c , d ,e3.某几何体的主视图和左视图完全一样如图所示, 则该几何体的俯视图不可能是(▲)A .4.关于x 的一元 A . 1Z I C.次不等式 x — b v 0恰有两个正整数解,则 B . 2.5C. 2D. 5.如图,△ ABC 中, BD=5, DC=2,AE 交BC 于点D ,DE 的长等于(▲AD=3,10 3b 的值可能是(3.56. 如图是二次函数 ①二次三项式 ax ③ 一元二次方程④ 使y<3成立的x 的取值范围是x 淘. 2y 二ax bx c 的图象,下列结论:2■ bx ' c 的最大值为 4 :②4a + 2b + c v 0;2ax bx 1的两根之和为一2;其中正确的个数有( A . 1 个 B▲) .2个 C8个小题,每小题.3个 D . 4个 3分,共24分) 8•点A (m,m - 3)在第一象限,则实数m 的取值范围为 ____ ▲9.已知:二均为锐角,且sin 。

-1 2(tan -1)^0,则: 二 ▲:B.O D. ▲)10.如图,直线a // b,直线l与a相交于点P,与直线b相交于点Q,且PM垂直于I,若/仁58°则/ 2= ▲;11. 从—1, 0, 2,这三个数中,任取两个数分别作为系数a, b代入ax2•bx::;,2 = 0中.在所有可能的结果中,任取一个方程为有实数解的一元二次方程的概率是▲; 12. 如图在平面直角坐标系中,点A在抛物线y = x2 - 4x • 6上运动.过点A作AC丄x轴于点C,以AC为对角线作矩形ABCD,则对角线BD的最小值为▲;613. 如图,已知点A在双曲线y 上,过点A作AC丄x轴于点C, OC=3,线段0A的x垂直平分线交0C于点8,则厶ABC的周长为▲;14. 菱形ABCD的对角线AC=6 cm,BD=4 cm,以AC为边作正方形ACEF,贝U BF长为三、解答题(本大题共4小题,每小题各6分,共24分)15.计算:(—73 $ +(J2015 — J2016 X J2016 + J2015 )—2誓—tan”45.16. ( 1)如图,六边形ABCDEF满足:AB£EF,AF丄CD.仅用无刻度的直尺画出一条直线I,使得直线l能将六边形ABCDEF的面积给平分;(2)假设你所画的这条直线l与六边形ABCDEF的AF边与CD边(或所在的直线)分别交于点G与点H,则下列结论:①直线I还能平分六边形ABCDEF的周长;②点G与点H恰为AF边与CD边中点;③AG=CH ,FG=DH ;④AG=DH,FG=CH .其中,正确命题的序号为▲.217.已知关于x的一元二次方程x -(k-2)x,2k=0 .(1 )若x=1是这个方程的一个根,求k的值和它的另一根;2(2)当k=—1时,求X j -3X2的值.18.在不透明的袋子中有四张标着数字1, 2, 3,4的卡片,这些卡片除数字外都相同•甲同学按照一定的规则抽出两张卡片,并把卡片上的数字相加•如图是他所画的树状图的一部分.(1 )帮甲同学完成树状图;(2)求甲同学两次抽到的数字之和为偶数的概率.第18题图四、(本大题共4小题,每小题各 8分,共32分) 19.如图,四边形 ABCD 为菱形,M 为BC 上一点, 且/ABM=2/ BAM . (1) 求证:AG=BG ;(2) 若点M 为BC 的中点,且S B MG =1 , 试求△ ADG的面积.20.据报道,历经一百天的调查研究,景德镇 PM 2.5源解析已经通过专家论证.各种调查显示,机动车成为 PM 2.5的最大来源,一辆车每行驶 20千米平均向大气里排放 0.035 千克污染物.校环保志愿小分队从环保局了解到景德镇 100天的空气质量等级情况,并制成统计图和表:空气质量等级优 良轻度污染 中度污染 重度污染 严重污染 天数(天)10a 12 825 b(2)彤彤是环保志愿者,她和同学们调查了 机动车每天的行驶路程,了解到每辆车 每天平均出行25千米.已知景德镇市 2016年机动车保有量已突破 50万辆, 请你通过计算,估计 2016年景德镇市 一天中出行的机动车至少要向大气里 排放多少千克污染物?21.如图ABCD 为正方形,点 A 坐标为(0, 1),点B 坐标为(k y的图象经过点 C , 一次函数y=ax + b 的图象经过 A 、x开始第一次 1234 /N 第二次2 3 4第19题图2016年景德镇市100天空气质量等级天数统计表(1)表中a= ▲, b= ▲ ,图中严重污染部分对应的圆心角n= ▲2016年景德镇市100天空气质量等级天数统计图第20题图(1) 求反比例函数与一次函数的解析式;(2) 若点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.22.小敏将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°,感觉最舒适(如图1),侧面示意图为图2.使用时为了散热,她在底板下垫入散热架ACO 后,电脑转到AO B位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O'C丄OA 于点C, O' C=2cm.(1)求/ CAO的度数;(2)显示屏的顶部B'比原来升高了多少?第22题图五、(本大题共1小题,每小题10分,共10分)23.如图,抛物线y = -x2• bx • c交x轴于点A (- 3, 0)和点B,交y轴于点C (0, 3).(1) 求抛物线的函数表达式;(2) 若点P在抛物线上,且S AOP =4S.BOC,求点P的坐标;(3) 如图b,设点Q是线段AC上的一动点,作DQ丄x轴,交抛物线于点D, 求线段DQ长度的最大值.六、(本大题共1小题,每小题12分,共12分)M , N分别是AD , CD的中点,连接24.如图,在Rt△ ABC中,/ ACB=90°, AC=6, BC=8,点D以每秒1个单位长度的速度由点A向点B匀速运动,到达B点即停止运动, MN,设点D运动的时间为t.(1) 判断MN与AC的位置关系;(2) 求点D由点A向点B匀速运动的过程中,线段MN所扫过区域的面积;(3 )若厶DMN是等腰三角形,求t的值.2016学年第一次质量检测试卷九年级数学答案、选择题(本大题共 6小题,每小题3分,共18分)• x f - 3x 2 = -3x 4 2 - 3x 2 二-3(x 1 x 2) 2=11.(1 )补全树状图如图所示:.一…第一次 1 2/N z1\第二次 2 3 41 3 4(2)由树状图得:共有12种情况,两次抽到的数字之和为偶数的有四、(本大题共4小题,每小题各 8分,共32分) 19. (1)证明:•••四边形 ABCD 是菱形, •••/ABD = / CBD ,•••/ ABM =2 / BAM , ABD =Z BAM ,• AG=BG ;(2)解:T AD // BC ,ADG MBG ,•••点M 为BC 的中点, •竺=2,BM故P (两次抽到的数字之和为偶数)4 = 112 3ii.12. ____ 2 13.5 ____ 14.4小题,每小题各6分,共24分)15解原=2 .16解: (1) 如图;(2) ③. 17解: (1)k=-3,另一根为-6;(2) 当k= - 1时,方程变形为x 2 3x 2 =0 ,_3 X i18.解: 4种,• AG ADGM " BM32° 、解答2二 X i• BMG =1, 二 S A ADG =4.20.解:(1) a=25, b=20, c=72;答:2016年景德镇市一天中出行的机动车至少要向大气里排放21.解:(1 )•••点A 的坐标为(0, 1),点B 的坐标为(0,— 2),••• AB=1 + 2=3.即正方形 ABCD 边长为 3,二 C (3,— 2). 将C 点坐标代入反比例函数可得:k= — 6.丁八6•反比例函数解析式: y 二-丄.x(a ~ -1 将 C( 3, — 2), A ( 0, 1)代入 y=ax + b 解得:2 = 1• 一次函数解析式为 y=— x + 1.111•••—X 1 X | t |= 3 X 3,解得 t =± 18. • P 点坐标为(18, )或(-18,).23 322.解:(1 )• O' C 丄 OA 于 C , OA=OB=24cm ,OC OC 1 • sin / CAO = -------- = -------- = — ,•/ CAO=30OA OA2(2)过点B 作BD 丄AO 交AO 的延长线于 D .• O' C 丄 OA , / CAO=30°, •/ AO C=60° • / AO B' 120°, •/ AO B'+/ AO C = 180° .• O B + O' C — BD= 24 + 12— 12 3 =36 - 12上 3 . •显示屏的顶部 B'比原来升高(2)根据题意得:50 X 0.035 X 10000X=21875 (千克)20(2)设P(t, -• △ OAP 的面积恰好等于正方形 ABCD 的面积,21875千克污染物•/ sin / BOD =电OB '• BD=OB • sin / BOD ,• / AOB=120°, •/ BOD= 60• BD=OB • sin / BOD= 24 X了(36 —12、刁)cm.五、(本大题共1小题,每小题10分,共10分)2 223.解:(1 )将A (- 3, 0)、C (0, 3)代入y = —X +bx + c ,解得:y = —X — 2x + 3 .(2)由(1 )知,该抛物线的解析式为y = _x2_2x3,则易得B( 1, 0). 设P(x,-x2 -2x • 3 ),1 2 1•/ S^O^4S^OC,二{汇3汇一x _2x+3 = 4X[X1><3 . 解得:x - -1 或x - -1 二2'、2 .则符号条件的点P的坐标为(-1, 4)或(-1 2,2 , - 4)或(-1 -2、. 2 , - 4).(3)易知直线AC的解析式为y=x+ 3.设Q点坐标为(x, x+ 3) (- 3< x w 0),则D点坐标为(x, _ x^ 2x 3 ),2 23 2 9QD= ( -x - 2x 3 ) -( x + 3) =-x -3x=-(x )2 4•••当x =「3时,QD有最大值-.2 4六、(本大题共1小题,每小题12分,共12分)24. ( 1)v在厶ADC中,M是AD的中点,N是DC的中点,• MN // AC ;(2)如图1,分别取△ ABC三边AC, AB, BC的中点E, F , G,并连接EG, FG ,根据题意可得线段MN扫过区域的面积就是平行四边AFGE的面积,•/ AC=6, BC=8, • AE=3, GC=4,•••/ ACB=90 °二S 四边形AFGE=AE?GC=3 X 4=12.•线段MN所扫过区域的面积为12.1 1 1(3)据题意可知:MD=—AD , DN= —DC, MN = — AC=3 ,2 2 2①当MD=MN=3时,△ DMN为等腰三角形,此时AD=AC=6 , • t=6 ,1②当MD=DN时,AD=DC ,如图2,过点D作DH丄AC交AC于H ,则AH = — AC=32 ,-cosA= AD 爲• 3 6AD 一10 '解得AD=5 ,••• AD=t=5 .③如图3,当DN=MN=3时,AC=DC,连接MC,贝U CM丄AD , •/ coA=如一竺,即刎」,AC AB 6 1018 36AM= , • AD=t=2AM=^ ,5 5综上所述,当t=5或6或36时,△ DMN为等腰三角形.5DG。

2015-2016学年四川省乐山市峨眉山市博睿特外国语学校九年级(上)月考数学试卷(10月份)

2015-2016学年四川省乐山市峨眉山市博睿特外国语学校九年级(上)月考数学试卷(10月份)

2015-2016学年四川省乐山市峨眉山市博睿特外国语学校九年级(上)月考数学试卷(10月份)一、选择题:(本大题共10题,每题3分,共30分)1.(3分)(2015秋•峨眉山市校级月考)在实数范围内,有意义,则x的取值范围是()A.x≥1 B.x≥﹣1 C.x≤1 D.x≤﹣12.(3分)(2011•张家界)下列事件中,不是必然事件的是()A.对顶角相等B.内错角相等C.三角形内角和等于180° D.等腰梯形是轴对称图形3.(3分)(2013•市中区模拟)如图为正方体的一种平面展开图,各面都标有数字,则数字为1的面所对的面上的数字是()A.﹣3 B.﹣2 C.2 D.34.(3分)(2010•庆阳)如图,矩形ABOC的面积为3,反比例函数y=的图象过点A,则k=()A.3 B.﹣1.5 C.﹣3 D.﹣65.(3分)(2013•市中区模拟)若方程(m2﹣1)x2﹣mx﹣x+2=0是关于x的一元一次方程,则代数式|m﹣1|的值为()A.0 B.2 C.0或2 D.﹣26.(3分)(2015秋•峨眉山市校级月考)如图,为了测量河两岸A、B两点的距离,在与AB垂直的方向点C处测得AC=a,∠ACB=θ,那么AB等于()A.a•sinθB.a•tanθC.a•cosθD.7.(3分)(2013•市中区模拟)如图,一条流水生产线上L1、L2、L3、L4、L5处各有一名工人在工作,现要在流水生产线上设置一个零件供应站P,使五人到供应站P的距离总和最小,这个供应站设置的位置是()A.L2处B.L3处C.L4处 D.生产线上任何地方都一样8.(3分)(2013•市中区模拟)关于抛物线y=﹣(x+1)2﹣1,下列结论错误的是()A.顶点坐标为(﹣1,﹣1)B.当x=﹣1时,函数值y的最大值为﹣1C.当x<﹣1时,函数值y随x值的增大而减小D.将抛物线向上移1个单位,再向右移1个单位,所得抛物线的解析式为y=﹣x29.(3分)(2016•河南模拟)如图,在▱ABCD中,AB=4,AD=3,过点A作AE⊥BC于E,且AE=3,连结DE,若F为线段DE上一点,满足∠AFE=∠B,则AF=()A.2 B.C.6 D.210.(3分)(2013•市中区模拟)如图,已知A、B两点的坐标分别为(8,0)、(0,﹣6),⊙C的圆心坐标为(0,7),半径为5.若P是⊙C上的一个动点,线段PB与x轴交于点D,则△ABD面积的最大值是()A.63 B.31C.32 D.30二、填空题:(本大题共6题.每题3分,共18分)11.(3分)(2015•庆阳)的平方根是______.12.(3分)(2013•市中区模拟)课外活动中一些学生分组参加活动,原来每组8人,后来重新编组,每组12人,这样比原来减少2组,这些学生共有______人.13.(3分)(2015春•路桥区期末)如图,在▱ABCD中,AC与BD交于点O,点E是BC 边的中点,OE=1,则AB的长是______.14.(3分)(2013•市中区模拟)已知α、β是一元二次方程x2﹣2x﹣2=0的两实数根,则代数式(α﹣2)(β﹣2)=______.15.(3分)(2009•陕西)如图,在锐角△ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是______.16.(3分)(2010•南宁)如图所示,点A1,A2,A3在x轴上,且OA1=A1A2=A2A3,分别过点A1,A2,A3作y轴的平行线,与反比例函数y=(x>0)的图象分别交于点B1,B2,B3,分别过点B1,B2,B3作x轴的平行线,分别于y轴交于点C1,C2,C3,连接OB1,OB2,OB3,那么图中阴影部分的面积之和为______.三、(本大题共3题.每题9分,共27分)17.(9分)(2015秋•峨眉山市校级月考)计算:.18.(9分)(2015秋•峨眉山市校级月考)先化简,再求值:,其中x的值是方程x2+x=0的根.19.(9分)(2013•市中区模拟)已知:如图,∠BAC=∠ABD,AC=BD,点O是AD、BC 的交点,点E是AB的中点.证明:OE⊥AB.四、(本大题共3题.每题10分,共30分)20.(10分)(2015秋•峨眉山市校级月考)青岛国际帆船中心要修建一处公共服务设施,使它到三所运动员公寓A、B、C的距离相等.(不写作法,但要保留作图痕迹)(1)若三所运动员公寓A、B、C的位置如图所示,请你在图中确定这处公共服务设施(用点P表示)的位置;(2)若∠BAC=66°,求∠BPC.21.(10分)(2014•拱墅区二模)在一个不透明的盒子里,装有四个分别标有数字﹣1,﹣2,﹣3,﹣4的小球,它们的形状、大小、质地等完全相同.小强先从盒子里随机取出一个小球,记下数字为x;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y.(1)用列表法或画树状图表示出(x,y)的所有可能出现的结果;(2)求小强、小华各取一次小球所确定的点(x,y)落在一次函数y=x﹣1的图象上的概率;(3)求小强、小华各取一次小球所确定的数x、y满足y>x﹣1的概率.[选做题]从22、23两题中选做一题,如果两题都做,只以22题计分22.(10分)(2016•湖北模拟)如图,初三一班数学兴趣小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°.朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°,已知A点的高度AB为2米,台阶AC的坡度为1:(即AB:BC=1:),且B,C,E三点在同一条直线上,请根据以上条件求出树DE的高度.(测量器的高度忽略不计)23.(2015秋•峨眉山市校级月考)已知关于x的一元二次方程x2﹣2kx+k2+2=2(1﹣x)有两个实数根x1,x2.(1)求实数k的取值范围;(2)若方程的两实根x1,x2满足|x1+x2|=x1x2﹣1,求k的值.五、(本大题共2题.每题10分,共20分)24.(10分)(2013•市中区模拟)如图,AB是⊙O的直径,∠BAC=60°,P是OB上一点,过P作AB的垂线与AC的延长线交于点Q,D是PQ上一点,且DC=DQ.(1)求证:DC是⊙O的切线;(2)如果CD=AB,求BP:PO的值.25.(10分)(2016•井研县一模)如图,点A(﹣2,n),B(1,﹣2)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围;(3)若C是x轴上一动点,设t=CB﹣CA,求t的最大值,并求出此时点C的坐标.六、(本大题共2题.26题12分,27题13分,共25分)26.(12分)(2013•市中区模拟)如图甲,AB⊥BD,CD⊥BD,AP⊥PC,垂足分别为B、P、D,且三个垂足在同一直线上,我们把这样的图形叫“三垂图”.(1)证明:AB•CD=PB•PD.(2)如图乙,也是一个“三垂图”,上述结论成立吗?请说明理由.(3)已知抛物线与x轴交于点A(﹣1,0),B(3,0),与y轴交于点(0,﹣3),顶点为P,如图丙所示,若Q是抛物线上异于A、B、P的点,使得∠QAP=90°,求Q点坐标.27.(13分)(2015秋•峨眉山市校级月考)如图,矩形ABCD中,AB=6,BC=,点O 是AB的中点,点P在AB的延长线上,且BP=3.一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速运动,到达A点后,立即以原速度沿AO返回;另一动点F从P点发发,以每秒1个单位长度的速度沿射线PA匀速运动,点E、F同时出发,当两点相遇时停止运动,在点E、F的运动过程中,以EF为边作等边△EFG,使△EFG和矩形ABCD在射线PA的同侧.设运动的时间为t秒(t≥0).(1)当等边△EFG的边FG恰好经过点C时,求运动时间t的值;(2)在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,请直接写出S 与t之间的函数关系式和相应的自变量t的取值范围;(3)设EG与矩形ABCD的对角线AC的交点为H,是否存在这样的t,使△AOH是等腰三角形?若存在,求出对应的t的值;若不存在,请说明理由.2015-2016学年四川省乐山市峨眉山市博睿特外国语学校九年级(上)月考数学试卷(10月份)参考答案一、选择题:(本大题共10题,每题3分,共30分)1.B;2.B;3.A;4.C;5.A;6.B;7.B;8.C;9.D;10.B;二、填空题:(本大题共6题.每题3分,共18分)11.±2;12.48;13.2;14.-2;15.4;16.;三、(本大题共3题.每题9分,共27分)17.;18.;19.;四、(本大题共3题.每题10分,共30分)20.;21.;[选做题]从22、23两题中选做一题,如果两题都做,只以22题计分22.;23.;五、(本大题共2题.每题10分,共20分)24.;25.;六、(本大题共2题.26题12分,27题13分,共25分)26.;27.;。

九年级上册乐山数学期末试卷综合测试(Word版 含答案)

九年级上册乐山数学期末试卷综合测试(Word版 含答案)

九年级上册乐山数学期末试卷综合测试(Word 版 含答案)一、选择题1.如果两个相似多边形的面积比为4:9,那么它们的周长比为() A .2:3B .2:3C .4:9D .16:812.甲、乙两人参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( ) A .34B .14C .13D .123.若直线l 与半径为5的O 相离,则圆心O 与直线l 的距离d 为( )A .5d <B .5d >C .5d =D .5d ≤ 4.函数y=(x+1)2-2的最小值是( )A .1B .-1C .2D .-25.如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC 相似的是A .B .C .D .6.将二次函数22y x =的图象先向左平移4个单位长度,再向下平移1个单位长度后,所得新的图象的函数表达式为( ) A .()2241y x =-- B .()2241y x =+- C .()2241y x =-+D .()2241y x =++7.如图,四边形ABCD 中,90BAD ACB ∠=∠=,AB AD =,4AC BC =,设CD 的长为x ,四边形ABCD 的面积为y ,则y 与x 之间的函数关系式是( )A .2225y x = B .2425y x = C .225y x = D .245y x =8.如图,△ABC 中,∠BAC=90°,AB=3,AC=4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( )A .2B .54C .53D .759.如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,∠BAC=50°,则∠ADC 为( )A .40°B .50°C .80°D .100°10.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x k =-++上的三点,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .132y y y >>C .231y y y >>D .312y y y >> 11.二次函数y =3(x +4)2﹣5的图象的顶点坐标为( ) A .(4,5)B .(﹣4,5)C .(4,﹣5)D .(﹣4,﹣5)12.下列方程中,关于x 的一元二次方程是( ) A .2x ﹣3=xB .2x +3y =5C .2x ﹣x 2=1D .17x x+= 二、填空题13.如图所示,在正方形ABCD 中,G 为CD 边中点,连接AG 并延长交BC 边的延长线于E 点,对角线BD 交AG 于F 点.已知FG =2,则线段AE 的长度为_____.14.关于x 的一元二次方程20x a +=没有实数根,则实数a 的取值范围是 . 15.如图,点A 、B 分别在y 轴和x 轴正半轴上滑动,且保持线段AB =4,点D 坐标为(4,3),点A 关于点D 的对称点为点C ,连接BC ,则BC 的最小值为_____.16.如图是一个可以自由转动的转盘,转盘分成6个大小相同的扇形,颜色分为红、绿、黄三种颜色.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).转动一次转盘后,指针指向_____颜色的可能性大.17.设1x ,2x 是关于x 的一元二次方程240x x +-=的两根,则1212x x x x ++=______. 18.某一时刻,一棵树高15m ,影长为18m .此时,高为50m 的旗杆的影长为_____m . 19.方程22x x =的根是________.20.若32x y =,则x y y+的值为_____. 21.抛物线()2322y x =+-的顶点坐标是______.22.某小区2019年的绿化面积为3000m 2,计划2021年的绿化面积为4320m 2,如果每年绿化面积的增长率相同,设增长率为x ,则可列方程为______.23.如图,在ABC ∆中,3AB =,4AC =,6BC =,D 是BC 上一点,2CD =,过点D 的直线l 将ABC ∆分成两部分,使其所分成的三角形与ABC ∆相似,若直线l 与ABC ∆另一边的交点为点P ,则DP =__________.24.如图,四边形ABCD 是⊙O 的内接四边形,若∠C=140°,则∠BOD=____°.三、解答题25.如图,在Rt ABC ∆中,90C ∠=︒,6AC =,60BAC ∠=︒,AD 平分BAC ∠交BC 于点D ,过点D 作DEAC 交AB 于点E ,点M 是线段AD 上的动点,连结BM 并延长分别交DE ,AC 于点F 、G .(1)求CD的长.(2)若点M是线段AD的中点,求EFDF的值.(3)请问当DM的长满足什么条件时,在线段DE上恰好只有一点P,使得60CPG∠=︒?26.为了落实国务院的指示精神,地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y2x80=-+. 设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?27.如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的⊙O与边BC交于点D,与边AC交于点E,连接AD,且AD平分∠BAC.(1)试判断BC与⊙O的位置关系,并说明理由;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).28.如图,某数学兴趣小组为测量一棵古树BH和教学楼CG的高,先在点A处用高1.5米的测角仪测得古树顶端点H的仰角HDE∠为45︒,此时教学楼顶端点G恰好在视线DH 上,再向前走7米到达点B处,又测得教学楼顶端点G的仰角GEF∠为60︒,点A、B、C点在同一水平线上.(1)计算古树BH的高度;(2)计算教学楼CG的高度.(结果精确到0.1米,参考数据:2 1.4≈,3 1.7≈).29.如图所示,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与⊙C有怎样的位置关系,并给出证明.30.阅读理解:如图,在纸面上画出了直线l与⊙O,直线l与⊙O相离,P为直线l上一动点,过点P作⊙O的切线PM,切点为M,连接OM、OP,当△OPM的面积最小时,称△OPM为直线l与⊙O的“最美三角形”.解决问题:(1)如图1,⊙A的半径为1,A(0,2) ,分别过x轴上B、O、C三点作⊙A的切线BM、OP、CQ,切点分别是M、P、Q,下列三角形中,是x轴与⊙A的“最美三角形”的是.(填序号)①ABM;②AOP;③ACQ(2)如图2,⊙A的半径为1,A(0,2),直线y=kx(k≠0)与⊙A的“最美三角形”的面积为12,求k的值.(3)点B在x轴上,以B为圆心,3为半径画⊙B,若直线y=3x+3与⊙B的“最美三角形”的面积小于32,请直接写出圆心B的横坐标B x的取值范围.31.如图,AD、A′D′分别是△ABC和△A′B′C′的中线,且AB BD ADA B B D A D==''''''.判断△ABC和△A′B′C′是否相似,并说明理由.32.如图,直线y=x﹣1与抛物线y=﹣x2+6x﹣5相交于A、D两点.抛物线的顶点为C,连结AC.(1)求A,D两点的坐标;(2)点P为该抛物线上一动点(与点A、D不重合),连接PA、PD.①当点P的横坐标为2时,求△PAD的面积;②当∠PDA=∠CAD时,直接写出点P的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据面积比为相似比的平方即可求得结果.【详解】解:∵两个相似多边形的面积比为4:9,∴它们的周长比为23.故选B.【点睛】本题主要考查图形相似的知识点,解此题的关键在于熟记两个相似多边形的面积比为其相似比的平方.2.B解析:B【解析】试题解析:可能出现的结果的结果有1种,则所求概率1.4 P=故选B.点睛:求概率可以用列表法或者画树状图的方法.3.B解析:B【解析】【分析】直线与圆相离等价于圆心到直线的距离大于半径,据此解答即可.【详解】解:∵直线l与半径为5的O相离,∴圆心O与直线l的距离d满足:5d>.故选:B.【点睛】本题考查了直线与圆的位置关系,属于应知应会题型,若圆心到直线的距离为d ,圆的半径为r ,当d >r 时,直线与圆相离;当d =r 时,直线与圆相切;当d <r 时,直线与圆相交.4.D解析:D 【解析】 【分析】抛物线y=(x+1)2-2开口向上,有最小值,顶点坐标为(-1,-2),顶点的纵坐标-2即为函数的最小值. 【详解】解:根据二次函数的性质,当x=-1时,二次函数y=(x+1)2-2的最小值是-2. 故选D. 【点睛】本题考查了二次函数的最值.5.B解析:B 【解析】 【分析】根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解. 【详解】已知给出的三角形的各边AB 、CB 、AC 、2只有选项B 的各边为1B . 【点晴】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.6.B解析:B 【解析】 【分析】根据题意直接利用二次函数平移规律进而判断得出选项. 【详解】解:22y x =的图象向左平移4个单位长度,再向下平移1个单位长度,平移后的函数关系式是:()2241y x =+-. 故选:B . 【点睛】本题考查二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.7.C解析:C【解析】 【分析】四边形ABCD 图形不规则,根据已知条件,将△ABC 绕A 点逆时针旋转90°到△ADE 的位置,求四边形ABCD 的面积问题转化为求梯形ACDE 的面积问题;根据全等三角形线段之间的关系,结合勾股定理,把梯形上底DE ,下底AC ,高DF 分别用含x 的式子表示,可表示四边形ABCD 的面积. 【详解】作AE ⊥AC ,DE ⊥AE ,两线交于E 点,作DF ⊥AC 垂足为F 点,∵∠BAD=∠CAE=90°,即∠BAC+∠CAD=∠CAD+∠DAE ∴∠BAC=∠DAE又∵AB=AD ,∠ACB=∠E=90° ∴△ABC ≌△ADE (AAS ) ∴BC=DE ,AC=AE ,设BC=a ,则DE=a ,DF=AE=AC=4BC=4a , CF=AC-AF=AC-DE=3a ,在Rt △CDF 中,由勾股定理得, CF 2+DF 2=CD 2,即(3a )2+(4a )2=x 2, 解得:a=5x , ∴y=S 四边形ABCD =S 梯形ACDE =12×(DE+AC )×DF =12×(a+4a )×4a =10a 2=25x 2. 故选C . 【点睛】本题运用了旋转法,将求不规则四边形面积问题转化为求梯形的面积,充分运用了全等三角形,勾股定理在解题中的作用.8.D解析:D 【解析】 【分析】如图连接BE 交AD 于O ,作AH ⊥BC 于H .首先证明AD 垂直平分线段BE ,△BCE 是直角三角形,求出BC、BE,在Rt△BCE中,利用勾股定理即可解决问题.【详解】如图连接BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∵AC=4,AB=3,∴2234+,∵CD=DB,∴AD=DC=DB=52,∵12•BC•AH=12•AB•AC,∴AH=125,∵AE=AB,DE=DB=DC,∴AD垂直平分线段BE,△BCE是直角三角形,∵12•AD•BO=12•BD•AH,∴OB=125,∴BE=2OB=245,在Rt△BCE中,2222247555 BC BE⎛⎫-=-=⎪⎝⎭.故选D.点睛:本题考查翻折变换、直角三角形的斜边中线的性质、勾股定理等知识,解题的关键是学会利用面积法求高,属于中考常考题型.9.A解析:A【解析】试题分析:先根据圆周角定理的推论得到∠ACB=90°,再利用互余计算出∠B=40°,然后根据圆周角定理求解.解:连结BC,如图,∵AB为⊙O的直径,∴∠ACB=90°,∵∠BAC=50°,∴∠B=90°﹣50°=40°,∴∠ADC=∠B=40°.故选A .考点:圆周角定理.10.A解析:A【解析】【分析】根据二次函数的性质得到抛物线y =-(x +1)2+k (k 为常数)的开口向下,对称轴为直线x =﹣1,然后根据三个点离对称轴的远近判断函数值的大小.【详解】解:∵抛物线y =-(x +1)2+k (k 为常数)的开口向下,对称轴为直线x =﹣1,而A (2,y 1)离直线x =﹣1的距离最远,C (﹣2,y 3)点离直线x =1最近,∴123y y y >>. 故选A .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.11.D解析:D【解析】【分析】根据二次函数的顶点式即可直接得出顶点坐标.【详解】∵二次函数()2345y x +=-∴该函数图象的顶点坐标为(﹣4,﹣5),故选:D .【点睛】本题考查二次函数的顶点坐标,解题的关键是掌握二次函数顶点式()2y a x h k =-+的顶点坐标为(h ,k ). 12.C解析:C【解析】【分析】利用一元二次方程的定义判断即可.【详解】A、方程2x﹣3=x为一元一次方程,不符合题意;B、方程2x+3y=5是二元一次方程,不符合题意;C、方程2x﹣x2=1是一元二次方程,符合题意;D、方程x+1x=7是分式方程,不符合题意,故选:C.【点睛】本题考查了一元一次方程的问题,掌握一元一次方程的定义是解题的关键.二、填空题13.12【解析】【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△E解析:12【解析】【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出AF ABGF GD==2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△EAB的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解.【详解】∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴AF ABGF GD==2,∴AF=2GF=4,∴AG=6.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=12.故答案为:12.【点睛】本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF的长度是解题的关键.14.a>0.【解析】试题分析:∵方程没有实数根,∴△=﹣4a<0,解得:a>0,故答案为a>0.考点:根的判别式.解析:a>0.【解析】试题分析:∵方程20x a+=没有实数根,∴△=﹣4a<0,解得:a>0,故答案为a>0.考点:根的判别式.15.6【解析】【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于6.解析:6【解析】【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于6.【详解】解:如图所示,取AB的中点E,连接OE,DE,OD,由题可得,D是AC的中点,∴DE是△ABC的中位线,∴BC=2DE,∵点D坐标为(4,3),∴OD2234+5,∵Rt△ABO中,OE=12AB=12×4=2,∴当O,E,D在同一直线上时,DE的最小值等于OD﹣OE=3,∴BC的最小值等于6,故答案为:6.【点睛】本题主要考查了勾股定理,三角形三条边的关系,直角三角形斜边上中线的性质以及三角形中位线定理的运用,解决问题的关键是掌握直角三角形斜边上中线的性质以及三角形中位线定理.16.红【解析】【分析】哪一种颜色多,指针指向那种颜色的可能性就大.【详解】∵转盘分成6个大小相同的扇形,红色的有3块,∴转动一次转盘后,指针指向红颜色的可能性大.故答案为:红.【点睛】解析:红【解析】【分析】哪一种颜色多,指针指向那种颜色的可能性就大.【详解】∵转盘分成6个大小相同的扇形,红色的有3块,∴转动一次转盘后,指针指向红颜色的可能性大.故答案为:红.【点睛】本题考查了可能性大小的知识,解题的关键是看清那种颜色的最多,难度不大.17.-5.【解析】【分析】根据一元二次方程根与系数的关系即可求解.【详解】∵,是关于的一元二次方程的两根,∴,∴,故答案为:.【点睛】本题考查了一元二次方程根与系数的关系,如果,是方解析:-5.【解析】【分析】根据一元二次方程根与系数的关系即可求解.【详解】∵1x ,2x 是关于x 的一元二次方程240x x +-=的两根,∴121214x x x x +=-=-,, ∴()1212145x x x x ++=-+-=-,故答案为:5-.【点睛】本题考查了一元二次方程根与系数的关系,如果1x ,2x 是方程20x px q ++=的两根,那么12x x p +=﹣,12x x q =. 18.60【解析】【分析】设旗杆的影长为xm ,然后利用同一时刻物高与影长成正比例列方程求解即可.【详解】解:设旗杆的影长BE 为xm ,如图:∵AB∥CD∴△ABE∽△DCE∴,由题意知AB解析:60【解析】【分析】设旗杆的影长为xm ,然后利用同一时刻物高与影长成正比例列方程求解即可.【详解】解:设旗杆的影长BE 为xm ,如图:∵AB ∥CD∴△ABE ∽△DCE ∴AB DC BE CE=, 由题意知AB=50,CD=15,CE=18, 即,501518x =, 解得x =60, 经检验,x=60是原方程的解,即高为50m 的旗杆的影长为60m .故答案为:60.【点睛】此题主要考查比例的性质,解题的关键是熟知同一时刻物高与影长成正比例.19.x1=0,x2=2【解析】【分析】先移项,再用因式分解法求解即可.【详解】解:∵,∴,∴x(x-2)=0,x1=0,x2=2.故答案为:x1=0,x2=2.【点睛】本题考查了一解析:x 1=0,x 2=2【解析】【分析】先移项,再用因式分解法求解即可.【详解】解:∵22x x =,∴22=0x x -,∴x(x-2)=0,x 1=0,x 2=2.故答案为:x 1=0,x 2=2.【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.20..【解析】【分析】根据比例的合比性质变形得:【详解】∵,∴故答案为:.【点睛】本题主要考查了合比性质,对比例的性质的记忆是解题的关键. 解析:52. 【解析】【分析】 根据比例的合比性质变形得: 325.22x y y ++== 【详解】 ∵32x y =, ∴325.22x y y ++== 故答案为:52. 【点睛】本题主要考查了合比性质,对比例的性质的记忆是解题的关键.21.【解析】【分析】根据题意已知抛物线的顶点式,可据此直接写出顶点坐标.【详解】解:由,根据顶点式的坐标特点可知,顶点坐标为.故答案为:.【点睛】本题考查抛物线的顶点坐标公式,将解析式化解析:()2,2--【解析】【分析】根据题意已知抛物线的顶点式,可据此直接写出顶点坐标.【详解】解:由()2322y x =+-,根据顶点式的坐标特点可知,顶点坐标为()2,2--. 故答案为:()2,2--.【点睛】本题考查抛物线的顶点坐标公式,将解析式化为顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h.22.3000(1+ x)2=4320【解析】【分析】设增长率为x,则2010年绿化面积为3000(1+x)m2,则2021年的绿化面积为3000(1+x)(1+x)m2,然后可得方程.【详解】解析:3000(1+ x)2=4320【解析】【分析】设增长率为x,则2010年绿化面积为3000(1+x)m2,则2021年的绿化面积为3000(1+x)(1+x)m2,然后可得方程.【详解】解:设增长率为x,由题意得:3000(1+x)2=4320,故答案为:3000(1+x)2=4320.【点睛】本题考查了由实际问题抽象出一元二次方程,关键是正确理解题意,找出题目中的等量关系.23.1,,【解析】【分析】根据P的不同位置,分三种情况讨论,即可解答.【详解】解:如图:当DP∥AB时∴△DCP∽△BCA∴即,解得DP=1如图:当P在AB上,即DP∥AC∴△DC解析:1,83,32【解析】【分析】根据P的不同位置,分三种情况讨论,即可解答.解:如图:当DP ∥AB 时∴△DCP ∽△BCA ∴DC DP BC AB =即263DP =,解得DP=1 如图:当P 在AB 上,即DP ∥AC∴△DCP ∽△BCA∴BD DP BC AC =即6264DP -=,解得DP=83 如图,当∠CPD=∠B ,且∠C=∠C 时,∴△DCP ∽△ACB∴PD CD AB AC =即243DP =,解得DP=32故答案为1,83,32. 【点睛】本题考查了相似三角形的判定和性质,掌握分类讨论思想并全部找到不同位置的P 点是解答本题的关键.24.80【解析】∵∠A+∠C=180°,∴∠A=180°−140°=40°,∴∠BOD=2∠A=80°.故答案为80.【解析】∵∠A+∠C=180°,∴∠A=180°−140°=40°,∴∠BOD=2∠A=80°.故答案为80.三、解答题25.(1)DC =;(2)23EF DF =;(3)当DM =DM <<时,满足条件的点P 只有一个.【解析】【分析】(1)由角平分线定义得30DAC ∠=︒,在Rt ADC ∆中,根据锐角三角函数正切定义即可求得DC 长.(2)由题意易求得BC =BD =ASA 得DFM AGM ∆≅∆,根据全等三角形性质得DF AG =,根据相似三角形判定得~BFE BGA ∆∆,由相似三角形性质得EF BE BD AG AB BC==,将DF AG =代入即可求得答案.(3)由圆周角定理可得CQG ∆是顶角为120°的等腰三角形,再分情况讨论:①当Q 与DE 相切时,结合题意画出图形,过点Q 作QH AC ⊥,并延长HQ 与DE 交于点P ,连结QC ,QG ,设Q 半径为r ,由相似三角形的判定和性质即可求得DM 长;②当Q 经过点E 时,结合题意画出图形,过点C 作CK AB ⊥,设Q 半径为r ,在Rt EQK ∆中,根据勾股定理求得r ,再由相似三角形的判定和性质即可求得DM 长;③当Q 经过点D 时,结合题意画出图形,此时点M 与点G 重合,且恰好在点A 处,由此可得DM 长.【详解】(1)解:∵AD 平分BAC ∠,60BAC ∠=︒, ∴1302DAC BAC ∠=∠=︒.在Rt ADC ∆中,tan 30DC AC =⋅︒=(2)解:易得,BC =,BD =由DE AC ,得EDA DAC ∠=∠,DFM AGM ∠=∠.∵AM DM =,∴DFM AGM ∆≅∆,∴AG DF =. 由DE AC ,得~BFE BGA ∆∆, ∴EF BE BD AG AB BC== ∴432363EF EF BD DF AG BC ==== (3)解:∵60CPG ∠=︒,过C ,P ,G 作外接圆,圆心为Q ,∴CQG ∆是顶角为120°的等腰三角形.①当Q 与DE 相切时,如图1,过Q 点作QH AC ⊥,并延长HQ 与DE 交于点P ,连结QC ,QG设Q 的半径QP r =则12QH r =,1232r r +=, 解得433r =. ∴43343CG =⨯=,2AG =. 易知DFMAGM ∆∆,可得43DM DF AM AG ==,则47DM AD = ∴1637DM =. ②当Q 经过点E 时,如图2,过C 点作CK AB ⊥,垂足为K .设Q 的半径QC QE r ==,则33-QK r =.在Rt EQK ∆中,()221332r r +-=,解得1439r =, ∴14143393CG =⨯= 易知DFMAGM ∆∆,可得1435DM = ③当Q 经过点D 时,如图3,此时点M 与点G 重合,且恰好在点A 处,可得43DM =综上所述,当1637DM =143435DM <P 只有一个. 【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质,解直角三角形,圆周角定理等知识,解题的关键是学会利用参数构建方程解决问题,学会利用特殊位置解决数学问题,属于中考压轴题.26.(1)2w 2x 120x 1600=-+-;(2)该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.【解析】试题分析:(1)根据销售额=销售量×销售价单x ,列出函数关系式;(2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值.试题解析:(1)由题意得:()()()2w x 20y x 202x 802x 120x 1600=-⋅=--+=-+-, ∴w 与x 的函数关系式为:2w 2x 120x 1600=-+-.(2)()22w 2x 120x 16002x 30200=-+-=--+,∵﹣2<0,∴当x=30时,w 有最大值.w 最大值为200.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元. 考点:1.二次函数的应用;2.由实际问题列函数关系式;3.二次函数的最值.27.(1)BC与⊙O相切,理由见解析;(2)23π.【解析】试题分析:(1)连接OD,推出OD BC⊥,根据切线的判定推出即可;(2)连接,DE OE,求出阴影部分的面积=扇形EOD的面积,求出扇形的面积即可.试题解析:(1)BC与O相切,理由:连接OD,∵AD平分∠BAC,∴∠BAD=∠DAC,∵AO=DO,∴∠BAD=∠ADO,∴∠CAD=∠ADO,//AC OD∴,90ACD∠=,∴OD⊥BC,∴BC与O相切;(2)连接OE,ED,60BAC OE OA∠==,,∴△OAE为等边三角形,60AOE∴∠=,30ADE,∴∠=又1302OAD BAC∠=∠=,ADE OAD∴∠=∠,//ED AO∴,AED AOD S S ∴=,∴阴影部分的面积=S 扇形ODE 60π42π.3603⨯⨯== 28.(1)8.5米;(2)18.0米【解析】【分析】 (1)先根据题意得出DE=AB=7米,AD=BE=1.5米,在Rt △DEH 中,可求出HE 的长度,进而可计算古树BH 的高度;(2)作HJ ⊥CG 于G ,设HJ=GJ=BC=x ,在Rt △EFG 中,利用特殊角的三角函数值求出x 的值,进而求出GF ,最后利用 CG=CF+FG 即可得出答案.【详解】解:(1)由题意:四边形ABED 是矩形,可得DE=AB=7米,AD=BE=1.5米,在Rt △DEH 中,∵∠EDH=45°,∴HE=DE=7米.∴BH=EH+BE=8.5米.答:古树BH 的高度为8.5米.(2)作HJ ⊥CG 于G .则△HJG 是等腰直角三角形,四边形BCJH 是矩形,设HJ=GJ=BC=x .在Rt △EFG 中,tan60°=73GF x EF x +== ∴7(31)2x =, ∴3x ≈16.45∴CG=CF+FG=1.5+16.45≈17.95≈18.0米.答:教学楼CG 的高度为18.0米.【点睛】本题主要考查解直角三角形,能够数形结合,构造出直角三角形是解题的关键.29.(1)21234y x x =-+;(2)相交,证明见解析 【解析】【分析】(1)已知抛物线的顶点坐标,可用顶点式设抛物线的解析式,然后将A 点坐标代入其中,即可求出此二次函数的解析式;(2)根据抛物线的解析式,易求得对称轴l 的解析式及B 、C 的坐标,分别求出直线AB 、BD 、CE 的解析式,再求出CE 的长,与到抛物线的对称轴的距离相比较即可.【详解】解:(1)设抛物线为y =a (x ﹣4)2﹣1,∵抛物线经过点()0,3A ,∴3=a (0﹣4)2﹣1,a =14; ∴抛物线的表达式为:21234y x x =-+; (2)相交. 证明:连接CE ,则CE ⊥BD ,14(x ﹣4)2﹣1=0时,x 1=2,x 2=6.()0,3A ,()2,0B ,()6,0C ,对称轴x =4,∴OB =2,AB 13BC =4,∵AB ⊥BD ,∴∠OAB +∠OBA =90°,∠OBA +∠EBC =90°,∴△AOB ∽△BEC ,∴AB OB BC CE =132CE =,解得813CE = 813>2, 故抛物线的对称轴l 与⊙C 相交.【点睛】本题考查待定系数法求二次函数解析式、相似三角形的判定与性质、直线与圆的位置关系等内容,掌握数形结合的思想是解题的关键.30.(1)②;(2)±1;(3)23<B x 3733-<B x <23-【解析】【分析】(1)本题先利用切线的性质,结合勾股定理以及三角形面积公式将面积最值转化为线段最值,了解最美三角形的定义,根据圆心到直线距离最短原则解答本题.(2)本题根据k的正负分类讨论,作图后根据最美三角形的定义求解EF,利用勾股定理求解AF,进一步确定∠AOF度数,最后利用勾股定理确定点F的坐标,利用待定系数法求k.(3)本题根据⊙B在直线两侧不同位置分类讨论,利用直线与坐标轴的交点坐标确定∠NDB的度数,继而按照最美三角形的定义,分别以△BND,△BMN为媒介计算BD长度,最后与OD相减求解点B的横坐标范围.【详解】(1)如下图所示:∵PM是⊙O的切线,∴∠PMO=90°,当⊙O的半径OM是定值时,22PM OP OM=-,∵1=2PMOS PM OM••,∴要使PMO△面积最小,则PM最小,即OP最小即可,当OP⊥l时,OP最小,符合最美三角形定义.故在图1三个三角形中,因为AO⊥x轴,故△AOP为⊙A与x轴的最美三角形.故选:②.(2)①当k<0时,按题意要求作图并在此基础作FM⊥x轴,如下所示:按题意可得:△AEF是直线y=kx与⊙A的最美三角形,故△AEF为直角三角形且AF⊥OF.则由已知可得:111=1222AEFS AE EF EF••=⨯⨯=,故EF=1.在△AEF中,根据勾股定理得:22AF AE==∵A(0,2),即OA=2,∴在直角△AFO 中,22=2OF OA AF AF -==, ∴∠AOF=45°,即∠FOM=45°,故根据勾股定理可得:MF=MO=1,故F(-1,1),将F 点代入y=kx 可得:1k =-.②当k >0时,同理可得k=1.故综上:1k =±.(3)记直线33y x =+与x 、y 轴的交点为点D 、C ,则(3,0)D -,(0,3)C , ①当⊙B 在直线CD 右侧时,如下图所示:在直角△COD 中,有3OC =,3OD =tan 3OC ODC OD∠==ODC=60°. ∵△BMN 是直线33y x =+与⊙B 的最美三角形,∴MN ⊥BM ,BN ⊥CD ,即∠BND=90°, 在直角△BDN 中,sin BN BDN BD ∠=, 故23=sin sin 60?BN BN BD BN BDN =∠. ∵⊙B 3,∴3BM =. 当直线CD 与⊙B 相切时,3BN BM ==因为直线CD 与⊙B 相离,故BN 3BD >2,所以OB=BD-OD >23. 由已知得:113=322BMN S MN BM MN ••=•=3MN <1. 在直角△BMN 中,2223BN MN BM MN =+=+1+3=2,此时可利用勾股定理算得BD <33,OB BD OD =- <333-33, 则23<B x 3 ②当⊙B 在直线CD 左侧时,同理可得:73B x <23-故综上:2<B x<3或3-<B x<2- 【点睛】 本题考查圆与直线的综合问题,属于创新题目,此类型题目解题关键在于了解题干所给示例,涉及动点问题时必须分类讨论,保证不重不漏,题目若出现最值问题,需要利用转化思想将面积或周长最值转化为线段最值以降低解题难度,求解几何线段时勾股定理极为常见.31.△ABC ∽△A 'B 'C ',理由见解析【解析】【分析】由题意知,根据相似三角形的判定定理:三边对应成比例的两个三角形相似,可证得△ABD ∽△A 'B 'D ',进而可得∠B =∠B ',再根据两边对应成比例及其夹角相等的两个三角形相似,即可得△ABC ∽△A 'B 'C '.【详解】△ABC ∽△A 'B 'C ', 理由:∵==''''''AB BD AD A B B D A D ∴△ABD ∽△A 'B 'D ',∴∠B =∠B ', ∵AD 、A 'D '分别是△ABC 和△A 'B 'C '的中线 ∴12BD BC =,1''''2B D BC =, ∴12==1''''''2BC AB BC A B B C B C , 在△ABC 和△A 'B 'C '中 ∵=''''AB BC A B B C ,且∠B =∠B ' ∴△ABC ∽△A 'B 'C '.【点睛】 本题考查相似三角形的判定,解题的关键是熟练掌握相似三角形的判定定理:三边对应成比例的两个三角形相似;两边对应成比例及其夹角相等的两个三角形相似.32.(1)A (1,0),D (4,3);(2)①当点P 的横坐标为2时,求△PAD 的面积;②当∠PDA =∠CAD 时,直接写出点P 的坐标.【解析】【分析】(1)由于A 、D 是直线直线y =x ﹣1与抛物线y =﹣x 2+6x ﹣5的交点,要求两个交点的坐标,需可联立方程组求解;(2)①要求△PAD 的面积,可以过P 作PE ⊥x 轴,与AD 相交于点E ,求得PE ,再用△PAE 和△PDE 的面积和求得结果;②分两种情况解答:过D 点作DP ∥AC ,与抛物线交于点P ,求出AC 的解析式,进而得PD 的解析式,再解PD 的解析式与抛物线的解析式联立方程组,便可求得P 点坐标;当P 点在AD 上方时,延长DP 与y 轴交于F 点,过F 点作FG ∥AC 与AD 交于点G ,则∠CAD =∠FGD =∠PDA ,则FG =FD ,设F 点坐标为(0,m ),求出G 点的坐标(用m 表示),再由FG =FD ,列出m 的方程,便可求得F 点坐标,从而求出DF 的解析式,最后解DF 的解析式与抛物线的解析式联立的方程组,便可求得P 点坐标.【详解】(1)联立方程组2165y x y x x =-⎧⎨=-+-⎩, 解得,1110x y =⎧⎨=⎩,2243x y =⎧⎨=⎩, ∴A (1,0),D (4,3),(2)①过P 作PE ⊥x 轴,与AD 相交于点E ,∵点P 的横坐标为2,∴P (2,3),E (2,1),∴PE =3﹣1=2,∴()112(41)22PAD D A S PE x x =-=⨯⨯-=3; ②过点D 作DP ∥AC ,与抛物线交于点P ,则∠PDA =∠CAD ,∵y=-x 2+6x-5=-(x-3)2+4,∴C (3,4),设AC 的解析式为:y=kx+b (k≠0),∵A (1,0),∴034k b k b +⎧⎨+⎩==, ∴22k b ⎧⎨-⎩==, ∴AC 的解析式为:y=2x-2,设DP 的解析式为:y=2x+n ,把D (4,3)代入,得3=8+n ,∴n=-5,∴DP 的解析式为:y=2x-5,联立方程组22565y x y x x -⎧⎨-+-⎩==, 解得,1015x y ⎧⎨-⎩==,2243x y ⎧⎨⎩==, ∴此时P (0,-5),当P 点在直线AD 上方时,延长DP ,与y 轴交于点F ,过F 作FG ∥AC ,FG 与AD 交于点G ,则∠FGD=∠CAD=∠PDA ,∴FG=FD ,设F (0,m ),∵AC 的解析式为:y=2x-2,∴FG 的解析式为:y=2x+m ,联立方程组21y x m y x +⎧⎨-⎩==, 解得,12x m y m --⎧⎨--⎩==, ∴G (-m-1,-m-2),∴()()22122m m +++()2163m +-, ∵FG=FD , ()()22122m m +++()2163m +- ∴m=-5或1,∵F 在AD 上方,∴m >-1,∴m=1,∴F (0,1),设DF 的解析式为:y=qx+1(q≠0),把D (4,3)代入,得4q+1=3,∴q=12, ∴DF 的解析式为:y=12x+1,联立方程组211265y x y x x ⎧+⎪⎨⎪-+-⎩== ∴1143x y ⎧⎨⎩==,223274x y ⎧⎪⎪⎨⎪⎪⎩==, ∴此时P 点的坐标为(32,74), 综上,P 点的坐标为(0,-5)或(32,74). 【点睛】本题是一次函数、二次函数、三角形的综合题,主要考查了一次函数的性质,二次函数的图象与性质,三角形的面积计算,平行线的性质,待定系数法,难度较大,第(2)小题,关键过P 作x 轴垂线,将所求三角形的面积转化成两个三角形的面积和进行解答;第(3)小题,分两种情况解答,不能漏解,考虑问题要全面.。

四川省乐山市峨眉山市博睿特外国语学校九年级数学上册

四川省乐山市峨眉山市博睿特外国语学校九年级数学上册

一元二次方程一、填空题(每小题3分,共30分)1.把方程 7622-=-x x 化为一元二次方程的一般形式是: 2.方程 2x 2 + 3x = 0的根是3.方程 3x 2 = 27的根是4.方程 x 2 + x – 12 = 0的根是5.方程 2 x 2 – x + m = 0有一个根是x=3,则m 的值是6.一元二次方程2 x 2 – 5 x + 1= 0的两根为x 1 、x 2 ,则x 1 + x 2 = ,x 1 x 2 =7.关于x 的方程x 2 + a x + 4 = 0有两个相等的实数根,则 a =8.已知一元二次方程的两实根和是3,则这个方程可以是9.若一元二次方程 x 2 – 4 x – k = 0有两个不相等的实数根,则k 的取值范围是10.已知一元二次方程 2 x 2 + b x + c = 0的两个根是 – 1 、3 ,则 b = , c =二、选择题(每小题3分,共30分)11.方程2x 2 – 7 = – 3 x 化成一般形式后,a,b,c 的值分别是( )(A) 2, – 7, – 3 (B) 2, – 7, 3 (C) 2, 3 , – 7 (D) 2, 3 ,712.用配方法解方程 x 2 – 8 x + 15 = 0的过程中,正确的是( )(A) x 2 – 8 x + 4 2 = 31 (B) x 2 – 8 x + 4 2 = 1 (C) ( x + 4 )2 = 1 (D) (x – 4 )2 = – 1113.若方程 ( k – 1 ) x 2 + 3 k x – 5 = 0是关于 x 的一元二次方程,则k 的值是( )(A )k = 1 (B )k ≠– 1 (C )k ≠0 (D )k ≠114.一元二次方程 x ( x – 1 ) = 2 ( x – 1 ) 的解是 ( )(A) x = 2 (B) x = 1 (C) x 1 = – 2 ,x 2 = 1 (D) x 1 =2 ,x 2= 115.关于x 的一元二次方程x 2 – 2 m x + m 2 – 4 = 0 的根是( )(A )x 1 = – m +2 x 2= – m – 2 (B )x 1 = x 2= – m + 2(C )x 1 = m +2 x 2= m – 2 (D )x 1 = x 2 = – m – 216.下列方程中,没有实数根的是( )(A) x 2 – 5 x = 0 (B) x 2 – 4 x + 4= 0 (C) 2 x 2 – x + 1 = 0 (D) 5 x 2 –2 x – 2 = 017.关于x 的方程 x 2 – m x – 2 = 0 ( m 为实数)的解的情况是( )(A )有两个不相等的实数根 (B )有两个相等的实数根(C )没有实数根 (D )有没有实数根不能确定18.下列方程中,两个实数根的和是2的一元二次方程是( )(A )x 2 + 2 x – 3 = 0 (B) x 2 – 2 x + 3 = 0 (C) x 2 – 2 x – 3 = 0 (D) x 2 + 2 x + 3 = 019.方程3 x 2 + ( m – 2 ) x + m – 4 = 0 的两根互为相反数,则m 的值是( )(A ) – 2 (B ) 2 (C ) 4 (D )520.已知一元二次方程 2 x 2 + p x + q = 0的两个根是3、– 4 ,则二次三项式 2 x 2 + p x + q可分解为( )(A) ( x + 3 ) ( x – 4 ) (B) ( x – 3 ) ( x + 4 ) (C) 2 ( x + 3 ) ( x –4 ) (D) 2 ( x – 3 ) ( x + 4 )三、用适当方法解下列方程(每小题5分,共30分)21.(x – 5 )2 – 36 = 0 22. 3 x 2 + 6 x – 2 = 023. ( x – 1 ) ( x + 2 ) = 70 24. x ( x + 4 ) = 621 25. 2 x2 – 4 = 7x四、简答题26.(10分)已知关于x的一元二次方程 ( a + 2 ) x2– 2 x + 1 = 0 有两个不相等的实数根,求a的取值范围.。

四川乐山峨眉山博睿特外国语校初三上周考数学考试卷(2)(解析版)(初三)月考考试卷.doc

四川乐山峨眉山博睿特外国语校初三上周考数学考试卷(2)(解析版)(初三)月考考试卷.doc

四川乐山峨眉山博睿特外国语校初三上周考数学考试卷(2)(解析版)(初三)月考考试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx 题评卷人得分(每空xx 分,共xx分)【题文】下列各式不成立的是()A .B .(y<0) C. D.﹣11=﹣【答案】C【解析】试题分析:结合选项根据二次根式的乘除法的运算法则求解即可.解:A、2=×=5,本选项错误;B、∵y<0,∴﹣y>0,∴2=﹣y,本选项错误;C、∵二次根式中被开方数为非负数,∴﹣7=()2不成立,本选项正确;D、﹣=﹣=﹣11,本选项错误.故选C.【点评】本题考查了二次根式的乘除法,解答本题的关键在于熟练掌握该知识点的运算法则.【题文】下列根式中是最简二次根式的是()A. B. C. D.【答案】C【解析】试题分析:根据最简二次根式的定义对各选项进行逐一分析即可.解:A、∵==,∴不是最简二次根式,故本选项错误;B、∵=2,∴不是最简二次根式,故本选项错误;C、是最简二次根式,故本选项正确;D、===|m﹣1|,故本选项错误.故选C.【点评】本题考查的是最简二次根式,被开方数不含分母;不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.【题文】如果ab>0,a+b<0,那么下面各式:①•=1;②=;③÷=﹣b,其中正确的是()A.①② B.①③ C.②③ D.①②③【答案】B【解析】试题分析:根据题意得出a,b的值,进而利用二次根式的性质化简求出即可.解:∵ab>0,a+b<0,∴a<0,b<0,∴①•=1,正确;②=,错误;③÷=﹣b,正确,故选:B.【点评】此题主要考查了二次根式的化简,熟练掌握二次根式的性质是解题关键.【题文】某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182 B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182 D.50+50(1+x)+50(1+2x)2=182【答案】B【解析】试题分析:主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂五、六月份平均每月的增长率为x,那么可以用x分别表示五、六月份的产量,然后根据题意可得出方程.解:依题意得五、六月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=182.故选B.【点评】增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.【题文】等腰三角形的底和腰是方程x2﹣6x+8=0的两根,则这个三角形的周长为()A.8 B.10 C.8或10 D.不能确定【答案】B【解析】试题分析:先求出方程的根,再根据三角形三边关系确定是否符合题意,然后求解.解:∵方程x2﹣6x+8=0的解是x=2或4,(1)当2为腰,4为底时,2+2=4不能构成三角形;(2)当4为腰,2为底时,4,4,2能构成等腰三角形,周长=4+4+2=10.故选:B.【点评】本题考查了等腰三角形的性质和分情况讨论的思想,注意根据三角形的三边关系确定是否能构成三角形,不可盲目讨论.【题文】关于x的一元二次方程(a﹣1)x2﹣2x+3=0有实数根,则整数a的最大值是()A.2 B.1 C.0 D.﹣1【答案】C【解析】试题分析:根据方程有实数根,得到根的判别式的值大于等于0,且二次项系数不为0,即可求出整数a的最大值.解:根据题意得:△=4﹣12(a﹣1)≥0,且a﹣1≠0,解得:a≤,a≠1,则整数a的最大值为0.故选C.【点评】此题考查了根的判别式,一元二次方程的定义,弄清题意是解本题的关键.【题文】已知反比例函数的图象如图,则一元二次方程x2﹣(2k﹣1)x+k2﹣1=0根的情况是()A.有两个不等实根 B.有两个相等实根C.没有实根 D.无法确定【答案】C【解析】试题分析:首先根据反比例函数的图象可以得到k的取值范围,然后根据k的取值范围即可判断方程x2﹣(2k﹣1)x+k2﹣1=0的判别式的正负情况,接着就可以判断方程的根的情况.解:∵反比例函数的图象在第一、三象限内,∴k﹣2>0,∴k>2,∵一元二次方程x2﹣(2k﹣1)x+k2﹣1=0的判别式为△=b2﹣4ac=(2k﹣1)2﹣4(k2﹣1)=﹣4k+5,而k>2,∴﹣4k+5<0,∴△<0,∴一元二次方程x2﹣(2k﹣1)x+k2﹣1=0没有实数根.故选C.【点评】此题考查了反比例函数的图象和性质及一元二次方程判别式的应用,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.【题文】若2m2﹣3m﹣7=0,7n2+3n﹣2=0,其中m,n为实数,且mn≠1,则m+=()A. B. C. D.【答案】C【解析】试题分析:由7n2+3n﹣2=0两边同除以﹣n2得,2()2﹣3•﹣7=0,又因为mn≠1,则m≠,所以m和可以看作是方程2x2﹣3x﹣7=0的两个根,再根据根与系数的关系可得.解:由7n2+3n﹣2=0两边同除以﹣n2得,2()2﹣3•﹣7=0,又因为mn≠1,则m≠,所以m和可以看作是方程2x2﹣3x﹣7=0的两个根,根据根与系数的关系,得m+=,故选:C.【点评】此题主要考查了一元二次方程根与系数的关系的运用,能够把两个方程变成同一种形式,从而根据根与系数的关系求解.【题文】在实数范围内分解因式4x4﹣1= .【答案】(2x2+1)(x+1)(x﹣1).【解析】试题分析:根据4x4﹣1=(2x)2﹣12,然后运用平方差公式进行分解即可.解:4x4﹣1=(2x2)2﹣12=(2x2+1)(2x2﹣1)=(2x2+1)(x+1)(x﹣1)..故答案为:(2x2+1)(x+1)(x﹣1).【点评】本题考查了在实数范围内分解因式,熟练掌握平方差公式a2﹣b2=(a+b)(a﹣b).【题文】若一个一元二次方程的两个根分别是Rt△ABC的两条直角边长,且S△ABC=3,请写出一个符合题意的一元二次方程.【答案】x2﹣5x+6=0(答案不唯一).【解析】试题分析:根据S△ABC=3,得出两根之积,进而根据根与系数的关系写出一个符合要求的一元二次方程即可.解:∵一个一元二次方程的两个根分别是Rt△ABC的两条直角边长,且S△ABC=3,∴一元二次方程的两个根的乘积为:3×2=6,∴此方程可以为:x2﹣5x+6=0,故答案为:x2﹣5x+6=0(答案不唯一).【点评】此题主要考查了根与系数的关系以及直角三角形的面积,根据已知得出两根之积进而得出答案是解题关键.【题文】已知关于x的一元二次方程x2﹣x﹣3=0的两个实数根分别为α、β,则(α+3)(β+3)=.【答案】9.【解析】试题分析:根据x的一元二次方程x2﹣x﹣3=0的两个实数根分别为α、β,求出α+β和αβ的值,再把要求的式子变形为αβ+3(α+β)+9,最后把α+β和αβ的值代入,计算即可.解:∵x的一元二次方程x2﹣x﹣3=0的两个实数根分别为α、β,∴α+β=1,αβ=﹣3,∴(α+3)(β+3)=αβ+3α+3β+9=αβ+3(α+β)+9=﹣3+3×1+9=9;故答案为:9.【点评】此题考查了一元二次方程根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.【题文】已知a,b是方程x2﹣x﹣3=0的两个根,则a2﹣2a﹣b=.【答案】2【解析】试题分析:先根据一元二次方程的解的定义得到a2﹣a﹣3=0,即a2=a+3,则a2﹣2a﹣b化简为﹣(a+b)+3,再根据根与系数的关系得到a+b=1,然后利用整体代入的方法计算即可.解:∵a是方程x2﹣x﹣3=0的根,∴a2﹣a﹣3=0,∴a2=a+3,∴a2﹣2a﹣b=a+3﹣2a﹣b=﹣(a+b)+3,∵a,b是方程x2﹣x﹣3=0的两个根,∴a+b=1,∴a2+b+3=﹣1+3=2.故答案为:2.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了一元二次方程的解.【题文】如图,数轴上与1,对应的点分别为A,B,点B关于点A的对称点为C,设点C表示的数为x,则||+= .【答案】3【解析】试题分析:首先根据已知条件可以确定线段AB的长度,然后根据对称的性质即可确定x的值,代入所求代数式计算即可解决问题.解:∵A,B两点的分别为1,,∴C点所表示的数是x=1﹣(﹣1)=2﹣.根据绝对值的意义进行化简:原式=﹣(2﹣)+,=2﹣2+,=2﹣2+2+=3.故答案为:3.【点评】此题主要考查了实数与数轴之间的对应关系,解题时要求能够熟练计算数轴上两点间的距离;根据绝对值的性质进行化简去掉绝对值及掌握分母有理化的方法.【题文】已知关于x的方程(a﹣1)x2+2x﹣a﹣1=0的根都是一整数,那么符合条件的整数a有个.【答案】5【解析】试题分析:首先利用当a=1时,得到一个一元一次方程,直接得出根,当a≠1,把x=1,代入方程,得出a 的取值.解:①当a=1时,x=1;②当a≠1时,原式可以整理为:[(a﹣1)x+a+1](x﹣1)=0,易知x=1是方程的一个整数根,再由1+x=且x是整数,知1﹣a=±1或±2,∴a=﹣1,0,2,3;由①、②得符合条件的整数a有5个.故答案为:5.【点评】此题主要考查了方程整数解的求法,从特殊解入手求解,比较简单.【题文】解方程:(x﹣1)(x+2)=70.【答案】x1=﹣9,x2=8.【解析】试题分析:整理后把方程的左边分解因式得出(x+9)(x﹣8)=0,得出方程x+9=0,x﹣8=0,求出方程的解即可.解:原方程可变形为x2+x﹣72=0,(x+9)(x﹣8)=0,x+9=0,x﹣8=0,∴x1=﹣9,x2=8.【点评】本题主要考查对解一元一次方程,等式的性质,解一元二次方程﹣因式分解法等知识点的理解和掌握,能把一元二次方程转化成一元一次方程是解此题的关键.【题文】解方程:(x﹣1)2=4(x+1)2.【答案】x1=﹣,x2=﹣3.【解析】试题分析:移项后根据平方差公式因式分解,再解两个关于x的一元一次方程即可得原方程的解.解:移项,得:(x﹣1)2﹣4(x+1)2=0,即(x﹣1)2﹣[2(x+1)]2=0,因式分解,得:[x﹣1+2(x+1)][x﹣1﹣2(x+1)]=0,整理,得:(3x+1)(﹣x﹣3)=0,∴3x+1=0或﹣x﹣3=0,解得:x1=﹣,x2=﹣3.【点评】本题主要考查因式分解法解一元二次方程,因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.【题文】用换元法解方程:x2﹣x+1=.【答案】x1=﹣1,x2=2.【解析】试题分析:本题要求运用换元法解题,可先对方程进行观察,可知方程左右两边都含有x2﹣x,如此只要将x2﹣x看作一个整体,用y代替,再对方程进行化简得出y的值,最后用x2﹣x=y来解出x的值.解:设x2﹣x=y,则,原方程化为y+1=,∴y2+y﹣6=0即(y+3)(y﹣2)=0,解得y1=﹣3,y2=2.当y=﹣3时,x2﹣x=﹣3,∴x2﹣x+3=0,∵△=1﹣12<0,∴此方程无实根;当y=2时,x2﹣x=2,∴x2﹣x﹣2=0,解得x1=﹣1,x2=2.经检验,x1=﹣1,x2=2都是原方程的根.∴原方程的根是x1=﹣1,x2=2.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.【题文】化简:.【答案】﹣6.【解析】试题分析:先根据幂的运算公式及零指数幂、负整数指数幂、绝对值性质化简二次根式,再合并可得.解:原式=[()()]2015•()﹣1﹣+2﹣3=﹣﹣2﹣1﹣+2﹣3=﹣6.【点评】本题主要考查二次根式的混合运算及幂的运算公式、绝对值性质,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.【题文】已知关于x的方程x2+(2k+1)x+k2+2=0有两个相等的实数根,试判断直线y=(2k﹣3)x﹣4k+12能否通过点A(﹣2,4),并说明理由.【答案】见解析【解析】试题分析:方程x2+(2k+1)x+k2+2=0有两个相等的实数根,则△=0,据此算出k的值,得到直线解析式,看当x=﹣2时,y是否等于4.解:∵x2+(2k+1)x+k2+2=0有两个相等的实数根∴△=b2﹣4ac=0∴(2k+1)2﹣4(k2+2)=0,即4k﹣7=0,∴k=,∴2k﹣3=2×﹣3=,﹣4k+12=﹣4×+12=﹣7+12=5,∴直线方程y=x+5,当x=﹣2时,y=×(﹣2)+5=4,∴A(﹣2,4)在直线y=x+5上.【点评】本题用的知识点为:一元二次方程有两个相等的实数根,说明根的判别式为0,在直线上的各点的坐标一定适合这条直线的解析式.【题文】已知:关于x的方程kx2﹣(3k﹣1)x+2(k﹣1)=0(1)求证:无论k为任何实数,方程总有实数根;(2)若此方程有两个实数根x1,x2,且|x1﹣x2|=2,求k的值.【答案】(1)见解析(2)k=1或k=﹣.【解析】试题分析:(1)确定判别式的范围即可得出结论;(2)根据根与系数的关系表示出x1+x2,x1x2,继而根据题意得出方程,解出即可.(1)证明:①当k=0时,方程是一元一次方程,有实数根;②当k≠0时,方程是一元二次方程,∵△=(3k﹣1)2﹣4k×2(k﹣1)=(k+1)2≥0,∴无论k为任何实数,方程总有实数根.(2)解:∵此方程有两个实数根x1,x2,∴x1+x2=,x1x2=,∵|x1﹣x2|=2,∴(x1﹣x2)2=4,∴(x1+x2)2﹣4x1x2=4,即﹣4×=4,解得:=±2,即k=1或k=﹣,经检验k=1或k=﹣是方程的解,则k=1或k=﹣.【点评】本题考查了根的判别式及根与系数的关系,属于基础题,这些用到的知识点是需要我们熟练记忆的内容.。

四川省乐山市九年级上学期数学期末考试试卷

四川省乐山市九年级上学期数学期末考试试卷

四川省乐山市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共7题;共14分)1. (2分)使式子有意义的的范围是()A . x≥2B . x≤-2C . x≠2D . x≤22. (2分)下列成语所描述的事件是必然发生的事件是()A . 水中捞月B . 日落西山C . 黔驴技穷D . 一箭双雕3. (2分)(2018·和平模拟) 在平面直角坐标系中,将抛物线y=x2-4先向右平移2个单位,再向上平移2个单位,得到的抛物线的解析式是()A . y=(x+2)2+2B . y=(x-2)2-2C . y=(x-2)2+2D . y=(x+2)2-24. (2分)如图,是小明设计用手电来测量某古城墙高度的示意图,点P处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2m,BP=1.8 m,PD=12 m,那么该古城墙的高度是:A . 6 mB . 8 mC . 18 mD . 24 m5. (2分) (2019九上·清江浦月考) 如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2 ,则修建的路宽应为()A . 1米B . 1.5米C . 2米D . 2.5米6. (2分)已知二次函数y=ax2+bx+c(a≠0)的图象如上图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④a+b>m(am+b)(m≠1)其中正确的结论有()A . 2个B . 3个C . 4个D . 57. (2分)如果一个三角形能够分成两个与原三角形都相似的三角形,我们把这样的三角形称为孪生三角形,那么孪生三角形是()A . 不存在B . 等腰三角形C . 直角三角形D . 等腰三角形或直角三角形二、填空题 (共6题;共7分)8. (1分) (2018九上·连城期中) 如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE ,点B 的对应点D恰好落在BC边上,若AC=,∠B=60°,则CD的长为________.9. (1分)二次函数的图象如图,若一元二次方程ax2+bx+m=0有实数根,则的最大值为________.10. (1分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表:则当2<y<5时,x的取值范围是________x…﹣10123…y…105212…11. (2分)如果9排16号可以用有序数对表示为(9,16),那么10排9号可以表示为________ .12. (1分) (2018九上·黄石期中) 已知函数,若使y=k成立的x值恰好有三个,则k的值为________.13. (1分) (2017八下·常熟期中) 如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB 于E,PF⊥AC于F,M为EF中点,则AM的最小值为________.三、解答题 (共10题;共66分)14. (5分) (2015八下·灌阳期中) 计算:﹣ +15. (5分) (2017九上·三明期末) 解方程:x2﹣2(x+4)=0.16. (5分) (2019九上·宁波期中) 在-2,-1,0,1,2这五个数中任取两数m,n,用列表或画树状图的方法求二次函数的顶点在坐标轴上的概率.17. (10分)(2019·贵阳) 如图,二次函数y=x2+bx+c的图象与x轴交于A,B两点,与y轴交于点C,且关于直线x=1对称,点A的坐标为(﹣1,0).(1)求二次函数的表达式;(2)连接BC,若点P在y轴上时,BP和BC的夹角为15°,求线段CP的长度;(3)当a≤x≤a+1时,二次函数y=x2+bx+c的最小值为2a,求a的值.18. (5分)(2019·遵义模拟) 北盘江大桥坐落于云南宜威与贵州水城交界处,横跨云贵两省,为目前世界第一高桥图1是大桥的实物图,图2是从图1中引申出的平面图,测得桥护栏BG=1.8米,拉索AB与护栏的夹角是26°,拉索ED与护栏的夹角是60°,两拉索底端距离BD为300m,若两拉索顶端的距离AE为90m,请求出立柱AH 的长.(tan26°≈0.5,sin26°≈0.4, 1.7)19. (10分)(2020·乌鲁木齐模拟) 如图,在中,,以为直径的交于,点在线段上,且 .(1)求证:是的切线.(2)若,求的半径.20. (6分) (2016九上·利津期中) 如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣ x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为 m.(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?21. (2分)(2017·蜀山模拟) 如图,已知抛物线y=﹣x2+bx+c与x轴正半轴交于点A(3,0),与y轴交于点B(0,3),点P是x轴上一动点,过点P作x轴的垂线交抛物线于点C,交直线AB于点D,设P(x,0).(1)求抛物线的函数表达式;(2)当0<x<3时,求线段CD的最大值;(3)在△PDB和△CDB中,当其中一个三角形的面积是另一个三角形面积的2倍时,求相应x的值;(4)过点B,C,P的外接圆恰好经过点A时,x的值为________.(直接写出答案)22. (2分)(2016·枣庄) 如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A (1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.23. (16分)已知:关于x的函数y=kx2+k2x﹣2的图象与y轴交于点C,(1)当k=﹣2时,求图象与x轴的公共点个数;(2)若图象与x轴有一个交点为A,当△AOC是等腰三角形时,求k的值.(3)若x≥1时函数y随着x的增大而减小,求k的取值范围.参考答案一、单选题 (共7题;共14分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、二、填空题 (共6题;共7分)8-1、9-1、10-1、11-1、12-1、13-1、三、解答题 (共10题;共66分)14-1、15-1、16、答案:略17-1、17-2、17-3、18-1、19-1、19-2、20-1、20-2、20-3、21-1、21-2、21-3、21-4、22-1、22-2、22-3、23、答案:略。

四川省乐山市九年级上学期数学期末考试试卷

四川省乐山市九年级上学期数学期末考试试卷

四川省乐山市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分) (2016七下·新余期中) 下列说法中错误的是()A . 数轴上的点与全体实数一一对应B . a,b为实数,若a<b,则C . a,b为实数,若a<b,则D . 实数中没有最小的数2. (1分)(2017·深圳) 随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为()A .B .C .D .3. (1分)下列图形中,不能确定为轴对称图形的是()A . 线段B . 三角形C . 等腰梯形D . 圆4. (1分)(2019·沾化模拟) 下列运算中正确的是()A . x4·x=x5B . 2x3÷ x=4x4C . (-a2)4=a6D . 5x-3x=25. (1分) (2019九上·莘县期中) 如图,在中,,点是边上一点,以点为圆心,以为半径作圆,恰好与相切于点,连接.若平分,则线段的长是()A . 2B .C .D .6. (1分)(2019·朝阳) 李老师为了了解本班学生每周课外阅读文章的数量,抽取了7名同学进行调查,调查结果如下(单位:篇/周):,其中有一个数据不小心被墨迹污损.已知这组数据的平均数为4,那么这组数据的众数与中位数分别为()A . 5,4B . 3,5C . 4,4D . 4,57. (1分)已知方程x2﹣2x﹣1=0,则此方程A . 无实数根B . 两根之和为﹣2C . 两根之积为﹣1D . 有一根为-1+8. (1分)(2019·北部湾模拟) 如图,已知抛物线y=ax2+bx+c经过点(﹣1,0),以下结论:①2a+b>0;②a+c<0;③4a+2b+c>0;④b2﹣5a2>2ac.其中正确的是()A . ①②B . ③④C . ②③④D . ①②③④9. (1分)(2011·遵义) 如图,AB是⊙O的直径,BC交⊙O于点D,DE⊥A C于点E,要使DE是⊙O的切线,还需补充一个条件,则补充的条件不正确的是()A . DE=DOB . AB=ACC . CD=DBD . AC∥OD10. (1分)如图反映的过程是:小强从家去菜地浇水,又去玉米地除草,然后回家.如果菜地和玉米地的距离为a千米,小强在玉米地除草比在菜地浇水多用的时间为b分钟,则a,b的值分别为()A . 1.1,8B . 0.9,3C . 1.1,12D . 0.9,8二、填空题 (共5题;共5分)11. (1分)使有意义的x的取值范围是________12. (1分)(2014·桂林) 已知点P(1,﹣4)在反比例函数y= 的图象上,则k的值是________.13. (1分) (2020九上·奉化期末) 从-1,0,π,,1.6中随机取一个数,取到无理数的概率是________。

九年级上册乐山数学期末试卷综合测试(Word版 含答案)

九年级上册乐山数学期末试卷综合测试(Word版 含答案)

九年级上册乐山数学期末试卷综合测试(Word 版 含答案)一、选择题1.下列方程中,是关于x 的一元二次方程的为( )A .2210x x +=B .220x x --=C .2320x xy -=D .240y -= 2.若关于x 的方程 ()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( )A .m 1≠.B .m 1=.C .m 1≥D . m 0≠.3.如图1,S 是矩形ABCD 的AD 边上一点,点E 以每秒k cm 的速度沿折线BS -SD -DC 匀速运动,同时点F 从点C 出发点,以每秒1cm 的速度沿边CB 匀速运动.已知点F 运动到点B 时,点E 也恰好运动到点C ,此时动点E ,F 同时停止运动.设点E ,F 出发t 秒时,△EBF 的面积为2ycm .已知y 与t 的函数图像如图2所示.其中曲线OM ,NP 为两段抛物线,MN 为线段.则下列说法:①点E 运动到点S 时,用了2.5秒,运动到点D 时共用了4秒;②矩形ABCD 的两邻边长为BC =6cm ,CD =4cm ;③sin ∠ABS =32; ④点E 的运动速度为每秒2cm .其中正确的是( )A .①②③B .①③④C .①②④D .②③④4.二次函数()20y ax bx c a =++≠的图像如图所示,它的对称轴为直线1x =,与x 轴交点的横坐标分别为1x ,2x ,且110x -<<.下列结论中:①0abc <;②223x <<;③421a b c ++<-;④方程()2200ax bx c a ++-=≠有两个相等的实数根;⑤13a >.其中正确的有( )A .②③⑤B .②③C .②④D .①④⑤ 5.将二次函数22y x =的图象先向左平移4个单位长度,再向下平移1个单位长度后,所得新的图象的函数表达式为( ) A .()2241y x =--B .()2241y x =+-C .()2241y x =-+D .()2241y x =++ 6.二次函数22y x x =-+在下列( )范围内,y 随着x 的增大而增大.A .2x <B .2x >C .0x <D .0x > 7.已知α、β是一元二次方程22210x x --=的两个实数根,则αβ+的值为( ) A .-1B .0C .1D .2 8.如图在△ABC 中,点D 、E 分别在△ABC 的边AB 、AC 上,不一定能使△ADE 与△ABC 相似的条件是( )A .∠AED=∠B B .∠ADE=∠C C .AD DE AB BC= D .AD AE AC AB = 9.如图,在平面直角坐标系xOy 中,二次函数21y ax bx =++的图象经过点A ,B ,对系数a 和b 判断正确的是( )A .0,0a b >>B .0,0a b <<C .0,0a b ><D .0,0a b <>10.已知在△ABC 中,∠ACB =90°,AC =6cm ,BC =8cm ,CM 是它的中线,以C 为圆心,5cm 为半径作⊙C ,则点M 与⊙C 的位置关系为( )A .点M 在⊙C 上B .点M 在⊙C 内 C .点M 在⊙C 外D .点M 不在⊙C 内11.如图,点A 、B 、C 在⊙O 上,∠ACB =130°,则∠AOB 的度数为( )A .50°B .80°C .100°D .110°12.一组数据10,9,10,12,9的平均数是( )A .11B .12C .9D .10二、填空题13.已知一组数据:4,4,m ,6,6的平均数是5,则这组数据的方差是______.14.一个不透明的袋中原装有2个白球和1个红球,搅匀后从中任意摸出一个球,要使摸出红球的概率为23,则袋中应再添加红球____个(以上球除颜色外其他都相同). 15.从地面垂直向上抛出一小球,小球的高度h (米)与小球运动时间t (秒)之间的函数关系式是h=12t ﹣6t 2,则小球运动到的最大高度为________米;16.如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,D 是以点A 为圆心2为半径的圆上一点,连接BD ,M 为BD 的中点,则线段CM 长度的最小值为__________.17.二次函数2y ax bx c =++的图象如图所示,给出下列说法:①ab 0<;②方程2ax bx c 0++=的根为1x 1=-,2x 3=;③a b c 0++>;④当x 1>时,y 随x 值的增大而增大;⑤当y 0>时,1x 3-<<.其中,正确的说法有________(请写出所有正确说法的序号).18.在英语句子“Wish you success”(祝你成功)中任选一个字母,这个字母为“s”的概率是 .19.某厂一月份的总产量为500吨,通过技术更新,产量逐月提高,三月份的总产量达到720吨.若平均每月增长率是,则可列方程为__.20.一元二次方程x 2﹣4=0的解是._________21.二次函数2y ax bx c =++的图象如图所示,若点()11,A y ,()23,B y 是图象上的两点,则1y ____2y (填“>”、“<”、“=”).22.若m 是方程2x 2﹣3x ﹣1=0的一个根,则6m 2﹣9m +2020的值为_____.23.一个口袋中放有除颜色外,形状大小都相同的黑白两种球,黑球6个,白球10个.现在往袋中放入m 个白球和4个黑球,使得摸到白球的概率为35,则m =__. 24.如图,正方形ABCD 的边长为5,E 、F 分别是BC 、CD 上的两个动点,AE ⊥EF .则AF 的最小值是_____.三、解答题25.(1)计算:()212cos6020202π-⎛⎫++-︒ ⎪⎝︒⎭(2)若关于x 的方程22210x x m ++-=有两个相等的实数根,求m 的值.26.在矩形ABCD 中,AB =3,AD =5,E 是射线..DC 上的点,连接AE ,将△ADE 沿直线AE 翻折得△AFE .(1)如图①,点F 恰好在BC 上,求证:△ABF ∽△FCE ;(2)如图②,点F 在矩形ABCD 内,连接CF ,若DE =1,求△EFC 的面积;(3)若以点E 、F 、C 为顶点的三角形是直角三角形,则DE 的长为 .27.某网店打出促销广告:最潮新款服装30件,每件售价300元,若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买2件,所买的每件服装的售价均降低6元.已知该服装成本是每件200元.设顾客一次性购买服装x件时,该网店从中获利y 元.(1)求y与x的函数关系式,并写出自变量x的取值范围.(2)顾客一次性购买多少件时,该网店从中获利最多,并求出获利的最大值?28.已知关于x的一元二次方程(a﹣1)x2﹣2x+1=0有两个不相等的实数根,求a的取值范围.29.“2020比佛利”无锡马拉松赛将于3月22日鸣枪开跑,本次比赛设三个项目:A.全程马拉松;B.半程马拉松;C.迷你马拉松.小明和小红都报名参与该赛事的志愿者服务工作,若两人都已被选中,届时组委会随机将他们分配到三个项目组.(1)小明被分配到“迷你马拉松”项目组的概率为;(2)请利用树状图或列表法求两人被分配到同一个项目组的概率.30.如图,在▱ABCD中,点E是边AD上一点,延长CE到点F,使∠FBC=∠DCE,且FB与AD相交于点G.(1)求证:∠D=∠F;(2)用直尺和圆规在边AD上作出一点P,使△BPC∽△CDP,并加以证明.(作图要求:保留痕迹,不写作法.)31.某玩具商店以每件60元为成本购进一批新型玩具,以每件100元的价格销售则每天可卖出20件,为了扩大销售,增加盈利,尽快减少库存,商店决定采取适当的降价措施,经调查发现:若每件玩具每降价1元,则每天可多卖2件.(1)若商店打算每天盈利1200元,每件玩具的售价应定为多少元?(2)若商店为追求效益最大化,每件玩具的售价定为多少元时,商店每天盈利最多?最多盈利多少元?32.化简并求值:22+24411m m mm m++÷+-,其中m满足m2-m-2=0.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据一元二次方程的定义,一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax 2+bx +c =0(a ≠0)的形式,则这个方程就为一元二次方程.【详解】解:A.2210x x+=,是分式方程, B.220x x --=,正确,C.2320x xy -=,是二元二次方程,D.240y -=,是关于y 的一元二次方程,故选B【点睛】此题主要考查了一元二次方程的定义,关键是掌握一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数; ②只含有一个未知数; ③未知数的最高次数是2.2.A解析:A【解析】【分析】根据一元二次方程的定义可得m ﹣1≠0,再解即可.【详解】由题意得:m ﹣1≠0,解得:m≠1,故选A .【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.3.C解析:C【解析】【分析】①根据函数图像的拐点是运动规律的变化点由图象即可判断.②设AB CD acm ==,BC AD bcm ==,由函数图像利用△EBF 面积列出方程组即可解决问题.③由 2.5BS k =,1.5SD k =,得53BS SD =,设3SD x =,5BS x =,在RT ABS ∆中,由222AB AS BS +=列出方程求出x ,即可判断.④求出BS 即可解决问题.【详解】解:函数图像的拐点时点运动的变化点根据由图象可知点E 运动到点S 时用了2.5秒,运动到点D 时共用了4秒.故①正确.设AB CD acm ==,BC AD bcm ==, 由题意,1··( 2.5)721·(4)42a b a b ⎧-=⎪⎪⎨⎪-=⎪⎩ 解得46a b =⎧⎨=⎩, 所以4AB CD cm ==,6BC AD cm ==,故②正确,2.5BS k =, 1.5SD k =, ∴53BS SD =,设3SD x =,5BS x =, 在Rt ABS ∆中,222AB AS BS +=,2224(63)(5)x x ∴+-=,解得1x =或134-(舍), 5BS ∴=,3SD =,3AS =,3sin 5AS ABS BS ∴∠==故③错误, 5BS =, 5 2.5k ∴=,2/k cm s ∴=,故④正确,故选:C .【点睛】本题考查二次函数综合题、锐角三角函数、勾股定理、三角形面积、函数图象问题等知识,读懂图象信息是解决问题的关键,学会设未知数列方程组解决问题,把问题转化为方程去思考,是数形结合的好题目,属于中考选择题中的压轴题.4.A解析:A【解析】【分析】利用抛物线开口方向得到a <0,利用对称轴位置得到b >0,利用抛物线与y 轴的交点在x 轴下方得c <0,则可对①进行判断;根据二次函数的对称性对②③进行判断;利用抛物线与直线y=2的交点个数对④进行判断,利用函数与坐标轴的交点列出不等式即可判断⑤.【详解】∵抛物线开口向下,∴a <0,∵对称轴为直线1x =∴b=-2a >0∵抛物线与y 轴的交点在x 轴下方,∴c <-1,∴abc >0,所以①错误;∵110x -<<,对称轴为直线1x =∴1212x x +=故223x <<,②正确; ∵对称轴x=1,∴当x=0,x=2时,y 值相等,故当x=0时,y=c <0,∴当x=2时,y=421a b c ++<-,③正确;如图,作y=2,与二次函数有两个交点,故方程()2200ax bx c a ++-=≠有两个不相等的实数根,故④错误; ∵当x=-1时,y=a-b+c=3a+c >0,当x=0时,y=c <-1∴3a >1,故13a >,⑤正确; 故选A.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置. 当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c ).也考查了二次函数的性质.5.B解析:B【解析】【分析】根据题意直接利用二次函数平移规律进而判断得出选项.【详解】解:22y x =的图象向左平移4个单位长度,再向下平移1个单位长度,平移后的函数关系式是:()2241y x =+-.故选:B .【点睛】本题考查二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式. 6.C解析:C【解析】【分析】先求函数的对称轴,再根据开口方向确定x 的取值范围.【详解】222(1)1y x x x =-+=--+,∵图像的对称轴为x=1,a=-10<,∴当x 1<时,y 随着x 的增大而增大,故选:C.【点睛】此题考查二次函数的性质,当a 0a 0<时,对称轴左增右减,当>时,对称轴左减右增. 7.C解析:C【解析】【分析】根据根与系数的关系即可求出αβ+的值.【详解】解:∵α、β是一元二次方程22210x x --=的两个实数根 ∴212αβ-+=-= 故选C .【点睛】此题考查的是根与系数的关系,掌握一元二次方程的两根之和=b a-是解决此题的关键. 8.C解析:C【解析】【分析】由题意根据相似三角形的判定定理依次对各选项进行分析判断即可.【详解】解:A 、∠AED=∠B ,∠A=∠A ,则可判断△ADE ∽△ACB ,故A 选项错误;B 、∠ADE=∠C ,∠A=∠A ,则可判断△ADE ∽△ACB ,故B 选项错误; C 、AD DE AB BC =不能判定△ADE ∽△ACB ,故C 选项正确; D 、AD AE AC AB=,且夹角∠A=∠A ,能确定△ADE ∽△ACB ,故D 选项错误. 故选:C .【点睛】本题考查的是相似三角形的判定,熟练掌握相似三角形的判定定理是解答此题的关键.9.D解析:D【解析】【分析】根据二次函数y=ax 2+bx+1的图象经过点A ,B ,画出函数图象的草图,根据开口方向和对称轴即可判断.【详解】解:由二次函数y=ax 2+bx+1可知图象经过点(0,1),∵二次函数y=ax 2+bx+1的图象还经过点A ,B ,则函数图象如图所示,抛物线开口向下,∴a <0,,又对称轴在y 轴右侧,即02b a-> , ∴b >0,故选D 10.A解析:A【解析】【分析】根据题意可求得CM 的长,再根据点和圆的位置关系判断即可.【详解】如图,∵由勾股定理得AB=2268 =10cm ,∵CM 是AB 的中线,∴CM=5cm ,∴d=r ,所以点M 在⊙C 上,故选A .【点睛】本题考查了点和圆的位置关系,解决的根据是点在圆上⇔圆心到点的距离=圆的半径.11.C解析:C【解析】【分析】根据圆内接四边形的性质和圆周角定理即可得到结论.【详解】在优弧AB 上任意找一点D ,连接AD ,BD .∵∠D =180°﹣∠ACB =50°,∴∠AOB =2∠D =100°,故选:C .【点睛】本题考查了圆周角定理,圆内接四边形的性质,正确的作出辅助线是解题的关键.12.D解析:D【解析】【分析】利用平均数的求法求解即可.【详解】这组数据10,9,10,12,9的平均数是1(10910129)105++++=故选:D .【点睛】本题主要考查平均数,掌握平均数的求法是解题的关键. 二、填空题13.8【解析】【分析】根据平均数是5,求m 值,再根据方差公式计算,方差公式为: (表示样本的平均数,n 表示样本数据的个数,S2表示方差.)【详解】解:∵4,4,,6,6的平均数是5,∴4+4解析:8【解析】【分析】根据平均数是5,求m 值,再根据方差公式计算,方差公式为:2222121n S x x x x x x n (x 表示样本的平均数,n 表示样本数据的个数,S 2表示方差.)【详解】解:∵4,4,m ,6,6的平均数是5,∴4+4+m+6+6=5×5,∴m=5,∴这组数据为4,4,m ,6,6,∴22222214545556565=0.85S ,即这组数据的方差是0.8.故答案为:0.8.【点睛】本题考查样本的平均数和方差的定义,掌握定义是解答此题的关键.14.3【解析】【分析】首先设应在该盒子中再添加红球x 个,根据题意得:,解此分式方程即可求得答案.【详解】解:设应在该盒子中再添加红球x 个,根据题意得:,解得:x=3,经检验,x=3是原分解析:3【解析】【分析】首先设应在该盒子中再添加红球x 个,根据题意得:12123x x +=++,解此分式方程即可求得答案.【详解】解:设应在该盒子中再添加红球x 个, 根据题意得:12123x x +=++, 解得:x=3,经检验,x=3是原分式方程的解.故答案为:3.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比. 15.6【解析】【分析】现将函数解析式配方得,即可得到答案.【详解】,∴当t=1时,h 有最大值6.故答案为:6.【点睛】此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开 解析:6【解析】【分析】现将函数解析式配方得221266(1)6h tt t =--=+﹣,即可得到答案. 【详解】 221266(1)6h t t t =--=+﹣,∴当t=1时,h有最大值6.故答案为:6.【点睛】此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开口方向确定最值.16.【解析】【分析】作AB的中点E,连接EM,CE,AD根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM和CE长,再根据三角形的三边关系确定CM长度的范围,从而确定CM的最小值.【解析:3 2【解析】【分析】作AB的中点E,连接EM,CE,AD根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM和CE长,再根据三角形的三边关系确定CM长度的范围,从而确定CM的最小值.【详解】解:如图,取AB的中点E,连接CE,ME,AD,∵E是AB的中点,M是BD的中点,AD=2,∴EM为△BAD的中位线,∴112122EM AD ,在Rt△ACB中,AC=4,BC=3,由勾股定理得,5==∵CE为Rt△ACB斜边的中线,∴1155222 CE AB,在△CEM中,551122CM ,即3722CM,∴CM的最大值为3 2 .故答案为:32. 【点睛】 本题考查了圆的性质,直角三角形的性质及中位线的性质,利用三角形三边关系确定线段的最值问题,构造一个以CM 为边,另两边为定值的的三角形是解答此题的关键和难点.17.①②④【解析】【分析】根据抛物线的对称轴判断①,根据抛物线与x 轴的交点坐标判断②,根据函数图象判断③④⑤.【详解】解:∵对称轴是x=-=1,∴ab <0,①正确;∵二次函数y=ax2+b解析:①②④【解析】【分析】根据抛物线的对称轴判断①,根据抛物线与x 轴的交点坐标判断②,根据函数图象判断③④⑤.【详解】 解:∵对称轴是x=-2b a=1, ∴ab <0,①正确;∵二次函数y=ax 2+bx+c 的图象与x 轴的交点坐标为(-1,0)、(3,0),∴方程x 2+bx+c=0的根为x 1=-1,x 2=3,②正确;∵当x=1时,y <0,∴a+b+c <0,③错误;由图象可知,当x >1时,y 随x 值的增大而增大,④正确;当y >0时,x <-1或x >3,⑤错误,故答案为①②④.【点睛】本题考查的是二次函数图象与系数之间的关系,二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定. 18.【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为.考点:概率公式.解析:【解析】试题解析:在英语句子“Wishyousuccess!”中共14个字母,其中有字母“s”4个.故其概率为42=147. 考点:概率公式.19.【解析】【分析】根据增长率的定义列方程即可,二月份的产量为:,三月份的产量为:.【详解】二月份的产量为:,三月份的产量为:.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟解析:2500(1)720x +=【解析】【分析】根据增长率的定义列方程即可,二月份的产量为:500(1)x +,三月份的产量为:2500(1)720x +=.【详解】二月份的产量为:500(1)x +,三月份的产量为:2500(1)720x +=.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟练理解增长率的表示方法,一般用增长后的量=增长前的量×(1+增长率). 20.x=±2【解析】移项得x2=4,故答案是:x=±2.解析:x=±2【解析】移项得x 2=4,∴x=±2.故答案是:x=±2.21.>【解析】【分析】利用函数图象可判断点,都在对称轴右侧的抛物线上,然后根据二次函数的性质可判断与的大小.【详解】解:∵抛物线的对称轴在y 轴的左侧,且开口向下,∴点,都在对称轴右侧的抛物线解析:>【解析】【分析】利用函数图象可判断点()11,A y ,()23,B y 都在对称轴右侧的抛物线上,然后根据二次函数的性质可判断1y 与2y 的大小.【详解】解:∵抛物线的对称轴在y 轴的左侧,且开口向下,∴点()11,A y ,()23,B y 都在对称轴右侧的抛物线上,∴1y >2y .故答案为>.【点睛】本题考查二次函数图象上点的坐标特征,二次函数的性质.解决本题的关键是判断点A 和点B 都在对称轴的右侧.22.2023【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m2﹣3m ﹣1=0,∴2m2﹣3m =1,∴原式=3(2m2﹣3m )+2020=3+2020=2【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m 2﹣3m ﹣1=0,∴2m 2﹣3m =1,∴原式=3(2m 2﹣3m )+2020=3+2020=2023.故答案为:2023.【点睛】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.23.5【解析】【分析】根据概率公式列出方程,即可求出答案.【详解】解:由题意得,解得m =5,经检验m =5是原分式方程的根,故答案为5.【点睛】本题主要考查了概率公式,根据概率公解析:5【解析】【分析】根据概率公式列出方程,即可求出答案.【详解】解:由题意得,10m 3610m 45+=+++ 解得m =5,经检验m =5是原分式方程的根,故答案为5.【点睛】本题主要考查了概率公式,根据概率公式列出方程是解题的关键.24.【解析】【分析】设BE=x,CF=y,则EC=5﹣x,构建二次函数了,利用二次函数的性质求出CF的最大值,求出DF的最小值即可解决问题.【详解】解:设BE=x,CF=y,则EC=5﹣x,解析:25 4【解析】【分析】设BE=x,CF=y,则EC=5﹣x,构建二次函数了,利用二次函数的性质求出CF的最大值,求出DF的最小值即可解决问题.【详解】解:设BE=x,CF=y,则EC=5﹣x,∵AE⊥EF,∴∠AEF=90°,∴∠AEB+∠FEC=90°,而∠AEB+∠BAE=90°,∴∠BAE=∠FEC,∴Rt△ABE∽Rt△ECF,∴ABEC=BECF,∴55x-=xy,∴y=﹣15x2+x=﹣15(x﹣52)2+54,∵﹣15<0,∴x=52时,y有最大值54,∴CF的最大值为54,∴DF的最小值为5﹣54=154,∴AF 254,故答案为254.【点睛】本题考查了几何动点问题与二次函数、相似三角形的综合问题,综合性较强,解题的关键是找出相似三角形,列出比例关系,转化为二次函数,从而求出AF 的最小值.三、解答题25.(1)6;(2)1m =.【解析】【分析】(1)根据负指数幂和0次幂法则,特殊三角函数值分别算出原算式中的每一项,然后进行实数运算即可.(2)根据一元二次方程根的判别式与根个数的关系,可得出b 2-4ac=0,列方程求解.【详解】解:(1)()2012cos6020202π-⎛⎫++- ⎪⎝⎭︒ 12412=⨯++ 6=;(2)∵22210x x m ++-=有两个相等的实数根,∴b 2-4ac=22-4(2m-1)=0,∴m=1.【点睛】本题考查实数运算和一元二次方程根的判别式与根个数的关系,掌握负指数幂,0次幂和特殊三角形函数值及根的判别式是解答此题的关键.26.(1)证明见解析;(2)513;(3)53、5、15、345)3【解析】【分析】(1)利用同角的余角相等,证明∠CEF =∠AFB ,即可解决问题;(2)过点F 作FG ⊥DC 交DC 与点G ,交AB 于点H,由△FGE ∽△AHF 得出AH=5GF ,再利用勾股定理求解即可;(3)分①当∠EFC=90°时; ②当∠ECF=90°时;③当∠CEF=90°时三种情况讨论解答即可.【详解】(1)解:在矩形ABCD 中,∠B =∠C =∠D =90°由折叠可得:∠D =∠EFA =90°∵∠EFA=∠C=90°∴∠CEF+∠CFE=∠CFE+∠AFB=90°∴∠CEF=∠AFB在△ABF和△FCE中∵∠AFB=∠CEF,∠B=∠C=90°△ABF∽△FCE(2)解:过点F作FG⊥DC交DC与点G,交AB于点H,则∠EGF=∠AHF=90°在矩形ABCD中,∠D=90°由折叠可得:∠D=∠EFA=90°,DE=EF=1,AD=AF=5∵∠EGF=∠EFA=90°∴∠GEF+∠GFE=∠AFH+∠GFE=90°∴∠GEF=∠AFH在△FGE和△AHF中∵∠GEF=∠AFH,∠EGF=∠FHA=90°∴△FGE∽△AHF∴EFAF=GFAH∴15=GFAH∴AH=5GF在Rt△AHF中,∠AHF=90°∵AH2+FH2=AF2∴(5 GF)2+(5-GF)2=52∴GF=5 13∴△EFC的面积为12×513×2=513;(3)解:①当∠EFC=90°时,A、F、C共线,如图所示:设DE=EF=x,则CE=3-x,∵AC=22223534AD CD+=+=,∴CF=34-x, ∵∠CFE=∠D=90°, ∠DCA=∠DCA, ∴△CEF∽△CAD, ∴CE EFCA AD=,即3534x x-=,解得:ED=x=5(345)3-;②当∠ECF=90°时,如图所示:∵AD=1AF=5,AB=3, ∴1BF=221AF AB-=4, 设1DE=x,则1E C=3-x,∵∠DCB=∠ABC=90°,111CF E F AB∠=∠∴11CE F∽1BF A,∴11111E C E FF B F A=,即345x x-=,解得:x=1E D=53;由折叠可得 :222E F E D= ,设2E C x=,则2223E F DE x==+,2549CF=+=,在RT△22E F C中,∵2222222CF CE E F+=,即9²+x²=(x+3)²,解得x=2E C=12, ∴231215DE=+=;③当∠CEF=90°时,AD=AF,此时四边形AFED是正方形,∴AF=AD=DE=5,综上所述,DE 的长为:53、5、15、5)3. 【点睛】 本题考查了翻折的性质,相似三角形的判定与性质,勾股定理,掌握翻折的性质,分类探讨的思想方法是解决问题的关键.27.(1)y=100x (010x ≤≤的整数) y=2-3130x +x(1030x <≤的整数);(2)购买22件时,该网站获利最多,最多为1408元.【解析】【分析】(1)根据题意可得出销售量乘以每台利润进而得出总利润;(2)根据一次函数和二次函数的性质求得最大利润.【详解】(1)当010x ≤≤的整数时,y 与x 的关系式为y=100x ;当1030x <≤的整数时, 1030062002x y x , y=2-3130x x + (1030x <≤的整数),∴y 与x 的关系式为:y=100x (010x ≤≤的整数), y=2-3130x +x(1030x <≤的整数)(2)当(010x ≤≤的整数),y=100x,当x=10时,利润有最大值y=1000元;当10˂x≤30时,y=23130x x -+, ∵a=-3<0,抛物线开口向下,∴y 有最大值,当x=22123b a -=时,y 取最大值, 因为x 为整数,根据对称性得:当x=22时,y 有最大值=1408元˃1000元,所以顾客一次性购买22件时,该网站获利最多.【点睛】本题考查分段函数及一次函数和二次函数的性质,利用函数性质求最值是解答此题的重要途径,自变量x 的取值范围及取值要求是解答此题的关键之处.28.a <2且a ≠1【解析】【分析】根据一元二次方程的定义和判别式的意义得到a ﹣1≠0且△=(﹣2)2﹣4(a ﹣1)>0,然后解两个不等式得到它们的公共部分即可.【详解】∵关于x的一元二次方程(a﹣1)x2﹣2x+1=0有两个不相等的实数根,∴a﹣1≠0且△=(﹣2)2﹣4(a﹣1)>0,解得:a<2且a≠1.【点睛】本题考查了一元二次方程根的情况与判别式的关系,对于一元二次方程ax2+bx+c=0(a≠0),判别式△=b2-4ac,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根;注意a≠0这一隐含条件,避免漏解.29.(1)13;(2)13.【解析】【分析】(1)直接利用概率公式计算;(2)先利用画树状图展示所有9种等可能的结果数,找出两人被分配到同一个项目组的结果数,然后根据概率公式计算.【详解】解:(1)小明被分配到“迷你马拉松”项目组的概率为13;(2)画树状图为:共有9种等可能的结果数,其中两人被分配到同一个项目组的结果数为3,所以两人被分配到同一个项目组的概率=39=13.【点睛】此题主要考查概率的求解,解题的关键是熟知树状图的画法.30.(1)详见解析;(2)详见解析.【解析】【分析】(1)根据四边形ABCD是平行四边形可得AD∥BC,∠FGE=FBC,再根据已知∠FBC=∠DCE,进而可得结论;(2)作三角形FBC的外接圆交AD于点P即可证明.【详解】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC∴∠FGE=∠FBC∵∠FBC=∠DCE,∴∠FGE =∠DCE∵∠FEG =∠DEC∴∠D =∠F .(2)如图所示:点P 即为所求作的点.证明:作BC 和BF 的垂直平分线,交于点O ,作△FBC 的外接圆,连接BO 并延长交AD 于点P ,∴∠PCB =90°∵AD ∥BC∴∠CPD =∠PCB =90°由(1)得∠F =∠D∵∠F =∠BPC∴∠D =∠BPC∴△BPC ∽△CDP .【点睛】此题主要考查圆的综合应用,解题的关键是熟知平行四边形的性质、外接圆的性质及相似三角形的判定与性质.31.(1)每件玩具的售价为80元;(2)每件玩具的售价为85元时,每天盈利最多,最多盈利1250元.【解析】【分析】(1)根据题意,可以得到关于x 的一元二次方程,从而可以解答本题;(2)根据题意可以得到利润与售价的函数关系式,然后根据二次函数的性质即可解答本题.【详解】解:(1)设每件玩具的售价为x 元,()()602021001200x x -+-=⎡⎤⎣⎦,解得:190x =,280x =,∵扩大销售,增加盈利,尽快减少库存,∴80x =,答:每件玩具的售价为80元;(2)设每件玩具的售价为a 元时,利润为w 元,()()()2602021002851250w a a a =-+-=--+⎡⎤⎣⎦,即当85a 时,w 有最大值为1250元,答:当每件玩具的售价为85元时,商店每天盈利最多,最多盈利1250元.【点睛】本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,利用二次函数的性质解答.32.12m m -+,原式=14 【解析】【分析】 根据分式的运算进行化简,再求出一元二次方程m 2-m -2=0的解,并代入使分式有意义的值求解.【详解】22+24411m m m m m ++÷+-=2+2(1)(1)1(2)m m m m m +-⋅++=12m m -+, 由m 2-m -2=0解得,m 1=2,m 2=-1,因为m =-1分式无意义,所以m =2时,代入原式=2122-+=14. 【点睛】此题主要考查分式的运算及一元二次方程的求解,解题的关键熟知分式额分母不为零.。

四川省乐山市九年级上学期期末数学试卷

四川省乐山市九年级上学期期末数学试卷

四川省乐山市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)下列图形中既是中心对称图形,又是轴对称图形的是()A .B .C .D .2. (2分) (2015七上·市北期末) 下列事件中是必然事件的有()①明天中午的气温一定是全天最高的温度;②小明买电影票,一定会买到座位号是双号的票;③现有10张卡片,上面分别写有1,2,3,…,10,把它们装人一个口袋中,从中抽出6张.这6张中,一定有写着偶数的卡片.④元旦节这一天刚好是1月1日.A . ①,②B . ①,③C . ①,④D . ③,④3. (2分)(2011·成都) 如图,若AB是⊙0的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD=()A . 116°B . 32°C . 58°D . 64°4. (2分)已知二次函数y=x2+(m﹣1)x+1,当x>1时,y随x的增大而增大,而m的取值范围是()A . m=﹣1B . m=3C . m≤﹣1D . m≥﹣15. (2分) (2018九上·临沭期末) 如图,在半径为6cm的⊙O中,点A是劣弧的中点,点D是优弧上一点,且∠D=30º下列四个结论:①OA⊥BC;②BC= cm;③cos∠AOB= ;④四边形ABOC是菱形.其中正确结论的序号是()A . ①③B . ①②③④C . ①②④D . ②③④6. (2分)(2017·和平模拟) 将二次函数y=x2﹣2x的图象向上平移1个单位长度,再向右平移2个单位长度,对于得到的新的二次函数,y的最小值是()A . ﹣2B . ﹣1C . 0D . 17. (2分)右图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A、B、C、D,得到四边形ABCD.若AC=10cm,∠BAC=36°,则图中阴影部分的面积为()A . 5πcm2B . 10πcm2C . 15πcm2D . 20πcm28. (2分)(2018·无锡模拟) 一元二次方程x2+5x+7=0解的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 没有实数根D . 无法确定9. (2分) (2018九上·建瓯期末) 如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(-1,0).下列结论:①ab<0;②b2>4a;③0<a+b+c<2;④0<b<1;⑤当x>-1时,y>0.其中正确结论的个数是()A . 5个B . 4个C . 3个D . 2个10. (2分)如图为抛物线y=ax2+bx+c的图像,A、B、C为抛物线与坐标轴的交点,且OA=OC=1,则下列关系中正确的是()A . a+b=-1B . a-b=-1C . b<2aD . ac<011. (2分)(2019·乌鲁木齐模拟) 如图,边长为1的正方形ABCD绕点A逆时针旋转45度后得到正方形AB′C′D′,边B′C′与DC交于点O,则四边形AB′OD的周长是()A . 2B . 3C .D . 1+12. (2分)(2019·建华模拟) 如图,在中, .点是的中点,连结,过点作,分别交于点,与过点且垂直于的直线相交于点,连结 .给出以下四个结论:① ;②点是的中点;③ ;④ ,其中正确的个数是()A . 4B . 3C . 2D . 1二、填空题 (共4题;共6分)13. (1分)半圆形纸片的半径为1cm,用如图所示的方法将纸片对折,使对折后半圆弧的中点M与圆心O重合,则折痕CD的长为________ cm.14. (1分) (2016七下·普宁期末) 如图,转动的转盘停止转动后,指针指向黑色区域的概率是________.15. (3分)把方程(x﹣1)2+2=2x(x﹣3)化为一般形式是________ ,其中二次项是________ ,一次项系数是________16. (1分)二次函数y=ax2+bx+c(a≠0)的图象如图(虚线部分为对称轴),给出以下6个结论:①abc>0;②a﹣b+c>0;③4a+2b+c>0;④2a<3b;⑤x<1时,y随x的增大而增大;⑥a+b<m(am+b)(m为实数且m≠1),其中正确的结论有________(填上所有正确结论的序号)三、解答题 (共10题;共120分)17. (30分)分解因式:(1) 6a2b﹣4a3b3﹣2ab(2) 25m2﹣n2(3) 4x2+12xy+9y2(4) a2(x﹣y)﹣b2(x﹣y)(5)﹣2a2x4+16a2x2﹣32a2(6)(a2﹣a)2﹣(a﹣1)2.18. (10分) (2016九上·南昌期中) 解方程(1) x(2x﹣1)=2(1﹣2x)(2) x2﹣5x+4=0.19. (6分) (2018九上·天台月考) 对实数a,b定义运算求函数y=x※(2x-1)的解析式;(1)若点A(x1,y1),B(x2,y2)(x1<x2)在函数y=x※(2x-1)的图象上,且A,B两点关于坐标原点成中心对称,求点A的坐标;(2)关于x的方程x※(2x-1)=m恰有三个互不相等的实数根,则m的取值范围是1.20. (6分)(2014·扬州) 商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.(1)若他去买一瓶饮料,则他买到奶汁的概率是________;(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率.21. (10分)(2017·潍坊) 如图,AB为半圆O的直径,AC是⊙O的一条弦,D为的中点,作DE⊥AC,交AB的延长线于点F,连接DA.(1)求证:EF为半圆O的切线;(2)若DA=DF=6 ,求阴影区域的面积.(结果保留根号和π)22. (11分) (2015八下·萧山期中) 如图,用同样规格黑白两色的正方形瓷砖铺设长方形地面,请观察下列图形,并解答有关问题:(1)铺设地面所用瓷砖的总块数为________(用含n的代数式表示,n表示第n个图形);(2)按上述铺设方案,铺一块这样的长方形地面共用了506块瓷砖,求此时n的值;(3)是否存在黑瓷砖与白瓷砖块数相等的情形?请通过计算加以说明.23. (10分)(2012·丹东) 如图,在△ABC中,∠BAC=30°,以AB为直径的⊙O经过点C.过点C作⊙O的切线交AB的延长线于点P.点D为圆上一点,且 = ,弦AD的延长线交切线PC于点E,连接BC.(1)判断OB和BP的数量关系,并说明理由;(2)若⊙O的半径为2,求AE的长.24. (12分)(2018·襄阳) 襄阳市精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x天的售价为y元/千克,y关于x的函数解析式为且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成木是18元/千克,每天的利润是W元(利润=销售收入﹣成本).(1) m=________,n=________;(2)求销售蓝莓第几天时,当天的利润最大?最大利润是多少?(3)在销售蓝莓的30天中,当天利润不低于870元的共有多少天?25. (10分)如图,已知PC平分∠MPN,点O是PC上任意一点,PM与⊙O相切于点E,交PC于A、B两点(1)求证:PN与⊙O相切(2)如果∠MPC=30°,PE=2,求劣弧的长26. (15分)(2019·广元) 如图,直线与x轴,y轴分别交于A , B两点,过A , B两点的抛物线与x轴交于点.(1)求抛物线的解析式;(2)连接BC,若点E是线段AC上的一个动点(不与A,C重合),过点E作,交AB于点F,当的面积是时,求点E的坐标;(3)在(2)的结论下,将绕点F旋转得,试判断点是否在抛物线上,并说明理由.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共6分)13-1、14-1、15-1、16-1、三、解答题 (共10题;共120分)17-1、17-2、17-3、17-4、17-5、17-6、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、24-1、24-2、24-3、25-1、25-2、26-1、26-2、26-3、。

四川省乐山市峨眉山市博睿特外国语学校九年级数学上学期周考试题3(含解析)

四川省乐山市峨眉山市博睿特外国语学校九年级数学上学期周考试题3(含解析)

四川省乐山市峨眉山市博睿特外国语学校2016届九年级数学上学期周考试题一.选择题(共36分,共12小题)1.关于x的方程(a﹣1)x2+x+1=0是一元二次方程,则a的取值范围是()A.a≠1 B.a>﹣1且a≠1 C.a≥﹣1且a≠1 D.a为任意实数2.x1、x2是一元二次方程3(x﹣1)2=15的两个解,且x1<x2,下列说法正确的是()A.x1小于﹣1,x2大于3 B.x1小于﹣2,x2大于3C.x1,x2在﹣1和3之间D.x1,x2都小于33.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有不相等实数根,则k的取值范围是()A.k>B.k≥C.k>且k≠1 D.k≥且k≠14.反比例函数y=图象上一点P(m﹣1,m+1),且有a+b=2+4﹣5,则关于x的方程x2+mx+1=0的根的情况为()A.有两个不等的实数根B.有两个相等的实数根C.无实数根 D.无法判断5.对任意实数x,多项式﹣x2+6x﹣10的值是一个()A.正数 B.负数 C.非负数D.无法确定6.已知反比例函数的图象如图,则一元二次方程x2﹣(2k﹣1)x+k2﹣1=0根的情况是()A.有两个不等实根B.有两个相等实根C.没有实根 D.无法确定7.关于x的一元二次方程x2+2(m﹣1)x+m2=0的两个实数根分别为x1,x2,且x1+x2>0,x1x2>0,则m的取值范围是()A.m≤B.m≤且m≠0 C.m<1 D.m<1且m≠08.已知一元二次方程的两根分别是2和﹣3,则这个一元二次方程是()A.x2﹣6x+8=0 B.x2+2x﹣3=0 C.x2﹣x﹣6=0 D.x2+x﹣6=09.下面给出了一些关于相似的命题,其中真命题有()(1)菱形都相似;(2)等腰直角三角形都相似;(3)正方形都相似;(4)矩形都相似;(5)正六边形都相似.A.1 个 B.2个C.3个D.4个10.若x:y=1:3,2y=3z,则的值是()A.﹣5 B.﹣C.D.511.已知,那么下列等式中,不一定正确的是()A.x+y=5 B.2x=3y C.D.12.已知实数a、b、c满足,则直线y=kx﹣k一定经过()象限.A.一、二B.一、三C.一、四D.三、四二.填空题(共21分,共7小题)13.已知线段b是线段a、c的比例中项,且a=1、b=2,那么c= .14.如图,在△ABC中,∠BAC=30°,AB=AC,AD是BC边上的中线,∠ACE=∠BAC,CE交AB于点E,交AD于点F.若BC=2,则EF的长为.15.如图,在长8cm,宽4cm 的矩形中截去一个矩形(阴影部分)使留下的矩形与原矩形相似,那么留下的矩形的面积为cm2.16.如图,在梯形ABCD中,AD∥BC,点E、F、G、H是两腰上的点,AE=EF=FB,CG=GH=HD,且四边形EFGH的面积为6cm2,则梯形ABCD的面积为cm2.17.如图,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去…,已知正方形ABCD的面积S1为1,按上述方法所作的正方形的面积依次为s2,s3,…,s n(n为正整数),那么第9个正方形的面积S9= .18.已知a,b是方程x2﹣x﹣3=0的两个根,则代数式2a3+b2+3a2﹣11a﹣b+5的值为.19.如图,在Rt△ABC中,∠BAC=90°,AB=AC=16cm,AD为BC边上的高.动点P从点A出发,沿A→D方向以cm/s的速度向点D运动.设△ABP的面积为S1,矩形PDFE的面积为S2,运动时间为t秒(0<t<8),则t= 秒时,S1=2S2.三.解答题20.先化简,再求值:(+2﹣x)÷,其中x满足x2﹣4x+3=0.21.(1)解方程:3x(x﹣2)=2(2﹣x)(2)化简:.22.已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.23.百货商店服装柜在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?24.如图,四边形ABCD是菱形,过AB的中点E作AC的垂线EF,交AD于点M,交CD的延长线于点F.(1)证明:AM=DM;(2)若DF=2,求菱形ABCD的周长;(3)在没有辅助线的前提下,图中共有对相似三角形.25.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求的值.26.如图,在平面直角坐标系中,△AOB的三个顶点的坐标分别是A(4,3),O(0,0),B (6,0).点M是OB边上异于O,B的一动点,过点M作MN∥AB,点P是AB边上的任意点,连接AM,PM,PN,BN.设点M(x,0),△PMN的面积为S.(1)求出OA所在直线的解析式,并求出点M的坐标为(1,0)时,点N的坐标;(2)求出S关于x的函数关系式,写出x的取值范围,并求出S的最大值;(3)若S:S△ANB=2:3时,求出此时N点的坐标.2015-2016学年四川省乐山市峨眉山市博睿特外国语学校九年级(上)周考数学试卷(3)参考答案与试题解析一.选择题(共36分,共12小题)1.关于x的方程(a﹣1)x2+x+1=0是一元二次方程,则a的取值范围是()A.a≠1 B.a>﹣1且a≠1 C.a≥﹣1且a≠1 D.a为任意实数【考点】一元二次方程的定义.【分析】根据一元二次方程的二次项系数不等于零得到a﹣1≠0,由此求得a的取值范围.【解答】解:依题意得:a﹣1≠0,解得a≠1.故选:A.2.x1、x2是一元二次方程3(x﹣1)2=15的两个解,且x1<x2,下列说法正确的是()A.x1小于﹣1,x2大于3 B.x1小于﹣2,x2大于3C.x1,x2在﹣1和3之间D.x1,x2都小于3【考点】解一元二次方程-直接开平方法;估算无理数的大小.【分析】利用直接开平方法解方程得出两根进而估计无理数的大小得出答案.【解答】解:∵x1、x2是一元二次方程3(x﹣1)2=15的两个解,且x1<x2,∴(x﹣1)2=5,∴x﹣1=±,∴x2=1+>3,x1=1﹣<﹣1,故选:A.3.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有不相等实数根,则k的取值范围是()A.k>B.k≥C.k>且k≠1 D.k≥且k≠1【考点】根的判别式;一元二次方程的定义.【分析】根据判别式的意义得到△=22﹣4(k﹣1)×(﹣2)>0,然后解不等式即可.【解答】解:∵关于x的一元二次方程(k﹣1)x2+2x﹣2=0有不相等实数根,∴△=22﹣4(k﹣1)×(﹣2)>0,解得k>;且k﹣1≠0,即k≠1.故选:C.4.反比例函数y=图象上一点P(m﹣1,m+1),且有a+b=2+4﹣5,则关于x的方程x2+mx+1=0的根的情况为()A.有两个不等的实数根B.有两个相等的实数根C.无实数根 D.无法判断【考点】根的判别式;非负数的性质:偶次方;配方法的应用;反比例函数图象上点的坐标特征.【分析】由a+b=2+4﹣5利用因式分解法得到(﹣1)(﹣2)=0,易求a=2,b=3.所以a+b=(m﹣1)(m+1)=m2﹣1.则△=m2﹣4=a+b﹣3=2+3﹣3=2>0,故关于x的方程x2+mx+1=0有两个不等的实数根.【解答】解:∵a+b=2+4﹣5,∴()2+()2=2+4﹣5,即(﹣1)2+(﹣2)2=0解得=1, =2.∴a=2,b=3.∵反比例函数y=图象上一点P(m﹣1,m+1),∴a+b=(m﹣1)(m+1)=m2﹣1.∴△=m2﹣4=a+b﹣3=2+3﹣3=2>0,∴关于x的方程x2+mx+1=0有两个不等的实数根.故选:A.5.对任意实数x,多项式﹣x2+6x﹣10的值是一个()A.正数 B.负数 C.非负数D.无法确定【考点】配方法的应用;非负数的性质:偶次方.【分析】利用配方法把﹣x2+6x﹣10变形为﹣(x﹣3)2﹣1,然后根据非负数的性质可判断﹣x2+6x﹣10<0.【解答】解:﹣x2+6x﹣10=﹣(x2﹣6x)﹣10=﹣(x2﹣6x+9﹣9)﹣10=﹣(x﹣3)2﹣1,∵﹣(x﹣3)2≤0,∴﹣(x﹣3)2﹣1<0,即多项式﹣x2+6x﹣10的值是一个负数.故选B.6.已知反比例函数的图象如图,则一元二次方程x2﹣(2k﹣1)x+k2﹣1=0根的情况是()A.有两个不等实根B.有两个相等实根C.没有实根 D.无法确定【考点】根的判别式;反比例函数的图象.【分析】首先根据反比例函数的图象可以得到k的取值范围,然后根据k的取值范围即可判断方程x2﹣(2k﹣1)x+k2﹣1=0的判别式的正负情况,接着就可以判断方程的根的情况.【解答】解:∵反比例函数的图象在第一、三象限内,∴k﹣2>0,∴k>2,∵一元二次方程x2﹣(2k﹣1)x+k2﹣1=0的判别式为△=b2﹣4ac=(2k﹣1)2﹣4(k2﹣1)=﹣4k+5,而k>2,∴﹣4k+5<0,∴△<0,∴一元二次方程x2﹣(2k﹣1)x+k2﹣1=0没有实数根.故选C.7.关于x的一元二次方程x2+2(m﹣1)x+m2=0的两个实数根分别为x1,x2,且x1+x2>0,x1x2>0,则m的取值范围是()A.m≤B.m≤且m≠0 C.m<1 D.m<1且m≠0【考点】根的判别式;根与系数的关系.【分析】先由根的判别式可得方程有两个实数根则△≥0,根据根与系数的关系得出x1+x2=﹣2(m﹣1),x1x2=m2,再由x1+x2>0,x1x2>0,解出不等式组即可.【解答】解:∵△=[2(m﹣1)]2﹣4m2=﹣8m+4≥0,∴m≤,∵x1+x2=﹣2(m﹣1)>0,x1x2=m2>0∴m<1,m≠0∴m≤且m≠0.故选:B.8.已知一元二次方程的两根分别是2和﹣3,则这个一元二次方程是()A.x2﹣6x+8=0 B.x2+2x﹣3=0 C.x2﹣x﹣6=0 D.x2+x﹣6=0【考点】根与系数的关系.【分析】首先设此一元二次方程为x2+px+q=0,由二次项系数为1,两根分别为2,﹣3,根据根与系数的关系可得p=﹣(2﹣3)=1,q=(﹣3)×2=﹣6,继而求得答案.【解答】解:设此一元二次方程为x2+px+q=0,∵二次项系数为1,两根分别为2,﹣3,∴p=﹣(2﹣3)=1,q=(﹣3)×2=﹣6,∴这个方程为:x2+x﹣6=0.故选:D.9.下面给出了一些关于相似的命题,其中真命题有()(1)菱形都相似;(2)等腰直角三角形都相似;(3)正方形都相似;(4)矩形都相似;(5)正六边形都相似.A.1 个 B.2个C.3个D.4个【考点】相似图形;命题与定理.【分析】利用相似图形的性质分别判断得出即可.【解答】解:(1)所有菱形的对应角不一定相等,故菱形不一定都相似;(2)等腰直角三角形都相似,正确;(3)正方形都相似,正确;(4)矩形对应边比值不一定相等,不矩形不一定都相似;(5)正六边形都相似,正确,故符合题意的有3个.故选:C.10.若x:y=1:3,2y=3z,则的值是()A.﹣5 B.﹣C.D.5【考点】比例的性质.【分析】根据比例设x=k,y=3k,再用k表示出z,然后代入比例式进行计算即可得解.【解答】解:∵x:y=1:3,∴设x=k,y=3k,∵2y=3z,∴z=2k,∴==﹣5.故选:A.11.已知,那么下列等式中,不一定正确的是()A.x+y=5 B.2x=3y C.D.【考点】比例的性质.【分析】根据比例的性质,设x=3k,y=2k,然后对各选项分析判断利用排除法求解.【解答】解:∵=,∴设x=3k,y=2k,A、x+y=5k,k不一定等于1,则x+y=5不一定正确,故本选项符合题意;B、2x=3y=6k,一定成立,故本选项不符合题意;C、==,一定成立,故本选项不符合题意;D、==,一定成立,故本选项不符合题意.故选A.12.已知实数a、b、c满足,则直线y=kx﹣k一定经过()象限.A.一、二B.一、三C.一、四D.三、四【考点】一次函数图象与系数的关系;比例的性质.【分析】此题要分a+b+c≠0和a+b+c=0两种情况讨论,然后求出k,就知道函数图象经过的象限.【解答】解:分两种情况讨论:当a+b+c≠0时,根据比例的等比性质,得:k==2,此时直线是y=2x﹣2过第一、三、四象限;当a+b+c=0时,即a+b=﹣c,则k=﹣1,此时直线是y=﹣x+1直线过第一、二、四象限.综上所述,该直线必经过第一、四象限.故选:C.二.填空题(共21分,共7小题)13.已知线段b是线段a、c的比例中项,且a=1、b=2,那么c= 4 .【考点】比例线段.【分析】根据比例中项的定义可得b2=ac,从而易求b.【解答】解:∵线段b是线段a、c的比例中项,∴b2=ac,即22=1×c,∴c=4.故答案是4.14.如图,在△ABC中,∠BAC=30°,AB=AC,AD是BC边上的中线,∠ACE=∠BAC,CE交AB于点E,交AD于点F.若BC=2,则EF的长为﹣1 .【考点】勾股定理;三角形内角和定理;等腰三角形的性质;含30度角的直角三角形;平行线分线段成比例.【分析】过F点作FG∥BC.根据等腰三角形的性质和三角形内角和定理可得AF=CF,在Rt△CDF中,根据三角函数可得AF=CF=2,DF=,根据平行线分线段成比例可得比例式GF:BD=AF:AD,求得GF=4﹣2,再根据平行线分线段成比例可得比例式EF:EC=GF:BC,依此即可得到EF=﹣1.【解答】解:过F点作FG∥BC.∵在△ABC中,AB=AC,AD是BC边上的中线,∴BD=CD=BC=1,∠BAD=∠CAD=∠BAC=15°,AD⊥BC,∵∠ACE=∠BAC,∴∠CAD=∠ACE=15°,∴AF=CF,∵∠ACD=÷2=75°,∴∠DCE=75°﹣15°=60°,在Rt△CDF中,AF=CF==2,DF=CD•tan60°=,∵FG∥BC,∴GF:BD=AF:AD,即GF:1=2:(2+),解得GF=4﹣2,∴EF:EC=GF:BC,即EF:(EF+2)=(4﹣2):2,解得EF=﹣1.故答案为:﹣1.15.如图,在长8cm,宽4cm 的矩形中截去一个矩形(阴影部分)使留下的矩形与原矩形相似,那么留下的矩形的面积为8 cm2.【考点】相似多边形的性质.【分析】本题需先设留下的矩形的宽为x,再根据留下的矩形与矩形相似,列出方程即可求出留下的矩形的面积.【解答】解:设留下的矩形的宽为x,∵留下的矩形与原矩形相似,∴,x=2,∴留下的矩形的面积为:2×4=8(cm2)故答案为:8.16.如图,在梯形ABCD中,AD∥BC,点E、F、G、H是两腰上的点,AE=EF=FB,CG=GH=HD,且四边形EFGH的面积为6cm2,则梯形ABCD的面积为18 cm2.【考点】相似多边形的性质.【分析】根据平行线分线段成比例定理可以得出EH=,FG=,进而利用梯形的面积公式得出梯形ABCD的面积.【解答】解:∵在梯形ABCD中,AD∥BC,点E、F、G、H是两腰上的点,AE=EF=FB,CG=GH=HD,∴2EH=AD+FG,2FG=EH+BC,∴EH=,FG=,∵四边形EFGH的面积为6cm2,∴(EH+FG)h=6,∴四边形ADEH的面积和四边形FBCG的面积和为:(EH+AD)h+(BC+FG)h=12,则梯形ABCD的面积为:18.故答案为:18.17.如图,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去…,已知正方形ABCD的面积S1为1,按上述方法所作的正方形的面积依次为s2,s3,…,s n(n为正整数),那么第9个正方形的面积S9= 256 .【考点】相似多边形的性质;正方形的性质.【分析】根据正方形的性质可知,当面积为1时,边长为1,对角线长为,以为边的对角线长为2,依次可推出第4个正方形边长2,第5个边长为4,第6个边长为4,第7边长个为8,第8边长个为8,知道边长可求出面积.【解答】解:以正方形的对角线为边长就是在原来边长的基础上都乘以就是下一个正方形的边长.因为第一个边长为1,所以第9个正方形的边长为16,S9=16×16=256.故答案为:256.18.已知a,b是方程x2﹣x﹣3=0的两个根,则代数式2a3+b2+3a2﹣11a﹣b+5的值为23 .【考点】因式分解的应用;一元二次方程的解;根与系数的关系.【分析】根据一元二次方程解的定义得到a2﹣a﹣3=0,b2﹣b﹣3=0,即a2=a+3,b2=b+3,则2a3+b2+3a2﹣11a﹣b+5=2a(a+3)+b+3+3(a+3)﹣11a﹣b+5,整理得2a2﹣2a+17,然后再把a2=a+3代入后合并即可.【解答】解:∵a,b是方程x2﹣x﹣3=0的两个根,∴a2﹣a﹣3=0,b2﹣b﹣3=0,即a2=a+3,b2=b+3,∴2a3+b2+3a2﹣11a﹣b+5=2a(a+3)+b+3+3(a+3)﹣11a﹣b+5=2a2﹣2a+17=2(a+3)﹣2a+17=2a+6﹣2a+17=23.故答案为:23.19.如图,在Rt△ABC中,∠BAC=90°,AB=AC=16cm,AD为BC边上的高.动点P从点A出发,沿A→D方向以cm/s的速度向点D运动.设△ABP的面积为S1,矩形PDFE的面积为S2,运动时间为t秒(0<t<8),则t= 6 秒时,S1=2S2.【考点】一元二次方程的应用;等腰直角三角形;矩形的性质.【分析】利用三角形的面积公式以及矩形的面积公式,表示出S1和S2,然后根据S1=2S2,即可列方程求解.【解答】解:∵Rt△ABC中,∠BAC=90°,AB=AC=16cm,AD为BC边上的高,∴AD=BD=CD=8cm,又∵AP=t,则S1=AP•BD=×8×t=8t,PD=8﹣t,∵PE∥BC,∴△APE∽△ADC,∴,∴PE=AP=t,∴S2=PD•PE=(8﹣t)•t,∵S1=2S2,∴8t=2(8﹣t)•t,解得:t=6.故答案是:6.三.解答题20.先化简,再求值:(+2﹣x)÷,其中x满足x2﹣4x+3=0.【考点】分式的化简求值;解一元二次方程-因式分解法.【分析】通分相加,因式分解后将除法转化为乘法,再将方程的解代入化简后的分式解答.【解答】解:原式=÷=•=﹣,解方程x2﹣4x+3=0得,(x﹣1)(x﹣3)=0,x1=1,x2=3.当x=1时,原式无意义;当x=3时,原式=﹣=﹣.21.(1)解方程:3x(x﹣2)=2(2﹣x)(2)化简:.【考点】二次根式的混合运算;零指数幂;解一元二次方程-因式分解法.【分析】(1)先移项,再提公因式x﹣2,转化为两个一元一次方程求解即可;(2)根据二次根式的化简、零指数幂、绝对值进行计算即可.【解答】解:(1)移项得,3x(x﹣2)﹣2(2﹣x)=0,提公因式得,(x﹣2)(3x+2)=0,x﹣2=0或3x+2=0,解得x1=2,x2=﹣;(2)原式=﹣4+2+1﹣3+2﹣=﹣1﹣.22.已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.【考点】根的判别式.【分析】(1)先计算判别式的值得到△=(m+2)2﹣4m×2=(m﹣2)2,再根据非负数的值得到△≥0,然后根据判别式的意义得到方程总有两个实数根;(2)利用因式分解法解方程得到x1=1,x2=,然后利用整数的整除性确定正整数m的值.【解答】(1)证明:∵m≠0,△=(m+2)2﹣4m×2=m2﹣4m+4=(m﹣2)2,而(m﹣2)2≥0,即△≥0,∴方程总有两个实数根;(2)解:(x﹣1)(mx﹣2)=0,x﹣1=0或mx﹣2=0,∴x1=1,x2=,当m为正整数1或2时,x2为整数,即方程的两个实数根都是整数,∴正整数m的值为1或2.23.百货商店服装柜在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?【考点】一元二次方程的应用.【分析】利用童装平均每天售出的件数×每件盈利=每天销售这种童装利润列出方程解答即可;【解答】解:设每件童装应降价x元,根据题意列方程得,(40﹣x)(20+2x)=1200,解得x1=20,x2=10(因为尽快减少库存,不合题意,舍去),答:每件童装降价20元;24.如图,四边形ABCD是菱形,过AB的中点E作AC的垂线EF,交AD于点M,交CD的延长线于点F.(1)证明:AM=DM;(2)若DF=2,求菱形ABCD的周长;(3)在没有辅助线的前提下,图中共有 5 对相似三角形.【考点】菱形的性质;相似三角形的判定.【分析】(1)连接BD,根据菱形的对角线互相垂直可得AC⊥BD,然后求出EM∥BD,再判断出M是AD的中点,从而得证;(2)判断出四边形FDBE是平行四边形,根据平行四边形的对边相等求出BE,再求出AB,然后根据菱形的周长公式进行计算即可得解;(3)根据两平行直线所截得到的三角形是相似三角形找出相似三角形即可.【解答】(1)证明:连接BD,∵四边形ABCD是菱形,∴AC⊥BD,∵EM⊥AC,∴EM∥BD,∵E为AB的中点,∴M为AD的中点,∴AM=DM;(2)解:∵EB∥FD,EM∥BD,∴四边形FDBE是平行四边形,∴FD=BD,∵DF=2,∴BE=2,∴AB=2BE=2×2=4,∴菱形ABCD的周长=4AB=4×4=16;(3)设ME与AC的交点为G,相似三角形有:△AGE∽△AGM,△AGE∽△CGF,△AGM∽△CGF,△AEM∽△DFM,△ABC∽△ADC共5对.25.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求的值.【考点】相似三角形的判定与性质;直角三角形斜边上的中线.【分析】(1)由AC平分∠DAB,∠ADC=∠ACB=90°,可证得△ADC∽△ACB,然后由相似三角形的对应边成比例,证得AC2=AB•AD;(2)由E为AB的中点,根据在直角三角形中,斜边上的中线等于斜边的一半,即可证得CE=AB=AE,继而可证得∠DAC=∠ECA,得到CE∥AD;(3)易证得△AFD∽△CFE,然后由相似三角形的对应边成比例,求得的值.【解答】(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AD:AC=AC:AB,∴AC2=AB•AD;(2)证明:∵E为AB的中点,∴CE=AB=AE,∴∠EAC=∠ECA,∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD;(3)解:∵CE∥AD,∴△AFD∽△CFE,∴AD:CE=AF:CF,∵CE=AB,∴CE=×6=3,∵AD=4,∴,∴.26.如图,在平面直角坐标系中,△AOB的三个顶点的坐标分别是A(4,3),O(0,0),B (6,0).点M是OB边上异于O,B的一动点,过点M作MN∥AB,点P是AB边上的任意点,连接AM,PM,PN,BN.设点M(x,0),△PMN的面积为S.(1)求出OA所在直线的解析式,并求出点M的坐标为(1,0)时,点N的坐标;(2)求出S关于x的函数关系式,写出x的取值范围,并求出S的最大值;(3)若S:S△ANB=2:3时,求出此时N点的坐标.【考点】一次函数综合题;平行线的性质;相似三角形的应用.【分析】(1)利用待定系数法求解析式即可;(2)作AG⊥OB于G,NH⊥OB于H,利用勾股定理先求得AG的长,然后根据三角形相似求得NH:AG=OM:OB,得出NH的长,因为△MBN的面积=△PMN的面积=S,即可求得S与x的关系式.(3)因为△AMB的面积=△ANB的面积=S△ANB,△NMB的面积=△NMP的面积=S,所以NH:AG=2:3,因为ON:OA=NH:AG,OM:OB=ON:OA,所以OM:OB=ON:OA=2:3,进而求得M点的坐标,求得MN的解析式,然后求得直线MN与直线OA的交点即可.【解答】解:(1)设直线OA的解析式为y=k1x,∵A(4,3),∴3=4k1,解得k1=,∴OA所在的直线的解析式为:y=x,同理可求得直线AB的解析式为;y=﹣x+9,∵MN∥AB,∴设直线MN的解析式为y=﹣x+b,把M(1,0)代入得:b=,∴直线MN的解析式为y=﹣x+,解,得,∴N(,).(2)如图2,作NH⊥OB于H,AG⊥OB于G,则AG=3.∵MN∥AB,∴△MBN的面积=△PMN的面积=S,∴△OMN∽△OBA,∴NH:AG=OM:OB,∴NH:3=x:6,即NH=x,∴S=MB•NH=×(6﹣x)×x=﹣(x﹣3)2+(0<x<6),∴当x=3时,S有最大值,最大值为.(3)如图2,∵MN∥AB,∴△AMB的面积=△ANB的面积=S△ANB,△NMB的面积=△NMP的面积=S ∵S:S△ANB=2:3,∴MB•NH:MB•AG=2:3,即NH:AG=2:3,∴ON:OA=NH:AG=2:3,∵MN∥AB,∴OM:OB=ON:OA=2:3,∵OB=6,∴=,∴OM=4,∴M(4,0)∵直线AB的解析式为;y=﹣x+9,∴设直线MN的解析式y=﹣x+b把点M代入得:0=﹣×4+b,解得b=6,∴直线MN的解析式为y=﹣x+6,解,得,∴N(,2).。

2015-2016学年第一学期期末考试九年级数学附答案

2015-2016学年第一学期期末考试九年级数学附答案
14.某楼盘2013年房价为每平方米8100元,经过两年连续降价后,2015年房价为每平方米7800元,设该楼盘这两年房价平均降低率为x,根据题意可列方程为▲.
15.如图,四边形ABCD内接于⊙O,若⊙O的半径为6,∠A=130°,则扇形OBAD的面积为▲.
16.某数学兴趣小组研究二次函数y=mx2-2mx+1(m≠0)的图像时发现:无论m如何变化,该图像总经过两个定点(0,1)和(▲,▲).
三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
17.(8分)(1)解方程:3x(x-2)=x-2(2)x2-4x-1=0
18.(6分)如图,利用标杆BE测量建筑物的高度,如果标杆BE长1.2m,测得AB=1.6m,BC=8.4m,楼高CD是多少?
25.(8分)如图,要设计一本画册的封面,封面长40cm,宽30cm,正中央是一个与整个封面长宽比例相同的矩形画.如果要使四周的边衬所占面积是封面面积的,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度(结果保留小数点后一位,参考数据:≈2.236).
26.(10分)如图①,A、B、C、D四点共圆,过点C的切线CE∥BD,与AB的延长线交于点E.
2015-2016学年第一学期期末考试九年级数学
(满分:120分考试时间:120分钟)
一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)
1.方程x(x+2) =0的解是(▲)
A.-2
B.0,-2
C.0,2
D.无实数根
2.两个相似三角形的相似比是2:3,则这两个三角形的面积比是(▲)

四川省乐山市峨眉山市博睿特外国语学校2016年中考数学专题练习二次函数的综合应用(新版)华东师大版

四川省乐山市峨眉山市博睿特外国语学校2016年中考数学专题练习二次函数的综合应用(新版)华东师大版

二次函数的综合应用一:动点中的二次函数问题:1、如图,已知直角坐标系内的梯形AOBC(O为原点),AC∥OB,OC⊥BC,OA=2,AC,OB的长是关于x的方程x2﹣(k+2)x+5=0的两个根,且S△AOC:S△BOC=1:5.(1)填空:0C= ,k= 4 ;(2)求经过O,C,B三点的抛物线的解析式;(3)AC与抛物线的另一个交点为D,动点P,Q分别从O,D同时出发,都以每秒1个单位的速度运动,其中点P沿OB由O→B运动,点Q沿DC由D→C运动,过点Q作QM⊥CD交BC于点M,连接PM,设动点运动时间为t秒,请你探索:当t为何值时,△PMB是直角三角形.,﹣﹣+∴(.t=,,,y=∴∴∴y=BP AM MD ∴MQ=y=×33+4=.PC MD∴MQ=y=×11+4=.或时,∵y=(PH=CF=∴∴∴=BQ•NP=t•t==BQ•NP=×10×6=30;=BQ•CP=×10(∴FC=EF=PH=BH=t.=)×6﹣×10×t×t﹣=时,t=64、如图,Rt△PMN中,∠P=90°,PM=PN,MN=8cm,矩形ABCD的长和宽分别为8cm和2cm,C点和M点重合,BC和MN在一条直线上.令Rt△PMN不动,矩形ABCD沿MN所在直线向右以每秒1cm的速度移动(如图2),直到C点与N点重合为止.设移动x秒后,矩形ABCD与△PMN重叠部分的面积为ycm2.求y与x之间的函数关系式.始向右移动到停止,和∴y=MC•EC=x∴y=∴y=)•DC﹣CN×CQ﹣边QR=6cm,点B、C、Q、R在同一直线l上,且C、Q两点重合,如果等腰△PQR以1cm/秒的速度沿直线l箭头所示方向匀速运动,t秒时梯形ABCD与等腰△PQR重合部分的面积记为S平方厘米.(1)当t=4时,求S的值;(2)当4≤t≤10,求S与t的函数关系式,并求出S的最大值.cm,BC•DF=×4×=2∴HK=KC•sin60°=(MN==QR•PG﹣BQ•MN﹣×6×﹣×(﹣×﹣t,∵a=﹣最大值为∴TB=BR=BR=∴S=TB•TR=××=t+时,开口向上,﹣=102最大值为三:图形变换中的二次函数问题:6、如图所示,边长为1的正方形OABC的顶点A在x轴的正半轴上,将正方形OABC绕点O顺时针旋转30°,使点A落在抛物线y=ax2(a<0)的图象上.(1)求抛物线y=ax2的函数关系式;(2)正方形OABC继续按顺时针旋转多少度时,点A再次落在抛物线y=ax2的图象上并求这个点的坐标.(参考数据:sin30°=,cos30°=,tan30°=.)轴对称,即坐标为(﹣,﹣cos30°=sin30°=,,﹣)=a),∴y=﹣,﹣)7、如图,在直线l上摆放有△ABC和直角梯形DEFG,且CD=6cm;在△ABC中:∠C=90°,∠A=30°,AB=4cm;在直角梯形DEFG中:EF∥DG,∠DGF=90°,DG=6cm,DE=4cm,∠EDG=60度.解答下列问题:(1)旋转:将△ABC绕点C顺时针方向旋转90°,请你在图中作出旋转后的对应图形△A1B1C,并求出AB1的长度;(2)翻折:将△A1B1C沿过点B1且与直线l垂直的直线翻折,得到翻折后的对应图形△A2B1C1,试判定四边形A2B1DE的形状并说明理由;(3)平移:将△A2B1C1沿直线l向右平移至△A3B2C2,若设平移的距离为x,△A3B2C2与直角梯形重叠部分的面积为y,当y等于△ABC面积的一半时,x的值是多少.,AC=AB×cos30°==AC+CB=∴BC=AB=)由题意可知:=y=(y=时,即(=解得x=2+x=2+cmy=2cmy=)•(y=时,即(﹣x=10+cm﹣x=2+cm﹣8、如图,在矩形ABCD中,AB=3,AD=1,点P在线段AB上运动,设AP=x,现将纸片折叠,使点D 与点P重合,得折痕EF(点E、F为折痕与矩形边的交点),再将纸片还原.(1)当x=0时,折痕EF的长为 3 ;当点E与点A重合时,折痕EF的长为;(2)请写出使四边形EPFD为菱形的x的取值范围,并求出当x=2时菱形的边长;(3)令EF2=y,当点E在AD、点F在BC上时,写出y与x的函数关系式.当y取最大值时,判断△EAP与△PBF是否相似?若相似,求出x的值;若不相似,请说明理由.温馨提示:用草稿纸折折看,或许对你有所帮助哦!EF=EF=.m=此时菱形边长为,∴PB=22.9、如图1,菱形纸片ABCD中,AB=1,∠B=60°,将纸片翻折(如图2),使D点落在AD所在直线上,并可在直线AD上运动,折痕为EF.当<DE<1时,设AB与DC相交于点G(如图).(1)线段AD与DG相等吗?△ADG与△BCG的面积之和是否随着DE的变化而变化?为什么?(2)设AD=x,重叠部分(图3中阴影部分)的面积为y,求出y与x之间的函数关系式,并写出自变量x的取值范围以及面积y的取值范围.=(=)∵2y=2×﹣(∴y=﹣+(<y≤点评:本题考查了菱形的性质,等边三角形的面积表示方法,用割补法表示阴影部分的面积四:二次函数和圆的综合问题:10、如图所示,在平面直角坐标系中,过坐标原点O的圆M分别交x轴、y轴于点A(6,0)、B(0,﹣8).(1)求直线AB的解析式;(2)若有一条抛物线的对称轴平行于y轴且经过M点,顶点C在圆M上,开口向下,且经过点B,求此抛物线的解析式;(3)设(2)中的抛物线与x轴交于D(x1,y1)、E(x2,y2)两点,且x1<x2,在抛物线上是否存在点P,使△PDE的面积是△ABC面积的?若存在,求出P点的坐标;若不存在,请说明理由.根据题意,得:k=y=∴MF=由题意可得:•DE•|y|=•CM•(×5×6=15,×15=3,11、在平面直角坐标系xOy中,已知点A(﹣1,0),B(0,1),C(2,).(Ⅰ)直线l:y=kx+b过A、B两点,求k、b的值;(Ⅱ)求过A、B、C三点的抛物线Q的解析式;(Ⅲ)设(Ⅱ)中的抛物线Q的对称轴与x轴相交于点E,那么在对称轴上是否存在点F,使⊙F 与直线l和x轴同时相切?若存在,求出点F的坐标;若不存在,请说明理由.(则有:x∴MF=NF==33y)12、已知:在平面直角坐标系xOy中,一次函数y=kx﹣4k的图象与x轴交于点A,抛物线y=ax2+bx+c 经过O、A两点.(1)试用含a的代数式表示b;(2)设抛物线的顶点为D,以D为圆心,DA为半径的圆被x轴分为劣弧和优弧两部分.若将劣弧沿x轴翻折,翻折后的劣弧落在⊙D内,它所在的圆恰与OD相切,求⊙D半径的长及抛物线的解析式;(3)设点B是满足(2)中条件的优弧上的一个动点,抛物线在x轴上方的部分上是否存在这样的点P,使得∠POA=∠OBA?若存在,求出点P的坐标;若不存在,请说明理由.∴x=﹣轴分得的劣弧为轴翻折后所得劣弧为,显然所在的∴OD=2∴a=y=OD=2﹣半径的长为x﹣,使得∠POA=y=∴∠OBA=∠ADO=45°∴∠POA=∠OBA=60°∴tan∠POE==tan60°,∴y=解得:的坐标为﹣y=解得:26+44+226+413、如图,已知二次函数y=ax2+bx+3的图象与x轴相交于点A、C,与y轴相交于点B,A(),且△AOB∽△BOC.(1)求C点坐标、∠ABC的度数及二次函数y=ax2+bx+3的关系式;(2)在线段AC上是否存在点M(m,0).使得以线段BM为直径的圆与边BC交于P点(与点B不同),且以点P、C、O为顶点的三角形是等腰三角形?若存在,求出m的值;若不存在,请说明理由.的对应角相等得出∠OAB=∠OBC,从而得出∠ABC=90°;由y=ax (﹣=,=,,,∴y=﹣+PC=CM=∴m=4﹣=的值为或﹣五:二次函数中的一般问题:14、已知抛物线y=x2﹣mx+m﹣2.(1)求证:此抛物线与x轴有两个不同的交点;(2)若m是整数,抛物线y=x2﹣mx+m﹣2与x轴交于整数点,求m的值;(3)在(2)的条件下,设抛物线的顶点为A,抛物线与x轴的两个交点中右侧交点为B.若m为坐标轴上一点,且MA=MB,求点M的坐标.的根为=,﹣所以.由抛物线的对称性可得,又因为15、已知:直线y=2x+6与x轴和y轴分别交于A、C两点,抛物线y=﹣x2+bx+c经过点A、C,点B 是抛物线与x轴的另一个交点.(1)求抛物线的解析式及B的坐标;(2)设点P是直线AC上一点,且S△ABP:S△BPC=1:3,求点P的坐标;(3)直线y=x+a与(1)中所求的抛物线交于M、N两点,问:是否存在a的值,使得∠MON=90°?若存在,求出a的值;若不存在,请说明理由.,解得:△B PC=,∴PH==2x+6∴x=﹣,,,,﹣x+a为方程组的解x+ax+a=x x+()﹣a+a=)﹣a=函数图象交点等重要知识点,综合性强,能力要求较高.考查学生分类讨论,数形结16、已知A1、A2、A3是抛物线y=x2上的三点,A1B1、A2B2、A3B3分别垂直于x轴,垂足为B1、B2、B3,直线A2B2交线段A1A3于点C.(1)如图,若A1、A2、A3三点的横坐标依次为1,2,3,求线段CA2的长;(2)如图,若将抛物线y=x2改为抛物线y=x2﹣x+1,A1、A2、A3三点的横坐标为连续整数,其他条件不变,求线段CA2的长;(3)若将抛物线y=x2改为抛物线y=ax2+bx+c,A1、A2、A3三点的横坐标为连续整数,其他条件不变,请猜想线段CA2的长(用a、b、c表示,并直接写出答案).x×1,=×3(解得,=2×2﹣=(﹣.×1,=×3(=(+﹣.=n((解得﹣+)﹣n=n+n﹣n(=n(=[((n n+n﹣(n.17、已知一次函数y1=x,二次函数y2=x2+(1)根据表中给出的x的值,填写表中空白处的值;(2)观察上述表格中的数据,对于x的同一个值,判断y1和y2的大小关系.并证明:在实数范围内,对于x的同一个值,这两个函数所对应的函数值y1和y2的大小关系仍然成立;(3)若把y=x换成与它平行的直线y=x+k(k为任意非零实数),请进一步探索:当k满足什么条件时,(2)中的结论仍然成立?当k满足什么条件时,(2)中的结论不能对任意的实数x都成立?并确定使(2)中的结论不成立的x的范围.((=8k;;x()由x=x+k﹣=1+﹣1+欢迎大家与毛老师交流,微信46927067431。

四川省乐山市九年级上学期数学期末考试试卷

四川省乐山市九年级上学期数学期末考试试卷

四川省乐山市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2019·晋宁模拟) 若一次函数y=kx+b图象经过第一、三、四象限,则关于x的方程x2﹣2x+kb+1=0的根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 没有实数根D . 只有一个实数根2. (2分)下列图形中,既是轴对称图形又是中心对称图形的有()A . 4个B . 3个C . 2个D . 1个3. (2分)下列几何体中,俯视图为四边形的是()A .B .C .D .4. (2分) (2020九上·泰兴期末) 如图,在平面直角坐标系中,直线OA过点(2,1),则tanα的值是()A . 2B .C .D .5. (2分)如果两个相似三角形的相似比是1:,那么这两个相似三角形的面积比是()A . 2:1B . 1:C . 1:2D . 1:46. (2分) (2016九上·微山期中) 如图,PA与⊙O相切于点A,PO交⊙O于点C,点B是优弧CBA上一点,若∠P=26°,则∠ABC的度数为()A . 26°B . 64°C . 32°D . 90°7. (2分)(2018·广州模拟) 如图,△ABC内接于⊙O,AD为⊙O的直径,交BC于点E,若DE=2,OE=3,则()A . 4B . 3C . 2D . 58. (2分) (2016九上·武胜期中) 在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx的图象可能为()A .B .C .D .9. (2分)(2016·平房模拟) 在平面直角坐标系中,点O是坐标原点,点A是x轴正半轴上的一个动点,过A点作y轴的平行线交反比例函数y= (x>0)的图象于B点,当点A的横坐标逐渐增大时,△OAB的面积将会()A . 逐渐增大B . 逐渐减小C . 不变D . 先增大后减小10. (2分) (2017八下·鞍山期末) 如图,菱形ABCD的对角线AC=5,BD=10,则该菱形的面积为()A . 50B . 25C .D . 12.5二、填空题 (共8题;共12分)11. (1分) (2020八上·覃塘期末) 若代数式的值为零,则的值是________.12. (1分)(2017·和县模拟) 去年2月“蒜你狠”风潮又一次来袭,某市蔬菜批发市场大蒜价格猛涨,原来单价4元/千克的大蒜,经过2月和3月连续两个月增长后,价格上升很快,物价部门紧急出台相关政策控制价格,4月大蒜价格下降了36%,恰好与涨价前的价格相同,则2月,3月的平均增长率为________.13. (1分) (2017九上·婺源期末) 用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,这个圆锥底面半径为________。

四川省乐山市峨眉山市博睿特外国语学校人教版九年级(上)第二次月考数学试卷(含答案)

四川省乐山市峨眉山市博睿特外国语学校人教版九年级(上)第二次月考数学试卷(含答案)


是最简二次根式;

=3
,被开方数含能开得尽方的因 数,不是最简二次根式.
①③是最简二次根式,故选 C.
.
.
.
.
6.解:A、当 x=0 时,﹣x﹣2<0,
无意义,故本选项错误;
B、当 x=﹣1 时, 无意义;故本选项错误;
C、∵x2+2≥2,∴
符合二次根式的定义;故本选项正确;
D、当 x=±1 时,x2﹣2=﹣1<0,
C.x2+ =3
D.x﹣5y=6
4.下列计算正确的是( ) A. + = C. ÷2=
B.3 ﹣ =3
D.
=2
5.在根式①
②③

中,最简二次根式是( )
A.①②
B.③④
C.①③
6.下列的式子一定是二次根式的C.
D.
7.已知 x=2 是一元二次方程 x2﹣ax+6=0 的解,则 a 的值为( )
A.m>﹣1
B.m≠0
C.m≥0
D.m≠﹣1
15.用配方法解一元二次方程 x2+4x﹣5=0,此方程可变形为( )
A.(x+2)2=9
B.(x﹣2)2=9
C.(x+2)2=1
D.(x﹣2)2=1
16.方程 x2=x 的根是( )
A.x=1
B.x=﹣1
二.填空题(满分 15 分,每小题 3 分)
C.x1=0,x2=1 D.x1=0,x2=﹣1
无意义;故本选项错误;
故选:C. 7.解:把 x=2 代入 x2﹣ax+6=0 得 4﹣2a+6=0,
解得 a=5. 故选:D. 8.解:方程整理得:x(x﹣4)=0, 可得 x=0 或 x﹣4=0, 解 得:x1=0,x2=4, 故选:C. 9.解:∵1<x≤2, ∴x﹣3<0,x﹣2≤0, ∴原式=3﹣x+(2﹣x)=5﹣2x. 故选:C.

九年级数学上学期期末试卷(含解析) 新人教版 (5)

九年级数学上学期期末试卷(含解析) 新人教版 (5)

2015-2016学年四川省乐山市峨眉山市博睿特外国语学校九年级(上)期末数学试卷一、选择题1.若x的算术平方根为8,则它的立方根是()A.2 B.﹣2 C.4 D.±42.方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则()A.m=±2 B.m=2 C.m=﹣2 D.m≠±23.若关于x的一元二次方程2x2﹣2x+3m﹣1=0的两个实数根x1,x2,且x1•x2>x1+x2﹣4,则实数m的取值范围是()A.m>B.m≤C.m< D.<m≤4.某个体商贩在一次买卖中,卖出两件上衣,每件都按135元出售,按成本计算,其中一件盈利25%,另一件亏本25%.则在这次买卖中他()A.不赔不赚 B.赚9元C.赔18元D.赚8元5.若实数x,y,z满足关系式2x+3y﹣z=0,5x﹣2y﹣2z=0,则x:y:z的值为()A.2:3:1 B.5:2:2 C.8:1:19 D.8:1:16.若方程组只有一组实数解,则k的值是()A.1 B.﹣1 C.±1 D.07.一等腰梯形中,高为2,下底为4,下底的底角正弦值为,那么它的上底和腰长分别为()A.2,B.1,C.1,2 D.2,58.如图,在▱ABCD中,E为CD的中点,AE交BD于点O,S△DCE=12,则S△AOD等于()A.24 B.36 C.48 D.609.在△ABC中,∠C=90°,∠A=30°,若CD是高,且CD=1,则a,b,c三边的长分别是()A.a=,b=2,c=B.a=2,b=,c=C.a=,b=2,c=D.a=2,b=2,c=410.如图,从地面上C、D两处望山顶A,仰角分别为30°和45°,若C、D两处相距200米,则山高AB为()A.100(+1)米B.100米C.100D.20011.下列说法正确的是()A.一颗质地均匀的骰子已连续抛掷了2000次,其中,抛掷出5点的次数最少,则第2001次一定抛掷出5点B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C.天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等12.如图,矩形ABCD中,AD=a,AB=b,要使BC边上至少存在一点P,使△ABP、△APD、△CDP 两两相似,则a、b间的关系式一定满足()A.a≥ b B.a≥b C.a≥ b D.a≥2b13.如图,△ABC中,边BC=12,高AD=6.矩形MNPQ的边在BC上,顶点P在AB上,顶点N在AC上,若S矩形MNPQ=y,则y与x的关系式为()A.y=6﹣x(0<x<12)B.y=﹣x2+6x(0<x<12)C.y=2x2﹣12x(0<x<12)D.y=x2+6x(0<x<12)二、填空题.14.计算:①+﹣(﹣4)0= ;②3÷×= .15.m是方程x2﹣x﹣2=0的根,则m2﹣m= .16.观察下列等式:12﹣02=1;22﹣12=3;32﹣22=5;42﹣32=7;…用含自然数n的等式表示你发现的规律为.17.如图,在△ABC中,D为AC边上的中点,AE∥BC,ED交AB于G,交BC延长线于F.若BG:GA=3:1,BC=10,则AE的长为.18.为抵御百年不遇的洪水,某市政府决定将1200m长的大堤的迎水坡面铺石加固,堤高DF=4m,堤面加宽2m,则完成这一工程需要的石方数为m3.19.如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在点A′的位置,若OB=,tan∠BOC=,则点A′的坐标为.20.下面是我们将在高中阶段所要学习的一个内容,请先阅读这段内容.再解答问题,三角函数中常用公式sin(α+β)=sinαcosβ+cosαsinβ,.求sin75°的值,即sin75°=sin(30°+45°)=sin30°os45°+cos30°sin45°=.试用公式cos(α+β)=cosαsinβ﹣sinαcosβ,求出cos75°的值是.三、计算题:21.计算:﹣+﹣﹣|1﹣2|﹣(﹣3)0.22.cos30°+sin245°cos60°﹣﹣tan45°.四、解答题23.如图,已知梯形ABCD中,AD∥BC,AB=DC,∠D=120°,对角线AC平分∠BCD,且梯形周长为20厘米,求AC的长.24.如图,在矩形ABCD中,AB<BC,M是BC的中点,DE⊥AM于点E,且AB、BC的长是一元二次方程x2﹣7x+12=0的两根,求△DEM的面积.25.如图,一艘轮船原在A处,它的北偏东45方向上有一灯塔P,轮船沿着北偏西30方向航行4小时到达B处,这时灯塔P正好在轮船的正东方向上,已知轮船的速度为25海里/时.求轮船在B 处时与灯塔P的距离(结果保留根号).26.某自然景区有一块长12米,宽8米的矩形花圃(如图所示),喷水无安装在矩对角线的交点P 上,现计算从P点引3条射线,把花圃分成面积相等的三部分,分别种植三种不同的花,如果不考虑分不分的间隙.(1)请你设计出符合题意方案示意图(只要求画出图形,至少设计两个方案);(2)直接写出三条射线与矩形的有关边的交点位置;(3)试判断设计的方案中,所画出的三个面积相等的图形是否位似?27.一个不透明的袋子中装有三个完全相同的小球,分别标有数字3、4、5.从袋子中随机取出一个小球,用小球上的数字作为十位上的数字,然后放回;再取出一个小球,用小球上的数字作为个位上的数字,这样组成一个两位数.试问:按这种方法能组成哪些两位数十位上的数字与个位上的数字之和为9的两位数的概率是多少?用列表法或画树状图法加以说明.五、解答题28.已知关于x的方程(k﹣1)x2+(2k﹣3)x+k+1=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由.29.已知:如图,在正方形ABCD中,AD=12,点E是边CD上的动点(点E不与端点C,D重合),AE的垂直平分线FP分别交AD,AE,BC于点F,H,G,交AB的延长线于点P.(1)设DE=m(0<m<12),试用含m的代数式表示的值;(2)在(1)的条件下,当时,求BP的长.2015-2016学年四川省乐山市峨眉山市博睿特外国语学校九年级(上)期末数学试卷参考答案与试题解析一、选择题1.若x的算术平方根为8,则它的立方根是()A.2 B.﹣2 C.4 D.±4【考点】立方根;算术平方根.【分析】直接利用算术平方根的定义得出x的值,进而结合立方根的定义得出答案.【解答】解:∵x的算术平方根为8,∴x=64,∴64的立方根是:4.故选:C.【点评】此题主要考查了立方根以及算术平方根,正确得出x的值是解题关键.2.方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则()A.m=±2 B.m=2 C.m=﹣2 D.m≠±2【考点】一元二次方程的定义.【专题】压轴题.【分析】本题根据一元二次方程的定义,必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.据此即可求解.【解答】解:由一元二次方程的定义可得,解得:m=2.故选B.【点评】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.3.若关于x的一元二次方程2x2﹣2x+3m﹣1=0的两个实数根x1,x2,且x1•x2>x1+x2﹣4,则实数m的取值范围是()A.m>B.m≤C.m< D.<m≤【考点】根与系数的关系;根的判别式.【专题】压轴题.【分析】关于x的一元二次方程2x2﹣2x+3m﹣1=0的两个实数根x1,x2,根据根与系数的关系得到x1+x2==1,x1•x2==,然后将其代入x1•x2>x1+x2﹣4可得关于m的不等式,解不等式即可求出m的取值范围.同时一元二次方程2x2﹣2x+3m﹣1=0的有两个实数根,有△=b2﹣4ac≥0,也得到关于m的不等式,也可以得到一个m的取值范围.把两个范围结合起来即可求出m的取值范围.【解答】解:依题意得x1+x2==1,x1•x2==,而x1•x2>x1+x2﹣4,∴>﹣3,得m>;又一元二次方程2x2﹣2x+3m﹣1=0的有两个实数根,∴△=b2﹣4ac≥0,即4﹣4×2×(3m﹣1)≥0,解可得m≤.∴<m≤.故选D.【点评】本题考查一元二次方程ax2+bx+c=0的根与系数关系即韦达定理,两根之和是,两根之积是.4.某个体商贩在一次买卖中,卖出两件上衣,每件都按135元出售,按成本计算,其中一件盈利25%,另一件亏本25%.则在这次买卖中他()A.不赔不赚 B.赚9元C.赔18元D.赚8元【考点】一元一次方程的应用.【分析】要知道赔赚,就要先算出两件衣服的原价,要算出原价就要先设出未知数,然后根据题中的等量关系列方程求解即可.【解答】解:设在这次买卖中原价都是x,则可列方程:(1+25%)x=135,解得:x=108,比较可知,第一件赚了27元;第二件可列方程:(1﹣25%)x=135,解得:x=180,比较可知亏了45元,两件相比则一共亏了45﹣27=18元.故选C.【点评】此题考查了一元一次方程的应用,解题的关键是明白盈利与亏本的含义,准确列出计算式,计算结果,难度一般.5.若实数x,y,z满足关系式2x+3y﹣z=0,5x﹣2y﹣2z=0,则x:y:z的值为()A.2:3:1 B.5:2:2 C.8:1:19 D.8:1:1【考点】比例的性质;解三元一次方程组.【分析】将z看作常数,解关于x、y的二元一次方程组求出x、y,然后相比计算即可得解.【解答】解:联立,①×2得,4x+6y﹣2z=0③,②×3得,15x﹣6y﹣6z=0④,③+④得,19x=8z,解得x=z,将x=z代入①得,2×z+3y﹣z=0,解得y=z,所以,方程组的解是,所以,x:y:z=z:z:z=8:1:19.故选C.【点评】本题考查了比例的性质,解三元一次方程组,难点在于将一个未知数看作常数并表示出另外两个未知数.6.若方程组只有一组实数解,则k的值是()A.1 B.﹣1 C.±1 D.0【考点】高次方程;根的判别式.【专题】创新题型.【分析】方程组有一个一次方程和一个二次方程构成,由于方程组只有一组实数解,所以一元二次方程有两个相等的实数根.把(2)代入(1),得到关于x的一元二次方程,令根的判别式为0.确定k的值.【解答】解:由(2)得,3y=x﹣k(3);把(3)代入(1)得,x2﹣4(x﹣k)=0,即x2﹣4x+4k=0.由于方程组只有一组实数解,所以关于x的二次方程有两个相等的实数根.△=(﹣4)2﹣4×1×4k=16﹣16k=0,解得k=1.故选A.【点评】本题考查了方程组的解法和一元二次方程根的判别式.理解“只有一组实数解”,把方程组转化为一元二次方程是关键.若解决本题,变形(2)用含y的代数式表示x,题目会变的复杂.7.一等腰梯形中,高为2,下底为4,下底的底角正弦值为,那么它的上底和腰长分别为()A.2,B.1,C.1,2 D.2,5【考点】等腰梯形的性质;解直角三角形.【分析】如图,等腰梯形ABCD中,AD∥BC,AB=CD,作AF⊥BC于F,DE⊥BC于E,则四边形AFED是矩形,先证明Rt△ABF≌Rt△DCE,再在Rt△DCE中,根据sinC==,求出DC,再根据勾股定理求出CE、BF即可解决问题.【解答】解:如图,等腰梯形ABCD中,AD∥BC,AB=CD,作AF⊥BC于F,DE⊥BC于E,则四边形AFED是矩形,,在Rt△ABF和Rt△DCE中,,∴Rt△ABF≌Rt△DCE,∴BF=CE,在Rt△DCE中,∵sinC==,∴=,∴DC=,∴EC=BF===,∴AD=EF=BC﹣2EC=4﹣2×=1.故选B.【点评】本题考查等腰梯形的性质、解直角三角形,锐角三角函数等知识,解题的关键是作双高,把四边形问题转化为三角形问题,属于中考常考题型.8.如图,在▱ABCD中,E为CD的中点,AE交BD于点O,S△DCE=12,则S△AOD等于()A.24 B.36 C.48 D.60【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据相似三角形的性质,先证△DOE∽△BOA,求出相似比为,故EO与AO之比为,即可求得S△AOD=2S△DOE.【解答】解:∵在▱ABCD中,E为CD中点,∴DE∥AB,DE=AB,在△DOE与△BOA中,∠DOE=∠BOA,∠OBA=∠ODE,∴△DOE∽△BOA,∴==,∴S△AOD=2S△DOE=2×12=24.故选(A).【点评】本题考查了平行四边形的性质以及相似三角形的判定与性质.寻找相似三角形的一般方法是通过平行线构造相似三角形;或依据基本图形对图形进行分解、组合;或作辅助线构造相似三角形.9.在△ABC中,∠C=90°,∠A=30°,若CD是高,且CD=1,则a,b,c三边的长分别是()A.a=,b=2,c=B.a=2,b=,c=C.a=,b=2,c=D.a=2,b=2,c=4【考点】含30度角的直角三角形.【分析】根据含30度角的直角三角形求出AB=2,根据三角形的内角和定理求出∠B,求出∠BCD,根据三角函数求得BC,根据直角三角形的性质求出AB即可.【解答】解:∵∠A=30°,CD=1,CD是高,∴b=AC=2CD=2,∵∠C=90°,∴∠B=60°,∴∠BCD=30°,∴a=BC===,∴c=AB=2BC=,故选C.【点评】本题考查了三角形的内角和定理,含30度角的直角三角形的性质等知识点的应用,关键是熟练地运用含30度角的直角三角形性质进行推理,题目比较典型,难度适中.10.如图,从地面上C、D两处望山顶A,仰角分别为30°和45°,若C、D两处相距200米,则山高AB为()A.100(+1)米B.100米C.100D.200【考点】解直角三角形的应用-仰角俯角问题.【分析】设山高AB为x,根据∠ADB=45°可得出AB=BD=x,在Rt△ABC中,根据锐角三角函数的定义即可得出结论.【解答】解:设山高AB为x,∵∠ADB=45°,∴AB=BD=x,在Rt△ABC中,∵∠ACB=30°,∴=tan30°,即=,解得x=100(+1)米.故选A.【点评】本题考查的是解直角三角形的应用﹣方向角问题,熟记锐角三角函数的定义是解答此题的关键.11.下列说法正确的是()A.一颗质地均匀的骰子已连续抛掷了2000次,其中,抛掷出5点的次数最少,则第2001次一定抛掷出5点B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C.天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等【考点】概率的意义.【专题】压轴题.【分析】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.【解答】解:A、是随机事件,错误;B、中奖的概率是1%,买100张该种彩票不一定会中奖,错误;C、明天下雨的概率是50%,是说明天下雨的可能性是50%,而不是明天将有一半时间在下雨,错误;D、正确.故选D.【点评】正确理解概率的含义是解决本题的关键.注意随机事件的条件不同,发生的可能性也不等.12.如图,矩形ABCD中,AD=a,AB=b,要使BC边上至少存在一点P,使△ABP、△APD、△CDP 两两相似,则a、b间的关系式一定满足()A.a≥ b B.a≥b C.a≥ b D.a≥2b【考点】相似三角形的性质;根的判别式;解分式方程.【专题】压轴题;存在型;方程思想;转化思想.【分析】本题可结合方程思想来解答.由于△ABP和△DCP相似,可得出关于AB、PC、BP、CD的比例关系式.设PC=x,那么BP=a﹣x,根据比例关系式可得出关于x的一元二次方程,由于BC 边上至少有一点符合条件的P点,因此方程的△≥0,由此可求出a、b的大小关系.【解答】解:若设PC=x,则BP=a﹣x,∵△ABP∽△PCD,∴,即,即x2﹣ax+b2=0方程有解的条件是:a2﹣4b2≥0,∴(a+2b)(a﹣2b)≥0,则a﹣2b≥0,∴a≥2b.故本题选D.【点评】本题是存在性问题,可以转化为方程问题,利用判断方程的解的问题来解决.13.如图,△ABC中,边BC=12,高AD=6.矩形MNPQ的边在BC上,顶点P在AB上,顶点N在AC上,若S矩形MNPQ=y,则y与x的关系式为()A.y=6﹣x(0<x<12)B.y=﹣x2+6x(0<x<12)C.y=2x2﹣12x(0<x<12)D.y=x2+6x(0<x<12)【考点】相似三角形的判定与性质;根据实际问题列二次函数关系式;矩形的性质.【分析】先根据相似三角形的判定定理得出△APN∽△ABC,那么它们的对应边和对应高的比相等,可据此求出△APN中PN边上的高的表达式,进而可求出MN的长,根据矩形的长和宽,即可得到y、x的函数关系式.【解答】解:设△APN中PN边上的高为h,∵矩形MNPQ的边在BC上,顶点P在AB上,顶点N在AC上,∴PN∥BC,∴△APN∽△ABC,∴,即,∴h=x,∴MN=6﹣x,∵S矩形MNPQ=PN•MN∴y=x(6﹣x),即y=﹣x2+6x(0<x<12).故选(B).【点评】本题主要考查的是相似三角形的应用及矩形的面积的计算,熟知相似三角形对应边成比例是解答此题的关键.二、填空题.14.计算:①+﹣(﹣4)0= ﹣1 ;②3÷×= 1 .【考点】二次根式的混合运算;零指数幂.【分析】①根据零指数幂、二次根式化简进行计算即可;②先把除法化为乘法,再进行计算即可.【解答】解:①原式=+﹣1=﹣1,②原式=3××=1,故答案为﹣1,1.【点评】本题考查了二次根式的混合运算,掌握把二次根式化为最简二次根式是解题的关键.15.m是方程x2﹣x﹣2=0的根,则m2﹣m= 2 .【考点】一元二次方程的解.【分析】利用方程解的定义找到相等关系,再把m代入方程x2﹣x﹣2=0后即得m2﹣m=2.【解答】解:把m代入方程x2﹣x﹣2=0,得到m2﹣m﹣2=0则m2﹣m=2.故本题答案为m2﹣m=2.【点评】本题考查的是一元二次方程的根即方程的解的定义.16.观察下列等式:12﹣02=1;22﹣12=3;32﹣22=5;42﹣32=7;…用含自然数n的等式表示你发现的规律为(n+1)2﹣n2=2n+1 .【考点】规律型:数字的变化类.【分析】观察几个等式可知,等式左边为相邻两数的平方差,右边的结果为两个底数的和,由此得出一般规律.【解答】解:∵12﹣02=1=1+0;22﹣12=3=2+1;32﹣22=5=3+2;42﹣32=7=4+3,∴(n+1)2﹣n2=(n+1)+n=2n+1.故答案为:(n+1)2﹣n2=2n+1.【点评】本题考查了数字变化的规律.关键是观察等式左边两底数的关系及等式右边的结果与等式左边两底数的关系.17.如图,在△ABC中,D为AC边上的中点,AE∥BC,ED交AB于G,交BC延长线于F.若BG:GA=3:1,BC=10,则AE的长为 5 .【考点】相似三角形的判定与性质.【分析】先根据平行线分线段成比例求出BF:AE的值,再根据D是AC的中点得到CF与AE相等,列出等式求解即可.【解答】解:∵AE∥BC∴△AEG∽△BFG∴BG:GA=3:1=BF:AE∵D为AC边上的中点∴AE:CF=1:1∴AE=CF∴BF:AE=(CF+BC):AE=3:1∴(AE+10):AE=3:1解得:AE=5.【点评】本题主要利用三角形的相似及中点的性质求AE的值.18.为抵御百年不遇的洪水,某市政府决定将1200m长的大堤的迎水坡面铺石加固,堤高DF=4m,堤面加宽2m,则完成这一工程需要的石方数为144000 m3.【考点】解直角三角形的应用-坡度坡角问题.【分析】由题意可知,要求的石方数其实就是横截面为ABCD的立方体的体积.那么求出四边形ABCD的面积即可.【解答】解:∵Rt△BFD中,∠DBF的坡度为1:2,∴BF=2DF=8,∴S△BDF=BF×FD÷2=16.∵Rt△ACE中,∠A的坡度为1:2.5,∴CE:AE=1:2.5,CE=DF=4,AE=10.S梯形AFDC=(AE+EF+CD)×DF÷2=28.∴S四边形ABCD=S梯形AFDC﹣S△BFD=12.那么所需的石方数应该是12×12000=144000(立方米),故答案为:144000.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握坡度的概念、熟记锐角三角函数的定义是解题的关键.19.如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在点A′的位置,若OB=,tan∠BOC=,则点A′的坐标为(,).【考点】翻折变换(折叠问题);坐标与图形性质.【分析】如图,作辅助线;根据题意首先求出AB、BC的长度;借助面积公式求出A′D、OD的长度,即可解决问题.【解答】解:如图,过点A′作A′D⊥x轴与点D;设A′D=λ,OD=μ;∵四边形ABCO为矩形,∴∠OAB=∠OCB=90°;四边形ABA′D为梯形;设AB=OC=γ,BC=AO=ρ;∵OB=,tan∠BOC=,∴,解得:γ=2,ρ=1;由题意得:A′O=AO=1;△ABO≌△A′BO;由勾股定理得:λ2+μ2=1①,由面积公式得:②;联立①②并解得:λ=,μ=.故答案为(,).【点评】该题以平面直角坐标系为载体,以翻折变换为方法构造而成;综合考查了矩形的性质、三角函数的定义、勾股定理等几何知识点;对分析问题解决问题的能力提出了较高的要求.20.下面是我们将在高中阶段所要学习的一个内容,请先阅读这段内容.再解答问题,三角函数中常用公式sin(α+β)=sinαcosβ+cosαsinβ,.求sin75°的值,即sin75°=sin(30°+45°)=sin30°os45°+cos30°sin45°=.试用公式cos(α+β)=cosαsinβ﹣sinαcosβ,求出cos75°的值是﹣.【考点】特殊角的三角函数值.【分析】将75°化为30°和45°两个特殊角,然后根据特殊角的三角函数值来解答.【解答】解:cos(α+β)=cosαcosβ﹣sinαsinβ,=cos(30°+45°)=cos30°cos45°﹣sin30°sin45°=×﹣=﹣,故答案为:﹣.【点评】本题考查了特殊角的三角函数值,解答此题要熟记特殊角的三角函数值,并能把“新定义”的问题转化为已知问题解答.三、计算题:21.计算:﹣+﹣﹣|1﹣2|﹣(﹣3)0.【考点】二次根式的混合运算;零指数幂.【专题】计算题.【分析】根据分母有理化、去绝对值、零指数幂可以解答本题.【解答】解:﹣+﹣﹣|1﹣2|﹣(﹣3)0=﹣+﹣(﹣1)﹣(2﹣1)﹣1=﹣+﹣1﹣+1﹣2+1﹣1=﹣2.【点评】本题考查二次根式的混合运算、零指数幂,解题的关键是明确二次根式的混合运算的计算方法,知道除零以外任何数的零次幂都等于1.22.cos30°+sin245°cos60°﹣﹣tan45°.【考点】特殊角的三角函数值.【分析】原式利用特殊角的三角函数值,以及乘方的意义计算即可得到结果.【解答】解:cos30°+sin245°cos60°﹣﹣tan45°=+()2×﹣+1﹣1=﹣.【点评】此题考查了特殊角的三角函数值,实数的运算,熟练掌握运算法则是解本题的关键.四、解答题23.如图,已知梯形ABCD中,AD∥BC,AB=DC,∠D=120°,对角线AC平分∠BCD,且梯形周长为20厘米,求AC的长.【考点】梯形.【分析】由已知可得梯形ABCD是等腰梯形,根据等腰梯形的性质及已知可求得AB、BC的长,再由勾股定理求得AC的长即可,【解答】解:∵在梯形ABCD中,AB=DC,∴梯形ABCD是等腰梯形,∴∠D+∠DCB=180°,∵∠D=120°,∴∠B=∠DCB=60°,∵对角线CA平分∠BCD,∴∠ACB=30°,∵AD=DC,∴∠DAC=∠ACD=30°,∴∠BAC=90°,∴BC=2AB,∵梯形的周长=AD+DC+BC+AB=5AB=20,∴AB=4,BC=8,∴AC===4(cm).【点评】此题主要考查学生对等腰梯形的性质及勾股定理的综合运用能力,关键是弄清各边之间的关系,从而根据周长求得各边的长.24.如图,在矩形ABCD中,AB<BC,M是BC的中点,DE⊥AM于点E,且AB、BC的长是一元二次方程x2﹣7x+12=0的两根,求△DEM的面积.【考点】矩形的性质;解一元二次方程-因式分解法.【分析】先求出方程的解,求出AB、BC,根据勾股定理求出AM,证△DEA∽△ABM,得出比例式,求出DE和AE,即可求出答案.【解答】解:解方程x2﹣7x+12=0得:x=3或4,∵AB<BC,AB、BC的长是一元二次方程x2﹣7x+12=0的两根,∴AB=3,BC=4,∵四边形ABCD是矩形,M为BC的中点,∴AD=BC=4,BM=CM=2,∠B=90°,AD∥BC,∴∠DAE=∠AMB,由勾股定理得:AM==,∵DE⊥AM,∴∠DEA=∠B=90°,∴△DEA∽△ABM,∴==,∴==,解得:DE=,AE=,∴EM=AM﹣AE=﹣=,∴△DEM的面积为×DE×EM=××=.【点评】本题考查了解一元二次方程,勾股定理,相似三角形的性质和判定,矩形的性质的应用,能求出DE、AM的长是解此题的关键.25.如图,一艘轮船原在A处,它的北偏东45方向上有一灯塔P,轮船沿着北偏西30方向航行4小时到达B处,这时灯塔P正好在轮船的正东方向上,已知轮船的速度为25海里/时.求轮船在B 处时与灯塔P的距离(结果保留根号).【考点】解直角三角形的应用-方向角问题.【分析】可做AC⊥BP,从而构造两个直角三角形,再根据特殊角的三角函数值解答即可.【解答】解:作AC⊥BP,在Rt△ABC中,∠BAC=30°,AB=25×4=100,∴BC=50,AC=50,在Rt△ACP中,∠CAP=∠APC=45°,∴CP=AC=50.∴BP=BC+CP=50+50.答:轮船在B处时与灯塔P的距离为(50+50)海里.【点评】本题主要考查方向角问题,解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.26.某自然景区有一块长12米,宽8米的矩形花圃(如图所示),喷水无安装在矩对角线的交点P 上,现计算从P点引3条射线,把花圃分成面积相等的三部分,分别种植三种不同的花,如果不考虑分不分的间隙.(1)请你设计出符合题意方案示意图(只要求画出图形,至少设计两个方案);(2)直接写出三条射线与矩形的有关边的交点位置;(3)试判断设计的方案中,所画出的三个面积相等的图形是否位似?【考点】作图—应用与设计作图;位似变换.【分析】(1)将长方形的四个边均三等分,将三等分点都与中心点连接,这样就做成了12个等面积的小三角形,把它们任意相邻的四个组合在一起即可;(2)根据各点为正方形边长的三等分点即可得出结论;(3)根据三个图形的边长即可得出结论.【解答】解:(1)如图所示.射线PE,PF及PB即为所求;(2)∵点E为线段AD的三等分点,点F为线段CD的三等分点,AD=12米,CD=8米,∴AE=×12=4米,CF=×8=米,∴点E在距点A4米处;点F在距点C米处;点B为矩形的顶点;(3)由图可知,所画出的三个面积相等的图形不相似.【点评】本题考查的是作图﹣应用与设计作图,熟知矩形的性质是解答此题的关键.27.(2006•沈阳)一个不透明的袋子中装有三个完全相同的小球,分别标有数字3、4、5.从袋子中随机取出一个小球,用小球上的数字作为十位上的数字,然后放回;再取出一个小球,用小球上的数字作为个位上的数字,这样组成一个两位数.试问:按这种方法能组成哪些两位数十位上的数字与个位上的数字之和为9的两位数的概率是多少?用列表法或画树状图法加以说明.【考点】列表法与树状图法.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:方法一第一次 3 4 5第二次3(3,3)(3,4)(3,5)4(4,3)(4,4)(4,5)5(5,3)(5,4)(5,5);方法二因此,能组成的两位数有:33、34、35、43、44、45、53、54、55,∵组成的两位数有9个,其中,十位上数字与个位上数字之和为9的两位数有两个,∴P(十位上数字与个位上数字之和为9的两位数)=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.五、解答题28.已知关于x的方程(k﹣1)x2+(2k﹣3)x+k+1=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由.【考点】根与系数的关系.【专题】计算题.【分析】(1)因为方程(k﹣1)x2+(2k﹣3)x+k+1=0有两个不相等的实数根x1,x2.得出其判别式△>0,可解得k的取值范围;(2)假设存在两根的值互为相反数,根据根与系数的关系,列出对应的不等式即可解的k的值.【解答】解:(1)方程(k﹣1)x2+(2k﹣3)x+k+1=0有两个不相等的实数根x1,x2,可得k﹣1≠0,∴k≠1且△=﹣12k+13>0,可解得且k≠1;(2)假设存在两根的值互为相反数,设为x1,x2,∵x1+x2=0,∴,∴,又∵且k≠1∴k不存在.【点评】本题主要考查了根与系数的关系,属于基础题,关键掌握x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q.29.已知:如图,在正方形ABCD中,AD=12,点E是边CD上的动点(点E不与端点C,D重合),AE的垂直平分线FP分别交AD,AE,BC于点F,H,G,交AB的延长线于点P.(1)设DE=m(0<m<12),试用含m的代数式表示的值;(2)在(1)的条件下,当时,求BP的长.【考点】正方形的性质;平行线的性质;相似三角形的判定与性质.【专题】几何综合题;压轴题.【分析】(1)通过构建相似三角形来求解,过点H作MN∥AB,分别交AD,BC于M,N两点.那么MH就是三角形ADE的中位线,MH=m,那么HN=12﹣m,只要证出两三角形相似,就可表示出FH:HG的值,已知了一组对顶角,一组直角,那么两三角形就相似,FH:HG=MH:NH,也就能得到所求的值.(2)可通过构建相似三角形求解,过点H作HK⊥AB于点K,那么HN=KB,MH=AK,根据FH:HG=1:2,就能求出m的值,也就求出了MH,HN的长,又知道了HK的长,那么通过三角形AKH和HKP相似我们可得出关于AK,KH,KP的比例关系,就可求出KP的长,然后BP=KP﹣KB就能求出BP的长了.【解答】解:(1)过点H作MN∥AB,分别交AD,BC于M,N两点,∵FP是线段AE的垂直平分线,∴AH=EH,∵MH∥DE,∴Rt△AHM∽Rt△AED,∴==1,∴AM=MD,即点M是AD的中点,∴AM=MD=6,∴MH是△ADE的中位线,MH=DE=m,∵四边形ABCD是正方形,∴四边形ABNM是矩形,∵MN=AD=12,∴HN=MN﹣MH=12﹣m,∵AD∥BC,∴Rt△FMH∽Rt△GNH,∴,即(0<m<12);(2)过点H作HK⊥AB于点K,则四边形AKHM和四边形KBNH都是矩形.∵,解得m=8,∴MH=AK=m=×8=4,HN=KB=12﹣m=12﹣m=8,KH=AM=6,∵Rt△AKH∽Rt△HKP,∴,即KH2=AK•KP,又∵AK=4,KH=6,∴62=4•KP,解得KP=9,∴BP=KP﹣KB=9﹣8=1.【点评】本题主要考查了相似三角形的判定和性质,要充分利用好正方形的性质,通过已知和所求的条件构建出相似三角形来求解是解题的关键.。

四川省乐山市九年级上学期数学期末考试试卷

四川省乐山市九年级上学期数学期末考试试卷

四川省乐山市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列数组中,不是勾股数组的是()A . 5.12.13B . 7,24,25C . 8.12.15D . 3k,4k,5k(k为正整数)2. (2分)(2020·平阳模拟) 如图,在△ABC中,D为AB边上一点,E为CD中点,AC= ,∠ABC=30°,∠A=∠BED=45°,则BD的长为().A .B .C .D .3. (2分)若m<-1,则下列函数:①y=,②y=-mx+1,③y=m(x+1)2 ,④y=(m+1)x2(x<0)中,y的值随x的值增大而增大的函数共有()A . 1个B . 2个C . 3个D . 4个4. (2分)如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A . ∠ABP=∠CB . ∠APB=∠ABCC .D .5. (2分)(2018·潜江模拟) 如图,矩形ABCD中,E是BC的中点,连接AE,过点E作EF⊥AE交DC于点F,连接AF.设=k,下列结论:(1)△ABE∽△ECF,(2)AE平分∠BAF,(3)当k=1时,△ABE∽△ADF,其中结论正确的是()A . (1)(2)(3)B . (1)(3)C . (1)(2)D . (2)(3)6. (2分)(2018·淮南模拟) 如图,在半径为5的⊙O中,弦AB=6,点C是优弧上一点(不与A,B重合),则cosC的值为()A .B .C .D .7. (2分) (2018九上·柯桥期末) 已知线段a,b,c,求作线段x,使,下列作法中正确的是A .B .C .D .8. (2分) (2019九上·潮南期末) 如图,抛物线的对称轴为直线,与轴的一个交点坐标为,其部分图象如图所示,下列结论:① ②方程的两个根是,③ ④当时,随增大而增大.其中正确的个数是A . 1个B . 2个C . 3个D . 4个9. (2分)如图,正方形ABCD的边长为1,E、F分别是边BC和CD上的动点(不与正方形的顶点重合),不管E、F怎样动,始终保持AE⊥EF .设BE=x , DF=y ,则y是x的函数,函数关系式是()A . y=x+1B . y=x-1C . y=x2-x+1D . y=x2-x-110. (2分) (2015八下·嵊州期中) 如图,一块平行四边形的土地被分成4块小平行四边形,用来种植红、黄、蓝、白四种不同颜色的花卉,其中种植红、黄、蓝颜色花卉土地的面积分别是20m2 , 30m2 , 36m2 ,则种植白色花卉土地的面积为()A . 46m2B . 50m2C . 54m2D . 60m2二、填空题 (共4题;共5分)11. (1分)如图,在直角坐标系中,四边形OABC是直角梯形,BC∥OA,⊙P分别与OA、OC、BC相切于点E、D、B,与AB交于点F.已知A(2,0),B(1,2),则tan∠FDE=________.12. (1分) (2017九上·路北期末) 已知= ,则的值为________.13. (1分)如图,∠BAD=∠C,DE⊥AB于E,AF⊥BC于F,若BD=6,AB=8,则DE:AF=________ .14. (2分)如图,四边形OABC是边长为1的正方形,OC与x轴正半轴的夹角为15°,点B在抛物线y=ax2(a<0)的图象上,则a的值为________.三、解答题 (共9题;共80分)15. (5分)(2017九下·宜宾期中) 计算:(1)(2)16. (5分)如图,在等腰三角形ABC中,∠BAC=120°,D为BC的中点,DE⊥AB于E,求证:AE= AB.17. (5分)如图,方格纸中的每个小方格都是边长为1的正方形,△ABC的顶点都在格点上,请完成下列任务:(1)将△ABC绕点C按顺时针方向旋转90°后得到△A1B1C;(2)求线段AC旋转到A1C的过程中,所扫过的图形的面积;(3)以点O为位似中心,位似比为2,将△A1B1C放大得到△A2B2C2(在网格之内画图).18. (10分)传统的端午节即将来临,某企业接到一批粽子生产任务,约定这批粽子的出厂价为每只4元,按要求在20天内完成.为了按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足如下关系:y=(1)李明第几天生产的粽子数量为280只?(2)如图,设第x天生产的每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价-成本)19. (10分)(2017·东河模拟) 如图,已知直线y=﹣x+3与x轴、y轴分别交于A,B两点,抛物线y=﹣x2+bx+c 经过A,B两点,点P在线段OA上,从点O出发,向点A以1个单位/秒的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B以个单位/秒的速度匀速运动,连接PQ,设运动时间为t秒.(1)求抛物线的解析式;(2)当t为何值时,△APQ为直角三角形;(3)过点P作PE∥y轴,交AB于点E,过点Q作QF∥y轴,交抛物线于点F,连接EF,当EF∥PQ时,求点F的坐标.20. (10分)(2018·河南模拟) 如图所示,已知矩形ABOC中,AC=4,双曲线y= 与矩形两边AB、AC分别交于D、E,E为AC边中点.(1)求点E的坐标;(2)点P是线段OB上的一个动点,是否存在点P,使∠DPC=90°?若存在,求出此时点P的坐标,若不存在,请说明理由.21. (10分) (2020八上·潜江期末) 如图,在△ABC中,∠B=2∠C,AE平分∠BAC交BC于点E.(1)如图①,若AD⊥BC于点D,∠C=40°,求∠DAE的度数;(2)如图②,若EF⊥AE交AC于点F,求证:∠C=2∠FEC.22. (10分) (2016九上·顺义期末) 如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6 ,AF=4 ,求AE的长.23. (15分) (2019八上·昭通期末) 在平面直角坐标系中,抛物线y=x2﹣2x+c(c为常数)的对称轴如图所示,且抛物线过点C(0,c).(1)当c=﹣3时,点(x1,y1)在抛物线y=x2﹣2x+c上,求y1的最小值;(2)若抛物线与x轴有两个交点,自左向右分别为点A、B,且OA= OB,求抛物线的解析式;(3)当﹣1<x<0时,抛物线与x轴有且只有一个公共点,求c的取值范围.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共4题;共5分)11-1、12-1、13-1、14-1、三、解答题 (共9题;共80分)15-1、15-2、16-1、17-1、18-1、18-2、19-1、19-2、19-3、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、。

四川省乐山市九年级上学期数学期末试卷

四川省乐山市九年级上学期数学期末试卷

四川省乐山市九年级上学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分) (2020七下·淮阳期末) 如图所示,已知△ABC与△CDA关于点O对称,过O作EF分别交AD,BC 于点E,F,下面的结论:①点E和点F,点B和点D是关于点O的对应点;②直线BD必经过点O;③四边形ABCD 是中心对称图形;④四边形DEOC与四边形BFOA的面积必相等;⑤△AOE与△COF成中心对称,其中正确的有()A . 1个B . 2个C . 3个D . 5个2. (2分)已知△ABC∽△DEF,若△ABC与△DEF的相似比为3:4,则△ABC与△DEF的面积之比为()A . 4:3B . 3:4C . 16:9D . 9:163. (2分)(2017·承德模拟) 如图,由7个形状、大小完全相同的正六边形组成的网格,正六边形的顶点称为格点,已知每个正六边形的边长为1,△ABC的顶点都在格点上,则△ABC的面积是()A .B . 2C . 3D . 34. (2分)(2018·通辽) 已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是()A . 30°B . 60°C . 30°或150°D . 60°或120°5. (2分)(2019·哈尔滨) 点(-1,4)在反比例函数y= 的图象上,则下列各点在此函数图象上的是().A . (4,-1)B . (,1)C . (-4,-1)D . (,2)6. (2分)(2013·宁波) 如图,二次函数y=ax2+bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是()A . abc<0B . 2a+b<0C . a﹣b+c<0D . 4ac﹣b2<0二、填空题 (共8题;共10分)7. (1分) (2018九上·罗湖期末) 有两双完全相同的鞋,从中任取两只,恰好成为一双的概率为________.8. (1分)(2020·武汉模拟) 关于抛物线(为常数),下来结论一定正确的是________(填序号即可).①开口向上;②顶点不可能在第三,四象限;③点,是抛物线上的两点,则;④ 取任意实数,顶点所在的曲线为 .9. (1分) (2016九上·安陆期中) 如图所示,抛物线y=ax2+bx(a<0)的图象与x轴交于A、O两点,顶点为B,将该抛物线的图象绕原点O旋转180°后,与x轴交于点C,顶点为D,若此时四边形ABCD恰好为矩形,则b 的值为________.10. (1分)如图,在△ABC中,AB=9,AC=6,BC=12,点M在AB边上,且AM=3,过点M作直线MN与AC边交于点N,使截得的三角形与原三角形相似,则MN=________.11. (2分) (2016九上·鄞州期末) 如图,如果边长为1的等边△PQR沿着边长为1的正方形ABCD的外部的边如图位置开始顺时针连续滚动,当它滚动4次时,点P所经过的路程是________.12. (1分) (2016九上·吴中期末) 如果将抛物线y=x2﹣2x﹣1向上平移,使它经过点A(0,3),那么所得新抛物线的表达式是________.13. (1分) (2018九上·拱墅期末) 如图是一个圆拱形隧道的截面,若该隧道截面所在圆的半径为3.5米,路面宽AB为4.2米,则该隧道最高点距离地面________米.14. (2分)(2019·泰兴模拟) 如图,矩形ABCD的边AB与x轴平行,顶点A的坐标为(2,1),点B与点D都在反比例函数的图象上,则矩形ABCD的周长为________.三、解答题 (共12题;共85分)15. (5分)已知,有一直径是1m的圆形铁皮,要从中剪出一个最大的圆心角时90°的扇形ABC(如图),用剪下的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径是多少?16. (2分) (2019八上·秀洲期末) 如图,在△ABC中,AB=2AC,AD平分∠BAC且AD=BD.求证:CD⊥AC17. (2分) (2016九上·济宁期中) 小丽和小华想利用摸球游戏决定谁去参加市里举办的书法比赛,游戏规则是:在一个不透明的袋子里装有除数字外完全相同的4个小球,上面分别标有数字2,3,4,5.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为偶数,则小丽去参赛;否则小华去参赛.(1)用列表法或画树状图法,求小丽参赛的概率.(2)你认为这个游戏公平吗?请说明理由.18. (5分)如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤ 的解集.19. (7分)(2019·朝阳) 有5张不透明的卡片,除正面上的图案不同外,其他均相同.将这5张卡片背面向上洗匀后放在桌面上.(1)从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为________.(2)若从中随机抽取1张卡片后不放回,再随机抽取1张,请用画树状图或列表的方法,求两次所抽取的卡片恰好都是轴对称图形的概率.20. (5分) (2020九下·黄石月考) 如图,弦BC经过圆心D,AD⊥BC,AC交⊙D于E,AD交⊙D于M,BE 交AD于N.求证:△BND∽△ABD.21. (10分)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴上,函数y= 的图象过点P(4,3)和矩形的顶点B(m,n)(0<m<4).(1)求k的值;(2)连接PA,PB,若△ABP的面积为6,求直线BP的解析式.22. (11分)(2017·路北模拟) 如图,已知点B(1,3),C(1,0),直线y=x+k经过点B,且与x轴交于点A,将△ABC沿直线AB折叠得到△ABD.(1)填空:A点坐标为(________,________),D点坐标为(________,________);(2)若抛物线y= x2+bx+c经过C,D两点,求抛物线的解析式;(3)将(2)中的抛物线沿y轴向上平移,设平移后所得抛物线与y轴交点为E,点M是平移后的抛物线与直线AB的公共点,在抛物线平移过程中是否存在某一位置使得直线EM∥x轴.若存在,此时抛物线向上平移了几个单位?若不存在,请说明理由.(提示:抛物线y=ax2+bx+c(a≠0)的对称轴是x=﹣,顶点坐标是(﹣,)23. (10分) (2017九下·台州期中) 如图,在矩形ABCD中,AD>AB , AE是∠BAC的平分线交BC于点E ,以AC上一点O为圆心作圆,使⊙O经过A , E两点,⊙O交AC于点F ,(1)求证:BC是⊙O的切线;(2)若AB=3,∠BAC=60°,试求图中阴影部分的面积.24. (10分)(2013·丽水) 如图,科技小组准备用材料围建一个面积为60m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12 m.设AD的长为x m,DC的长为y m.(1)求y与x之间的函数关系式;(2)若围成矩形科技园ABCD的三边材料总长不超过26m,材料AD和DC的长都是整米数,求出满足条件的所有围建方案.25. (2分)(2016·大兴模拟) 如图,已知AB是⊙O的直径,点H在⊙O上,E是的中点,过点E作EC⊥AH,交AH的延长线于点C.连接AE,过点E作EF⊥AB于点F.(1)求证:CE是⊙O的切线;(2)若FB=2,tan∠CAE= ,求OF的长.26. (16分)(2019·徐州) 如图,将平行四边形纸片沿一条直线折叠,使点与点重合,点落在点处,折痕为 .求证:(1);(2) .参考答案一、单选题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共8题;共10分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共12题;共85分)15-1、16-1、17-1、17-2、18-1、18-2、18-3、19-1、19-2、20-1、21-1、21-2、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、。

四川省乐山市九年级上学期数学期末考试试卷

四川省乐山市九年级上学期数学期末考试试卷

四川省乐山市九年级上学期数学期末考试试卷姓名:________班级:________成绩:________一、 单选题 (共 9 题;共 18 分)1. (2 分) (2017·重庆) 下列图形中是轴对称图形的是( )A.B.C.D. 2. (2 分) 二次函数 y=x2+px+q 中,由于二次项系数为 1>0,所以在对称轴左侧,y 随 x 增大而减小,从而 得到 y 越大则 x 越小,在对称轴右侧,y 随 x 增大而减大,从而得到 y 越大则 x 也越大,请根据你对这句话的理解, 解决下面问题:若关于 x 的方程 x2+px+q+1=0 的两个实数根是 m、n(m<n),关于 x 的方程 x2+px+q﹣5=0 的两个实 数根是 d、e(d<e),则 m、n、d、e 的大小关系是( ) A . m<d<e<n B . d<m<n<e C . d<m<e<n D . m<d<n<e 3. (2 分) (2019 九上·伊通期末) 下列事件是必然事件的是( ) A . NBA 球员投篮 10 次,投中十次 B . 明天会下雪 C . 党的十九大于 2017 年 10 月 18 日在北京召开 D . 抛出一枚硬币,落地后正面朝上 4. (2 分) (2016 九上·滨州期中) 若关于 x 的一元二次方程 kx2﹣6x+9=0 有两个不相等的实数根,则 k 的 取值范围( ) A . k<1 且 k≠0 B . k≠0 C . k<1第 1 页 共 22 页D . k>1 5. (2 分) (2020 九上·厦门月考) 若关于 A . -2的一元二次方程B. C.2的一个解是 2,则 a 的值为( )D. 6. (2 分) 已知 0≤x≤ , 则函数 y=x2+x+1( ) A . 有最小值 , 但无最大值 B . 有最小值 , 有最大值 1 C . 有最小值 1,有最大值 D . 无最小值,也无最大值 7. (2 分) 如图,由 7 个形状,大小完全相同的正六边形组成的网格,正六边形的顶点称为格点,已知每个 正六边形的边长为 1,△ABC 的顶点都在格点上,则△ABC 的面积是( )A.B.2C.D.3 8. (2 分) (2019·龙湾模拟) 把一个足球垂直于水平地面向上踢,该足球距离地面的高度 (米)与所经过的时间 (秒)之间的关系为 (米),则 的取值范围( ) A. B. C. D.. 若存在两个不同的 的值,使足球离地面的高度均为第 2 页 共 22 页9. (2 分) 已知一次函数 y=ax﹣c 的图象如图所示,则二次函数 y=ax2+c 的图象大致是( )A.B.C.D.二、 填空题 (共 8 题;共 8 分)10. (1 分) (2020 八下·泰兴期中) 在做“抛掷一枚质地均匀的硬币”试验时,下列说法正确的是________. ①不同次数的试验,正面向上的频率可能会不相同 ②当抛掷的次数 很大时,正面向上的次数一定为第 3 页 共 22 页③多次重复试验中,正面向上发生的频率会在某个常数附近摆动,并趋于稳定 ④连续抛掷 次硬币都是正面向上,第 次抛掷出现正面向上的概率小于 11. (1 分) (2019 八上·潘集月考) 点 A(a+3,4-b)和点 B(2a,2b+3)关于 y 轴对称,则 a=________,b=________. 12. (1 分) (2019 七上·南岗期末) 在梯形面积公式 s= (a+b)h 中,已知 s=60,b=4,h=12,则 a=________. 13. (1 分) (2018·烟台) 如图,点 O 为正六边形 ABCDEF 的中心,点 M 为 AF 中点,以点 O 为圆心,以 OM 的长为半径画弧得到扇形 MON,点 N 在 BC 上;以点 E 为圆心,以 DE 的长为半径画弧得到扇形 DEF,把扇形 MON 的 两条半径 OM,ON 重合,围成圆锥,将此圆锥的底面半径记为 r1;将扇形 DEF 以同样方法围成的圆锥的底面半径记 为 r2 , 则 r1:r2=________.14. (1 分) (2019 九上·香洲期中) 珠海一中组织篮球比赛庆五一,赛制为单循环形式(每两队之间都赛一 场),共进行了 36 场比赛,设有 x 支球队,则可列方程为________.15. (1 分) (2017·海陵模拟) 如图,CD 是⊙O 的直径,弦 AB⊥CD 于点 H,若∠D=30°,CH=1cm,则 AB=________cm.16. (1 分) (2016 九上·温州期末) 如图,已知二次函数 y= x2﹣ x﹣3 的图象与 x 轴交于 A,B 两点 (点 A 在点 B 的左侧),与 y 轴的负半轴交于点 C,顶点为 D,作直线 CD,点 P 是抛物线对称轴上的一点,若以 P 为圆心的圆经过 A,B 两点,并且和直线 CD 相切,则点 P 的坐标为________第 4 页 共 22 页17. (1 分) (2020·济南模拟) 如图,直线 l:y= x,点 A1 坐标为(0,1),过点 A1 作 y 轴的垂线交直 线 l 于点 B1 , 以原点 O 为圆心,OB1 长为半径画弧交 y 一轴于点 A2;再过点 A2 作 y 轴的垂线交直线于点 B2 , 以 原点 O 为圆心,OB2 长为半径画弧交 y 轴于点 A3 , …,按此做法进行下去,点 A4 的坐标为________;点 An 的坐 标为________.三、 解答题 (共 8 题;共 72 分)18. (5 分) (2019 九上·柘城月考) 解方程:(1);(2) 19. (10 分) (2018·枣庄) 如图,在 4×4 的方格纸中,△ABC 的三个顶点都在格点上.(1) 在图 1 中,画出一个与△ABC 成中心对称的格点三角形; (2) 在图 2 中,画出一个与△ABC 成轴对称且与△ABC 有公共边的格点三角形; (3) 在图 3 中,画出△ABC 绕着点 C 按顺时针方向旋转 90°后的三角形. 20. (2 分) 甲、乙、丙、丁四位同学进行一次网球单打比赛,要从中选出两位同学打第一场比赛. (1) 请用树状图法或列表法求恰好选中甲、乙两位同学的概率;第 5 页 共 22 页(2) 请你设计一个以摸球为背景的实验(至少摸 2 次),并根据该实验写出一个发生概率与(1)所求概率相同的事件.21. (10 分) (2019 九上·海州期中) 关于 x 的一元二次方程有两个不相等的实数根.(1) 求 k 的取值范围;(2) 当 k 为正整数时,求此时方程的根.22. (10 分) (2018 八上·九台期末) 图①是一面矩形彩旗完全展平时的尺寸图(单位:cm).其中矩形 ABCD是由双层白布缝制的穿旗杆用的旗裤,阴影部分 DCEF 为矩形绸缎旗面.(1) 用经加工的圆木杆穿入旗裤作旗杆,求旗杆的最大直径(精确到 1cm);(2) 将穿好彩旗的旗杆垂直插在操场上,旗杆从旗顶到地面的高度为 220cm.在无风的天气里,彩旗自然下垂,如图②.求彩旗下垂时最低处离地面的最小高度 h.23. (10 分) (2018 九上·梁子湖期末) 温州某企业安排 65 名工人生产甲、乙两种产品,每人每天生产 2 件甲或 1 件乙,甲产品每件可获利 15 元.根据市场需求和生产经验,乙产品每天产量不少于 5 件,当每天生产 5 件时,每件可获利 120 元,每增加 1 件,当天平均每件获利减少 2 元.设每天安排 x 人生产乙产品.(1) 根据信息填表产品种类 每天工人数(人) 每天产量(件) 每件产品可获利润(元)甲15乙(2) 若每天生产甲产品可获得的利润比生产乙产品可获得的利润多 550 元,求每件乙产品可获得的利润.(3) 该企业在不增加工人的情况下,增加生产丙产品,要求每天甲、丙两种产品的产量相等.已知每人每天可生产 1 件丙(每人每天只能生产一件产品),丙产品每件可获利 30 元,求每天生产三种产品可获得的总利润 W(元)的最大值及相应的 x 值.24. (10 分) (2016 八上·锡山期末) 阅读下面材料:小明遇到这样一个问题:如图 1,在 Rt△ABC 中,∠ACB=90°,∠A=60°,CD 平分∠ACB,试判断 BC 和 AC、AD之间的数量关系.第 6 页 共 22 页小明发现,利用轴对称做一个变化,在 BC 上截取 CA′=CA,连接 DA′,得到一对全等的三角形,从而将问题 解决(如图 2).请回答: (1) 在图 2 中,小明得到的全等三角形是△________≌△________; (2) 求 BC 和 AC、AD 之间的数量关系是________ (3) 参考小明思考问题的方法,解决问题: 如图 3,在四边形 ABCD 中,AC 平分∠BAD,BC=CD=10,AC=17,AD=9.求 AB 的长.25. (15 分) (2019 九上·昭通期中) 如图,抛物线 y= 点,且 A(﹣1,0).x2+bx﹣2 与 x 轴交于 A,B 两点,与 y 轴交于 C(1) 求抛物线的解析式及顶点 D 的坐标; (2) 判断△ABC 的形状,证明你的结论;第 7 页 共 22 页(3) 点 M 是抛物线对称轴上的一个动点,当 MC+MA 的值最小时,求点 M 的坐标.第 8 页 共 22 页一、 单选题 (共 9 题;共 18 分)答案:1-1、 考点:参考答案解析: 答案:2-1、 考点:解析: 答案:3-1、 考点:第 9 页 共 22 页解析: 答案:4-1、 考点:解析: 答案:5-1、 考点:解析: 答案:6-1、 考点:第 10 页 共 22 页解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:二、填空题 (共8题;共8分)答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:三、解答题 (共8题;共72分)答案:18-1、答案:18-2、考点:解析:答案:19-1、答案:19-2、答案:19-3、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:答案:24-1、答案:24-2、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年四川省乐山市峨眉山市博睿特外国语学校初三上学期期末数学试卷一、选择题(每题3分,共36分)1.(3分)若x的算术平方根为8,则它的立方根是()A.2B.﹣2C.4D.±42.(3分)方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则()A.m=±2B.m=2C.m=﹣2D.m≠±2 3.(3分)若关于x的一元二次方程2x2﹣2x+3m﹣1=0的两个实数根x1,x2,且x1•x2>x1+x2﹣4,则实数m的取值范围是()A.m>B.m≤C.m<D.<m≤4.(3分)某个体商贩在一次买卖中,卖出两件上衣,每件都按135元出售,按成本计算,其中一件盈利25%,另一件亏本25%.则在这次买卖中他()A.不赔不赚B.赚9元C.赔18元D.赚8元5.(3分)若实数x,y,z满足关系式2x+3y﹣z=0,5x﹣2y﹣2z=0,则x:y:z 的值为()A.2:3:1B.5:2:2C.8:1:19D.8:1:1 6.(3分)若方程组只有一组实数解,则k的值是()A.1B.﹣1C.±1D.07.(3分)一等腰梯形中,高为2,下底为4,下底的底角正弦值为,那么它的上底和腰长分别为()A.2,B.1,C.1,2D.2,58.(3分)如图,在▱ABCD中,E为CD的中点,AE交BD于点O,S△DCE=12,则S△AOD等于()A.24B.36C.48D.609.(3分)在△ABC中,∠C=90°,∠A=30°,若CD是高,且CD=1,则a,b,c 三边的长分别是()A.a=,b=2,c=B.a=2,b=,c=C.a=,b=2,c=D.a=2,b=2,c=410.(3分)如图,从地面上C、D两处望山顶A,仰角分别为30°和45°,若C、D两处相距200米,则山高AB为()A.100(+1)米B.100米C.100D.20011.(3分)下列说法正确的是()A.一颗质地均匀的骰子已连续抛掷了2000次,其中,抛掷出5点的次数最少,则第2001次一定抛掷出5点B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C.天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等12.(3分)如图,矩形ABCD中,AD=a,AB=b,要使BC边上至少存在一点P,使△ABP、△APD、△CDP两两相似,则a、b间的关系式一定满足()A.a≥b B.a≥b C.a≥b D.a≥2b 13.(3分)如图,△ABC中,边BC=12,高AD=6.矩形MNPQ的边在BC上,=y,PN=x,则y与x的关系式顶点P在AB上,顶点N在AC上,若S矩形MNPQ为()A.y=6﹣x(0<x<12)B.y=﹣x2+6x(0<x<12)C.y=2x2﹣12x(0<x<12)D.y=x2+6x(0<x<12)二、填空题.(每题4分)14.(4分)计算:①+﹣(﹣4)0=;②3÷×=.15.(4分)m是方程x2﹣x﹣2=0的根,则m2﹣m=.16.(3分)观察下列等式:12﹣02=1;22﹣12=3;32﹣22=5;42﹣32=7;…用含自然数n的等式表示你发现的规律为.17.(3分)如图,在△ABC中,D为AC边上的中点,AE∥BC,ED交AB于G,交BC延长线于F.若BG:GA=3:1,BC=10,则AE的长为.18.(3分)为抵御百年不遇的洪水,某市政府决定将1200m长的大堤的迎水坡面铺石加固,堤高DF=4m,堤面加宽2m,则完成这一工程需要的石方数为m3.19.(3分)如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在点A′的位置,若OB=,tan∠BOC=,则点A′的坐标为.20.(3分)下面是我们将在高中阶段所要学习的一个内容,请先阅读这段内容.再解答问题,三角函数中常用公式sin(α+β)=sinαcosβ+cosαsinβ,.求sin75°的值,即sin75°=sin(30°+45°)=sin30°os45°+cos30°sin45°=.试用公式cos (α+β)=cosαsinβ﹣sinαcosβ,求出cos75°的值是.三、计算题:21.计算:﹣+﹣﹣|1﹣2|﹣(﹣3)0.22.cos30°+sin245°cos60°﹣﹣tan45°.四、解答题23.如图,已知梯形ABCD中,AD∥BC,AB=DC,∠D=120°,对角线AC平分∠BCD,且梯形周长为20厘米,求AC的长.24.如图,在矩形ABCD中,AB<BC,M是BC的中点,DE⊥AM于点E,且AB、BC的长是一元二次方程x2﹣7x+12=0的两根,求△DEM的面积.25.如图,一艘轮船原在A处,它的北偏东45方向上有一灯塔P,轮船沿着北偏西30方向航行4小时到达B处,这时灯塔P正好在轮船的正东方向上,已知轮船的速度为25海里/时.求轮船在B处时与灯塔P的距离(结果保留根号).26.某自然景区有一块长12米,宽8米的矩形花圃(如图所示),喷水无安装在矩对角线的交点P上,现计算从P点引3条射线,把花圃分成面积相等的三部分,分别种植三种不同的花,如果不考虑分不分的间隙.(1)请你设计出符合题意方案示意图(只要求画出图形,至少设计两个方案);(2)直接写出三条射线与矩形的有关边的交点位置;(3)试判断设计的方案中,所画出的三个面积相等的图形是否位似?27.一个不透明的袋子中装有三个完全相同的小球,分别标有数字3、4、5.从袋子中随机取出一个小球,用小球上的数字作为十位上的数字,然后放回;再取出一个小球,用小球上的数字作为个位上的数字,这样组成一个两位数.试问:按这种方法能组成哪些两位数十位上的数字与个位上的数字之和为9的两位数的概率是多少?用列表法或画树状图法加以说明.五、解答题28.已知关于x的方程(k﹣1)x2+(2k﹣3)x+k+1=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由.29.已知:如图,在正方形ABCD中,AD=12,点E是边CD上的动点(点E不与端点C,D重合),AE的垂直平分线FP分别交AD,AE,BC于点F,H,G,交AB的延长线于点P.(1)设DE=m(0<m<12),试用含m的代数式表示的值;(2)在(1)的条件下,当时,求BP的长.2015-2016学年四川省乐山市峨眉山市博睿特外国语学校初三上学期期末数学试卷参考答案与试题解析一、选择题(每题3分,共36分)1.(3分)若x的算术平方根为8,则它的立方根是()A.2B.﹣2C.4D.±4【解答】解:∵x的算术平方根为8,∴x=64,∴64的立方根是:4.故选:C.2.(3分)方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则()A.m=±2B.m=2C.m=﹣2D.m≠±2【解答】解:由一元二次方程的定义可得,解得:m=2.故选B.3.(3分)若关于x的一元二次方程2x2﹣2x+3m﹣1=0的两个实数根x1,x2,且x1•x2>x1+x2﹣4,则实数m的取值范围是()A.m>B.m≤C.m<D.<m≤【解答】解:依题意得x1+x2==1,x1•x2==,而x1•x2>x1+x2﹣4,∴>﹣3,得m>;又一元二次方程2x2﹣2x+3m﹣1=0的有两个实数根,∴△=b2﹣4ac≥0,即4﹣4×2×(3m﹣1)≥0,解可得m≤.∴<m≤.故选:D.4.(3分)某个体商贩在一次买卖中,卖出两件上衣,每件都按135元出售,按成本计算,其中一件盈利25%,另一件亏本25%.则在这次买卖中他()A.不赔不赚B.赚9元C.赔18元D.赚8元【解答】解:设在这次买卖中原价都是x,则可列方程:(1+25%)x=135,解得:x=108,比较可知,第一件赚了27元;第二件可列方程:(1﹣25%)x=135,解得:x=180,比较可知亏了45元,两件相比则一共亏了45﹣27=18元.故选:C.5.(3分)若实数x,y,z满足关系式2x+3y﹣z=0,5x﹣2y﹣2z=0,则x:y:z 的值为()A.2:3:1B.5:2:2C.8:1:19D.8:1:1【解答】解:联立,①×2得,4x+6y﹣2z=0③,②×3得,15x﹣6y﹣6z=0④,③+④得,19x=8z,解得x=z,将x=z代入①得,2×z+3y﹣z=0,解得y=z,所以,方程组的解是,所以,x:y:z=z:z:z=8:1:19.故选:C.6.(3分)若方程组只有一组实数解,则k的值是()A.1B.﹣1C.±1D.0【解答】解:由(2)得,3y=x﹣k(3);把(3)代入(1)得,x2﹣4(x﹣k)=0,即x2﹣4x+4k=0.由于方程组只有一组实数解,所以关于x 的二次方程有两个相等的实数根.△=(﹣4)2﹣4×1×4k=16﹣16k=0,解得k=1.故选:A.7.(3分)一等腰梯形中,高为2,下底为4,下底的底角正弦值为,那么它的上底和腰长分别为()A.2,B.1,C.1,2D.2,5【解答】解:如图,等腰梯形ABCD中,AD∥BC,AB=CD,作AF⊥BC于F,DE ⊥BC于E,则四边形AFED是矩形,,在Rt△ABF和Rt△DCE中,,∴Rt△ABF≌Rt△DCE,∴BF=CE,在Rt△DCE中,∵sinC==,∴=,∴DC=,∴EC=BF===,∴AD=EF=BC﹣2EC=4﹣2×=1.故选:B.8.(3分)如图,在▱ABCD中,E为CD的中点,AE交BD于点O,S△DCE=12,则S△AOD等于()A.24B.36C.48D.60【解答】解:∵在▱ABCD中,E为CD中点,∴DE∥AB,DE=AB,在△DOE与△BOA中,∠DOE=∠BOA,∠OBA=∠ODE,∴△DOE∽△BOA,∴==,=2S△DOE=2×12=24.∴S△AOD故选:A.9.(3分)在△ABC中,∠C=90°,∠A=30°,若CD是高,且CD=1,则a,b,c 三边的长分别是()A.a=,b=2,c=B.a=2,b=,c=C.a=,b=2,c=D.a=2,b=2,c=4【解答】解:∵∠A=30°,CD=1,CD是高,∴b=AC=2CD=2,∵∠C=90°,∴∠B=60°,∴∠BCD=30°,∴a=BC===,∴c=AB=2BC=,故选:C.10.(3分)如图,从地面上C、D两处望山顶A,仰角分别为30°和45°,若C、D两处相距200米,则山高AB为()A.100(+1)米B.100米C.100D.200【解答】解:设山高AB为x,∵∠ADB=45°,∴AB=BD=x,在Rt△ABC中,∵∠ACB=30°,∴=tan30°,即=,解得x=100(+1)米.故选:A.11.(3分)下列说法正确的是()A.一颗质地均匀的骰子已连续抛掷了2000次,其中,抛掷出5点的次数最少,则第2001次一定抛掷出5点B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C.天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等【解答】解:A、是随机事件,错误;B、中奖的概率是1%,买100张该种彩票不一定会中奖,错误;C、明天下雨的概率是50%,是说明天下雨的可能性是50%,而不是明天将有一半时间在下雨,错误;D、正确.故选:D.12.(3分)如图,矩形ABCD中,AD=a,AB=b,要使BC边上至少存在一点P,使△ABP、△APD、△CDP两两相似,则a、b间的关系式一定满足()A.a≥b B.a≥b C.a≥b D.a≥2b【解答】解:若设PC=x,则BP=a﹣x,∵△ABP∽△PCD,∴,即,即x2﹣ax+b2=0方程有解的条件是:a2﹣4b2≥0,∴(a+2b)(a﹣2b)≥0,则a﹣2b≥0,∴a≥2b.故选:D.13.(3分)如图,△ABC中,边BC=12,高AD=6.矩形MNPQ的边在BC上,=y,PN=x,则y与x的关系式顶点P在AB上,顶点N在AC上,若S矩形MNPQ为()A.y=6﹣x(0<x<12)B.y=﹣x2+6x(0<x<12)C.y=2x2﹣12x(0<x<12)D.y=x2+6x(0<x<12)【解答】解:设△APN中PN边上的高为h,∵矩形MNPQ的边在BC上,顶点P在AB上,顶点N在AC上,∴PN∥BC,∴△APN∽△ABC,∴,即,∴h=x,∴MN=6﹣x,∵S=PN•MN矩形MNPQ∴y=x(6﹣x),即y=﹣x2+6x(0<x<12).故选:B.二、填空题.(每题4分)14.(4分)计算:①+﹣(﹣4)0=﹣1;②3÷×=1.【解答】解:①原式=+﹣1=﹣1,②原式=3××=1,故答案为﹣1,1.15.(4分)m是方程x2﹣x﹣2=0的根,则m2﹣m=2.【解答】解:把m代入方程x2﹣x﹣2=0,得到m2﹣m﹣2=0则m2﹣m=2.故本题答案为m2﹣m=2.16.(3分)观察下列等式:12﹣02=1;22﹣12=3;32﹣22=5;42﹣32=7;…用含自然数n的等式表示你发现的规律为(n+1)2﹣n2=2n+1.【解答】解:∵12﹣02=1=1+0;22﹣12=3=2+1;32﹣22=5=3+2;42﹣32=7=4+3,∴(n+1)2﹣n2=(n+1)+n=2n+1.故答案为:(n+1)2﹣n2=2n+1.17.(3分)如图,在△ABC中,D为AC边上的中点,AE∥BC,ED交AB于G,交BC延长线于F.若BG:GA=3:1,BC=10,则AE的长为5.【解答】解:∵AE∥BC∴△AEG∽△BFG∴BG:GA=3:1=BF:AE∵D为AC边上的中点∴AE:CF=1:1∴AE=CF∴BF:AE=(CF+BC):AE=3:1∴(AE+10):AE=3:1解得:AE=5.18.(3分)为抵御百年不遇的洪水,某市政府决定将1200m长的大堤的迎水坡面铺石加固,堤高DF=4m,堤面加宽2m,则完成这一工程需要的石方数为144000m3.【解答】解:∵Rt△BFD中,∠DBF的坡度为1:2,∴BF=2DF=8,=BF×FD÷2=16.∴S△BDF∵Rt△ACE中,∠A的坡度为1:2.5,∴CE:AE=1:2.5,CE=DF=4,AE=10.S梯形AFDC=(AE+EF+CD)×DF÷2=28.=S梯形AFDC﹣S△BFD=12.∴S四边形ABCD那么所需的石方数应该是12×12000=144000(立方米),故答案为:144000.19.(3分)如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在点A′的位置,若OB=,tan∠BOC=,则点A′的坐标为(,).【解答】解:如图,过点A′作A′D⊥x轴与点D;设A′D=λ,OD=μ;∵四边形ABCO为矩形,∴∠OAB=∠OCB=90°;四边形ABA′D为梯形;设AB=OC=γ,BC=AO=ρ;∵OB=,tan∠BOC=,∴,解得:γ=2,ρ=1;由题意得:A′O=AO=1;△ABO≌△A′BO;由勾股定理得:λ2+μ2=1①,由面积公式得:②;联立①②并解得:λ=,μ=.故答案为(,).20.(3分)下面是我们将在高中阶段所要学习的一个内容,请先阅读这段内容.再解答问题,三角函数中常用公式sin(α+β)=sinαcosβ+cosαsinβ,.求sin75°的值,即sin75°=sin(30°+45°)=sin30°os45°+cos30°sin45°=.试用公式cos(α+β)=cosαsinβ﹣sinαcosβ,求出cos75°的值是﹣.【解答】解:cos(α+β)=cosαcosβ﹣sinαsinβ,=cos(30°+45°)=cos30°cos45°﹣sin30°sin45°=×﹣=﹣,故答案为:﹣.三、计算题:21.计算:﹣+﹣﹣|1﹣2|﹣(﹣3)0.【解答】解:﹣+﹣﹣|1﹣2|﹣(﹣3)0=﹣+﹣(﹣1)﹣(2﹣1)﹣1=﹣+﹣1﹣+1﹣2+1﹣1=﹣2.22.cos30°+sin245°cos60°﹣﹣tan45°.【解答】解:cos30°+sin245°cos60°﹣﹣tan45°=+()2×﹣+1﹣1=﹣.四、解答题23.如图,已知梯形ABCD中,AD∥BC,AB=DC,∠D=120°,对角线AC平分∠BCD,且梯形周长为20厘米,求AC的长.【解答】解:∵在梯形ABCD中,AB=DC,∴梯形ABCD是等腰梯形,∴∠D+∠DCB=180°,∵∠D=120°,∴∠B=∠DCB=60°,∵对角线CA平分∠BCD,∴∠ACB=30°,∵AD=DC,∴∠DAC=∠ACD=30°,∴∠BAC=90°,∴BC=2AB,∵梯形的周长=AD+DC+BC+AB=5AB=20,∴AB=4,BC=8,∴AC===4(cm).24.如图,在矩形ABCD中,AB<BC,M是BC的中点,DE⊥AM于点E,且AB、BC的长是一元二次方程x2﹣7x+12=0的两根,求△DEM的面积.【解答】解:解方程x2﹣7x+12=0得:x=3或4,∵AB<BC,AB、BC的长是一元二次方程x2﹣7x+12=0的两根,∴AB=3,BC=4,∵四边形ABCD是矩形,M为BC的中点,∴AD=BC=4,BM=CM=2,∠B=90°,AD∥BC,∴∠DAE=∠AMB,由勾股定理得:AM==,∵DE⊥AM,∴∠DEA=∠B=90°,∴△DEA∽△ABM,∴==,∴==,解得:DE=,AE=,∴EM=AM﹣AE=﹣=,∴△DEM的面积为×DE×EM=××=.25.如图,一艘轮船原在A处,它的北偏东45方向上有一灯塔P,轮船沿着北偏西30方向航行4小时到达B处,这时灯塔P正好在轮船的正东方向上,已知轮船的速度为25海里/时.求轮船在B处时与灯塔P的距离(结果保留根号).【解答】解:作AC⊥BP,在Rt△ABC中,∠BAC=30°,AB=25×4=100,∴BC=50,AC=50,在Rt△ACP中,∠CAP=∠APC=45°,∴CP=AC=50.∴BP=BC+CP=50+50.答:轮船在B处时与灯塔P的距离为(50+50)海里.26.某自然景区有一块长12米,宽8米的矩形花圃(如图所示),喷水无安装在矩对角线的交点P上,现计算从P点引3条射线,把花圃分成面积相等的三部分,分别种植三种不同的花,如果不考虑分不分的间隙.(1)请你设计出符合题意方案示意图(只要求画出图形,至少设计两个方案);(2)直接写出三条射线与矩形的有关边的交点位置;(3)试判断设计的方案中,所画出的三个面积相等的图形是否位似?【解答】解:(1)如图所示.射线PE,PF及PB即为所求;(2)∵点E为线段AD的三等分点,点F为线段CD的三等分点,AD=12米,CD=8米,∴AE=×12=4米,CF=×8=米,∴点E在距点A4米处;点F在距点C米处;点B为矩形的顶点;(3)由图可知,所画出的三个面积相等的图形不相似.27.一个不透明的袋子中装有三个完全相同的小球,分别标有数字3、4、5.从袋子中随机取出一个小球,用小球上的数字作为十位上的数字,然后放回;再取出一个小球,用小球上的数字作为个位上的数字,这样组成一个两位数.试问:按这种方法能组成哪些两位数十位上的数字与个位上的数字之和为9的两位数的概率是多少?用列表法或画树状图法加以说明. 【解答】解:方法一第一次 第二次3 4 53 (3,3) (3,4) (3,5)4 (4,3) (4,4) (4,5) 5(5,3)(5,4)(5,5);方法二因此,能组成的两位数有:33、34、35、43、44、45、53、54、55, ∵组成的两位数有9个,其中,十位上数字与个位上数字之和为9的两位数有两个, ∴P (十位上数字与个位上数字之和为9的两位数)=.五、解答题28.已知关于x的方程(k﹣1)x2+(2k﹣3)x+k+1=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由.【解答】解:(1)方程(k﹣1)x2+(2k﹣3)x+k+1=0有两个不相等的实数根x1,x2,可得k﹣1≠0,∴k≠1且△=﹣12k+13>0,可解得且k≠1;(2)假设存在两根的值互为相反数,设为x1,x2,∵x1+x2=0,∴,∴,又∵且k≠1∴k不存在.29.已知:如图,在正方形ABCD中,AD=12,点E是边CD上的动点(点E不与端点C,D重合),AE的垂直平分线FP分别交AD,AE,BC于点F,H,G,交AB的延长线于点P.(1)设DE=m(0<m<12),试用含m的代数式表示的值;(2)在(1)的条件下,当时,求BP的长.【解答】解:(1)过点H作MN∥AB,分别交AD,BC于M,N两点,∵FP是线段AE的垂直平分线,∴AH=EH,∵MH∥DE,∴Rt△AHM∽Rt△AED,∴==1,∴AM=MD,即点M是AD的中点,∴AM=MD=6,∴MH是△ADE的中位线,MH=DE=m,∵四边形ABCD是正方形,∴四边形ABNM是矩形,∵MN=AD=12,∴HN=MN﹣MH=12﹣m,∵AD∥BC,∴Rt△FMH∽Rt△GNH,∴,即(0<m<12);(2)过点H作HK⊥AB于点K,则四边形AKHM和四边形KBNH都是矩形.∵,解得m=8,∴MH=AK=m=×8=4,HN=KB=12﹣m=12﹣m=8,KH=AM=6,∵Rt△AKH∽Rt△HKP,∴,即KH2=AK•KP,又∵AK=4,KH=6,∴62=4•KP,解得KP=9,∴BP=KP﹣KB=9﹣8=1.。

相关文档
最新文档